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Bubble dynamics and boiling heat transfer: a study in the
absence and in the presence of electric fields

Abstract:
Since boiling heat transfer affords a very effective means to transfer heat, it is implemented in nu-

merous technologies and industries ranging from large power generation plants to micro-electronic

thermal management. No matter what the scale of the technology, industries are continually de-

manding smarter and smaller heat exchangers. In order to achieve the design of heat exchangers

with ever increasing heat flux densities, a good prediction of boiling heat transfer is required, and

heat transfer enhancement techniques are to be developed.

Although having been a subject of research for several decades, an accurate prediction of boiling

heat transfer is still challenging due to the complexity of the coupled mechanisms involved. It ap-

pears that the boiling heat transfer coefficient is intimately related to bubble dynamics (i.e. bubble

nucleation, growth and detachment) as well as factors such as nucleation site density and interaction

between neighbouring and successive bubbles. In order to contribute to the understanding of the

boiling phenomenon, an experimental investigation of saturated pool boiling from a single or two

neighbouring artificial nucleation sites on a polished copper surface has been performed.

The bubble growth dynamics has been characterized for different wall superheats and a experi-

mental growth law has been established. The interaction between successive bubbles from the same

nucleation site has been studied, showing the bubble shape oscillations that can be caused by these

interactions. The forces acting on a growing bubble has been reviewed, and a complete momentum

balance has been made for all stages of bubble growth. The curvature along the interface has been

measured, and indications concerning the mechanism of bubble detachment have been suggested.

The rise of bubble after detachment has been investigated, and the maximum velocity reached before

a change of direction has been estimated and compared to existing models from the literature. The

interaction between bubbles growing side by side has been studied: the generation and propagation

of a wave front during the coalescence of two bubbles has been highlighted.

As boiling heat transfer enhancement techniques are being imagined and developed, this study

also focuses on the electrohydrodynamic enhancement technique. Boiling experiments have been

performed in the presence of electric fields, and their effects on heat transfer and bubble dynamics

have been characterized.

The heat transfer and convective structures have been investigated in the specific experimental

conditions, first in the absence of electric fields. The thermal field and convective instabilities have

been described both from experimental visualizations and by numerical simulations. The modifica-

tion of the convective structures by the presence of electric field has been described, showing smaller

convective cells and more intense convective activity. The consequent enhancement of heat transfer

has been quantified.

The electrohydrodynamic effects on bubble dynamics has then been investigated. Although the

volume of the bubbles at detachment and the relationship between the bubble frequency and the wall

superheat were not affected, the bubble growth curve was modified. The bubbles were elongated in

the direction of the electric field, and this elongation was estimated and compared to other studies

from the literature. The rising velocity of the bubble was reduced in the presence of electric field, and

the behaviour of bubbles growing side by side was modified, the electric field causing the bubbles to

repeal each other.

These results, obtained in a fully controlled environment, provide compelling evidence that elec-

tric fields can be implemented to alter the bubble dynamics and subsequently heat transfer rates

during boiling of dielectric fluids.

Keywords: Pool boiling, bubble dynamics, experimentation, visualization, electrohydrodynamics,
EHD
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Dynamique de bulles et transferts thermiques par
ébullition: étude en absence et en présence de champs

électriques

Résumé:
L’ébullition est un mode de transfert de chaleur très efficace utilisé dans de nombreux systèmes

technologiques comme les centrales nucléaires ou refroidissement de micro-électronique. Peu im-

porte la taille du système, les industries ont continuellement besoin d’échangeurs de chaleurs plus

petits et plus efficaces. Pour concevoir des échangeurs avec de toujours plus fortes densités de

flux échangés, une bonne prédiction des transferts thermiques est nécessaire, et des techniques

d’intensification des échanges doivent être développées.

La prédiction des échanges thermiques par ébullition reste actuellement très délicate, en raison

de la complexité du phénomène, malgré des décennies de recherche sur le sujet. Le coefficient de

transfert thermique est intimement lié à la dynamique de bulles (nucléation des bulles, croissance

et détachement) ainsi qu’à des facteurs tels la densité de sites de nucléation ou les interactions entre

bulles voisines et successives. La présente étude expérimentale concerne l’ébullition saturée sur un

site de nucléation artificiel unique (ou deux sites voisins) sur une paroi en cuivre poli.

La dynamique de croissance des bulles a été caractérisée pour différentes surchauffes de paroi

et une loi expérimentale de croissance a été établie. Les interactions entre bulles successives issues

du même site ont été étudiées, montrant qu’elles peuvent provoquer des oscillations de la bulle en

croissance. Les forces agissant sur une bulle en croissance ont été clairement définies, et un bilan de

quantité de mouvement a été réalisé à tous les stades de la croissance d’une bulle. La courbure le

long de l’interface a été mesurée, ce qui a permis de mieux saisir le mécanisme de détachement de la

bulle. L’ascension d’une bulle après son détachement a été analysée, et la vitesse maximale atteinte

avant un changement de direction a été estimée et comparée aux modèles existants dans la littérature.

L’interaction entre bulles croissant côte à côte a été étudiée. La génération et la propagation d’une

onde lors de la coalescence a été mise en évidence.

Dans le contexte de travaux de recherche sur des techniques d’intensification des échanges ther-

miques, cette étude se penche particulièrement sur l’intensification par électrohydrodynamique. Des

expériences d’ébullition ont été réalisées en présence de champs électriques, et leurs effets sur les

transferts thermiques et sur la dynamique des bulles ont été analysés.

Les transferts thermiques et les structures convectives ont été étudiées dans les conditions parti-

culières de l’expérience, en absence et en présence d’un champ électrique. Le champ de température

et les instabilités convectives ont été décrite par des visualisations expérimentales et par des simula-

tions numériques. La modification des structures convectives par la présence de champs électriques

a été décrite, montrant une activité convective intense formée de cellules convectives plus petites.

L’augmentation des transferts thermiques qui en résulte a été quantifiée.

Les effets électrohydrodynamiques sur la dynamique de bulle ont été explorés. Bien que le vol-

ume au détachement des bulles et la relation entre la fréquence et la surchauffe reste inchangées, la

courbe de croissance des bulles est modifiée. Les bulles sont allongées dans la direction du champ

électrique, et cette élongation a été estimée et comparée à d’autres résultats de la littérature. La

vitesse d’ascension des bulles est réduite en présence de champs électriques, et les interactions de

bulles voisines sont modifiées: il s’avère qu’en présence de champs électriques les bulles ont ten-

dance à se repousser.

Ces résultats, obtenus dans un environnement parfaitement contrôlé apportent la preuve que la

présence de champs électriques modifie la dynamique des bulles et par conséquents les transferts

thermiques associés.

Mots-Clefs: Ébullition en vase, dynamique de bulles, expérimentation, visualisation, electrohy-
drodynamique, EHD
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Chapter 1

Introduction

1.1 Background

From time immemorial, the boiling phenomenon is known by humans. First as a natural

phenomenon, as boiling can easily be observed in nature, especially in volcanic situations

such as geysers and boiling lava flows. Boiling has soon become familiar by the use of boiling

water for domestic needs such as cooking.

Along with the development of technology and the invention of new mechanical systems,

innovative uses of boiling processes have been found, especially for the production of steam.

One can refer to Hero of Alexandria and his aeolipyle, known as the first steam engine, or to

industrial processes such as boiling brine into pure salt.

From the 18th century, the industrial revolution brought the boiling phenomenon to the

fore by using this process in several of the major inventions. The steam engine, and later the

steam turbines (Rankine and Hirn cycles) used a boiler for steam production as a source of

thermodynamic energy to produce a mechanical work. At the same period, several refrig-

eration systems were developed, including those using a vapour-compression refrigeration

cycle (inverse Rankine cycle). In such a cycle, a fluid flows in a closed loop, being condensed

at high pressure after a compression and boiling at low pressure after an expansion.

In the 20th century, two major reasons led to the expansion of the use of boiling in sys-

tems. The first reason is the widespread of the use of electricity which caused the wide de-

velopment of power plants. Many types of electric power plants use a thermodynamic cycle

that requires boiling in order to produce water steam that is expanded in turbines. For ex-

ample, nuclear power plants use such a cycle.

The second reason is the development and spreading of electronics in all domains of

technology. Electronic components produce and dissipate heat. This heat needs to be re-

moved in order to maintain a reasonable temperature within the components. Several sys-

1
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2 CHAPTER 1. INTRODUCTION

tems ranging from natural convection to complex heat pipes have been developed in order

to achieve effective heat removal. Boiling being recognized as a very effective mean to trans-

mit heat, systems using boiling have been developed in order to cool down components

dissipated high heat fluxes.

Systems using boiling are now spread everywhere in the modern society. Whether when

boiling water to prepare a tea or when taking a fresh beer in the fridge, when using a laptop

whose processor is cooled by a heat pipe and which requires electricity produced by a steam

turbine power plant, when living in a warm house heated by a heat pump, boiling systems

are omnipresent.

In all theses technologies, an optimal control and design is required in order to ensure

safety, reliability and effectiveness of the systems. The electronic, the refrigeration and the

electricity production industries are continually increasing the power and reducing the size

of the components, demanding smarter and smaller heat exchangers. Two major objec-

tives arise in order to meet such requirements: the boiling heat transfer needs to be well

understood and predictable, and new methods allowing enhancement of boiling heat trans-

fer need to be developed.

1.2 Motivation of the study

Better designs of heat exchangers are needed in order to achieve heat dissipation of ever in-

creasing heat flux densities. Pool boiling heat transfer, as boiling within a bulk liquid at rest,

is characterized by very high dissipated heat fluxes whilst requiring low driving temperature

differences. For this reason, pool boiling is a good candidate to meet the needs of high flux

densities cooling systems.

In the so-called nucleate pool boiling regime, the high heat transfer rates are primarily

due to enhanced convection, transient conduction, microlayer evaporation, and contact line

heat transfer brought about by the motion of bubbles [93]. The relative contribution of each

individual heat transfer mechanism to the overall heat transfer rate is sensitive to the boiling

condition and difficult to predict. What is obvious is that the boiling heat transfer coefficient

is intimately linked to the bubble dynamics: that roughly being bubble nucleation, growth,

and detachment, as well as factors such as nucleation site density and interactions between

neighbouring and successive bubbles [53]. Therefore, in order to gain insight into the heat

transfer mechanisms during boiling a fundamental understanding of the bubble dynamics

is required.

Consequently, bubble dynamics has been a constant subject of research for several

decades. The prediction of all parameters governing the fundamental mechanisms of boil-

ing at the scale of a single bubble have been attempted through the means of theoretic mod-

elling, experimental correlation or numerical simulation, with mixed results. The complexity

of the phenomenon, due to the diversity of scales involved, to the coupled temperature and
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1.3. OBJECTIVES 3

velocity fields and to the characterization of the surface have led to a number of simplifica-

tion hypotheses in theoretical models that their applicability is often uncertain. The exper-

imental investigations have their own difficulties of measuring accurately and with a high

time resolution physical parameters in a 3-dimensional and multi-scale environment. Nu-

merical simulation, although being a promising prediction method, requires a good under-

standing and modelling of the mechanisms involved together with reference experimental

data to validate the results obtained.

Along with the research of natural boiling, new heat transfer enhancement techniques

have been conceived and developed. Some methods are called passive as they consume no

energy. These methods imply a modification of the surface (such as structuring of the sur-

face [37] or modification of the wettability) or of the fluid used (such as using binary mixtures

or solvents). Other methods are called active because they need external forces to interact

with the boiling fluid (such as ultrasounds or surface vibration). One of the active techniques

is to generate an electric field within the boiling fluid to modify the boiling behaviour by the

contribution of electric body forces [104]. This method is commonly called electrohydrody-

namics or EHD.

The prediction of heat transfer in the presence of electric fields meets the same difficul-

ties than natural boiling due to a partial understanding of the fundamental mechanisms

involved. The present work aims at pushing further the actual limits of the understanding of

boiling at the scale of a single bubble.

1.3 Objectives

An original experimental facility has been designed and built in order to perform boiling

experiments in a fully controlled environment. Experimental test samples have been fabri-

cated in order to obtain boiling on a single or on two neighbouring artificial nucleation sites

of known geometry. Advanced measurement techniques and procedures were employed,

such as the use of high-speed digital videography coupled with a short field telescope. Spe-

cific post-processing of the experimental data has been developed. Such an experimental

strategy has been set up in order to achieve the following objectives:

• to gain a better insight and understanding of the fundamental bubble dynamics in the

case of boiling.

• to describe and determine the electrohydrodynamic effects on bubble dynamics and

heat transfer at the scale of a single or of two bubbles.
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4 CHAPTER 1. INTRODUCTION

1.4 Layout of the thesis

This thesis is divided into seven chapter with several appendices. It is organized as follows:

Chapter 1 is the present chapter. It presents a background to the study as well as its moti-

vation and objectives.

Chapter 2 is an introduction to the fundamental concepts that are necessary to have in

mind in order to clearly understand the methods and results presented. It develops

only subjects that are not investigated further. The main focus centres of this work are

introduced by a proper literature review in the chapters where they are developed.

Chapter 3 presents the experimental facility used in this study. The experimental proce-

dures and the post-processing of the data are explained. The uncertainties on the

measurements are discussed.

Chapter 4 focuses on heat transfer and on electrohydrodynamic enhancement of heat

transfer. The thermal field is investigated by studying experimentally and numerically

the convective structures above the heated surface.

Chapter 5 focuses on bubble dynamics in the absence of electric fields. Bubble growth is

investigated along with the bubble frequency and instantaneous vapour production

for different wall superheat conditions. The oscillating nature of the time evolution

of the bubbles shapes during their growth is analysed. The momentum balance of

the bubble is discussed and computed during the whole bubble growth event, as well

as the curvature along the interface. The interaction between neighbouring bubbles

are investigated. Eventually, the rise of the bubble after detachment is analysed and

compared to other studies.

Chapter 6 presents an investigation of the electrohydrodynamic effects on bubble dynam-

ics. The changes to bubble growth dynamics are analysed, as well as the shape de-

formation induced by electric forces. The influence of electric fields on lateral coales-

cence of bubbles and on bubble rising velocity are also investigated.

Chapter 7 presents the general conclusions of this study and its perspectives.
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Chapter 2

Introduction to fundamental concepts

Boiling heat transfer is characterized by very high dissipated heat fluxes whilst requiring
low driving temperature differences. Since it affords a very effective means to transfer heat,
it is implemented in numerous technologies and industries ranging from large power gen-
eration plants to micro-electronics thermal management. No matter what the scale of the
technology, industries are continually demanding smaller and smarter heat exchangers.

For such reasons, boiling heat transfer has been a major field of research for several
decades. According to the scientific search engine sciverse.com, over 1.6 million scientific
publications concern boiling. Due to the complexity of the mechanisms involved in boiling,
the fundamental processes governing boiling heat transfer are not fully understood and are
still a subject of investigation. This work aims at bringing a new contribution towards a
better description, understanding and prediction of boiling.

A complete literature review on the subject of boiling is not possible, and dozens of books
have already been written concerning some aspects of boiling. This section aims at providing
the necessary information to understand the background and the relevance of the results
presented in this work. A deeper literature study and a state-of-the-art of the specific topics
investigated will be presented along the document each time a new subject will be tackled
(e.g. bubble volumetric growth, momentum balance, thermo-capillary convection, bubble
rise velocity, elongation of a bubble due to EHD, etc.). The present section is an introduction
to the fundamental concepts, and focuses on topics that will not be developed further.

2.1 Nucleation

In the development of classical thermodynamics, phase transitions are treated as if they oc-

curred as quasi-equilibrium processes at the equilibrium saturation conditions. However,

5
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6 CHAPTER 2. INTRODUCTION TO FUNDAMENTAL CONCEPTS

real phase transformations usually occur under non-equilibrium conditions ([23], page 127).

In real vaporization processes, some liquid in the system is almost always superheated above

the equilibrium saturation temperature.

In this section will first be described the basic thermodynamics of phase change, and the

equilibrium condition of a bubble in a liquid. The case of bubble nucleation will then be

presented, first within a homogeneously superheated liquid and then on a heated surface.

2.1.1 Liquid-vapour phase change thermodynamics

In a Clapeyron diagram of a fluid (Fig. 2.1), there are several areas where the fluid can be

either in a liquid or vapour state, or where both phases coexist. A curve called binodal marks

the borders of the two-phase region.
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Figure 2.1: Clapeyron diagram of the liquid-vapour region of a fluid

Let us consider the isotherm curve T = T0. The fluid is at a stable liquid state between A
and B (subcooled liquid) and at a stable vapour state between C and D (superheated vapour).

On the straight line between B and C, in equilibrium thermodynamics, liquid and vapour

phases coexist in stable equilibrium, with a uniform pressure and with a flat interface.

From the view point of non-equilibrium thermodynamics, other states of the liquid or

vapour phase can exist. For example, the volume of the saturated liquid phase at T = T0

(point B) can be increased up to point B' (this will lead to a reduction of the pressure) while

maintaining the same temperature. The liquid would be at a metastable state without the
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2.1. NUCLEATION 7

occurrence of any phase change. This is true as well for the vapour phase between C and C'.
These metastable states are limited by a curve called spinodal (drawn as a dashed red line in

Fig. 2.1) that corresponds to the minimum and maximum values of the different isotherm

curves. The spinodal curve is the ultimate border of a single phase state (with the liquid

phase at the left side and the vapour phase at the right side of the spinodal).

Let us now consider a heating transformation at a constant bulk pressure of P = Psat (T0).

Liquid will be heated up to the saturation temperature, and above in the superheated liq-

uid region. When the nucleation conditions of a bubble are fulfilled1, vapour and liquid

phases will coexist. They will be at the same temperature T = T0 +δT , but at different pres-

sure. The liquid will be at bulk pressure Psat (T0) and the vapour will be at a higher pressure

Psat (T0+δT ) corresponding to the saturation pressure of its temperature. In order to balance

the mechanical forces acting on the interface, this latter will be curved towards the vapour

phase. The mechanical equilibrium at an interface is detailed in the following section by

introducing the Laplace-Young equation.

2.1.2 Pressure difference through an interface

The surface tension σ acting tangentially to an interface results in an over-pressure in bub-

bles or drops, or in a pressure gap between both sides of any curved interface. Let us intro-

duce a case of study to explain this phenomenon.

A spherical drop of radius R of a fluid A is surrounded by a stagnant fluid B , in the ab-

sence of any gravity or acceleration field (see Fig. 2.2).

R dR
fluid Afluid B

PAPB

Figure 2.2: Over-pressure inside a drop of fluid A immersed in fluid B .

If the interface is displaced by a distance dR , the work of the pressure and capillary forces

can be expressed as follows:

δW =−PAdVA −PB dVB +σAB dℵ (2.1)

1somewhere between the binodal and the spinodal curves
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8 CHAPTER 2. INTRODUCTION TO FUNDAMENTAL CONCEPTS

with PA and PB the respective pressures in fluid A and B , dVA and dVB the respective changes

in volume of each fluid, σAB the surface tension of the interface between A and B and dℵ the

change in interface area. The following relations can be considered:

dVA = −dVB (2.2)

= 4πR2dR (2.3)

and

dℵ= 8πRdR (2.4)

The condition for mechanical equilibrium is δW = 0, leading to:

−PAdVA −PB dVB +σAB dℵ= 0 (2.5)

(PA −PB )×4πR2dR =σAB ×8πRdR (2.6)

PA −PB =
2σAB

R
(2.7)

The mechanical equilibrium of the drop leads to a pressure difference proportional to

the surface tension and inversely proportional to the radius. The same reasoning can be

generalized for any non spherical curvature [1]. This leads to the famous Laplace-Young

equation2, which is expressed as follows by de Gennes et al. ([50], page 17):

The increase of hydrostatic pressure that occurs when passing through the

separating surface between two fluids is equal to the product of the surface ten-

sion σ by the curvature of the interface C :

∆P =σC (2.8)

It should be noted that this equation describes a mechanical equilibrium, and only con-

siders hydrostatic pressures.

2.1.3 Equilibrium condition of a bubble immersed in a liquid

As it is detailed in Section 2.1.1, it is possible to superheat a liquid beyond its saturation and

to supercool a vapour below its saturation condition. It is indeed possible in relatively simple

experiments to approach the limits of the supersaturation [148]. It can be inferred from this

observation that a barrier to the formation of a bubble in a superheated liquid exists3. Lets

us explain this phenomenon through a case of study.

2The detailed history of the determination of this equation can be found in the 11th edition of the Ency-

clopædia Britannica [22], in the Capillary action article.
3Or, from the same manner, a barrier to the formation of a drop in a subcooled vapour. The whole de-

velopment of this section will concern the formation of a bubble as it is the object of this study, but the same

reasoning applies for the formation of a drop.
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2.1. NUCLEATION 9

The system considered is composed of a bulk liquid with an imposed pressure Pl and an

imposed temperature Tl (see Fig. 2.3). A vapour nucleus is formed within the liquid and has

a homogeneous temperature Tv , pressure Pv , volume Vv , number of moles nv and surface

ℵv . The effect of gravity is neglected4, and the shape of the vapour nucleus is a sphere, of

radius R , due to the surface tension stress. In this case of study, the vapour nucleus is not

necessary in an equilibrium state.

R
vapour

liquid

Pv , Tv , Vv , nv

ℵv

Pl , Tl

Figure 2.3: Vapour nucleus immersed inside superheated liquid with imposed pressure and

temperature.

With basic thermodynamic considerations, the Helmholtz free energy of formation of the

nucleus can be expressed as follows [148]:

A = n(µc,v −µc,l )+Sv (Tv −Tl )−Vv (Pv −Pl )+σℵv (2.9)

with µc being the chemical potential and σ the surface tension.

In order to obtain an equilibrium (which can be stable or unstable), the condition dA = 0

should be realized. This leads to the three following relations:










µc,v = µc,l

Tv = Tl

Pv −Pl =
2σ
R

(2.10)

The resolution of this system in order to calculate the equilibrium is detailed by Papon

and Leblond [148]. It is shown that this equilibrium corresponds to a maximum of the

Helmholtz free energy A. It is thus an unstable equilibrium. As Pv , Tv and nv are inde-

pendent thermodynamic variables, there are several manners to move away from the equi-

librium state. Considering a mechanical loss of equilibrium caused by a change of pressure

inside the bubble, the Helmholtz free energy of the bubble can be expressed as a function of

the bubble radius R . This function is schematically represented in Fig. 2.4.

4This assumption is realistic due to the very small size of a nucleus.
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10 CHAPTER 2. INTRODUCTION TO FUNDAMENTAL CONCEPTS

H
e

lm
h

o
lt

z
fr

e
e

e
n

e
rg

y
A

R∗ Radius of

nucleus R

Figure 2.4: Helmholtz free energy of a vapour nucleus within a liquid.

The radius R∗ of the nucleus that corresponds to the unstable equilibrium is named crit-
ical radius. It infers from Fig. 2.4 that a nucleus with a radius smaller that the critical radius

will automatically vanish. On the other side, a radius having a radius bigger than the critical

radius will grow. This growth will be limited by either:

liquid inertia: this is typically the case when boiling at a low pressure, or in the case of cav-

itation

thermal diffusion: this is most often the case in boiling

mass diffusion as for gas desorption in a mixture

viscosity when boiling in a very viscous liquid

It should be noted that the critical radius R∗ decreases with the liquid superheat and with

the bulk liquid pressure. When the liquid superheat approaches the spinodal line, the size of

the equilibrium radius gets close to molecular dimensions [41].

2.1.4 Homogeneous nucleation

Thermal fluctuations occur in the metastable liquid [40, 84] and there is a small but finite

probability of a cluster of molecules with vapour-like energies coming together to form a

vapour embryo of the size of the equilibrium nucleus [41]. This process of vapour formation

in a metastable liquid is referred to as homogeneous nucleation.

The probability of the formation of a vapour nuclei of the necessary size can be estimated

from the Boltzmann equation for the distribution of molecular clusters of size R∗. The num-

ber of nuclei of radius R per unit of volume, N (R), is given by [41]:

N (R) = Ne−A(R)/kTv (2.11)

with N a constant approximately equal to the number of molecules per unit of volume, A(R)

the Helmholtz free energy of formation of a nucleus of radius R , Tv the temperature of the
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2.1. NUCLEATION 11

vapour nucleus and bulk liquid and k the Boltzmann constant. It can be deduced from this

equation that the number of nuclei of size R increases with an increasing temperature.

As detailed in Section 2.1.3, bubbles smaller that R∗ will collapse and bubbles larger

than R∗ will grow spontaneously. Homogeneous nucleation will thus occur if one further

molecule collides with an equilibrium embryo. The rate of nucleation dN/dt in a metastable

liquid at a temperature Tv is given by the product of the number of equilibrium nuclei per

unit of volume by a collision frequency λC :

dN

dt
=λC N (R∗) (2.12)

Several expressions have been given for λC linking it either to the temperature [191] or

to the surface tension [16]. The rate of nucleation is an extremely sensitive function of the

superheated liquid temperature. Simpson and Wall [173] have suggested that significant

nucleation occurs for values of dN/dt between 109 and 1013 m3
·s−1. This usually corresponds

to narrow ranges of temperature5 [41].

The upper temperature limit reached when creating homogeneous nucleation in labora-

tory controlled experiments are very close to the theoretical values for organic fluids [155].

However, for water at atmospheric pressure, boiling always occurs with liquid temperature

values far lower than the theoretical homogeneous boiling temperature [97]. It is possible to

state that, for water at least, homogeneous nucleation from a metastable liquid state can be

discounted as a mechanism for vapour formation [41].

In all cases, nucleating within a liquid requires high liquid superheat. If the liquid pres-

sure is far from the critical pressure of the fluid, the order of magnitude of the required su-

perheat is typically several hundreds of Kelvins6. These values are one or several order of

magnitude above the superheat usually encountered for the onset of boiling, because nucle-

ation usually occurs on a solid surface, on particles or on entrapped incondensable gases.

2.1.5 Heterogeneous nucleation

Heterogeneous nucleations refers to vapour nucleation in a liquid helped by the presence

of a foreign body. Foreign bodies can be either a solid container, which may have surface

structures, entrapped gas or even impurities within the liquid.

In many applications, vaporization of a liquid is made to occur by transferring heat

through the solid walls of some containing structure. In such cases, the hottest liquid in

the system will be in the region immediately adjacent to the wall. If enough heat is added to

5For benzene at atmospheric pressure, it corresponds to the range of temperature from 224 ◦C to 225.2 ◦C.
6For water at atmospheric pressure, the theoretical liquid superheat for homogeneous nucleation is 220.7 K

[41]. For propane and n-butane at 1 bar, the respective theoretical liquid superheats are respectively 328.5 K

and 378.3 K [155]. For n-pentane at atmospheric pressure, the required superheat has been measured to be

equal to 418.8 K [6]
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12 CHAPTER 2. INTRODUCTION TO FUNDAMENTAL CONCEPTS

the system, the liquid near the wall may reach and slightly exceed the equilibrium saturation

temperature. Since the temperature is highest right at the solid interface, the formation of a

vapour embryo is most likely to occur at the solid-liquid interface.

2.1.5.1 Nucleation in the presence of dissolved gas

The presence of a dissolved gas, say air, in the liquid phase necessitates the gas partial pres-

sure to be taken into account when considering the mechanical equilibrium of the vapour

nucleus. The presence of dissolved gas reduces the superheat required to maintain a bub-

ble of a given diameter in unstable equilibrium. In practice, the evaluation of the gas partial

pressure may be complicated by the presence of temperature gradients and by finite rates of

diffusion of the gas through the liquid [41].

2.1.5.2 Nucleation at solid surface in a uniform temperature field

Wall superheats encountered in the case of nucleation on a clean, smooth and plane wall in

a uniformly superheated liquid are usually below those of homogeneous nucleation. Such

a system can be described as for homogeneous nucleation in Section 2.1.4. The Helmholtz

free energy of a bubble attached to the wall will be lowered by the presence of the wall. For a

bubble of the equilibrium radius attached to the wall, the reduction of the free energy can be

expressed by multiplying the free energy of the homogeneous nucleation case by a function

f (θ) [8, 40]:

f (θ) =
2+3 cosθ−cos3θ

4
(2.13)

with θ being the contact angle at the triple line between the solid wall and the liquid-vapour
interface, on the liquid side (see Fig. 2.5).

θ

vapourliquid

Figure 2.5: Bubble nucleating on a solid wall.

If the liquid is completely wetting the solid surface (θ = 0), f (θ) = 1 and the required

liquid superheat to nucleate a bubble is identical to that of homogeneous nucleation. If the
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2.1. NUCLEATION 13

liquid is not wetting at all (θ = 180◦), no liquid superheat is theoretically needed to nucleate

a bubble. However, in practical situations, the value of θ lies between 0 and 100◦.

2.1.5.3 Nucleation on natural surfaces

On real surfaces, the onset of boiling corresponds to even lower superheat values than those

described earlier [145]. Natural surfaces7 usually present many pits or cavities of various

shapes. The presence of such cavities facilitates nucleation for two different reasons:

• If the contact line between the vapour, liquid and solid phases is located within a cav-

ity, the apparent contact angle8 is increased. As illustrated in Fig. 2.6, in a conical

cavity, the apparent contact angle increases with a decreasing apex angle. Conse-

quently, as detailed in Section 2.1.5.2, the superheat required to nucleate a bubble is

decreased9.

Figure 2.6: Liquid-vapour interfaces in conical cavities. Illustration from Collier and Thome

[41].

• The roughness of natural surface usually presents fractal features, and may be analysed

at different scales. Cavities or pits often have irregular shape, as illustrated in Fig. 2.7.

The geometry of these cavities may result in the presence of entrapped gas or vapour if

the liquid does not fill the entire cavity [9, 10]. Nucleation in such cavities will require

very low superheats10.

Several experimental and theoretical studies were made to investigate and predict the

size range of the active cavities11 (e.g. Clark et al. [39] and Hsu [83]). It has been shown

7Natural is employed to define surface that did not receive a special treatment as a surface structuring or

polishing.
8defined as the angle between the liquid-vapour interface and the horizontal plane
9The function f (θ) in Eq. 2.13 uses the apparent contact angle when the bubble nucleates on a wall that is

not plane.
10Such cavities are sometimes referred to as pre-activated cavities
11i.e. the cavities in which bubbles nucleate
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14 CHAPTER 2. INTRODUCTION TO FUNDAMENTAL CONCEPTS

Figure 2.7: Formation of an active nucleation site in a real cavity. Illustration from Collier

and Thome [41].

that only cavities of a narrow range of size were the location of bubble nucleation on a rough

surface.

2.2 Pool boiling curve

Pool boiling is defined as boiling from a heated surface to a large amount of quiescent bulk

liquid. Pool boiling is qualified as saturated if the liquid is at thermodynamic saturation

temperature and as subcooled when the liquid is below that temperature. Saturated pool

boiling heat transfer has been first described by Nukiyama [138] in 1934. He considered the

relation between the heat flux from the heated surface (qw ) and the temperature difference

between the heated surface and the saturated liquid (Tw −Tsat ). His boiling curve differs

depending on whether a temperature or a heat flux is imposed on the heated surface (fig.

2.8).

The different sections of the boiling curve refer to a specific boiling regime [176]. The

imposed heat flux boiling curve can be read as follows:

Natural convection (A-B): as the heat flux imposed on the surface is increased, its tempera-

ture increases as well. The temperature of the liquid surrounding the surface increases

as well above the saturation temperature and is qualified as superheated liquid. A ther-

mal boundary layer is formed and the heat flux is dissipated by natural convection in

the bulk liquid. Phase change occurs at the free surface.

Onset of boiling (B-B'): as the imposed heat flux increases, the surface temperature will be

sufficient for bubbles to nucleate. Heat transfer will be enhanced by the presence of

these bubbles resulting in a temperature drop.

Isolated bubble regime (B'-C): after the onset of boiling (ONB), a very effective boiling

regime is reached, where the surface temperature raises very slowly with the heat flux.

More and more nucleation sites become active on the surface. Part of the heat flux is

dissipated in the phase change process, and part of it is convected into the bulk liquid.
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Figure 2.8: Pool boiling curves: imposed temperature (left) and imposed heat flux (right).

The bubble motion as they growth and depart from the surface enhances the convec-

tion of the liquid.

Fully developped nucleate boiling regime (C-D) : once many nucleation sites are active on

the surface, they get close enough to each other that bubbles coming from neighbour-

ing sites merge. With the rise of the heat flux, bubble grow faster so that that successive

bubbles from the same nucleation site get close enough to merge as well. These two

phenomena are known as lateral coalescence and vertical coalescence. Large masses

of vapour restrict the liquid motion close to the heated surface decreasing the heat

transfer coefficient.

