
HAL Id: tel-00875653
https://theses.hal.science/tel-00875653

Submitted on 22 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From key-based to content-based routing : system
interconnection and video streaming applications

Vincenzo Ciancaglini

To cite this version:
Vincenzo Ciancaglini. From key-based to content-based routing : system interconnection and video
streaming applications. Other [cs.OH]. Université Nice Sophia Antipolis, 2013. English. �NNT :
2013NICE4055�. �tel-00875653�

https://theses.hal.science/tel-00875653
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

T H È S E
pour obtenir le titre de

Docteur en Sciences

de l’Université de Nice - Sophia Antipolis

Mention : Informatique

Présentée et soutenue par

Vincenzo Ciancaglini

From key-based to content-based
routing: system interconnection and

video streaming applications

Thèse dirigée par Luigi Liquori

préparée à l’INRIA Sophia Antipolis, Projet LogNet

soutenue le 26 Juliet 2013

Jury :

Rapporteurs : Michela Meo - Politecnico di Torino

Seif Haridi - KTH, Stockholm

Guillaume Urvoy-Keller - I3S

Directeur : Luigi Liquori - INRIA Sophia Antipolis

Co-Directeur : Jean-Christophe Pazzaglia - SAP Research France

Président : Guillaume Urvoy-Keller - I3S

Examinateurs : Chadi Barakat - INRIA Sophia Antipolis

Michel Cosnard - INRIA

Pietro Michiardi - Eurecom





Acknowledgments

This thesis marks the conclusion of a great adventure that I started four years ago,

when I decided to give up the certainties of a well paid job as a software developer

to take the path, completely unknown to me at the time, of a researcher.

I figured, therefore, that the best way to address my biggest thanks is chrono-

logically.

Needless to say, I should begin thanking Luigi Liquori and Jean-Christophe

Pazzaglia, my advisor and co-advisor for making it possible for me to start this

new career of mine and finding the necessary fundings.

The first people I met when starting my studies where Laurent Vanni and Petar

Maksimović. To Laurent goes all my gratitude for the great time spent together

sharing an office and various alcoholic supplements to our coffee, and my best

whishes for its new married life and its career. Mr. Maksimović is probably the

main reason why most of my publications could boast a proper English syntax

and avoid, as much as possible, that “maccarone” flavour so many publications

from italian researchers feature (and most likely this acknowledgments too).

Furthermore, he has not been just a collegue, he has become a friend, who has

always been there for me to listen, encourage and help me throughout my work.

A special thanks goes to Alfredo Grieco, who is mostly reasponsible for the last

part of this thesis, for giving me the opportunity of working with him and with his

collaborators, Rossella Fortuna and Giuseppe Piro.

I should not even say it, but my family gets a special and honorable mention,

having always supported me in ways that not everybody can praise. To my dad

Gianfranco and my mom Marisa goes all my respect, my gratitude and my love.

While I approach the end of this adventure, looking forward at what lies ahead

in my life and my career, one final thought of appreciation goes to the reviewers

and members of the jury, who accepted to endure reading through the 160 pages

of this work, a task that in my view requires abilities and an amount of patience

no human creature could possibly have. Drawing the obvious conclusions from this

fact, I, for one, welcome our new alien overlords and promise not to reveal their

secret to our world leaders until the time comes.

In me they will find a loyal ally.





Contents

1 Introduction and scope of the thesis 1

1.1 Context of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Structured overlays and key-based routing . . . . . . . . . . . 2

1.1.2 Applications of overlay networks . . . . . . . . . . . . . . . . 4

1.1.3 Towards Content-Centric Networks . . . . . . . . . . . . . . . 5

1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Interconnection of overlay networks . . . . . . . . . . . . . . . 6

1.2.2 Content-based techniques in real-time video streaming . . . . 8

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I Design and modeling of interconnected overlay networks 13

2 Opportunistic routing on structured overlays 15

2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The Synapse Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 “White box” Synapse protocol definition . . . . . . . . . . . . . . . . 24

2.3.1 The GET operation . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 The PUT operation . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 The JOIN and INVITE operations . . . . . . . . . . . . . . . . 26

2.4 “Black box” Synapse Protocol definition . . . . . . . . . . . . . . . . 26

2.4.1 Accessing blackbox networks . . . . . . . . . . . . . . . . . . 26

2.4.2 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 The Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Impact of Synapse nodes and their connection degree . . . . . 31

2.5.3 Effects of Time-To-Live . . . . . . . . . . . . . . . . . . . . . 31

2.5.4 Connectivity and Peers’ churn . . . . . . . . . . . . . . . . . . 34

2.6 The Experimentations . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 JSynapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Open-Synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Optimal discovery mechanisms for distributed gateways 39

3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Evolving the Synapse protocol . . . . . . . . . . . . . . . . . 40

3.1.2 Towards a common architecture to interconnect overlay net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 The Synapse 2.0 Interconnection Framework . . . . . . . . . . . . . . 42



iv Contents

3.2.1 Synapse Protocol Overview . . . . . . . . . . . . . . . . . . . 43

3.2.2 Synapse-node functionalities . . . . . . . . . . . . . . . . . . . 43

3.2.3 Synapse Routing Protocol . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Gateway node discovery strategies . . . . . . . . . . . . . . . 46

3.2.5 Synapse-node routing strategies . . . . . . . . . . . . . . . . . 49

3.2.6 Synapse-node structure. . . . . . . . . . . . . . . . . . . . . . 49

3.2.7 Self-organization via “social networking” primitives. . . . . . . 50

3.3 A routing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Protocol implementation in OverSim . . . . . . . . . . . . . . . . . . 52

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Topology construction . . . . . . . . . . . . . . . . . . . . . . 55

3.5.3 Configuration of gateway-nodes . . . . . . . . . . . . . . . . . 56

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Modeling of interconnected systems 61

4.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 One overlay topology . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Interconnection of multiple P2P networks . . . . . . . . . . . 64

4.3.3 Search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4 Hit probability . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.5 A variation of the search algorithm . . . . . . . . . . . . . . 67

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Model exploitation . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

II Applications on top of interconnected overlays 77

5 CarPal: an example of social crowdsourced application 79

5.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Application architecture . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Application principles . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 CarPal in a nutshell . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.3 Encoding CarPal in a DHT . . . . . . . . . . . . . . . . . . . 83

5.2.4 Network architecture . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 A Running example . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Building the scenario . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Slice and Dice and encoding in the DHT . . . . . . . . . . . . 86

5.3.3 Searching for a trip . . . . . . . . . . . . . . . . . . . . . . . . 87



Contents v

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 A distributed digital archive for cultural heritage 91

6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Application principles . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Network join . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.2 Storing a new record . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.3 Record search . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

III Beyond overlays: content-based routing for real-time video
streaming 101

7 Content based enhancements in P2P-TV: promises and drawbacks103

7.1 Introduction and Related work . . . . . . . . . . . . . . . . . . . . . 104

7.1.1 Gossip-based protocols . . . . . . . . . . . . . . . . . . . . . 104

7.1.2 Content adressable networks . . . . . . . . . . . . . . . . . . . 105

7.1.3 Hybrid delivery algorithms . . . . . . . . . . . . . . . . . . . 106

7.2 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.1 High Performance DHT overlay . . . . . . . . . . . . . . . . . 107

7.2.2 Bandwidth selective peer join . . . . . . . . . . . . . . . . . . 108

7.2.3 Chunk retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.4 HP-DHT pseudo-cache . . . . . . . . . . . . . . . . . . . . . . 109

7.2.5 Chunk seeding . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.2 HyDeA performance under different load conditions . . . . . 112

7.3.3 Bandwidth exploitation . . . . . . . . . . . . . . . . . . . . . 113

7.3.4 HyDeA performance at different playout delays . . . . . . . . 114

7.3.5 Robustness to churning . . . . . . . . . . . . . . . . . . . . . 114

7.3.6 Signaling overhead evaluation for different HP-DHT parameters115

7.3.7 Comparison with an adaptive overlay . . . . . . . . . . . . . . 117

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 CCN-TV: a data-centric approach to real-time video services 121

8.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . 122

8.2 Basic background on CCN . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3 CCN-TV architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.3.1 Channel bootstrap . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3.2 Flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.3.3 Interest routing . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.4 CCN-TV messages . . . . . . . . . . . . . . . . . . . . . . . . 128

8.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



vi Contents

8.4.1 Interest generation process . . . . . . . . . . . . . . . . . . . . 131

8.4.2 QoS and QoE . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

IV Conclusion 135

9 Summary and concluding remarks 137

9.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 141



List of Figures

1.1 Structured overlay networks concepts, redrawn form [Aberer 2005] . 3

2.1 Routing across differents overlays and dealing with a network partition 23

2.2 The Synapse white box protocol . . . . . . . . . . . . . . . . . . . . 24

2.3 The Synapse blackbox protocol . . . . . . . . . . . . . . . . . . . . . 30

2.4 Latency in Synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Communications overhead in Synapse . . . . . . . . . . . . . . . . . 32

2.6 TTL vs. exhaustiveness . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 TTL vs. communications . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Exhaustiveness vs. synapse connectivity . . . . . . . . . . . . . . . . 34

2.9 Exhaustiveness vs. churn rate . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Deploying Synapse : Exhaustiveness . . . . . . . . . . . . . . . . . . 36

2.11 Deploying Synapse : Latency . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Overlays with gateway-nodes . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Structure of a synapse-node . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Examples of different overlay routing mechanisms . . . . . . . . . . . 47

3.4 Routing in Synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Synapse OverSim modules diagram . . . . . . . . . . . . . . . . . . . 53

3.6 Effects of system granularity, with and without churn . . . . . . . . . 56

3.7 Performance comparison for different gateway topologies . . . . . . . 57

3.8 Experiments on Grid5000 . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Example of two P2P interconnected networks (X = 2) and one degree

2 synapse that belongs to both. . . . . . . . . . . . . . . . . . . . . 63

4.2 phit (with confidence interval) for different ↵ and si distributions:

comparison between model and simulation. . . . . . . . . . . . . . . 69

4.3 Alternative search algorithm (Section 4.3.5): comparison between

model and simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Routing policies comparison: phit for different resource popularities ↵. 72

4.5 Average number of messages for different routing policies. . . . . . . 73

4.6 si comparison at different f . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Performance evaluation with different numbers of overlay X. . . . . . 74

4.8 Distribution of different routing policies with fixed f . . . . . . . . . . 74

4.9 Distribution of different routing policies with fixed s1. . . . . . . . . 75

4.10 Message evaluation at different ↵, for different routing policies. . . . 76

5.1 The geographical set-up . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Journey data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Sliced & diced segments . . . . . . . . . . . . . . . . . . . . . . . . . 86



viii List of Figures

5.4 CarPal application publishing a new trip . . . . . . . . . . . . . . . . 86

5.5 Simple search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Aggregate results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Students, Enterprise and Synapsed Overlay Networks . . . . . . . . . 89

5.8 Synapse creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.9 CarPal Students accessing result from Enterprise Network . . . . . . 90

6.1 Connecting to an overlay . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Record insertion form . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Search results for a query . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Details of a retrieved record . . . . . . . . . . . . . . . . . . . . . . . 98

7.1 Chunk loss on different network configurations . . . . . . . . . . . . . 112

7.2 Chunk loss per peer (top row) and Bandwidth saturation (bottom row)114

7.3 Chunk loss vs. different parameters . . . . . . . . . . . . . . . . . . . 115

7.4 HP-DHT chunk selection . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.5 Chunk loss and signaling bandwidth for different DHT parameters . 116

7.6 Chunk loss at different playout delays (a), Chunk loss per peer (b)

and Bandwidth exploitation per peer (c) . . . . . . . . . . . . . . . . 118

8.1 Bootstrap handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.2 Sliding window algorithm . . . . . . . . . . . . . . . . . . . . . . . . 127

8.3 Sliding window example . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.4 Total number of Interest packets sent by clients with playout delay

of (a) 10s and (b) 15s. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5 Percentage of duplicated Interest packets sent by clients with playout

delay of (a) 10s and (b) 15s. . . . . . . . . . . . . . . . . . . . . . . . 133

8.6 Chunk loss ratio with playout delay of (a) 10s and (b) 15s. . . . . . . 134

8.7 PSNR of the Y components of received videos with playout delay of

(a) 10s and (b) 15s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



Chapter 1

Introduction and scope of the
thesis

Contents
1.1 Context of the thesis . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Structured overlays and key-based routing . . . . . . . . . . . 2

1.1.2 Applications of overlay networks . . . . . . . . . . . . . . . . 4

1.1.3 Towards Content-Centric Networks . . . . . . . . . . . . . . . 5

1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Interconnection of overlay networks . . . . . . . . . . . . . . . 6

1.2.2 Content-based techniques in real-time video streaming . . . . 8

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Context of the thesis

Computers on the Internet, in order to communicate with one another, commonly

rely on a host-based routing mechanism provided by the Internet Protocol (IP).

Each machine is given a numerical address that uniquely identifies the network it

belongs to and the node itself within the network. As such, the machine is able to

send data packets to other machines in other networks by simply knowing their IP

address. Routers on the edge of each of the networks ensure that packets directed

to addresses outside the original network successfully reach their destination.

While the IP protocol is being satisfactorily used in most of the applications

currently deployed on the Internet, the last few years have witnessed the devel-

opment of a new class of distributed applications, where nodes in a network are

arranged according to a logical topology, and do not anymore route the messages

solely according to the address of the destination node to be reached, but, instead,

the packets follow a routing path that also (or only) depends on the content they

are carrying.

The fact that there exists a logical topology on top of the traditional IP layer,

thus creating logical links with neighbor nodes not necessarily in the same IP net-

work, led to dubbing such systems Structured Overlay Networks, in contrast with

Unstructured Overlay Networks, in which nodes still create logical links with their

neighbors, but not necessarily resulting in a specific overall organization.



2 Chapter 1. Introduction and scope of the thesis

For the purpose of this thesis we will not be covering unstructured overlays,

which have been extensively studied in the literature, but rather focus our attention

on structured overlays and the key-based routing mechanisms involved.

1.1.1 Structured overlays and key-based routing

Structured overlay networks fall in the category of peer-to-peer applications. How-

ever, unlike applications as BitTorrent [bit ], Gnunet [gnu ], or P2P-TV systems

such as [nap ], where the collaborative aspect typical of the peer-to-peer paradigm

is found in the joint distribution of content across the network, nodes of a struc-

tured overlay collaborate by being evenly responsible for a subset of resources to be

managed.

Following and simplifying [Aberer 2005], the properties of structured overlays

can be summarized as follows:

Identifier space. Nodes and resources are mapped onto a common identifier space

I, for example, the co-domain of a consistent hash function H();

Node identifiers. Every node N is assigned a logical identifier IDN 2 I, using

a mapping function FP (). The mapping is often performed by hashing, with H,

some unique property of the node, for example the IP and the port of the overlay

network instance running on the node;

Resource mapping. Resources are also mapped into I, using another mapping

function Fr. This can be obtained by identifying them through a key k, which will

be hashed so that hk = H(k) 2 I;

Space partitioning. One or more nodes are held responsible for an interval of the

addressing space IN ⇢ I, often determined by a proximity function d();

Neighborhood graph. Every node maintains a “view” of the whole network, in

terms of pointers to other nodes in the system (i.e.its network neighborhood). This

is one of the key factors that determines the topology of the network, also known as

its structuring strategy.

While there are cases of fully connected overlays, where every node maintains

pointers to every other node in the system, forming a fully connected topology, it

is more often the case where nodes only discover and maintain a partial view of

the network in the form of routing tables, the structure of which is another aspect

characteristic of each different overlay network;

Message routing. Routing of messages in the network is driven by the resource

identifier targeted by the message. For example, assuming that the goal of a

message Mk containing key k is to reach one of the nodes Nk responsible for the

identifier space interval Ik where H(k) falls in, a node with just a partial graph



1.1. Context of the thesis 3

of the network may try to “get close” to Nk by contacting the node in its routing

table with the identifier closer to Nk, and have him repeat the operation until Nk

is reached. Hence the expression key-based routing;

Overlay maintenance. One final characteristic aspect of different overlays comes

from their Maintenance strategy, i.e.the manner in which each node discovers and

maintains the entries in its routing table.

In Figure 1.1, we give a better depiction of the ideas described above.

Rggtu Tguqwtegu

Kfgpvkhkgt"urceg

HR Ht

Uvtwevwtkpi"uvtcvgi{

Figure 1.1: Structured overlay networks concepts, redrawn form [Aberer 2005]

It is worth mentioning that, when relying on a consistent hash function, as in the

above example, to define and map data to an identifier space, we can also refer to

overlay networks as Distributed Hash Tables (DHT), which constitutes an efficient

and scalable mechanism for resource lookup.

To further clarify the aforementioned points, here is a brief description of three

of the most renowned overlay networks in literature, to better show the different

approaches followed by researchers in designing structured overlays.

Chord [Stoica 2001], one of the first developed structured overlays, maps

nodes and resource keys onto a ring spanning the co-domain of a consistent hash

function. Each node N is responsible for all of the keys k falling into the interval

IN = IDN−1 < H(k)  IDN . In the most basic version, nodes maintain only

a pointer to their successor, i.e. to that node with the lowest ID higher than

IDN , and routing works by forwarding a message for key k form one successor

to the other until the responsible node is found. However, to achieve logarithmic

complexity in message routing, nodes also maintain a Finger Table of pointers to



4 Chapter 1. Introduction and scope of the thesis

nodes responsible for the intervals identified by IDN +2i, with i being the index in

the finger table, and during the routing, the message is forwarded to the node NF

in the finger table with the highest IDNF < H(k).

CAN [Ratnasamy 2001] is another algorithm developed with the same goals

as Chord, but following a different implementation. Rather than being linear,

the identifier space I is an n-dimensional toroid where each dimension is mapped

using a separate hash function. Therefore, the nodes and the resources are mapped

onto an n-dimensional Euclidean space, with nodes being responsible for a given

partition of the space and resources being assigned to the node responsible for the

partition they fall into. The routing table for a node N consists of the list of nodes

responsible for the coordinate zones adjacent to IN . Routing a message for key k

can follow different strategies, the simplest of which consists of sending the message

to the neighbor node whose position in the space would make the message get the

closest to the coordinates of k.

Using a different approach, Kademlia [Maymounkov 2002a] relies upon a XOR

distance dXOR() as a proximity distance in its identifier space. Each node N main-

tains a so-called k-bucket list, where a bucket n contains a list of k nodes Nk whose

identifier IDNk has n different bit from IDN , i.e. dXOR(IDN , IDNk) = n. A node

N is responsible for a key k if no other node in the system has a higher number

of prefix bits in common with H(k). Routing a message for a key k by a node

N occurs in the following way: N computes the number of matching prefix bit

n = dXOR(IDN , H(k)), then selects, from the k-bucket n, ↵ nodes to contact, in

order to get nodes with an identifier closer than his to k, until no more closer nodes

are found. Since DXOR() is symmetric, nodes do not necessarily need to issue main-

tenance messages to discover new entries for their routing tables, but can maintain

them in an “opportunistic” way, by simply analyzing the undergoing requests for

keys and storing the identifiers of the nodes issuing requests.

1.1.2 Applications of overlay networks

The scalability and lack of central control offered by structured overlays and dis-

tributed hash tables has been exploited in several application domains:

Distributed databases. For example, modern distributed databases such as Cas-

sandra [Lakshman 2010] or Dynamo [DeCandia 2007] exploit a DHT-like key-value

store to achieve horizontal scalability, being able to seamlessly add new machines to

an existing server cluster and redistribute the charge without the need for complex

master-slave setups.

Anonymous networks. Due to their lack of a centralized point of control, struc-

tured overlays are also at the foundation of many systems which guarantee anony-

mous communications over the Internet (Darknets), such as the Onion Router



1.1. Context of the thesis 5

project (TOR) [tor ], as well as the I2P Invisible Internet Project [i2p ]. All of

these rely on a DHT (CFS [Dabek 2001] in the case of TOR, Kademlia [May-

mounkov 2002a] in the case of I2P) to implement mechanisms for discovery of re-

sources and hidden services without the possibility for a third party to trace the

underlying communications. Several other academic works, such as Safebook [Cu-

tillo 2009], follow the same direction to implement secure and anonymous social

networks.

Resource discovery. The Kademlia protocol is also renowned for being used as a

support to initiate transfers in the BitTorrent network [Jimenez a], where a DHT is

used to store and lookup the peers currently downloading the same content, ideally

without relying on a centralized tracker to retrieve the information. With regard

to this, it is interesting to note how, in fact, the very same BitTorrent network

can rely on two similar but concurrent implementation of the Kademlia protocol,

depending on the BitTorrent client in use. Other than that, several solutions to

support resource allocation and discovery in Grid computing that rely on structured

overlay networks have also been devised [Trunfio 2007].

Search engines, Semantic Overlay Networks. It is worth mentioning that

overlay networks are not necessarily bound to a simple key-value store: recent re-

search has brought to the development of entirely distributed search engines, such as

Minerva [min ] and Yacy [yac ], that index more complex data on top of a distributed

key-value structure. Furthermore, Semantic Overlay Networks [Crespo 2005] such

as GridVine [Cudré-Mauroux 2007] allow for the storage of complex semantic data

across a network of peers and the execution of complex queries in a distributed

fashion.

Other applications. Other applications that fall outside the above category can

include Geographical Overlay Networks [Ratnasamy 2003], where data from a sensors

network is stored in a DHT according to its geographical proximity to a node, or

Distributed Virtual Worlds, such as [Varvello ], where a Kademlia network has been

exploited to store and retrieve information regarding a walkable virtual world such

as, for example, Second Life [sec ].

1.1.3 Towards Content-Centric Networks

Recent advances in networking have led to the development of novel architectures

where the IP layer can be entirely dropped in favor of a purely content-based ap-

proach in routing messages between nodes, known as Content-centric networks or

Networking named content [Jacobson 2009b] [Zhang 2010].

Content-centric networks (CCN) are members of the so-called family of Future

Internet applications. In a CCN, all content is unambiguously identified by a hi-

erarchical name, allowing users to retrieve information without being aware of the

physical location of the servers (e.g. IP address). CCN communications are driven



6 Chapter 1. Introduction and scope of the thesis

by the consumer of data and only two types of messages are exchanged (namely

Interest and Data). A user may ask for a content by issuing an Interest, which is

routed within the CCN towards the nodes in possession of the required information,

thus triggering them to reply with Data packets. The routing operations are per-

formed by the strategy layer only for Interest packets. Data messages, instead, just

follow the reverse path to the requesting user, allowing every intermediate node to

cache the forwarded content. Because of this, an Interest does not necessarily need

to reach the originator of the requested resource, but can be served by any node

along the routing path that previously cached said content. This offers a natural

congestion-control mechanism, gracefully reducing the propagation of messages for

popular content. Furthermore, each node routing an Interest stores the pending

request in a specific table, called Pending Interest Table (PIT). By doing so, it can

also reduce the propagation of multiple requests for the same pending content, by

simply storing the origin of every interest for the same resource, and then routing

the data back to each routing path from which an interest originated.

1.2 Problem definition

1.2.1 Interconnection of overlay networks

In the Handbook of Peer-to-peer networking [Shen 2010b], the overlay interoper-

ability problem is identified amongst the research challenges related to peer-to-peer

networks:

Protocols and interoperability: Peers need to talk to each other. In

some scenarios, peers belonging to different P2P overlays may also need

to talk to each other. This requires well-defined protocols/interface, and

a careful study of interoperability among P2P nodes.

Heterogeneity: In reality, many aspects can affect the performance

of P2P overlays, such as network availability/bandwidth, latency, peers’

computational power and storage space, etc. Therefore, supporting het-

erogeneity is an important issue from a practical point of view.

In particular, when looking at the current state of overlay networks and their

applications, we can think of the following opportunities:

Exploiting locality to reduce the network size. When faced with real-world

conditions, many overlay protocols show severe performance degradation in terms of

query response time, due to the impact that a high churn rate and network artifacts

(e.g. the presence of NAT or firewalls between nodes) have on the communication

symmetry in the individual node. While it is true that there is not a generic solution

for these issues, many of them, being caused for example by communication time-

outs, are directly related to the size of the overlay, as shown in works like [Jimenez a].

As such, it would be desirable to organize an overlay into smaller clusters connected

together, possibly centered around some local property of the managed data, i.e.



1.2. Problem definition 7

language, topic, genre..., or the network itself, i.e. group together peers in the same

country or behind the same Autonomous System.

This way, it should be possible to ensure faster delivery of messages within the

same cluster for all the content accessed more often, while still maintaining the

access to the rest of the network. With regard to this issue, it is worth mentioning

the research carried on in the domain of hierarchical overlays, with works such

as [Erice 2003a], [Erice 2003b], [Ganesan ] or [Xu 2003b].

Exploiting heterogeneity. Many overlay networks have been designed to best suit

a specific kind of data (key-value pairs, geographical coordinates, semantic data), or

specific class of nodes (server nodes, desktop machines, mobile terminals...). But, as

of today, there is no solution good for all purposes. Applications (distributed or not)

usually rely on several data structures and can span different classes of machines.

With this in mind, it would be desirable to be able to design applications capable of

accessing different, specialized overlay networks, without necessarily incurring the

cost of having to maintain a connection to each one of them.

Enabling cooperation. There is an actual interest in the network interoperability

itself, as a way to allow different existing applications to talk to one another. Works

such as [Dabek ] and [Aberer 2005] have tackled the issue by trying to define and

better formalize the various overlay protocols using a common framework.

Case study: BitTorrent trackerless lookup. The BitTorrent network and its

trackerless system present a perfect study case to better illustrate the aforemen-

tioned points. According to [Jimenez a], the Kademlia network used in BitTorrent

suffered from severely high response times (in the order of seconds, if not minutes)

due to the high number of nodes in the network, the high churn and the timeout

caused by the aforementioned network artifacts. Furthermore, the authors notice

how there seem to be two different, competing implementations of the KAD net-

work, incompatible with one another but serving the exact same purpose. Looking

at this situation, the following considerations come to mind:

• In the impossibility of merging the two competing DHTs, it would be in the

interest of the user for these two networks to talk to each other, since they

share the same type of contents;

• There is a strong bias of requests for localized content in the network: Chinese-

speaking users will more likely download contents in Chinese, and the same

goes for any other language;

• With this in mind, it would be possible to improve the performance of the

network, to group peers into smaller groups, sharing directly information only

for localized content, while still leaving the possibility for a node to go out

and scout for contents in foreign languages.

