V. Fthenakis, H. Kim, K. Branker, M. Pathak, J. M. Pearce et al., Photovoltaics: Life-cycle analyses [4] Energie-Atlas, données de Meteonorm 6.0. http://www.energie-atlas.ch [5] " Global market outlook for photovoltaics until 2015 European Photovoltaic Industry Association Trends in photovoltaic applications ? Survey report of selected IEA countries between A review of solar photovoltaic levelized cost of electricity Regulatory changes needed for distributed energy, proceedings of the EcoGen 2011 Solar photovoltaics competing in the energy sector ? on the road to competitiveness European Photovoltaic Industry Association, pp.1609-1628, 1992.
DOI : 10.1016/j.solener.2009.10.002

M. Montoro and . Riede, Research and development investments in PV ? a limiting factor for a fast PV diffusion, proceedings of the 5th World Conference on Photovoltaic Energy Conversion, no. 6CV.5.22, 2010.

A. Jäger-waldau, PV status report 2008, research, solar cell production and market implementation of photovoltaics, 2008.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (Version 38), Progress in Photovoltaics: Research and Applications, pp.565-572, 2011.
DOI : 10.1002/pip.1150

A. Einstein, ??ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik, vol.12, issue.6, pp.132-148, 1905.
DOI : 10.1002/andp.19053220607

M. A. Green, Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes, IEEE Transactions on Electron Devices, vol.31, issue.5, pp.671-678, 1984.
DOI : 10.1109/T-ED.1984.21588

R. M. Swanson, Approaching the 29% limit efficiency of silicon solar cells, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005., p.889, 2005.
DOI : 10.1109/PVSC.2005.1488274

W. C. O-'mara, R. B. Herring, and L. P. Hunt, Handbook of Semiconductor Silicon Technology, 1990.

M. J. Kerr, Surface, emitter and bulk recombination in silicon and development of silicon nitride passivated solar cells, Thèse de Doctorat, 2002.

G. B. Haxel, J. B. Hedrick, and G. J. Orris, Rare earth elements?critical resources for high technology, pp.87-89, 2002.

A. Jouini, D. Ponthenier, H. Lignier, N. Enjalbert, B. Marie et al., Improved multicrystalline silicon ingot crystal quality through seed growth for high efficiency solar cells, Progress in Photovoltaics: Research and Applications, 2011.
DOI : 10.1002/pip.1221

J. G. Beesley and U. Schönholzer, Slicing 80 micrometer wafers -process parameters in the lower dimensions, proceedings of the 22nd European Photovoltaic Solar Energy Conference, no. 2BO.1.5, 2007.

M. Green, Quo vadis silicon photovoltaics? " in proceedings of the 26th European Photovoltaic Solar Energy Conference, 2011.

M. Keevers, T. Young, U. Schubert, and M. Green, 10% efficient CSG minimodules, proceedings of the 22nd European Photovoltaic Solar Energy Conference

I. Ivanov, T. Nychyporuk, V. Skryshevsky, and M. Lemiti, Thin silicon solar cells with SiOx/SiNx Bragg mirror rear surface reflector, Semiconductor Physics Quantum Electronics & Optoelectronics, vol.12, issue.4, pp.406-411, 2009.

J. Krc, M. Zeman, S. L. Luxembourg, and M. Topic, Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells, Applied Physics Letters, vol.94, issue.15, p.153501, 2009.
DOI : 10.1063/1.3109781

I. J. Kuzma-filipek, F. Duerinckx, E. V. Kerschaver, K. V. Nieuwenhuysen, G. Beaucarne et al., Chirped porous silicon reflectors for thin-film epitaxial silicon solar cells, Journal of Applied Physics, vol.104, issue.7, p.73529, 2008.
DOI : 10.1063/1.2993753