Critical heat flux (D-D'): the heat flux reaches a critical value (CHF) when the vapour mass

above the surface prevents the liquid from re-wetting the surface. A vapour film forms

on the surface. Its thermal resistance leads to a sudden rise of the surface tempera-

ture. The system can be damaged during this temperature rise (phenomenon known

as burn out).

Film boiling regime (E-F): the vapour layer formed on the surface become stable. The heat

flux from the surface is dissipated by conduction and convection to the vapour layer.

Phase change occurs at the interface between the vapour layer and the liquid and bub-

bles periodically detach, forming evenly spaced bubble columns. When the heat flux

raises, the temperature increases and radiative heat transfer through the vapour layer

become a major heat transfer mode. The heat flux is limited by the burn out when the

temperature is too high to be supported by the system.

Minimum film boiling point (E-E'): if the heat flux is decreased after a stable film boiling

regime has been established, the temperature decreases as well, still keeping the same

regime far below the CHF temperature. A critical value, called Leidenfrost point, is

reached when the heat flux is low enough that the vapour film breaks. Liquid rewets

the surface, leading to much better heat transfer and a sudden temperature drop. The

isolated bubble regime appear again.

The heat transfer effectiveness of the isolated bubble and fully developed boiling regimes
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16 CHAPTER 2. INTRODUCTION TO FUNDAMENTAL CONCEPTS

make them particularly interesting to the engineering designer. Therefore, many different

experimental correlations have been developed to predict quantitatively the relation be-

tween the heat flux and the surface temperature in a given system. Yet, many parameters

are involved such as the nature of the fluid, the working pressure, the system geometry and

the surface roughness, so that the experimental correlations are valid only close to the condi-

tions they have been designed for. This lack of compatibility strongly motivated the investi-

gation for a better understanding of the basic mechanisms governing nucleated boiling. The

single bubble system, its nucleation, growth, detachment and rise in the liquid is hence the

main subject of this work. Focus will also be given to the basic interaction between neigh-

bouring bubbles.

2.3 Electrohydrodynamics

Although pool and convective boiling heat transfer are characterized by very high dissipated

heat fluxes whilst requiring low temperature differences, industries are continually demand-

ing smarter and smaller heat exchangers allowing the dissipation of always increasing heat

density. Besides the improvement of the performance of heat exchangers by improving de-

sign and manufacturing, heat transfer enhancement techniques enable a considerable de-

crease in the size of heat exchangers at the same performance [104].

In general, enhancement techniques can be divided into two groups: namely active and

passive techniques. The active techniques require energy sources12, whereas the passive

techniques require special surface geometry13 or fluid additives.

A promising active technique for improving and controlling the heat transfer during boil-

ing is the introduction of an electric field. This technique is generally termed electrohydro-

dynamics (EHD). Whether for pool boiling or convective boiling scenarios, several studies

have shown that EHD can considerably augment two-phase heat transfer. Some papers have

presented the review of these researches as Allen and Karayiannis [4], Eames and Sabir [59]

or more recently Laohalertdecha et al. [104].

The application of an electric field above a boiling surface results in the addition of elec-

tric body forces. A good understanding of the effects of these forces of the boiling behaviour

is necessary for the following reasons:

• As mentioned previously, EHD is a promising technique of heat transfer enhancement.

A good understanding of electrohydrodynamic effects will provide the means to design

better heat exchangers.

• Several electronic systems impose an electric field at their vicinity due to their func-

tions. They might as well be the source of heat production and require two-phase heat

transfer techniques to provide heat removal. A good understanding of the modifica-

12e.g. electric field, acoustic or surface vibration
13such as rough surface, extended surface for liquids, etc. [104]
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2.3. ELECTROHYDRODYNAMICS 17

tion of boiling due to the presence of the electric field is necessary for a good design of

such systems.

• EHD is also seen as a promising technique to compensate for the lack of gravity

in micro-gravity heat management applications. For this reason, a number stud-

ies focusing on electrohydrodynamic enhancement of boiling concern microgravity

[78, 79, 124, 125, 126].

• As the basic mechanisms of boiling still need investigation for an improved under-

standing, the application of external forces as EHD may be a tool for a modification of

boiling in order to achieve such a better understanding [24].

2.3.1 Forces induced by the presence of an electric field

The presence of an electric field within a dielectric fluid results in an added electric body

force applied to the fluid particles. This force is due to the free charges contained in the fluid

and to the inhomogeneity of the electric properties of the fluid. For the case of a two-phase

fluid, the discontinuity of the electric properties at the interface also cause an electric stress

on the surface.

The most generally accepted expression from the electric body force
−→
fe (expressed in

[N·m−3]) that acts on a fluid, to be included in the momentum equation, is [27, 102, 147]:

−→
fe = ρe

−→
E −

1

2

−→
E 2−→

∇εr +
1

2

−→
∇

[

ρ
−→
E 2

(

∂εr

∂ρ

)

T

]

(2.14)

with ρe being the free charge density within the fluid, εr being the relative dielectric permit-

tivity14,
−→
E being the electric field intensity and ρ being the fluid density.

The three terms on the right-hand side of eq. 2.14 are respectively:

the electrophoretic force or the Coulomb force. This force results from the net free charge

within the fluid or injected from the electrodes. This is the only force which depends

on the direction of the electric field.

the dielectrophoretic force. This force is a consequence of inhomogeneous or spatial

change in the permittivity of the dielectric fluid due to non-uniform electric fields,

temperature gradients, and phase discontinuities.

the electrostrictive force. This force15 is caused by inhomogeneous electric field strength

and the variation in dielectric constant with temperature and density16.

14that is: εr = ε/ε0
15Cattide et al. [24] suggest a negative sign before this term, unlike most authors. This might simply be a

typographic error as other publications from the same research group indicate a positive sign [123, 125].
16It should be noted that some authors do not precise a constant temperature for the calculation of the

permittivity derivative with the density [19, 136, 188, 192, 196]. This follows the reasonning of Durand ([57],

page 267) who states that for an isotropic dielectric fluid, ε depends only on the fluid density. The derivative

should in this case be written as a total derivative and not a partial derivative. Landau and Lifšitz ([103], page

94) consider instead the fluid permittivity to be a function of both the temperature and the fluid density, leading

to the partial derivative of the permittivity to density at constant temperature in Eq. 2.14.
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The electrostrictive term can be expanded into two components:

1

2

−→
∇

[

ρ
−→
E 2

(

∂εr
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)

T

]

=
1

2
ρ

(
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)

T

−→
∇
−→
E 2

+
1

2

−→
E 2−→

∇

[

ρ

(

∂εr

∂ρ

)

T

]

(2.15)

For non-polar fluid, the Clausius-Mossotti’s relationship can be used [177, 195]:

ρ

(

∂ε

∂ρ

)

T
≈

ε0(εr −1)(εr +2)

3
(2.16)

This simplifies Eq. 2.15 to:

1

2

−→
∇

[

ρ
−→
E 2

(

∂εr

∂ρ

)

T

]

≈
ε0(εr −1)(εr +2)

6

−→
∇
−→
E 2

+
ε0
−→
E 2

6

−→
∇ [(εr −1)(εr +2)] (2.17)

The electric charge density of the electrostrictive force can also be expressed as a function

of the electric field intensity and of the fluid properties if only the net free charge within the

fluid is considered17 [4]:

ρe =
−→
E ·

−→
∇ε−

ε

σe

−→
E ·

−→
∇σe (2.18)

with σe being the fluid conductivity.

Equation 2.14 can be rewritten as a sum of 4 different terms [20, 104, 195]:

−→
fe =

−−→
fe,1 +

−−→
fe,2 +

−−→
fe,3 +

−−→
fe,4 (2.19)

−−→
fe,1 =

(

−→
E ·

−→
∇ε−

ε

σe

−→
E ·

−→
∇σe

)

−→
E (2.20)

−−→
fe,2 = −

1

2

−→
E 2−→

∇ε (2.21)

−−→
fe,3 =

ε0(εr −1)(εr +2)

6

−→
∇
−→
E 2 (2.22)

−−→
fe,4 =

ε0
−→
E 2

6

−→
∇ [(εr −1)(εr +2)] (2.23)

Such an expression of the electric body force as a function of the electric field and of the

fluid properties allows a finer description of the forces components [195]:

−−→
fe,1 is the Coulomb force. It depends on the fluid permittivity and conductivity and their

variations and on the electric field intensity. Both the permittivity and the conductivity

depend on the fluid temperature and density. Density variations are significant at the

interface of different phases, leading to the local production of electric charges on the

interface [195]. The direction of the Coulomb force is the same as the direction of the

electric field.

17Is it really a realistic assumption? Considering a perfectly pure dielectric fluid, the presence of ions can be

neglected and the injection of charges from the electrodes as well. However, as it is stated by Felici [62], most

fluids naturally contain impurities that are dissolved into ions in the presence of electric fields. A particular

care should be taken concerning the purity of fluids when experimenting with EHD.
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−−→
fe,2 depends on the variations of fluid permittivity. As for the Coulomb force, this force is

significant at the interface between two phases. The direction of this force is the di-

rection of the permittivity gradient, from higher to lower permittivity. On an interface,

this force acts normally to the interface on the fluid particles, in the direction from the

liquid phase towards the vapour phase.
−−→
fe,3 is due to the non-uniformity of the electric field. This force acts as a translation force

on the liquid particles18. The liquid tends to be moved to the area with higher electric

field intensity. It should be noted that this force is independent of the electric field

direction, but only depends on the square of absolute intensity.
−−→
fe,4 depends on the variation of fluid permittivity, as for

−−→
fe,2. This force acts on the fluid par-

ticles normally to the interface, but in the opposite direction to
−−→
fe,2: from the vapour

phase towards the liquid phase.

Since
−−→
fe,2 and

−−→
fe,4 possess similar characteristics, they can be combined together as:

−−→
fe,5 =

−−→
fe,2 +

−−→
fe,4 (2.24)

=
1

6
ε0
−→
E 2−→

∇
(

ε2
r −2εr −2

)

(2.25)

On an interface,
−−→
fe,5 will always be directed from the vapour phase towards the liquid

phase19, as mentioned by Yu et al. [195].

Several expressions have been proposed to express the net electric stress acting across a

liquid-vapour interface. Using the continuity relations on electric induction at the interface:

εl El ,n = εv Ev,n (2.26)

El ,t = Ev,t (2.27)

with n and t referring respectively to the normal direction
−→n and the tangential direction

−→
t , Taylor [182] and later Zaghdoudi [196, 197, 198] expressed the normal electric stress (ex-

pressed in [N·m−2]) on the fluid particles at the interface for a non-polar fluid whose inter-

face is not electrically charged as follows:

−−→
fs,n =−ε0

(

εr,l −1
)2

6

[

2E 2
l ,n −E 2

l ,t

]

−→n (2.28)

with −→n referring to the normal direction of the liquid at the interface. For the case of perfect

dielectrics or of perfect conductors, the tangential component is equal to 0 [182]. Another

expression is also demonstrated for the case of an interface electrically charged [196].

As a conclusion about the forces induced by the presence of an electric field within a

dielectric fluid, it can be stated that:

18This force is negligible on the vapour particles as the vapour relative permittivity εr is close to unity.
19In the vapour phase, εr,v ≈ 1 as εv ≈ ε0, leading to ε2

r,v −2εr,v −2 ≈−3. In the liquid phase, εr,l > 1 leading to

ε2
r,l −2εr,l −2 >−3. Consequently, on the interface,

−→
∇

(

ε2
r −2εr −2

)

will be normal to the interface and directed

towards the liquid phase.
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1. The expression of the forces is rather complex. The determination of the forces is cou-

pled with the phase field, the temperature field and the exact geometry of the problem,

and necessitates a good knowledge of the variation of the fluid properties.
2. In the case of heat transfer with a liquid, the electrohydrodynamic effects produce a

force field that is coupled with the temperature field. Natural or forced convection is

likely to be strongly modified by EHD.
3. In the case of boiling, the liquid vapour interfaces on the bubbles are affected by the

electrohydrodynamic effects. As bubble shape, growth, rise and interactions are gov-

erned or coupled with the superficial forces, bubble dynamics may also be strongly

modified by EHD.
4. The presence of free charges within the liquid or at the liquid-vapour interface may be

a source of electrohydrodynamic effects. The presence of charges may be due to the

dissolution of components into ions within the fluid or to the injection of free charges

from the electrodes.

2.3.2 Changes to heat transfer and bubble dynamics caused by EHD

The application of an electric field to a boiling surface usually results to an enhancement

of the heat transfer coefficient. Several studies focus on the enhancement of heat transfer

for different geometries (plane horizontal and vertical surfaces, smooth and finned tubes,

etc.) and different fluids20. Laohalertdecha et al. [104] have proposed a literature review

on electrohydrodynamic enhancement of heat transfer. They note that most studies have

shown a heat transfer enhancement of a factor of 2 to 7 when applying an electric field (e.g.

[34, 48, 63, 90, 17, 115, 137]). Some studies have shown an even higher enhancement [46, 89]

up to an enhancement factor of 60 [3].

The mechanisms by which EHD techniques enhance boiling heat transfer are summa-

rized by Eames and Sabir [59] as follows:

• movement of vapour bubbles on the heated surface due to Maxwell stress
• spreading of the vapour bubble base over the heat transfer surface
• increasing the number of bubbles by breaking up large bubbles, there by decreasing

the bubble detachment diameter and creating more turbulence
• elimination of boiling hysteresis, thereby decreasing the degree of the superheat re-

quired to start nucleate boiling
• improving the transitional and minimum film boiling conditions by destabilizing the

blanketing vapour film
• improving the wetting of the heating surface due to the decrease of surface tension
• introducing the waves and perturbations at the surface of a boiling liquid, due to the

instability of the liquid/vapour interface

Even though the mechanisms suggested by Eames and Sabir are plausible and reflect

the complexity of the effects induced by the action of electric forces, the effects of EHD on

20The dielectric fluids used are organic fluids, and are usually common refrigerants as a main application of

EHD can be the enhancement of heat exchangers in heat pumps and thermodynamic systems.
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boiling are in fact not so clear and understood yet. For example, Cattide et al. [24] found two

different modifications of the bubble departure diameter in the presence of electric fields: in

the case of HFE-7100, the departure diameter is increasing whereas for FC-72, the departure

diameter is increasing. As another example, the effect of polarity and the role of injected

charges is not completely understood, as it is explain by Liu et al. [114].

From the same manner, some effects caused by electrohydrodynamics and observed ex-

perimentally as an elongation of the bubble in the direction of the electric field [29, 35, 151]

are assessed but the prediction of their magnitude and influence on the mechanisms of boil-

ing still needs further investigation. Other effects were observed as the break-up of large

bubble into smaller bubble, but the basic mechanisms that lead to the break-up of the bub-

ble are not fully understood.

As a conclusion, natural boiling requires more research and investigation for a better

understanding, and the modification of boiling by means of electrohydrodynamics , being

recognized as a promising heat transfer enhancement technique, requires even more inves-

tigation for a good understanding and prediction.
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The present section is an introduction to the fundamental concepts that need to be un-
derstood prior to the presentation of the main work of this thesis. The concept of phase
change and liquid superheat has been introduced, and the mechanism of bubble nucleation
has been developed. The complexity of the nucleation process has been highlighted, espe-
cially in the case of heterogeneous nucleation on a surface which presents a roughness at
different scales. A good understanding of the nucleation process is required to perform ex-
periments with controlled nucleation on artificial nucleation sites.

The boiling curve has then been explained, showing the relation between the superheat of
a boiling surface and the heat flux density. The different boiling regimes have been described.
The present study which focuses at the scale of a single bubble and of the interaction between
two bubbles is representative of the isolated bubble regime encountered at low heat flux.

The electrohydrodynamic effect has finally been introduced as a promising heat transfer
enhancement technique. The electric forces acting on the fluid particles have been detailed,
and a brief state-of-the-art of the mechanisms of heat transfer enhancement has been pre-
sented.

In the next chapters, the experimental facility and procedures will be detailed, the heat
transfer mechanisms and electrohydrodynamic enhancement will be investigated, and the
bubble dynamics will be studied first without electric field and then with the application
of an electric field above the boiling surface. For each subject investigated (such as convec-
tion enhancement, bubble growth, detachment, rise and shape, momentum balance of the
bubble, thermo-capillary convection, bubble curvature, bubble elongation with EHD, etc.),
a brief literature review or state-of-the-art will be proposed.
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Chapter 3

Experimental facility and procedures

The purpose of our experimental facility is to be able to analyse accurately the basic mecha-
nisms of single bubble boiling or the interactions between two bubbles, in the presence of a
D.C. electric field on a metal surface. A test sample and a boiling vessel have been designed
and built (section 3.1). The setup was operated following an accurate procedure (section
3.2). Temperatures, heat fluxes and voltages were measured and images were recorded (sec-
tion 3.3) to obtain original and workable results in these operating conditions (section 3.4).

3.1 Experimental setup

3.1.1 Short description of the overall view

The experimental apparatus, shown schematically in Fig. 3.1, consists of a sealed paralleli-

pedic vessel. To facilitate observation and photography within the vessel the vertical faces of

the vessel are equipped with rectangular windows which are sealed to the main housing of

the tank. Initially, the tank is evacuated and subsequently filled with 99 % purity n-pentane.

The free surface between the liquid and the vapour phases is at a height of about 220 mm

from the base of the container. A cartridge heater is immersed in the liquid pentane in order

to maintain the desired saturation and pressure conditions of the working fluid during the

experiments. A test sample is inserted in the vessel from the base face (Fig. 3.1). The surface

of the test sample is upward facing in the bulk liquid and in the centre of the vessel.

During the experiments, boiling was taking place on this surface from either a single nu-

cleation site or from two adjacent nucleation sites. Each configuration was studied with a

specific test sample. Boiling was recorded through a lateral window by a high speed camera

while the boiling area was illuminated through the opposite window.

23
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Vessel

High speed camera

6 thermocouples

Light source

Figure 3.1: Experimental apparatus

3.1.2 Vessel

The experimental vessel (Fig. 3.2) is a sealed 25 0×2 50× 180 mm aluminium tank. Three

vertical sides are equipped with glass windows to allow illumination of the boiling surface

and area of interest, visualization and recording of the images. The bottom part of the tank

includes a hole to insert and fix the test sample, as well as a drain used to empty the vessel.

The upper part of the tank includes a pipe with a valve used to fill the vessel with pentane, a

pressure gauge and a rod with a micro-metric vertical displacement system. The high voltage

electrode, described later, is attached to this rod.

The test sample described in 3.1.3 is inserted from the base face of the vessel, and prop-

erly sealed to avoid any leakage. The boiling surface is thus placed horizontally at the center

of the vessel as shown in Fig. 3.2. The copper boiling surface is connected to the electric

ground, as well as the outer parts of the vessel.

A brass mesh electrode is attached to the micrometer and placed horizontally facing the

boiling surface. The electrode is connected by a cable to the high voltage source. The mesh

stand and the rod are made of PTFE and nylon so that they do not conduct electricity. The

brass mesh electrode has been chosen with the dimensions described in Fig. 3.3. This design

has been tested among with other electrode designs by Zaghdoudi [196] and aims at having

the finest mesh while still allowing pentane bubbles to pass easily through it. With a finer

mesh, the bubbles agglomerate below the grid forming a large flat bubble that distort the

electric field. With a rougher mesh, the electric field would more likely be non-homogeneous

in the vicinity of the electrode.
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Pressure gaugeMicrometer

High voltage

mesh electrode
Cartridge heater

ThermocouplesTest sample

Figure 3.2: Vessel

d

s

wire diameter [mm] 0.25

step [mm] 1.85

void fraction [%] 75

Figure 3.3: Geometrical properties of the brass mesh

3.1.3 Test sample

3.1.3.1 Geometry of the test sample

Several test samples have been used for this work, which were slightly different from each

other. The main test sample used is described here, and information is provided regard-

ing the differences between samples. The test sample is shown with its dimensions in Fig.

3.4. An 8 mm diameter cartridge heater is inserted in a 12 mm outer diameter copper tube.

The copper tube section narrows over the heater to form a 5 mm diameter and 60 mm long

copper rod. This rod is equipped with six K-type thermocouples used to measure the ther-

mal heat flux passing through the rod and the surface temperature. An 18 mm diameter and

40µm copper plate is soldered atop the rod using melted tin. The assembly is insulated in a
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Calibrated antenna
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Figure 3.4: Main test sample design (length given in [mm])

PTFE structure. The rod is fixed inside the upper PTFE part using an araldite epoxy resin. The

upper and lower PTFE sections are screwed together and sealed by a toric seal. The whole

test sample is inserted through the hole at the base of the vessel and fastened in place. The

watertightness in ensured by a toric seal as well. The copper structure is connected to the

electric ground and the cartridge heater is connected to a power generator whose output can

be set either in current or voltage modes.

3.1.3.2 Heated surface preparation

The copper plate surface is carefully prepared to avoid any parasite boiling. The surface is

polished with a diamond paste until reaching a roughness lower than 0.5µm. The outer edge

of the plate is sealed with a cyanoacrylate adhesive to prevent the liquid from soaking un-

der it. An artificial nucleation site was created by mechanical indentation at the centre of

the plate. A tungsten carbide needle was constructed in-house and was positioned to be in

intimate contact with the surface. It was then forced into the surface with its displacements

accurately measured during the entire indentation process. The surface geometry of the site

was measured with a confocal white light microscope (Fig. 3.5a, 3.5b and 3.6a). The nucle-

ation site had a paraboloidal shape, a diameter of 180µm and a depth of about 500µm. The

curvature radius at its edge was about 20µm. For lateral coalescence experiments, a second

nucleation site was created using the same process, with a distance of 660µm between the

centres of the sites (Fig. 3.5c, 3.5d and 3.6b). The diameter and depth are the same, but the

curvature radius at its edge was about 50µm (Fig. 3.6b).

A surface of 2 50× 600µm close to the nucleation site has been analysed to determine the

surface roughness. A map of the area has been measured with a confocal white light micro-
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(a) (b)

(c) (d)

Figure 3.5: Nucleation sites geometries for single site test sample ((a) and (b)) and double

site test sample ((c) and (d))
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Figure 3.6: Cross-section of the main nucleation site (a) and of the secondary nucleation site

used for lateral bubble coalescence (b)
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scope, each data point being at a distance of 5µm from the previous one (see Fig. 3.7). The

arithmetic average of absolute height values Ra was equal to 0.42µm. Although being a com-

mon parameter for surface roughness, Ra seems unsuitable for boiling surface description

as a local peak would have the same value as a local trough even though having a completely

different effect on nucleation. Moreover, Ra , being a single average value, does not described

the typical size of local roughness.

A distribution of the signed difference of the data points to the average value of the 8

data points around has been performed (Fig. 3.7 and Fig. 3.8). The interval of 5µm between

each measurement is a balanced size for local roughness description as it is one order of

magnitude smaller than the nucleation sites. The graph in Fig. 3.8 shows that at this scale,

the distribution of local maxima and minima (respectively positive and negative values) is

identical and that almost no local peak or trough of more than 2µm is found.

i,ji-1,j

i-1,j-1 i,j-1 i+1,j-1

i+1,j

i+1,j+1i,j+1i-1,j+1

5 µm

5
µ

m

Figure 3.7: Schematic of a data point with 8 data points around

3.1.4 Visualization, measurement and control equipment

As for the test sample, the measurement equipment changed somewhat between the first

and last experiments. The equipment detailed here describes what was used during most of

the experiments.

Temperature: several temperature measurements are performed at different locations, all

using K-type thermocouples. Four thermocouples are placed strategically in the bulk

liquid and vapour to check temperature homogeneity. One thermocouple is placed in

the vapour phase above the free surface, one is placed in the upper part of the liquid
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Figure 3.8: Signed size difference of the data points to the average value of the 8 data points

around distribution

phase just below the free surface, and two are at the same level as the boiling surface

of which one is at a distance of 1 cm and the other one at a distance of 4 cm. Six 80µm

thermocouples are soldered along the test sample copper rod in order to measure the

heat flux dissipated to the liquid and the boiling surface temperature. The thermocou-

ples are enclosed into notches along the rod, and soldered with tin solder to allow a low

thermal contact resistance. The distance of the thermocouples to the boiling surface

were slightly different in each of the test samples built. A representative layout for the

respective distances of the thermocouples is : 2, 4, 8, 16, 24 and 32 mm. All ten ther-

mocouple cold junctions were enclosed in an insulated box in which the temperature

was measured using a platinium resistance thermometer Pt-100. All measurements

were then performed by a Keithley 2700 acquisition unit which was controlled by a

Microsoft Excel macro called Excelinx.

Pressure: the pressure gauge is mainly used to ensure that no non-condensible gases are

present in the system. The pressure should be equal to the saturation pressure corre-

sponding to the bulk temperature. If the pressure is higher, non-condensibles are most

probably mixed with the vapour phase or dissolved in the liquid phase.

Electric fields: the brass mesh electrode is placed horizontally above the boiling surface.

Its horizontal alignment and distance from the boiling surface are checked and mea-

sured using a scope with micro-metric displacement measurement. The high voltage

between this electrode and the ground is produced by a Heinziger PNC 30 000 high

voltage power supply capable of producing between 0 and 30 kV D.C.

Bulk temperature control: all experiments were performed with a bulk temperature of

about 35.9 ◦C. Depending on the season, the temperature difference to the ambient
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air was 5 to 15 K. A 350 W cartridge heater was immersed in the liquid phase and con-

trolled by a on/off control system to maintain the chosen bulk temperature. Enhanced

convection due to boiling on the cartridge heater was sufficient to quickly homogenize

the temperature throughout the system. Measurements were taken while the heater

was off and several minutes after the last on/off control cycle. Heat was dissipated by

natural convection on the outer walls of the vessel. The cartridge heater of the test

sample was connected to a DC power generator equipped with voltage and current

measurement systems.

Vizualisation: In order to capture bubble growth, departure and rise with high enough tem-

poral and spatial resolution, a Photron Fastcam 1024 PCI high speed camera was uti-

lized. The bubble was illuminated with a strong diffuse back-light at a frequency of

200 kHz. The recording frequency was either 1000 fps with a resolution of 1024 ×

1024 pixels or 3000 fps with a resolution of 512 × 512 pixels, depending on the res-

olution needed. In a few coalescence sequences when very quick phenomena were

involved, an acquisition frequency of 27,000 fps was used. Two optical systems have

been used together with the camera. In most experiments, a 100 mm focal Olympus

lens plus a 6 dioptre lens was used. With this system, each pixel on the pictures rep-

resented a 17× 17µm area. Later on, a Questar QM1 short field telescope was utilized.

This optical system was capable of magnifying to an area of about 2×2µm per pixel.

3.2 Experimental procedures

3.2.1 Mounting and starting the experimental setup

Before assembling the rig, all thermocouples were calibrated together with their acquisition

chain. All thermocouples were immersed in a stirred bath with controlled temperature, and

their voltages were measured at 12 different temperatures to obtain their calibration curves.

The absolute uncertainties on the temperature measurement were estimated to be ±0.1 K.

An improved uncertainty of ±0.05 K for the temperature differences between the thermo-

couples within the test sample was made possible by ensuring that the exact same thermo-

couple wire was used for each sensor.

All pieces of the vessel were then assembled. The tank was evacuated and maintained at a

pressure of about 1.3 mbar for several hours. This was done in order to allow a full desorption

of vapour and gases from the tank and to ensure the airtightness of the vessel. The vessel was

subsequently filled with 99% pure n-pentane. It was ensured that the heater cartridge was

fully immersed in the liquid phase to avoid any superheating the vapour phase.

The bulk liquid was brought to a temperature corresponding to a pressure of about

1.2 bar and maintained at this temperature for several hours. Regular degassing was per-

formed by evacuating most of the vapour phase to the atmosphere in order to ensure that no

non-condensible gases were present in the vessel. The bulk liquid was then cooled down and
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maintained at a temperature of about 36.9 ◦C which corresponds to a saturation pressure of

1 bar.

At this stage, the cartridge heater of the test sample was turned on to superheat the boil-

ing surface. Approximately 20-30 K of superheat was required to initiate boiling at the arti-

ficial nucleation site. As a result of the care taken in the surface preparation and cleaning,

boiling only occurred at the artificial nucleation site. At such high wall superheats, the nucle-

ation site produces bubbles at such a rate as to generate a nearly continuous vapour column.

As this boiling regime was not the focus of this investigation, the heat flux was then reduced

to an extent that the wall superheat was maintain between 1.5 and 8 K. This superheat range

was low enough to generate discrete bubble events, albeit with very small waiting times,

whilst being high enough to keep the nucleation site active.

3.2.2 Avoiding mirage effect

Mirage effects occur when light rays are refracted by passing through a medium of non-

constant optical index of refraction. They cause a distortion of the object image, and alter the

perception of reality. As the optical index usually varies with temperature, mirage effects can

be a source of error when studying and observing boiling. Avoiding mirage effects was one of

the concerns in this study and particular care has been given to this issue. Experiments have

been performed by placing a 1 mm diameter spherical plastic ball on the surface. A picture

was first taken without heating the surface (thus without any mirage effect, see Fig. 3.9a).

The surface was then heated as if in the real experimental conditions. If no particular care

was taken, the ball looked like that in Fig. 3.9b with a 10 K superheat.

The lower part shows a strong mirage effect leading to the impression of a very large foot.

The procedure to avoid this effect is to use only very pure (more than 99% purity) and fresh

pentane that has small optical index variation with temperature. In addition, the recording

angle was slightly modified to allow a 3° angle with the horizontal plane. This allows the

optical path to cross a much thinner superheated layer of liquid, without distorting much

the image. Eventually, the thermal control of the bulk liquid was stopped a few minutes

before the recordings. Fig. 3.9c shows the image of the plastic ball with the same 10 K of

superheat. It is now clear that the image is not significantly distorted by the optical index

gradients.

3.2.3 Detecting hysteresis

Boiling often presents hysteresis phenomena that are generally due to nucleation site acti-

vation and de-activation and to boiling regime transitions. Particular care has been taken in

the experiments to detect any hysteresis effects that may occur. For this purpose, all mea-

surement data sets have been performed by increasing the heat flux as well as by decreasing
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(a) (b) (c)

Figure 3.9: Plastic ball without any superheat(a), with 10 K of superheat and mirage effect (b)

and with 10 K of superheat without mirage effect (c)

the heat flux. Like in Fig. 3.10, it has been verified that the same behaviour is observed when

increasing or decreasing the heat flux.
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Figure 3.10: Heat flux vs wall superheat without electric field - increasing and decreasing

heat flux
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3.3 Measurement techniques

3.3.1 Heat flux and boiling surface temperature measurement

The heat flux dissipated to the fluid by the boiling surface as well as the boiling surface tem-

perature were calculated using the six thermocouples along the copper rod of the test sam-

ple. The heat flux across a section of the copper rod was assumed to be uniform, the system

was assumed to be axisymmetric and the radial heat losses through the PTFE were assumed

to be uniform along the rod. The thermal conductivity of copper was assumed to be constant

within the temperature range investigated. Figure 3.11 schematically shows the positions of

the thermocouples along the rod, and an example of temperature data obtain from the six

thermocouples.
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Figure 3.11: Test sample thermocouples positions and temperature example

With these previous assumptions, the temperature along the z-axis of the rod can be

written as follow :

T (z) = a× z2
−b × z +c (3.1)

In this equation:

b =−
∂T

∂z

∣

∣

∣

∣

z0

(3.2)
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a =
1

2

∂2T

∂z2
(3.3)

In this case, c is the boiling surface temperature. With λCu the copper thermal conductivity,

qw = b ×λCu (3.4)

with qw the heat flux at the boiling surface, and

∂q

∂z
= 2×a×λCu (3.5)

where
∂q
∂z is the rate of heat flux dissipation along the rod.

From the six temperature measurements, a second order polynomial data fit allows the

determination of the coefficients a, b and c. From these coefficients, the heat flux at the

boiling surface and the boiling surface temperature are determined.

The respective uncertainties on the temperature and thermocouple position measure-

ments are estimated to be ±0.05 K and ±0.5 mm, as plotted in Fig. 3.11. As suggested by

Kempers et al. [91], the temperature values were considered as being distributed normally

within their uncertainty band, while the thermocouple locations were considered as be-

ing distributed uniformly within their uncertainty interval. A 2-D Monte-Carlo method de-

scribed by Kempers et al. [91] was used to estimate the heat flux and surface temperature

uncertainty with a 95% confidence interval: taking a temperature measurement data set in

given conditions, several thousand temperature and thermocouple position estimation sets

are created, respecting the previously detailed distribution. For each estimation set, a sec-

ond order polynomial data fit is performed, and the heat flux at the surface and the surface

temperature are computed. The best estimations of the heat flux and the surface tempera-

ture are the mean values, and the true value is believed to be within twice the mean absolute

deviation with 95% confidence.