It is worth pointing out that, while the situation for the Kademlia network

has greatly improved since [Jimenez a], also thanks to works like [Jimenez b], the



8 Chapter 1. Introduction and scope of the thesis

principle exposed above still applies to a generic overlay.

In the present thesis we try to address the aforementioned problems by proposing

an approach based on distributed gateways, i.e. nodes that, by connecting to several

overlays at the same time, can re-route requests from one overlay to another. In

particular, we tackle the problem by answering the following questions:

• Performances: How well would such a system perform? How resilient to

real-world condition would it be?

• Architecture: What are the architectural and design challenges that arise

when trying to design an interconnected system? How do we deal with dif-

ferent message encodings, protocols and routing schemes? How do we handle

complex queries?

• Tuning: What is the optimal percentage of gateway nodes? How can we

evaluate a million-node system in an efficient way?

• Collaboration: How can we deal with backward compatibility? A potential

outcome of such an approach is the integration of existing, widely deployed

overlays. Is it possible to handle their integration transparently?

• Applications: What are the possible uses for an interconnected system?

What could motivate its development?

We will try, through our contributions, to give some answers to some of these

questions.

1.2.2 Content-based techniques in real-time video streaming

Peer-to-peer real-time video streaming applications (P2P-TV) have notoriously ne-

glected the adoption of content-addressable routing for data delivery, usually consid-

ering it only to initiate a transmission. P2P-TV systems usually rely on topologies

where peers either build a hierarchical tree-like structure to diffuse the video chunks,

or form an unstructured mesh-based network by building and maintaining a neigh-

borhood of nodes with whom they exchange chunks of video, in a BitTorrent-like

fashion. While the former is often hard to maintain and not very robust to churn,

the latter approach shows better fault tolerance, but limits the possibilities a node

has to retrieve a content only to its first degree neighbors, leaving it stranded if the

required chunk of content is not found in time amongst its neighbors. With regard

to this last issue, we can point out two key features of distributed hash tables:

1. The structured nature of their routing mechanism ensures that for each re-

source there is at least a peer holding it, making them suitable to retrieve rare

contents;

2. The use of consistent hashing creates a statistically well-distributed traffic in

the overall network;



1.3. Outline of the thesis 9

It is therefore worth asking the question if such properties could be put to use in

P2P-TV systems, as a way to providing each node with a mechanism to explicitly

request a missing video chunk close to its expiration, in case it cannot be found in

its mesh neighborhood.

Furthermore, the topic of content-addressable requests in real-time streaming

is prominent when we think about Future Internet applications such as Content-

Centric Networks. In a context where the concepts of “node” or “neighborhood” do

not hold anymore, how would a real-time video distribution system behave? How

effective are the caching mechanism of CCNs when dealing with short-living contents

such as video chunks? How hard is to build a CCN-TV system, and what does it

entail?

1.3 Outline of the thesis

In Part 1 we analyze the problem of overlay interconnection form a system design

and modeling point of view.

Chapter 2 presents a first attempt to design a meta-protocol for network

cooperation based on distributed gateways taking form of co-located nodes. The

protocol, named Synapse [Liquori ], is a generic and flexible meta-protocol which

provides simple mechanisms to efficiently route a request from one overlay to

another. The behavior of said overlays is captured through an extensive set of

simulations. Furthermore, the Synapse protocol has been implemented in JSynapse,

a proof-of-concept developed in Java, and tested using the Grid5000 computing

platform [Cappello et al. 2005], confirming the obtained simulation results.

This first work provided numerous insights about the practical challenges linked

with overlay cooperation, such as communication security, routing of complex

queries and backward compatibility with existing overlays. Said aspects are further

analyzed in Chapter 3, where the Synapse protocol is extended ( [Ciancaglini 2012b]

and [Ciancaglini 2012c]). Chapter 3 offers several contributions:

• A more detailed overview of the interconnection problem, that includes con-

siderations about the security of links when exchanging sensitive data and an

analysis of the backward compatibility problem with suggestions on possible

workarounds;

• An exhaustive description of the novel Synapse 2.0 architecture, which is now

able to transparently support several routing schemes and a more secure data

exchange;

• A description of the development needed to implement the protocol in the

OverSim Overlay Simulator [Baumgart ], that had to be heavily modified to

support the instantiation of overlay nodes of different types;

• simulation results of the new protocol, in line with the results previously pre-

sented;



10 Chapter 1. Introduction and scope of the thesis

• results of experiments run on top of the Grid’5000 platform [Cappello et

al. 2005], using a newly developed version of the Java client for Synapse.

Using simulation techniques and experimentation, albeit providing useful data

on protocol behavior in both a controlled and a real-world scenario, enforces

several limitations due to the scalability of said approaches, while, intuitively,

a system made of interconnected overlays might shine best when deployed on a

large-scale network, in the order of millions of nodes. But, how to tune such a

system? How to determine the optimal number of gateway nodes, and the costs of

such a deployment? To answer the above questions, in Chapter 4 we observe the

problem under a different light, by providing a mathematical model to allow for the

evaluation of interconnected systems ( [Ciancaglini 2012a] and [Gaeta 2013]). This

model constitutes a first attempt to offer an estimate of the cost and performance,

in terms of number of messages required and hit probability for a resource of

arbitrary popularity, of a system made by a set of unstructured overlays connected

by a given percentage of gateway nodes with a known connection degree. Model

validation is provided thanks to a software developed from scratch in Erlang [erl ],

showing the validity of our assumptions, and several examples are provided to show

how it could be used to help the design of large-scale systems.

Part 2 offers a lighter interlude, where we present two proofs-of-concept of

applications running on top of an interconnected system using the Synapse protocol.

The first application, presented in Chapter 5 is called CarPal [Ciancaglini 2010],

and it provides a way for nearby communities (i.e. schools, workplaces) to deploy

a distributed database in order to share car rides and enable car sharing between

their users. Through the use of gateway nodes, geographically close communities

have the ability to extend the reach of their queries, thus increasing the chance

to find a ride or a passenger. Chapter 6, on the other hand, deals with the

problem of sharing document metadata in the field of archival and preservation

of cultural heritage: there we show how a distributed system based on our

architecture could leverage the power of commonly used desktop machines to

create a database of document metadata that could be easily shared, amongst dif-

ferent institutions, thanks to the presence of distributed gateways [Marinković 2011].

In Part 3, we move away from the study of the overlays from a system point of

view to a more general investigation into the possibilities offered by content-based

routing in real-time multimedia applications. In Chapter 7 we outline a novel

approach to peer-to-peer real-time video streaming (P2P-TV), where a structured

overlay is used to support the NAPA-Wine P2P-TV system [nap ]. Through

simulations, we thoroughly analyze the performance gain and message overhead of

such a system, trying to determine whether such a solution would be optimal for

real-world streaming. Finally, in Chapter 8, we move to am entirely new domain,

developing a real-time video streaming application on top of Content-Centric Net-

works (CCN) [Jacobson 2009b]. CCN is a novel protocol for data routing over an



1.3. Outline of the thesis 11

existing IP network, and can also be viewed as a substitute for the IP protocol itself.

As CCN is a protocol centered around content delivery, we analyze the require-

ments for developing, on top of it, an application dealing with expiring content (i.e.

chunks of a video streaming), and how this might affect the behavior of the protocol.

Finally, in Chapter 9, we presents our conclusions and several directions for

future work.





Part I

Design and modeling of
interconnected overlay networks





Chapter 2

Opportunistic routing on
structured overlays

Contents
2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The Synapse Protocol . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 “White box” Synapse protocol definition . . . . . . . . . . . 24

2.3.1 The GET operation . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 The PUT operation . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 The JOIN and INVITE operations . . . . . . . . . . . . . . . . 26

2.4 “Black box” Synapse Protocol definition . . . . . . . . . . . . 26

2.4.1 Accessing blackbox networks . . . . . . . . . . . . . . . . . . 26

2.4.2 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 The Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Impact of Synapse nodes and their connection degree . . . . 31

2.5.3 Effects of Time-To-Live . . . . . . . . . . . . . . . . . . . . . 31

2.5.4 Connectivity and Peers’ churn . . . . . . . . . . . . . . . . . 34

2.6 The Experimentations . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 JSynapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Open-Synapse . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

In this chapter, we present our first attempt at tackling the problem of overlay

cooperation, by designing and evaluating a novel meta-protocol, hereinafter referred

to as Synapse, that allows for the information retrieval over the inter-connection of

heterogeneous overlay networks.

Scalability in Synapse is achieved via the presence of co-located nodes (hence

referred to as Synapses), i.e. nodes that are part of multiple overlay networks at the

same time. By acting as a form of distributed gateways connecting several overlays,

they offer a lightweight and scalable mechanism, which is de facto transparent to

the applications sitting on top of the interconnected system.



16 Chapter 2. Opportunistic routing on structured overlays

Inter-overlay message routing is achieved without an explicit direct mechanism,

but rather via an “opportunitic” behavior: nodes in overlay A route messages using

A’s routing algorithm; when a co-located node forwards a message, it can re-route it

also in the other overlays it’s connected to, hence providing a mechanism to extend

the search space for each node, without a specific logic being known to the internal

nodes.

To succesfully perform inter-overlay routing, additional information needs to be

provided to the co-located nodes, such as a time-to-live parameter, or a session ID

to control the spread of packets in the whole interconnected system.

Synapse can work either with “open” overlays, where such parameters can be

embedded in the overlay protocol packets, or with “closed” overlays, where due to

compatibility issues the protocol cannot be modified to incorporate the required ad-

ditional information. Furthermore, built-in primitives to deal with social networking

give an incentive for nodes cooperation.

Results from simulation and experiments show that Synapse is scalable, with a

communication and state overhead scaling similarly as the networks interconnected.

Thanks to alternate routing paths, Synapse also gives a practical solution to network

partitions.

We precisely capture the behavior of traditional metrics of overlay networks

within Synapse and present results from simulations as well as some actual exper-

iments of a client prototype on the Grid’5000 platform. The prototype developed

implements the Synapse protocol in the particular case of the inter-connection of

many Chord overlay networks.

2.1 State of the art

Pointing out the limits of a unique global structured overlay (rigidity, maintenance

cost, security, . . . ), several proposition has been made over the years to build al-

ternate topologies based on the co-existance of smaller local overlay networks. A

first approach has been based on hierarchical systems ( [Erice 2003a], [Erice 2003b],

[Xu 2003b] and [Ganesan ]), leading to the requirement of costly merging mecha-

nisms to ensure a high level of exhaustiveness. In a more general view, merging sev-

eral co-existing structured overlay networks has been shown to be a very costly oper-

ation [Datta 2006,Shafaat 2007], leading to inefficient overlay networks [Cheng 2006].

We organize the related work into two parts: related mechanisms that aim to

enable/ease overlay inter-connection and some clean-slate routing architectures,

as discussed in [Feldmann 2007], built from the ground up with networks inter-

connection in mind. Both parts share the same final goal, that is, providing easier

ways to inter-connect networks. We could also cite some works that have been

studying hierarchical DHT systems [Erice 2003a] which also consider multiple

spaces and some elected super peers promoted to a top-level overlay network. But

the main issue is that they introduce a multi-level addressing and lookup space

whereas we, in this work, try to avoid it in order to be more generic. Hence we can



2.1. State of the art 17

say that our work subsumes hierarchical DHTs.

Related mechanisms: We can identify two main mechanisms for enabling

overlay networks inter-communication on top of the current Internet architecture:

co-located nodes and gateways. The main difference between the two is that co-

located nodes fully participate in the routing process of the various overlays they

are registered to, whereas gateways are nodes have only a specific pointer to another

node in another overlay networks and do not actively participate in the routing

process of the different overlays they are registered to. Co-located nodes have thus

higher state overhead than gateways, since they have to maintain more pointers and

process more messages due to their active participation. Yet, nowadays it is more

common to use multiple P2P applications in the same time, and overlooking the

possibility to exploit this would be limiting.

Recently, authors in [Cheng 2007], stating that complete merging is inefficient,

propose a novel search protocol, based on gateways called “DHT-gatewaying”, which

is scalable and efficient across homogeneous1, heterogeneous2 and assorted3 co-

existing DHTs. Their argument is that there isn’t a preferred DHT implementation,

and that peers are members of co-existing DHTs. Their assumptions are (i) only

some peers support the implementations of different DHTs and (ii) some peers are

directly connected to peers that are members of other DHTs, and are called Virtual

Gateways (VG)). Their gatewaying protocol works in the following way: when a

request is sent in one DHT, and no result was found, the requester can decide to

widen his search by forwarding its original search request to nodes which belong to

other DHTs (cross-DHT search). Those nodes will “map” the search to the format

which is supported by their relative DHTs. Once the mapping is done, the search is

carried out in each DHTs, and if a result is found, it will be returned to the original

requester. Note that a Time-To-Live (TTL) value is added to the original search,

in order to avoid cycles; this value is decremented each time a request crosses a new

DHT domain. Because VGs can be overloaded, authors devised a mechanism in

order to distribute the mapping by electing more VGs (according to a specific VG

determination scheme), and they also introduced self-organizing “gateways pointers”

whose roles are to keep track of VGs where-abouts. Conceptually, this work seems

the closest to our proposition. Our purpose is to give study more accurately ...

Author in [Furtado 2007] presents mechanisms for managing the multiple iden-

tifier spaces as well as inter-space linking and routing alternatives. They consider

multiple spaces with some degree of intersection between spaces, i.e. with co-located

nodes. They compared various inter-space routing policies by analyzing which trade-

offs, in terms of state overhead, would give the best results in terms of the number

of messages generated and routed, the number of hops it takes to find a result and

1Homogeneous DHTs: same implementation and same keysize (ex. Two 160-bit Chord DHTs)
2Heterogeneous DHTs: same implementation and different keysize (ex. One 160-bit Chord and

one 256-bit Chord DHTs)
3Assorted DHTs: different implementation and/or different keysize (ex. One 160-bit Chord and

one 256-CAN DHTs)



18 Chapter 2. Opportunistic routing on structured overlays

the state overhead (i.e. the number of fingers a node has to keep). They do not

present any algorithms but they do provide an comparative analytical study of the

different policies. They showed that with some dynamic finger caching and with

multiple gateways (in order to avoid bottlenecks and single points of failures) which

are tactfully laid out, they attain pretty good performances.

In [Cheng 2006] authors presented two models for two overlays to be

(de)composed, known as absorption (equivalent to merging) and gatewaying. Their

protocol enables a CAN-DHT to be completely absorbed into another one (in the

case of the absorption), and also provide a mechanism to create bridges between

DHTs (in the case of the gatewaying). They do not specifically take advantage of

a simple assumption that nodes can be part of multiple overlays in the same time

thus playing the role of natural bridges. They did not evaluate their protocol and

do not provide any algorithms of their protocol.

Authors in [Junjiro 2006] present a model which considers the symbiosis between

different overlays networks with a specific goal in mind: file sharing. They propose

a mechanism for hybrid P2P networks cooperation and investigates the influence of

system conditions such as the numbers of peers and the number of meta-information

a peer has to keep. Their work is bit more generic in the sense that they do not

focus on structured overlay networks as we do, but still, they provide interesting

observations on: (i) joining a candidate network (i.e. considering to enhance one’s

QoS by joining another network), (ii) selecting cooperative peers (that is which

peer(s) among this newly joined network will cooperate with me), (iii) finding other

P2P networks, (iv) the very decision of starting cooperation, by taking into account

the size of the network (for instance a very large network will not really benefit from

a cooperation with a small network), (v) relaying messages and files, (vi) caching

mechanisms in cooperative peers and finally (vii) when it is appropriate to end a

cooperation. Their simulations showed the effect the popularity of a cooperative peer

on the search latency evaluation, that is the more a node has neighbors, the better,

as well as the effect of their caching mechanism which reduces (when appropriately

adjusted) the load on nodes (but interestingly does not contribute to faster search).

Authors in [Kwon 2005] presents Synergy, an overlay inter-networking architec-

ture which improves the routing performance in terms of delay, throughput and loss

packets by providing cooperative forwarding of flows. Authors acknowledge that co-

located nodes can serve as good candidates for enabling inter-overlay routing and

that they reduce traffic.

In this work, and in a previous preliminary work [Liquori 2009], it is also

argued that co-located nodes are also good candidates for widening the search

capability. However here we focus on the co-located nodes heuristic in more

details than the aforementioned works by providing not only a simple algo-

rithm which enables inter-overlay routing but also more intensive simulations

to show the behaviours of such networks as well as a real implementation and

experiments. We first want to grasp the complete potential that co-located nodes

offer and we want to deepen the study of overlay networks with these types of nodes.



2.1. State of the art 19

Clean-slate routing architectures: The following works, although not di-

rectly related to ours, propose alternatives to the current Internet architecture and

also present interesting methods for inter-connecting domains.

Authors in [Caesar 2006] propose and analyze a routing scheme based on flat

names. They want to get rid of location information that we can find the net-

work layer and route directly on the identities themselves. Although they propose

a compact routing scheme, some questions arise regarding the scalability of their

solution.

In [Yang 2003] authors present the design of a new Internet routing architecture

(NIRA) that aims at providing end users the ability to choose the sequence of

Internet service providers a packet traverses at the domain level, i.e. they will

be able to choose how inter-domain routing is done. Authors argue that overlay

networks are not ubiquitous, that only nodes on the overlay network can control the

packet’s paths by tunnelling traffic through other nodes on the overlay. They also

present scepticisms regarding the scalability of the overlay, stipulating that they are

unlikely to scale up so to include every user on the Internet, and that an overlay

path may traverse duplicate physical links.

In [Zhu 2003] authors propose a routing scheme which separates structural infor-

mation and dynamic information. They provide a system in which only structural

information is disseminated, and dynamic information is discovered by routers based

on feedbacks and probes, which apparently helps improving the routing decisions.

Authors believe that overlay network is not the final solution for reliable packet

forwarding. Their reasoning is based on the fact that overlay network only increase

the probability that the communication does not fail when there are only isolated

routing failures in the network. No overlay network is going to function when the

underlying routing infrastructure completely fails.

Regarding the clean-slate redesigns of the Internet, most of the cited au-

thors ( [Yang 2003], [Zhu 2003]) seem to agree that the BGP routing proto-

col [Rekhter 1995], the main protocol for inter-domain routing, does not provide

enough information regarding the packet routes and does not give the possibility

to the users to be able to choose their own domain-level routes. BGP does not

scale particularly well, converges rather slowly (and sometimes with certain routing

policy combinations it diverges [Labovitz 2000]). They attempt, and so do we, to

circumvent the current Internet limitations by proposing an alternative method for

interconnecting networks.

Although their insights and proposals are more than relevant, we do believe they

are far from being applicable in practise. The obvious reason is that the current

established Internet cannot be changed in such radical ways and their solutions

cannot be easily deployed. In this sense, overlay networks are a more flexible solution

than complete re-designs, plus they can also serve as a framework for clean-slate re-

designs to accelerate prototyping their new approaches.

In this work we focus our attention on inter-connecting overlay networks, because

we believe that since their introduction they have matured and they can answer most

of todays Internet’s challenges. We provide what we consider as a simple and natural



20 Chapter 2. Opportunistic routing on structured overlays

solution for bridging overlay networks together.

In this sense, and in response to overlay detractors, we argue that works like

[Xu 2003a], [Garces-Erice 2003] and [Zhou 2003] show efficient method for construct-

ing an overlay network while taking into account the underlying topology. Therefore

we can say with confidence that we do have mechanisms in order to ensure that the

paths the packets traverse are not using duplicate physical links.

2.2 The Synapse Protocol

Architecture and assumptions. We now present our generic meta-protocol for

information distribution and retrieval over an interconnection of heterogeneous over-

lay networks. Information is a set of basic (key,value) pairs, as commonly encoun-

tered in protocols for information retrieval. The protocol specifies how to insert

information (PUT), how to retrieve it through a key (GET), how to invite nodes in a

given overlay (INVITE), and how to join a given overlay (JOIN) over a heterogeneous

collection of overlay networks linked by co-located nodes. We assume each overlay

to have its own inner routing algorithm, called by the Synapse protocol to route

requests inside each overlay. We assume no knowledge of the logical topology of all

the involved overlay networks connected by Synapse. To ensure the usual proper-

ties of the underlying network, we assume that communication is both symmetric

and transitive. Synapse simply ignores about how routing takes place inside the

overlays, Synapse only offers a mechanism to route from one overlay to another in

a simple, scalable and efficient way.

The inter-overlay network, induced by the Synapse protocol, can be considered

as an aggregation of heterogeneous sub-overlay networks (referred to as intra-overlay

networks henceforth). Each intra-overlay consists of one instance of, e.g., Chord or

any structured, unstructured or hybrid overlay. We recall that an overlay network

for information retrieval consists of a set of nodes on which the information on

some resources is distributed. Each intra-overlay has its own key/value distribution

and retrieval policy, logical topology, search complexity, routing and fault-tolerance

mechanisms. The Synapse protocol can be summarized by the following points:

• Synapses: the interconnection of intra-overlay networks is achieved by co-

located nodes taking part in several of these intra-overlays, called synapses.

Each peer will act according to the policy of each of its intra-overlays, but will

have the extra-role of forwarding the requests to some intra-overlay it belongs

to.

• Peer’s name: every peer comes with a proper logical name in each intra-

overlay; in particular, synapses have as many logical names as the number of

networks they belongs to.

• Keys mapping in peers: each peer is responsible for a set of resources

(key,value) it hosts. Since every intra-overlay has different policies for keys

distribution, we could say that also the inter-overlay induced by Synapse also



2.2. The Synapse Protocol 21

inherits homogeneous distribution among the intra- and inter-networks. As

for peers, every key comes with a proper logical name peculiar to each intra-

overlay.

• Set of resources assigned to set of nodes: all overlay protocols for information

retrieval share the invariant of having a set of peers responsibles of a specific set

of resources. This invariant allows for routing under structured, unstructured

and hybrid networks: the rationale is simple: by construction, intra-routing is

the one always responsible for its correctness, since Synapse just cares about

overlay’s inter-connection.

• Network independency and message translation: intra-network protocols are

different by construction: as such, when a message leaves a particular network

and enters another network, the first network loses control of the route of that

message inside the second one.

• Topology, exhaustiveness, complexity and scalability: by construction, the

inter-overlay network induced by the Synapse protocol belongs to the cate-

gory of unstructured overlay networks, with a routing that is not exhaustive,

even if Synapse can connect only overlays that guarantee exhaustivity. The

same goes for the routing complexity that can be upper-bounded only in the

presence of precise and strong hypotheses about the type of intra-overlay net-

works. The same goes for scalability: a Synapse inter-network is scalable if all

the intra-networks are scalable.

• Loopy routing avoidance: to avoid lookup cycles when doing inter-routing,

each peer maintains a list of tags of already processed requests, in order to

discard previously seen queries, and a TTL value, which is decreased at each

hop. These two features prevent the system from generating loops and useless

queries, thus reducing the global number of messages in the Synapse inter-

network.

• Replications and Robustness: to increase robustness and availability, a key can

be stored on more than one peer. We introduce a Maximum-Replication-Rate

(MRR) value which is decreased each time a PUT message touches a synapse,

thus replicating the resource in more than one intra-overlay. This action acts

as a special TTL denoting how many overlays can traverse a PUT message.

• Social primitives: each peer implements autonomously a good_deal? policy.

This is a social-based primitive aimed at making some important choices that

may strongly influence the performance and robustness of the Synapse routing.

In particular, such a primitive is intended to help the choice of whether or not

to join another intra-overlay, invite or accept a peer to one of the overlays, or

even create a new network from scratch. There is no best good deal strategy:

for example, if one network wants to increase connectivity with other overlays,

it can suggest to all peers to invite and join all interesting/interested peers: this



22 Chapter 2. Opportunistic routing on structured overlays

can be especially useful in case of high churning of the intra-network in order

to increase alternative routing-paths through the neighboring intra-networks.

“White box” vs. “black box” synapse protocol. As stated in the introduction,

one important issue in interconnecting overlay networks is the ability of one overlay

to potentially modify its protocol instead of only accepting that co-located nodes

will route packets without any change in the protocol itself. This is a concrete

backward compatibility issue, since many overlays already exist, and it is hard to

change them at this point for many reasons (security, commercial, technological ...).

As such, we have developed two variants of the synapse protocol; the first white

box variant, is suitable to interconnecting overlays whose standards are open and

collaborative, meaning that the protocol and the software client can be modified

accordingly. The second, black box variant, is suitable to interconnecting overlays

that, for different reasons, are not collaborative at all, in the sense that they only

route packets according to their proprietary and immutable protocol. The white box

allows the adding of extra parameters to the current inter-overlay we are connecting,

while the black box deals with those extra parameters by means of a synapse control

network, i.e. a distributed overlay that stores all the synapse parameters that cannot

be carried on by the overlay we are traversing.

White box synapse. The white box hereby presented is capable of connecting

heterogeneous network topologies given the assumption that every node is aware

of the additions made to existing overlay protocols. The new parameters used to

handle the game over strategy and replication need to be embedded into the existing

protocols, so does the unhashed key in order to be rehashed when a synapse is

met. One important requirement of the Synapse white box protocol with respect to

other protocols using hash functions is that the keys and nodes’ addresses circulate

unhashed from hop to hop. Hash functions have no inverse: once a sought key is

hashed, it is impossible to retrieve its initial value, and thus impossible to forward

to another overlay having a different hash function, since hash functions may vary

(in implementations and keysize) from overlay to overlay. Both the hashed and the

clear key data can be carried within the message, or a fast hash computation can

be performed at each step. Standard cryptographic protocols can be used in case of

strong confidentiality requirements, without affecting the scalability of the Synapse

protocol itself.

Black box synapse. Interconnecting existing overlays made of “blind” peers, who

are not aware of any additional parameters, seems to be a natural Synapse evolution

and it constitutes a problem worth investigating. The assumption is that an overlay

can be populated by blind peers (e.g. nodes previously in place) and synapses at

the same time. Both interact in the same way in the overlay and exchange the same

messages; moreover, those synapses can be members of several overlays indepen-

dently (thus being able to replicate a request from one overlay to another) and can

communicate with each other exclusively through a dedicated Control Network .