F. Duerinckx, I. Kuzma-filipek, K. V. Nieuwenhuysen, G. Beaucarne, and J. Poortmans, Simulation and implementation of a porous silicon reflector for epitaxial silicon solar cells, Progress in Photovoltaics: Research and Applications, pp.399-407, 2008.
DOI : 10.1002/pip.820

S. Janz, Amorphous silicon carbide for photovoltaic applications, Thèse de Doctorat, 2006.

P. Campbell and M. A. Green, Light trapping properties of pyramidally textured surfaces, Journal of Applied Physics, vol.62, issue.1, pp.243-249, 1987.
DOI : 10.1063/1.339189

. Alamariu, Efficiency enhancement in Si solar cells by textured photonic crystal back reflector, Applied Physics Letters, vol.89, issue.11, p.111111, 2006.

T. Kunz, I. Burkert, R. Auer, R. Brendel, W. Buss et al., Convection-assisted chemical vapor deposition (CoCVD) of silicon on a 40x40 cm² substrate for photovoltaics, proceedings of the 19th European Photovoltaic Solar Energy Conference , no. 2CV.3.37, 2004.

]. S. Reber, A. Hurrle, A. Eyer, G. Willeke, G. Beaucarne et al., Crystalline silicon thin-film solar cells? recent results at Fraunhofer ISE Solar Energy Epitaxial thin-film Si solar cells, Thin Solid Films, vol.77, issue.6, pp.865-875, 2004.

R. B. Bergmann-mccann, K. R. Catchpole, K. J. Weber, A. W. Blakers36-]-k, M. J. Catchpole et al., A review of thinfilm crystalline silicon for solar cell applications Part 1: Native substrates A review of thinfilm crystalline silicon for solar cell applications Part 2: Foreign substrates Fabrication and characterisation of crystalline silicon thin-film materials for solar cells Porous silicon layer transfer processes for solar cells High-efficiency (19.2%) silicon thin-film solar cells with interdigitated emitter and base front contacts Optimization of the CVD process for low-cost crystalline silicon thin-film solar cells, Applied Physics A- Materials Science & Processing proceedings of the 14th European Photovoltaic Solar Energy Conference proceedings of the 2nd World Conference And Exhibition On Photovoltaic Solar Energy Conversion, 1998. [41] E. Schmich, N. Schillinger, and S. Reber, " Silicon CVD deposition for low cost applications in photovoltaics, pp.187-194, 1997.

T. Kieliba, J. Pohl, A. Eyer, and C. Schmiga, Optimization of c-Si films formed by zone-melting recrystallisation for thin-film solar cells, proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, 2003.

K. V. Nieuwenhuysen, M. R. Payo, I. Kuzma-filipek, J. V. Hoeymissen, and J. Poortmans, Epitaxial thin film silicon solar cells with efficiencies up to 16.9% by combining advanced light trapping methods and CVD emitters, proceedings of the 24th European Photovoltaic Solar Energy Conference, 2009.

J. V. Hoeymissen, I. K. Filipek, K. V. Nieuwenhuysen, F. Duerinckx, G. Beaucarne et al., Thin-film epitaxial solar cells on low-cost Si substrates : Closing the efficiency gap with bulk si cells using advanced photonic structures and emitters, proceedings of the 23rd European Photovoltaic Solar Energy Conference, 2008.

G. F. Zheng, S. R. Wenham, and M. A. Green, 17.6% efficient multilayer thin-film silicon solar cells deposited on heavily doped silicon substrates, Progress in Photovoltaics: Research and Applications, pp.369-373, 1996.

M. A. Green and S. R. Wenham, Novel parallel multijunction solar cell, Applied Physics Letters, vol.65, issue.23, pp.2907-2909, 1994.
DOI : 10.1063/1.112526

J. Zhao, A. Wang, S. Wenham, and M. Green, 21.5% efficient 47-µm thin-layer silicon cell, proceedings of the 13th European Photovoltaic Solar Energy Conference, 1995.
URL : https://hal.archives-ouvertes.fr/inserm-00384550

F. Faller, N. Schillinger, A. Hurrle, and C. Schetter, Improvement and characterization of mc-Si thin-film solar cells on low-cost SSP ribbons, proceedings of the 14th European Photovoltaic Solar Energy Conference, 1997.