With this method and the measurement data sets, the surface temperature uncertainty

was estimated to be within ±0.15 K, leading to a ±0.18 K uncertainty for the wall superheat.

The heat flux uncertainty was ±47 % for low heat flux and reduced to ±15 % for high heat

flux levels. Included in this uncertainty is the additional error associated with the thermal

conductivity of copper. This error had no influence on the temperature computations and

is an offset error, hence it is the same for each heat flux computation and does not influence

the differences in the observed trends, i.e. it is not a random error. No detailed quantitative

analysis is performed on the heat flux, in the sense that only the relative trends are consid-

ered. In that context, this error can be viewed as acceptable.

3.3.2 Image processing

All phenomena studied (bubble growth, departure, rise and coalescence) are recorded by a

high speed camera. An image processing program and methodology has been developed to
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compute the bubble volume, the height of its center of gravity, its shape or simply to follow its

trajectory while rising in the bulk liquid. In order to facilitate straight forward measurement

of these parameters for thousands of pictures, an automated bubble contour detection is

performed. The different steps can be seen in Fig. 3.12 and are described as follows:

1. On an image of the calibrated antenna recorded with the same magnification (Fig.

3.13), the size of a pixel is measured.

2. The batch of images are cropped to keep only the area of interest. Particular care is

taken to cut the bottom of the image exactly on the nucleation site.

3. The batch of images are pre-processed by increasing the contrast and setting an ap-

propriate brightness. The brightness level is chosen visually on a key picture and ap-

plied to the entire batch. In some cases, the natural brightness of parts of the back-

ground vary too much to apply one setting of brightness for the whole picture. Differ-

ent brightness settings are then applied on each part of the pictures. A script for Gimp

software has been written to automate these batch transformations.

4. Highest grey gradients are then detected using a Sobel method. This is done by a script

written for the commercial Matlab software platform, using its Image Processing Tool-

box.

5. All items of the black and white picture are analysed to detect the bubbles from other

contours like reflection on the bubbles. Sometimes there is only one bubble attached

to the nucleation site, sometime it has detached and is rising in the bulk liquid, and

sometimes there is a new bubble growing on the surface bellow a rising bubble. Each

bubble is tracked between successive images.

(a)

(b)

Figure 3.12: Image processing sample without EHD (a) and with EHD (b)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0032/these.pdf 

© [S. Siedel], [2012], INSA de Lyon, tous droits réservés



36 CHAPTER 3. EXPERIMENTAL FACILITY AND PROCEDURES

Figure 3.13: Calibrated antenna picture

Figure 3.14: Volume discretization of a bubble

Once the contour of a bubble is detected, it is used to compute the geometric parame-

ters of the bubble. For volume and center of gravity calculations, the bubble is divided into

slices of 1 pixel height, as shown in Fig. 3.14. Each slice is considered as a cylinder (thus ax-

isymmetric), and the volume is the sum of each cylinder. This method has the advantage of

taking into account the whole contour rather than simplifying the bubble as a sphere or a

truncated prolate spheroid as it is sometimes the case ([151], [54], [106] and [29]). A prolate

spheroid approximation could lead to as much as 20% error on the volume determination

when there is a neck at the base of the bubble. Another advantage of this method is that the

bubble is not considered as fully axisymmetric. In a case where the bubble is slightly tilting

(like when the electric field around the bubble is not fully axisymmetric), the error on the

volume determination remains low.

The height of the center of gravity of the bubble is computed assuming that the density

is homogeneous inside the bubble. Using the same discretization of the bubble as a stack of

cylinders, the height of the center of gravity is obtained by dividing the sum of the volume

each cylinder weighted by its average height by the total volume of the bubble. Another

method to compute the height of the center of gravity, presented by Siedel et al. [169], is

compared to the present method in Appendix B.
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The uncertainty on the volume and height of center of gravity determination is difficult to

assess. The distortion of the image due the mirage effect or due to the whole optical system

can not be estimated. From the experience detailed in 3.2.2, it can only be stated that utmost

care is taken to ensure that the images represent reality. The uncertainty due to the contour

determination can be estimated to 1 pixel normal to the surface. This uncertainty on the

volume would be about 3% before bubble detachment and more than 20% when the bubble

is still small.

3.4 Operating conditions

Although the influence of many parameters on boiling could be studied, only a chosen set

has been selected for this work. The fluid that was used during all experiment was n-pentane,

and the working pressure was always set to 1 bar. The thermodynamic properties of satu-

rated pentane at this pressure are detailed in Table 3.1. It should be noted that compared

to water, the density difference between liquid and vapour phases is much lower. Also, the

surface tension is about 5 times smaller, leading to a lower capillary length defined as:

Lc =

√

σ

(ρl −ρv )g
(3.6)

Lc(pentane) ≈ 1.56 mm

P bar 1

Tsat
◦C 35.7

ρl kg·m−3 610.5

ρv kg·m−3 2.96

h f g kJ·kg−1 358.4

cp,l J·kg−1
·K−1 2338

cp,v J·kg−1
·K−1 1788

µl ×106 kg·m−1
·s−1 196

µv ×106 kg·m−1
·s−1 6.89

λl W·m−1
·K−1 0.107102

λv W·m−1
·K−1 0.0167

σ N·m−1 0.014506

εr,l - 1.8

Table 3.1: Properties of saturated n-pentane at 1 bar

Concerning the electrical properties of pentane, it is a non-polar fluid with a relatively

low permittivity (Table 3.1). Its conductivity is so low that it was never accurately measured,

though it is below 1 pS·m−1. The electric fields involved during experiments was within the

range of 0 to 30 kV·cm−1, which is one order of magnitude below the breakdown voltage.
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Figure 3.15: Vertical coalescence of succesive bubbles

Concerning safety and the environment, it is a non-toxic fluid but a good solvent that can

dissolve many materials. It is highly flammable and very volatile at ambient temperature,

and it is explosive when mixed with air at 1.4 to 7.8%. Particular attention has been given to

this issue to avoid any risk of fire or explosion.

The range of heated surface superheat during the experiments was set between about

1.5 to 8 K. Below 1.5 K, the nucleation site was not active, and above 8 K, vertical coalescence

between successive bubbles from the same nucleation site would occur (Fig. 3.15). This

regime of coalescence was not the focus of this study.

The original design of this experimental facility, combined with appropriate measure-
ment systems, procedures and data analysis facilitates:

• the production of discrete bubbles from a single nucleation site of known geometry

• control of the growth rate via controlled system and surface temperatures

• measurement of bubble dimensions with unprecedented accuracy and repeatability

Such a facility enabled us to produce original results that were not available in the open liter-
ature and are fundamental with regard to gaining a clear and unambiguous understanding
of boiling.
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Chapter 4

Heat transfer

The novel design of this experimental setup results in a controlled thermal environment in
which bubbles nucleate, grow and move. In order to understand the behaviour and dynam-
ics of bubbles, the thermal environment should first be accurately described.

Section 4.1 details the assumptions and analysis that was performed prior to performing
experiments while designing the experimental facility. The temperature distribution within
the test sample and on its upper surface is analysed in order to define the reference sur-
face temperature used to compute the wall superheat. The convective structures and plume
above the heated surface are then described from recorded pictures, and analysed in order
to investigate the thermal environment in which a bubble will nucleate and rise in the liq-
uid. Indeed, phase change occurs owing to the available heat from the superheated liquid in
the vicinity of the interface. The temperature of the liquid surrounding the bubbles plays a
major role in bubble growth dynamics.

The assumptions and analyses have been verified afterwards by performing CFD nu-
merical simulations of coupled conduction inside the test sample and convection above the
heated surface (section 4.2). Good agreement is found between the experiments and the nu-
merical simulations as well qualitatively, concerning the convective instabilities developing
on the surface as quantitatively, concerning the average convective heat transfer coefficient
on the surface.

The third section (4.3) analyses the heat transfer from the test sample to the fluid. Con-
vective coefficients and heat transfer enhancement due to the application of electric fields
are investigated.

39
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4.1 Temperature field and fluid motion

4.1.1 Temperature field in the experimental sample

Our experimental test samples have been designed to allow single isolated bubble nucle-

ation without the occurrence of unwanted bubbles which may nucleate at other places. The

heat flux is imposed at the lower part of the test sample by the heater (see Fig. 3.4 in sec-

tion 3.1.3). In most experiments, the electrical power provided is less than 2 W. The thermal

energy is mainly conducted through the copper rod. However, some of this heat is diffused

through the insulation material (PTFE), or convected to the room from the lower end of the

test sample. The heat flux through the pin is almost constant except for small radial losses

through the PTFE (see subsection 3.3.1). The temperature profile is thus almost linear along

the vertical z-axis. The order of magnitude of temperature drop is about 1 K·cm−1. Atop the

rod is soldered a very thin copper plate of about 40µm thickness. Tin is used for the hetero-

geneous welding which was done under pressure. Due to the known compatibility between

these two metals and the fact that both are soft, any eventual contact thermal resistance

has been minimized. Concerning thermal resistance by conduction through the tin layer, its

effect is negligible as the tin thickness is less than 20µm and its conductivity is more than

65 W·m−1
·K−1.

The temperature distribution in the copper plate is axisymmetric. It can be considered as

one-dimensional as the plate is very thin. The heat flux is dissipated by the upper surface to

the fluid as the lower side of the plate is insulated. The temperature is highest at the center of

the plate and remains high atop the copper rod. The temperature then drops radially in the

plate as it is acting like a fin. The superheat at the outer edge of the plate is thus low enough

to prevent bubbles from nucleating in this region.

Another concern in the experimental design was avoiding inhomogeneous and non-

constant temperature at the center of the plate where bubbles are forming. In many experi-

ments, the wall temperature is known to be non-homogeneous and to vary with time under

the bubble base, as no wall temperature boundary condition can be imposed. The heat flux

is always controlled and conducted through the wall. Many experimental works or numer-

ical simulations bring to the fore the existence of a non-homogeneous and a non-constant

temperature on the wall surface ([174], [85], [93] and [132]) and some experimenters de-

veloped complex temperature control systems to avoid temperature fluctuations [95]. Our

experimental apparatus has been designed to minimize the variations of temperature under

the bubble. Copper has an extremely high thermal diffusivity (about 1.1×10
−4 m2

·s−1). The

bubble size (about 1 mm diameter at departure) is small compared to the copper pin diam-

eter (5 mm). Furthermore, the heat flux transmitted through the bubble is assumed to be

small compared to the overall heat transfer to the fluid due the geometry of the test sample.

It was estimated that less than 2 % of the heat flux transmitted to the fluid was latent heat

transfer (see section 4.1.2).

Once the temperature variation are minimized, there is a need to define a wall temper-
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ature used as a reference to describe boiling conditions. However, this temperature can be

defined only if the wall temperature is assumed to be homogeneous (at least around the

bubble base) and constant with time at the time scale of the described phenomena. Our

assumptions to define this reference wall temperature are that:

• the heat flux is homogeneous over the copper pin: this is aided by the high thermal dif-

fusivity of copper. The copper rod below the surface is thus acting like a heat reservoir.

• the side effects (on the sides of the pin) due to the copper plate are negligible at the

place of the bubble: this is ensured by the small size of the bubble compared to the

size of the pin.

• the local wall temperature fluctuations are negligible: this is reasonable due to the low

ratio of latent heat transfer to the overall heat transfer. If this assumption were not

verified, the reference temperature is at least a mean temperature.

4.1.2 Ratio of latent and sensible heat transfer

Boiling heat transfer is a complex combination of several heat transfer mechanisms. Energy

from the heated surface is first transferred by conduction to the neighbouring liquid which

is cooler. The liquid temperature increases, and thus diffuses heat to the cooler bulk liq-

uid above. The liquid density decreases with increasing temperature, so the buoyancy force

tends to move the hotter liquid upwards and the cooler liquid downwards. Flow structures

appear because of these buoyancy forces. These structures are strongly dependent on the

liquid properties, the temperature gradients and the system geometry. Within the flow, heat

is diffusing, in the direction of decreasing temperature gradient. The combination of these

mechanisms of heat diffusion and fluid motion is natural convection.

In the superheated liquid close to the heated surface, or directly on the heated surface, a

bubble may nucleate. In the case of this study, bubbles can only nucleate inside the artificial

nucleation site. Heat is then transferred from the superheated liquid phase to the bubble

and will change liquid into vapour. The heat dissipated as phase change enthalpy is known

as latent energy. As a bubble is attached to the heated wall, some heat is also transferred

from the surface directly to the vapour, heating the vapour layer close to the wall.

When liquid is transformed into vapour, its volume is multiplied by more than 200, caus-

ing the bubble to grow in volume. The pressure inside the bubble is balanced, giving the

bubble its particular shape and moving its interface. This motion of the interface is a new

source of liquid motion, thus enhancing convective movement around the bubble. Once the

bubble is detached from the wall, its buoyancy makes it rise above the surface, causing liquid

motion in its wake, and thus enhancing convection.

All convection effects induced by the presence of bubbles is generally assembled into the

term of convective heat transfer. Its influence on the overall heat transfer remain small as

long as few bubbles are present, but may become important when many nucleation sites are

active.
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A rough estimation of the influence of the active nucleation site on heat transfer in our

experiments has been performed. The ratio of latent heat flux over the total heat flux trans-

ferred to the fluid has been computed, using the phase change enthalpy and the vapour

volume produced (see Fig. 4.1). The data points include experiments with different electric

fields applied on the boiling surface. It is shown that typically 0.5 to 1 % of the total heat is

latent heat. In our case, as only one nucleation site is active, the effect of the bubbles on the

overall heat flux can be considered as negligible, and only natural convection will be taken

into account in the heat transfer considerations. This is consistent with the results of Barthès

(see [13] p. 160).
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Figure 4.1: Ratio of latent heat flux over total heat flux

4.1.3 Plume

As explained in section 4.1.2, the main means of heat dissipation from the heated surface to

the fluid is natural convection. The convective motion is coupled or driven by the temper-

ature distribution on the heated surface. The liquid in the vicinity of the surface is super-

heated by conduction through the thermal boundary layer. The highest liquid temperatures

are reached at the center of the plate due to its geometry. The superheated liquid, because of

its lower density, is rising in the bulk liquid, forming a plume at the center of the plate. The

superheated liquid rises until reaching the free surface about 10 cm above the heated plate

where it is cooled by evaporation.
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As a plume is rising from the center of the plate, superheated liquid from the surface

is driven to this plume, leading to a superheated zone above the center of the plate where

bubbles are nucleating and growing. Bubble dynamics will most probably be impacted by

the fact that the bubble will nucleate in a sufficiently superheated liquid.

This particular flow structure is related to the design and geometry of the experiment, but

is similar to the flow pattern that develops during boiling at low heat flux or wall superheat.

Between the onset of boiling and the fully developed nucleate boiling regime (see section

2.2), the isolated bubble regime is made up of scattered active nucleation sites from which

columns of bubbles are departing. Convective structures form as the liquid is drawn up in

the wake of the bubbles while saturated liquid is brought to the surface between the active

nucleation sites (see Fig. 4.2 taken from V.P. Carey [23]).

(a)

(b)

Figure 4.2: Schematic of boiling regimes (a) and fluid flows (b) at low superheat from (V.P.

Carey [23])
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4.1.4 Visualization of convective structures at high wall superheat

Convective structures can be visualized when the liquid is illuminated from the back with a

strong directional light. Light rays are deflected by convective structures owing to high re-

fractive index gradients. Dark or light areas appear on the image depending on the diverging

or converging effect of the convective structure. These structures are hardly visible in the

superheat range of our experiments (2 to 8 K) because temperature gradients are too low.

Better visualization has been achieved by increasing the heat flux until reaching a wall su-

perheat of about 30 K. Contrast has then been increased on the picture to make convective

structures appear more clearly. These experiments have been performed on the experimen-

tal sample before any artificial nucleation site was created, allowing pure natural convection

to be obtained.

Figure 4.3 shows a series of pictures with∆t ≈ 83 ms between two successive pictures. No

electric fields is applied between picture 1 to 48. Large convective structures are rising slowly

at a velocity of about 5 to 10 mm·s−1 [170]. Some structures are vertical while some other

have a mushroom-like shape. Such a mushroom-like structure can be visualized between

picture 19 and 26: a hemispherical cap appears on the center-right part of the picture. This

cap rises while slowly moving to the left toward the central plume.

Between pictures 49 and 50, a 43 kV·cm−1 electric field is applied above the heated sur-

face. The flow pattern immediately changes. A transient regime is observed between picture

50 and picture 54, then a new regular pattern is observed in the following pictures. The tran-

sient regime is described with a finer time step (∆t = 3 ms) in Fig. 4.4 and Fig. 4.5. Small

convective cells (about 0.5 mm) appear from above the heated plate until filling the whole

picture in about 100 ms. The convective cells then fade away or seem to fall down again near

the plate; 300 ms later, all visible convective cells are concentrated in a 3 mm layer above

the heated wall. From picture 54 to picture 96 of Fig. 4.3, the convection flow pattern with

the application of the electric field is installed. The structure of the flow is clearly different

from the structure without the electric field. The convective cells are much smaller, and only

concentrated in a thin layer above the heated surface. Movement of the cells is more intense

and faster. The convective structures are sometimes pushed from right to left or from left to

right. As it can be seen from picture 76 to 83, all convective structures are pushed to the right

side until almost no more convective cells are visible in the field of view. Then, from picture

84 to 88, the convective cells move back to the left, so that the flow pattern of picture 88 is

again similar to this of picture 75.

The temperature measurements and convection visualizations detailed in this section

show that the bubbles nucleating on the surface grow in a particular thermal environment

that is strongly dependent on the natural convective structures developing on the surface.

It seems that in the absence of electric field, the convective structures tend to move super-

heated liquid toward the artificial nucleation site, and further investigations to describe the

convective structures are detailed in section 4.2. The presence of an electric field clearly

induces a modification of the flow structure above the heated surface into smaller convec-

tive cells. The consequences of this new structure is an enhancement of the convective heat
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Figure 4.3: Photos of convective structures with ∆TW ≈ 30 K (∆t ≈ 83 ms between two im-

ages). A 43 kV·cm−1 electric field is suddenly applied at picture 49. Picture width is about

8 mm.
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Figure 4.4: Detailed representation of the transient behaviour of convective structures after

a 43 kV/cm electric field is applied (∆TW ≈ 30 K, ∆t = 3 ms between two images). Picture

width is about 8 mm.
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8 16 24 32

40 48 56 64

Figure 4.5: Close-ups from selected pictures from Fig. 4.4

transfer, and this is described in section 4.3.

4.2 CFD simulation of convection above the heated surface

As presented in section 4.1, a precise knowledge of the temperature field and of the flow

structure at the place where the bubble will nucleate is essential to analyse the different

heat transfer mechanisms that govern bubble dynamics. A qualitative analysis has been per-

formed together with the design of the experimental test sample, and some visualizations

and measurement have been possible. Nevertheless, the hypotheses made are to be checked,

and many parameters cannot be measured nor determined quantitatively. For these reasons,

it has been decided to perform numerical simulations of coupled conduction inside the test

sample and convection above the heated surface. Steady-state simulations have been per-

formed by A. Albadawi [2] as part of his master thesis under my co-supervision with J. Bon-

jour. On my side, I performed unsteady simulations at the Department of Mechanical and

Manufacturing Engineering in Trinity College Dublin in partnership with Dr. Tony Robinson.

4.2.1 Steady-state convection simulation under TransAT simulation code

A finite volume numerical simulation of natural convection over the heated surface has been

performed by Albadawi [2] using the commercial software TransAT. It was a 2D axisymmetric

simulation, considering conduction inside the 40µm copper plate and convection to liquid

pentane above the plate. The boundary conditions were constant heat flux on a 5 mm diam-

eter area at the center below the plate, adiabatic condition around the heated area below the

plate. The boundary conditions of the fluid domain were an adiabatic wall on the bottom

side, and imposed temperature wall on the outer and top sides. The imposed temperature
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was the bulk liquid temperature of 35.9 ◦C.

Figure 4.6: Finite-volume simulation of conduction inside the copper plate and convection

above the surface. Temperature field in Kelvin.

A result of the temperature field is given in Fig. 4.6 for an imposed heat flux of 1 MW·m−2.

A central plume of superheated liquid rises from the center of the copper plate. As the top

boundary condition is an imposed temperature, the liquid is cooled down to the saturation

temperature, and flows back to the edge of the plate by the side, thus forming a torus. Ex-

cept for the center of the plate with the plume, the thickness of the thermal boundary layer

above the heated plate is between 1 and 2 mm. As it was previously suggested, the surface

temperature is highest at its center and decreases with radial distance. The volume above

the artificial nucleation site consists of superheated liquid which stores the sensible energy

that is to be converted into latent heat as soon as a vapour nucleus appears.

The results brought by these simulations confirm qualitatively the presence of the central

plume, but are inadequate to predict quantitatively the temperature and velocity field. In-

deed, the geometry of the computational domain does not fully conform to the experimental

configuration. Moreover, the top boundary condition of an imposed temperature wall seems

inadequate and apparently substantially affects the fluid flow. A part of the experimental

sample below the copper plate needs to be included in the computational domain as the

PTFE is not a perfect insulator. Finally, convective instabilities may form (as it was observed

in Fig. 4.3), so that a steady-state simulation might not be sufficient to accurately represent

the convective pattern.

4.2.2 Unsteady convection simulation using Fluent simulation code

Transient numerical simulations have been performed using the Fluent simulation code in

order to precisely represent the temperature field and the fluid flow due to natural convec-

tion above the heated surface. This work was done in partnership with the Department of

Mechanical and Manufacturing Engineering in Trinity College Dublin where I stayed for 6

months.
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Coupled conduction and convection simulations have been performed, without tak-

ing into account bubble nucleation and phase change in the artificial nucleation site area.

The computational domains chosen were 2D-axisymmetric. Several computational domain

were used, including or not including the mesh grid electrode or a part of the test sample

below the heated plate (as described in section 4.2.2.2). Results are given in sections 4.2.2.3,

4.2.2.4 and 4.2.2.5.

4.2.2.1 Mathematical modelling

Common Navier-Stokes equations and the energy equation are solved for a 2D axisymmetric

computational domain. The Boussinesq approximation is used to take into account for the

temperature dependency of the density. In order to determine whether the flow is laminar

or turbulent, the Rayleigh number has been computed:

Ra = GrPrd (4.1)

Ra =
ρ2gβ∆TW r 3

µ2

µcp

λ
(4.2)

with β being the thermal expansion coefficient, ∆TW being the wall superheat and r being

the characteristic length. Using ∆TW = 8 K for the maximum superheat and r = 9 mm for

the characteristic length, the Rayleigh number is equal to 3.4×106 . The critical Rayleigh

number for a homogeneously heated plate at which the flow becomes turbulent is equal to

107 . The flow will thus be taken as laminar1.

Detailed expressions of the equations can be found in the Fluent User’s guide [5]. Mass

and momentum conservation equations are expressed in cylindrical coordinates as follows.

Mass conservation equation:

∂ρ
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Axial momentum conservation equation:
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Radial momentum conservation equation:
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1In the present case, the plate is not homogeneously heated, and the wall superheat is defined at the center

of the plate. The average superheat is lower, leading to lower Rayleigh numbers. Moreover, a central plume

resulting from the differentially heated plate will cause less turbulence than naturally developping convective

cells.
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The energy equation is expressed as follows:

∂

∂t
(ρE )+

−→
∇ ·

(−→v (ρE +p)
)

=
−→
∇ · (λ

−→
∇T ) (4.6)

with:

E = h −
p

ρ
+

v 2

2
(4.7)

As natural convection is a prominent phenomenon in this problem, the variation of den-

sity with temperature needs to be modelled. The Boussinesq approximation is used, only for

the buoyancy terms in the momentum equations:

ρ = ρ0(1−β∆T ) (4.8)

with β defined as follows:

β=−
1

ρ

(

∂ρ

∂T

)

p
(4.9)

4.2.2.2 Computational domains and boundary conditions

Several computational domains have been used in the simulation. The most complete do-

main is detailed in Fig. 4.7a and is named C1. The horizontal x-axis is chosen as the axisym-

metry axis as imposed by the formalism of the simulation code used. The gravity vector is

thus in the −
−→x direction. The copper rod is simulated over a length of 7 mm. The diameter

of the rod and the dimensions of the copper plate are faithful to the experimental test sam-

ple. The PFTE insulator is included in the simulation below the copper plate. A brass mesh

electrode is placed 7 mm above the heated surface, like in the experiments. The geometry

of the mesh electrode simulated is slightly different from that of the experiments, because

it has to be axisymmetric. It is designed as concentric rings of 1 mm square cross-section,

with a void fraction of 56 % over the heated surface. The fluid domain is filled with liquid

pentane initially at saturation temperature. The outer side and the bottom side (on the left)

are adiabatic walls, except for the copper rod where a constant heat flux is applied. The top

side (on the right) is an open boundary defined as a pressure outflow. The pressure is kept

constant, and the potential back-flow consist of liquid pentane at saturation temperature. In

this way, the superheated liquid that will rise by natural convection is free to flow out of the

computational domain. The grid chosen was Cartesian, with 100× 100 µm cells except for

the cells in the copper plate which had a 10µm x-dimension.

A second computational domain C2 with a reduced test sample has been used (see Fig.

4.7b). The purpose of this domain was to reduce simulation time. As a constant heat flux was

applied on the copper rod just below the thin plate, the temperature profile in the plate was

modified. This domain was still useful to observe qualitatively the formation of convective

instabilities on the surface which were similar to the ones observed with the full computa-

tional domain.

A third computational domain C3 (Fig. 4.7c) was used to study the influence on the brass

mesh electrode on the plume and fluid flow rising from the plate.
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(a) C1: Full computational domain
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(b) C2: Reduced test sample
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(c) C3: Reduced test sample without grid mesh electrode

Figure 4.7: Computational domains (left) and boundary conditions (right)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0032/these.pdf 

© [S. Siedel], [2012], INSA de Lyon, tous droits réservés



52 CHAPTER 4. HEAT TRANSFER

4.2.2.3 Temperature fields in the test sample and in the fluid phase

Numerical simulations have been performed and tested for stability and convergence. Mesh

was doubled for a key simulation to ensure that the results were not mesh-dependant. The

temperature field on the upper face of the copper plate is shown in Fig. 4.8 for a 5 kW·m−2

heat flux imposed on the copper rod and with the computational domain C1. As expected,

the temperature is almost homogeneous over the copper rod (variations are below 0.05 K).

The temperature drops radially in the copper plate over the PTFE. The wall superheat at the

outer edge of the plate is decreased by one third.

temperature
profile line

PTFE
copper

rod
liquid
pentane

Figure 4.8: Simulation of the temperature profile in a radial section of the upper side of the

copper plate for a heat flux of 5 kW·m−2 and using computational domain C1.

Comparison of the temperature profile in the copper plate between computational do-

mains C1, C2 and C3 is shown in Fig. 4.9. The overall profile has a similar shape in each

case, except for the surface over the copper rod. The temperature values are higher for C2

and C3 than for C1. The temperature over the copper rod is less homogeneous using C2 and
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C3 than using C1. The temperature profiles using C2 and C3 coincide for low heat fluxes and

are slightly different for high heat fluxes. This will be investigated in subsection 4.2.2.5.

Figure 4.9: Simulation of the temperature profile in a radial section of the upper side of the

copper plate. Comparison between computational domains C1, C2 and C3.

It can be inferred from the heated plate temperature profiles that convection above the

surface will be different between on one hand C1 and on the second hand C2 and C3. How-

ever, the offset of temperature between the computational domains is similar to this caused

by a change of heat flux using a single computational domain, except for the area above the

copper rod. If the convective instabilities are developing around the copper rod on the sur-

face of the thin plate, the same phenomenon would still be observed as the temperature

profile in this area has the same shape.

4.2.2.4 Convective instabilities

The temperature field in the fluid phase has been plotted for all 3 computational domains

for a low heat flux of 5 kW·m−2 (Fig. 4.10) and for an high heat flux of 20 kW·m−2. According

to the results using the most complete computational domain C1 (Fig. 4.10b), no convective

instabilities occur while the heat flux remains low. The fluid flow consists in a plume rising

from the center of the plate and diffusing through the mesh electrode. On the contrary, sim-

ulations using C2 and C3 predict the occurrence of the instabilities, perhaps because of the

offset of surface temperature.
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(a)

scale
(b) C1 (c) C2 (d) C3

Figure 4.10: Temperature field at q= 5 kW·m−2 using C1, C2 and C3

For a nominal heat flux of 20 kW·m−2 imposed at the base of the copper rod, instabilities

are observed for all of the different computational domains used (see Fig. 4.11). The con-

vective structures are similar in each case, leading to the assumption that the mechanism of

formation of the instabilities is the same in each case. In order to decrease the simulation

times, the domain C3 will be further used to describe this mechanism.

(a)

scale
(b) C1 (c) C2 (d) C3

Figure 4.11: Temperature field at q = 20 kW·m−2 using C1, C2 and C3

Figure 4.12 shows the successive temperature fields obtained using simulation domain

C3, with ∆t = 800 ms between the images. The mechanism of formation of a new instability

is easily observed between pictures 5 and 8. The thermal boundary layer above the heated

surface is thinner around the base of the central plumes because of higher velocities. The

thickness of the boundary layer has thus a maximum between this base and the edge of the

surface. The buoyancy of the hotter liquid soon creates a new convective structure from this

local maximum.

The shapes of the instabilities observed in the simulations are very similar to those ob-

served in the experiments in section 4.1.4, except that the simulations are by nature axysim-

metric. Some structures present a mushroom-like shape, and some are like a vertical plume

(after the mushroom-like shaped ones have raised above the simulation domain).
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Figure 4.12: Temperature field at q= 5 kW·m−2 using C3. ∆t = 800 ms between successive

images.

4.2.2.5 Influence of the grid mesh electrode

The grid mesh electrode has a clear impact on the fluid flow raising above the heated surface.

As it can be observed in Fig. 4.13, the central plume is divided into the free spaces of the grid,

resulting in a much larger plume above the grid. Apart from the flow structure, as the flow

seems to be modified only 5 mm above the surface, whether the grid has a impact on heat

transfer needs to be determined.

(a)

scale
(b) C2 (c) C3

Figure 4.13: Temperature field at q = 5 kW·m−2 using C2 and C3

The wall superheat and the mean heat transfer coefficient have been computed using C2

and C3 (Fig. 4.14 and 4.15). The mean heat transfer coefficient is defined as :

h =
q

S.∆TW
(4.10)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0032/these.pdf 

© [S. Siedel], [2012], INSA de Lyon, tous droits réservés



56 CHAPTER 4. HEAT TRANSFER

with S the copper thin plate area. It can be seen that there is no difference between C2 and

C3 at low heat fluxes, and that the wall superheat rises faster with the heat flux when there

is no grid above the surface. The effect of this trend is that the heat transfer coefficient slope

is higher in the presence of the grid. The grid might cause the central plume to be larger,

allowing better heat removal from the thermal boundary layer

Figure 4.14: Wall superheat versus heat flux using C2 and C3.

The numerical simulations presented in this section allow a better understanding of the

thermal field and heat transfer above the heated surface. It has been shown that the natural

convective structures bring superheated liquid toward the center of the plate. The formation

of convective instabilities over the plate has been explained, and the thermal effect of the

presence of the grid mesh electrode has been investigated.

4.3 Heat flux from the surface

4.3.1 Heat flux in the absence of electric field

As described in section 3.3, the total heat flux transmitted to the fluid is computed from the

temperatures measured inside the copper rod of the experimental test sample. This heat

is mainly transferred to the liquid phase by natural convection as described in Section 4.1.

The relation between heat flux and wall superheat has been plotted in Fig. 4.16. It has been
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Figure 4.15: Mean heat transfer coefficient versus heat flux using C2 and C3.

measured at increasing or decreasing heat flux to ensure the absence of any hysteresis phe-

nomenon. It is shown that the relation between heat flux and wall superheat is roughly lin-

ear2. Heat flux values shown are below 1 W, which is a rather small value compared to the

size of the whole system (5 L of liquid pentane).

Figure 4.16 also plots the data points obtained with the numerical simulations using the

most complete simulation domain C1 (see section 4.2.2). Although there is an offset between

the numerical and the experimental values, the trend and the slope is the same. The numer-

ical simulations predict a wall superheat underestimated by 2 K.