The Control Network is basically a set of DHTs allowing each node to share routing

information with other synapses without being aware of the routing of the under-



2.2. The Synapse Protocol 23





















































































Figure 2.1: Routing across differents overlays and dealing with a network partition

going message. So far the DHTs implemented are the following: (i) a Key table,

responsible for storing unhashed keys circulating in the underlying overlays. Every

synapse accessing this table can easily retrieve the key in clear way using only the

information it is aware of; (ii) a Replication table, in which is stored the number of

times the key should be replicated across all of the the overlays; (iii) a Cache table,

used to implement the replication of GET requests, and cache multiple responses and

control the flooding of foreign networks.

Example 1. Routing across differents intra-overlays. Figure 2.1 shows how a

value present in one overlay can be retrieved from a GET launched by another overlay.

Peer A in the overlay ON1 receives a GET(key) message: the routing goes until the

synapse B, which triggers a second intra-overlay routing in ON2. The two routings

proceed in parallel, and, in particular, the routing in ON2 terminates successfully

with a peer-to-peer interaction between the peer A and peer C responsible of the

resource. Routing continues on ON1 until synapse D, which triggers a third intra-

overlay routing in ON3. The routing proceeds in parallel, and, in particular, routing

in ON3 terminates successfully with a second peer-to-peer interaction between A and

H, while routing in ON1 proceeds to a failure on peer F via the synapse E. Synapse E

launches a fourth intra-overlay routing in ON2 that proceeds to a failure on node B

(game over strategy) via synapse G. Finally, G launches a fifth intra-overlay routing

on ON3, terminating with a failure on D (again game over strategy). Peers playing

game over strategy are depicted as squares.

Example 2. Dealing with network partition. Figure 2.1 also shows how intra-

overlays take advantage of joining each other in order to recover situations where

network partitioning occurs (because of the partial failure of nodes or the high churn

of peers). Since network partitions affect routing performance and produce routing

failures, the possibility of retrieving a value in a failed intra-overlay routing is higher,

thanks to alternative inter-overlay paths. More precisely, the figure shows how a

value stored in peer E of the overlay ON1 can be retrieved in presence of a generic



24 Chapter 2. Opportunistic routing on structured overlays

network partition by routing via ON2 and ON3 through synapses B,C,D, and E.

The reader can refer to the web appendix for a detailed description of the protocol

pseudocode, in both the white and the black box model.

2.3 “White box” Synapse protocol definition

1.01 on receipt of OPE(code,key,value) from ipsend do

1.02 tag = this.new_tag(ipsend);

1.03 send FIND(code,ttl,mrr,tag,key,value,ipsend) to this.myip;

2.01 on receipt of FIND(code,ttl,mrr,tag,key,value,ipdest)from ipsend do

2.02 if ttl = 0 or this.game_over?(tag)

2.03 else this.push_tag(tag);

2.04 next_mrrs = distrib_mrr(mrr,this.net_list);

2.05 for all net 2 this.net_list do

2.06 if this.isresponsible?(net,key)

2.07 send FOUND(code,net,mrr,key,value) to ipdest;

2.08 else if this.good_deal?(net,ipsend)

2.09 send FIND(code,ttl-1,next_mrr.get(net),tag,key,value,ipdest)

to this.next_hop(key);

3.01 on receipt of FOUND(code,net,mrr,key,value) from ipsend do

3.02 this.good_deal_update(net,ipsend);

3.03 match code

3.04 code=GET

3.05 send READ_TABLE(net,key) to ipsend

3.06 code=PUT

3.07 if mrr < 0

3.08 else send WRITE_TABLE(net,key,value) to ipsend

4.01 on receipt of INVITE(net) from ipsend do

4.02 if this.good_deal?(net,ipsend)

4.03 send JOIN(net) to ipsend;

5.01 on receipt of JOIN(net) from ipsend do

5.02 if this.good_deal?(net,ipsend)

5.03 this.insert_net(net,ipsend);

Figure 2.2: The Synapse white box protocol

Figure 2.2 presents the pseudo-code of the protocol using message passing

paradigm.

2.3.1 The GET operation

The GET operation consists in finding the value of an object we are seeking, provided

its key. A node seeking an object sends an OPE(GET,key,_) message to an arbitrary

node it knows. On receipt (see lines 1.01-1.03 ), the node generates a new tag tag

for this request that will be associated with the query all along its path. The routing

is then initiated with a given TTL by sending an auxiliary FIND message for this

request to the node itself; this message seeks the node(s) responsible for the key

sought in order to read the value (if it exists). Upon receipt of a FIND message, a



2.3. “White box” Synapse protocol definition 25

node checks first if the TTL is valid and second if this query was already processed

on the node: in both cases, the routing aborts, in order to avoid useless message

overhead.

On receipt of a FIND message (see lines 2.01-2.09), the node checks the TTL and

the tag of the request before starting processing the request, and, first, recording it as

already processed (“game over” strategy). The retrieval process starts then locally, in

two steps for each intra-overlay the node belongs to: (i) it checks if, according to the

particular retrieval algorithm of the intra-overlay, it is itself assigned a range of keys

containing key (line 2.06); if this is the case, for this overlay, the retrieval process

ends and a FOUND message is sent back to the initiator of the request informing it

that the potential value sought is stored on this node (line 2.07). (ii) if the node

was not responsible for the key in this particular overlay, it forwards the request to

the next hop inside this intra-overlay, according to the particular overlay’s policy

(line 2.09).

On receipt of such a FOUND message — recall that several responses can be

obtained for a request — the initiator of the GET request sends a READ_TABLE message

to the responsible of the key, basically to first to check if any value is assigned to

this key and then to retrieve the value(s) and then get the value of the key sought

(see lines 3.04-3.05).

2.3.2 The PUT operation

The PUT operation is a declaration of a resource. Depending on the purpose of the

resource aggregation, the PUT policy may change:

• If the purpose of the aggregation is to let each overlay keep the control on their

information (with exclusive rights for writing and updating the information)

while letting nodes from other overlay read this information, the PUT operation

will be performed independently within each overlay, each node declaring their

resources to their intra-overlays. In this first case, the PUT operation will not be

different as in a set of intra-overlays without inter-connection, and corresponds

to set the Maximum-Replication-Rate (MRR) to 0.

• If the purpose of the aggregation is to build a globally distributed information

system, each node may declare its resources to a set of intra-overlays it may not

belong to. In this last case, the PUT operation involves mechanisms very similar

to the GET operation and the Maximum-Replication-Rate (MRR) different

than zero tells how many copies we want to distribute in the inter-overlay.

Line 2.04 computes via the function distrib_mrr the required values of MRR

for a PUT request, starting from both its current value and the number of

intra-overlays the request will be forwarded to. Recall that MRR is ignored

when the message is not a PUT operation. In fact, a node declaring a resource

will also seek nodes in the Synapses responsible for their resources. Once such

location is found (similarly than for the GET operation), the initiator of the



26 Chapter 2. Opportunistic routing on structured overlays

request has just to send the value to be stored by the responsible nodes found.

This is achieved by lines 3.06-3.08.

2.3.3 The JOIN and INVITE operations

The JOIN message is sent by a node entering the network, upon a reception of an

INVITE message. Please refer to lines 4.01-4.03 for invitation, and to lines 5.01-5.03

for join. The intra-overlays in which a joining node will act can be chosen in different

ways. A peer receiving an invitation to join a network through the INVITE message

sent by another node can evaluate, via the good_deal? social-based primitive, the

relevance of this invitation. If the invitation was positively evaluated, it can send

a JOIN message to the peer that launched the invitation. Upon receipt of a JOIN

message, a peer can decide, again via the good_deal? primitive, whether or not

this join is interesting for it.

2.4 “Black box” Synapse Protocol definition

Figure 2.3 presents the pseudo-code of the protocol using the Black Box paradigm.

2.4.1 Accessing blackbox networks

The Synapse protocol hereby presented is capable of connecting heterogeneous net-

work topologies given the assumption that every node is aware of the additions made

to existing overlay protocols. The new parameters used to handle the game over

strategy and replication need to be embedded into the existing protocols, so does

the unhashed key in order to be rehashed when a synapse is met.

Interconnecting existing overlay made of “blind” peers, who are not aware of the

additional parameters, seems one natural evolution for the synapse model and it

constitutes a problem worth investigating.

The assumption is that an overlay can be populated by blind peers (e.g. nodes

previously in place) and synapses at the same time. Both interact in the same way

in the overlay and exchange the same messages; moreover those synapses can be

member of several overlays independently (thus being able to replicate a request

from one overlay to another) and can communicate with each other exclusively

through a dedicated Control Network.

2.4.2 Data structure

As a general operational model we can imagine a set of entities responsible for the

interaction with the individual overlays at level N that communicate with a Synapse

Controller at level N+1 through a set of primitives. The Synapse Controller access

the routing information through the Control Network and is completely agnostic of

the underlying protocols. The Control Network is basically a set of DHTs allowing

each node to share routing information with other synapses without being aware



2.4. “Black box” Synapse Protocol definition 27

of the routing of the undergoing message. So far the DHTs implemented are the

following:

2.4.2.1 Key Table

When a node in a structured overlay issues a message related to a specific key K,

it hashes K using a hash function H() specific to the overlay itself, and then issue

a message containing only the hashed version H(K). Since H(K) is assumed to be

non reversible, the Key Table is responsible for storing the unhashed version K of

the keys circulating in the underlying overlays. When a synapse node performs a

PUT or a GET that it wishes to be replicated in other networks, it makes the unhashed

key K available to the other synapses through the Key Table. The key is stored

using an index formed by a network identifier NID as a prefix and the hashed key

H(K) as a suffix. This way, every other synapse in the originating network can

easily retrieve K using only the information they are aware of from the underlying

messages (namely H(K) and NID.)

In order to avoid that its size explodes a mechanism of local FIFO is envisioned

for the Key Table. Each node of the Control Network should treat its part of data

as a FIFO of fixed size, treating every new access to an item as an insertion thus

preserving the items most wanted.

2.4.2.2 Replication Table

The Replication Table is used to enable consistency during the replication of PUT

messages across networks. When a synapse node performs a new PUT with replica-

tion, it inserts the unhashed key K key in the Key Table and a new entry in the

Replication Table in the form

[H(K),mrr,ttl,[netid]].

When another node receives the message to be forwarded, in order to perform a PUT

in the other overlays it first checks if the mrr counter > 0. In case it performs a

maximum of mtt replication of the PUT request, and decrements the mrr. To avoid

sending the same request more than once in the same network, the Replication

table stores a list of networks where the request has already been performed. A ttl

parameter, set by the node issuing the PUT request, manages the expiration of the

entry in the table and avoids the risk of having infinite loops due, for example, to

an mrr set much higher than the number of overall networks and therefore never

getting down to 0. In case of overlapping PUT requests of the same key by different

synapses, a FIFO criterion is applied and the old entry in the table is completely

overwritten by the new request parameters. However it should be mentioned that

the replication of PUT requests across multiple networks is a critical point that need

further investigation due to the many drawbacks, of top of whom is the problem of

guaranteeing data consistency across networks in case of a new put of an existing

key (data update).



28 Chapter 2. Opportunistic routing on structured overlays

2.4.2.3 Cache Table

The Cache Table is used to implement the replication of get requests, cache multiple

responses and control the flooding of foreign networks. It stores entries in the form

of

[H(K),ttl,[netids],[cache]].

In a nutshell: netid are optional and used to perform selective flooding on specific

networks. When another synapse receives a GET requests, it checks if there is an

entry in the Key Table (to retrieve the unencrypted key), and an entry in the Cache

Table; if so, it replicates the GET in the [netids] networks he is connected to,

or in all his networks if no [netids] are specified. All the responses are stored

in the [cache] and only one is forwarded back, in order to maintain backward

compatibility with possible blind nodes having performed the same request. As in

the Replication Table, a ttl is specified to manage the cache expiration and block

the flooding of networks. When the synapse originating the request receives the first

response, it can retrieve from the Cache Table the rest of the results. The cached

responses should be sent back with the associated netid. This can allow a with time

to define a strategy of selective flooding to the networks who are better responding

to a synapse request.

2.4.3 Algorithm

Hereby we present the algorithm adopted by the Synapse Controller to perform

multiple PUT or GET in a set of network. The different approach to the problem

compared to a White box model brings some limitations to certain functionality

(e.g. request tagging is not possible) but allows on the other hand to implement ad-

ditional options in the requests (e.g. selective broadcast during a GET request). The

algorithm is described through the primitives exposed by a Synapse Controller to

the upper and lower level. For simplicity all the operation performed on the Control

Network’s DHT are represented as local map operations, and are assumed to be syn-

chronous. For example, KeyTable[key] correspond to a send KeyTableGET(key)

to ControlNetwork. The implementation of the Control Network (choice of rout-

ing, topology . . . ) is not discussed here. To the upper level a Synapse Controller

exposes the message SYN_GET and SYN_PUT, while to the lower level the Synapse

Controller can exchange canonical GET/PUT messages with the entities responsible

of the connection to the overlays.

• SYN_GET initiate a multiple GET operation in all networks. The parameters

passed are the key to be searched, the Time To Live for the data in the

Cache Table (this represents as well the duration of the flooding across the

networks) and optionally a list of specific networks to target. Before sending

the GET request to the networks the synapse is connected to, it initialize the

Cache Table by adding a new entry with the specified ttl and the list of

target networks if present. Then multiple requests are dispatched, taking care



2.5. The Simulations 29

of storing for each network a copy of the unhashed key in the Key Table. When

all the responses are received, the synapse collects also all the results stored

in the cache, representing the responses from network out of direct sight.

• SYN_PUT initiate the data in the control network to perform multiple PUT

requests. To begin with, the request is replicated to the first mrr networks to

which the synapse is connected to. In case the mrr is higher that the number

of connected networks (thus needing replication on out of sight networks), a

new entry in the replication table is stored (or an old entry for the same key

is replaced) with the remaining number of replications to do. Then, as per

SYN_GET, the request is dispatched to the underlying networks, taking care of

storing for each network a copy of the key in the Key Table.

• GET represents a GET request passing by to be replicated by the synapse. In

order to replicate it, the Controller checks first if a copy of the unhashed key is

stored in the control network (meaning that the request was initially performed

by another synapse). If present, the Cache Table is checked to see if there is

an entry corresponding to the requested key. If so, the controller dispatches

the request either on the target networks it’s connected to (if specified in the

Cache Table) or to all its networks. To avoid breaking the compatibility with

possible blind peers being able to handle only one response per request, only

the first result is returned and the rest is stored in the Cache Table for later

retrieval.

• PUT represents a passing PUT request to be replicated. As for the GET, the

algorithm first retrieves the unhashed key for the network and, if present, the

corresponding entry in the Replication Table. If there is such entry, the request

is replicated in the networks not yet marked in the Network List corresponding

to this entry, decrementing ReplicasLeft each time until 0 is reached. To

avoid performing the request twice in the same network, the network ID is

stored in the Network List.

2.5 The Simulations

The purpose of the simulations is to allow for better understanding of the behavior

of structured overlay interconnection through the Synapse approach. We focus on

the key metrics traditionally considered in distributed information retrieval process,

such as exhaustiveness (the extent of existing objects effectively retrieved by the

protocol), latency (number of hops required to reach the requested object) and

the amount of communications produced (number of messages generated for one

request). The goal is to highlight the behavior of these metrics while varying the

topology (number of synapses and their connectivity, TTL, number of intra-overlays

...).



30 Chapter 2. Opportunistic routing on structured overlays

6.01 on receipt of SYN_GET(key,cacheTTL,[targetNetworks]) from ipsend do

6.02 CacheTable[key].TimeToLive = cacheTTL;

6.03 CacheTable[key].targetedNetworks = [targetNetworks];

6.04 if not (targetNetworks)

6.05 targetNetworks = this.networks;

6.06 for each network in (this.networks \ targetNetworks)

6.07 KeyTable[network.ID|network.hash(key)] = key;

6.08 result_array += network.get(network.hash(key));

6.09 result_array += CacheTable[key].cachedResults;

6.10 send SYN_FOUND(key,result_array) to ipsend;

7.01 on receipt of SYN_PUT(key,value,mrr) from ipsend do

7.02 if (mrr > this.networks.size)

7.03 mrrOutOfSight = mrr-this.networks.size;

7.04 mrrInSight = this.network.size;

7.05 delete ReplicationTable[key];

7.06 ReplicationTable[key].ReplicasLeft = mrrOutOfSight; )

7.07 else

7.08 mrrInSight = mrr;

7.09 for i = [1:mrrInSight]

7.10 KeyTable[this.networks[i].ID|this.networks[i].hash(key)] = key;

7.11 this.network[i].put(this.networks[i].hash(key),value);

8.01 on receipt of PUT(hashKey,value) from this.network[i] do

8.02 key = KeyTable[network.ID|hashKey];

8.03 if (ReplicationTable[key] exists)

8.04 for each replicaNetwork in this.connectedNetworks

8.05 if (ReplicationTable[key].ReplicasLeft > 0)

8.06 and not (ReplicationTable[key].hasNetwork?(replicaNetwork.ID))

8.07 KeyTable[replicaNetwork.ID|replicaNetwork.hash(key)] = key;

8.08 ReplicationTable[key].addNetwork(replicaNetwork.ID);

8.09 ReplicationTable[key].ReplicasLeft--;

8.10 replicaNetwork.forward_put();

8.11 else

8.12 network[i].put(hashKey,value);

9.01 on receipt of GET(hashKey) from this.networks[i] do

9.02 key = KeyTable[network.ID|hashKey];

9.03 if (CacheTable[key] exists)

9.04 if (CacheTable[key].targetedNetworks is empty)

9.05 targetNetworks = this.networks;

9.06 replicaNetworks = CacheTable[key].targetedNetworks \ this.connectedNetworks;

9.07 for each replicaNetwork in replicaNetworks do

9.08 KeyTable[replicaNetwork.ID|replicaNetwork.hash(key)] = key;

9.09 results += replicaNetwork.forward_get(replicaNetwork.hash(key));

9.10 CacheTable[key].cachedResults += results;

9.11 return results[1];

9.12 else

9.13 return network[i].get(hashKey);

Figure 2.3: The Synapse blackbox protocol

2.5.1 Settings

Our simulations have been conducted using Python scripts, and using the white box

protocol, capturing the essence of the Synapse approach. The topology of the overlay

simulated is a set of Chord networks interconnected by some synapses. Information



2.5. The Simulations 31

is a set of (key,value) pairs. Each pair is unique and exists once and only once in

the network. We study the unstructured interconnection of structured networks. We

used discrete-time simulation: queries are launched on the first discrete time step,

initiating a set of messages in the network, and each message sent at the current

step will be received by its destination (next routing hop) at the next hop. Each

result is the average of 50 simulation runs.

2.5.2 Impact of Synapse nodes and their connection degree

Our first set of simulations has the intent of studying how the previously mentioned

metrics vary while we add synapses or increase the degree of existing ones (the

number of intra-overlays a co-located node belongs to). The number of nodes was

fixed to 10000, uniformly distributed amongst 20 overlays (approximately 500 nodes

within each Chord). Queries are always triggered by one random node, the key

sought by a query is also picked uniformly at random among the set of keys stored

by the network. A query is said to be satisfied if the pair corresponding to the key

has been successfully retrieved.

We first studied search latency, i.e. the number of hops to obtain the first suc-

cessful response. As illustrated in Figure 2.4, one first point to notice is that the

number of hops remains logarithmic when changing a Chord network into a Synapse

network (the number of nodes is 10000, the latency never exceeds 14). Other exper-

iments conducted by increasing the number of nodes confirm this. More precisely,

Figure 2.4 highlights the following behavior: (i) when the network contains only

a few synapses, the latency first increases with the degree of synapses: only a few

close keys are retrieved (keys available in the network of the node that initiated

the query); (ii) then, when both parameters (the connectivity and the number of

synapses) have reached a certain threshold, the searches can touch more synapses,

and the whole network becomes progressively visible, multiple parallel searches be-

come more and more frequent and distant nodes (and keys) are reached faster. As

we can see, increasing the number of synapses decreases the latency of only a small

constant factor. In other words, synapse topologies does not need a lot of synapses

to be efficient. This result fits with random graphs behavior: when the number of

neighbors in the graph reaches a (small) threshold, the probability for the graph to

be connected tends towards 1. Obviously, multiple searches in parallel lead to an

increased number of messages. As illustrated in Figure 2.5, this number increases

proportionally with the connectivity and the number of synapses.

2.5.3 Effects of Time-To-Live

As we pointed out, the number of messages can become high when the number

of synapses increases. To limit this impact, we introduced a Time-to-Live (TTL)

to reduce the overhead while keeping an acceptable level of exhaustiveness. We

launched a second set of experiments in order to study the impact of the TTL on

the search queries. This TTL is simply decreased every time the query traverses a



32 Chapter 2. Opportunistic routing on structured overlays

 0

 2

 4

 6

 8

 10

 12

 14

 2  4  6  8  10  12  14  16  18  20

H
o
p
s

Average connectivity of Synapses

Lookup latency

1% of synapses
2% of synapses
5% of synapses

10% of synapses
20% of synapses
50% of synapses

Figure 2.4: Latency in Synapse

 0

 2000

 4000

 6000

 8000

 10000

 2  4  6  8  10  12  14  16  18  20

N
u
m

b
e
r 

o
f 

m
e
s
s
a
g
e
s

Average connectivity of synapses

Communications

1% of synapses
2% of synapses
5% of synapses

10% of synapses
20% of synapses
50% of synapses

Figure 2.5: Communications overhead in Synapse

node.

The purpose is here is to preserve significant exhaustiveness, while reducing the

amount of communications undergone by the inter-overlay. We made the number

of overlays vary, to experiment the impact of the granularity of the network. In

other words, a Synapse network made of few large structured intra-overlays could

be called strongly structured, while another network with many smaller structured

intra-overlays could be called weakly structured. The number of nodes was still set



2.5. The Simulations 33

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

S
a
ti
s
fa

c
ti
o
n
 r

a
ti
o

TTL

Influence of TTL: exhaustiveness

20 overlays
50 overlays

100 overlays
200 overlays
500 overlays

Figure 2.6: TTL vs. exhaustiveness

 0

 1000

 2000

 3000

 4000

 5000

 2  4  6  8  10  12  14  16  18

N
u
m

b
e
r 

o
f 

m
e
s
s
a
g
e
s

TTL

Influence of TTL: communications

20 overlays
50 overlays

100 overlays
200 overlays
500 overlays

Figure 2.7: TTL vs. communications

to 10000, and every node is a synapse belonging to 2 overlays chosen uniformly at

random.

Figure 2.6 confirms that a low synapse degree (2) is enough to achieve quasi-

exhaustiveness. Another interesting result is that TTL can be bounded without any

impact on the exhaustiveness (10 or 12 is enough even when the number of overlays

interconnected is 500), while, as highlighted by Figure 2.7, drastically reducing the

amount of communications experienced, with the number of messages being almost



34 Chapter 2. Opportunistic routing on structured overlays

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18  20

S
a
ti
s
fa

c
ti
o
n
 r

a
ti
o

Average connectivity of synapses

Exhaustiveness

1% of synapses
2% of synapses
5% of synapses

10% of synapses
20% of synapses
50% of synapses

Figure 2.8: Exhaustiveness vs. synapse connectivity

divided by 2. To sum up, Synapse architectures can use TTL, leading to a significant

exhaustiveness while drastically reducing the expected overhead. Finally, still see

Figure 2.6, the granularity (defined above) does not significantly influence exhaus-

tiveness and communications when the number and connectivity of the synapses are

fixed.

2.5.4 Connectivity and Peers’ churn

Figure 2.8 shows the evolution of the exhaustiveness while increasing the average

number of overlays a synapse belongs to. We repeated the experiment for different

ratios of synapses (in percentage of the total number of nodes). The exhaustiveness

is improved by increasing both factors. We obtain more than 80% of satisfaction

with only 5% of nodes belonging to 10 floors, and other nodes belonging to only

one intra-overlay. When each node belongs to 2 overlays, the exhaustiveness is also

almost guaranteed.

Since networks are intended to be deployed in a dynamic settings (nodes joining

and leaving the network without giving notice), we conducted a final set of simula-

tions to see the tolerance of Synapse compared to a single Chord overlay network. In

other words, the question is Does an interconnection of small Chords better tolerate

transient failures than one large unique Chord? In this experiment, at each step,

a subset of nodes is declared unreachable (simulating the churn), making message

routing fail. As we can see on Figure 2.9, improvement on the number of satis-

fied requests can be obtained through a Synapse network: when the probability

of failure/disconnection of a node increases, the global availability of the network

is far less reduced with Synapse than with Chord. This shows that such synapse



2.6. The Experimentations 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25

S
a
ti
s
fa

c
ti
o
n
 r

a
ti
o

Probability of failure

Exhaustiveness under churn

1 overlay
2 overlays
5 overlays

10 overlays

Figure 2.9: Exhaustiveness vs. churn rate

architectures are more robust and thus good candidates for information retrieval on

dynamic platforms.

2.6 The Experimentations

2.6.1 JSynapse

In order to test our protocols on real platforms, we have initially developed JSy-

napse, a Java software prototype, which uses Java RMI standard for communications

between nodes, and whose purpose is to capture the very essence of our Synapse

protocol. It is a flexible and ready to be plugged library which can interconnect any

type of overlay networks. In particular, JSynapse fully implements a Chord-based

inter-overlay network. It was designed to be a lightweight easy to extend software.

We also provided some practical classes which help in automating the generation

of the inter-overlay network and the testing of specific scenarios. We have experi-

mented with JSynapse on the Grid’5000 platform [Cappello et al. 2005] connecting

more than 20 clusters on 9 different sites. Again, Chord was used as the intra-overlay

protocol.

We used one cluster located at Sophia Antipolis, France. The Helios cluster

consists of 56 quad-core AMD Opteron 275 processors linked by a gigabit Ethernet

connection. The created Synapse network was first made of up to 50 processors

uniformly distributed among 3 Chord intra-overlays. Then, still on the same cluster,

as nodes are quad-core, we deployed up to 3 logical nodes by processor, thus creating

a 150 nodes overlay network, nodes being dispatched uniformly over 6 overlays.

During the deployment, overlays were progressively bridged by synapses (the degree



36 Chapter 2. Opportunistic routing on structured overlays

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

S
a
ti
s
fa

c
ti
o
n
 r

a
ti
o

Number of synapses (%)

Deployment: satisfaction ratio

3 overlays, 10 nodes
3 overlays, 30 nodes
3 overlays, 50 nodes

6 overlays, 100 nodes
6 overlays, 150 nodes

Figure 2.10: Deploying Synapse : Exhaustiveness

of which was always 2).