T. Vermeulen, O. Evrard, W. Laureys, J. Poortmans, M. Caymax et al., Realisation of thin film solar cells in epitaxial layers grown on highly-doped RGS ribbons, proceedings of the 13th European PV Solar Energy Conference, 1995.

W. Zimmermann, S. Bau, A. E. Haas, and K. Schmidt, Silicon sheets from powder as low cost substrates for crystalline silicon thin-film solar cells, proceedings of the Second World Conference on Photovoltaic Solar Energy Conversion, 1998.

S. Seren, Low cost solar cells from fast grown silicon ribbon materials, Thèse de Doctorat, 2007.

F. Duerinckx, K. V. Nieuwenhuysen, H. Kim, I. Kuzma-filipek, H. Dekkers et al., Large-area epitaxial silicon solar cells based on industrial screen-printing processes, Progress in Photovoltaics: Research and Applications, pp.673-690, 2005.
DOI : 10.1002/pip.629

S. Bau, High-temperature CVD silicon films for crystalline silicon thin-film solar cells, Thèse de Doctorat, 2003.

A. Eyer, F. Haas, T. Kieliba, D. Osswald, S. Reber et al., Crystalline silicon thin-film (CSiTF) solar cells on SSP and on ceramic substrates, Solar Energy Materials and Solar Cells, pp.340-347, 2001.
DOI : 10.1016/S0022-0248(01)00907-1

]. T. Kunz, I. Burkert, N. Gawehns, R. Auer, I. Gordon et al., Fabrication and characterization of highly efficient thin-film polycrystalline-silicon solar cells based on aluminium-induced crystallization Film silicon on ceramic substrates for solar cells Crystalline silicon thin-film solar cells on ZrSiO 4 ceramic substrates High current, thin silicon-on-ceramic solar cell Development of light-trapped, interconnected silicon-film modules Some observations on the amorphous to crystalline transformation in silicon Large area polycrystalline silicon thin films grown by laser-induced nucleation and solid phase crystallization, Crystalline silicon thin-film solar cells on graphite or SiC-ceramic substrates proceedings of the 23rd European Photovoltaic Solar Energy Conference proceedings of the 16th European Photovoltaic Solar Energy Conference proceedings of the 26th IEEE PV Specialists Conference Tawada, Y. Okamoto, and A. Nakajima, " Below 5 µm thin film poly-Si solar cell on glass substrate fabricated at low temperature proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, pp.6984-6988, 1982.

T. Sakano, M. Wolf, J. Huang, G. Jin, L. Huang et al., Poly-Si on glass thin-film PV research at UNSW, proceedings of the 22nd European Photovoltaic Solar Energy Conference

S. Amtablian, Du transfert de films minces de silicium monocristallin vers un procédé cellule à faible budget thermique, Thèse de Doctorat, 2008.

H. Tayanaka, K. Yamauchi, and T. Matsushita, Thin-film crystalline silicon solar cells obtained by separation of a porous silicon sacrificial layer, proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 1998.

C. Berge, R. Bergmann, T. Rinke, and J. Werner, Monocrystalline silicon thin-film solar cells by layer transfer, proceedings of the 17th European Photovoltaic Solar Energy Conference, 2001.