4.3.2 EHD enhancement of convective heat flux

Heat flux versus wall superheat has been plotted for different voltages applied to the mesh

grid electrode (see Fig. 4.17). Convective heat transfer is enhanced due to the changes in the

convective structures observed in section 4.1.4. This enhancement tends to improve with

increasing voltage. For an average superheat of 4 K, the heat flux is enhanced by about 50 %

for the highest applied voltage of 24 kV. The ratio of heat transfer enhancement tends to

decrease with the wall superheat. Indeed, this is as one would expect as the buoyancy forces

become stronger and should begin to dominates over electrical forces.

2The exact shape might not be linear. However, due to the small range investigated and to the relatively

high uncertainty on the heat flux determination, this relation can be modelled as linear.
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Figure 4.16: Heat flux transmitted to the fluid for different wall superheat values.

Figure 4.17: Heat flux transmitted to the fluid versus wall superheat for different voltages

applied to the grid mesh electrode.
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The measured heat fluxes for 18 kV and for 24 kV seem very similar, so that their linear

data fit cross within the studied wall superheat range. This is due to the heat flux uncertainty

which is quite high at low and moderate heat flux.

4.3.3 Superheat reduction due to EHD at constant heat flux

The superheat reduction due to EHD at constant heat flux has been measured and is plotted

in Fig. 4.18. This phenomenon illustrates what happens when an electric field is applied

over a device with an imposed heat flux cooled by natural convection. It is also the thermal

effect of what was observed in Fig. 4.3 once the electric field was turned on. The electric field

instantaneously modifies the convective flow structure, which enhances the heat transfer.
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Figure 4.18: Wall superheat Vs. electric field at constant heat flux.

4.3.4 Heat transfer coefficients

As for the heat flux, the mean heat transfer coefficient, defined in eq. 4.10, has been plotted

for the absence of an electric field (Fig. 4.19) and with an electric field applied (Fig. 4.20).

Surprisingly, the mean heat transfer coefficient decreases with an increasing wall superheat.

The reduction cannot be explained and may be due to the uncertainty on the heat flux mea-

surements that can be as high as 47% at low heat flux (see section 3.3.1). The heat transfer
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coefficient increases with an increasing voltage applied to the electrode, as one would de-

duce from the previous heat flux analysis.

Figure 4.19: Mean heat transfer coefficient over the heated plate.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0032/these.pdf 

© [S. Siedel], [2012], INSA de Lyon, tous droits réservés



4.3. HEAT FLUX FROM THE SURFACE 61

Figure 4.20: Mean heat transfer coefficient for different voltages applied to the grid mesh

electrode.

The original design of our experimental setup results in a specific natural convection
regime over the heated plate, somehow similar to the flow structure of the isolated bubbles
boiling regime. An original experimental procedure completed by transient numerical simu-
lations have been performed, allowing the accurate description of the thermal environment
in which bubbles nucleate, grow and move. The augmentation of the flow structure by the
application of an electric over the heated surface has been observed, and its enhancement of
the heat transfer from the plate has been measured.
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Chapter 5

Bubble dynamics

Boiling heat transfer has received much attention for decades because of the high heat trans-
fer coefficients associated to this mode of heat transfer. Many research teams have attempted
to predict boiling heat transfer rates since the pioneering description of the pool boiling curve
on a wire by Nukiyama ([138], translated in English in [139]). However, boiling being a very
complex combination of multi-scale coupled mechanisms, the need for a finer description
and understanding of each individual mechanism has been revealed. Dozens of studies of
single bubble dynamics have been performed since then, each one bringing new elements
to the global understanding. Yet, several key problems still remain concerning bubble nu-
cleation, growth, detachment, rise and interactions with other surrounding bubbles. The
present experimental study, benefiting from all previous studies and latest advances in mea-
surement and high-speed recording, aims at bringing new elements to the understanding of
boiling at the scale of a single bubble.

In the first section, bubble growth and the associated vapour production rate will be
analysed. Bubble shape and oscillations during its growth will be characterized. In a sec-
ond section, a momentum balance on the bubble will be performed after having accurately
defined each force. The bubble curvature along the interface will also be investigated. In
a third section, bubble interaction with a neighbouring bubble and the coalescence event
will be discussed. In the last section, bubble rise, trajectory and terminal velocity will be
analysed.

5.1 Bubble growth

Once a bubble nucleates on a surface, it grows by phase change until the bubble departs from

the surface. The growth dynamics is one of the core phenomena in boiling since most of the

heat transfer is governed by bubble activity when boiling on a natural surface. However, pre-
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dicting or measuring accurately bubble growth is utterly complex, since many parameters

and scales are involved. The rate of phase change depends on the bubble exact shape and

on the 3D-temperature field of the liquid (whose temperature is varying with time as it is

cooled by the phase change phenomenon). It also depends on the exact layout of the triple-

line area, on the properties of the fluid at the temperatures and pressures involved, on the

potential interaction with the environment, on the other bubbles, on the heated surface, etc.

Among the different methods considered to understand the bubble growth dynamics,

analytical modelling was extensively developed after the work by Lord Rayleigh in 1917 [157]

(see chapter 2), who modelled bubble growth (and collapse) for an inertia controlled spher-

ical bubble. Several neglected parameters have been progressively taken into account in

the subsequent analytical models, among which a homogeneous superheated bulk liquid

[64, 154, 175], the presence of the heated wall [73, 131] and non homogeneous temperature

field [73], a more realistic shape of the bubble viewed for instance as a truncated sphere

[21, 30, 73, 109, 131], and the presence of a micro-layer beneath the bubble [21, 30, 43, 144].

Some parameters have seldom been considered, e.g. the influence of the previous bubbles

from the same nucleation site, the actual non-spherical bubble shapes, the influence of the

convective structures above the heated surface, the influence of neighbouring bubbles or the

non-homogeneous and time-varying temperature inside the wall.

Another method to determine bubble growth dynamics or to validate/invalidate the ana-

lytical models is to perform controlled experiments while measuring all relevant parameters.

The first issue is to design a well-controlled experiment with boiling on a single nucleation

site. Most boiling experiments involve natural surfaces with multiple nucleation sites in-

teracting with each other, and bubbles coalescing [43, 71, 76, 98, 149, 152, 156, 162, 190].

Among the few experimental works concerning boiling from an individual nucleation site,

most are performed over a silicon plate or wafer, or are heated locally by a laser beam or

a micro-heater element [24, 28, 51, 52, 85, 94, 106, 107, 108, 132, 146, 163, 166, 187, 194].

The second issue of the experimental approach is measuring meaningful parameters, such

as the bubble exact shape, the temperature field in the liquid and in the solid phases, and

their variations with time. Capturing the evolution of the bubble shape and size is difficult

because bubble growth is typically fast, and because the temperature gradients within the

liquid phase cause mirage effects [42]. Measuring the temperature field in the liquid phase

was rarely performed. One should nevertheless mention the work by Beer who investigated

boiling in a 2D-temperature field by holography and interferometry [15, 176].

A third method used in order to determine bubble dynamics is complete numerical sim-

ulation of the bubble. This method also has its specific issues. 3D-simulation is costly, choos-

ing a proper mesh is difficult for multi-scale phenomena, bubble inception is usually impos-

sible to achieve numerically, bubble interaction with the surface at the triple line needs to be

well understood in order to be correctly modelled, and eventually, key experimental works

are needed to validate the simulation results (see V.K. Dhir [53] for a good state-of-the-art of

complete numerical simulation of boiling).

The experimental work presented in this chapter aims to be among the reference works

on bubble dynamics in a controlled and measured environment. Bubbles nucleate on a cop-
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per surface from a single nucleation site, which avoids disturbance from neighbouring bub-

bles. The metal volume below the surface ensures a good thermal capacity and diffusivity.

The wall temperature and bulk fluid temperature are accurately measured (see section 3.3.1),

and the fluid flow structure above the surface has been investigated in chapter 4. The nucle-

ation site geometry has been accurately characterized in section 3.1.3. Bubble growth se-

quences are recorded by a digital high-speed camera and an accurate post-processing tech-

nique has been developed to compute bubble characteristics (see section 3.3.2). Particular

care has been given to avoid mirage effect (see section 3.2.2) and to minimize distortion of

the bubble image. Many of the results shown in this section have been published in 2008 by

Siedel et al. [169].

5.1.1 Introduction to bubble growth

We will first describe here the entire life cycle of a bubble in the case of our experiments in

order to identify the specificities of the bubble growth sequences analysed: bubbles growth

is part of a periodic process, and bubbles stay attached to the rim of the nucleation site. We

will then explain the choice of methodology that consists of describing the bubble growth

using the bubble’s volume rather than its equivalent diameter.

Before describing any result obtained, the validity of the measurements needs to be as-

sessed. Bubble growth analysis will generally be performed on a single bubble. In order to

generalize the observations made on this particular bubble event, the repeatability between

several successive bubbles has been investigated and information on this issue will also be

given in the present section.

5.1.1.1 Bubble life cycle

The object of this study is to accurately describe a bubble life cycle: it is a periodic succes-

sion of events from nucleation of a bubble at its nucleation site, growth of this bubble until

its departure, and rise of the bubble until reaching the free surface. Once the bubble has de-

tached from its nucleation site, the next cycle may start and a new bubble can nucleate. Two

successive bubble cycles can overlap each other. A rising bubble or its wake may interact

with a new bubble if the latter grows fast enough. As presented in section 3.4, the limit of

these interactions has been fixed when a bubble can merge with the following bubble.

The first step of the bubble life cycle is its nucleation. It always happens inside the artifi-

cial nucleation site. Little is known about the mechanism of nucleation because it cannot be

observed visually. The waiting times are very short (less than 1 ms is observed between the

detachment of a bubble and the appearance of the following bubble) and tend to confirm

that a vapour seed stays encapsulated inside the site. In this case, the new bubbles are not

really nucleating, but instead the departing bubble is breaking into two parts: the main one

leaves the surface and a small volume of vapour stays attached inside the site.
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The next step of the bubble life cycle is a volumetric growth outside of the cavity while

being attached to the heated wall (see Fig. 5.1). In the case of these experiments, the bubble

stays attached to the rim of the nucleation site during the entire growth (i.e. the triple line

between the solid, the liquid and the vapour does not move outside of the nucleation site

on the surface). In the Fig. 5.1, the bubble quickly grows over the surface while the previous

bubble is still very close. Its grows by phase change until reaching a critical volume at which

the bubble departs from the surface.

Once the bubble has detached from the surface, it accelerates vertically and rises until

reaching the free surface. Figure 5.2 shows the first millimetres of the rise of a bubble, which

is described in section 5.4.

1 mm

Figure 5.1: Bubble growth at ∆TW = 5.9 K, with ∆t = 2.67 ms between the images.

5.1.1.2 Contact angle

The contact angle is defined for a bubble or a drop attached to a solid surface. It is defined

as the macroscopic angle on the liquid side between the bubble interface and the solid wall

at the location of the contact line (see P.G. De Gennes [50], page 24-25).

The estimation of the contact angle θ is difficult. Indeed, θ not only depends on the solid

and fluid thermodynamic and chemical properties, but also relies on the surface geometry

and roughness and on the wall superheat. For a wetting fluid, the contact angle will typically

increase with the surface roughness. The contact angle then needs to be determined for the

specific surface-fluid combination employed in the experiments.

Moreover, the contact angle is a dynamic equilibrium (see P.-G. de Gennes [50], chap-

ter 6). The advancing and receding contact angles are different due to the surface wetting
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Figure 5.2: Bubble rise at ∆TW = 3.2 K, with ∆t = 7 ms between the images.

and drying processes, leading to even more difficulties to predict the contact angle. The

contact angle is thus changing during bubble growth [134, 189].

The experimental method to define the contact angle would be to measure it accurately

at each time step through image processing. A new issue comes up in the specific case of

these experiments, as the bubble remains attached on the rim of the nucleation site during

the entire bubble growth cycle1. This leads to a problematic definition of the contact angle2,

which is well defined on a plane surface.

Figure 5.3 illustrates the fact that when the triple line is located on a geometric edge, a

microscopic displacement of the contact line can result in a large contact angle difference.

The contact angle can therefore not be measured accurately in our experiments.

For the case of a sessile drop of pentane on a metal surface, Stutz et al. [178] measured a

static contact angle of less than 10◦.

5.1.1.3 Volumetric growth

The first analytical models of bubble growth describe bubble size by its diameter. This comes

from the first assumption that the bubble is a sphere. The bubble was later assumed to be

non-spherical (usually a hemisphere or a truncated sphere). The term of equivalent diam-

eter has been introduced, meaning the diameter of a sphere which would have the same

1This is generally the case for well-wetting fluids [24].
2The contact angle is defined as a macroscopic angle, which may differ from the microscopic angle that

would results from the presence of a liquid microlayer beneath the bubble [122].
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∆x ≈ 20µm

θ2 = 80◦θ1 = 30◦

Figure 5.3: Evolution of the contact angle for a small change in the triple line location close

to the nucleation site edge.

volume :

Deq =

(

3V

2π

) 1
3

(5.1)

This use of the equivalent diameter to describe bubble growth is widely generalized, as

well for analytical models as for experimental measurements, even for the most recent pub-

lications (for example Nam et al. [135]). Yet, this use of a diameter might be a source of inac-

curacy and might veil precious information about heat transfer. Indeed, heat transfer to the

bubble is roughly proportional to the volumetric flow rate of vapour production. Describing

vapour production implies an accurate knowledge of the volume at each moment in time.

But as the equivalent diameter is proportional to the cubic root of the volume, any variation

or trend of the volumetric growth is ambiguous when reasoning in terms of diameter.

Furthermore, the use of the equivalent diameter is nonsensical for an experimental work

when the bubble appears to be not spherical. In the present experiments, bubbles tend to

form a neck before detachment, and appear slightly elongated at their lower half. Figure 5.4

shows a bubble just before detachment. The shape is rather like that of a hot-air balloon.

It has thus been chosen to represent the bubble size using its volume. The equivalent

diameter might be used subsequently to compare the results with models.

5.1.1.4 Reproducibility of successive bubbles

The bubbles which nucleate, grow and leave the surface are immediately followed by the next

bubble nucleating at the same nucleation site. Waiting times observed are less than 1 ms. It

is important to investigate if following cycles are identical or if differences exist. Figure 5.5

plots the growth curves of 11 successive bubbles with a low wall superheat of 2.1 K. The
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Figure 5.4: Bubble at detachment

overall shape of each curve is the same, and the volume at departure of each bubble remains

within a ±2 % dispersion interval. The total growth time to departure decrease by about 15 %

between the first and the last bubble of the set. This variation is also observed in subsection

5.1.2.2, where instantaneous bubble frequency is scattered for the same wall superheat. This

may be due to fluctuations of temperature of the surrounding liquid with a lower frequency,

which may be caused by convective instabilities similar to those observed in section 4.1.4.

Figure 5.5: Growth curves of 11 following bubbles at ∆TW = 2.1 K

Analyses performed on a single bubble cycle can be generalized to all bubbles with the
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same experimental conditions only if the time is non-dimensionnalised by the total growth

time. For quantitative analyses about the latent heat flux, the bubble growth time or fre-

quency, several bubbles are needed in order to take into account the dispersion of the values

at a single experimental condition.

5.1.1.5 Inertia or diffusion controlled bubble growth ?

In order to provide a consistent analysis of bubble growth, it is useful to determine whether

the bubble growth is controlled by diffusion or inertia. As outlined in Siedel et al. [171],

Robinson and Judd [160] proposed an order of magnitude criterion which should indicate

whether bubble growth would be expected to be diffusion controlled or whether inertia in-

fluenced, associated with the kinetic energy of the surrounding liquid, would be the domi-

nant influence. Based on a simple scaling argument the criterion was posed as:

IR =

(

4

27

)(

σ

ρlαl
2

)

Rb

Ja2

{

≪ 1 ⇒ Inertia controlled

≫ 1 ⇒ Diffusion controlled
(5.2)

where Rb is the bubble radius at nucleation, taken here as the cavity radius, and Ja is the

Jakob number defined as:

Ja=
ρl cp (TW −Tsat )

ρv h f g
(5.3)

The Jakob numbers are low in this study, with 2.7 ≤ Ja ≤ 10.5. For this Jakob number range,

IR lies between 500 and 7700, which indicates that bubble growth is definitely diffusion con-

trolled and inertial influences are clearly negligible.

5.1.2 Influence of the wall superheat

Heat transfer in boiling is commonly described by the relationship between the heat flux

density and the wall superheat defined as the temperature difference between the heated

wall and the bulk liquid:

∆TW = TW −Tsat (∞) (5.4)

The parameter imposed is usually the heat flux density corresponding to the heat dissipated

by the device that needs to be cooled, and the wall superheat is a result of the heat transfer

coefficient due to the boiling regime (see section 2.2). The notion of wall superheat is similar

to that in use for description of single phase convection.

In the case of these experiments, only one boiling regime is involved – the isolated bub-

ble regime – as only one nucleation site can be active3. As the main means of heat dissipa-

tion is convection (see section 4.1.2), the wall temperature is dictated by the convective heat

transfer coefficient. As the relationship between the heat flux and the wall superheat is fixed

3Several regimes can in fact be identified using the vertical coalescence as a distinctive criterion. If the wall

superheat is high enough, the bubbles from the nucleation site can even form a vapour column. As vertical

coalescence is not investigated in this study, only one boiling regime is considered
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without taking into account the boiling phenomenon, one or the other can be relevant as a

base parameter to study bubble growth.

The main possible consequence on the bubble growth when changing the heat flux den-

sity or the wall superheat is a modification of the vapour production rate, causing a modifi-

cation of the bubble growth rate and possibly of the bubble departure volume. The vapour

production rate is strongly related to the temperature gradient in the fluid surrounding the

bubble, and thus to the wall superheat. Hence, the wall superheat will be chosen as the ref-

erence parameter to describe the experimental setting.

5.1.2.1 Bubble growth

Bubble growth curves are plotted in Fig. 5.6 for different wall superheats within the range in-

volved. The bubble growth time is significantly reduced when increasing the wall superheat.

As expected, the vapour production rate is significantly affected by the wall superheat.

Figure 5.6: Growth curves of 6 bubbles at different wall superheat

The departure volume remains almost unchanged (variations stay within a ±5 % interval)

for any wall superheat. This means that the mechanisms that govern bubble departure do

not seem to be significantly affected by the wall superheat. The forces acting on the bubble

are deeply investigated in section 5.2. For an identical shape at departure, static forces are

identical. The dynamic forces involved in the force balance are thus negligible when the

bubble departs from the surface.
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5.1.2.2 Bubble frequency

As the departure volume of the bubbles can be considered constant for all wall superheats

and only the growth time is changed, another parameter to describe the effect of the wall su-

perheat is the bubble frequency. The frequency is based on the count of departing bubbles as

long as no coalescence occurs, and on the count of departing coalesced bubbles otherwise4.

Let the instantaneous frequency be defined as the inverse of the growth time of a single bub-

ble event. As it can be observed in Fig. 5.1, the waiting time between the detachment of a

bubble and the nucleation of the next bubble is negligible5.

As it was foreseen in subsection 5.1.1.4, the bubble growth time of successive bubbles

may vary. The instantaneous frequency of 10 successive bubbles is plotted in Fig. 5.7 for

different wall superheats. It is observed that at low wall superheat, the bubble frequency

is almost constant. On the contrary, at high superheat, higher variations of frequency are

observed6 due to the occurrence of coalescence events. The mean frequency would thus be

more likely to vary between separate experiments if the size of the sampling used to calculate

the mean frequency is small.

The bubble frequency versus wall superheat is plotted in Fig. 5.8. The bubble frequency

is a mean value of the instantaneous bubble frequency of 20 successive bubbles. The overall

trend of the frequency increase with the wall superheat and is quite linear. The experimental

data are more scattered at high wall superheat because of the occurrence of coalescence

events.

In many archival publications, authors have tried to correlate the departure diameter Dd

and the bubble departure frequency fd in the form:

fd ×Dn
d = c (5.5)

with c being a constant and n an exponent varying between 1/2 and 3 depending on the

experimental conditions [76]. The present results do not follow such a simple expression of

the relation between the departing diameter and the frequency as the diameter is constant

and the frequency is varying.

5.1.3 Non dimensional bubble growth

Bubble growth curves presented in Fig. 5.6 seem to have a similar shape. The bubble dy-

namics has thus been compared for different superheats. For a meaningful comparison, the

growth curves have been normalized by dividing the time by the total growth time (t∗= t/td ),

4Although this study excludes the occurrence of vertical coalescence, the wall superheat threshold for the

appearance of the phenomenon is not sharp. Coalescence being a stochastic event, some occurrences are

observed at high superheats (∆TW > 6 K)
5The waiting time can even not be measured as it is generally faster than the frame rate, i.e. lower than

0.33 ms.
6The order of magnitude of the variations can reach ±20 %.
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Figure 5.7: Inverse of growth time (i.e. instantaneous frequency) of 10 successive bubbles for

different wall superheat

and the volume by the departure volume (V ∗
= V /Vd ). A very good similarity between the

different normalized curves is observed in Fig. 5.9. Bubble growth, in all the conditions of

these experiments, can thus be described by a non-dimensional law that holds true for any

wall superheat, as long as no bubble merging occurs.

Bubble growth is usually described by a power law. It is thus considered to fit a curve

having the form:

V ∗
= t∗n

(5.6)

with n the only fitting parameter7. For a thermal diffusion growth, n is presented as equal to

1.5 in most models in the literature8 (Plesset and Zwick [154], Forster and Zuber [64], Scriven

[164], Griffith [70], Zuber [202], Han and Griffith [73], Cooper [43], Mikic et al. [131],Cooper

and Vijuk [45], Dzakowic and Frost [58], Cooper and Merry [44], Theofanous and Patel [183],

Fyodorov and Klimenko [66], Buyevich and Webbon [21], etc.).

The entire data set from Fig. 5.9 is used to plot the ratio of (lnV ∗/ln t∗) versus the non

dimensional time in Fig. 5.10. It is observed that this ratio is not constant for 0 < t∗ < 0.2; the

ratio is rather constant and equal to 0.6 for 0.2 < t∗ < 0.8; the ratio values are very scattered

around 0.6 for 0.8< t∗ < 1 as both (lnV ∗
→ 0) and (ln t∗ → 0).

7As the growth is normalized, V ∗(0) = 0 and V ∗(1) = 1.
8usually presented as a function of the bubble radius, i.e. Req ∝ t 0.5
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Figure 5.8: Influence of the wall superheat on bubble departure frequency
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Figure 5.9: Comparison between growth curves for different wall superheats
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Figure 5.10: Logarithms ratio used to fit a power law.

A power law with a coefficient of 0.6 does describe properly the non-dimensional bubble

growth for 0.2 < t∗ < 1, and another equation must be found for the beginning of the bubble

growth. It can be observed in Fig. 5.9 that the volumetric growth is initially rather linear. The

following relation is suggested:

V ∗
= 2× t∗ for 0 < t∗ < 0.2

V ∗
= t∗0.6

for 0.2 < t∗ < 1 (5.7)

The experimental volumetric growth law from Eq. 5.7 is illustrated in Fig. 5.11 together

with the data set and the conventional growth law predicting V ∝ t 1.5.

Three facts are to be pointed out from Fig. 5.11:

• The experimental growth law suggested agrees with the experimental data.

• Several other growth laws could describe the data set once the growth is segmented

into several sections. The first part of the growth is indeed quite linear, so there is no

need to use a power law. Moreover, the first instant of the growth can not be properly

represented by a power law as the derivative (i.e. the volumetric flow rate) is either 0

for n > 1 or ∞ for n < 1.

• An essential difference between these experiments and the conventional models is the

curvature of the growth. The present growth curve is convex, whereas the literature

predict a concave growth curve.
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Figure 5.11: Experimental volumetric growth law compared to experimental data and litera-

ture power law.

The characteristics of the growth curve and the main differences with most conventional

models need to be described in terms of vapour production using the time derivative of the

bubble volume.

5.1.4 Vapour production rate

The vapour production rate during bubble growth has been obtained by fitting the volumet-

ric growth by a 7th order polynomial function and by calculating its derivative9. The vapour

production rate has been normalized using the non-dimensional time and bubble’s volume.

The function obtained is plotted in Fig. 5.12, together with the time derivative of the experi-

mental growth law proposed in Eq. 5.7.

The most surprising result is the observation of a decreasing vapour production rate

while the interface area is increasing. This is a major difference with the conventional analyt-

ical models, and this gives new insight into the temperature field around the bubble during

its growth. It reveals that the phase change rate is very high after bubble inception, mean-

ing that the new bubble is surrounded by highly superheated liquid. As the waiting time is

9The result of the derivative varies with the order of the polynomial function, especially close to the ends.

A parametric study has been performed in order to find a acceptable order. For any order between 3 and 11,

the overall shape and the values are similar.
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Figure 5.12: Non dimensional vapour production rate during bubble growth

close to zero, the liquid displaced by the detachment of the previous bubble must already

be superheated. This is in contradiction with a commonly presented assumption that the

thermal boundary layer is removed by the detaching bubble (see Fig. 5.13) and replaced by

bulk liquid at saturation.

Figure 5.13: Van P. Carey description of the thermal boundary layer after bubble departure

([23], page 199)

The presence of highly superheated liquid around the new growing bubble can be ex-

plained by two different mechanisms:

• As described by Siedel et al. [168], it is noticed from the interferometry experiments of

Beer [15, 176] that the departing bubble tends to draw in its wake the liquid layers that
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are close to the wall. This is illustrated in Fig. 5.14, showing the comparison between

Beer’s experiment and the present analysis.

(a) Interferometry images from Beer [15]

(b) Present study experimental images

Figure 5.14: Superheated liquid drawn in the wake of a departing bubble

• The liquid motion, and thus the temperature field and shape of the thermal boundary

layer is highly influenced by the convective structures and flow. From the numerical

simulations of Section 4.2.2, it has been determined that convection tends to bring

superheated liquid above the center of the plate (i.e., where the bubbles grow).

The vapour production rate can also be analysed through an energy balance. Consider-

ing the bubble as a control volume, this energy balance relates the latent heat transported

into the bubble to the overall heat transfer into the bubble by conduction within the liquid

phase and, for a constant vapour density, can be expressed as:

ρv h f g
dV

dt
=

∮

S
λl

(

−−−→
gradT

)

.
−→n dS (5.8)

where S is the instantaneous bubble surface area and
(

−−−→
gradT

)

.−→n is the local temperature

gradient normal to the interface. Thus, the rate of change of the bubble volume is an im-

portant parameter in the sense that it provides rich information regarding the time history

of the rate of energy transfer into the bubble. For instances in which V ∝ t n and n > 1, this

implies that the rate of change of the volume, and thus the rate of energy transfer, continu-

ally increases. However, once a bubble nucleates it continually depletes the sensible energy

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0032/these.pdf 

© [S. Siedel], [2012], INSA de Lyon, tous droits réservés



5.1. BUBBLE GROWTH 79

stored within the liquid surrounding it. Thus, for the rate of energy transfer to increase, it

must be that the volumetric growth rate is large enough that the surface area available for

heat transfer increases at a rate which is more than sufficient to offset the fact that the lo-

cal heat flux levels are decreasing. For the case here, where V ∝ t n and n < 1, the rate of

change of the volume and thus the rate of energy transfer continually decrease, as depicted

in Fig. 5.12. Thus, for these low Jakob numbers, possibly in combination with the negligibly

small waiting times, the volumetric growth rate is not sufficient to sustain vapour produc-

tion as the energy in the surrounding liquid is depleted. During early growth, t∗ < 0.2, the

relatively high rate of heat transfer/vapour generation is maintained with dV
dt ≈ 2. For t∗ ≈ 0.2

it decreases steeply and begins to plateau to a near constant value of dV
dt ≈ 0.6.

5.1.5 Bubble shape and oscillations

The bubble volumetric growth description does not take into account the shape of the bub-

ble. The shape plays a key role in:

phase change — the area offered to the liquid is determined by the shape

liquid motion — bubble motion is coupled with its shape

bubble detachment — the forces involved strongly rely on the bubble shape

The bubble shape is a 3D and time-dependant parameter which is difficult to describe

with appropriate parameters. The usual parameters of bubble height and width are devel-

oped in Section 5.1.5.1, the height of the center of gravity is investigated in Section 5.1.5.1

and a new parameter introduced by Siedel et al. [169] is presented in Section 5.1.5.3.

5.1.5.1 Bubble height and width

Bubble height and width, and especially the ratio of the height to width10 are usual parame-

ters to describe the bubble shape, especially to describe the deformation of a bubble caused

by electrohydrodynamic effects (e.g. [29, 35, 54, 86, 101, 151]). These parameters are some-

times directly measured on the bubble contour, or are determined by the minor and major

axes of an ellipsoid fitting the contour.

The advantage of this description is that it simply describes what is seen. If the bubble

height is larger than the width, the bubble is elongated in the vertical direction, and vice

versa. Figure 5.15 shows the height and width evolution for two different wall superheats: a

low superheat of 2.1 K and a moderate superheat of 4.7 K.

Figure 5.15a shows a very regular evolution of the two parameters during a bubble growth

at low heat flux. During the first 10 % of the growth, the bubble remains spherical. For the rest

of the growth, the bubble height increases faster than the bubble width. The bubble hence

10commonly called aspect ration AR
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Figure 5.15: Bubble height and width, plotted for 6 successive bubbles in the same condi-

tions
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forms a neck. It is to be noted that the resolution of the length and width is determined by

the size of a pixel11, leading to rough steps in both curves. It can also be observed on the

figure that the growth is very reproducible for different bubbles at the same wall superheat.

Figure 5.15b shows a less regular evolution of the two parameters during a bubble growth

at moderate heat flux. Clear oscillations of the shape of the bubble can be observed during

the first 40 % of the growth, and the data afterwards are somewhat scattered12. Because of

the initial oscillations, the bubble height seems to diverge sooner from the bubble width.

Figure 5.16 presents a comparison between the height and width evolution for different

wall superheats. The bubble width evolutions are quite similar, even though it is much more

scattered at high wall superheats. At a high wall superheat, the width tends to be slightly

larger at departure.

Concerning the evolution of the height, more differences appear, as oscillation are clearly

observable at moderate and high heat fluxes whereas the evolutions are very regular at low

heat fluxes. The same tendency of the height to be larger at high heat flux is observed, but

the difference is very small13.

Figure 5.17 shows the height to width ratio for a low wall superheat of 2.1 K and a mod-

erate superheat of 4.7 K. The poor resolution of this ratio is a result of the pixel resolution of

both the height and the width measurement. This ratio starts very low as the bubble is ini-

tially hemispherical. For t∗ > 0.1, the ratio is greater than 1 because of the neck formation.

The final aspect ratio is between 1.1 and 1.2. The scatter of the values of the ratio do not

allow a deeper description or comparison of the bubble shapes.

5.1.5.2 Height of the center of gravity

As detailed in Section 3.3.2, the height of the center of gravity of the bubble is measured. The

evolution of the height of the center of gravity is shown in Fig. 5.18 for 6 successive bubbles

at two different wall superheat. With a low superheat, bubble growth seems very repeatable,

and no major differences are observed. The evolution of the height of the center of gravity

is smooth and of similar shape as the evolution of the bubble’s volume. An inflexion is yet

noticeable just before departure, revealing a slight vertical acceleration of the bubble before

the rupture of its neck.

Figure 5.18b shows the evolution of the height of the center of gravity at a moderate wall

superheat. The overall shape of the figure strongly differs from Fig. 5.18a because of the os-

cillations of the bubble. Quickly after nucleation, several images are not processed by the

image processing program owing to the difficulty of distinguishing the new bubble from the

11The pixel size is here ∆z =16.3µm.
12This might be due to non optimal image processing. The bubble is sometimes difficult to identify from its

background.
13The order of magnitude of the height difference is ±30µm around a mean value, i.e. 2 pixels.
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Figure 5.16: Bubble height and width for several wall superheat

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0032/these.pdf 

© [S. Siedel], [2012], INSA de Lyon, tous droits réservés



5.1. BUBBLE GROWTH 83

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.2 0.4 0.6 0.8 1

h
e

ig
h

t 
o

v
e

r 
w

id
th

 r
a

ti
o

non dimensional time t*

1st bubble
2nd bubble
3rd bubble
4th bubble
5th bubble
6th bubble

(a)∆TW = 2.1 K

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.2 0.4 0.6 0.8 1

h
e

ig
h

t 
o

v
e

r 
w

id
th

 r
a

ti
o

non dimensional time t*

1st bubble
2nd bubble
3rd bubble
4th bubble
5th bubble
6th bubble

(b)∆TW = 4.7 K

Figure 5.17: Ratio of bubble height to bubble width
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preceding bubble14. After this interaction event, the new bubble oscillates vertically during

the entire growth, the oscillation being progressively damped. It is noticed that the oscilla-

tions are repeatable between successive bubble events.