We give a proof of concept and show the viability of the Synapse approach while

confirming results obtained by simulation. We also focus on the metrics affecting

the user (satisfaction ratio and time to get a response). Once his request was sent, a

user waits only for 1 second before closing the channels opened to receive responses.

If no response was received after 1 second, the query is considered as not satisfied.

Figure 2.10 shows the satisfaction ratio when increasing the number of synapses

(for both white and black box versions). As expected, the general behavior is com-

parable to the simulation results, and a quasi-exhaustiveness is achieved, with only

a connectivity of 2 for synapses. Figure 2.11 illustrates the very low latency (a

few milliseconds) experienced by the user when launching a request, even when a

lot of synapses may generate a lot of messages. Obviously, this result has to be

considered while keeping the performances of the underlying hardware and network

used in mind. However, this suggests the viability of our protocols, the confirmation

of simulation results, and the efficiency of the software developed.

2.6.2 Open-Synapse

We have also developed open-synapse, based on the stable and widely used

open-chord implementation, which provides a complete and efficient Chord im-

plementation. Open-Synapse extends open-chord core, thus taking advantage of

its robustness and reliability. A preliminary set of tests on open-synapse involved

50 nodes and different randomly generated scenarii.



2.7. Conclusion 37

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

T
im

e
 (

m
s
)

Number of synapses (%)

Deployment: Time to get a response

3 overlays, 10 nodes
3 overlays, 30 nodes
3 overlays, 50 nodes

6 overlays, 100 nodes
6 overlays, 150 nodes

Figure 2.11: Deploying Synapse : Latency

2.7 Conclusion

In this chapter we have introduced Synapse, a scalable protocol for information

retrieval in heterogeneous inter-connected overlay networks relying on co-located

nodes and inter-routing policies of opportunistic nature. Synapse is a generic and

flexible meta-protocol which provides simple mechanisms and algorithms for easy

overlay network interconnection. We have given the set of algorithms behind our

protocols and provided a set of simulations allowing to capture the behavior of

such networks and show their relevance in the context of information retrieval,

using key metrics of distributed information retrieval. We have also developed

JSynapse, a lightweight implementation of Synapse, and experimented with it

using the Grid’5000 platform, thus confirming the obtained simulation results and

giving a proof of concept.

The contibutions of this chapter have been published as Synapse: A Scalable Pro-

tocol for Interconnecting Heterogeneous Overlay Networks, in Proceedings of NET-

WORKING 2010, Springer LNCS [Liquori 2010].





Chapter 3

Optimal discovery mechanisms for
distributed gateways

Contents
3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Evolving the Synapse protocol . . . . . . . . . . . . . . . . . 40

3.1.2 Towards a common architecture to interconnect overlay networks 42

3.2 The Synapse 2.0 Interconnection Framework . . . . . . . . . 42

3.2.1 Synapse Protocol Overview . . . . . . . . . . . . . . . . . . . 43

3.2.2 Synapse-node functionalities . . . . . . . . . . . . . . . . . . . 43

3.2.3 Synapse Routing Protocol . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Gateway node discovery strategies . . . . . . . . . . . . . . . 46

3.2.5 Synapse-node routing strategies . . . . . . . . . . . . . . . . . 49

3.2.6 Synapse-node structure. . . . . . . . . . . . . . . . . . . . . . 49

3.2.7 Self-organization via “social networking” primitives. . . . . . . 50

3.3 A routing example . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Protocol implementation in OverSim . . . . . . . . . . . . . 52

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Topology construction . . . . . . . . . . . . . . . . . . . . . . 55

3.5.3 Configuration of gateway-nodes . . . . . . . . . . . . . . . . . 56

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

In the previous chapter, we proposed a system to interconnect heterogeneous

overlays by means of co-located nodes, i.e. nodes that can belong to several overlays

at the same time, and act together as a form of distributed gateways. The system

relied on what we called “opportunistic routing”, i.e. a message could jump from

one overlay to another only if it touched a gateway node during the routing in

the first overlay. While proving how such an approach is scalable and allows for a

quasi-exhaustive system with a low percentage of gateway nodes, the opportunistic

routing is not the only available one, and not necessarily the optimal one for every

application.



40 Chapter 3. Optimal discovery mechanisms for distributed gateways

In this chapter, we present a novel protocol and software architecture that better

formalises the capabilities of an interconnected system and allows for more flexible

routing schemes. The protocol, named Synapse 2.0, exposes a set of API, indepen-

dent from the underlying overlays, to exchange the required inter-routing informa-

tion in an unstructured fashion, defines new optimized mechanisms for the discovery

of the overlay gateways and offers a way to define new routing policies, including but

not limited to the presented opportunistic routing. Furthermore, it generalises the

previous approach to work in both collaborative and non collaborative scenarios.

3.1 Context

3.1.1 Evolving the Synapse protocol

The work on the Synapse overlay interconnection framework presented in Chapter 2

showed how, given an arbitrary and statistically uniform set of lookup requests for

resources distributed across a set of structured overlay networks connected by nodes

co-located into several overlays at the same time, it is possible to rely solely on the

chance that a request would “touch” a gateway node (i.e. a Synapse) to perform

inter-routing of a request into a foreign overlay and achieve quasi-exhaustivity with

a relatively low number of well-connected gateways, as shown in Figure 2.8.

The intuition behind this result is that the consistent hash function used to

encode resource keys and node identifiers in a structured overlay ultimately causes

the messages to circulate evenly across the whole overlay, with the effect that, even

with a low percentage on gateway nodes evenly distributed in the overlay, the chance

for a request to encounter a co-located node along its routing path is fairly high.

Regardless of the effectiveness of such intuition, there still is a set of practical

and functional challenges on the way to achieving a concrete meta-protocol suitable

for real-world applications:

• Relying solely on an opportunistic mechanism works when the data stored

in the DHT is assumed to be atomic, but may lose its effectiveness in case

of complex data structures involving multiple indirections of keys pointing

to other keys in the same overlays, as described in [Garces-Erice 2004]1. In

case of complex information, it becomes essential to be able to efficiently issue

subsequent requests directed to the overlay where the first key was found, to

avoid severe data consistency problems;

• Extending the routing to multiple overlays require the exchange of additional

data, such as the non-hashed key (in the hypothesis that different overlays

use different hash functions). In an opportunistic scenario, such data needs to

be constantly carried around by the overlay messages, in the off chance that

a gateway node would forward that message, thus increasing the overhead

traffic in each overlay and breaking any backward compatibility with existing

networks;

1Chapters 5 and 6 will present two cases where such complex encoding is required.



3.1. Context 41

• A different mechanism needs to be put in place for those scenarios where back-

ward compatibility has to be ensured, leading to inconsistencies between the

“black-box” protocol (in scenarios when the overlay network protocol messages

cannot be changed) and the “white-box” protocol;

• Furthermore, the black box implementation relies on the use of additional

DHTs as the control network, to store the meta data that would have to

be exchanged between peers during the inter-routing. That would add an

additional layer of complexity in the implementation, and more delay when

issuing a request, due to the fact that several DHT operations would have

to happen before a message to be inter-routed can be reliably sent over the

overlay;

• Due to the assumptions that different overlays may rely on different hash func-

tions, and that hash functions should not be considered reversible, the need

to exchange information deemed sensitive may arise. For example, to route a

request in a foreign overlay a gateway node has to get the non-hashed key nK

from the node in the overlay issuing the request. In the protocol described in

Chapter 2, nK was either embedded in the overlay messages, or stored in the

control network. Both choices pose problems related to both security (nK is

left visible to an arbitrary set of nodes routing the packets containing it) and

performances (an application might decide to store information related to a

file, using as a key the MD5 hash of the whole file.);

The above considerations drove the research presented in this chapter, where the

Synapse protocol has been improved to fulfill the following goals:

• Enable the possibility to efficiently retrieve complex data structures across

heterogeneous overlays, once the first key is found;

• Maintain as much as possible the same desirable performances in terms of

exhaustivity in the overall system, by continuing to exploit, in a new way, the

intuition described above;

• Reduce as much as possible the exposure of “sensitive” information, namely

the un-hashed key nK, to the eyes of parties non-involved in the routing;

• Create a consistent behavior for the “black-box” and the “white-box” scenarios,

i.e. develop a routing scheme consistent across the backward-compatible and

non backward-compatible scenarios;

• Reduce the message overhead as much as possible, and increase the robustness

of the meta-overlay created by the co-located nodes;



42 Chapter 3. Optimal discovery mechanisms for distributed gateways

3.1.2 Towards a common architecture to interconnect overlay net-
works

With these premises in mind, the novel Synapse 2.0 protocol implements the above

points in the following way:

• Routing to a foreign overlay does not happen anymore opportunistically, but

in a deterministic way, with the originating peer contacting directly a co-

located node with a dedicated message that contains nK and any other useful

information (such as a TTL parameter, or a list of overlays to target). This

communication can be easily be encrypted with a public/private key mecha-

nism, and exposes the sensitive data only to the impacted parties (originating

node and gateway);

• The use of a dedicated message exchange between originating node and gate-

way makes the mechanism compatible even with existing networks, where old

nodes and new ones can coexist in the same network without the old nodes

being impacted by any additional information being carried in the protocol

packets;

• Gateways can be discovered using different mechanisms, depending on the

“openness”of the system: in the best case, it can be achieved by simply adding

an additional flag in the packets issued by a gateway node, and leaving every

node forwarding the message reading said flag. This way, the same intuition

that allowed for reaching quasi-exhaustivity during a message routing can be

exploited to discover the gateways for later use;

• This mechanism leads to the creation of a control network in the form of

an unstructured overlay, by having each node maintaining a constant list of

pointers to gateway nodes being discovered. On top of this unstructured over-

lay, each node can independently adopt different routing schemes, depending

on the need. A node could, for example, decide to organize its pointers in

a structured way, based in the identifier of the networks they point to, thus

mimicking a hierarchical overlay behavior;

3.2 The Synapse 2.0 Interconnection Framework

In this section, we describe in details the Synapse 2.0 protocol, the structure of a

Synapse node, and the processes of inter-overlay routing and node discovery per-

formed in Synapse. As a reference for operations and messages, we will adopt

KBR routing, as described in the API of [Dabek ], since there an independent and

implementation-agnostic abstraction is provided, which can be used for either struc-

tured, unstructured, or hybrid overlays.



3.2. The Synapse 2.0 Interconnection Framework 43

3.2.1 Synapse Protocol Overview

As we have mentioned earlier, the idea behind Synapse is to provide a network

framework to deal with transparent interconnection and collaboration of heteroge-

neous overlays. Throughout the rest of the work, we will refer to three types of

nodes: legacy-nodes, synapse-nodes, and gateway-nodes :

• Legacy-nodes are simple instances of one single overlay protocol, they are

connected to just one overlay, and are unaware of the Synapse protocol;

• Synapse-nodes are nodes which are aware of the Synapse protocol. They can

be connected to one or more overlays (and, as such, they are also able to route

messages in each of these overlays). Each synapse-node maintains a Direct

Overlay Table (DOT) with pointers to other gateway-nodes it is aware of.

The main functionalities of a synapse-node will be described later on in this

section;

• Gateway-nodes are a special case of synapse-nodes, and are necessarily con-

nected to two or more overlays.

Additionally, for each synapse-node, we will be referring to three sets of overlays

related to it: connected-overlays, direct-overlays, and indirect-overlays :

• An overlay o is a connected-overlay of a given synapse-node s iff s is connected

to o;

• An overlay o is a direct-overlay of a synapse-node s iff there exists a gateway-

node s0 in the DOT of s, such that o is a connected-overlay of s0;

• An overlay o is an indirect-overlay of a synapse-node s iff it is neither a

connected-overlay of s, nor a direct-overlay of s.

Each overlay network is identified by a unique netID. Figure 3.1 shows the topol-

ogy of five different overlay networks having ten synapse-nodes. Here, for instance,

the connected-overlays of the synapse-node S1 are the overlays netID1 and netID5,

while its direct-overlays are netID2, netID3, and netID4 (via gateway-nodes S2, S5,

and S8).

Hashing. Without loss of generality, we assume that all of the overlays expose

key-based routing capabilities. Also, we do not require that all of the overlays use

one hash-function, or are aware of all of the hashing functions. As un-hashing is

not possible, routing a message outside of an overlay involves the exchange of the

non-hashed key.

3.2.2 Synapse-node functionalities

A synapse-node must be able to:



44 Chapter 3. Optimal discovery mechanisms for distributed gateways

pgvKF"3

?"U{pcrug"Pqfg
?"Qxgtnc{"Pqfg

pgvKF"4

pgvKF"5

pgvKF"6
pgvKF"7

?"U{pcrug"rqkpvgtu

U3

U4

U5
U6

U7

U8U9

U:

U;

U32

Figure 3.1: Overlays with gateway-nodes

U{pcrug"pqfg

U{pcrug"Eqpvtqnngt

000

Vkgt"3"Crrnkecvkqp

U{pcrug"Crrnkecvkqp"Cfcrvgt

Fktgev"Qxgtnc{"
Vcdng

Oguucig"Tqwvkpi"
Vcdng

Crrnkecvkqp"
Tgswguv1Tgurqpug

U{pcrug"
Tgswguv1Tgurqpug

Tqwvg1Hqtyctf Tqwvg1Hqtyctf Tqwvg1Hqtyctf

Pqvkh{ Pqvkh{ Pqvkh{

Vq"qvjgt"
U{pcrug
Pqfgu

Ejqtf"
rqtv

Qxgtnc{"3"Pqfg
*Ejqtf+

ECP"
rqtv

Qxgtnc{"4"Pqfg
*ECP+

Mcf"
rqtv

Qxgtnc{"5"Pqfg
*Mcfgonkc+

Tgswguv"Fcvc"
Ecejg

Figure 3.2: Structure of a synapse-node



3.2. The Synapse 2.0 Interconnection Framework 45

• Process and route a message from the application layer to its connected-

overlays;

• Dispatch a message directly to other synapse-nodes, to be routed in overlays

others than the connected ones;

• Routing a request coming from other synapse-nodes;

• Discovering new synapse-nodes;

• Inviting new synapse-nodes to join its connected-overlays.

Apart from the data structures and messages which need to be maintained for each

of the connected-overlays (finger tables, neighbors lists, routing messages, etc.),

a synapse-node must handle new data structures so as to deal with inter-overlay

routing:

• a Network Identifier (netID) per each overlay, to identify it unequivocally;

• a Direct Overlay Table (DOT), which is a table in which pointers to gateway-

nodes are stored, arranged per netID of the overlays they are connected to;

• a Message Routing Table (MRT), responsible for storing information about

ongoing messages (TTL, source nodes, RequestID, targeted overlays, etc.);

• a Cache Table (CHT), used for storing values which are associated with fre-

quently requested keys, in order to minimize routing for popular items.

Furthermore, each synapse-node should be able to interpret the following mes-

sages:

• SYNAPSE_OFFER(netIDList), issued by a gateway-node in order to publish the

list of overlays it is connected to;

• SYNAPSE_REQUEST(nonHashedKey,...), sent by a synapse-node to a gateway-

node in order to route a message outside of an overlay;

• SYNAPSE_RESPONSE(...), used by a gateway-node to return response messages

for a SYNAPSE_REQUEST;

• SYNAPSE_INVITE(netID), sent to a synapse-node to “invite” it to join a specific

overlay;

• SYNAPSE_JOIN(netID), issued by a synapse-node wishing to join a given overlay.



46 Chapter 3. Optimal discovery mechanisms for distributed gateways

3.2.3 Synapse Routing Protocol

Message routing can use three different mechanisms in synapse-nodes:

• they can route a message to any of their connected-overlays;

• they can also route a message to any of their direct-overlays by issuing a

SYNAPSE_REQUEST message to a gateway-node in its DOT;

• they can also reach their indirect-overlays by issuing a SYNAPSE_REQUEST mes-

sage, with the target netIDs specified, to a random set of gateway-nodes. This

starts an unstructured routing mechanism through gateway-nodes until a node

connected to the target overlay is found.

A SYNAPSE_REQUEST message carries several parameters, amongst which are the non-

hashed key for the message, a RequestID (in order to identify if a message has already

passed through a gateway), a TTL parameter which defines how many times should

a message be routed to subsequent gateways and, if necessary, a list of target netIDs

to which the message should be routed specifically. The choice of which, and how

many overlays to select for message routing constitutes the routing strategy of the

system.

3.2.4 Gateway node discovery strategies

In order to reach direct overlays, a synapse-node which joins the network needs

to discover gateway-nodes connected to overlays other than his. There are several

mechanisms at hand, depending on the application scenarios:

• Message embedding (Passive Discovery): in a collaborative scenario, in which

the overlay protocol messages can support additional data, the simplest solu-

tion is to embed into the message the list of overlays the node issuing the mes-

sage is connected to. In this way, each synapse-node forwarding the message in

the overlay can extract this information and update its DOT, in Kademlia-like

fashion;

• Active notifications (Active Discovery): being notified of a transiting mes-

sage, a synapse-node can decide to proactively send a SYNAPSE_OFFER message,

containing the list of its connected overlays, to the source node, in order to

publish its presence. This is an effective technique in non-collaborative scenar-

ios in which a message source is known (e.g. iterative or semi-recursive routing

protocols);

• Peer exchange: for those scenarios in which embedding is not possible, and

a message source is not known (due to a fully recursive routing algorithm),

a synapse-node can still discover other synapse-nodes via an iterative peer

exchange mechanism. This, however, requires an initial synapse-bootstrap-

node to be contacted, in order to perform the first discovery;



3.2. The Synapse 2.0 Interconnection Framework 47

• Aggressive discovery: apart from these strategies, which are generic and suit-

able for any overlay protocol, other strategies can be put in place within a col-

laborative scenario, to exploit specificities of a certain protocol (e.g. a source

node list, leaf tables, neighbor cache, etc.).

A taxonomy of collaboration scenarios. The choice of a peer discovery mech-

anism over the others strictly depends on the capabilities of the supporting overlay

networks, as well as the scenario in consideration.

KFC"""KRC

KFD"""KRD

KFE""""KRE

KFF"""KRF

Qxgtnc{"tgswguv
Qxgtnc{"tgurqpugVq<"KR

D ""Htqo<"KR
C ""Mg{<"M

F

Vq<"KR
E ""Htqo<"KR

C ""Mg{<"M
F

Vq<"KR
F ""Htqo<"KR

C ""Mg{<"M
F

Vq<"KR
C ""Htqo<"KR

D ""Qtkikp<"KF
D

Vq<"KR
C """Htqo<"KR

E """Qtkikp<"KF
E

Vq<"KR
C """Htqo<"KR

F """Qtkikp<"KF
F

(a) Iterative routing

KFC"""KRC

KFD"""KRD

KFE""""KRE

KFF"""KRF

Qxgtnc{"tgswguv
Qxgtnc{"tgurqpug

Vq<"KR
D ""Htqo<"KR

C ""Mg{<"M
F

Vq<"KRE""
Htqo<"KRC""
Mg{<"MF

Vq<"KRF"
"Htqo<"KRC""
Mg{<"MF

Vq<"KRC""
Htqo<"KRF""
Mg{<"MF

(b) Semi-recursive routing

KFC"""KRC

KFD"""KRD

KFE""""KRE

KFF"""KRF

Qxgtnc{"tgswguv
Qxgtnc{"tgurqpug

Vq<"KR
D ""Qtkikp<"KF

C ""Mg{<"M
F

Vq<"KRE""
Qtkikp<"KFC""
Mg{<"MF

Vq<"KRF""
Qtkikp<"KFC""
Mg{<"MF

KFG"""KRG

KFH"""KRH

Vq<"KRG""Qtkikp<"KFF""Mg{<"KFC

Vq<"KRH""
Qtkikp<"KFF""
Mg{<"KFC

Vq<"KRC""
Qtkikp<"KFF""
Mg{<"KFC

(c) Full-recursive routing

KFC"""KRC

KFD"""KRD

KFE""""KRE

KFF"""KRF

Qxgtnc{"tgswguv
Qxgtnc{"tgurqpug

Vq<"KR
D ""Htqo<"KR

C ""Mg{<"M
F

Vq<"KRE""
Htqo<"KRD""
Mg{<"MF

Vq<"KRF""
Htqo<"KRE""
Mg{<"MF

Vq<"KR
C ""Htqo<"KR

D ""Mg{<"M
F

Vq<"KRD""
Htqo<"KRE""
Mg{<"MF

Vq<"KRE""
Htqo<"KRF""
Mg{<"MF

(d) Source-recursive routing

Figure 3.3: Examples of different overlay routing mechanisms

Concerning the routing type adopted by the underlying overlays, we can sum-

marily group it in the followinfg classes:

1. Iterative routing (Figure 3.3(a)): the originating node of a message takes

the routing exclusively upon itself. It directly contact nodes at every step of

the routing path, and receives as a response the subsequent hops to contact. In

this scenario every message circulating in an overlay must contain the contact

endpoint (i.e. its IP address) of the originating node.



48 Chapter 3. Optimal discovery mechanisms for distributed gateways

2. Semi-recursive routing (Figure 3.3(b)): here a request message is routed

recursively form one hop to the subsequent, until the destination is found.

However, responses can be sent directly to the originating node, and therefore

the originating endpoint is carried in every message.

3. Full-recursive routing (Figure 3.3(c)): a request follows the same path

in the semi-recursive. However only the overaly identifier of the originator

is knwon and any response must be routed back folliwng the overlay routing

rather than a direct path.

4. Source-recursive routing (Figure 3.3(d)): this routing also happens re-

cursively, however every hop only knows the previous one, and the originator

is known only by the first hop. To be routed back, a response message has to

follow the request routing path backwards.

Another important distinction lies in the cooperation scenario taken into con-

sideration upon the design of the system, in particular:

• When maintaining a backward compatibility with existing systems is not an

issue, we can talk about collaborative scenarios. It can be the case when

designing a new system from scratch and not having to interact with existing

networks with nodes laready deployed. The interest in this comes form the

fact that, in such scenarios, it is possible to alter the overlay messages to

piggyback additional information (e.g. the list of connected overlays for each

node in the network)

• If, however, backward compatibility is at stake, we talk about non-

collaborative scenarios. As a trivial example, think of the possibility of

connecting a new set of overlays to the existing Kademlia networks used in

Bittorrent. In such scenarios, we are limited in the possibility of altering the

underlying protocol messages, due to the presence of legacy nodes who might

not be able to undestand the additional information carried.

Depending on the routing type of the underlying overlay networks, we can choose

to adopt one of the aforementioned peer discovery techniques, as summarized by

Table 3.1.

Collaborative Non-collaborative

Iterative

Message embedding

Active notifications

Semi-recursive Active notifications

Full-recursive Peer exchange

Source-recursive Active notifications, Peer exchange

Table 3.1: Best gateway discovery technique per routing type and collaboration

scenario.



3.2. The Synapse 2.0 Interconnection Framework 49

The table shows what can be considered the optimal peer discovery in terms of

maintenance messages overhead. As one can see, every collaborative scenario can

rely on the messagge embedding, which best ensures that the information related

to a new gateway node will be discovereb by the higest number of nodes. In non-

collaborative scenarios, however, nodes can arely on Active notifications by the

gateway nodes themselves in all those scenarios where a gateway node can retrieve

the IP address of the node to contact. When this is not possible, nodes can still rely

on a classical peer exchange mechanism to refresh their routing tables.

3.2.5 Synapse-node routing strategies

A routing strategy consists of a set of rules which regulate the choice of overlays

to which to route a message to, the choice of nodes of said overlays to route a

message to, and the time instant in which a message is routed. Routing strategies

strongly depend on the application implemented on top of the overlay and the

network conditions. Here, we present some examples of strategies which can be

implemented on top of a Synapse overlay:

• n-Random routing: a synapse-node picks n random overlays to which to route

the request, out of all of its connected and direct overlay;

• n-Flood routing: a synapse-node picks n nodes per each direct and connected

overlay. The choice of replicating a message onto the same overlay stems from

the need to overcome network partitioning by routing a request through nodes

placed in different locations of the addressing space;

• n-Direct routing: a synapse-node routes a message directly, and only to a

certain overlay, by picking n synapse-nodes connected to said overlay. If no

finger to this overlay is present, the message can be routed to random synapse-

nodes by sending a SYNAPSE_REQUEST message with the list of target networks

specified;

• Opportunistic routing: a synapse-node can dispatch a SYNAPSE_REQUEST to an-

other synapse-node upon receipt of a SYNAPSE_OFFER, thus having a much

higher chance of routing to an active node.

3.2.6 Synapse-node structure.

As shown in Figure 3.2, a synapse-node consists of several components:

• The Synapse-controller is responsible for orchestrating multiple requests, rout-

ing messages according to the appropriate strategy, and collecting and group-

ing results arriving from different overlays. It also takes care of the mainte-

nance of the synapse overlay, by performing discovery of new synapse-nodes,

checking their state via ping messages, and dispatching join invitations. It

maintains and relies on the DOT to store pointers to gateway-nodes and on

the MRT to keep track of ongoing routings. Furthermore, the CHT can store



50 Chapter 3. Optimal discovery mechanisms for distributed gateways

recently retrieved values, in order to be able to serve them immediately should

a new request for the same key arrive. The synapse-controller contacts its di-

rect overlays by sending ROUTE messages to the overlay sub-modules. Each

overlay sub-module, on the other hand, notifies the synapse-controller via a

NOTIFY message every time an overlay message is forwarded by them or an

RPC call is received, in order to check for new gateway-nodes, by examining

whether or not a netID list is present in the message header, or to announce

its own presence via a SYNAPSE_OFFER message;

• The Synapse-application-adapter acts as an interface to and from the applica-

tion layer. It serves to decouple the applicative part from the background

multi-overlay logic, by exposing an API agnostic of the underlying struc-

ture, processing complex queries, and to generate appropriate messages for

the synapse-controller.

3.2.7 Self-organization via “social networking” primitives.

In addition to Synapse messages, we propose a set of primitives which would serve to

implement overlay self-organization mechanisms. By issuing a SYNAPSE_INVITE mes-

sage, a synapse-node can propose to other synapse-nodes that they join one or more

overlays, in order to, for instance, increase the overlay capacity, QoS, or external

connectivity. In a similar manner, a synapse-node can offer to become a member of

an overlay, with a SYNAPSE_JOIN message addressed either to another synapse-node

which is already a member of the target overlay, or to an authentication server.