R. Brendel, Thin-film crystalline silicon mini-modules using porous Si for layer transfer, Solar Energy, vol.77, issue.6, pp.969-982, 2004.
DOI : 10.1016/j.solener.2004.08.011

J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas et al., 19%-efficient and 43?????m-thick crystalline Si solar cell from layer transfer using porous silicon, Progress in Photovoltaics: Research and Applications, 2011.
DOI : 10.1002/pip.1129

J. Kraiem, Epitaxie et transfert de films minces de silicium pour applications photovoltaïques, Thèse de Doctorat, 2005.

H. Kim, V. Depauw, G. Agostinelli, G. Beaucarne, and J. Poortmans, Progress in thin film free-standing monocrystalline silicon solar cells, Thin Solid Films, vol.511, issue.512, pp.511-512, 2006.
DOI : 10.1016/j.tsf.2005.11.104

H. Morikawa, Y. Nishimoto, H. Naomoto, Y. Kawama, A. Takami et al., 16.0% Efficiency of large area (10cm??10cm) thin film polycrystalline silicon solar cell, Solar Energy Materials and Solar Cells, vol.53, issue.1-2, pp.23-28, 1998.
DOI : 10.1016/S0927-0248(98)00003-8

P. Ribeyron, A. Beaumont, C. Lagahe, A. Fave, A. Kaminski et al., Thin film monocrystalline silicon on cheap substrate: an innovative approach based on ion implantation or porous silicon, silicon epitaxy and back contact design, proceedings of the 18th European PV Solar Energy Conference, 2002.

F. Dross, A. Milhe, J. Robbelein, I. Gordon, P. Bouchard et al., Slim-cut: a kerf-loss-free method for wafering 50-?m-thick crystalline Si wafers based on stress-induced lift-off, proceedings of the 23rd European Photovoltaic Solar Energy Conference, 2008.

M. H. Clark, S. B. Herner, and M. M. Hilali, Selective etch for damage at exfoliated surface, Brevet Etats-Unis, vol.12484271, 2011.

A. Straboni, Sintered semiconductor material, p.676, 2003.

K. Derbouz, Etude du frittage du silicium pour application aux cellules solaires photovoltaïques, Thèse de Doctorat, 2006.

P. Bellanger, Etude d'un procédé de recristallisation de plaquettes de silicium fritté pour la réalisation de cellules solaires photovoltaïques, Thèse de Doctorat, 2010.

A. Sow, Purification et dopage de poudres de silicium pour la préparation de plaquettes frittées destinées à des applications solaires photovoltaïques, Thèse de Doctorat, 2011.

M. Grau, D. Blangis, S. Lindekugel, S. Janz, S. Reber et al., High Voc crystalline silicon thin film solar cells through recrystallised wafer equivalent applied to sintered silicon, proceedings of the 24th European Photovoltaic Solar Energy Conference

R. B. Bergmann and J. H. Werner, The future of crystalline silicon films on foreign substrates, Thin Solid Films, vol.403, issue.404, pp.403-404, 2002.
DOI : 10.1016/S0040-6090(01)01556-5

A. Straboni, Recristallisation complète de plaquettes semi-conductrices, " brevet français 09, p.179, 2009.

T. Kieliba, Zone-melting recrystallisation for crystalline silicon thin-films solar cells, Thèse de Doctorat, 2006.

C. Pinto, J. Serra, M. Brito, R. Gamboa, J. M. Alves et al., Zone melting recrystallization of self supported silicon ribbons obtained by fast cvd from silane, proceedings of the 21st European Photovoltaic Solar Energy Conference, 2006.

G. Andrä, J. Bergmann, F. Falk, and E. Ose, Multicrystalline silicon thin film solar cells on glass, proceedings of the 19th European Photovoltaic Solar Energy Conference

A. Baghdadi and R. W. Gurtler, Recent advances in ribbon-to-ribbon crystal growth, Journal of Crystal Growth, vol.50, issue.1, pp.236-246, 1980.
DOI : 10.1016/0022-0248(80)90247-X

F. Secco-d-'aragona, Dislocation Etch for (100) Planes in Silicon, Journal of The Electrochemical Society, vol.119, issue.7, pp.948-951, 1972.
DOI : 10.1149/1.2404374

L. Royer, Recherches expérimentales sur l'épitaxie ou orientation mutuelle des cristaux d'espèces différentes, Bulletin de la Société française de minéralogie et de cristallographie, pp.7-159, 1928.