Figure 5.19 shows the evolution of the height of the gravity center for bubbles at various

wall superheat conditions. Two observations can be made:

• The oscillations amplitude increases with the wall superheat.

• The height of the center of gravity at departure seems to increase with the wall super-

heat as well. This difference is nevertheless relatively small, and the uncertainty on

the absolute height depends on the determination of the base of the bubble which is

determined to be within a pixel size uncertainty15.

The height of the center of gravity of the bubble better describes the bubbles oscillations

than the respective height and width of the bubble, but does not give information about

the shape of the bubble. Another parameter should be used to simultaneously describe the

shape and the oscillations.

5.1.5.3 Non dimensional description of the oscillations

A new non-dimensional parameter has been introduced by Siedel et al. [169]. It aims at

describing together the shape of the bubble, by comparison to a sphere, and its oscillations.

This parameter AS is defined as follows:

AS =
hcg

Req
(5.9)

with hcg being the height of the center of gravity and using the equivalent radius Req :

Req =

(

3V

4π

) 1
3

(5.10)

From this definition:

• If the bubble is a sphere, AS = 1.

• If it is a truncated sphere, AS < 1.

• If a neck forms, AS > 1.

• If an oscillation elongates the bubble in the vertical direction,
dAS
dt > 0.

• If an elongation tends to flatten the bubble,
dAS
dt < 0.

14As it can be seen in Fig. 5.21, when the wall superheat is moderate or high, the new growing bubble

grows fast enough to reach the previous bubble which did not have the time to move from above the surface. It

sometimes results in vertical coalescence events, or may also only distort the interface of both bubbles at the

contact area.
15i.e. 17µm
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Figure 5.18: Height of the center of gravity
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Figure 5.19: Height of the center of gravity for various wall superheat

The equivalent radius and the height of the centre of gravity have been chosen because

they reflect the inertia of the bubble and of the surrounding liquid. For example, if the height

of the bubble suddenly noticeably increases because of forming horns or tails (e.g. as de-

scribed in Section 5.3, when shape oscillations are caused by a coalescence event), the height

of the centre of gravity will not change significantly with respect to the whole bubble actual

motion.

Figure 5.20 shows the evolution of AS for several wall superheat conditions. For low wall

superheat, the curves exhibit oscillations that reflect oscillations of the bubbles during their

growth. These oscillations are caused by the preceding bubble at departure: in some situa-

tions, the departing bubble touches the new bubble, particularly when the latter is growing

very fast. In some other cases, the departing bubble draws the next bubble up when rising in

the liquid.

The oscillations are more significant when the wall superheat is high: the bubble growth

velocity is much higher, so that the new bubble is more likely to reach the preceding one

or to be influenced by it. Furthermore, since the rising velocity of the preceding bubble is

independent of the wall superheat while the growth time is decreasing with an increasing

superheat, the ratio of bubbles interaction to the total growth time is larger when the super-

heat is high.

Figure 5.21 shows the details of the evolution of AS for a wall superheat of 4.7 K. Data

points are missing for 0.02 < t∗ < 0.06 because of the proximity of the preceding bubble
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Figure 5.20: Non dimensional parameter AS for various wall superheat

that prevents a clear determination of the contour of the bubble16. As the detached bubble

is accelerating and rising in the bulk liquid, it draws up the liquid in its wake and thus the

new growing bubble. However, the new bubble is firmly attached by adhesion forces at the

triple line. The bubble is thus elongated in the vertical direction until having an AS-ratio of

more than 1.2. Once the preceding bubble is far enough from the new bubble, its influence

become negligible. This latter flattens towards the equilibrium shape of a sphere with a neck,

and oscillates around this shape. The oscillations are damped by the viscous stress, and the

evolution of AS is eventually smooth.

It is noticed that even at a low wall superheat, the bubble very quickly forms a neck. Once

t > 0.1, the equilibrium value of AS is more than unity. The neck continually grows, leading

to an AS-ratio of about 1.3 just before detachment.

As the oscillations are damped, no effect has been measured or observed concerning

the bubble size at departure. However, the oscillations might play a significant role in local

convective heat transfer enhancement has the bubble oscillation simply reflects the motion

of the liquid around the bubble.

Another possible consequence of the oscillations is an augmentation of the interactions

between neighbouring bubbles when boiling on a natural surface. The liquid motion may

modify the behaviour of other bubbles or may tend to move the bubbles towards each other.

16This can be observed on the first picture of the figure.
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Figure 5.21: Non dimensional parameter AS with ∆TW = 4.7 K

This latter case would favour coalescence events and strongly modify liquid flow around the

bubbles.

5.2 Forces acting on the bubble

The forces acting on the bubble during its growth dictate its shape evolution and its motion,

and therefore the conditions of departure from the surface. An analysis of the forces acting

on the bubble during its growth has thus been performed [172] in order to bring a better

understanding of the bubble dynamics, and hopefully of the bubble detachment which plays

a prominent role in boiling heat transfer.

The control volume used for the force analysis is described in Fig. 5.22b. The bubble con-

tour is obtained by image processing from the experimental images. The control volume is

defined by the bubble’s volume excluding the volume of the nucleation site. The boundaries

of the control volume are:

the liquid side of the liquid-vapour interface between the vapour bubble and the sur-

rounding liquid.
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the contact line between the vapour, the liquid and the solid phases. In our experiments,

the contact line does not move during bubble growth, resulting in a constant contact

line length.

the vapour-vapour interface between the bubble and the nucleation site. This boundary

has a fixed area as the contact line does not move appreciably.

A specific subdivision of the control volume will be used for the resolution of the mo-

mentum equation. The different volumes, surfaces and lines involved are described in Fig.

5.22c.

5.2.1 Momentum equation

The momentum conservation law states that within a control volume, the variation of mo-

mentum is equal to the sum of the external forces applied to this control volume. It is neces-

sary to emphasize the fact that the momentum variation is an integral value. It gives infor-

mation about a change of mass of the control volume or a motion of its center of gravity, but

does not indicate a change of shape as long as the center of gravity is held constant.

The formulation of the momentum equation strongly depends on the hypotheses chosen

and on the forces taken into account. Indeed, a full resolution of the most general momen-

tum equation would require an exact knowledge of the instantaneous velocity field, temper-

ature field and local rate of heat transfer, which is not possible to know with certainty.

The force expressions are compiled from various publications among which are Zeng et
al. [199], Kandlikar and Stumm [88], Duhar [55], Buyevich and Webbon [21], Chen et al. [33]

and Ginet [67]. The integral form of the momentum equation considered is:

d

dt

Ñ

V
ρv

−→uv dV =
−→
F LI +

−→
F buoy +

−→
F σ+

−→
F v s +

−→
F v f (5.11)

with
−→
F LI ,

−→
F buoy ,

−→
F σ,

−→
F v s and

−→
F v f respectively the resultant of the liquid inertia, the buoy-

ancy, surface tension, viscous stress and viscous forces. All these forces are detailed in the

subsequent subsections.

The hypotheses considered are detailed in each subsection and are summarized in sec-

tion 5.2.2.
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(a) Image with bubble contour

nucleation site
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(b) Schematic of the control volume
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Figure 5.22: Schematic of the control volume for the momentum balance
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5.2.1.1 Momentum variation

The momentum derivative with time can be considered as the resultant of the dynamic

forces17:
−→
F mom =

d

dt

Ñ

V
ρv

−→u v dV (5.12)

The integration of the velocity vector is equal to the velocity of the center of gravity
−→u cg .

−→
F mom =

d

dt

(

ρv
−→u cg ×

Ñ

V
dV

)

(5.13)

=
d

dt

(

ρv
−→u cg ×V

)

(5.14)

= ρv
−→u cg

dV

dt
+ρvV

d
−→u cg

dt
(5.15)

Considering hcg the height of the center of gravity18, and
−→
k the unit vertical vector in the

upward direction:

−→
F mom = ρv

dhcg

dt

dV

dt

−→
k +ρv V

d2hcg

dt 2

−→
k (5.16)

As hcg (t ) and V (t ) are measured from the recorded images, the resultant of the momentum

derivative with time can be computed.

5.2.1.2 Liquid inertia and added mass force

The liquid inertia and added mass force is the liquid reaction to its acceleration caused by

the motion of the interface. Its expression is similar to the momentum variation except for

two differences:

• The density considered is now the liquid density.

• Each term is weighted by an coefficient usually refered to as added mass coefficients.

−→
F LI = K1ρl

dhcg

dt

dV

dt

−→
k +K2ρl V

d2hcg

dt 2

−→
k (5.17)

The value of the added mass coefficients depends on the shape of the bubble and on its

proximity to the wall. In the present case, the exact value of each coefficient varies with time

and can not be easily estimated. The coefficients can however be bounded by extremum

values obtained for simple case by numerical simulation. Duhar [55], citing Magnaudet et
al. [121] indicates coefficients both equal to 0.5 for the case of a spherical bubble growing

in an infinite liquid. For the case of a hemisherical bubble growing on a wall, Klausner et al.

17As the momentum variation is analogous to a force, it is chosen for the sake of a better readability to refer

to it as
−→
F mom .

18The bubble being roughly axisymmetric, the velocity of the center of gravity
−→u cg only presents a vertical

component. Consequently, only the height of the center of gravity is considered.
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[96] and Legendre et al. [111] give K1 = 2 and K2 = 4. The actual coefficients for the present

experimental bubble growth are considered to be within this range. More details about the

determination of the coefficients can be found in Appendix C.

It can be noted that the difference between the momentum force and the liquid inertia

force is of the order of the density ratio, ρl /ρv . This ratio is usually high, and is equal to 206

in the specific case of this study. The momentum force can thus be neglected in most cases.

This inertia argument was also stated by Robinson and Judd [160].

5.2.1.3 Buoyancy

The buoyancy force can be considered as the resultant of the hydrostatic pressure forces on

the bubble surface. This force is due to the vertical pressure gradient caused by gravity. The

pressures involved are the hydrostatic liquid pressure on the outward surface S, the hydro-

static vapour pressure on the inward surface S (which is equal to the weight of the bubble)

and the vapour pressure on both sides of the surface Sbase . A hypothesis in the calculation of

the buoyancy force is to consider a homogeneous vapour and liquid density19. The following

hydrostatic law thus holds true with a constant liquid density ρl :

−−−→
grad(Pl ) = ρl

−→g (5.18)

5.2.1.3.1 Buoyancy of a totally immersed object

In order to provide adequate understanding of the bubble buoyancy and of the simplifi-

cation hypotheses, the full demonstration of the Archimedes’ principle is proposed.

Considering a bubble totally immersed in a stagnant, isothermal liquid; the formal ex-

pression of its buoyancy20 is:

−→
F buoy =

Ó

S
Pv

−→
dS −

Ó

S
Pl

−→
dS (5.19)

−→
F buoy =

−→
F P,vap +

−→
F P,l i q (5.20)

where
−→
F P,vap and

−→
F P,l i q correspond respectively to the integral of the vapour and liquid

pressure forces on the bubble interface.
−→
dS is a infinitesimal element of the surface directed

outwards normally to the interface. Pv and Pl are the local vapour and liquid pressures.

−→
F P,l i q can be determined as a function of the bubble volume and liquid density as fol-

lows. For the sake of the mathematical demonstration, an arbitrary uniform vector field −→u is

19The local hydrostatic liquid pressure depends on the weight of the liquid above, which depends on the

liquid density. This later varies with the local temperature. However, the temperature field in the liquid phase

is not known.
20The buoyancy of a bubble is sometimes considered as only the resultant of the liquid pressure forces, and

sometimes also includes the resultant of the vapour pressure forces. Here, the second approach is retained.
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introduced.

−→
F P,l i q .

−→u = −

(Ó

S
Pl

−→
dS

)

·
−→u (5.21)

= −

Ó

S
Pl

−→u ·
−→
dS (5.22)

using the Ostrogradsky’s theorem, with V being the bubble’s volume:

−→
F P,l i q ·

−→u =−

Ñ

V
div

(

Pl
−→u

)

dV (5.23)

div
(

Pl
−→u

)

=
−−−→
grad(Pl ) ·

−→u +Pl ×div
(−→u

)

(5.24)

−→u being a uniform vector field, div−→u = 0.

div
(

Pl
−→u

)

=
−−−→
grad(Pl ) ·

−→u (5.25)

−→
F P,l i q .−→u = −

Ñ

V

−−−→
grad(Pl ) ·

−→u dV (5.26)

= −

(Ñ

V

−−−→
grad(Pl ) dV

)

·
−→u (5.27)

−→
F P,l i q =−

Ñ

V

−−−→
grad(Pl ) dV (5.28)

Considering the hydrostatic pressure around the object:

−−−→
grad(Pl ) = ρl

−→g (5.29)

−→
F P,l i q =−

Ñ

V
ρl
−→g dV (5.30)

Considering a homogeneous liquid density ρl :

−→
F P,l i q =−ρl

−→g
Ñ

V
dV (5.31)

Eventually, the famous Archimedes’ principle is found:

Any object, wholly or partially immersed in a fluid, is buoyed up by a force

equal to the weight of the fluid displaced by the object.

Archimedes of Syracuse, 212 B.C.

−→
F P,l i q =−ρl V −→g (5.32)

Similarly, the same reasoning can be applied for the vapour pressure forces on the inter-

face:
−→
F P,vap = ρv V −→g (5.33)
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And finally, the buoyancy force for a wholly immersed bubble in a stagnant, isothermal fluid

can be expressed as:
−→
F buoy =−(ρl −ρv )V −→g (5.34)

The resultant of the buoyancy forces is thus a vertical force, opposite to the gravity accel-

eration21. Introducing the vertical upward unit vector
−→
k =−

−→g /g :

−→
F buoy = (ρl −ρv )V g

−→
k (5.35)

A bubble attached to a surface has a higher buoyancy than a bubble of equivalent volume

entirely embedded in a liquid, due to the contact area with the surface. The pressure applied

on the bubble on this area is stronger than the liquid pressure. This is commonly called

contact pressure.

Two different approaches are found in the literature to take into account the presence of

the contact area.

5.2.1.3.2 Contact area causing a contact pressure

The first approach is to consider the buoyancy that the bubble would have if it were to-

tally immersed, to subtract from this force the lack of liquid pressure at the contact area and

to add to this force the resultant of the vapour pressure22 on the same area.

The buoyancy can thus be computed as follows:

−→
F buoy = (ρl −ρv )V g

−→
k −

Ï

Sbase

Pv
−→
dS +

Ï

Sbase

Pl
−→
dS (5.36)

(5.37)

using
−→
dS as an infinitesimal element of the surface directed outwards of the bubble, normally

to the interface, even for an open surface;

−→
F buoy = (ρl −ρv )V g

−→
k −

Ï

Sbase

(Pv −Pl )
−→
dS (5.38)

= (ρl −ρv )V g
−→
k −

(

Pv −Pl ,base
)

Ï

Sbase

−→
dS (5.39)

= (ρl −ρv )V g
−→
k +

(

Pv −Pl ,base
)

Sbase
−→
k (5.40)

The main issue with this approach is the determination of
(

Pv −Pl ,base
)

. By considering

the same hypotheses as previously, Pl ,base = Pl ,top +hρl g and Pv,base = Pv,top +hρv g . The

pressure difference at the tip of the bubble can then be estimated using the Laplace-Young

relation23.

21The liquid density ρl is always much bigger than the vapour density ρv .
22or the wall reaction if the control volume was limited by the solid side of a vapour-solid interface
23However, as it can be observed in Section 5.2.3, it seems unaccurate to consider the Laplace-Young equi-

librium and uniquely the hydrostatic pressure gradients near the base of the bubble.
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5.2.1.3.3 Separation of the totally immersed and the contact volumes

A second approach with regard to the influence of the presence of the contact area is

to divide the bubble into separate volumes and areas, as in Fig. 5.22c. The volume V1 is

axisymmetric, with S1 being the projection of the circular base area Vbase on the top of the

bubble and S3 being a vertical cylinder linking Sbase and S1. V2 is the annular part of the

bubble and is limited on the outside by the surface S2. Let the infinitesimal surface element
−→
dS of the open surfaces be defined as follows:

• On the surface S1 and S2,
−→
dS is directed towards the liquid.

• On the surface Sbase ,
−→
dS is directed towards the heated wall.

• On the surface S3,
−→
dS is directed towards the symmetry axis.

The buoyancy can be computed as follows:

−→
F buoy =

Ï

S2

(Pv −Pl )
−→
dS +

Ï

Sbase

(Pv −Pv )
−→
dS +

Ï

S1

(Pv −Pl )
−→
dS (5.41)

−→
F buoy =

Ï

S2

(Pv −Pl )
−→
dS +

Ï

S1

(Pv −Pl )
−→
dS (5.42)

Introducing artificially the liquid pressure that would be exerted on S3 if V2 was totally im-

mersed:

−→
F buoy =

Ï

S2

(Pv −Pl )
−→
dS +

Ï

S3

(Pv −Pl )
−→
dS −

Ï

S3

(Pv −Pl )
−→
dS (5.43)

+

Ï

S1

(Pv −Pl )
−→
dS

= (ρl −ρv )V2g
−→
k −

Ï

S3

(Pv −Pl )
−→
dS +

Ï

S1

(Pv −Pl )
−→
dS (5.44)

The resultant of the pressure on the surface S3 is vertical as S3 is axisymmetric. However, as

the surface is totally vertical, the resultant of the pressure forces is equal to zero:
Ï

S3

(Pv −Pl )
−→
dS =

−→
0 (5.45)

−→
F buoy = (ρl −ρv )V2g

−→
k +

Ï

S1

(Pv −Pl )
−→
dS (5.46)

Considering S1 as a portion of sphere of radius equal to R24, and introducing the Laplace-

Young equation, one gets:

(Pv −Pl ) =
2σ

R
(5.47)

−→
F buoy = (ρl −ρv )V2g

−→
k +

Ï

S1

2σ

R

−→
dS (5.48)

= (ρl −ρv )V2g
−→
k +

2σ

R

Ï

S1

−→
dS (5.49)

= (ρl −ρv )V2g
−→
k +

2σ

R
Sbase

−→
k (5.50)

24which is realistic at the top of the bubble
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It is also possible to introduce the total volume of the bubble. The relation will now be:

−→
F buoy = (ρl −ρv )V g

−→
k − (ρl −ρv )V1g

−→
k +

2σ

R
Sbase

−→
k (5.51)

This expression of the buoyancy will be further used for the resolution of the momentum

equation. The three different terms of the buoyancy will be named as follows:

−→
F buoy,1 = (ρl −ρv )V g

−→
k (5.52)

−→
F buoy,2 = −(ρl −ρv )V1g

−→
k (5.53)

−→
F buoy,3 =

2σ

R
Sbase

−→
k (5.54)

5.2.1.4 Surface tension and adhesion forces

5.2.1.4.1 Liquid-vapour surface tension

The surface tension represents the molecular interaction at the border of two separate

phases. It can be seen either as an energy per unit area, or as a force per length [50, 23]. The

surface tension force between two phases is a tangential stress which tends to stretch the

interface in order to minimize the interface area.

First case of study In this paragraph, we will reason – as a case of study – on a bub-

ble will an ellipsoid shape, totally immersed in a stagnant liquid, without gravity. Fig. 5.23

illustrates the actions of the surface tension forces acting on this bubble.

⇒

Figure 5.23: Surface tension actions on a totally immersed ellipsoid in absence of gravity

The surface tension forces tend to reduce the surface area [161] to transform the ellipsoid

into a sphere. This phenomenon can be described from several points of view:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0032/these.pdf 

© [S. Siedel], [2012], INSA de Lyon, tous droits réservés



5.2. FORCES ACTING ON THE BUBBLE 97

• Considering the surface tension as the surface derivative of the Helmoltz free energy

at constant temperature, volume and number of moles [50],

σ=

[

∂A

∂S

]

T,V ,n
(5.55)

The excess of Helmholtz free energy provided by the excess of surface area of the el-

lipsoid compared to a sphere of equivalent volume can be considered as a potential

energy. This potential energy will be transformed into motion of the interface (i.e. mo-

tion of the gas and liquid phases in and around the bubble) that will dissipate through

viscosity as heat. This energy dissipation can be observed as a dampening of the bub-

ble oscillation. The equilibrium shape when all the potential energy is dissipated is

a sphere, as the interface surface cannot be reduced. This conception of the surface

tension indicates the initial and final states, but does not describe the motion of the

interface between the non-equilibrium and the equilibrium state. It is not sufficient

to describe the forces induced by the interface, and therefore the way a given non-

equilibrium state will converge towards an equilibrium one.

• A new interpretation of the local tension surface forces is now proposed. It should be

noted first that the common Laplace-Young equation, formulated as:

Pv −Pl =σC (5.56)

with C =
1

R1
+

1
R2

the local curvature of the interface, cannot be applied in such a case.

This equation describes only a mechanical equilibrium condition, which is not the

case for the case of study of interest in this section. Indeed, the hydrostatic pressure

field is homogeneous in both the vapour and liquid phases as there is no gravity field

nor velocity field, leading to a constant Pv −Pl difference. However, the σC product is

not homogeneous around the ellipsoid bubble.

The new interpretation proposed is as follows. The hypothesis that the vapour pressure

is homogeneous is justified by the following reasoning: the density and viscosity of the

vapour phase being very low compared to the liquid phase, the forces concerned in the

motion of the vapour phase are negligible compared to the forces implied in the liquid

motion. The vapour pressure homogeneity is therefore achieved much faster25.

The non-equilibrium shape of the interface results in a force that can be described as

an unbalance pressure gradient that pumps the liquid from the minor axis region, tan-

gentially along the surface to the major axis region. Let us break up the liquid pressure

into two different terms, namely the hydrostatic liquid pressure Pl ,stat and the unbal-

ance liquid pressure Pl ,unb :

Pl = Pl ,stat +Pl ,unb (5.57)

Let us now consider the hydrostatic liquid pressure and the unbalance liquid pressure

in the Laplace-Young equation, generalizing this expression to non-equilibrium con-

ditions:

Pv −Pl ,stat −Pl ,unb =σC (5.58)

25Note that in the presence of gravity, the hydrostatic vapour pressure gradient is very little compared to the

hydrostatic liquid pressure gradient due to the high ρl /ρv density ratio which corroborates this assumption.
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If the bubble volume is kept constant, the vapour pressure Pv is also constant and

considered as homogeneous. The hydrostatic liquid pressure Pl ,stat is also constant

and homogeneous as there is no gravity. The local unbalance liquid pressure Pl ,unb

can thus be directly expressed as a function of the local curvature:

Pl ,unb = Pv −Pl ,stat −σC (5.59)

The unbalance liquid pressure is thus higher in the region of the minor axis than in the

region of the major axis. The unbalance pressure gradient is the source of a local vol-

umetric force applied on the liquid particles at the vicinity of the interface causing the

liquid (and thus the interface) acceleration, as described in Fig. 5.24. The acceleration

of the liquid particles around the interface can be expressed (neglecting the viscous

term26):

ρl
D−→u

Dt
=−

−−−→
grad

(

Pl ,unb
)

(5.60)

The static liquid pressure and the vapour pressure being taken as constant, the equa-

tion can be simplified into:

ρl
D−→u

Dt
=−

−−−→
grad(σC ) (5.61)

This term is the common Eulerian formulation of the momentum term of the Navier-

Stokes equations when neglecting the viscous and gravity effects. It can be found when

studying the two-phase unsteady flow in a microgroove where gravity is neglected

[179]. The (σC ) product is commonly called the capillary pressure.

⇒

Figure 5.24: Unsteady pressure gradient causing liquid motion around the ellipsoid

It should be noted that the integral of the surface tension forces over the entire contour of

the ellipsoid is equal to zero. Indeed, the integral form of the momentum variation is equal

to zero as neither the mass nor the position of the center of gravity is changing. It should be

kept in mind that a momentum balance inside a control volume does not describe a change

of shape.

26which is realistic when the velocity is low and even true at initial time as the velocity is zero
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Second case of study Let us now consider another non-equilibrium case as a second

case of study. A spherical bubble is immersed inside a liquid within a gravity field. Once

again, because it is a non-equilibrium case, the classical Laplace-Young equation cannot

be applied. Indeed, the σC product is homogeneous around the spherical bubble, but the

hydrostatic pressure difference Pv −Pl is varying with the depth, as the vapour and liquid

phases have significantly different densities.

Applying the generalized Laplace-Young equation 5.58, a constant vertical unbalance

pressure gradient is found around the interface, decreasing from the apex to the bottom of

the bubble. A volumetric force field is thus applied on the liquid particles around the bubble

that tends to displace to liquid from the appex to the bottom. This is another description of

the buoyancy described in section 5.2.1.3.

As a static bubble totally immersed in a stagnant liquid in a gravity field cannot be in

equilibrium (it will always be buoyed up), it is impossible to create a surface respecting the

Laplace-Young equation without unbalance pressure term (cf. Eq. 5.56) and respecting the

constant vertical gradient of the hydrostatic pressure. The hydrostatic pressure between the

vapour and the liquid being higher at the top of the bubble than at the bottom, the curvature

C should be higher at the top as well. The connection between the top and the bottom of

the bubble is then impossible if one wants to respect a vertical linear curvature profile (see

Fig. 5.25a). The same dilemma is illustrated in Fig. 5.25b. Using pentane properties at 1 bar,

the bubble contour is calculated from the base, with an arbitrary base curvature radius, re-

specting the bubble axisymmetry and the hydrostatic pressure profile. The upper side of

the contour does not connect on the symmetry axis, revealing that the problem cannot be

solved in these conditions. The profile found is in fact the profile of a sessile bubble in con-

tact with a upward surface [113]. It can be noted that the critical base radius at which the

bubble would move away from a spherical shape corresponds to the capillary length (that is:

1.56 mm for pentane at 1 bar).

Third case of study Let us now consider as the third case of study a bubble attached to

a surface. Some more difficulties are added to the description of the surface tension forces.

Two different kinds of forces are linked to the surface tension. A tangential force at the liquid-
vapour interface, and another force at the triple line which is also related to the adhesion

force between the solid and liquid phases (detailed in paragraph 5.2.1.4.2). The first force

is the one described earlier in this section and is typically a force that tend to reduce the

interface area. Figure 5.26 describes the surface tension forces that tends to transform an

ellipsoid attached on a wall into a spheroid. These forces are very seldom taken into account

in the literature about forces analysis on a bubble as one of the major hypothesis which is

usually made is that the bubble shape is approximated as a truncated sphere (e.g. [21, 30,

109, 110]). Yet, this assumption cannot be assessed in most cases, as it is observed in the

present study and noted by several authors ([31, 181, 141] to cite a few). The illustration

from Fig. 5.26 shows that (without considering the gravity forces) an oblate bubble tends to

transform into a sphere keeping the same center of gravity, and this force can lead towards a
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(a) Higher curvature at the top than at the

bottom - impossible connexion
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(b) Contour curvature evolution for pentane at 1 bar considering no dynamic pressure

and starting from the base of the bubble with various arbitrary curvature radii

Figure 5.25: Impossible equilibrium of the bubble with a stagnant liquid in a gravity field
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motion of the triple line27 or even to its detachment from the heated surface.

⇒

Figure 5.26: Surface tension forces acting on an ellipsoid attached on a surface

Figure 5.27 shows an example of the liquid-vapour surface tension forces effect on the

shape of a bubble attached by a foot to the heated wall28. The surface area tends to mini-

mize, i.e. a dynamic pressure gradient will press the liquid towards the neck, provoking its

breakage.

⇒

Figure 5.27: Surface tension forces acting on a bubble with a foot

To conclude about the effects of the liquid-vapour surface pressure forces, its resultant29

is strongly related to the buoyancy and has to be taken into account in the calculation of the

contact pressure (see paragraphs 5.2.1.3.2 and 5.2.1.3.3). The effect on the shape of the bub-

ble, that cannot be estimated using the integral form of the tension surface forces, should

not be neglected and can be the cause of bubble detachment. The local unbalance pres-

27either reducing or increasing the contact area depending on the direction of the bubble elongation, as

noted by Chen and Groll [31]
28This example is somehow representative of the experimental observation of a bubble near departure pre-

sented in Fig. 5.22a.
29i.e. the integral over the entire contour
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sure around the bubble will be investigated in section 5.2.3 and a very good overview of the

subject can be found in Chen et Groll [31].

5.2.1.4.2 Triple line surface tension and adhesion forces

The effects of the forces involved at the contact area between 3 different phases are very

complex. The geometry and forces of the triple line are governed by both the surface tension

between the liquid and vapour phases and the wettability of the liquid over the solid surface.

The wettability, usually characterized by a contact angle θ (see Section 5.1.1.2), results from

the competition of molecular and capillary forces ([50], p. 24). The resultant of the triple line

forces, commonly named simply the "surface tension force", is expressed as follows:

Fσ.
−→
k =

∫

CL
σ
−→
t dl (5.62)

with
−→
t the unit vector tangential to the interface in the meridian plane and at the contact

line.

If the bubble or at least the base of the bubble is axisymmetric, this term can be expressed

as follows [32, 50, 67]:

Fσ =−2πRbaseσsinα (5.63)

with 2πRbase the perimeter of the triple line of radius Rbase , and α the angle between the

interface at the triple line and the horizontal plane. This angle is defined in the liquid phase.

As most models describe bubble growth on a plane surface, α is generally simply taken as

the contact angle θ. However, in the case of this study, these angles may be very different. As

an illustration, Fig. 5.28 shows schematically two different positions of the triple line, both

located on the rim of the nucleation site. A large variation on the contact angle θ for a small

displacement of the triple line. Yet, the angle α is the same in both cases and is equal to θ2.

In order to calculate the adhesion force, the value of the contact angle α is measured from

the processing of the images. More details on the processing of the images to determine α is

given in Section 5.2.2.2.1.

5.2.1.5 Viscous stress due to surface tension gradient

The surface tension is a liquid-vapour property of the fluid used that describes the force

equilibrium at the interface. This property varies with several parameters:

• Surface tension gradients may be due to chemical or concentration gradients at the

interface. This is the case when boiling mixtures [26, 65, 180] or when using surfactants

[80, 193]. None of these cases are involved in this experimental study as a particular

care has been given to employ a perfectly pure pentane in the experiments (see Section

3.2).
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∆x ≈ 20µm

α1 = 80◦

θ2 =α2 = 80◦

θ1 = 30◦

Figure 5.28: Evolution of the contact angle θ and of the angle α for a small change in the

triple line location close to the nucleation site edge.

• Surface tension gradients may also be caused by temperature gradients. Surface ten-

sion is indeed varying with temperature, which is never homogeneous in a heat trans-

fer process. The surface tension is generally decreasing with temperature. This is the

case for pentane. In saturated condition at P = 1 bar, dσ
dT ≈ −9.98×10−5 N·m−1

·K−1.

Similarly to curvature gradients (see Section 5.2.1.4), surface tension gradients can be the

driving force for fluid motion. This phenomenon is often referred to as the Marangoni effect,

or as the thermocapillary effect when the surface tension gradient is due to a temperature

gradient. For the case of an air bubble attached upwardly on a heated surface, the Marangoni

flow is represented schematically in Fig. 5.29.

The Marangoni number is a dimensionless number used in order to characterize the rel-

ative effects of surface tension and viscous forces. Several expressions of the Marangoni

number are found in the literature. For the case of a bubble, the Marangoni number Ma can

be defined as follows [153]:

Ma =
dσ

dT

dT

dz

R2
eq

µlαl
(5.64)

with z the vertical dimension chosen in the direction so that Ma> 0.

Marangoni flows affect the momentum balance by causing a shear viscous stress at the

interface. The liquid viscosity being much larger than that of vapour, the viscous stress is

mostly applied on the liquid side of the interface. Calculating the shear stress is difficult

mainly because the temperature gradient needs to be known on the interface. The tempera-

ture gradient within the liquid phase is already unknown in the presence of the bubble, and

the temperature on the interface is even harder to determine because of the occurrence of

phase change at the interface.

Thermocapillary effects are usually taken as negligible for low wall superheat conditions

and presence of gravity [77]. Marangoni flows are known to play a prominent role in the
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Figure 5.29: Marangoni flow around an air bubble – Figure extracted from Petrovic et al.

[153].

following conditions:

• In micro-gravity conditions [77, 81, 112, 143, 186]. Buoyancy forces become negligible

in micro-gravity, thermocapillary effects can be the main cause of fluid motion.

• In the case of downward facing bubbles [105, 159]. Indeed, no natural convection oc-

curs bellow a downward facing heated plate. Thermocapillary effects are thus promi-

nent.

• In the case of highly subcooled boiling [14, 36, 153]. Temperature gradients can indeed

be very high in such cases.

• In the presence of surfactant or when boiling fluid mixtures.

The forces due to the viscous stress induced by thermocapillary effects will thus be ne-

glected in the present momentum balance analysis.