Social-based primitives could be particularly interesting to consider in a scenario

where an overlay would be able to “shrink” or “grow” around application data, such

as, for instance, the social graph in online social networks. They can also be ex-

ploited to regulate connectivity of an overlay towards the rest of the system, by

increasing the number of gateway-nodes to overlays in question, providing a flexible

mechanism to implement QoS and failure avoidance in a system.

3.3 A routing example

We hereby present an example of routing in a Synapse network, using a Random

Walk strategy with opportunistic routing enabled. Figure 3.4 shows the message

exchange between nodes. For the example, we consider a DHT-like application where

chunks of data, associated with keys, can be spread and replicated into multiple

overlays. In our case, node S1 wants to retrieve the data associated with key K1.

The following operations are involved:

1. The Application Layer on node S1 sends a GET(K1) to the Synapse Controller

via internal APIs and the Synapse Application Adapter, translates it into a

MULTI_GET(K1, strategy=RANDOM.1.1) message to the Synapse Controller,

the strategy to adopt.



3.3. A routing example 51

pgvKF"3

pgvKF"4

pgvKF"5

U3

U4

U5

U32

Hqwpf#"M3

Igv*
M3+

R4R"gzejcpig

R4R"gzejcp
ig

Hqwpf#"M3

Hqwpf#"M3

R4R"gzejcpig

Ig
v*M3

+

Igv*M3+

U{pc
rug"T

gurq
pug*M

3."Xc
n3+

U{pcrug"Qhhgt*U5."]3."4."5_+

U{pcrug"Tgswguv*M3+U{pcrug"Tgurqpug*M3."Xcn3+

U{pc
rug"T

gswg
uv*M3

+

Figure 3.4: Routing in Synapse

2. The Synapse Controller, according to the 1-Random-Walk strategy, picks 1

random overlay (netID1 ) from the connected overlay list and 1 random node

(S2 ) from the Direct Overlay Table.

3. It routes directly a GET(Hash(K1)) message in netID1 and, in paral-

lel, SYNAPSE_REQUEST(K1, RequestID, TTL=1, strategy=RANDOM.1.1,

visited=[netID1], S1PubKey) to S2.

4. S2, upon reception of the SYNAPSE_REQUEST, picks 1 random connected overlay

(netID2 ) to reroute the request and decreases the TTL value. Since now

TTL=0, the request is not routed any further to other gateway nodes.

5. During the routing in netID1, another gateway node (S3 ) in netID1 for-

wards it. S3, first updates its DOT with S1 and its netID list em-

bedded in the message, then notifies S1 of its presence by sending it a

SYNAPSE_OFFER(myList=[netID1, netID2, netID3], S3PubKey).

6. S1, upon reception of the SYNAPSE_OFFER, first updates its DOT with S3,

then replies with a SYNAPSE_REQUEST(K1, ReqID, TTL=1 RANDOM.1.1, [O1,

O2], S1PubKey).

7. S3, receiving the SYNAPSE_REQUEST, picks overlay netID3. and routes a

GET(Hash(K1)).

8. Eventually, the requests in netID1, netID2 and netID3 will reach its destina-

tion nodes, and responses will be sent back to S1, S2 and S3.



52 Chapter 3. Optimal discovery mechanisms for distributed gateways

9. S2 and S3 will send the message response RESP1 back to S1 via a

SYNAPSE_RESPONSE(ReqID, RESP1, O2) message, encrypted with S1 ’s pub-

lic key.

10. Once all the responses have been gathered they are sent up to the Application

Adapter. Depending on the application it has several possibilities, for example

sending back the whole dataset, randomly select one of the retrieved values,

pick the most recent or perform a majority selection.

From this example there appear different interesting properties of the protocol:

• By routing recursively, node S1 is not exposed in overlays where it is not

connected to.

• The key is sent out un-hashed only in the SYNAPSE_REQUEST messages, which

are encripted via a public key mechanism.

• Routing in direct overlays takes only 2 more hops more than if S1

was connected to them, 1 hop for the SYNAPSE_REQUEST and 1 for the

SYNAPSE_RESPONSE to travel back.

• During the routing in netID1, S1 came to discover a new direct overlay,

netID3, which then becomes a direct overlay accessible by contacting S3.

3.4 Protocol implementation in OverSim

To precisely capture the behaviour of traditional metrics of overlay networks under

controlled conditions, we implemented our Synapse protocol in the OverSim Overlay

Simulator [Baumgart ]. OverSim is an overlay network simulator implemented on

top of the Omnet++ framework [omn ]. Its choice was dictated by the following

reasonse:

• It provided a whole set of overlay protocols already implemented and tested,

such as Chord, Kademlia, Pastry, Koorde etc., in both the iterative and re-

cursive form.

• Being based on Omnet++, it brought with itself an excellent configuration

framework, as well as all the logic behind it.

• It already captures relevant overlay network statistics, such as exchanged mes-

sages, dropped packets, latencies, and highlighting relevant information.

• Thanks to the Omnet++ framework, it is possible to run a simulation in a

cluster, using the MPI framework.

• It allows the use of different libraries to simulate the underlay layer, includes

a module to perform actual deployment of simulation code and the exchange

of messages on a real network.



3.4. Protocol implementation in OverSim 53

• It provides classes and methods suitable for the implementation of new overlay

protocols and applications on top, with the minimum amount of code, exposing

a clear API derived from [Dabek ].

However, the implementation of Synapse on top of OverSim presented several chal-

lenges due to the internal architecture, which is designed to support either one

overlay, or multiple overlays of the same type. We briefly describe how such chal-

lenges have been overcome, as they could be of interest to anyone else involved in

the development of heterogeneous overlays inside OverSim.

Extending OverSim’s overlay host. Figure 3.5 shows the Synapse Controller

nkmg"KQxgtnc{

U{pcrug0pgf

UkorngWFR0pgf

wfrQwv

crrKp crrQwv

wfrKp

gzvgpfu"DcugQxgtnc{

U{pcrugEqpvtqnngt

wfrQwv wfrKp qxnCrrKpqxnCrrQwv

U{pcrugEjqtf

wfrQwv wfrKp crrKpcrrQwv

U{pcrugMcfgonkc

wfrQwv wfrKp crrKpcrrQwv

crrQwv crrKp

*vq"DcugCrr+

Figure 3.5: Synapse OverSim modules diagram

module diagram in Oversim. The same colors for 2 gates indicate that the gates are

connected. The controller has been implemented as a BaseOverlay derived class, so

that Tier-n modules could see it as the only overlay module and, thus, be decoupled

by the multi-overlay routing. However, the Synapse Controller implements a double

behaviour, with relation to the OverSim model, acting also as a Tier-1 application

connected to the overlays’ submodules (SynapseChord, SynapseKademlia etc.) via

the ovlAppin/out gates. In this way, it is able to control the overlays by using

the CommonAPI messages provided by OverSim, without any changes to the overlay

submodules logic.



54 Chapter 3. Optimal discovery mechanisms for distributed gateways

To work around the static architecture mentioned before, the overlay submodules

have to be instantiated at runtime during the Synapse Controller INIT phase. In

addition to allowing a granular configuration of the overlays (the initial overlay

interconnection can be setup for each individual node), manual instantiation of

overlay modules becomes necessary when implementing the social networking logic,

since a Synapse node could join a new overlay at runtime.

Extending OverSim’s overlay modules. The goal for this implementation was

to leave OverSim overlay modules code untouched, in order not to break compat-

ibility or to generate unwanted behaviors. The only additional operation to be

implemented in each of the overlays was to send a notification message (KBRNotify)

to the Synapse Controller each time a message was routed or an RCP call was re-

ceived. Through the use of template metaprogramming, we managed to implement

all of the required logic in a wrapper class, SynapseOverlayWrapper that could in-

herit any of the overlay classes, which are passed as parameters of the template.

Here is the class definition for SynapseOverlayWrapper:

template

<class BaseOverlayType=BaseOverlay>

class SynapseOverlayWrapper :

public BaseOverlayType

This allows us to create extended classes by a simple inheritance mechanism. The

SynapseChord class is defined as:

class SynapseChord :

public SynapseOverlayWrapper<Chord>

Thanks to this parametrized inheritance, the SynapseOverlayWrapper can access

any attribute or protected member of BaseOverlay, which every overlay module

inherits, while leaving the specific implementation untouched. The simulator code

is open source and it is available at [syn ].

3.5 Simulation Results

In this section, we present some results obtained by running simulations within the

OverSim-based Synapse simulator. In the simulations, all of the nodes were treated

as synapse-nodes, and some were treated as gateway-nodes.

3.5.1 Simulation settings

Simulations were run on 2000 nodes, clustered into sub-overlays, half of which were

Chord, and half of which Kademlia. All of the nodes were treated as synapse-nodes,

i.e. all can perform active and passive discovery of gateway-nodes, and no legacy

nodes are present.

With the system being composed of nodes clustered across many different over-

lays, which are connected with one another through unstructured routing, the main



3.5. Simulation Results 55

purpose of our simulations has been to test the reachability of each of the overlays,

while varying the granularity of the network (i.e. the number of different overlays,

given the same overall amount of nodes), the number of gateway-nodes present in

each of the overlays and the average connection degree of gateway-nodes (i.e. the

number of different overlays a gateway-node is connected to).

The tests have involved inserting random keys throughout the entire system and

performing lookups for said keys, by a different node, which is not necessarily a

member of the same sub-overlay in which the key is present. All replication within

the sub-overlays has been disabled in order to create the most challenging conditions,

and produce metrics as correlated as possible.

As the idea was to gather a lower bound of the performances of the system, we

have chosen to adopt the simplest and least demanding routing strategy for synapse

requests: a stateless 1-Random-Walk, meaning that nodes, at each of the routing

steps, would route to every connected overlay but choose only 1 random gateway-

node amongst all to reroute the request to, without considering past routing steps.

Finally, the TTL has been set to 8 for all of the simulations.

We tested different scenarios, without churn, to evaluate the topology built by

the node discovery process, and with high churn, i.e. with a very short node lifetime,

to test it in extreme conditions, such as those of a mobile application. In all of the

simulations, the connection degree was equal for all gateway-nodes. However, the

percentage of gateway-nodes and their interconnection degree have been correlated

to guarantee the minimum number of gateway-nodes-per-overlay to have a connected

topology across all sub-overlays, without leaving any sub-overlay isolated due to,

possibly, a lack of gateway-nodes connected to it. The relationship between the

connection degree and the number of gateway-nodes is explained in the following

subsection.

Mathematical Background Let us denote by s the number of synapse-nodes, by

g the number of gateway-nodes, by d the degree of connectivity of the gateway-nodes,

by o the number of overlays, and by n the overall number of nodes, calculated as

n = s+ g. Apart from these, we will require two “extended” notions: the extended

number of gateway-nodes, ge = d · g, and the extended overall number of nodes

ne = s+ ge = s+ d · s. Using this, we can calculates:

• the number of nodes-per-overlay, no =
ne

o
= l+d·g

o
;

• the number of gateway-nodes-per-overlay, go =
ge
o
= d·g

o
;

• the overall percentage of gateway-nodes, s%n = g
n
;

• the percentage of gateway-nodes-per-overlay, s%o =
go
no

= ge
ne

= d·g
l+d·g

.

3.5.2 Topology construction

Topologies have been created statically, using n, o, d, and, depending on the sim-

ulation scenario, either the percentage of gateway-nodes-per-overlay, or the overall



56 Chapter 3. Optimal discovery mechanisms for distributed gateways

(a) FIT Topology (b) RAT Topology

Figure 3.6: Effects of system granularity, with and without churn

percentage of gateway-nodes in the system. Two algorithms were used to generate

topologies:

1. FIT – the topology is constructed to be fully-interconnected, in the sense that

from any overlay there exists a path through gateway-nodes of the system to

any other overlay. This requires at least d o−1
d−1e gateway nodes to be present

in the system, and is accomplished using an algorithm described in the web

appendix;

2. RAT – The topology is constructed with fully random assignments of overlays

to gateway-nodes, using a uniform distribution over the o overlays.

Figure 3.6 shows the effect that system granularity (i.e. the number of sub-

overlays) has on the general system exhaustiveness. We have simulated both a

churn-less environment and one with high churn, to test the topology itself, as

well as its resilience to extreme conditions. Figures 3.6(a) and 3.6(b) compare a

completely random topology vs. one where exhaustive connectivity has been forced.

It is remarkable that the performances are substantially equivalent, suggesting that,

in fact, the gateway topology can generally be built with just a partial knowledge

of the system by a simple random selection of overlays. Even with 200 overlays, the

routing has proved to be exhaustive, reaching every sub-overlay, and suggesting that

building a clustered overlay network is a feasible solution. The lower exhaustiveness

with lower granularity is explained by the fact that, having a higher number of edges

for each overlay, loops can be present, leading, with this simplest routing strategy,

to requests bouncing back to the overlay they came from, an effect that can easily

be avoided with a stateful routing strategy.

3.5.3 Configuration of gateway-nodes

Since maintaining a connection to multiple overlays is a costly operation, in this

experiment we have tested the effectiveness of two opposite scenarios, one with



3.6. Experimental Results 57

(a) Few high-degree gateways (b) Many low-degree gateways

Figure 3.7: Performance comparison for different gateway topologies

very few nodes maintaining a high degree of connectivity (much like a super-peer

structure), and a second one, in which an increasing number of nodes maintains a

connectivity as low as possible (degree 2). It is worth noting that, despite the high

connectivity degree, the gateway nodes in the first scenario were not exempted from

churning.

Figure 3.7 shows the performances in the two scenarios. Interestingly enough, a

decrease from degree 6 to degree 3 (Figure 3.7(a)) does not bring any visible decrease

in performances, neither with or without churn, due partly to the simple routing

strategy adopted, and it is an aspect that can be taken into account when designing

a system by explicitly deploying synaps-gateways. In the second scenario (Figure

3.7(b)), on the other hand, the increase of gateway-nodes brings a slight increase

in the exhaustiveness under churn, which suggests a possible strategy to handle

situations of sudden churn in a system, by having most of the nodes immediately

increase their connectivity degree by 1.

3.6 Experimental Results

In order to evaluate the behavior of Synapse within a real-world environment, we

have developed a Java implementation of the Synapse protocol, which we have used

to perform experiments on the national French Grid’5000 platform, that aims at

providing an experimentation testbed to study large scale parallel or distributed

systems which comprises thousands of interconnected computers across numerous

sites in France. In all of the experiments performed, we have used 1000 nodes,

distributed over 10 Chord and 10 Kademlia overlays, interconnected via the Synapse

protocol.

In the first experiment, we have investigated the exhaustiveness of the inter-

connected systems under different mean lifetimes of the nodes and different degrees

of connectivity of synapses-nodes. We have placed an emphasis on high-churn-rate



58 Chapter 3. Optimal discovery mechanisms for distributed gateways

(a) (b)

Figure 3.8: Experiments on Grid5000

conditions (when the mean lifetime of the nodes is low), which should be observable

in the near future, in overlay networks in which peers need not only be desktops

and laptops, but also Internet TV and mobile devices, which are expected to join

and leave the network at high frequency. In order to generate this high churn rate

of nodes in the systems, we have used the Pareto distribution. The experiment

was performed for mean lifetime values between 300s and 1800s, with the degree of

connectivity of the synapses-nodes varying between 2 and 6, once for each of the

combinations. The overall percentage of synapses-nodes was fixed to 20% of the

overall number of nodes, while the TTL value was fixed to 8, in all of the cases. The

results obtained from this experiment are shown in Figure 3.8(a).

As can be seen from Figure 3.8(a), for a fixed degree of connectivity, the Synapse

protocol is fairly resilient for values of the mean lifetime above 900s, and less resilient

for lower values. However, in order to achieve a sufficient level of exhaustiveness, it

is necessary to increase the degree of connectivity of synapses-nodes to at least 4,

for mean lifetime values above 900s, or to at least 6, for mean lifetime values below

600.

In the second experiment, we have once again investigated the exhaustiveness of

the interconnected systems, this time while varying the percentage of synapses-nodes

from 5% to 30%, and the TTL from 2 to 8, once for each of the combinations. The

degree of connectivity of synapses-nodes has been fixed to 4, and the churn rate of

the nodes to 1800s. The results obtained from this experiment are shown in Figure

3.8(b). It can be noticed from Figure 3.8(b) that the exhaustiveness significantly

increases when the TTL is increased from 2 to 4, but remains the same as the TTL

is increased from 4 to 8, giving rise to the conclusion that a TTL of 4 is efficient

enough when interconnected networks of this scale are concerned (20 networks, 1000

nodes overall)2. One other inference which can be made from Figure 3.8(b) is that

2Given this result, one might question our choice of TTL in the first experiment. The reason

for it being set to 8 there is the simple fact that the first experiment was performed prior to the

second.



3.7. Conclusion 59

having 20% of overall nodes to be synapses will result in sufficient exhaustiveness

for this scale of interconnected overlays, as there is an obvious rise in exhaustiveness

accompanying the increase of the number of synapses-nodes from 5% to 10% and

from 10% to 20%, while no further significant rise occurs with further increase of

the number of synapses from 20% to 30%.

3.7 Conclusion

In this chapter we have extended and generalized the Synapse protocol presented

in Chapter 2. This new version exposes a common set of APIs and a unified mech-

anism to deal with collaborative or non-collaborative scenarios, and allows for the

implementation of more flexible routing schemes.

The protocol has been developed and evaluated in the OverSim overlay simula-

tor, which has been modified to support multiple overlay types at run-time, and a

Java client has been deployed and tested on the Grid’5000 platform.

The contributions of this chapter have been published as

Towards a Common Architecture to Interconnect Heterogeneous Overlay Networks,

in Proceedings of the HotPOST Workshop, 17th International Conference on Par-

allel and Distributed Systems (ICPADS), 2011, IEEE [Ciancaglini 2012b]

and

An Extension and Cooperation Mechanism for Heterogeneous Overlay Networks, in

Proceeding of the HetNETS Workshop, NETWORKING Conference, 2012, LNCS

[Ciancaglini 2012c].





Chapter 4

Modeling of interconnected
systems

Contents
4.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 System description . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 One overlay topology . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Interconnection of multiple P2P networks . . . . . . . . . . . 64

4.3.3 Search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4 Hit probability . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.5 A variation of the search algorithm . . . . . . . . . . . . . . 67

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Model exploitation . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

The interconnection of overlay networks presents the biggest advantages when

the number of nodes is substantial. In such scenarios, however, it becomes difficult

to evaluate, by means of simulation or deployment, the performance of an inter-

connected system and estimate the optimal parameters for an arbitrary system. To

overcome this strong limitation, we develop a generalized random graph based model

to represent the topology of one unstructured P2P network, the partition of nodes

into Synapses, the probabilistic flooding based search algorithms, and the resource

popularity.

By knowing the structure of the overlay networks, in terms of neighborhood

distribution, and the configuration of gateway nodes, we are able to evaluate the

probability of finding a resource of known popularity and the average number of

messages to reach it. We validate the model by means of a validation software writ-

ten form scratch that heavily exploits concurrent programming techniques to be able

and simulate simple networks in the order of millions of nodes, proving that its pre-

dictions are reliable and accurate. We use the model to investigate the performance

and the cost of different search strategies in terms of the probability of successfully

locating at least one copy of the resource and the number of queries as well as the



62 Chapter 4. Modeling of interconnected systems

interconnection cost. We also gain interesting insights on the dependency between

interconnection cost and statistical properties of the distribution of Synapses.

Furthermore, we present some examples on how the modeling can be exploited by

a network designer to determine, given initial conditions, the optimal configuration

of an interconnected system, in terms of percentage of gateway nodes and average

connectivity of each node.

4.1 System description

4.2 System description

In this chapter, we focus on unstructured P2P networks where peers organize into

an overlay network by establishing application level connections among them. The

topological properties of an overlay network are represented by the number of con-

nections of any of its participants. To this end, we describe an overlay by means

of the degree distribution {pk} that can be interpreted as the probability that a

randomly chosen peer has k connections in the overlay (
P

1

k=1 pk = 1).

We consider a set of X unstructured P2P networks that are interconnected

thanks to a subset of peers that belong to multiple overlays (these special peers

are denoted as Synapses). Any peer may then belong to i 2 {1, . . . , X} overlays:

we denote i as the Synapse degree of a peer. The interconnected system is then

described by {si} (i 2 {1, . . . , X}) where si is the fraction of peers belonging to i

overlays (
PX

i=1 si = 1).

The search algorithm we consider is flooding-based. A peer starting a search sends

queries to a randomly chosen subset of its one-hop neighbors. These nodes forward

the queries to a randomly chosen subset of their one-hop neighbors, excluding the

query originator, and so on until the maximum number of allowed hops, i.e. the

query time-to-live (TTL). We also consider a variation of this search algorithm

where a query is not forwarded by peers that own a copy of the resource. We focus

on probabilistic versions of this general algorithm where any peer flips a coin before

sending or forwarding a query to a specific neighbor. We allow the weight of this

coin to be dependent on the Synapse degree of a peer; hence, a peer that belongs

to i overlays sends/forwards a query to a particular neighbor with probability pf (i)

(i 2 {1, . . . , X})1.

The goal of a search is to localize at least one resource related to the key we are

looking for. There could be more replicas of the same resource hosted by different

peers for two reasons: a resource is popular and/or is owned by peers located in

different P2P networks. We represent resource popularity by 0  ↵  1, the average

fraction of nodes that globally hold a copy of a given resource, and interpret it as

the probability that a randomly chosen peer owns a copy of the resource.

1Please note that {pf (i)} (i 2 {1, . . . , X}) is not a probability distribution hence in general
PX

i=1
pf (i) 6= 1.



4.2. System description 63

All of the notation is summarized in Table 4.1 and a simple schema of intercon-

nection through synapses is depicted in Figure 4.1.

Table 4.1: Chapter notation.
Parameter Description

X Number of interconnected P2P networks.

pk Fraction of peers with k connections in an overlay.

si Fraction of peers belonging to i overlays.

pf (i) Probability to send/forward a query to a neighbor for peers that

belong to i overlays.

↵ Average fraction of nodes owning a copy of a resource

TTL Query time-to-live.

!"#$%&'$()(*+,'$

-.#$/+%&0

-.#$/+%&1

2#)$##&1&3%*+43#

!"#$%&5#33+)#

Figure 4.1: Example of two P2P interconnected networks (X = 2) and one degree

2 synapse that belongs to both.



64 Chapter 4. Modeling of interconnected systems

4.3 System model

This section illustrates the random graph modeling approach to represent one over-

lay topology, the interconnection of X P2P networks, the search algorithm, and

resource popularity as described in Section 4.1.

4.3.1 One overlay topology

Each P2P network is organized into an overlay that we model as a generalized

random graph whose degree distribution is {pk} that can be interpreted as the

probability that a randomly chosen peer has k connections in the overlay. The

random graph degree distribution is a probability distribution therefore we consider

its probability generating function (henceforth denoted as p.g.f.) that is equal to

G0(z) =

1X

k=0

pk z
k (4.1)

To correctly characterize the neighborhood of a randomly chosen peer we also need

to characterize the probability distribution of the number of connections of a peer

reached by randomly choosing an edge of the overlay. This probability is propor-

tional to the degree of the peer (kpk) and it can be proved that its p.g.f. is given

by P
k kpkz

k

P
k kpk

= z
G0

0(z)

G0

0(1)
(4.2)

where G0

0(z) denotes the first derivative of G0(z) with respect to z and G0

0(1) yields

the average value of distribution {pk}. Finally, to characterize the number of con-

nections excluding the edge we chose we obtain the p.g.f. from Equation 4.2 by

dividing it by z:

G1(z) =
G0

0(z)

G0

0(1)
(4.3)

Starting from Equations 4.1 and 4.3 we can compute the p.g.f. for the number of

two hops neighbors of a randomly chosen peer as G0(G1(z)). Similarly, the p.g.f.

for three hops neighbor is given by G0(G1(G1(z))), and so on.

For a detailed overview on analyzing generalized random graphs using generating

functions, we refer the reader to [Newman 2001].

4.3.2 Interconnection of multiple P2P networks

To interconnect multiple overlays we consider some peers as Synapses nodes: these

peers belong to multiple P2P networks hence the interconnected system can be

modeled by the probability distribution {si} (with i 2 {1, . . . X}). The elements of

this distribution describe the fraction of nodes belonging to multiple P2P networks:

si is the fraction of nodes that belong to k P2P networks. Its p.g.f. is given by

F (z) =

1X

i=0

si z
i (4.4)



4.3. System model 65

If we consider one of the X P2P networks including the Synapse nodes then the

p.g.f. for the number of connections of a randomly chosen peer can be written as:

M(z) = s1G0(z) + s2G
2
0(z) + . . .+ sXGX

0 (z) = F (G0(z)) (4.5)

that is, if the chosen node is a degree 1 synapse (this event has probability s1) then

the number of connections is represented by G0(z). If the node is a degree 2 synapse

(this event has probability s2), then the number of connections is represented by

the sum of two independent random variables whose p.g.f. is G0(z); it is well-known

that the generating function of the sum of two independent random variables is

equal to the product of the respective generating functions yielding the G2
0(z) factor

in Equation 4.5. The same reasoning is valid for synapses whose degree is greater

than 2.

A similar expression can be written for the neighborhood of a node reached by

following one randomly chosen edge excluding the selected edge:

N(z)= s1G1(z) + s2G1(z)G0(z) + . . .+ sXG1(z)G
X−1
0 (z)

=
G1(z)

G0(z)
F (G0(z))

If we denote as Nt(z) the p.g.f. for the probability distribution of the number of

neighbors t hops away from a randomly chosen node we have that: N1(z) = M(z),

and N2(z) = M(N(z)), and N3(z) = M(N(N(z))), and so on. From these p.g.f. the

average number of neighbors can be computed by evaluating their first derivative

w.r.t. z in z = 1.

As such, each probability distribution {si} induces an interconnection cost that

we define as the average number of P2P networks a randomly chosen node belongs

to:

f = F 0(1) (4.6)

4.3.3 Search algorithm

To model a flooding-based search in the interconnected system, we consider the

set of probabilities {pf (i)}, where i 2 {1, . . . X}. A peer belonging to i overlays

sends/forwards a query to a particular neighbor with probability pf (i), where i 2

{1, . . . X}). Therefore, {pf (i)} is not a probability distribution.