H. Schneider, V. Ruth, J. Hunt, H. Langer, U. Broehl et al., Advances in Epitaxy and Endotaxy, ser. Material Science Monographs, 1990.

J. Bloem, Nucleation and growth of silicon by CVD, Journal of Crystal Growth, vol.50, issue.3, pp.581-604, 1980.
DOI : 10.1016/0022-0248(80)90002-0

J. Bloem, Y. Oei, H. D. Moor, J. Hanssen, and L. Giling, Near equilibrium growth of silicon by CVD I. The Si-Cl-H system, Journal of Crystal Growth, vol.65, issue.1-3, pp.399-405, 1983.
DOI : 10.1016/0022-0248(83)90080-5

W. A. Claassen and J. Bloem, Rate-determining reactions and surface species in CVD of silicon, Journal of Crystal Growth, vol.50, issue.4, pp.807-815, 1980.
DOI : 10.1016/0022-0248(80)90142-6

V. S. Ban and S. L. Gilbert, Chemical Processes in Vapor Deposition of Silicon, Journal of The Electrochemical Society, vol.122, issue.10, pp.1382-1388, 1975.
DOI : 10.1149/1.2134022

T. Aoyama, Y. Inoue, and T. Suzuki, Gas Phase Reactions and Transport in Silicon Epitaxy, Journal of The Electrochemical Society, vol.130, issue.1, pp.203-207, 1983.
DOI : 10.1149/1.2119659

C. E. Morosanu, D. Iosif, and E. Segal, Vapour growth mechanism of silicon layers by dichlorosilane decomposition, Journal of Crystal Growth, vol.61, issue.1, pp.102-110, 1983.
DOI : 10.1016/0022-0248(83)90286-5

A. A. Chernov, Growth kinetics and capture of impurities during gas phase crystallization, Journal of Crystal Growth, vol.42, pp.55-76, 1977.
DOI : 10.1016/0022-0248(77)90178-6

J. Bloem, High chemical vapour deposition rates of epitaxial silicon layers, Journal of Crystal Growth, vol.18, issue.1, pp.70-76, 1973.
DOI : 10.1016/0022-0248(73)90150-4

E. Sirtl, L. P. Hunt, and D. H. Sawyer, High temperature reactions in the siliconhydrogen-chlorine system, Journal of The Electrochemical Society, vol.121, issue.7, pp.919-925, 1974.

M. Lemiti, Vapor Phase Epitaxy, Crystal Growth of Si for Solar Cells, p.159, 2009.
DOI : 10.1007/978-3-642-02044-5_10

J. L. Regolini, D. Bensahel, J. Mercier, and E. Scheid, Silicon selective epitaxial growth at reduced pressure and temperature, Journal of Crystal Growth, vol.96, issue.3, pp.505-512, 1989.
DOI : 10.1016/0022-0248(89)90045-6

K. I. Cho, J. W. Yang, C. S. Park, and S. C. Park, Selective epitaxial growth of silicon by CVD and its thermodynamic consideration, proceedings of the 10th Conference on Chemical Vapor Deposition, pp.379-388, 1987.

J. Korec and M. Heyen, Modeling of chemical vapor deposition, Journal of Crystal Growth, vol.60, issue.2, pp.286-296, 1982.
DOI : 10.1016/0022-0248(82)90101-4

J. Bloem and W. A. Claassen, Rate-determining reactions and surface species in CVD of silicon, Journal of Crystal Growth, vol.49, issue.3, pp.435-444, 1980.
DOI : 10.1016/0022-0248(80)90117-7

J. Bloem, Equilibrium and kinetics in the chemical vapour deposition of silicon, Journal of Crystal Growth, vol.31, pp.256-263, 1975.
DOI : 10.1016/0022-0248(75)90139-6

R. Pollard and J. Newman, Silicon Deposition on a Rotating Disk, Journal of The Electrochemical Society, vol.127, issue.3, pp.744-752, 1980.
DOI : 10.1149/1.2129743