5.2.1.6 Viscous forces

Viscous forces are applied on the bubble due to its motion or due to the surrounding liquid

motion. These forces can be detailed as follows:

• A shear lift force is applied on the bubble due to the convective motion of the sur-

rounding liquid. The superheated liquid is naturally rising and forming a plume at the

center of the heated plate (see Chapter 4). The viscous liquid flow shears the bubble

and the resultant viscous force applied on the bubble is in the flow direction. This
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force is similar to that of a convective flow [56, 99, 129], except that convective flows

are usually tangential to the heated wall. However, the liquid velocities implied in nat-

ural convection are at least an order of magnitude below the flow velocities of a shear

flow30. This shear flow forces can thus be neglected.

• Viscous forces are caused by the motion of the bubble itself. The liquid-vapour inter-

face is moving due to bubble translation and expansion. Similar to the shear lift force

due to convective liquid motion, the velocities are very low. In accordance with the

literature studies on forces applied on a growing bubble [21, 33, 55, 67, 88, 199], this

force will be neglected during bubble growth.

• A rising bubble is drawing liquid in its wake. This flow field can impact the next grow-

ing bubble if the latter is close enough. The resultant of this force would be a vertical

lift force that tends to detach the new bubble from the wall. Zeng et al. [199] have es-

tablished an approximate expression of this force. For a spherical bubble of radius R
rising over a hemispherical bubble of identical radius R at a velocity of U , L being the

distance between the center of each bubble, the resultant of the lift force applied on

the hemi-spherical bubble is:

Fl i f t =
75

16
ρlU

2R2

(

R

L

)8

(5.65)

It is noticeable that the force is proportional to L−8. This indicates that the force is non

negligible only when both bubbles are very close to each other. This was observed in

this study for moderate to high wall superheats when the new growing bubble almost

reached the preceding bubble at the beginning of its growth (see Section 5.1.5). This

phenomenon being a particular case encountered, this force will not be taken into

account in the present momentum balance.

5.2.2 Computation of the momentum balance

5.2.2.1 Forces considered in the momentum balance

Recall from the detailed force analysis of Section 5.2.1 that the following momentum equa-

tion will be considered and solved in the case of the present experiments:

d

dt

Ñ

V
ρv

−→uv dV =
−→
F LI +

−→
F buoy,1 +

−→
F buoy,2 +

−→
F buoy,3 +

−→
F σ+

−→
ε r es (5.66)

The exact formulation of the momentum variation31 is written as follows:

−→
F mom = ρv

dhcg

dt

dV

dt

−→
k +ρv V

d2hcg

dt 2

−→
k (5.67)

30As depicted in Section 4.1.4, velocities implied in the plume are of the order of 5 to 10 mm·s−1.
31The momentum variation is analogous to a force. For a better readability, is was consequently chosen to

refer to it as
−→
F mom .
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with
−→
k the upward vertical unit vector. The height of the center of gravity of the bubble hcg

is measured from the recorded images, and the velocity and acceleration of the center of

gravity are obtained by calculating the first and second derivatives of a regression fit of the

height of the center of gravity. Details about the momentum variation computation can be

found in Section 5.2.2.2.2.

The liquid inertia and added mass force formulation is very similar to the momentum

variation formulation:

−→
F LI = K1ρl

dhcg

dt

dV

dt

−→
k +K2ρl V

d2hcg

dt 2

−→
k (5.68)

Details on the liquid inertia calculation can be found in Section 5.2.2.2.2.

The buoyancy has been divided into three different terms. The first term is considering

the buoyancy of the bubble as if it was totally immersed in the liquid:

−→
F buoy,1 = (ρl −ρv )V g

−→
k (5.69)

The second term corrects the buoyancy by subtracting the volume located above the bubble

contact area with the heated wall:

−→
F buoy,2 =−(ρl −ρv )V1g

−→
k (5.70)

The last term of buoyancy takes into account the pressure difference on the interface portion

located vertically above the contact area:

−→
F buoy,3 =

2σ

R
S1

−→
k (5.71)

R being the curvature radius at the tip of the bubble. R is calculated from the tip curvature

obtained in the bubble contour analysis (see Section 5.2.3.3). The tip of the bubble being

located on the symmetry axis, both main radii of curvature are equal. More details about the

calculation of the buoyancy terms can found in Section 5.2.2.2.3.

The resultant of the triple line surface tension and adhesion forces is expressed as follows:

−→
F σ =−2πRbaseσsinα

−→
k (5.72)

with α being the angle between the interface at the triple line and the horizontal plane in the

liquid phase and Rbase the radius of the nucleation site. More details on the determination

of α and on the computation of Fσ can be found in Section 5.2.2.2.1.

The last term,
−→
ε r es , represent the residual error that can be due to measurement uncer-

tainty, to approximations in the calculation and to non-negligible forces that were not taken

into account in this momentum balance.

For the sake of readability, only the norm of the forces will be computed. As the problem

considered presents an axial symmetry, the norm will be expressed in the vertical direction

and upwards:

F =
−→
F ·

−→
k (5.73)
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The forces considered are in fact the resultant of pressures or of linear forces integrated

over a surface or a contour. In the following section, the resultant will refer either to the

integrated vectorial force considered or to its norm.

5.2.2.2 Measurement and computation of the forces

5.2.2.2.1 Computation of the angle α and of the resultant of the adhesion forces

The angle α is the angle between the interface at the triple line and the horizontal plane.

This angle is defined in the liquid phase. The value is obtained using the image processing

method described in Section 5.2.3.

The smoothed interface of a sample bubble at a wall superheat of 2.1 K and at t∗ = 0.5 is

shown in Fig. 5.30. For a better understanding, the contour is rotated and the vertical axis

origin is set at the wall in Fig. 5.31. The angle α is defined at the base of the bubble, between

the wall and the interface of the bubble, as depicted in Fig. 5.31. α is calculated from the two

data points of the smoothed interface that are located the closest to the wall32.
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Figure 5.30: Smoothed interface of a bubble at a wall superheat of 2.1 K and at t∗ = 0.5.

32Because the interface has been smoothed, very similar results are found when using a linear interpolation

and a second order polynomial interpolation.
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Figure 5.31: Definition of α on the contour.

The angle α is measured at different time-steps during bubble growth, as shown in Fig.

5.32. It should be noticed that for t∗ < 0.05, it is not possible to correctly capture the bub-

ble contour due to the small size of the bubble. The angle α is thus not measured at the

beginning of the growth.

The measured angles obtained are then fitted with an appropriate33 polynomial function

(see Fig. 5.32). This function is used to compute the adhesion force acting on the bubble

during its growth. As a recall from Section 5.2.1.4.2, this force is expressed as follows:

Fσ =−2πRbaseσsinα (5.74)

The base diameter and the surface tension being taken as constant with Rbase = 90µm

and σ= 0.014 506 N·m−1, the resultant of the adhesion forces is calculated and plotted in Fig.

5.33.

As an illustration of the sensitivity of this force to the measurement of α, Fig. 5.34 shows

its evolution using the measured value of α and a fictive underestimation of α decreased by

10 degrees. Such a difference in the angle results in an offset in the force calculation by about

1µN.

A error of a 10◦ in the determination of α is possible for two reasons:

33See Appendix D for details about polynomial fitting of the evolution of α.
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Figure 5.32: Angle α during bubble growth at a wall superheat of 2.1 K.
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Figure 5.33: Resultant of the adhesion forces acting on a bubble at a wall superheat of 2.1 K.
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• As detailed in Section 3.2.2, the recorded angle was slighly modified to allow a 3◦ angle

with the horizontal plane, in order to avoid mirage effects.

• With the strong temperature gradients caused by the heated surface and by phase

change at the triple line, the location where α is measured is the zone of the recorded

images which can be the most distorted by mirage effects [42]. If the occurrence of

mirage effect were not totally avoided in the present experiments, they would result in

an over-prediction of the angle α.

As a conclusion for the computation of the surface tension and adhesion forces, the cal-

culated resultant of the forces is very sensitive to the measurement of the angle α, and its

absolute value might be over-predicted.
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Figure 5.34: Resultant of the adhesion forces acting on a bubble, using the measured angle α

and an underestimation of the angle by 10 degrees.

5.2.2.2.2 Computation of the momentum variation and of the resultant of the liq-
uid inertia forces

Momentum variation For the computation of the momentum balance in Section 5.2.1,

the exact formulation of the momentum variation is expressed as follows (see Section

5.2.1.1):

−→
F mom = ρv

dhcg

dt

dV

dt

−→
k +ρv V

d2hcg

dt 2

−→
k (5.75)
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with
−→
k the unit vertical vector in the upward direction and hcg the height of the center of

gravity.

The height of the center of gravity is measured through the processing of the recorded

images (see Section 3.3.2) and shown in Fig. B. The measured height is fitted with an ap-

propriate34 polynomial function. Its first and second derivative are the computed, and are

shown in Fig. 5.36 and 5.37.
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Figure 5.35: Height of the center of gravity of a bubble at a wall superheat of 2.1 K.

From the same manner, the volumetric growth is fitted with an appropriate polynomial

function (see Fig. 5.38). This first time derivative of the function approximates the volumet-

ric growth rate (see Fig. 5.39).

The momentum variation is calculated using the thermodynamic properties of pentane,

the first and second time derivative of the height of the center of gravity, the volume of the

bubble and its first time derivative. The momentum variation obtained is shown in Fig. 5.40.

It is computed only for t∗ > 0.05 as the uncertainty is very high at the beginning and other

forces cannot be computed for t∗ < 0.05.

It can be noticed on Fig. 5.40 that the momentum variation is lower than 0.4 nN. This

value is negligible compared to other forces, and this was already expected by comparison

to the liquid inertia force in Section 5.2.1.2.

34Appendix E presents an analysis of the time derivation of the height of the center of gravity of the bubble

and of its volume. The impact of the fitting function on the force computation is estimated.
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Figure 5.36: Time first derivative of the height of the center of gravity of a bubble at a wall

superheat of 2.1 K.
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Figure 5.37: Time second derivative of the height of the center of gravity of a bubble at a wall

superheat of 2.1 K.
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Figure 5.38: Volume of a bubble at a wall superheat of 2.1 K.
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Figure 5.39: Volumetric growth rate of a bubble at a wall superheat of 2.1 K.
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Figure 5.40: Momentum variation of a growing bubble at a wall superheat of 2.1 K.

It should also be noticed that the determination of the first and second derivative of mea-

sured data causes high uncertainty. This uncertainty does not impact the momentum bal-

ance as the momentum variation is negligible.

Liquid inertia forces The liquid inertia force is the resultant of the forces induced by

the displacement of liquid due to the bubble motion and growth. Similarly to the momen-

tum variation, the resultant of the liquid inertia forces can be expressed as a function of the

thermodynamic properties of pentane, the first and second time derivative of the height of

the center of gravity, the volume of the bubble and its first time derivative and two added

mass coefficients (see Section 5.2.1.2 and Appendix E):

−→
F LI = K1ρl

dhcg

dt

dV

dt

−→
k +K2ρl V

d2hcg

dt 2

−→
k (5.76)

The value of the added mass coefficients is not known but considered as bounded by

K1 = K2 = 0.5 and K1 = 2 and K2 = 4 (see Section 5.2.1.2 and Appendix C).

Using the results of Section 5.2.2.2.2, the resultant of the liquid inertia forces is computed

and plotted in Fig. 5.41 using the two previously mentionned sets of added mass coefficients.

Its value is always below 0.4µN. This is an order of magnitude below other forces as the buoy-

ancy force and the adhesion forces (see Section 5.2.2)35. This was expected as the bubble

35The early stage of bubble growth is usually considered to be inertially controlled. As detailed in Section
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shape and volume at departure was similar for any wall superheat whereas the growth rate

was varying.

Figure 5.41: Resultant of the liquid inertia forces acting on a growing bubble at a wall super-

heat of 2.1 K, using two different sets of added mass coefficients.

5.1.1.5, the inertia controlled stage is very short at the scale of the growth time. As the forces are not computed

during the first 5 % of the growth, this stage is not observed in the results.
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5.2.2.2.3 Computation of the buoyancy forces

First and second buoyancy term As a recall from Section 5.2.1.3, the two first buoyancy

terms considered are expressed as follows:

−→
F buoy,1 = (ρl −ρv )V g

−→
k (5.77)

−→
F buoy,2 = −(ρl −ρv )V1g

−→
k (5.78)

with V the total volume of the bubble and V1 the vapour volume located above the nucle-

ation site, as described in Fig. 5.22c. The first term of buoyancy represents the buoyancy of

the bubble as if it was totally immersed in the liquid, and the second term is correcting the

volume in order to take into account only the vapour volume which is surrounded by liquid

as well from above as from below. The third buoyancy term, detailed in the next section, is

accounting for the pressure difference through the interface located above the nucleation

site.

The volume V and V1 are obtained by processing the recorded images, as detailed in

Section 3.3.2. If expressed in terms of non-dimensional time, the evolutions of the volumes

are very similar for different wall superheat conditions, as the non-dimensional growth curve

is identical and the departure volume is constant. These evolutions are shown for a bubble

at a wall superheat of 2.1 K in Fig. 5.42. It can be noticed that V1 is small compared to V .
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Figure 5.42: Growth of the volume V and V1 of a bubble at a wall superheat of 2.1 K.

Figure 5.43 shows the resultant of these two buoyancy terms. The first buoyancy term is

directly proportional to the volumetric growth rate of the bubble.
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Figure 5.43: Resultant of the first and second buoyancy terms acting on a bubble at a wall

superheat of 2.1 K.

5.2.2.2.4 Third buoyancy term

The third considered buoyancy term is taking into account the pressure difference

through the interface located above the nucleation site. For the computation of this term,

the Laplace-Young equation is used in order to calculate the pressure difference from the

curvature of the bubble at its apex. This buoyancy term is expressed as follows (see Section

5.2.1.3):
−→
F buoy,3 =

2σ

R
Sbase

−→
k (5.79)

with Sbase the surface of the base of the bubble, as described in Fig. 5.22c and R the radius

of curvature at the apex of the bubble. As it is located on the axis of symmetry of the bubble,

both main radii of curvature are equal. The curvature is taken as homogeneous on the sur-

face considered, which is consistent with curvature measurements shown in Fig. 5.54 to Fig.

5.61.

As the total curvature C is measured from this recorded images (see Section 5.2.3), the

third buoyancy term can also be expressed as follows:

−→
F buoy,3 =σCti p Sbase

−→
k (5.80)

with Cti p the curvature at the apex of the bubble. The evolution of the curvature at the apex

is shown in Fig. 5.44.
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Figure 5.44: Curvature at the apex of a bubble at a wall superheat of 2.1 K.

For the same reasons as for the forces evoked previously, it is not possible to correctly

capture the bubble contour for t∗ < 0.05. The curvature is thus not measured at the begin-

ning of the growth. Here again, the measured curvature data are fitted with an appropriate

polynomial function which is used to calculate the resultant of the third buoyancy term (see

Fig. 5.45).

The resultant of the first buoyancy term strongly depends on the base area, the uncer-

tainty for which may be relatively high. As an illustration of the sensitivity of this force to

the value of the base radius, Fig. 5.46 shows its time evolution for two close values of Rbase

(namely 90µm and 100µm). Decreasing the radius by 10 % reduces the force by up to 20 %.

5.2.2.3 Results of the momentum balance

Figure 5.47 shows the evolution of all the forces considered during a bubble growth with a

wall superheat of 2.1 K. Similar results were obtained at a wall superheat of 4.7 K and are

shown in Fig. 5.48. As explained before, the momentum balance has been computed only

for t∗ > 0.05 as several forces were impossible to compute for t∗ < 0.05.

As can be seen on Figure 5.47, the momentum variation is negligible. As ρl ≫ ρv , the

momentum variation is very small compared to the liquid inertia.
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Figure 5.45: Resultant of the third buoyancy term acting on a bubble at ∆TW = 2.1 K.
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Figure 5.46: Resultant of the third buoyancy term acting on a bubble at ∆TW = 2.1 K, for two

different base radii.
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Figure 5.47: Momentum balance for a bubble growing at a wall superheat of ∆TW ≈ 2.1 K.
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Figure 5.48: Momentum balance for a bubble growing at a wall superheat of ∆TW ≈ 4.7 K.
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The liquid inertia force is also negligible. It was also expected because no real influence

of the wall superheat was observed on the departing diameter of bubble aspect. All dynamic

forces are thus negligible compared to static forces.

The separation of buoyancy into three different terms highlights the role of each mecha-

nism. The buoyancy due to the vapour volume Fbuoy,1 corrected by Fbuoy,2 increases mono-

tonically, until being the dominant force that tends to detach the bubble. The so-called con-
tact pressure term Fbuoy,3 begins very high. Indeed, the curvature at the tip of the bubble is

very low when the bubble is small, leading to a high vapour pressure at the beginning of the

growth. This buoyancy term then decreases until being about half of the first buoyancy term.

The triple line surface tension and adhesion forces are the only forces keeping the bubble

attached to the heated wall. These forces depend on the angle α which varies from 40 to

55 degrees.

A non-negligible residual error is found. Its value is close to the third buoyancy term, and

it is directed upwards. This error might be due to uncertainties in the computation of the

forces, especially the contact pressure force and the triple line adhesion force. As it has been

detailed previously, the contact pressure force is very sensitive to the radius of the base area,

and the triple line adhesion force is very sensitive to the measurement of the angle α. As an

illustration, Fig. 5.49 shows the momentum balance when underestimating the angle α by

10◦. It is shown that this error can almost compensate in itself the residual error.
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Figure 5.49: Momentum balance for a bubble growing at a wall superheat of ∆TW ≈ 2.1 K.

The angle α has been reduced by 10◦ in the computation of the triple line adhesion force.
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The analysis of the forces acting on the bubble during its growth performed in this sec-

tion provides new elements of understanding of the bubble dynamics, and give a clear ex-

planation of the similarity between the growth curves for different wall superheat due to

negligible dynamic forces. However, this analysis does not explain the mechanism of bubble

detachment. Detachment is likely due to local forces which are not noticeable in such an in-

tegral momentum analysis. It is therefore necessary to investigate the local bubble curvature

around the bubble contour during its growth.

5.2.3 Bubble curvature and local liquid pressure around the bubble

As the resultant of the forces acting on the bubble only refers to the bubble as a whole, an-

other analyse of the forces is needed in order to describe the bubble shape. Moreover, if the

bubble detachment is caused by a change of shape, only a study of the local forces can lead

to its understanding.

The local forces involved on the interface are closely related to the local curvature of the

interface, as described in subsection 5.2.1.4. The local curvature of the bubble during its

growth is thus investigated in this section [167].

The author wishes to cheerfully thank Dr. Sergio Di Bari [11, 12] and Dr. Tony Robinson

(University of Dublin, Trinity College – Ireland) who gratefully shared their image processing

code and gave us the right to use and modify the code. Part of this code has been used in this

section.

5.2.3.1 Image processing and definition of the curvature

The bubble contour is preprocessed in order to measure the curvature. The bubble, de-

scribed as a stack of 1 pixel high cylinders (see section 3.3.2), is first made symmetric by

setting the axis of each cylinder on the bubble symmetry axis. A Butterworth filter is then

used to smooth the interface.

Once the bubble is symmetric, only half of the bubble is used for the calculation. The

vertical axis is redefined and normalized by setting the origin of the axis on the tip of the

bubble and the direction downwards, and by dividing the size by the bubble height. The

new non-dimensional distance z∗ is used, as described in Fig. 5.50.

In order to define the two major axes of curvature of the interface, the three dimensions

are set as follows:

• The visualization direction is the y-axis.

• The axis of symmetry is the z-axis.

• The plane of the bubble contour, perpendicular to the visualization axis, is the x-z
plane.
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Figure 5.50: Smoothed interface with non dimensional height

Using these coordinates, the direction normal to the interface −→n belongs to the x-z plane.

The curvature of the interface, at each point of the contour can be determined with two cur-

vature radii, in two different planes including
−→n . The first radius of curvature R1 is defined

in the x-z plane, and the second radius of curvature R2 is defined in the plane that is perpen-

dicular to the x-z plane and that includes
−→n .

R1 and R2 are defined as positive when the curvature is directed toward the vapour phase,

and negative otherwise. Both radii of curvature are illustrated in Fig. 5.51 for a quasi-
spherical curvature near the tip of the bubble and in Fig. 5.52 for a convex-concave curvature

at the neck of the bubble. R1 is drawn in red while R2 is in blue.

(a) Front view – x-z plane (b) Right view – y-z plane (c) Top view – x-y plane

Figure 5.51: Illustration of the curvature radii on the top part of the bubble

The curvature value is defined as the reverse of the curvature radius. Both curvatures are
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(a) Front view – x-z plane (b) Right view – y-z plane (c) Bottom view – x-y plane

Figure 5.52: Illustration of the curvature radii on neck of the bubble

thus defined as follows:

C1 =
1

R1
and C2 =

1

R2
(5.81)

The total curvature C is simply the sum of both curvatures and is expressed in m−1:

C =C1 +C2 (5.82)

In order to estimate the curvature at the tip of the bubble, the axisymmetry is used to

define ghost points at the other side of the bubble profile depicted in Fig. 5.50. For the case

of the curvature at the base of the bubble36, the symmetry to the plane which is normal to

the bubble profile in z∗
= 1 is used in order to define ghost points.

5.2.3.2 Curvature evolution during bubble growth

The bubble shape, and thus the local bubble curvature, does change during the successive

steps of bubble growth. Four significant instants have been chosen to illustrate this evolution

(Figure 5.53):

• 10 % of the growth, which corresponds to the initial linear stage of the volumetric

growth, while the bubble volume is still less than a fifth of the departure volume.

• 50 % of the growth, which corresponds to an early instant of the slow growth. The

bubble already measures two thirds of the departure volume.

• 90 % and 99.9 %, which describes the particular shape evolutions leading the detach-

ment of the bubble.

For two different wall superheat of 2.1 K and 4.7 K, both main radii of curvature C1 and

C2 as well as the total curvature C are computed and plotted for each of the four steps. The

same trends are observed for both superheat conditions.

36i.e. close to the triple line
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Figure 5.53: Respective positions of the images used further on the growth curve.

At the beginning of the bubble growth (Fig. 5.54 and 5.55), the bubble appears quasi-

spherical, and slightly elongated near the base. Both curvature are thus constant and equal

for the top half of the bubble. The total curvature is quite high (C ≈ 8 mm−1) because of the

small size of the bubble. Concerning the base of the bubble, C1 is decreasing whereas C2

is increasing. The total curvature, sum of C1 and C2 remains constant. It should be noted

that as the bubble is small, the resolution of the contour is poor and the uncertainty on the

curvature calculation is high. Nevertheless, the same trends and values are observed for both

conditions.

At the middle of the growth (Fig. 5.56 and 5.57), the growth rate has already decreased

and a neck has started to form. The two thirds of the top part of the bubble are spherical, with

a constant value of both curvature radii. At the base, the formation of the foot is clear with

an increasing C2 and the elongation of the neck leads to a decreasing C1. The total curvature

is increasing near the base as the C2 evolution is much more important than the C1 decrease.

Close to detachment, the neck gets tighter. The first curvature C1 decreases to negative

values close the base, revealing the inflexion and the change of curvature direction, as in

Fig. 5.52. The second curvature C2 increases to values close to the curvature of the bubble

nucleation site of about 11 mm−1. The total curvature is thus increasing too, and seems to

show more noticeable changes just before detachment between respectively Fig. 5.58 and

5.59 and Fig. 5.60 and 5.61.
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Figure 5.54: Curvature of the interface with ∆TW = 2.1 K and t∗ = 10 %.
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Figure 5.55: Curvature of the interface with ∆TW = 4.7 K and t∗ = 10 %.
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Figure 5.56: Curvature of the interface with ∆TW = 2.1 K and t∗ = 50 %.
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Figure 5.57: Curvature of the interface with ∆TW = 4.7 K and t∗ = 50 %.
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Figure 5.58: Curvature of the interface with ∆TW = 2.1 K and t∗ = 90 %.
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Figure 5.59: Curvature of the interface with ∆TW = 4.7 K and t∗ = 90 %.
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Figure 5.60: Curvature of the interface with ∆TW = 2.1 K and t∗ = 99.9 %.
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Figure 5.61: Curvature of the interface with ∆TW = 4.7 K and t∗ = 99.9 %.
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It is interesting to compare the total curvature along the interface to the steady shape

which would result from the Laplace-Young equation and the hydrostatic law in the liquid

and vapour phases. The theoretical curvature Cth respects the following relation, consider-

ing constant thermodynamic properties:

σCth(z∗) = Pv (z∗)−Pl (z∗) (5.83)

Using the hydrostatic law and the bubble height h:

σCth(z∗) = Pv (0)+ρv g z∗h −Pl (0)−ρl g z∗h (5.84)

= [Pv (0)−Pl (0)]− (ρl −ρv )g z∗h (5.85)

= σCth(0)− (ρl −ρv )g z∗h (5.86)

Cth(z∗) ≈ Cth (0)−
5950

σ
× z∗h (5.87)

The theoretical curvature has a linear and decreasing profile along the z-axis (directed down-

ward).

Just before detachment, the bubble height is about 1.2 mm. The curvature difference

between the tip and the base would theoretically be:

Cth(0)−Cth (1) ≈ 490 m−1 (5.88)

≈ 0.49 mm−1 (5.89)

Compared to the scale of Fig. 5.54 to 5.61, even with the bubble showing the largest height

(i.e. at detachment), the theoretical curvature would appear almost constant along the z∗

axis.

As a matter of fact, when the bubble is small and thus relatively spherical, the actual

curvature is relatively constant (Fig. 5.54 and 5.55). But after the formation of the neck37, the

curvature appears to be constant over only a portion of the bubble height, namely 0 < z∗
<

0.6. The top part of the bubble is spherical and respects the theoretical curvature profile. On

the contrary, the lower part of the bubble, for z∗
> 0.6, shows an increase of the curvature.

The neck, closely related to adhesion forces can therefore not be described only in terms of

capillarity and hydrostatic gravity forces.

5.2.3.3 Tip curvature evolution and growth regime

The bubble tip curvature evolution has been computed for a bubble growth with∆TW = 2.1 K

and plotted in Fig. 5.62. The bubble curvature was not possible to compute while the bubble

size was of the order of magnitude of the nucleation site38 as the image resolution was too

poor.

37that corresponds about to t∗ > 0.2
38i.e. while t∗ < 0.05
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Figure 5.62: Bubble tip curvature during bubble growth with ∆TW = 2.1 K

It can be observed that the curvature begins high due to the small size of the bubble

and decreases sharply until t∗ ≈ 0.2. The tip curvature then decreases much more gradually

around a value of 5 mm−1. It is interesting to note that this change of behaviour corresponds

to the critical change in the bubble growth curve (see Fig. 5.10 and 5.11).

The bubble curvature is related to the equilibrium pressure difference between the

vapour and liquid phases by the Laplace-Young equation. This equilibrium cannot be as-

sessed all around the bubble during its growth but is most probable at the tip of the bubble,

as it is on the axis of symmetry and the distance from the triple line lessens the probability

of an interaction between the liquid-vapour interface and the heated wall.

The maximum measured curvature at the tip of the bubble is about 11 mm−1. When the

bubble is even smaller, the theoretical maximum curvature is achieved with a hemispherical

bubble of the nucleation site diameter. The tip curvature in this case is:

Cti p =
2

Rnc
(5.90)

≈ 22.2 mm−1 (5.91)

The equilibrium pressure difference can then be computed too:

Pv −Pl = Cti p ×σ (5.92)

≈ 322 Pa (5.93)
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This pressure difference is very small compared to the ambient pressure, namely

P = 1 bar during the tests. Moreover, the change of thermodynamic properties due to such

a pressure difference is negligible. From this order of magnitude comparison, it is clear that

the change of slope in the volumetric growth cannot be explained by the change of slope of

the tip curvature, and should on the contrary be explained by a thermal analysis.

5.2.3.4 Base curvature evolution and bubble detachment

Let the curvature at the base of the bubble39 be named the base curvature. The base cur-

vature evolution during bubble growth is plotted in Fig. 5.63. Both main curvatures as well

as the total curvature are plotted. The data points are rather scattered because of a certain

level of uncertainty in their computations, but their trends are clear. The curvature C1 be-

gins close to the curvature C2 and decreases until reaching a plateau around 0 for t∗ ≈ 0.3.

C1 seems to have negative values when the bubble is close to detachment, as described in

Fig. 5.52. While C1 is close to zero, the total curvature more or less equals C2.
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Figure 5.63: Bubble base curvature during bubble growth with ∆TW = 2.1 K

Figure 5.64 is the plot of the evolution of the tip and the base total curvature. For t∗ < 0.2,

the base and the tip curvature are close, as it was foreseen in Fig. 5.54 and 5.55. The bubble

is more or less spherical, and its curvature is decreasing quickly due to the rapid evolution

of its diameter. After t∗ ≈ 0.2, the neck is forming, leading to a higher curvature at the base,

39for z∗
= 1
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that stays almost constant until close to detachment. Just before departure, with t∗ > 0.95,

the neck constricts and the base curvature diverges towards high values. The bubble detach-

ment seems to be closely related to the hydrodynamic equilibrium of the neck.
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Figure 5.64: Bubble base and tip curvature during bubble growth with∆TW = 2.1 K

5.3 Coalescence of bubbles

Coalescence is the main phenomenon which dictates in the upper limit of the isolated bub-

ble regime. The density of bubbles become so high that contact occurs between neighbour

bubbles, either because of the density of active nucleation site or because of the high bubble

frequency from each nucleation site. As V.P. Carey explains ([23], page 217):

With increasing surface superheat, more and more sites become active, and

the bubble frequency at each site generally increases. Eventually, the active sites

are spaced so closely that bubbles from adjacent sites merge together during the

final stages of growth and release. Vapor is being produced so rapidly that bub-

bles merging together form columns of vapor slugs that rise upward in the liquid

pool toward its free surface. This higher range of wall superheat [. . . ] is referred

to as the regime of slugs and columns.
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This latter regime is also sometimes referred to as the fully developed nucleate boiling regime.

It often has associated with it a decrease in the heat transfer coefficient, leading eventually

to the critical heat flux (CHF). This decrease in the heat transfer coefficient is closely related

to the coalescence phenomenon as the size of merged bubbles becomes large and prevents

the liquid phase from moving freely towards the heated surface.

5.3.1 Vertical and lateral coalescence events

Two different types of coalescence events were observed during this study. A first type, illus-

trated in Fig. 5.65 and called vertical coalescence, occurs when the wall superheat exceeds

about 4.5 K. Once a bubble is detached from its neck, it quickly accelerates vertically in the

liquid due to its buoyancy. However, although the acceleration can be high, the initial veloc-

ity of the departing bubble is zero. The characteristics of the rise of the bubble do not de-

pend on the wall superheat (see Section 5.4) as the only significant parameter is the bubble

departure volume. As the departing bubble is moving away from the surface, a new bubble

nucleates and grows over the artificial nucleation site. The growth rate of the new growing

bubble depends on the wall superheat. If the growth is slow enough, the departed bubble

has time to leave before the new bubble reaches its interface. On the contrary, if the bubble

growth is fast, it reaches the previous bubble and eventually merges with this latter40.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

Figure 5.65: Photos of vertical coalescence between successive bubbles coming from the

same nucleation site, at a high wall superheat of ∆TW ≈ 5.9 K. Time difference between two

photos is ∆t ≈ 0.33 ms.

As it is observed in Fig. 5.65, several successive bubbles can merge with the previously

departed bubble, which is much very distorted by the multiple coalescence events. The co-

alescence event itself is very fast, and its duration cannot be evaluated with the time resolu-

tion used here.

40If both bubble get very close without break up of the separating liquid film, the bubbles do not merge but

their shape are modified leading to shape oscillations, as detailed in Section 5.1.5.3.
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The second type of coalescence observed, illustrated in Fig. 5.66 and named horizon-
tal or lateral coalescence, occurs when two neighbouring nucleation sites are active with a

moderate or high heat flux41 and the distance between both sites is less than the departure

lateral diameter of the bubbles [18]. In order to observe this phenomenon, a second artifi-

cial nucleation site, almost identical to the first one, has been created at a distance of 660µm

(see Section 3.1.3). A few differences on the edge of the nucleation sites, due to the succes-

sive polishing processes, result in a poorer stability of the second site (on the left side on Fig.

5.66 and 5.67). The right site being more stable, the bubble preferentially nucleates in that

site at low heat flux, deflecting the heat flux in the heated wall towards the active site [18].