We denote as qh the probability that h first hop neighbors received a query

from the peer that started the search. If the peer belongs to i overlays, it sends

a query to one of its neighbors with probability pf (i). Therefore, the number of

neighbors that receive the query follows a binomial distribution with parameter

pf (i). Therefore, it is well known that the probability distribution {qh} has p.g.f.

given by [Newman 2001]:

Q(z)= s1G0(1+pf (1)(z−1))+s2G
2
0(1+pf (2)(z−1))+. . .+

+ sXGX
0 (1+pf (X)(z−1))

=
PX

i=1 siG
i
0(1 + pf (i)(z − 1))



66 Chapter 4. Modeling of interconnected systems

Similarly, for the p.g.f. of the probability distribution describing the number of

queries sent by a node reached by following a randomly chosen edge, we obtain:

R(z) =
XX

i=1

siG1(1 + pf (i)(z − 1))Gi−1
0 (1 + pf (i)(z − 1)) (4.7)

If we denote as Qt(z) the p.g.f. for the probability distribution of the number

of neighbors t hops away from a randomly chosen peer that received a query, we

have that: Q1(z) = Q(z), Q2(z) = Q(R(z)), and Q3(z) = Q(R(R(z))), etc. As a

special case, we may consider constant forwarding probabilities, i.e. pf (i) = pf , 8i 2

{1, . . . X}. In this case, we would obtain:

Q(z) = M(1 + pf (z − 1))

and

R(z) = N(1 + pf (z − 1))

Since the p.g.f. of the probability distribution of the sum of independent random

variables is given by the product of the corresponding p.g.f., the total number of

queries generated by a search issued by a randomly chosen peer is described by:

T (z) =

TTLY

t=1

Qt(z)

yielding the average number of queries

m = T 0(1). (4.8)

4.3.4 Hit probability

We model resource popularity by 0  ↵  1 that is the average fraction of peers

that globally hold the given resource. We interpret this parameter as the probability

that a randomly chosen node owns a copy of the resource.

If we denote as wh the probability that h first hop neighbors hold a copy of

the requested resource and received a query from a peer that belongs to i overlays

we note that the number of such neighbors follows a binomial distribution with

parameter ↵pf (i). If we denote as Ht(z) the p.g.f. for the probability distribution

of the number of neighbors t hops away from a randomly chosen peer that received

a query and hold a copy of the requested resource then we have that: H1(z) =

Q1(1 + ↵(z − 1)), H2(z) = Q2(1 + ↵(z − 1)), H3(z) = Q3(1 + ↵(z − 1)), and so on.

Therefore, the total number of search hits is described by a probability distribution

whose p.g.f. is given by:

H(z) =

TTLY

t=1

Ht(z)

yielding the search hit probability

phit = 1−H(0) (4.9)



4.4. Results 67

4.3.5 A variation of the search algorithm

To model a search algorithm where peers that own a copy of the resource do not

forward a query message it suffices to redefine R(z) in Equation 4.7. In particular,

when a peer owns a copy of the resource the number of its neighbors that receive

the query is equal to 0: this happens with probability ↵. In Equation 4.10 this

is represented by the term ↵ that can be written as ↵p0z
0 with p0 = 1. With

probability 1−↵ Equation 4.7 holds, therefore we obtain the p.g.f. of the probability

distribution describing the number of queries sent by a node reached by following a

randomly chosen edge as:

R(z)= ↵+

+(1−↵)
PX

i=1 siG1(1+pf (i)(z−1))G
i−1
0 (1+pf (i)(z−1))

The definition of Qt(z), and T (z), and m remains unchanged.

4.4 Results

In this section, we will first show the results of the model validation, performed via

a heavily multi-threaded simulator, written in Erlang [USy ], that reproduces, in

terms of message routing, the exact behavior of a system described by our model.

Also, we will show the results of some broad system evaluations made possible by the

use of our model to compute metrics that would otherwise, if performed by means of

simulations, require too much in terms of simulation time and computational power.

In our analysis, we consider different routing policies that can be employed in

our scenarios, modeled by defining the pf (i) mentioned in Section 7.2. Those are:

• pf (i) =
1

i
, henceforth referred to as 1/i, i.e. the probability of selecting a

neighbor is inversely proportional to the number of overlays a node is con-

nected to. This routing tends to maintain a constant number of messages, but

“flattens” the interconnected topology, not allowing synapse nodes to exploit

the extended neighborhood.

• pf (i) = min(1,
zmax

zi
), henceforth referred to as zmax, where z = E[{pk}]

is the average number of neighbors for a node based on the current degree

distribution and zmax is a system parameter, specified upon design, indicating

the upper bound for the average number of forwarded messages. This policy

allows for a better exploitation of Synapse nodes, while still finely limiting the

number of messages in the system. In our evaluations, zmax has been set to

2z, twice the average number of neighbors per node.

• pf (i) = 1, henceforth referred to as flood, i.e. a routing where every node

selects forwards a message to every neighbor, regardless of the number of

connected overlays.



68 Chapter 4. Modeling of interconnected systems

In both simulations and evaluations, the individual overlays have been modeled

following the neighbors degree distribution measured in [Bolla 2009] from real world

applications and used already in [Gaeta 2011], in order to have an accurate overlay

model.

4.4.1 Model validation

In order to evaluate the accuracy of our model in predicting the performance indexes

of a real network, we validated the obtained results by means of simulation. The

simulator (available at [USy ]) employs standard statistical procedures to estimate

68% and 95% confidence intervals for the phit and m indexes defined in Section 4.3.

4.4.1.1 Simulation methodology

The simulator has been developed from scratch in Erlang [erl ]. The choice of

Erlang has been driven by its native multi-threading capabilities and inter-process

communication model based on the message passing paradigm embedded in the

language, thus allowing for a rapid implementation of an accurate network model

made of node processes running independently and exchanging messages with one

another. Each process has a list of other processes it can exchange messages with,

that constitutes its neighborhood.

We consider Ns independent realizations for the interconnected overlay topolo-

gies (in our experiments Ns = 30); each interconnected topology is used to obtain

one realization of m and phit. The hth realization is obtained as follows:

• We first generate a new topology, made of X overlays interconnected by

synapse nodes, using as input parameter the number of nodes N = 500000,

the nodes degree distribution {pk} [Bolla 2009], and the {si} to be validated;

• From the generated topology file, the simulator instantiates N node processes

and assigns each the corresponding list of neighbors;

• One or more resources are then seeded in the system, according to their re-

spective popularity ↵, by sending a PUT(value) message to N↵ random nodes;

• Separate worker processes take care of sending a query message

SEARCH(value,TTL) to each node process in the network.

• Meanwhile, a listener process receives then the responses, either the resource

being found or the TTL being reached, and of computes the statistics.

4.4.1.2 Topology generation

The generation of a network made of interconnected overlays mainly consists of gen-

erating first X individual overlay topologies, and then connecting them by “merging”

nodes from different overlays in one Synapse node, thus creating nodes with extended

neighborhoods spanning across all the connected overlays. In order to generate X



4.4. Results 69

random graphs with a specified degree {pk} we relied on the algorithm presented

in [Viger 2005], that provides short generation times while guaranteeing the respect

of the specified degree.

4.4.1.3 Validation results

The first validation we performed was conducted for a system with only one overlay

(X = 1). For the sake of brevity we only show the results for the flood routing

strategy, ↵ = 0.0001, and TTL = 3. Table 4.2 shows the model is very accurate

and faithfully predicts results when compared to the simulation output.

We then validated various scenarios with a higher number of interconnected

overlays (X = 4), at TTL = 3, 4 and with different values of ↵, different routing

policies and different distributions {si}. We considered the distribution for the

degree of synapses summarized in Table 4.3.

α

10
−1

10
0

p
h
it

Sk = S1

X = 4, TTL = 3

Model

Simulator

α

10
−1

10
0

p
h
it

Sk = S2
Model

Simulator

10
−1

10
−2

10
−3

10
−4

10
−5

α

10
−1

10
0

p
h
it

Sk = S3
Model

Simulator

Figure 4.2: phit (with confidence interval) for different ↵ and si distributions: com-

parison between model and simulation.

Figure 4.2 shows a comparison between the computed phit for different values of

Table 4.2: m for different si distributions: comparison between model and simula-

tion.
Model Simulation (95% C.I.)

phit 0.3733 0.373552± 0.003852

m 4822.63 4821.57± 0.0498



70 Chapter 4. Modeling of interconnected systems

α

10
−1

10
0

p
h
it

X = 4, TTL = 3, Sk = S2

Model

Simulator

0.5 10
−1

10
−2

10
−4

10
−5

α

1000

2000

3000

4000

4500

m

Figure 4.3: Alternative search algorithm (Section 4.3.5): comparison between model

and simulation.

↵ and the corresponding simulation results, while Table 4.4 summarizes the same

comparison for m. The results show how both performance metrics computed by

our model fall within the confidence interval of the simulation results.

Furthermore, we validate the system against the alternative search algorithm

detailed in Section 4.3.5. For the sake of brevity, we are showing results only for

S2 since the same conclusions can be drawn for S1 and S3. Figure 4.3 shows both

phit and m against different values of ↵, since with this algorithm the number of

message is dependent of the resource popularity. Even in this scenario, the model

results fall within the confidence interval estimated by the simulator.

Therefore, we can safely conclude that our model is accurate in predicting the

behavior of the performance indexes we defined in a broad range of different scenar-

ios. Furthermore, while simulations required hours of CPU time to complete solving

our model took less than a second with a solver implemented in C.

Table 4.3: Definition of the {si} distributions used for validation.

S1 s1 = 0.7, s2 = 0.1, s3 = 0.1, s4 = 0.1

S2 s1 = 0.4, s2 = 0.3, s3 = 0.2, s4 = 0.1

S3 s1 = 0.1, s2 = 0.2, s3 = 0.3, s4 = 0.4



4.4. Results 71

4.4.2 Model exploitation

After validating the model we conducted a few analysis to show its usefulness in the

design phase of the interconnection of several peer-to-peer networks.

4.4.2.1 Comparison of different routing policies

A first evaluation concerns the choice of a specific routing policy in the system, i.e.

the definition of different pf (i). In this case, we want to compare for values of ↵ down

to 10−6, the performances in terms of phit and m for the distribution of degree of

synapses S1 (results for the other two distributions suggested similar considerations

and are omitted for the sake of brevity), X = 10, and TTL = 3. Please note that

to achieve a reliable measurement via simulation for ↵ = 10−6 we would need to

conduct complex simulations (at least 1000000 nodes) for a long simulation time

(ideally each of them to be queried individually for multiple topology realizations).

Figure 4.4 show the values of phit for the 3 different policies and different resource

popularities, while Figure 4.5 depicts the average number of messages for the 3

policies in the case of propagation of queries up to TTL hops (Figure 4.5(b)) and

for the query propagation that stops when reaching a node holding a copy of the

resource (Figure 4.5(a)) modeled in Section 4.3.5. In the former case, the number

of messages is independent of the resource popularity while in the latter case we

note that reduction of the number of query messages can be obtained for popular

resources, i.e., for ↵ > 0.01.

In this case, the model allows for a simple cost/benefit evaluation, based on the

expected popularity of a resource. For one, we can notice an almost tenfold increase

in the number of messages between the zmax and the flood policy, to which it does

not correspond a proportional increase in the phit.

4.4.2.2 f-cost based evaluation

In a cost/benefit analysis of the interconnected system, we consider phit as our

benefit metric whereas m and f are considered as costs. Another kind of evaluation

we performed consists of fixing the f cost and analyzing which distributions {si}

lead to better performances (phit) and minimum cost (m).

To this end we considered all distributions {si} that can be defined for X = 5

where the individual probabilities are non-zero multiple of 0.05. We considered 3

Table 4.4: m for different si distributions: comparison between model and simula-

tion.
Model Simulation (95% C.I.)

S1 4598.02 4596.77± 2.38

S2 4701.82 4700.96± 0.49

S3 4449.57 4453.58± 3.41



72 Chapter 4. Modeling of interconnected systems

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

α

0.0

0.2

0.4

0.6

0.8

1.0
p
h
it

X = 10, TTL = 3, Sk = S1

Routing=1/i

Routing=zmax

Routing=flood

Figure 4.4: Routing policies comparison: phit for different resource popularities ↵.

values of f (namely, f = 2, 3, 4) and compared the performances of every distribution

{si} with given f for TTL = 2. Again, please note that this analysis would have

required days of CPU time to be completed by means of simulation since even with

a coarse granularity in the definition of {si} (0.05) we tested hundreds of different

distributions. This analysis required only a few seconds to complete with our model.

Figures 4.6(a) and 4.6(b) show a subset of these distributions (each point in

the graph corresponds to a particular distribution {si}). We only plotted the ones

with the highest phit; it appears that the interconnection cost f alone is not directly

bound to an increase in performances. There are, as a matter of fact, different

configurations with f = 3 that perform equally (sometimes very slightly better)

than those with a f = 4. Furthermore, within the configuration with f = 2 some

are better than others in terms of performance and costs. Nevertheless, a clear

relation exists between message cost m and phit: the larger the average number of

messages the higher the phit.

The behavior shown in the figures can be explained as following: the routing

policy zmax limits the number of messages that can be issued by a node to zmax,

which is set in our evaluations to 2z. Therefore, increasing the number connections

in the interconnected system (f) beyond certain values does not lead to a significant

performance increase. That is why we observe a proportionally higher increase in

the phit from f = 2 to f = 3 than from f = 3 to f = 4.



4.4. Results 73

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

α

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

m

X = 10, TTL = 3, Sk = S1

Routing=1/i

Routing=zmax

Routing=flood

(a) Query propagation for TTL hops

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

α

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

m

X = 10, TTL = 3, Sk = S1

Routing=1/i

Routing=zmax

Routing=flood

(b) Query propagation of Section 4.3.5

Figure 4.5: Average number of messages for different routing policies.

si

0.06

0.07

0.08

0.09

0.10

p
h
it

X = 5, TTL = 2, α = 10
−4, Routing=zmax

f = 2

f = 3

f = 4

(a) Hit probability phit (b) Number of messages m

Figure 4.6: si comparison at different f .

4.4.2.3 Effects of granularity

Another aspect we analyze is a performance comparison as the number of overlays

to interconnect increases. In this case we chose to analyze the behavior of the zmax

routing policy, in a system with TTL = 3 and ↵ = 0.0001, for an increasing number

of overlays (X) and for different distributions {si}, characterized by an increas-

ing percentage of non-synapse nodes s1, while the remainder of the distribution is

equally distributed across the remaining si.

Figures 4.7(a) and 4.7(b) show four different configurations, with an increasing

number of non-synapse nodes in the system. The parameter s1 indicates the share of

non synapses nodes, while the remaining part (1− s1) is equally distributed among

the remaining X − 1 values, i.e., si =
1−s1
X−1 for 1 < i ≤ X. It can be noted that at

each given ratio of synapses vs non-synapses nodes the system behavior is roughly

the same regardless the number of overlays. The efficiency is still tightly bound to



74 Chapter 4. Modeling of interconnected systems

2 4 6 8 10 12 14 16 18 20

X

0.0

0.2

0.4

0.6

0.8

1.0

p
h
it

TTL = 3, α = 10
−4, Routing = zmax

s1 = 0.8

s1 = 0.6

s1 = 0.4

s1 = 0.2

(a) phit vs. X

2 4 6 8 10 12 14 16 18 20

X

0

5000

10000

15000

20000

25000

30000

m

TTL = 3, α = 10
−4, Routing = zmax

s1 = 0.8

s1 = 0.6

s1 = 0.4

s1 = 0.2

(b) m vs. X

Figure 4.7: Performance evaluation with different numbers of overlay X.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
phit

0

10000

20000

30000

40000

50000

60000

70000

80000

m

X = 10, α = 10
−4, f = 4

TTL=3, Routing=1/i

TTL=4, Routing=1/i

TTL=2, Routing=zmax

TTL=3, Routing=zmax

(a) Overall view

0.9
phit

26000

27000

28000

29000

30000

31000

32000

33000

m

X = 10, α = 10
−4, f = 4

TTL=3, Routing=1/i

TTL=4, Routing=1/i

TTL=2, Routing=zmax

TTL=3, Routing=zmax

(b) Zoomed view

Figure 4.8: Distribution of different routing policies with fixed f .

the number of messages and both increase as s1 decreases.

4.4.2.4 System design with minimum requirements

Thanks to the high number of different configurations that can be evaluated with

our model in a relatively short time, we conduct a further analysis to support the

design of the interconnection of several peer-to-peer networks.

For instance, we set the number of overlays X and the resource popularity ↵;

by setting a bound for the minimum desired phit, we can compare different routing

policies and TTL values and find the one that minimizes the average number of

messages m.

Figures 4.8 and 4.9 show a classification of distributions {si} for two different

routing policies and two different TTL values with respect to phit and m for X =

10 and ↵ = 0.0001 (each point in the graphs represents a particular distribution



4.4. Results 75

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
phit

0

10000

20000

30000

40000

50000

60000

70000

80000

m

X = 10, α = 10
−4, s1 = 0.1

TTL=3, Routing=zmax

TTL=4, Routing=1/i

TTL=2, Routing=zmax

TTL=3, Routing=1/i

Figure 4.9: Distribution of different routing policies with fixed s1.

{si}). In the first case (Figure 4.8), we decided to fix a cost factor and set f = 4,

whereas in the second case (Figure 4.9), the fixed factor is the ratio of expected

non-synapse nodes in the system s1. We are able to discriminate immediately those

distributions {si} that do not satisfy the imposed criteria of having phit > 0.9.

We also discriminate among those that do the distributions {si} that minimize the

number of messages m, as shown in Figure 4.8(b).

4.4.2.5 Routing without propagation

We briefly present some evaluation results based on the model variation presented in

Section 4.3.5. In the first version of our model, the routing of a message is assumed

to continue until the TTL expires, regardless of a resource being found or not. This

leads to an Ht(z) able to describe different cases, such as the probability of finding

multiple copies of a resource. However the system is not optimal message-wise. In

case we are interested only in the first hit of a search query, and we want to optimize

the number of messages employed, with the variant of R(z) described in 4.3.5 we are

able to evaluate the system under the conditions that the routing in a node stops

whenever a resource is found.

Figure 4.10 shows the trend of m for different ↵, and two routing policies for

X = 10, TTL = 3, and distribution S1. While the number of messages was unrelated

to the resource popularity before, here we see that, as routing stops upon first hit,

the more popular a resource, the lower the number of messages per query.



76 Chapter 4. Modeling of interconnected systems

0.5 10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

α

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

m

X = 10, TTL = 3, Sk = S1

Routing=1/i

Routing=zmax

Figure 4.10: Message evaluation at different ↵, for different routing policies.

4.5 Conclusion

In this chapter we considered a mathematical modeling for large scale unstructured

P2P networks interconnected to one another via co-located nodes called Synapses:

these nodes send/forward a query to all the P2P networks they belong to. We

developed a generalized random graph based model to represent the topology of one

unstructured P2P network, the partition of nodes into synapses, the probabilistic

flooding based search algorithms, and the resource popularity. We validated our

model against simulations and proved that its predictions are reliable and accurate.

The model allowed the analysis of very large and complex systems: we believe that

simulation and/or prototype deployment based analysis would be unfeasible in this

case.

The contributions of this chapter have been published as

Modeling and Analysis of Large Scale Interconnected Unstructured P2P Networks,

Poster paper, in Proceedings of the 18th International Conference on Parallel and

Distributed Computing (ICPADS), IEEE [Ciancaglini 2012a] and

Interconnection of large scale unstructured P2P networks: modeling and analysis in

Proceedings of the Twentieth International Conference on Analytical and Stochastic

Modelling Techniques and Applications, Springer LNCS [Gaeta 2013].



Part II

Applications on top of
interconnected overlays





Chapter 5

CarPal: an example of social
crowdsourced application

Contents
5.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Application architecture . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Application principles . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 CarPal in a nutshell . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.3 Encoding CarPal in a DHT . . . . . . . . . . . . . . . . . . . 83

5.2.4 Network architecture . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 A Running example . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Building the scenario . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Slice and Dice and encoding in the DHT . . . . . . . . . . . . 86

5.3.3 Searching for a trip . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Car sharing and car pooling have proven to be an effective solution to reduce the

amount of running vehicles by increasing the number of passengers per car amongst

medium/big communities, like schools or enterprises. However, the success of such

practice relies on the ability of the community to effectively share and retrieve

information about travelers and itineraries. Structured overlay networks, such as

Chord [Stoica 2001] or Kademlia [Maymounkov 2002a], have emerged recently as a

flexible solution to handle large amounts of data without the use of high-end servers,

in a decentralized manner. In this chapter, we present CarPal, a proof-of-concept

for a mobility sharing application that leverages a Distributed Hash Table to allow

a community of people to spontaneously share trip information, without the costs

of a centralized structure. The peer-to-peer architecture allows for deployment on

portable devices, and opens new scenarios in which trips and sharing requests can

be updated in real time. Furthermore, the interconnected architecture described in

Chapters 2 and 3 is leveraged to allow for the interconnection of nearby communities,

with a higher probability of common travel patterns between their members, thus

allowing for the increase of a query’s success rate, the number of effectively shared

rides and the effectiveness of our solution.



80 Chapter 5. CarPal: an example of social crowdsourced application

5.1 Context

Car pooling is the shared use of a driver’s personal car with one or more passengers,

usually, but not exclusively, colleagues or friends, for commuting (usually small-

medium recurring trips, e.g. home-to-work or home-to-school). Amongst its many

advantages, it decreases traffic congestion and pollution, reduces trip expenses by

alternating the use of the personal vehicle amongst different drivers, and enables the

use of dedicated lanes or reserved parking places where made available by countries

aiming to reduce global dependency on petrol.

In Car pooling services, an Information System (IS) has been shown to be essen-

tial to match the offers, the requests, and the resources. The Information System

is, in most cases, a front-end web site connected to a back-end database. A clas-

sical client-server architecture is usually sufficient to manage those services. Users

register their profile to one Information System, and then post their offers/requests.

In presence of multiple services, for technical and/or commercial reasons, it is not

possible to share content across different providers, despite the evident advantage.

As a simple example, the reader can have a quick look on Equipage06 [a] and Ot-

toEtCo [d], two websites concerning car pooling in the French Riviera. At the

moment the two do not communicate, share any user profile nor requests, even if

they operate on the same territory and with the same objectives. Since both ser-

vices are non-profit, the reason for this lack of cooperation would probably be found

in the client-server nature of both Information Systems that, by definition, are not

designed to collaborate with each other. Although, in principle this does not af-

fect the correct behavior of both services, it is clear that interoperability between

the two would increase the overall quality of the service. Moreover, the classical

shortcomings of client-server architectures would make both services unavailable if

both servers were to be down. With this in mind, in this chapter we propose and

implement a peer-to-peer based Carpool information system, which we call CarPal :

this service is suitable for deployment in a very low infrastructure and can run on

various devices, spanning from PCs to small intelligent devices, like smart phones.

The system exploits the Synapse Framework, presented in Chapters 2 and 3, in

order to allow two completely independent CarPal-based communities to exchange

information with one another, without the need of merging one community into the

other or, even worse, build a third CarPal system including both.

5.2 Application architecture

5.2.1 Application principles

One of the most important features for a car share application is to be able to max-

imize the chances of finding a match between one driver and one or more travelers.

From this comes the choice of arranging the database by communities, in order to

put in touch people who most likely share the same traveling patterns in space and

time (e.g. work for the same company, attend the same university and so on). An-



5.2. Application architecture 81

other important aspect is to be able to update the planned itinerary information

as quickly as possible, so that a last minute change in plans can be easily managed

and updated, and may eventually lead in finding a new match.

For the above reasons, CarPal has been intended as a desktop and mobile ap-

plication running on a peer-to-peer overlay network. This allows a community of

people to spontaneously create their own travel database (which, as it will be shown

later, can be interconnected with sibling communities) and manage it in a dis-

tributed manner. Furthermore, it constitutes a flexible infrastructure within which,

by deployment on connected mobile devices, it will be possible to develop more

advanced info-mobility solutions which might take into account the position of the

user/vehicle (via an internal GPS), geographically-aware network discovery or easy

network join, or vehicle tracking through checkpoints with the use of Near Field

Communications technologies [c].

5.2.2 CarPal in a nutshell

A user running CarPal on his mobile device or desktop computer can connect to one

or more communities of which he is member (i.e. he has been invited or a request

of his has been accepted). Two operations would then be available, namely (i)

publishing a new itinerary and (ii) finding a matching itinerary.

Publishing a new itinerary. When a CarPal user has a one-time or recurring

trip that he wants to optimize cost-wise, he can publish his route in the community

in hope of finding someone looking for a place in the same route and time-window,

to share the ride with. A planned itinerary is usually composed by the following

data:

• Trip date and number of repetitions, in case of a recurring trip;

• Place of departure and place of arrival, whose representation is critical, since

high granularity might lead to the omission of similar results;

• Time of departure;

• Time of arrival or, at least, an estimate given by the user;

• Number of available seats to be updated when another passenger asks for a

place;

• Contact, usually an e-mail or a telephone number;

• Further useful information, i.e. pet allergies, other specific needs etc.;

Moreover, from a functional point of view, a trip, e.g. from place A to place D may

include several checkpoints, meaning that the user offering a ride can specify one

or more intermediate stops in the itinerary where he is willing to pick up or leave

passengers.

Once the user has inserted all the required data (date, place and time of depar-

ture and arrival, number of seats and optional checkpoints), the trip is decomposed



82 Chapter 5. CarPal: an example of social crowdsourced application

to all possible combinations: for example, a trip containing the stops A-B-C-D

(where B and C are checkpoints specified by the user) will generate the combina-

tions A-B, A-C, A-D, B-C, B-D and C-D. This operation is commonly known as

Slice and Dice. Since the number of possible combinations can increase exponen-

tially with the number of checkpoints, there is a software limitation to 3 maximum

stops in the trip.

Each combination is then stored in the DHT as an individual segment; further-

more all of the segments which do not start from A are marked as estimated in

departure time since, given a trip made of different checkpoints, only the effective

departure time can be considered reliable, while the others are subject to traffic

conditions and contingencies. Geographic and time information must be encoded in

such a way that it is precise enough to still be relevant for our purposes (someone

leaving from the same city but 10 km far is not a useful match) yet broad in the

sense that a precise query will not omit any relevant results.