H. K. Moffat and K. F. Jensen, Three-Dimensional Flow Effects in Silicon CVD in Horizontal Reactors, Journal of The Electrochemical Society, vol.135, issue.2, pp.459-471, 1988.
DOI : 10.1149/1.2095638

S. K. Tung, The Effects of Substrate Orientation on Epitaxial Growth, Journal of The Electrochemical Society, vol.112, issue.4, pp.436-438, 1965.
DOI : 10.1149/1.2423563

I. Stranski, Zur Theorie des Kristallwachstums, Zeitschrift für pysikalische Chemie, p.259, 1928.

J. G. Gardeniers and L. J. Giling, Vapour growth of silicon: growth anisotropy and adsorption, Journal of Crystal Growth, vol.115, issue.1-4, pp.542-550, 1991.
DOI : 10.1016/0022-0248(91)90802-C

J. Gardeniers, M. Mooren, and L. Giling, Roughening effects during silicon CVD studied by the use of hemispherical substrates, Surface Science, vol.236, issue.1-2, pp.85-102, 1990.
DOI : 10.1016/0039-6028(90)90763-X

T. Vermeulen, J. Poortmans, M. Caymax, F. Duerinckx, S. Maene et al., Application of industrial processing techniques to thin film crystalline solar cells on highly doped defected silicon substrates, proceedings of the 2nd World Conference And Exhibition On Photovoltaic Solar Energy Conversion, 1998.

C. V. Brekel, Growth rate anisotropy and morphology of autoepitaxial silicon films from SiCl4, Journal of Crystal Growth, vol.23, issue.4, pp.259-266, 1974.
DOI : 10.1016/0022-0248(74)90067-0

A. Voigt, B. Steiner, W. Dorsch, J. Krinke, M. Albrecht et al., Defect control during silicon epitaxial growth using dichlorosilane Mechanisms of chemical vapour deposition Growth rate enhancement of heavy nand p-type doped silicon deposited by atmospheric-pressure chemical vapor deposition at low temperatures Doping of epitaxial silicon: Effect of dopant partial pressure Impurity distribution in epitaxial growth Epitaxie en phase vapeur de silicium sur silicium mésoporeux pour report sur substrats économiques et application photovoltaïque bas coût ConCVD and ProConCVD: Development of high-throughput CVD tools on the way to low-cost silicon epitaxy Convectionassisted chemical vapor deposition (CoCVD) of silicon on large-area substrates Effectiveness of 0.08 molar iodine in ethanol solution as a means of chemical surface passivation for photoconductance decay measurements Determining the minority carrier lifetime in epitaxial silicon layers by microwave-detected photoconductivity measurements A method of measuring specific resistivity and hall effect of discs of arbitrary shape Delineation of crystalline extended defects on multicrystalline silicon wafers, Thèse de Doctorat proceedings of the 24th European Photovoltaic Solar Energy Conference, pp.694-699, 1958.

J. Lelievre, Élaboration de SiNx:H par PECVD : optimisation des propriétés optiques, passivantes et structurales pour applications photovoltaïques, Thèse de Doctorat, 2007.

B. Bazer-bachi, Développement et mise au point d'un procédé innovant de diffusion des dopants n et p pour la fabrication de cellules photovoltaïques silicium, Thèse de Doctorat, 2010.

A. Mette, D. Pysch, G. Emanuel, D. Erath, R. Preu et al., Series resistance characterization of industrial silicon solar cells with screen-printed contacts using hotmelt paste, Progress in Photovoltaics: Research and Applications, pp.493-505, 2007.
DOI : 10.1002/pip.755

V. Yelundur, B. Damiani, V. Chandrasekaran, A. Adedokun, A. Payne et al., First implementation of ion implantation to produce commercial silicon solar cells, proceedings of the 26th European Photovoltaic Solar Energy Conference, no. 2AO.1.2, 2011.