When increasing the heat flux, the left nucleation site is also activated but has a significant

waiting time. As the left bubble nucleates later than the right bubble, they merge with differ-

ent sizes (see Fig. 5.67). It is observed that the smaller bubble is sucked inside the bigger one

(as predicted by P.G. De Gennes, [50] page 16). This is due to two reasons:

• The vapour pressure inside the smallest bubble is higher, due to a higher curvature of

the interface (see Section 5.2.3).

• The bigger bubble needs much more energy to me moved from its place due to the

inertia of the surrounding liquid.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

Figure 5.66: Photos of lateral coalescence between adjacent bubbles coming from neigh-

bour nucleation sites, at a high wall superheat of ∆TW ≈ 6.5 K. Time difference between two

photos is ∆t ≈ 0.19 ms.

5.3.2 Wave front propagation during lateral coalescence of two bubbles

Figure 5.68 shows the lateral merging of two bubbles with a wall superheat of 8.5 K. A bub-

ble nucleates at the same time at each nucleation site. Both bubbles grow at the same rate.

Once the bubble diameters are large enough, both liquid-vapour interfaces are very close, so

41Lateral coalescence was observed within a superheat range of 6 K < ∆TW < 9 K. When the superheat

was lower than 6 K, one of the sites was not activated, and when the superheat was higher than 9 K, vertical

coalescence events were interfering with the phenomenon.
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

Figure 5.67: Photos of lateral coalescence between adjacent bubbles coming from neighbour

nucleation sites, at a moderate wall superheat of ∆TW ≈ 6.5 K. Time difference between two

photos is ∆t ≈ 0.15 ms.

that there only remains a thin liquid film between the bubbles. Then, the liquid film breaks

up, and coalescence occurs. The circular opening between the bubbles grows rapidly until

the vapour forms a single bubble. The liquid macrolayer volume between the bubble necks

decreases until the macrolayer disappears. Both necks then come free, and the resulting

bubble forms a new neck that touches the wall just in between the two preceding necks (see

Fig. 5.66, image 15-16). Then, the bubble leaves the wall and starts rising in the liquid, and

both nucleation sites are almost instantaneously activated again. The coalesced bubble os-

cillates, and has a higher inertia than a single non coalesced bubble. Therefore, it accelerates

slowly, and often vertical coalescence occurs with the next bubbles.

In these experiments, no influence on the phase change was detected during coales-

cence: indeed, the vapour production is less than 0.01 mm3 between the time when the

bubbles touch each other (just before the breakage of the liquid layer) and the time when

the coalesced bubble departs from the wall while the typical volume of a single bubble at

detachment is about 1 mm3. This is due to the quickness of the phenomenon: typically 2 to

3 ms, whereas the growth time range is 70 to 300 ms. These results tend to indicate that the

liquid film between the bubbles does not evaporate, but is rather pushed away by capillary

effects. This conclusion is also drawn for the liquid macrolayer trapped between the two

necks.

The liquid film breakage induces the propagation of two wave fronts42 (see Fig. 5.68 and

Electronic Annex 1 in the online version of Siedel et al. [169]) at a velocity of about 63 cm·s−1.

This front distorts the liquid-vapour interface. When the wave fronts reach the ends of the

coalesced bubble, tails are created by the distortion of the interface. Such tails have been

42This wave front propagations have been observed with an unrivalled accuracy due to a very high recording

frame rate of 27000 fps.
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shown by Mukherjee and Dhir [133]. The wave is then reflected and attenuated. This wave

can be explained by capillary effects: the Laplace-Young equilibrium is obtained before the

film breakage, and as both main curvature radii are large (R1 ≈ R2 > 10−4 m, same order of

magnitude as the bubble equivalent diameter), the pressure difference between the liquid

and the vapour is low (Pv −Pl < 3.10−3 bar). When the film breaks up, its thickness is about

1 to 10µm [158]. The smallest curvature radius R1 just after the breakage is of the same

order of magnitude. The deficit of pressure of the liquid, compared to the Laplace-Young

equilibrium, is then of the order of magnitude of 0.1 bar. The shock that creates the wave

front on the interface is caused by this deficit of pressure. For a better understanding of the

orders of magnitude of R1 and R2, Fig. 5.69 shows schematically half of two bubbles (drawn

as two halves of spheres), during the merging process: this schematically shows that R1 is

much smaller than R2.
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Figure 5.68: Photos of lateral coalescence between adjacent bubbles coming from neigh-

bour nucleation sites, at a high wall superheat of ∆TW ≈ 8.5 K. Time difference between two

photos is ∆t ≈ 37µs.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0032/these.pdf 

© [S. Siedel], [2012], INSA de Lyon, tous droits réservés



138 CHAPTER 5. BUBBLE DYNAMICS

R2
R1

Figure 5.69: Curvature radii at the thin film breakage.

5.4 Bubble departure and rise

The heat transfer mechanisms associated with boiling are detailed in Section 4.1.2. These

mechanisms can be divided into two categories:

latent heat transfer which is widely investigated in this chapter through the study of bubble

growth and bubble interactions.
sensible heat transfer which is the combination of single phase convection (investigated in

Chapter 4) and enhancement of convection due to the liquid motion induced by the

bubbles.

The liquid motion is first due to the growth of each bubble. As the liquid to vapour density

ratio is equal to more than 200, the vapour produced by means of phase change at the bubble

interface will move away. The liquid also moves because of the surface tension forces that

tend to minimize the bubble area: even if most of the vapour might be produced close to the

base of the bubble, the bubble will grow in size and height over the surface.

A second cause of liquid motion induced by the bubbles is due to the interaction between

bubbles and to the occurrence of coalescence events. Two bubbles merging will push away

the liquid between them, and the motion of the interface to form a new single bubble is an

image of the liquid motion around the bubble.

A third cause of liquid motion induced by the bubbles, maybe the most important, is the

motion induced by the rise of the bubbles. After detachment of a bubble from the boiling

surface, buoyancy forces tend to accelerate the bubble upwards. Consequently, some liquid

is drawn towards the boiling surface and replaces the bubble43. The liquid motion induced

43This motion has been particularly studied to understand and predict the critical heat flux. Indeed, the re-

sulting vapour drag on the liquid moving toward the surface becomes eventually so severe that liquid is unable
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by the motion of the bubbles strongly depends on their acceleration and velocity, and hence

on their trajectory. Bubble trajectory is therefore a relevant field of study to better under-

stand the boiling processes.

Bubble rise trajectories have been investigated by Haberman and Morton [72] and of

Harmathy [74], in their pioneer work. They described three different kinds of trajectories:

linear, helicoidal and zigzag. When the Reynolds number is low, bubbles trajectory is linear.

For higher Reynolds number, trajectories are helicoidal or zigzagging, and for even higher

Reynolds number corresponding to large bubbles, the trajectories are linear once again.

Keshock and Siegel [92] have shown that when the bubble trajectory is linear, the bubble

accelerates suddenly after detachment and then stabilizes at a constant terminal velocity.

Harper [75] adds that the drag coefficient differs for a unique bubble or for successive bub-

bles from the same nucleation site.

Several correlations for the value of the terminal velocity have been suggested, for ex-

ample by Haberman and Morton [72] or by Harmathy [74]. Peebles and Garber [150] have

suggested four different correlations covering a large range of Reynolds number.

The present study focuses on the first millimetres of bubble rise after bubble detach-

ment. These results have been presented at the 7th International Conference on Boiling

Heat Transfer [170] as well as at the 2nd Rhône-Alpes/Brazil Meeting on Micro and Nano-

Technologies applied to Heat Transfer with Liquid-Vapour Phase Change [38].

5.4.1 Bubble trajectory and vertical velocity

After detachment, no more forces act on the bubble to balance buoyancy. The bubble thus

immediately accelerates in the upwards direction. Starting from a very low velocity, the bub-

ble slowly accelerates vertically (see Fig. 5.70 for a typical bubble rise).

The bubbles in these experiments always have the same volume at detachment (see Sec-

tion 5.1.1.4). The initial conditions of bubble rise are thus very similar for all bubble rise

events, even for different wall superheat conditions. The bubble equivalent diameter is

Req ≈ 1 mm. This diameter is slightly lower than the capillary length (which is equal to

1.56 mm for pentane at its normal boiling point). The bubble shape is close to a spherical

shape at detachment, except for a neck that detaches or breaks up at the base of the bubble

(see Section 5.2.3 for more details on the shape).

Due to the break-up of the neck, the bubble shape oscillates in the vertical direction after

detachment (see Fig. 5.71 for instance between image 3 and 11). As some very slight differ-

ences might occur between different bubble detachment events, the oscillations observed

might also be slightly different44.

to reach the surface fast enough to keep the surface completely wetted with liquid ([23], page 218)
44As for vertical coalescence (see Section 5.3.1), detachment of the bubbles presents some stochastic fea-
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 5.70: Photos of a typical bubble rise, at a wall superheat of ∆TW ≈ 3.5 K. Time differ-

ence between two photos is ∆t = 2.5 ms. Physical height represented is ∆z ≈ 14 mm.

While the bubble vertical velocity increases, the liquid inertia as well as the viscous stress

tend to slow down the bubble and to distort the interface. The bubble is flattened into a dis-

torted oblate spheroid and might even form into a spherical cap shape [184]. It seems from

Fig. 5.70 that the bubble volume is decreasing during its rise. This impression is in fact an

optical effect: the depth of field is very small45 and set to have a sharp contour of the attached

bubbles. The image is sharp only in the plane perpendicular to the recording direction and

passing on the nucleation site. The bubble that is rising often moves slightly from this plane.

Its image becomes blurred. Depending on the contrast and brightness settings, the rising

bubble will then look larger or smaller.

The height of the center of gravity is computed from the recorded images. It is plotted

versus time on Fig. 5.72 for the sample bubble shown in Fig. 5.70. A polynomial function is

tures.
45The typical order of magnitude of the field of depth is 0.1 mm.
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1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

Figure 5.71: Photos of the shape oscillations of a bubble just after its detachment, at a wall

superheat of ∆TW ≈ 2.1 K. Time difference between two photos is ∆t ≈ 333µs.

used to fit the calculated data, in order to obtain its derivative with respect to time46.

The bubble vertical velocity is thus obtained, and plotted versus time together with the

lateral position of the bubble on Fig. 5.73. The origin of the lateral position is defined at the

initial position of the center of gravity of the bubble. It is observed that the bubble accelerates

in the vertical direction until reaching a maximum vertical velocity. This velocity can also be

expressed in terms of a critical Reynolds number.

When the critical Reynolds number is reached, the bubble randomly changes its direc-

tion. As shown on Fig. 5.73, the horizontal lateral position of the sample bubble remains the

same during the acceleration of the bubble and eventually changes at the moment when the

maximum vertical velocity is reached. An analogous behaviour was explained by Jenny et al.
[87] for a free ascending sphere: the sudden change of direction would occur when an insta-

bility would break the axisymmetry of the sphere’s wake and would impose a plane oblique

trajectory.

The transition to zigzag or helical trajectories has been widely observed in bubble rise

studies [7, 60, 118, 120, 203]. Ellingsen and Risso [60] pointed out that the primary unstable

mode of the bubble rise is the zigzag motion, and that the secondary unstable mode is the

helical motion.

46i.e. the vertical velocity
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Figure 5.72: Evolution of the height of the center of gravity of the bubble.
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Figure 5.73: Evolution of the vertical velocity and lateral position of the bubble.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0032/these.pdf 

© [S. Siedel], [2012], INSA de Lyon, tous droits réservés



5.4. BUBBLE DEPARTURE AND RISE 143

5.4.2 Bubble terminal velocity

The bubble rise analysis has been performed for 20 different bubbles for different wall su-

perheats between 1.5 and 8 K. The wall superheat has shown no influence on bubble rise. In

all cases, the bubble accelerates until it reaches a maximum velocity in the vertical direction,

and then turns to another random direction: sometimes to the left, sometimes to the right,

and sometimes the bubbles vertical speed decreases and the bubble seems to be moving

toward the direction perpendicular to the picture plane.

The mean maximum velocity47 has was found to be equal to 331 mm·s−1, with a stan-

dard deviation of 12 mm−1. The scattering of the maximum velocities is well explained by

Tomiyama et al. [184]:

. . . there is a possibility that the scatter of VT
48 in the surface tension force

dominant regime is not caused by the difference in surfactant concentration but

by the difference in initial conditions, i.e. the way of bubble releases.

The mean maximum velocity has been compared against the Peebles and Garber [150]

model:

umax = 0.33g 0.76

(

ρl

µl

)0.52

R1.28
eq (5.94)

With a Reynolds number in the following range:

2 ≤ Re ≤ 4.02

(

We3

Re4Fr

)−0.214

(5.95)

The characteristic length used for the Reynolds, Weber and Froude numbers calculation

in the model is the equivalent radius of the bubble Req . The maximum velocity calculated

with this model is 299 mm·s−1 with a Reynolds number of 2.49 . This maximum velocity is

of the same order of magnitude as the measured maximum velocity. Beyond the question

of the accuracy of the correlation, a difference between the present experiment and that of

Peebles and Garber lies in the fact that this experimental work is non adiabatic.

Indeed, the measured velocity is in fact the velocity of the bubble compared to the boil-

ing surface and not to its surrounding liquid. This speed is thus the sum of the bubble’s

velocity relative to the liquid plus the liquid velocity relative to the boiling surface, assuming

that the liquid surrounding the bubble is moving in the same direction as the bubble. This

assumption seems to be verified by observing convection images like that of Section 4.1.4.

Another correlation has been compared against the experimental results. An usual corre-

lation for surface tension dominant regimes [128, 130, 185] has been generalized to distorted

47This maximum velocity is often referred to as the terminal velocity (e.g. [184]).
48i.e. the terminal velocity
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oblate spheroid by Tomiyama et al. [184]. The usual formulation of the correlation is as fol-

lows:

umax =

√

√

√

√

2σ

ρl Deq
+

(

ρl −ρv
)

g Deq

2ρl
(5.96)

Using the properties of pentane and the geometry of the bubbles of the experiments, the

theoretical maximum velocity predicted by this correlation is umax ≈ 227 mm·s−1. This value

is slightly lower than the experimental value. This might be due to an invalid hypothesis.

The hypothesis of a surface dominant regime states that viscosity forces are small com-

pared to surface tension and inertia forces [184] which is justified if:

Re =
ρl umax Deq

µl
≫ 1 (5.97)

This is valid in the case of these experiments as Re ≈ 1048. Other models of bubble maximum

rising velocity are reported by Celata et al. [25].

To conclude about bubble rise, velocity and trajectory, the experimental observations

and measurements are in good agreement with the models and description from the litera-

ture. In addition, these results bring new data concerning an unusual fluid49 and the case of

boiling single bubbles50.

This chapter detailed an original experimental work that presents several important re-
sults for the knowledge of the most fundamental phenomena that occurs during pool boil-
ing.

• After ensuring the repeatability and reliability of the measurements, an experimental
bubble growth law was established. This law raises new questions about the mecha-
nisms of phase change and heat transfer during bubble growth, and questions some
usual assumptions of many existing growth models and experiments.

• Bubble shape and oscillations were investigated, and a new non-dimensional param-
eter was proposed in order to describe the oscillation. The influence of the previous
bubble on the next bubble at moderate wall superheat was brought to the fore.

• The different forces implied in the integral form of the momentum conservation equa-
tion were deeply investigated. Each term has been described and evaluated, and the
equation was solved for each moment of an experimental bubble growth. It is notice-
able that the exact solution of the momentum variation has been computed.

• The bubble curvature along the interface was divided into two main curvatures and
was computed for different time-steps during bubble growth. The evolution of the
vapour pressure was interpolated from the curvature along the interface, and the
specificity of the curvature close to the triple line was highlighted.

• Bubble vertical and lateral coalescence has been described, as well as the occurrence
of a wave front propagation during merging of neighbouring bubbles.

49Many experimental works from the literature use water.
50Most experimental works are performed adiabatically using gas injection in a liquid.
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• Bubble rise, trajectory and vertical velocity were investigated. Comparison against
existing models of the terminal velocity were performed, and showed good agreement.

Some of the results shown have been published in peer-reviewed journals [169, 171] and
some have been presented in international conferences [38, 168, 170] where they were re-
ceived with great interest. Other results are still waiting for future publication.
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Chapter 6

Bubble dynamics in the presence of

electric fields

Since boiling heat transfer affords a very effective means to transfer heat, it is implemented in
numerous technologies and industries ranging from large power plants to micro-electronics
thermal management. No matter what the scale of the technology, industries are continu-
ally demanding smarter and smaller heat exchangers. A promising technique for improv-
ing and controlling the heat transfer during boiling is the introduction of an electric field.
This technique is generally termed electrohydrodynamics (EHD). Whether for pool boiling or
flow boiling scenarios, several studies have shown that EHD can considerably augment two
phase heat transfer (e.g. [47, 82, 116, 127, 140, 142] and the review on electrohydrodynamic
enhancement of heat transfer by Laohalertdecha et al. [104]).

Most studies concerning electrohydrodynamics applied to two-phase heat transfer con-
cern boiling on natural surface and associated heat transfer coefficients. However, as the
boiling heat transfer coefficient is difficult to predict and is intimately linked to the bubble
dynamics, it is prudent to investigate the EHD effects at the scale of a single bubble. A lim-
ited number of studies concern the behaviour of single bubbles in the presence of electric
fields, among which several are adiabatic (i.e. a gas bubble is injected in a dielectric liq-
uid) [29, 49, 54, 78, 79, 86, 117, 123, 125, 126, 151], in a more or less isolated bubble regime
[100, 119] or approximate numerical or theoretical analyses [61, 198, 200, 201]. The present
work aims at being a reference experimental study of electrohydrodynamic effects on bubble
dynamics in the case of boiling on an artificial nucleation site.

The present chapter is organized similarly to Chapter 5 to successively investigate the
electrodynamic effects on bubble growth, detachment and shape, on bubble interaction with
neighbouring bubbles and on bubble rise. A detailed analysis of the phenomena in the ab-
sence of electric fields is provided in Chapter 5 so that only the influence of the electric field
will be investigated in depth. The force analysis and momentum balance of the growing

147
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148 CHAPTER 6. BUBBLE DYNAMICS IN THE PRESENCE OF ELECTRIC FIELDS

bubble is not included in the present study.

6.1 Bubble growth

Bubble growth dynamics has been widely studied in the absence of electric fields. As de-

scribed in Section 5.1, many theoretical analyses and experimental studies concern single

bubble growth. However, to the author’s best knowledge, no published work focuses on the

effect of electrohydrodynamics on bubble growth dynamics in the case of boiling. The clos-

est experimental study to the present work has been performed by Cattide et al. [24]. These

authors investigated boiling on a single artificial nucleation site on a stainless steel sheet

with two different well-wetting dielectric fluids1. Heat was provided by a micro-heater lo-

cated below the steel surface. The heated surface was connected to ground and a voltage

potential was created by a ring electrode 3 mm above the plate. The influence of electric

field on bubble detachment diameter and growing period was investigated and some raw

data concerning the evolution of the equivalent diameter with variable heat load is avail-

able.

The experimental results presented in this section focus on the effect of electrohydro-

dynamics on bubble growth dynamics, detachment diameter and frequency and on bubble

shape during its growth. These results have been published in 2011 by Siedel et al. [171].

The heated surface is connected to ground and the grid mesh electrode above the surface is

connected to the high voltage source. For the sake of readability, the potential of the upper

electrode is positive when no indications is given or when a positive polarity is mentioned.

In all experiments, the grid mesh electrode was located 7 mm above the heated surface. Ex-

periments have been performed by applying 12 kV, 18 kV or 24 kV to the electrode. This cor-

responds, in the case of a homogeneous dielectric permittivity between the electrodes, to

uniform and vertically oriented electric fields of respectively 17.1 kV·cm−1, 25.71 kV·cm−1

and 34.3 kV·cm−1. Only the value of the voltage applied to the upper electrode will generally

be mentioned in this chapter.

Photo sequences of bubble growth with an applied voltage of 12 kV, 18 kV and 24 kV are

presented in Fig. 6.1, 6.2 and 6.3 respectively. Approximately the same wall superheat was

imposed2. The first observation is that the bubble is elongated in the vertical direction by

the electric field. This observation will be discussed further in this section.

1namely FC-72 and HFE-7100
23.6 K < ∆TW < 4.1 K
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Figure 6.1: Bubble growth at ∆TW ≈ 3.6 K, with ∆t = 8 ms between two images. A tension of

12 kV is applied on the electrode.
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Figure 6.2: Bubble growth at ∆TW ≈ 4.1 K, with ∆t = 8 ms between two images. A tension of

18 kV is applied on the electrode.
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Figure 6.3: Bubble growth at ∆TW ≈ 3.7 K, with ∆t ≈ 6.33 ms between two images. A tension

of 24 kV is applied on the electrode.

6.1.1 Repeatability and reproducibility

Bubble nucleation, growth, detachment and rise is a cyclic event. As observations and mea-

surements are performed on individual cycles, it is essential to evaluate the repeatability and

reproducibility of the event. Although a very good similarity had been found when studying

bubble dynamics without electric fields (in Chapter 5), more experimental issues were en-

countered when studying electrohydrodynamic effects on bubble dynamics:

• With the presence of the mesh grid electrode above the heated surface, adequate illu-

mination of the surface was difficult to achieve. The images recorded were of poorer

quality (see for example Fig. 6.1, 6.2 and 6.3), and proper processing of the photos to

measure bubble properties was more difficult to define.

• As detailed in Section 4.1.43, strong convective movements occur when applying an

electric field above the heated surface. These convective movements slightly change

the background brightness in the recorded images. This effect sometime prevents the

batch processing of images because of varying brightness.

• Because of the time restriction and of the difficulty creating a stable nucleation site on

such a test sample, the data originates from a single experimental campaign.

• More parameters and more forces are involved in bubble dynamics with EHD. Less

accuracy may be achieved in reproducing experimental conditions. This is likely due

to unsteady convective motion above the heated plate that creates a different thermal

environment even for two successive bubbles.

3This is especially noticeable in Fig. 4.3.
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6.1. BUBBLE GROWTH 151

• After several days of use of the experimental facility, some impurities or deposits were

sometimes observed in the tank. The sedimentation of these impurities were occur-

ring at the bottom of the tank, far from the heated surface. However, these impurities

were polarized by the intensity of the electric fields and were directed towards one of

the electrodes during the tests. In was then often necessary to dismantle the whole

facility to change the fluid to new, pure pentane.

Figure 6.4 shows the volumetric growth curves of 7 successive bubbles at a wall superheat

of 3.7 K with an electrode voltage of 24 kV. The curves show a certain scatter of growth time.

The total growth time, in the same conditions, varies from 0.16 to 0.23 s4. On the other hand,

the departure volume is almost constant with a mean value of 0.51 mm3 and a standard de-

viation of 1.6 % on this data sample.
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Figure 6.4: Growth curves of 7 successive bubbles at a wall superheat of 3.7 K and with an

electrode voltage of 24 kV.

It is noticed that the departure volume is very similar to that obtained in the absence of

electric field. However, the growth time seems much more scattered, as one would expect

for different superheat conditions. This might indeed be due to different fluid superheat

conditions due to the convective movements enhanced by the electric fields.

As a conclusion about repeatability, the results obtained with the presence of electric

fields are more scattered than those obtained in the absence of electric fields, presented in

4that is ±31 % around a mean value
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Chapter 5. Therefore, while qualitative trends can certainly be captured from this study,

quantitative measurements should sometimes be taken with a note of caution.

6.1.2 Influence of the wall superheat

In the absence of electric fields, as detailed in Chapter 5, the influence of the wall superheat

conditions on bubble dynamics is mainly to modify the vapour production rate. As the dy-

namic forces acting on the bubble are negligible compared to the static forces, the volume

at detachment remains constant. The increase of vapour production rate with the wall su-

perheat causes an increase in the bubble frequency. It was nevertheless observed that the

non-dimensional growth curves were similar for all superheats investigated.

With the application of an electric field above the heated surface, the changes in bubble

dynamics are investigated including the influence of the wall superheat and the intensity of

the electric field. These influences will be discussed in terms of growth curves and of bubble

departure frequencies.

6.1.2.1 Bubble growth

Bubble growth curves are presented for different wall superheat conditions with an electrode

voltage of 12 kV (Fig. 6.5), 18 kV (Fig. 6.6) and 24 kV (Fig. 6.7). The growth curves of several

bubbles with the same wall superheat are shown in some cases.

The growth curves presented here show several different behaviours with the variation of

the wall superheat∆TW and the electrode voltage U :

• It seems that the bubble departure is sometimes anticipated due to the electric field.

For a voltage electrode of 12 kV and 18 kV (Fig. 6.5 and 6.6), the volume at departure

is about 0.42 mm3. This is 20 % lower than the departure volumes observed in the ab-

sence of electric field. For an electrode voltage of 24 kV (Fig. 6.7), the departure volume

is only reduced for one wall superheat condition. This behaviour is not always repeat-

able. Such variations were also observed by Cattide et al. [24].

• The growth curves present a characteristic change of slope. In the absence of elec-

tric field, this change was observed approximately for 0.2 < t∗ < 0.3. This change of

slope is observed later when an electric field is applied. This is especially visible for an

electrode voltage of 24 kV.

No definitive trend can be determined for the variations of the volume at departure with

the voltage. The influence of electric fields on the bubble growth time can be analysed in

terms of bubble frequency.
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Figure 6.5: Bubble growth for different wall superheats with an upper electrode voltage

of 12 kV.
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Figure 6.6: Bubble growth for different wall superheats with an upper electrode voltage

of 18 kV.
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Figure 6.7: Bubble growth for different wall superheats with an upper electrode voltage

of 24 kV.

6.1.2.2 Bubble frequency

Like in Chapter 5, the frequency is based on the count of departing bubbles as long as no

coalescence occurs, and on the count of departing coalesced bubbles otherwise5. Let the in-

stantaneous frequency be defined as the inverse of the growth time of a single bubble event.

Figure 6.8 shows the mean bubble frequency over data samples of 5 successive bubbles,

plotted versus the wall superheat for different electrode voltages. No clear influence of the

presence of electric fields is observed within the voltage range applied to the electrode.

6.1.3 Non dimensional bubble growth and vapour production rate

As for the study of bubble dynamics without electric fields (see Section 5.1.3), the growth

curves have been normalized by dividing the time by the total growth time (t∗ = t/td ), and

the volume by the departure volume (V ∗
= V /Vd ). However, as the growth curves are not

similar when varying the wall superheat conditions and the intensity of the electric fields

applied, it is more difficult to make meaningful comparisons. Detailed figures showing non-

dimensional growth curves for each upper electrode voltage can be found in Appendix G.

5It should be noticed that the occurrence of coalescence seems even more stochastic in the presence of

electric fields.
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Figure 6.8: Mean bubble frequency vs. wall superheat.

The effects of the voltage on non dimensional bubble growth is shown in Fig. 6.9. It is

observed that with high electric fields6, the bubble growth is more linear. The typical change

of slope in the growth curve appear late for 0.6< t∗ < 0.8.

The effects of the wall superheat on non dimensional bubble growth in the presence of

electric fields is shown in Fig. 6.10. No clear trend can be detected.

All growth curves in the presence of electric fields are compared to the experimental data

in the absence of electric field and to power laws of V∗
= t∗0.5 and V ∗

= t∗. It can be observed

that all growth curves in the presence of electric fields are scattered around the growth curve

obtained in the absence of electric field, but stay mostly within the range of power law V ∝

t 0.5→1. The exponent of the power remaining below unity, the volumetric growth rate7 is

decreasing during bubble growth, as it was already observed in the absence of electric field8.

6i.e. for an electrode voltage of 24 kV
7that is roughly proportional to the vapour production rate
8See Section 5.1.4 for more details in the absence of electric fields.
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Figure 6.9: Non dimensional bubble growth with different intensities of the electrode volt-

age.
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Figure 6.10: Non dimensional bubble growth in the presence of electric fields for different

wall superheat conditions.
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Figure 6.11: Comparison of non dimensional bubble growth in the presence of electric fields

with experimental data without electric fields.

6.1.4 Bubble shape and deformation

As discussed in Section 5.1.5, the bubble shape plays a key role in the description and under-

standing of boiling. Indeed, forces that cause bubble detachment and liquid motion in the

vicinity of the bubble are closely related to the shape of the bubble.

Bubble elongation due to the presence of electric fields is the first immediate visual con-

sequence of the application of electric fields, as can be seen in the images of Fig. 6.1, Fig. 6.2

and Fig. 6.3. Bubble height and width, and especially the ratio of the height over the width9

are parameters often used to describe the deformation of a bubble cause by electrohydrody-

namic effects.

The height and width of several bubbles at various wall superheat conditions are shown

for a voltage of 12 kV, 18 kV and 24 kV in Fig. 6.12, 6.13 and 6.14 respectively. Despite the

oscillations and the scattering of the data, the same trends are observed at all electric fields

conditions. Similarly to the observations without electric field (see Section 5.1.5), the height

quickly exceeds the width with the formation of the bubble neck. This difference tends to

increase with the intensity of the applied electric fields. The bubble width at detachment

remains constant with a value of about 0.85 mm, whereas the bubble height at detachment

increases from 1.2 mm for an electrode voltage of 12 kV to 1.45 mm for an electrode voltage

9commonly referred to as aspect ratio AR
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of 24 kV.
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Figure 6.12: Bubble height and width for a voltage electrode of 12 kV.

The height over width ratio, namely the aspect ratio, is plotted for various wall super-

heat conditions and upper electrode voltages. Detailed figures at each electrode voltages are

shown in Appendix H, and a figure with all conditions is shown in Fig. 6.15. The aspect ra-

tio in the absence of electric field is plotted in magenta, and the aspect ratio with electrode

voltages of 12 kV, 18 kV and 24 kV are plotted in red, green and blue respectively (i.e. from

bottom to top of the figure).

Clears trends can be observed in Fig. 6.15 concerning the evolution of the aspect ratio

during bubble growth. At any time of the bubble growth, the higher the voltage, the higher

the aspect ratio.

The aspect ratio at detachment has been investigated by Chen et al. [29] and by Peng et
al. [151]. The aspect ratio has been compared to a non-dimensional number, called elec-

tric Weber number Wee , that describes the ratio between the electric forces and the surface

tension forces. The electric Weber number is expressed as follows:

Wee =
ε0εr l E 2

0Req

σ
(6.1)

with ε0 the void permittivity10, ǫr l the relative permittivity of the liquid phase, E0 the initial

10ε0 = 8.854×10−12 F·m−1
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Figure 6.13: Bubble height and width for a voltage electrode of 18 kV.
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Figure 6.14: Bubble height and width for a voltage electrode of 24 kV.
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Figure 6.15: Height over width ratio with different electrode voltages.

homogeneous electric field11, Req the equivalent radius of the bubble at detachment and σ

the surface tension between the liquid and vapour phases.

The mean aspect ratio at detachment in the present experimental conditions is shown in

Fig. 6.16 together with experimental data from Chen et al. [29] and Peng et al. [151]. The

same trends are observed with different aspect ratios in the absence of electric fields.

In order to further compare the effects of electric fields on the aspect ratio, the relative

increase of the aspect ratio with respect to the case of the absence of electric field is plotted

as a function of Wee and shown in Fig. 6.17 together with experimental data from Cho et al.
[35], Chen et al. [29] and Peng et al. [151]. The present experiment data are close to the mean

values of the experimental data from the literature. The increase of aspect ratio as a function

of the electric Weber number is roughly linear.

6.2 Coalescence of bubbles

As detailed in Section 5.3, during boiling in the absence of an electric field, the coalescence

phenomenon corresponds to the case where two or more bubbles come so close to each

other that they merge to form a single resulting bubble. Coalescence plays a prominent role

11That is: in the absence of a bubble. E0 is then the upper electrode voltage divided by the distance between

the electrodes.
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Figure 6.16: Comparison of aspect ratio to experimental data from Chen et al. [29] and Peng

et al. [151].
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Figure 6.17: Aspect ratio increase with electric field. Comparison to experimental data from

Cho et al. [35], Chen et al. [29] and Peng et al. [151].
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162 CHAPTER 6. BUBBLE DYNAMICS IN THE PRESENCE OF ELECTRIC FIELDS

in boiling heat transfer as it is the source of liquid motion12 at the vicinity of the merging

bubbles but it can also inhibit the liquid motion towards the heated surface13 as the result-

ing bubbles have a larger volume and inertia to move away from the boiling surface. Coa-

lescence is thus the key phenomenon that may lead to a maximum heat transfer rate in the

early fully developed boiling regime (see Section 2.2 and also Liu et al. [117]) and is also a

phenomenon that may contribute to the triggering of the critical heat flux by preventing the

liquid from rewetting the boiling surface [23].