Every checkpoint (including departure and arrival point) could either be inserted

directly through geographical coordinates (using the GPS capabilities of modern

mobile devices) or as an address that would then be converted in geographical coor-

dinates using Reverse Geo-location APIs made available by services such as Google

Maps [b]. Such coordinates would then be rounded before the hash key encoding

in order to group together locations within a given radius (around 5 kilometers).

Concerning time approximation, a 20-minute-window is used to approximate depar-

ture times. Both during an insertion or a query, anything within the 0-19 minute

interval would be automatically set at 10 minutes, 20-39 will be set at 30 minutes

and 40-59 at 50.

Finding a matching itinerary and one seat. A user wishing to find a ride can

perform a search by inserting the following information:

• Date of the trip;

• Departure place and time (picked on a map between the proposed points;

• Arrival place and wished time, picked in the same manner as the departure.

To increase the chances of finding a match, only part of the search criteria can be

specified, allowing e.g. to browse for all the trips leading to the airport in a certain

day disregarding the departure time (giving the user the chance of finding someone

leaving the hour before) or the departure point (giving the user, in case of nobody

leaving from the same place as him, to find someone leaving nearby to join with

other means of transportation). Furthermore, it is possible to specify checkpoints in

the search criteria too, in order to have the system look for multiple segments and

create aggregated responses out of publications from multiple users.

Negotiation. Once the itinerary has been found, it would be possible to contact

the driver in order to negotiate and reserve a seat. If the trip is an aggregation

of different drivers’ segments, all of them would be notified through the applica-

tion. The individual trip records will then be updated by decreasing the number of

available seats.



5.2. Application architecture 83

Key Value Grouping criteria

“I”
^

TRIP_ID ♣ Individual trip

“T”
^

DATE
^

DEP
^

TOD
^

ARR
^

TOA list[TRIP_ID] Departure, Arrival & Time

“B”
^

DATE
^

DEP
^

ARR list[TRIP_ID] Departure & Arrival

“D”
^

DATE
^

DEP list[TRIP_ID] Departure

“A”
^

DATE
^

ARR list[TRIP_ID] Arrival

“U”
^

USER_ID list[TRIP_ID] User

where ♣ = [DATE,DEPARTURE,TOD,ARRIVAL,TOA,SEATS,CONTACT,PUBLIC]

Table 5.1: Keys updated in the DHT for each new entry

5.2.3 Encoding CarPal in a DHT

The segments are stored in the DHT according to Table 5.1. The “^” symbol

represents, with a little abuse of notation, the concatenation of multiple values for

one key. Multiple keys, representing different sets of trips grouped according to

different criteria, are updated for each entry (or created if they do no already exist),

namely:

1. The actual trip record, associated to a unique TRIP_ID, that will be updated,

e.g., when someone books a seat. The information stored concerns trip date -

DATE, place and time of departure - DEPARTURE and TOD, place and time of

arrival - ARRIVAL and TOA, number of available seats (or cargo space, in case

of shared goods transportation) - SEATS, a reference to contact the driver -

CONTACT, and if the trip has to be public or not - PUBLIC. Depending on the

needs more information can be appended to this record; the key is created by

appending the token “I” to the TRIP_ID

2. The set of trips having the same date, place and time of departure and arrival.

The key is created by concatenating the token “T”, trip date - DATE, place and

time of departure - DEPARTURE and TOD, place and time of arrival - ARRIVAL

and TOA. Its value is a list of TRIP_ID pointing to the corresponding trip

records.

3. The set of trips grouped by date and place of departure and arrival. It will

be used to query in one request all the trips of the day on a certain itinerary.

The key to store them in the DHT is consequently made by appending to the

token “B” the trip date, place of departure and place of arrival;

4. The sets of trips arranged by day and by point of departure or arrival. The

key is therefore made by concatenating either the token “D” (for departure) or

“A” (for arrival) to the date - DATE and point of departure or arrival - DEP or

ARR. This set can be used, e.g., to query in one request all the trips of the day

leaving from a company or all the trips of the day heading to the airport;



84 Chapter 5. CarPal: an example of social crowdsourced application

6. The set of trips for a given user. The key is the token “U” prepending the

USER_ID itself.

5.2.4 Network architecture

The overlay chosen for the proof of concept is Chord [Stoica 2001] although other

protocols could be used to exploit the locality of the application or a more direct

geographical mapping. Even on a simple Chord, several mechanisms to ensure fault

tolerance can be put in place, like data replication using multiple hash keys or

request caching. To allow a new community to be start up, a public tracker has

been put in place on the Internet. The public tracker is a server whose tasks can be

summed up as follow:

• It allows for the setup of a new community, by registering the IP of certain

reliable peers, in a YOID-like fashion [Francis 2000];

• It acts as a central database of all the communities, keeping track of them and

their geographical position;

• consequently, it can propose nearby overlays to improve the matches by placing

co-located peers;

• It acts as a third party for the invitation of new peers into an overlay;

• It can provide statistical data about the activity of an overlay, letting a user

know if a certain community has been active lately (and thus if it is worth

joining);

• It acts as an entry point for downloading the application and getting updates.

5.3 A Running example

We hereby present a first proof-of-concept for a CarPal application implementing the

concepts discussed above. A basic user interface is proposed, showing a first attempt

to integrate a mapping service (namely, Google Maps [b]) in the application to render

the user experience more pleasant and efficient, although no GPS capabilities and

no reverse geolocation are in place yet.

5.3.1 Building the scenario

Let us turn to a practical example in order to better explain the logic behind the

application. As a real world scenario for our proof-of-concept we chose the area of

Sophia Antipolis in the department of Provence-Alpes-Cote d’Azur, France. The

area (Figure 5.1) constitutes an ideal study case, being a technological pole with

a high concentration of IT industries and research centers, thus providing several

potential communities of people working in the same area and living in nearby towns

(such as Antibes, Nice and Cagnes sur Mer).



5.3. A Running example 85

Figure 5.1: The geographical set-up

An engineer working in the area and willing to do some car pooling in order

to reduce his daily transfer costs can publish his usual route to the CarPal overlay

specific to his company. We assume the network has been already put in place spon-

taneously by him or some colleague of his. He can then use the CarPal application

to publish his route with an intermediate checkpoint (as shown in Figure 5.4).

As previously described, there is a checkpoint where our user is willing to stop

and pick up some passengers.

Trip date 15/01/2010

Departure Nice

Departure Time 8.00

Checkpoint Cagnes sur Mer

Checkpoint Time 8.30

Arrival Sophia Antipolis

Arrival Time 9.00

Seats available 4

Contact jsmith@email.com

Figure 5.2: Journey data



86 Chapter 5. CarPal: an example of social crowdsourced application

Nice-Sophia 8.00-9.00

Nice-Cagnes sur Mer 8.00-8.30

Cagnes sur Mer-Sophia 8.30-9.00

Figure 5.3: Sliced & diced segments

Figure 5.4: CarPal application publishing a new trip

5.3.2 Slice and Dice and encoding in the DHT

Starting from the above data all of the possible combinations are generated leading

to the segments shown in Figure 5.2 and 5.3. Only the differences are reported, with

each of those segments sharing the same date, number of available seats and contact

information. The 3 segments are then stored in the DHT by updating (or adding)

the appropriate keys as shown in Table 5.2. For clarity purposes, in Table 5.2,

date and time values are represented as strings and instead of the actual geographic

coordinates a placeholder is shown (i.e. NICE, SOPH...).

A PUT operation represents the insertion of a not yet existing key whereas the

APPEND operation assumes that the key might already be in the DHT, in which

case the value is simply updated by adding the new entry to the list. After the

insertion, the trip is published and stands available to be searched. From Figure 5.4

we can see that it is possible to set the option of the the trip staying private. In

that case, the segments will be discoverable only by members of the same network.



5.3. A Running example 87

Operation Key Value

PUT “I”
^

123 ♣

PUT “I”
^

124 ♠

PUT “I”
^

125 ⌅

APPEND “T”
^

20100115
^

NICE
^

0800
^

SOPH
^

0900 123

APPEND “T”
^

20100115
^

NICE
^

0800
^

CAGN
^

0830 124

APPEND “T”
^

20100115
^

CAGN
^

0830
^

SOPH
^

0900 125

APPEND “B”
^

20100115
^

NICE
^

SOPH 123

APPEND “B”
^

20100115
^

NICE
^

CAGN 124

APPEND “B”
^

20100115
^

CAGN
^

SOPH 125

APPEND “D”
^

20100115
^

NICE 123

APPEND “D”
^

20100115
^

NICE 124

APPEND “D”
^

20100115
^

CAGN 125

APPEND “A”
^

20100115
^

SOPH 123

APPEND “A”
^

20100115
^

CAGN 124

APPEND “A”
^

20100115
^

SOPH 125

APPEND “U”
^

“jsmith@email.com” [123,124,125]

where ♣ = [20100115, NICE, 0800, SOPH,0900, 3, jsmith@email.com, public=true]

where ♠ = [20100115, NICE, 0800, CAGN,0830,3, jsmith@email.com, public=true]

where ⌅ = [20100115, CAGN, 0830, SOPH, 0900, 3, jsmith@email.com, pub-

lic=true]

Table 5.2: DHT operations

5.3.3 Searching for a trip

A search for a trip follows a similar path as the trip submission. As we can see in

Figure 5.5 the user can specify an itinerary, a specific time and even some interme-

diate segments, in order to find all the possible combinations. Depending on the

search criteria specified, the application will perform a query for either a key made

of Time of Departure and Time of Arrival, for a more exact match, a key with only

Point of Departure and Arrival to browse through the day’s trips or a key with only

Departure or Arrival for a broader search. Thanks to the Slice and Dice operation,

it is possible to aggregate segments coming from different users as Figure 5.6 shows.

In this way the driver has more possibilities to find guests in his car. Despite that,

there can still be some places available for his daily route. To optimize even further,

he might share his information with, for example, students of nearby universities

with their own carpool network (which has the same functions and technology).

By marking his published itinerary as public, a member of the Enterprise Net-

work allows the students to get matching results via a synapse (Figure 5.7), i.e.

somebody registered to both networks (Figure 5.8). This allows the system to in-

crease the chances of finding an appropriate match while maintaining good locality

properties (Figure 5.9).



88 Chapter 5. CarPal: an example of social crowdsourced application

Figure 5.5: Simple search

Figure 5.6: Aggregate results

5.4 Conclusion

In this chapter we presented a first example of how the interconnected architecture

presented earlier in this thesis can be exploited to develop an application fulfilling a



5.4. Conclusion 89

Figure 5.7: Students, Enterprise and Synapsed Overlay Networks

Figure 5.8: Synapse creation

real-world need, such as providing a scalable infrastructure for a community-driven

carpool service without requiring a centralized client-server infrastructure.

In this scenario, the idea of interconnecting multiple overlays is applied in allow-

ing individual communities to independently manage their own data (in the form



90 Chapter 5. CarPal: an example of social crowdsourced application

Figure 5.9: CarPal Students accessing result from Enterprise Network

of published routes), while allowing nearby communities to share routes increasing

the chance for users to find a suitable car ride.

There are several improvements such an application could benefit from: for

example the integration with existing databases, in order to further extend the

search space to canonical web-based communities.

Another evolution in the system could come from the use of an overlay protocol

more specialized with the kind of data managed in the application. The adoption

of a semantic hash function (such as [Salakhutdinov 2009]) would allow for clus-

tering of semantically close information (i.e. trips heading to sibling destinations

or taking place in the same time window) in nearby peers. With such hashing

in place the adoption of an overlay protocol more suited to range queries (like P-

Ring [Crainiceanu 2007], P-Grid [Aberer 2003] or Skipnet [Harvey 2003]) might lead

to semantically significant range queries, where, for example, departure and arrivals

can be geographically mapped and queried with a certain range in Km.

Finally, one last possible improvement would be to use a DHT protocol more

suited for geo-located information. CAN [Ratnasamy 2001]) in a 2D configuration is

a first example of how this could be achieved. Mapping CAN’s Cartesian space over

a limited geographic area (like in Placelab [Chawathe 2005]) could ease the query

routing and eventually provide some strategic points to place synapsing nodes.

The contributions of this chapter have been published as CarPal: Interconnect-

ing Overlay Networks for a Community-Driven Shared Mobility, in Proceedings of

Trustworthy Global Computing Conference 2010, Springer LNCS [Ciancaglini 2010].



Chapter 6

A distributed digital archive for
cultural heritage

Contents
6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Application principles . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Network join . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.2 Storing a new record . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.3 Record search . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

In this chapter, we present another proof-of-concept for an application relying

on an interconnected architecture to provide a new form of interoperability in a real

world scenario. Cultural heritage archives all over the world are a typical example

scenario that could vastly benefit from interoperability and information exchange.

Unfortunately, the lack of standards adoption and general inability of co-operation

between different institutions makes it very hard to collaborate. By leveraging the

Synapse Framework presented in Chapters 2 and 3, we can allow for the intercon-

nection of different overlay networks, each of them representing the abstraction of

a “community” of virtual providers. Data storage and data retrieval from different

kind of content providers (i.e.libraries, archives, museums, universities, research cen-

ters, etc.) can be stored inside one catalog. We take into consideration the specific

case of Serbia’s cultural heritage catalog, and build a system where, while owner-

ship of the content remains within the boundaries of each institution, all the related

meta-data can be shared in several distributed overlays, each one communicating

with one another.

6.1 Context

Digitization is an important step aimed in preservation and promotion of heritage.

It safeguards cultural diversity in the global environment and offers a rich treasure

to the world-wide public of the Web. Usually, digitization can be seen as a collection

of activities, including digital capture, transformation from analogue to digital form,



92 Chapter 6. A distributed digital archive for cultural heritage

description and representation of heritage objects and documentation about them,

processing, presentation and long-term preservation of digitized content, etc.

The document [une 2005] “Recommendations for coordination of digitization of

cultural heritage in South-Eastern Europe”, accepted at the South-Eastern Europe

regional meeting on digitization of cultural heritage (Ohrid, Macedonia, 17-20 March

2005) states that current digitization practice in SEE is still not matching the prior-

ities communicated on the EU-level and that the rich cultural content of the region

is still underrepresented in the electronic space. One of the main principles accepted

by the participants of the Meeting states that “It is recognized that knowledge of

the cultural and scientific heritage is essential for taking decisions concerning its

digitization and for interpreting the digitized resources. For this reason, invento-

rying and cataloging should precede or accompany the digitization of cultural and

scientific assets.”

At the moment, there is no widespread meta-data standard for describing digi-

tized heritage in Serbia. Actually, although most of the institutions caring about na-

tional heritage have started the digitization process, there is no meta-data standard

formally accepted at the state level. Because of that we are faced with something

that can be called the meta-data problem. Different providers of heritage resources

(libraries, museums, archives, some research institutions) use international stan-

dards appropriate for their specific fields, or ad-hoc methods, or old procedures for

describing cultural assets in classical format (formulated in 1980s or early 1990s).

In fact, some providers are still waiting for some solution of the meta-data problem

and do not do anything related to digital cataloging. It means that digital catalogs

in Serbia, if exist at all, cannot help in communication between different kinds of

providers and users.

At the international level, there are plenty of meta-data standards for describing

heritage resources, for example: Dublin Core [DC ], EAD [EAD ], MARC [MAR ],

TEL AP [TEL ], FRBR [web 2007, frb 1998] etc.

Given all of the aforementioned, the Committee for digitization of the UNESCO

commission of Serbia has recognized the meta-data problem as the most sophisti-

cated one in the cataloging phase of digitization. During the past years, some efforts

were made in the field of standardization, which resulted in the development of the

Recommendation for the meta-data format for describing digitized heritage [Z. Ogn-

janović 2009], but this recommendation has not, still, been accepted as a formal

national standard.

There were also some efforts directed towards developing technology for storing

these meta-data documents, but there is still no widespread application.

Recent attempts to create digital repositories, such as, for example, Europeana

[eur ], are mostly based on centralized architectures. Here we will consider an

alternative, decentralized approach, based on overlay networks.

Overlay networks have recently been identified as a promising model to cope with

the Internet issues of today, such as scalability, resource discovery, failure recovery,

routing efficiency, and, in particular in the context of information retrieval. Many

disparate overlay networks may not only simultaneously co-exist in the Internet, but



6.2. Application principles 93

can also compete for the same resources on shared nodes and underlying network

links. This can provide an opportunity to collect data on various kind of digitized

documents which are, by their nature, highly distributed resources, while keeping

backward compatibility, efficient searching, failure resistance, etc.

One of the problems of the overlay networking area is how heterogeneous over-

lay networks may interact and cooperate with each other. Overlay networks are

heterogeneous, and basically unable to co-operate with each other in an effortless

way, without merging, an operation which is very costly since it is not scalable

and not suitable in many cases for security reasons. However, in many situations,

distinct overlay networks could take advantage of co-operating for many purposes:

collective performance enhancement, larger shared information, better resistance to

loss of connectivity (network partitions), improved routing performance in terms of

delay, throughput and packets loss, by, for instance, cooperative forwarding of flows.

More generally, in the context of large scale information retrieval, several over-

lays may want to offer an aggregation of their information/data to their potential

common users without losing control of it. Finally, in terms of fault-tolerance,

cooperation can increase the availability of the system – if one overlay becomes

unavailable the global network will only undergo partial failure as other distinct

resources will be usable.

The solution could be found in using a meta-protocol which allows a request

to be routed through multiple overlays, where one overlay contains one kind of

institutions, even using different routing algorithms, thus increasing the success

rate of every request.

The ready-to-market DHT(Distributed Hash Tables)-based technology of struc-

tured overlay networks is enriched with the new capability of crossing different

overlays through co-located nodes, i.e.by peers who are, by user’s choice, member of

several overlays. Such nodes are themselves able not only to query multiple overlays

in order to find a match, but also to replicate requests passing through them from

one network to another and to collect the multiple results.

6.2 Application principles

One of the main features of a distributed catalog is to assist researchers and members

of the wider community in retrieving information concerning some fact of interest to

them, information which can be provided from different kinds of sources. As men-

tioned before, digitized documents, by their nature, are highly distributed resources.

By connecting different kinds of data providers into one system, we can increase the

quality of the resulting information.

In the present work, we consider a distributed catalog which contains only meta-

data on digital documents which follows a part of the Recommendation for the meta-

data format for describing digitized heritage, described in [Z. Ognjanović 2009]. One

of the main reasons for this is the intellectual property rights issue. Simply, some

institutions do not wish to outsource control over their digital repositories, and,



94 Chapter 6. A distributed digital archive for cultural heritage

instead, choose only to publish the information that they are in possession of a

certain document. The digital documents themselves can be retrieved with one of

the meta-data fields which contains information on their actual remote location.

A user can connect to one or more communities of which he is member (i. e. he

has been invited to or his request has been accepted). Two operations are then

available, namely (i) storing a new record and (ii) finding a record which contains

some information.

Suppose that we wish to store the following information on one digital object:

<digitalObject>

<title>Title</title>

<creator>Name</creator>

<location>link</location>

<relatedAsset>Related realife object</relatedAsset>

<note>

<src lang ="language of the value">value</src>

</note>

<archivalDate>date</archivalDate>

<mimeFormat>mime type</mimeFormat>

<digitalObjectOwner>Owner</digitalObjectOwner>

</digitalObject>

If we were to decide to make the catalog searchable for the values in the fields:

title, creator, relatedAsset mimeFormat and digitalObjectOwner, then we would store

segments in accordance with Table 6.1. More precisely:

No. Key Value

1 title]T itle hash(z)

2 creator]Name hash(z)

3 relatedAsset]RelatedRealifeObject hash(z)

4 mimeFormat]mimeType hash(z)

5 digitalObjectOwner]Owner hash(z)

6 hash(z) z

where z represents the full meta-data record on one digital document

Table 6.1: Different data structures stored in the distributed catalog DHT for each

entry

1. For every field of a meta-data record which we choose to be searchable, we

store the hashed value for the current overlay of the entire meta-data record

as value with the key which contains information about the field and its value.

Rows 1 to 5 in table 6.1.



6.3. Case study 95

2. We store the entire meta-data record as a value with the corresponding key

that contains its hashed value for the current overlay. Row 6 in table 6.1.

Note that all of the keys are stored with their hashed values. With this in place, the

search mechanism has two phases. During the first phase, we attempt to find the

hashed value of the meta-data record (the first kind of entries) and then, during the

second phase, to find the entire meta-data record (the second kind of entries) only

in the overlays which contain the first kind of entries. Although we have multiple

copies of data, so as to accomplish failure resistance of the system, the storage space

is of the same complexity as for a standard DBMS with indices. If N and M are

the number of overlays and the number of nodes per overlay, respectively, then the

time complexity of a search, in the worst case, is O((N + 1) ∗ (time to search an

overlay with M nodes)).

6.3 Case study

Institutions which are interested in sharing meta-data information on their digital

documents can be connected in different overlays by their nature. So, all archives

may be part of one overlay, all libraries of the other, and similarly with museums,

research centers, universities, etc. These overlays can be connected by institutions

which contain various kind of content, like research centers with important libraries

or research centers which are part of the universities, etc. All of these institutions

will run the same application.

Figure 6.1: Connecting to an overlay



96 Chapter 6. A distributed digital archive for cultural heritage

The following proof-of-concept is a simple application to store and retrieve

records from one or multiple overlays. It offers the following three functionali-

ties, arranged in a Graphical User Interface developed in Java, for cross-platform

compatibility:

• Join of a new network.

• Store of a new record.

• Search for records.

The application is designed using a tabbed organization of different forms. This

is to allow the user to easily perform multiple operations at the same time (e.g.doing

multiple queries and comparing the results). Furthermore, it constitutes a familiar

usage environment, resembling, in the approach, most of modern Internet browsers

(multiple tabs, address/search on a top bar). Basic editing features, like saving and

loading a record to and from an XML file, copying/pasting and printing the XML

raw data, are provided.

6.3.1 Network join

As shown in Figure 6.1, upon starting, the program will propose to the user a list of

known DHTs to connect to. These represent existing overlays put in place using the

same system, which are, therefore, compatible with our software. It is important to

notice that, after having connected to a first overlay, a user can choose to further

join other available networks. This can be done via the menu entry Network →

Join, which will propose the same dialog box as in Figure 6.1.

Once being a member of multiple overlays, not only will it be possible to query

all of the overlays simultaneously, but, thanks to the capabilities of the synapse

protocol described in Chapter 3, it will also be possible to act as a relay, replicating

requests from one overlay to another.

6.3.2 Storing a new record

Figure 6.2 shows the insertion form for a new record in the DHT.

In this catalog we will store the records which follow a part of the mentioned

recommendation of the meta-data format:

• Title of the digital document (i.e.electronic book)

• Name of the author who made electronic version

• Link of the remote location of the digital document

• Related object (i.e.hard copy book)

• Note or a short description

• Date when electronic copy was made



6.3. Case study 97

Figure 6.2: Record insertion form

• Mime type (i.e.pdf)

• Owner of the digital object

While some of the fields may be optional, the ones used as search criteria have

to be filled before the record can be saved. Therefore, the “Save” button remains

disabled until all of the appropriate text boxes are filled.

6.3.3 Record search

Looking for a record takes place in a way resembling the behavior of most modern

Internet browsers: as one can see in Figure 6.3, the search type and field are in

the upper toolbar. Here the user can choose the type of search to perform (title,

author, owner, related object, mime type) and insert the search key. By pressing the

“Search” button, a query for the corresponding key is performed in the overlay (or

overlays, if synapses are present or the software is connected to multiple networks).

A result summary is displayed in a new tab once the query is over, containing the

number of records found and a table with all the records.

To display the details of a record the user can double-click on the corresponding

row in the table. This (Figure 6.4) will open a new tab containing record details.

The details tab is similar to the new record form, except that the text fields

cannot be edited (although it is still possible to select and copy the text inside).

The button “Display raw XML” will open a new dialog showing the actual XML

data.



98 Chapter 6. A distributed digital archive for cultural heritage

Figure 6.3: Search results for a query

Figure 6.4: Details of a retrieved record



6.4. Conclusion 99

6.4 Conclusion

In this Chapter we have shown that the Synapse Framework has good potential as

yet another new concept of DBMS, depicting its applicability to a real-life situation.

As mentioned before, within this system we can also store the digital documents

themselves. We have also decided that in the current phase, this should be out of

scope but we consider this to be a possible system improvement with great potential.

As a positive side-effect, we believe that our catalog can lay promising ground-

work for a low-cost solution to cultural interconnection of the institutions inside

the Balkan region.

The contributions of this chapter have been published as A Distributed Catalog

for Digitized Cultural Heritage, in Proceedings of ICT Innovations 2010, Springer

LNCS [Marinković 2011].





Part III

Beyond overlays: content-based
routing for real-time video

streaming





Chapter 7

Content based enhancements in
P2P-TV: promises and drawbacks

Contents
7.1 Introduction and Related work . . . . . . . . . . . . . . . . . 104

7.1.1 Gossip-based protocols . . . . . . . . . . . . . . . . . . . . . 104

7.1.2 Content adressable networks . . . . . . . . . . . . . . . . . . 105

7.1.3 Hybrid delivery algorithms . . . . . . . . . . . . . . . . . . . 106

7.2 System description . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.1 High Performance DHT overlay . . . . . . . . . . . . . . . . . 107

7.2.2 Bandwidth selective peer join . . . . . . . . . . . . . . . . . . 108

7.2.3 Chunk retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.4 HP-DHT pseudo-cache . . . . . . . . . . . . . . . . . . . . . . 109

7.2.5 Chunk seeding . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.2 HyDeA performance under different load conditions . . . . . 112

7.3.3 Bandwidth exploitation . . . . . . . . . . . . . . . . . . . . . 113

7.3.4 HyDeA performance at different playout delays . . . . . . . . 114

7.3.5 Robustness to churning . . . . . . . . . . . . . . . . . . . . . 114

7.3.6 Signaling overhead evaluation for different HP-DHT parameters115

7.3.7 Comparison with an adaptive overlay . . . . . . . . . . . . . 117

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Traditional gossip-based P2P-TV systems are broadly recognized as effective and

scalable solutions for Internet real-time video delivery. Nonetheless, they can incur

significant performance impairments in highly heterogeneous environments, due to

content and bandwidth bottleneck issues. In fact, because of topological constraints

of the overlay, a peer might not be able to locate or retrieve the required chunk within

the playout deadline because of a limited set of neighbors or insufficient bandwidth.