L. Tous, M. Récaman-payo, M. Ngamo, J. Hernández, J. Poortmans et al., Evaluating contact resistance using epitaxially grown phosphorous emitters, proceedings of the 26th European Photovoltaic Solar Energy Conference, no. 2BV.2.5, 2011.

C. Boulord, Développement de techniques de métallisation innovantes pour cellules photovoltaïques à haut rendement, Thèse de Doctorat, 2011.

A. Barnett, R. Hao, C. Murcia, A. Lochtefeld, C. Leitz et al., Independent approaches to increase voltage and current in thin crystalline silicon solar cells in proceedings of the 26th European Photovoltaic Solar Energy Conference Epitaxial silicon solar cells Calculated efficiencies of practical GaAs and Si solar cells including the effect of built-in electric fields Current-voltage characteristic for bipolar p-n junction devices with drift fields, including correlation between carrier lifetimes and shallowimpurity concentration Effect of doping gradients on solar cell efficiency The influence of drift fields in thin silicon solar cells Do built-in fields improve solar cell performance, proceedings of the 18th IEEE Photovoltaic Specialists Conference Progress in Photovoltaics: Research and Applications, pp.231-232, 1970.

E. Guillermain, Dispositifs nanophotoniques à ondes de surface en silicium poreux : technologie et application à la bio-détection, Thèse de Doctorat, 2008.

D. L. Windt, IMD???Software for modeling the optical properties of multilayer films, Computers in Physics, vol.12, issue.4, pp.360-370, 1998.
DOI : 10.1063/1.168689

W. Theiß, Optical properties of porous silicon, Surface Science Reports, vol.29

L. Canham, Properties of Porous Silicon, 1997.

T. Nychyporuk, Nouvelles morphologies du silicium nanostructuré issues de l'anodisation électrochimique : élaboration, propriétés physicochimiques et applications, Thèse de Doctorat, 2006.

V. Lehmann and U. Gösele, Porous silicon formation: A quantum wire effect, Applied Physics Letters, vol.58, issue.8, pp.856-858, 1991.
DOI : 10.1063/1.104512

C. Jamois, C. Li, E. Gerelli, R. Orobtchouk, T. Benyattou et al., New Concepts of Integrated Photonic Biosensors Based on Porous Silicon, 2011.

S. Chuang, S. D. Collins, and R. L. Smith, Preferential propagation of pores during the formation of porous silicon: A transmission electron microscopy study, Applied Physics Letters, vol.55, issue.7, pp.675-677, 1989.
DOI : 10.1063/1.101819

M. Guendouz, P. Joubert, and M. Sarret, Effect of crystallographic directions on porous silicon formation on patterned substrates, Materials Science and Engineering: B, vol.69, issue.70, pp.43-47, 2000.
DOI : 10.1016/S0921-5107(99)00263-9

N. Ott, M. Nerding, G. Muller, R. Brendel, and H. P. Strunk, Evolution of the microstructure during annealing of porous silicon multilayers, Journal of Applied Physics, vol.95, issue.2, pp.497-503, 2004.
DOI : 10.1063/1.1633657

G. Müller and R. Brendel, Simulated Annealing of Porous Silicon, physica status solidi (a), vol.70, issue.1, pp.313-318, 2000.
DOI : 10.1002/1521-396X(200011)182:1<313::AID-PSSA313>3.0.CO;2-B

M. M. Hassan, M. Y. Ghannam, J. Poortmans, and R. Mertens, A quantitative stressrelated model for the evolution of the pore size in porous silicon during high temperature annealing, Physics Research Section B: Beam Interactions with Materials and Atoms, pp.269-273, 2006.