Even being such an important phenomenon in boiling, coalescence is poorly under-

stood, as it can be inferred from the recent studies focusing on this phenomenon [18, 68, 69].

Coalescence is indeed a stochastic phenomenon as many temporal and spatial parameters

related to the occurrence of boiling can usually not be measured or determined.

In the presence of electric fields, the coalescence phenomenon has been rarely inves-

tigated at the scale of two neighbouring bubbles. Liu et al. [117] have proposed a review

on the behaviour of neighbouring bubbles in the absence of electric fields. They have in

the same study investigated the influence of a non-uniform electric field on the behaviour

of single and neighbouring injected gas bubbles in a dielectric fluid. They have noted that

for the single bubble experiments, the detaching bubble is either deformed away or towards

the upper electrode. For the case of two bubbles injected simultaneously in neighbouring

orifices, their tendency was to repulse each other, which prevents coalescence at moderate

volumetric flow rates.

To the author’s best knowledge, no past study has investigated the influence of a uniform

electric field on the coalescence of bubbles growing in pairs. The following observations and

results come from experiments performed using the double nucleation site test sample as

described in Section 5.3. Bubble are growing on two identical artificial nucleation sites, lo-

cated at a distance of 660µm from each other. A same wall superheat condition between 8.0

and 8.2 K is ensured by adjusting the heat flux supplied to the test sample. The upper elec-

trode, located 8.7 mm above the heated surface, is connected to the high voltage generator.

Positive voltages of respectively 0, 6, 12, 18, 24 and 30 kV are imposed to the upper electrode

in 6 different experiments.

It should be noted first that in each experiment, the bubbles growing on the artificial nu-

cleation site located on the left side of the photos always grow slightly faster14. For low to

moderate electrode voltages between 0 and 12 kV, the scenarii are very similar. The bubbles

nucleate at about the same time at each nucleation site, and then coalesce after a growing

period between 120 and 150 ms (see Fig. 6.18). The resulting bubble immediately detaches

from the surface, and new bubbles are instantaneously nucleating at both nucleation sites.

Some vertical coalescence events may occur between the new growing bubbles and the pre-

viously merged bubble, and a new cycle begins.

12and thus enhanced convection
13and prevent the rewetting of the surface
14As explained by Bonjour et al. [18], the heat flux inside the wall may be deflected towards one of the

nucleation sites.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2012ISAL0032/these.pdf 

© [S. Siedel], [2012], INSA de Lyon, tous droits réservés



6.2. COALESCENCE OF BUBBLES 163
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Figure 6.18: Photos of bubble interaction between bubbles from neighbouring nucleation

sites, at a high wall superheat of ∆TW ≈ 8.1 K and an upper electrode voltage is 12 kV.

Coalescence event occurs after 147 ms of growth. Time difference between two photos is

∆t ≈ 3.3 ms.

For higher voltages imposed to the upper electrode, the bubbles tend to repulse each

other because of the electric forces. Consequently, the coalescence phenomenon occurs

later in the growth for an electrode voltage of 18 kV15 (see Fig. 6.19). For an even higher

electrode voltage of 24 kV (see Fig. 6.20), the repulsion between the bubbles prevent them

from merging before detachment and the coalescence event occurs after detachment. For

the highest electrode voltage of 30 kV, the bubble do not merge at all (see Fig. 6.21).

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 6.19: Photos of bubble interaction between bubbles from neighbouring nucleation

sites, at a high wall superheat of ∆TW ≈ 8.1 K and an upper electrode voltage is 18 kV.

Coalescence event occurs after 342 ms of growth. Time difference between two photos is

∆t ≈ 3.3 ms.

Such a repulsion between bubbles growing side by side can be explained by the loss of ax-

isymmetry of the system. The electric forces acting on the fluid particles for a single bubble

injected in a uniform electric field has been calculated by Zu and Yan [201] (see Fig. 6.22).

It can be seen in Fig. 6.22b that the electric potential distribution is uniform far from the

bubble. However, as the vapour and liquid phases have different dielectric permittivity con-

stants16, the distribution of the electric potential is distorted by the bubble. At the vicinity of

the interface, the distribution is not uniform.

15namely approximately 342 ms instead of 147 ms for an electrode voltage of 12 kV
16The simulation performed bu Zu and Yan [201] is adiabatic. In the case of boiling, the temperature field

also causes a modification of the electric properties distribution.
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 6.20: Photos of bubble interaction between bubbles from neighbouring nucleation

sites, at a high wall superheat of ∆TW ≈ 8.1 K and an upper electrode voltage is 24 kV. Coa-

lescence event occurs after one of the bubbles detached from the surface. Time difference

between two photos is ∆t ≈ 3.3 ms.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 6.21: Photos of bubble interaction between bubbles from neighbouring nucleation

sites, at a high wall superheat of ∆TW ≈ 8.2 K and an upper electrode voltage is 30 kV. No

coalescence occurs. Time difference between two photos is ∆t = 5 ms.

(a) Electric forces on the fluid particles (b) Distribution of constant electric potential

Figure 6.22: Illustration of the electric forces acting on the fluid particles of a single axisym-

metric bubble (a) in a pseudo-uniform electric field (b), by Zu and Yan [201].
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6.3. BUBBLE DEPARTURE AND RISE 165

In the case of a single bubble, the non-uniform distribution of the electric potential

within the system still presents an axial symmetry. As a consequence, the electric force dis-

tribution presents the same symmetry. In the case of two bubbles growing side by side, the

axisymmetry of the electric potential distribution is lost. If the bubbles are close enough,

the distortion of the electric potential distribution caused by the presence of the bubbles

impacts the distribution of the forces acting on the fluid particles, leading to the repulsion

between the bubbles. This loss of symmetry is the cause of the modification of the bubble

interactions in Fig. 6.18 to 6.21.

6.3 Bubble departure and rise

As detailed in Section 5.4, bubble motion and rise after detachment plays an important role

in boiling heat transfer by enhancing liquid motion and convection. However, bubble rise is

complex and bubble trajectory and velocity are not simple to predict. Bubble rise presents

stochastic parameters due to the influence of:

• bubble exact shape at departure and during rise

• bubble shape oscillations due to previous coalescence events or interaction with other

bubbles

• convective motion of the liquid around the bubble during its rise

• bubble exact volume at departure

The consequence of these unpredictable parameters is a large variation of the behaviour of

bubbles during their rise.

In the presence of electric fields, bubble rise can be modified due to the changes, induced

by EHD, of:

liquid motion: the convective motion of the liquid phase is strongly affected by the electro-

hydrodynamic effects (see Section 4.1.4).

bubble shape: the shape of the interface is strongly modified by EHD (see Section 6.1.4).

The bubble tends to be elongated in the direction of the electric field. This is the case

for the shape of the bubble at departure. This is probably also the case for the shape of

the bubble during its rise.

bubble volume at departure: as detailed in Section 6.1.1, many variations are observed

concerning the volume of the departing bubble at departure.

To the author’s best knowledge, the impact of a homogeneous electric field on bubble

rise, and particularly on the bubble maximum velocity, has not been investigated before the

present study. The following results have been presented during the 7th International Con-

ference on Boiling Heat Transfer [170], as well as in a publication in Experimental Thermal

and Fluid Science [171].
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166 CHAPTER 6. BUBBLE DYNAMICS IN THE PRESENCE OF ELECTRIC FIELDS

As for bubble rise in the absence of electric field17, it has been observed in the presence

of EHD that the departing bubble accelerates vertically until reaching a maximum velocity.

When this maximum velocity is reached, the bubble randomly changes its direction. The

present investigation focuses on the maximum vertical velocity reached before the change

of trajectory.

The grid mesh electrode was located at a distance of 1.42 mm above the heated surface

in order to follow the trajectory of the bubbles over a distance of approximately 1.2 mm.

Several independent bubble rises were recorded for electrode voltages of -30, -15, 0, 15 and

30 kV. For each voltage conditions, the data samples included images for 8 to 20 independent

rises. The recorded images were post-processed in order to measure the maximum vertical

velocity.

The measured maximum velocities were scattered around a mean value in each data

sample. The scattering was due to the measurement uncertainty and to the stochastic fea-

tures of the phenomenon itself. It was assumed that the measured values were following a

normal distribution and that the mean value of each sample could be evaluated using a Stu-

dent t-distribution. The mean values of maximal velocities and the 95 % confidence intervals

associated are shown in Fig. 6.23.
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Figure 6.23: Maximum velocities of rising bubbles in the presence of electric fields. Mean

values and 95 % confidence interval on the mean values of the data samples.

It is evident that the peak vertical velocity of the bubbles decreases with increasing elec-

tric field intensity and the effect is more prominent with negative polarity. The fact that the

17See Section 5.4 for a detailed analysis.
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6.3. BUBBLE DEPARTURE AND RISE 167

same general trend is observed for both polarities suggests that the dielectrophoretic com-

ponent of the force might be responsible for this trend, since this force is independent of

polarity. For the negative polarities, it seems that the dielectrophoretic force and the elec-

trophoretic force tend to act together to cause the drop in the peak velocity to be more pro-

nounced.
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The present chapter presents original results concerning bubble dynamics during boiling
in the presence of electric fields. As a continuation of chapter 5, the results are organized as
a comparative study between bubble dynamics with and without EHD.

• The repeatability of the bubble growth cycles has first been investigated, outlining
more stochastic features and hence more scattering in the results in the presence of
electric fields.

• No clear modification of the trend of the bubble frequency vs. the wall superheat was
found. Similarly, no clear impact of electric field on the volume of departing bubbles
was observed. It can thus be concluded that the electric forces acting on the bubble
play a minor role in the bubble detachment.

• The bubble growth curve was found to be strongly modified by electrohydrodynamic
effects. The convective motion of the liquid being enhanced by EHD, the thermal
boundary layer thickness is modified, leading to changes in heat and mass transfer
at the bubble interface.

• Bubbles were elongated in the direction of the electric field, in accordance with other
studies on the subject. The relationship between the aspect ratio and the electric Weber
number compared well with other experimental results.

• The coalescence phenomenon between bubbles growing side by side was investigated.
It was noted that for high electric fields applied above the heated surface, the bubbles
were repealing each other. Consequently, the bubbles were merging later or the coales-
cence was even suppressed. This electrohydrodynamic effect was explained as a loss of
symmetry of the electric field intensity around the bubbles.

• The modification of bubble rise and particularly of the bubble maximum velocity was
eventually investigated. It was found that for high electric fields, the maximum veloc-
ity was reduced. In the case of negative polarities of the upper electrode, the velocity
reduction was more noticeable.
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Chapter 7

Conclusion

7.1 Synthesis

The complexity of boiling heat transfer and bubble dynamics has been explored in the

present thesis. The up-to-date knowledge and hypotheses concerning several aspects of

boiling have been compared to experimental measurements. The effects of electrohydro-

dynamics on heat transfer and on bubble dynamics were also investigated experimentally.

To achieve such objectives, an experimental facility has been designed and built along

with experimental test samples allowing boiling on a single or on two neighbouring arti-

ficial nucleation sites. Boiling of n-pentane took place on a copper surface in a saturated

bulk liquid at atmospheric pressure. In EHD experiments, an electric field was imposed

between the boiling surface and a grid mesh electrode located above the heated surface.

Several heat flux conditions were investigated, causing wall superheats ranging from about

1 to 10 K. Several electric field conditions were investigated up to a mean absolute electric

field of about 40 kV·cm−1.

The heat flux transmitted to the liquid through the heated surface was measured, as well

as the bulk and surface temperatures. The boiling events were recorded by a high-speed

camera, and a specifically-developed image processing allowed the determination of instan-

taneous geometric parameters of the bubbles such as the volume, the height of the center of

gravity, the angle of the interface to the horizontal plane and the curvature along the inter-

face. Videos of convective motion of the fluid were also recorded at high frequency using a

directional back-light.

The convective heat transfer was first studied. The convective structure was observed

experimentally and simulated numerically with relatively good agreement. The existence of

a central plume located above the center of the heated surface was highlighted, showing the

natural flow of superheated liquid towards the nucleation site vicinity. Convective instabili-

ties were observed experimentally and in the simulation, revealing periodic variations of the

169
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170 CHAPTER 7. CONCLUSION

thermal conditions above the nucleation site. The enhancement of convective heat transfer

by means of electrohydrodynamics was quantified, and the modifications of the convective

structures that cause such an enhancement were described experimentally and partially ex-

plained.

The bubble growth dynamics was analysed experimentally and empirical growth laws

were compared to existing analytical models. Significant differences were highlighted which

lead us to discuss the validity of the assumptions on which the common models are based.

Bubble shape and oscillations were investigated, showing the interaction between succes-

sive bubbles from the same nucleation site. A extensive review of the forces acting on the

bubble was proposed, and the full computation of the momentum balance during bub-

ble growth was performed. The evolution of the curvature of the bubble along its inter-

face and during its growth was measured. These measurements gave original indications

for the mechanisms governing bubble detachment. The coalescence phenomenon between

two bubbles growing side by side was investigated, and the propagation at high velocity of a

wave front during the merging process was shown. Bubble rise trajectory and velocity was

studied, and the maximum velocity reached was compared to existing models.

The bubble dynamics was also investigated in the presence of electric fields. The bubble

growth curve was shown to be modified by electrohydrodynamic effects. On the contrary,

no clear influence of the electric field was found concerning the bubble departing frequency

and the volume at departure. The bubble elongation during the growth was quantified and

compared to existing experimental data. The interactions between two bubbles growing side

by side were also studied. At high electric field intensity, because of the non symmetric char-

acter of the electric field caused by the presence of the bubbles, the electric forces tend to

make the bubbles repel each other, preventing them from merging. The bubble maximum

rise velocity has eventually been investigated in the presence of electric fields of positive and

negative polarities. Whatever the polarity, increasing the electric field intensity decreases the

bubble maximum velocity. This is nevertheless more noticeable for negative polarities.

7.2 Perspectives

The boiling phenomenon being highly complex and a constant subject of research for over a

century, the present study does not claim to resolve and explain all of the key issue encoun-

tered in its mechanical description and prediction. However, the author hopes that this work

brings its own contribution to the global understanding of boiling. Some aspects of boiling

were deeply studied, but other angles of inquiry were just introduced. Specific areas that

should be given priority for future works in the continuity of this thesis are suggested below:

• After the investigation of the forces acting on a bubble in the absence of electric field,

a similar study should be performed in the presence of electric fields. Multi-physics

numerical simulations could be realised simultaneously in order to estimate to resul-

tant of the electric forces acting on the interface. In such way, the computation of the
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momentum balance during bubble growth could be performed and yield a fine de-

scription of the impact of the electric forces on bubble dynamics. Knowledge of the

electric forces and of their influence on boiling provides a new tool to investigate boil-

ing. By changing the relative influence of the different forces, the application of EHD

on a boiling surface can be used to further understand boiling itself.

• This work has shown a decreasing vapour production rate during bubble growth. This

trend differs from usual models of bubble growth and questions the validity of the as-

sumptions these models rely on. Although explanations concerning the actual thermal

field around the bubble have been introduced to account for this trend, an accurate

numerical simulation of boiling in the conditions of these experiments could provide

a better understanding of the thermal environment in which the bubble grows. How-

ever, such a simulation requires the development of a specialized code and arise issues

such as the modelling of the nucleation process, of the triple line and of the interface.

It is a multi-scale problem to properly simulate the triple line and the whole bubble.

Furthermore, the thermal field, the velocity field and the phase change process are

intimately coupled.

• Bubble nucleation remains a key problem for the prediction of boiling, but was not in-

cluded in this study. The nucleation process strongly affects the stability of the nucle-

ation site, as well as the waiting time between successive bubbles. Obtaining a stable

nucleation site (i.e. a nucleation site in which bubbles nucleate at a reasonably con-

stant frequency) was a challenge in the design and fabrication of the experimental test

sample, and the waiting time influences the thermal field in which a new bubble nu-

cleate and the interaction between successive bubbles. A better understanding of the

nucleation process is required and necessitates specific studies on the subject as mid

to long term perspectives.

Different approaches have been attempted in past studies in an attempt to describe

and predict nucleation. A purely theoretical description of the process is able to cor-

rectly predict homogeneous nucleation within a pure liquid, but already shows its lim-

its when predicting nucleation on a plane surface. This approach is not suitable in the

case of nucleating from a nucleation site like in the present experimental study as only

very basic geometrical shapes can be taken into account. Another approach statisti-

cally predicts the size of the active nucleation sites depending on the wall superheat.

This was attempted with varying success ([41], page 142), and coupled with a nucle-

ation site size distribution, the active nucleation site density may be obtained. These

can be used for the description and prediction of boiling on a natural surface, but it is

not a suitable method for the case of a single nucleation site.

Another approach and promising technique is the molecular dynamics numerical sim-

ulation of nucleation (e.g. [165]). Combined with boiling experiments on a perfectly

controlled nucleation site, much information concerning the nucleation process and

its prediction could be achieved. The main issue when using this approach would be

to investigate the transition from the microscopic scale to the scale of a bubble.
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Appendix A

Nomenclature

Latin letters

A Helmholtz free energy J

cp specific heat capacity J·kg−1
·K−1

C curvature m−1

D bubble diameter m

E electric field intensity V·m−1

E energy J

fd bubble departure frequency s−1

f body force N·m−3

F force N

g gravity acceleration ≈ 9.8 m·s−2

h heat transfer coefficient W·m−2

hcg height of the center of gravity m

h f g latent heat of vaporization J·kg−1

hz height of the bubble m

IR Robinson and Judd criterion –

K Added mass coefficient –

Lc capillary length m

n number of molecules mol

N number of elements per unit of volume m−3

P pressure Pa

q heat flux W·m−2

r length in the radial direction m

R radius m

Ra arithmetic average of absolute values of height m

S surface m2

S entropy J·kg−1
·K−1

t time s

T temperature K
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192 APPENDIX A. NOMENCLATURE

u velocity m·s−1

U voltage V

v velocity m·s−1

V volume m3

W work J

x length in the x-direction m

y length in the y-direction m

z length in the z-direction m

Greek letters

α angle rad

αi thermal diffusivity of phase i m2
·s−1

β thermal expansion coefficient K−1

ε absolute electric permittivity F·m−1

εr relative electric permittivity –

εr es residual error on the force balance N

λ thermal conductivity W·m−1
·K−1

λC collision frequency s−1

µ dynamic viscosity kg·m−1
·s−1

µc chemical potential J·mol−1

ρ density kg·m−3

ρe free charges density C·m−3

σ surface tension N·m−1

θ contact angle rad

Hebrew letter

ℵ surface m2

Subscripts and superscripts

b relative to the bubble

base relative to the base of the bubble

buoy buoyancy
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cg center of gravity

C L contact line

Cu copper

d at detachment or departure

l liquid phase

LI liquid inertia

mom momentum

nc nucleation site

r radial direction

sat saturation

v vapour phase

v f viscous forces

v s viscous stress

W heated wall or surface

x x-direction

y y-direction

z z-direction

σ surface tension

∗ dimensionless, or at equilibrium

Non dimensional numbers

As Siedel aspect ratio parameter

Fr Froude number

Gr Grashof number

Ja Jakob number

Ma Marangoni number

Prd Prandtl number

Ra Rayleigh number

Re Reynolds number

We Weber number

Wee Electric Weber number

Constants

k Boltzmann constant ≈ 1.380 650 3×10−23 m2
·kg·s−2

ε0 electric permittivity of absolute vacuum ≈ 8.85×10−12 F·m−1
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Appendix B

Measurement of the height of the

center of gravity

For volume and center of gravity calculations, the bubble is divided into slices of 1 pixel

height, as shown in Fig. B.1. Each slice is considered as a cylinder (thus axisymmetric), and

the volume is the sum of each cylinder. Two methods were considered in order to compute

the height of the center of gravity:

Method 1: The height of the center of gravity hcg is obtained by dividing the sum of the

volume each cylinder Vi weighted by its average height zi by the total volume of the

bubble V .

hcg =

∑

i Vi zi

V
(B.1)

Method 2: The height of the center of gravity hcg is considered as the height at which half of

the volume is below and half of the volume is above.

Figure B.1: Volume discretization of a bubble
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196 APPENDIX B. MEASUREMENT OF THE HEIGHT OF THE CENTER OF GRAVITY

The second method is inaccurate and represents rather a volume median height. It was

used by Siedel et al. [169], and the present Appendix estimates the error that can be caused

by the use of Method 2.

For a bubble growing at a superheat of 2.6 K, the evolution of the height of the center

of gravity is shown in Fig. B.2 using both Method 1 and Method 2. It can been seen that

Method 2 slightly overestimates hcg . However, the trends and evolutions are similar, and the

overestimation remains below 1 % in all cases.
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Figure B.2: Height of the center of gravity for a bubble at a wall superheat of 2.6 K.
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Appendix C

Added mass coefficients

The expression considered for the liquid inertia and added mass force is equation 5.17:

−→
F LI = K1ρl

dhcg

dt

dV

dt

−→
k +K2ρl V

d2hcg

dt 2

−→
k (C.1)

with K1 and K2 the added mass coefficients, ρl the liquid density, hcg the height of the center

of gravity and V the volume of the bubble.

Some values of the added mass coefficients K1 and K2 may be found for study cases with

simplistic geometries. Two different study cases are considered here.

C.1 Spherical bubble growing in an infinite liquid at rest

The case of a spherical bubble growing in an infinite liquid at rest, in the absence of a wall

was investigated by Magnaudet et al. [121] and cited by Duhar [55]. The expression of the

liquid inertia and added mass force given is:

−→
F LI =

1

2
ρl

d

dt

[

V −−→ucg
]

(C.2)

with −−→ucg the velocity of the center of gravity of the bubble.

Equation C.2 can be developped into:

−→
F LI = 0.5ρl

dhcg

dt

dV

dt

−→
k +0.5ρl V

d2hcg

dt 2

−→
k (C.3)

the added mass coefficients being here K1 = 0.5 and K2 = 0.5.
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198 APPENDIX C. ADDED MASS COEFFICIENTS

C.2 Hemispherical bubble growing on a plane wall

The case of a hemispherical bubble growing on a wall was investigated by Klausner et al. [96]

in a fluid at rest and by Legendre et al. [111] in a linear shear flow. In such a study case,

the height of the center of gravity and the volume of the bubble can both be expressed as

functions of the radius R of the hemisphere, and their time derivatives as functions of Ṙ and

R̈:

hcg =
3

8
R (C.4)

dhcg

dt
=

3

8
Ṙ (C.5)

d2hcg

dt 2
=

3

8
R̈ (C.6)

V =
2

3
πR3 (C.7)

V =
6

3
πR2Ṙ =

3V

R
Ṙ (C.8)

Equation C.1 can be reformulated into:

−→
F LI = ρl V

(

K1 ×
9

8R
Ṙ2

+K2 ×
3

8
R̈

)

−→
k (C.9)

The liquid inertia force expressed by Legendre et al. [111] consists of two terms: the first

term depends on the velocity of the shear flow and is equal to zero if the liquid is at rest, and

the second term is of the same form that Equation C.9 with K1 = 2 and K2 = 4.

Equation C.1 can also be reformulated into:

−→
F LI = ρlπR2

(

K1 ×
3

4
Ṙ2

+K2 ×
1

4
R̈R

)

−→
k (C.10)

The liquid inertia force expressed by Klausner et al. [96] is of the same form than Equa-

tion C.10 with K1 = 2 and K2 = 4.
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Appendix D

Interpolation of the angle α for the

force computation

The angle α, defined in the liquid phase at the base of the bubble between the liquid-vapour
interface and the horizontal plane is measured of the recorded images as described in Sec-

tion 5.2.2.2.1. The experimental data points of α are shown in Fig. D.1.
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Figure D.1: Values of α measured on the images with a wall superheat of 2.1 K.

The uncertainty on the measurement of α is not possible to estimate except from the dis-
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200 APPENDIX D. INTERPOLATION OF THE ANGLE α FOR THE FORCE COMPUTATION

tribution of the data points, and no particular function is expected to describe the evolution

of α during the bubble growth. The only hypothesis chosen is to consider a smooth time

evolution of α.

It is however comfortable for the computation of the forces to fit the time evolution of α

with a simple function. A priori, any function can be chosen. It is common to choose simple

functions such as a straight line, a polynomial function, a power or an exponential function.

A polynomial data fit is chosen due to its simplicity .

Figure D.2 shows the data fit of the time evolution of α with several polynomial functions

of orders ranging from 3 to 9. The decrease of α for t∗ < 0.2 is fairly represented by all func-

tions. For 0.2 < t∗ < 0.6, the angle is underestimated by polynomials of order 3 and 4. The

wavy shape of the polynomial function does not necessarily represents the real evolution of

α, and the amplitude of the waves is high for the highest orders. It can thus be concluded

that polynomial functions of order between 5 and 8 fairly represent the experimental data.
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Figure D.2: Data fit of the time evolution of α with polynomial functions of several orders

between 3 and 9.

The consequence of the order of the polynomial function chosen can be evaluated in

Fig. D.3. Few differences can be observed between the curves. It can be concluded that

any polynomial function of order ranging from 5 to 8 is suitable for the interpolation of α.

It should also be noted that the wavy shape of the curve might be only due to the use of a

polynomial function.
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Figure D.3: Resultant of the adhesion forces using several polynomial data fit of α.
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Appendix E

Derivation of the height of the center of

gravity and of the volume of the bubble

The momentum variation of the bubble can be expressed as follows (see Section 5.2.1.1):

−→
F mom = ρv

dhcg

dt

dV

dt

−→
k +ρv V

d2hcg

dt 2

−→
k (E.1)

with
−→
k the unit vertical vector in the upward direction and hcg the height of the center of

gravity.

Similarly, the resultant of the liquid inertia forces can be expressed as follows (see Section

5.2.1.2):

−→
F LI = K1ρl

dhcg

dt

dV

dt

−→
k +K2ρl V

d2hcg

dt 2

−→
k (E.2)

with 0.5< K1 < 2 and 0.5< K2 < 4. For the present appendix, unity is arbitrary chosen for the

values of both K1 and K2.

Apart from the thermodynamic properties of pentane, these equations include the vol-

ume of the bubble and its first time derivative, and the first and second time derivatives of

the height of the center of gravity. Both the volume of the bubble and the height of its center

of gravity are measured on the recorded images.

In order to obtain the time derivatives of the measured data, it is suggested to fit the

data with a simple and derivable function. No particular function is expected to describe

accurately these measures, so a polynomial function is chosen due to its simplicity. It should

be noted that a relatively high uncertainty is expected for the first time derivative, and even

more for the second time derivative of the measurements.

Figure E.1 shows the height of the center of gravity of a bubble at a wall superheat condi-

tion of 2.1 K. Several polynomial functions are used to fit the experimental data, with orders
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VOLUME OF THE BUBBLE

ranging from 7 to 8. Although all curves capture the experimental data with an overall good

agreement, two observations can be made:

• The fitting of the first instants are strongly related to the location of the time origin.

Yet, this time origin is arbitrary chosen by visual observation of the recorded images.

• An acceleration of the bubble can be observed just before departure. Yet, only poly-

nomial functions with odd orders can capture such an evolution. It is shown that only

polynomial functions of order 7 and 9 correctly fit the data before departure.
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Figure E.1: Polynomial data fit of several orders of the time evolution of the height of the

center of gravity of a bubble at a wall superheat of 2.1 K.

Figures E.2 and E.3 show the time evolution of the first and second derivatives of the

polynomial functions defined in Fig. E.1. It is again observed that only polynomial functions

of order 7 and 9 correctly capture the behaviour of the bubble before detachment. It can

be concluded that only an odd order polynomial function can be used for the fitting of the

height of the center of gravity.

Figure E.4 shows the time evolution of the volume of the bubble. The oscillations that

can be observed come from the shape oscillations of the bubble (see Section 5.1.5) that im-

pact the measurement of the bubble, but should not necessarily be interpreted as volume

oscillations. The fitting function should thus smooth the oscillations.

The time evolution of the volume is fitted with several polynomial functions of order

ranging from 5 to 8 (see Fig. E.4). No obvious differences can be observed visually from the

different fitting functions.
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Figure E.2: Time first derivative of the previously defined polynomial functions.
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Figure E.3: Time second derivative of the previously defined polynomial functions.
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Figure E.4: Polynomial data fit of several orders of the time evolution of the volume of a

bubble at a wall superheat of 2.1 K.

The derivative of the fitting functions are computed and plotted in Fig. E.5 in order to

obtain the time derivative of the volume of the bubble. The evolutions observed are smooth

for polynomial functions of 5th and 6th order, whereas waves appear for higher orders. These

waves can not be explained by a physic mechanism and are probably due to mathematical

artefacts. For a proper description, a polynomial function of 5th order seems suitable.

The impact of the order of the polynomial function chosen on the momentum variation

and on the resultant of the liquid inertia forces needs to be estimated. As both forces are

proportional to each other, only the resultant of the liquid inertia forces will be investigated.

Following the previous remarks, two different cases will be considered:

Case A: A 7th order polynomial function is used to fit the time evolution of the height of the

center of gravity of the bubble, and a 5th order polynomial function is used to fit the

time evolution of its volume.

Case B: A 9th order polynomial function is used to fit the time evolution of the height of the

center of gravity of the bubble, and a 5th order polynomial function is used to fit the

time evolution of its volume.

Figure E.6 shows the time evolution of the resultant of the liquid inertia forces for cases

A and B. As other forces are not estimated at the beginning of the bubble growth, the com-

putation is performed only for 0.05< t∗ < 1.
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Figure E.5: Time first derivative of the previously defined polynomial functions.
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Figure E.6: Resultant of the liquid inertia forces for two different set of polynomial data fit for

the volume and the center of gravity of the bubble.
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VOLUME OF THE BUBBLE

It can be observed from Fig. E.6 that both cases show similar results. The same trends

and order of magnitude are found.
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Appendix F

Measurement and computation of the

forces at a wall superheat of 4.7 K

The present appendix contains numerical data and plots for the computation of the force

balance at a wall superheat of 4.7 K. Only raw figures are provided as the full development of

the calculation is presented in Section 5.2.2.2 at a wall superheat of 2.1 K.
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Figure F.1: Angle α during bubble growth at a wall superheat of 4.7 K.
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Figure F.2: Resultant of the adhesion forces acting on a bubble at a wall superheat of 4.7 K.
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Figure F.3: Height of the center of gravity of a bubble at a wall superheat of 4.7 K.
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Figure F.4: Time first derivative of the height of the center of gravity of a bubble at a wall

superheat of 4.7 K.
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Figure F.5: Time second derivative of the height of the center of gravity of a bubble at a wall

superheat of 4.7 K.
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Figure F.6: Volume of a bubble at a wall superheat of 4.7 K.
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Figure F.7: Volumetric growth rate of a bubble at a wall superheat of 4.7 K.
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Figure F.8: Momentum variation of a growing bubble at a wall superheat of 4.7 K.
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Figure F.9: Resultant of the liquid inertia forces acting on a growing bubble at a wall super-

heat of 4.7 K.
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Figure F.10: Growth of the volume V and V1 of a bubble at a wall superheat of 4.7 K.
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Figure F.11: Resultant of the first and second buoyancy terms acting on a bubble at a wall

superheat of 4.7 K.
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Figure F.12: Curvature at the apex of a bubble at a wall superheat of 4.7 K.
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Figure F.13: Resultant of the third buoyancy term acting on a bubble at a wall superheat of

4.7 K.
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Appendix G

Non dimensional bubble growth at

various electrode voltage

This Appendix shows detailed non-dimensional bubble growth for various wall superheat

conditions for an upper electrode voltage of 12 kV, 18 kV and 24 kV in respectively Fig. G.1,

Fig. G.2 and Fig. G.3.
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Figure G.1: Non dimensional bubble growth for different wall superheat conditions with an

upper electrode voltage of 12 kV.
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APPENDIX G. NON DIMENSIONAL BUBBLE GROWTH AT VARIOUS ELECTRODE

VOLTAGE
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Figure G.2: Non dimensional bubble growth for different wall superheat conditions with an

upper electrode voltage of 18 kV.
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Figure G.3: Non dimensional bubble growth for different wall superheat conditions with an

upper electrode voltage of 24 kV.
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Appendix H

Aspect ratio at various electrode

voltages

This Appendix shows height over width aspect ratios for various wall superheat conditions

for an upper electrode voltage of 12 kV, 18 kV and 24 kV in respectively Fig. H.1, Fig. H.2 and

Fig. H.3.
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Figure H.1: Height over width aspect ratio for different wall superheat conditions with an

upper electrode voltage of 12 kV.
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Figure H.2: Height over width aspect ratio for different wall superheat conditions with an

upper electrode voltage of 18 kV.
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Figure H.3: Height over width aspect ratio for different wall superheat conditions with an

upper electrode voltage of 24 kV.
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