T. Rinke, R. Bergmann, and J. Werner, Quasi-monocrystalline silicon for thin-film devices, Applied Physics A: Materials Science & Processing, vol.68, issue.6, pp.705-707, 1999.
DOI : 10.1007/s003390050964

M. Ben-chorin, F. Möller, and F. Koch, Nonlinear electrical transport in porous silicon, Physical Review B, vol.49, issue.4, pp.2981-2984, 1994.
DOI : 10.1103/PhysRevB.49.2981

W. D. Kingery and M. Berg, Study of the Initial Stages of Sintering Solids by Viscous Flow, Evaporation???Condensation, and Self???Diffusion, Journal of Applied Physics, vol.26, issue.10, pp.1205-1212, 1955.
DOI : 10.1063/1.1721874

D. L. Johnson, New Method of Obtaining Volume, Grain???Boundary, and Surface Diffusion Coefficients from Sintering Data, Journal of Applied Physics, vol.40, issue.1, pp.192-200, 1969.
DOI : 10.1063/1.1657030

D. Bernache-assollant and J. Bonnet, Frittage : aspects physico-chimiques, 2005.
URL : https://hal.archives-ouvertes.fr/emse-00497549

R. L. Coble, Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models, Journal of Applied Physics, vol.32, issue.5, pp.787-792, 1961.
DOI : 10.1063/1.1736107

C. Greskovich and J. H. Rosolowski, Sintering of Covalent Solids, Journal of the American Ceramic Society, vol.118, issue.3, pp.336-343, 1976.
DOI : 10.1063/1.1699658

F. F. Wang, S. Bhaduri, T. A. Baum, and K. M. Krishnan, Hot Pressing of Silicon, Sintering Processes, pp.289-294, 1979.
DOI : 10.1007/978-1-4899-5301-8_23

H. Möller and G. Welsch, Sintering of Ultrafine Silicon Powder, Journal of the American Ceramic Society, vol.62, issue.3, pp.320-325, 1985.
DOI : 10.1007/BF00552198

A. N. Béré, Préparation des substrats actifs par frittage de poudre de silicium pour application photovoltaique -étude des cinétiques de broyage et de frittage -caractérisations physiques et électriques, Thèse de Doctorat, 2001.

A. Derbouz, A. Straboni, A. Archambault, F. Valdivieso, and E. Bere, Production of polycrystalline silicon sheets for photovoltaic applications by pressing and sintering of silicon powders, proceedings of the 19th European Photovoltaic Solar Energy Conference, 2004.

D. Rover, P. Basore, and G. Thorson, Solar cell modeling on personal computers, proceedings of the 18th IEEE Photovoltaic Specialists Conference, 1985.

P. Papet, Nouveaux concepts pour la réalisation de cellules photovoltaïques à contacts interdigités sur substrats minces en silicium cristallin, Thèse de Doctorat, 2007.

A. G. Olszak, J. Schmit, and M. G. Heaton, Interferometry: Technology and applications

. Dans-certains-cas, la recombinaison est si élevée que les courbes I(V) sous obscurité et SunsVoc ne peuvent pas être ajustées avec les

L. La-mesure and . Pour-light-ou, Laser Beam Induced Current, est une méthode de caractérisation permettant de cartographier la génération de courant dans une cellule solaire, et d'identifier ainsi les zones fournissant plus ou moins de courant Au laboratoire, quatre lasers sont utilisés, de longueurs d'onde 532, 632, 780 et 980 nm

G. Celles-ci-ont-Été-analysées-par, Glow Discharge Mass Spectroscopy) et IGA (Instrumental Gas Analysis) [82]. Il est à noter également que la spectroscopie de masse tient compte de tous les dopants, qu'ils soient actifs ou non

L. Utilisé-ici-pour-les-mesures-est-un-cameca, I. 4f, and L. Faisceau, ions primaire est constitué d'oxygène et a une énergie de 12,5 keV. L'échantillon est porté à une tension de +4500 V. Dans le cas des mesures de concentration de phosphore, de l'oxygène est soufflé sur l'échantillon afin d'obtenir un meilleur rendement d'ionisation. La mesure est effectuée sur un diamètre de l