In an attempt to resolve this challenging issue, content based approaches could be

exploited because of their inherent ability to straightly locate and retrieve a specific

information within a distributed system. Hence, in order to understand to what ex-

tent such a solution could improve P2P-TV, we analyze herein an extension of the



104
Chapter 7. Content based enhancements in P2P-TV: promises and

drawbacks

traditional gossip-based approach by means of an optimized content-based retrieval

protocol derived from Distributed Hash Tables (DHT). The solution we propose

is fully backward compatible and can sit on top of existing gossip based protocols

so that it could be selectively turned on and off based on the specific application

scenario. Extensive simulations showed initially that a plain DHT-like overlay can-

not bring a notable improvement on the chunk loss when real time constraint are

enforced (i.e. low playout delay), however, with appropriate optimizations, perfor-

mance improvements up to 20% could be reached. Furthermore, the system proved

to be consistent and robust even under stressful conditions, with heavy network load

and high churn rates, and shows interesting properties regarding the peers’ upload

bandwidth exploitation.

7.1 Introduction and Related work

7.1.1 Gossip-based protocols

In a gossip-based peer-to-peer (P2P) communication system, all nodes (peers) in-

terested in the same common content cooperatively build up a high-level overlay

network that, by exploiting the peers’ upload bandwidth, allows for scalable and

fast services to be provided [Ceballos 2006,Pouwelse 2005]. In particular, each peer

establishes links with a limited set of neighbors, representing the nodes at one-hop

distance in the overlay topology, and exchanges pieces of data with them, receiving

content from multiple sources, while serving multiple neighbors. Every peer offers

its own upload bandwidth for content distribution, thus eliminating the need for

high-capacity servers. This advantage has been fruitfully exploited in the past to

design powerful file transfer applications [Liu 2009].

Recently, the attention of the scientific community and industry has turned

towards P2P-TV, due to the prevalence of this field in everyday life, as well as in the

market [Li 2006,Ali 2006]. In P2P-TV systems, a multimedia data source generates

a series of chunks, with each one of them containing a part of the audio/video

bitstream, and makes them available to all of the peers connected to the overlay

[Liu 2008].

The main difference with respect to file sharing applications is related to the

strict delay requirements of P2P-TV services, which impose a deadline on each

chunk at generation time: when a chunk is received after its playout delay (the

deadline) has elapsed, it is considered lost [Xiao 2008]. Increasing the playout delay

allows for more and more chunks to be received within this deadline: hovewer, this

advantage comes at the expense of the Quality of Experience (QoE) of the users,

which is very sensitive to the timeliness of TV services [Leonardi 2008].

Other performance limitations of classic P2P-TV are related to the so called

bandwidth and content bottlenecks [Ciullo 2010]. It is, in fact, possible that a

chunk whose deadline is going to expire cannot be downloaded by a given node

because none of its neighbors have that chunk (content bottleneck) or the upload

bandwidth of the neighborhood is insufficient (bandwidth bottleneck). In both of



7.1. Introduction and Related work 105

these cases, the chunk in question would be lost, and, consequently, the QoE would

be impaired. Increasing the degree of cooperation of the overlay network by allowing

each peer to establish direct links with many other peers is not a viable solution

because of the overhead required to handle the high number of connections in each

neighborhood.

7.1.2 Content adressable networks

Content-driven routing has become more and more popular in the last few years,

and there have been even propositions such as [Jacobson 2009a] to use it as an

alternative to classic IP routing.

Structured overlays such as Chord [Stoica 2003], Kadmelia [Maymounkov 2002b]

or CAN [Ratnasamy 2001] use content-driven routing to provide a scalable lookup

mechanism of data in the form of key-value pairs. Most of them uses hash functions

in order to map node IDs and content keys to a common adressing space. Because

of this they are commonly known as Distributed Hash Tables. Routing of a request

on a structured overlay follows a path usually dependent only on the key and the

node routing table. As a consequence, every request usually follows a different path

to its destination, thus providing load balancing across the overlay.

To the best of our knowledge, very few works have concentrated on the use of

content addressable networks in P2P real-time video streaming, either with different

purpose to ours or under unrealistic assumptions. The open source P2P-TV client

Goalbit [Bertinat 2009] integrates a KAD implementation. But in this case, as in

many other cases, DHT is not used for chunk delivery, but only for discovering the

list of peers participating in the stream, as a distributed tracker solution. As a con-

sequence, the DHT does not influence streaming performance. In [Yiu 2007] DHT

are used for Video streaming, but for on Demand applications. A VoD streaming

system shows good performance when peers watching the same portion of the video

are neighbors. In case of fast forward or rewind, a peer, to find its neighborhood,

makes a request on the DHT for the part of video he wants to stream. In [Cas-

tro 2003], the DHT is used to allow the creation of a multiple-tree overlay and to

ensure its connectivity. In tree based overlays, in fact, churning events can easily

lead to a disconnected overlay graph, isolating a group of peers from the streaming.

The DHT here serves to minimize the probability for each peer to be completely

disconnected, and to speed up the recovery of the original graph.

In some other works, as in [Jeonghun 2008] and [Nguyen 2008], the whole chunk

delivery is done by means of a DHT, but no explicit evidence of the ability to support

Internet TV is provided, i.e., chunk losses and communication delays have not been

evaluated.

The performance evaluation of the proposed approaches does not take into ac-

count the timeliness of the system, but only quantifies system performance in terms

of successful DHT lookups, and in terms of average number of hops needed to find

resources. However, especially in real-time video streaming, a critical aspect is eval-

uating the chunk communication delay for each peer, as done in our work. We try



106
Chapter 7. Content based enhancements in P2P-TV: promises and

drawbacks

to have an evaluation of chunk delivery which is as realistic as possible, by taking

into account i) the latencies with which chunks and signalling messages are sent, ii)

the variable transmission delay experienced by chunks according to the bandwidth

availability in a heterogeneous scenario and iii) the queue delay related to multiple

requests received by the sender peer.

7.1.3 Hybrid delivery algorithms

To overcome the content and bandwidth bottleneck issues exposed in Section 7.1.1,

a pull mechanism based on content-based requests similar to the ones performed in

DHTs could be put in place to target peers outside the gossip neighborhood and

retrieve chunks yet not available. To this subject there have been few works in

the literature, notably [Locher 2007] and [Shen 2010a]. Authors in [Locher 2007]

propose a whole new chunk diffusion protocol, rather than a simple enhancement

of existing methods, that can leverage both a push and a pull based mechanism,

while authors in [Shen 2010a] implemented an algorithm similar to the one analyzed

here but without our proposed optimizations. As the results in Section 7.3 will

show, a simple DHT mechanism cannot scale properly when real-time constraints

are enforced.

It is worth to note that this kind of hybrid gossip and DHT based approach

has been previously proposed in literature also for applications other than video

streaming [Zaharia 2006], [Luo 2008]. These kind of applications, however, do not

need to respect strict time constraints for content delivery, and do not need to

speed up the resource retrieval time employed by DHT. On the contrary, in file

sharing, information retrieval, they take into account the data integrity, preferring

packet loss avoidance more than limited download delay.

For that purpose, we designed a content-based pull mechanism, henceforth re-

ferred to as HyDeA, and analyze the performance gain it can provide when integrated

in a classic P2P-TV system, while maintaining backward compatibility and low sig-

naling overhead. To achieve this, several optimizations had to be implemented over

a canonical DHT routing scheme, in order to better exploit the system’s network

heterogeneity and reduce the routing complexity, as detailed in Section 7.2.

In particular, we introduce a pseudo-cache and a bandwidth selective peer join

mechanism in order to, respectively, (i) increase the retrieval efficiency of the system

and (ii) fully exploit the capabilities of high-bandwidth peers. The pseudo-cache,

described in detail in Section 7.2, allows a peer receiving a chunk request to send the

content (if present in its local storage) back to the requesting peer, thus shortening

communication delays. The probability of finding middle peers holding the desired

chunk is high, considering that every chunk should be ideally received by every peer

participating in the stream. Our algorithm, finally, allows chunks to be retrieved

only from high-performance peers, i.e., on peers with an available upload bandwidth

greater or equal to the video rate. With this consideration, chunks requested to the

content-based overlay are retrieved faster, because of the high bandwidth of sender



7.2. System description 107

peers. Furthermore, the routing complexity for requests to reach the assigned peer

is O(log(NHP )), where NHP is the number of high-performance peers, and not the

total number of peers participating in the stream. These choices we have made have

great impact in real time scenarios.

Our delivering system is compared with a simple hybrid gossip+DHT- based

chunk delivering, and extensively analyzed using simulations, in conditions as re-

alistic as possible, considering peers’ heterogeneity, using a real video model and

taking into account network latencies and signaling messages. Simulations results

in Section 7.3 not only show that our system outperforms the simple gossip-based

ones in terms of chunk losses, but also demonstrate that using a simple DHT on top

of a classic gossip-based P2P-TV systems does not help improving the performance.

Moreover, interesting effects regarding the peers’ bandwidth exploitation are shown,

that could potentially be exploited in mobile scenarios.

7.2 System description

As said above, HyDeA adds a per-request mechanism, based on content-addressable

requests, on top of a classic gossip-based delivery. The main chunk diffusion follows

the canonical gossip-based mechanism, but, in parallel, each peer can ask the

structured overlay, in defined intervals, for an expiring chunk that has not been

delivered yet by the gossip. The decoding buffer is common to the two mechanisms,

so there is no distinction between chunks received via the gossip overlay or the

structured one, and every chunk received via one channel will be available to the

other, i.e. every chunk received via the gossip overlay is available for any ongoing

content-driven request. This section presents the details of the overlay used for

content-addressable chunk requests as well as the chunk distribution algorithm for

both gossip- and content-addressable methods.

7.2.1 High Performance DHT overlay

To be able to perform specific requests for a video chunk beyond the gossip

neighborhood, peers form a High Performance DHT (henceforth referenced as

HP-DHT) beside the existing gossip one. This overlay relies on a protocol based on

DHT routing, without the data storage semantics and with strong optimizations

in order to reduce the query response time (asynchronous non-blocking messaging,

amongst others).

As described in [.Shen 2009], a DHT works by mapping peers and content

on a common addressing space. The mapping is usually done by means of a

hash function, which guarantees a uniform pseudo-random distribution of both

peers and contents in that space. Every peer is responsible for a certain interval

in the space, according to various proximity metrics (e.g., linear distance as

in Chord [Stoica 2003], XOR metric like in Kademlia [Maymounkov 2002b] or



108
Chapter 7. Content based enhancements in P2P-TV: promises and

drawbacks

geometric distance as in CAN [Ratnasamy 2001]), and will, therefore, keep every

content whose mapping falls into said interval. Data is accessed via keys, by sending

a data-lookup message that is routed through the overlay to reach the node which

is responsible for a given key. Most DHTs guarantee that lookup has logarithmic

complexity, i.e. O(log(N)), where N is the number of all nodes participating in the

DHT.

The HP-DHT overlay uses a Chord-like ring topology where every peer P has

a logical identifier IDP , derived by hashing its IP address and port, and a set of

pointers to other peers in the overlay to be used as routing tables, namely:

• a list of k pointers to the peers whose ID directly follows its ID (i.e. the

successors);

• a pointer to the peer with the biggest ID ≤ IDP (i.e. the predecessor);

• a routing table, containing for each entry i, a pointer to the peer responsible

for the key equal to IDP + 2i (i.e. the finger table).

These data structures are used to route a request to the responsible peer, and are

filled upon peer join and refreshed periodically with new peers who might have

joined the overlay.

7.2.2 Bandwidth selective peer join

To keep HP-DHT performance high, when a new peer joins the overlay, its presence

will be made known to the rest of the overlay only if its declared upload bandwidth

is higher than a given minimum bandwidth threshold, an approach similar to what

has been done in [Brampton 2006] for a Pastry DHT.

This distinction categorizes HP-DHT nodes in two classes:

1. peers with an upload bandwidth greater than the minimum bandwidth thresh-

old (HP peers) will become active members of the HP-DHT overlay, routing

lookup messages and serving video chunks upon request;

2. peers with an upload bandwidth less than the minimum bandwidth threshold

(lightweight nodes) will just update their own routing tables with the appro-

priate HP peers, to be able to send request messages, but will never serve

video chunks nor route lookup messages.

As it will be shown in Section 7.3, this approach helps circumvent bandwidth bot-

tlenecks that affect gossip-based systems in the following ways:

• it avoids having slow peers serving video chunks close to expiration;

• it speeds up lookup requests by lowering the routing path from O(log(N))

to O(log(NHP )), where NHP ≤ N is the number of HP peers, and avoiding

having slow peers along the path;



7.2. System description 109

• it helps saturate the HP peers’ highly unexploited upload bandwidth, by con-

centrating part of the load on them.

In order to achieve good performances rather than overloading the overlay, a mini-

mum bandwidth threshold value at least equal to the video rate should be chosen.

7.2.3 Chunk retrieval

To receive chunks, a peer adopts two different mechanisms:

1. following its gossip protocol, with a relatively low latency, it receives chunks

from its neighbors after OFFER/SELECT exchanges. In particular, as described

in [Fortuna 2010], every peer periodically receives some OFFER messages from

its neighbors, according to the neighbors’ bandwidth availability. The OFFER

message, containing the neighbors buffer map, indicates that the peer can

select and retrieve one of the offered chunks, according to the chosen chunk

scheduler. We use a random chunk scheduler, since it has been demonstrated

in [Fortuna 2010] to respond more robustly than the others to variations of

system parameters. In this way every peer requests and quickly obtain in in

a gossip-based manner the bigger part of video chunks;

2. every REQ_INTERVAL seconds, a peer can perform an explicit request to the

HP-DHT for a chunk amongst those not yet received from its neighbors.

Such a request consists of a lookup GET message containing the hashed chunk

number. The destination peer receiving said message then initiate a specific

OFFER/SELECT exchange with the requesting peer. The chunk to request is

selected within a moving request window, i.e. a subset of the decoding buffer.

7.2.4 HP-DHT pseudo-cache

To further reduce the logarithmic cost of each lookup request in the HP-DHT, each

peer along the routing path checks for the requested chunk ID in its own decoding

buffer, and, in case it is present and the peer’s transmission queue is free, it responds

to the request itself. Thanks to this “pseudo cache” mechanism, a GET request likely

takes less than log(NHP ) hops to find a destination. Content based chunk requests

to an HP peer Pi are served so that the upload bandwidth dedicated to serving the

HP-DHT is, at maximum, UpHP =
Upi

di + 1
, where Upi is Pi’s upload bandwidth and

di its connection degree, i.e., the number of neighbors. This way, the anonymous

content-based neighbor is treated exactly as one extra gossip-neighbor. To be able

to answer a chunk request, the peer makes sure that the time requested to void its

transmission queue and the time to send the chunk itself will not be higher than the

chunk deadline, i.e.

Cd > tnow + (
SizeQ + SizeC

UpHP

)

where Cd in the deadline of the requested chunk, tnow is the actual instant, SizeQ
and SizeC are, respectively, the size of the transmission queue for chunks requested



110
Chapter 7. Content based enhancements in P2P-TV: promises and

drawbacks

via the HP-DHT and the size of the requested chunk, and UpHP is the upload

bandwidth reserved for HP-DHT deliveries.

7.2.5 Chunk seeding

Whenever a new chunk is generated, the broadcasting peer performs two different

kind of seed in the network:

1. the chunk is first sent randomly to one of the source’s neighbors, according to

the gossip protocol;

2. the chunk is also explicitly sent to the responsible peer according to the

content-based routing, in order to make it immediately available to HP-DHT

requests. The peer is selected by sending a FIND message on the HP-DHT

containing the chunk’s hashed ID, as if it was a lookup request. This time

though, the pseudo-cache cannot be taken into account, and the routing has

a complexity of O(log(NHP )).

Despite what was intially expected, the chunk seeding on the HP-DHT alone

didn’t show a contribution on the overall system performance (being an additional

seeding on the overlay), but it had to be kept in order to guarantee the success of

content-based requests (who would otherwise be subject to the chunk’s successfull

reception by the responsible peer, a condition the gossip protocol cannot ensure).

7.3 Performance analysis

We herein present the results of our simulations for the system described above.

To better understand the effectiveness of our optimizations, we choose to compare

HyDeA with both a simple gossip-based system, and a hybrid gossip+DHT system,

in which neither pseudo-cache nor bandwidth-aware choice of DHT peers is included,

so as to use the plain gossip as a reference and to analyze the improvements of our

HP-DHT under the light of the limitations of a simple gossip and structured overlay

network.

7.3.1 Settings

In order to keep the simulations as realistic as possible, we decided to take into

account the characteristics of a real video, e.g., the musical video clip “Pink” by

Aerosmith, at spatial resolution 352x240 and temporal frequency of 25 fps. The

number of streamed chunks is 1000, for a 40s long streaming simulation. The se-

quence has been encoded in h264/AVC, with a GOP structure IDR 7xPBbb.

We avoid generating chunks containing more than one video frame, in order to

avoid further delays due to video data aggregation on the source.

For the gossip overlay, a Bittorrent-like system has been chosen, having a mesh

topology [Magharei 2007]. Each peer has 70 neighbors directly connected and every



7.3. Performance analysis 111

time it has free upload bandwidth to serve a chunk, the destination peer is chosen

according to its generosity, as described in [Leonardi 2008]. The probability to select

one neighbor as destination is, in fact, proportional to its active upload bandwidth.

On top of such an overlay we have first implemented a plain DHT, based on the

Chord algorithm, and our optimized HP-DHT, that introduces the improvements

described in Section 7.2.

We used the simulator developed inside the NAPA-WINE European project,

P2PTV-sim.The original simulator is available on line at [nap ], while the source

code of our modifications can be retrieved at [log ]. The strength of the NAPA-

WINE simulator, as described in [Fortuna 2010], is the integration of a synthetic

way to evaluate application-level latencies among peers, which are simulated to be

realistically dislocated on the globe, following the statistical studies in [int ]. The

simulator has been modified in order to integrate a Chord-based chunk diffusion

algorithm, with and without the proposed optimizations.

As frequently done in the literature, the download bandwidth is set to infinite,

as it is assumed to be much higher than the video rate, and the bottleneck in video

streaming applications is usually caused by the peers upload bandwidth.

We try to evaluate chunk delivery as realistically as possible, taking into account

(i) the latencies with which chunks and signaling messages are sent, (ii) the vari-

able transmission delay experienced by chunks according to bandwidth availability

in a heterogeneous scenario, and (iii) the queuing delay related to multiple requests

received by the same sending peer. Unless specified differently, the default system

parameters can be assumed as in Table 7.1.

Parameters Values

Playout delay 10s

Number of peers 1000

Churn rate 0%

Load factor 1.3

Bandwidth configuration (see Table 7.2) EQ

Request Interval 0.1s

Request Window Offset 1.5s

Request Window Width 2s

Table 7.1: Sistem’s default parameters

In what follows, we highlight the behavior of the proposed system against different

overlay setups (peers’ bandwidth configuration, number of peers, churn rate etc.).

We will show that the insertion of HP-DHT brings advantages in all of the analyzed

topologies without significant overhead, thanks to the integrated content-driven dif-

fusion mechanism. Furthermore, we will demonstrate that simply integrating a

traditional DHT retrieval mechanism does not improve gossip delivery in real-time

contexts.



112
Chapter 7. Content based enhancements in P2P-TV: promises and

drawbacks

Figure 7.1: Chunk loss on different network configurations

7.3.2 HyDeA performance under different load conditions

In this subsection we begin evaluating the proposed system perfornamces in different

heterogeneous scenarios with 1000 peers. We considered heterogeneous scenarios

made up of peers belonging to different classes, characterized by different upload

bandwidths. Peers are divided into four classes, and peers of the same class have the

same upload bandwidth. Three different configurations have been used, keeping the

same average available bandwidth for all of them, but varying bandwidth repartition

amongst classes and the percentage of peers in each class. In order to study the

system under stressful conditions, 1.2, 1.3 and 1.4 have been chosen as load factors,

obtaining high loss percentages, and evaluating the maximum benefit that a hybrid

systems can bring. The load factor is defined as

V ideoRate

AverageAvailableBandwidth

e.g., an average available bandwidth of 1.1 Mbps across the overlay and a video rate

of 1.4 Mbps would give a network load factor of approximately 1.3.

Table 7.2 shows different bandwidth configurations adopted under the afore-

mentioned load factors. For each load factor LF , the 3 configurations are shown

(HB, EQ, FR), with both the percentage of peer per each class, and maximum band-

width for the class. In particular, HB has a bigger percentage of high bandwidth

peers, while FR has more free riders with no upload bandwidth, and EQ has the

same percentage of both (10%). In all three configurations, the HP peer set is made

of Class 1 peers.

In Figure 7.1, the chunk loss percentages for the three configurations are re-

ported. A simple gossip+DHT system gains 1-2 percentage points over the gossip-

only system, whereas our HyDeA outperforms them both reaching a consistent gain

up to 20%, and not lower than 7%. The gain with the proposed system is present

regardless of the load, and is particularly evident in the HB configuration. That is

because in such a configuration, a greater percentage of HP peers is present (15%

instead of 10%), thus increasing the capacity of the set of content-driven suppliers.



7.3. Performance analysis 113

Peer classes

Class 1 Class 2 Class 3 Class 4

[%] [Mbps] [%] [Mbps] [%] [Mbps] [%] [Mbps]

LF : 1.2

HB 15% 5.3 35% 0.636 40% 0.371 10% 0

EQ 10% 5.3 40% 1.06 40% 0.53 10% 0

FR 10% 5.3 30% 1.272 30% 0.848 30% 0

LF : 1.3

HB 15% 5 35% 0.6 40% 0.35 10% 0

EQ 10% 5 40% 1 40% 0.5 10% 0

FR 10% 5 30% 1.2 30% 0.8 30% 0

LF : 1.4

HB 15% 4.54 35% 0.545 40% 0.318 10% 0

EQ 10% 4.54 40% 0.91 40% 0.454 10% 0

FR 10% 4.54 30% 1.09 30% 0.727 30% 0

Table 7.2: Bandwidth distributions under different load factors

On the contrary, in the FR configuration, the performance of the hybrid systems

slightly decreases, either for gossip+DHT or for HyDeA. Here, suppliers dedicate

a great part of their upload bandwidth to satisfy requests made by free riders, de

facto serving chunks to peers that will never replicate them.

7.3.3 Bandwidth exploitation

An important parameter to consider is network bandwidth exploitation. Thanks

to the content-driven requests, the excess bandwidth on the Class 1 peers can, in

fact, go and benefit directly the Class 4 peers who suffer the highest chunk losses.

Figure 7.2 (a), (b), and (c) show the chunk loss per peer (averaged, for the purpose

of clarity, over a 10-peer window). Under every load factor it is easy to see how

the simple gossip system does not manage to satisfy, due to its tit-for-tat policy,

the free riders’ requests. On the other hand, as shown in Figs. 7.2 (d), (e) and

(f), the upload bandwidth of the best performing peers (averaged for clarity over a

5-peer window) remains unexploited to a great extent, 2-3 Mpbs, depending on the

network configuration, against a nominal bandwidth of 5 Mbps.

This is an interesting effect of HyDeA since it acts as a leveling mechanism for

the network heterogeneity in the system, and brings improvements to the least per-

forming without affecting the rest, an implication particularly relevant in scenarios

(such as mobile P2P) where some peers may suffer from a lack of upload bandwidth.

A simple gossip+DHT system proves to be ineffective in circumventing such

bandwidth bottlenecks, whereas HyDeA manages to lower the chunk loss up to

22%, and facilitates exploitation of the HP peers’ bandwidth, up to an additional 1

Mpbs (see Figure 7.2 (c)).



114
Chapter 7. Content based enhancements in P2P-TV: promises and

drawbacks

Figure 7.2: Chunk loss per peer (top row) and Bandwidth saturation (bottom row)

7.3.4 HyDeA performance at different playout delays

Playout delay is a key parameter in real-time P2P-TV systems. The smaller the

playout delay, the more the real-time nature of the system is respected. However,

lowering the playout delay also implies making delay constraints in chunk deliv-

ering stricter, thus increasing the probability of chunk loss. The optimizations in

the proposed system for speeding up chunk delivering are particularly evident in

Figure 7.3(a). For every playout delay, HyDeA is able to deliver a greater percent-

age of chunks on time. The improvements are more evident for high playout delay

values. On the contrary, simple gossip+DHT systems introduce improvements only

for increasingly high playout delays, thanks to higher delays in chunk diffusion.

7.3.5 Robustness to churning

In this subsection, we will focus on the behaviour of the system in presence of

churning. We define, as churn percentage, the percentage of peers disconnecting

from and reconnecting to the overlay once during the simulation. For instance, when

a 70% churn simulation is done in a 1000 peer system, there are 700 disconnection

and 700 join events in just 40s of streaming. We chose to study as well system

performances with different churning percentage, in stressful conditions. Simulation

results reported in Figure 7.3(b) show the robustness of the HyDeA when faced



7.3. Performance analysis 115

(a) Chunk loss vs. playout delay (b) Chunk loss vs. churn rate

Figure 7.3: Chunk loss vs. different parameters

with high-churning scenarios. It is worth mentioning that Chord-like topologies

are known to be resistant to churn. Furthermore, HP-DHT implements special

precautions to avoid “breaking” the Chord ring due to too many disconnections, by

storing several successors for each peer.

Without any optimization (gossip+DHT), the chunk loss percentage has been

registered to be 31% in case of 70% churn percentage, only 1 percentage point less

than the pure gossip system. However, since mesh-based systems tend to be much

more robust to churning than any other structured delivering mechanisms, the gain

slightly decreases on increasing churn percentage. Same results were obtained for

2000- and 3000-peer simulations, confirming the scalability of the proposed solution.

7.3.6 Signaling overhead evaluation for different HP-DHT param-
eters

C C C C C D D D D D E E E

Rnc{qwv"fgnc{

F
G
E
Q
F
G
T

Tgswguv"Ykpfqy"Qhhugv
*TYQ+

Tgswguv"Ykpfqy
*TY+

Figure 7.4: HP-DHT chunk selection

In the decoding buffer, we can identify three different kind of missing chunk

slots, as shown in Figure 7.4:

• slots A are too close to expiration, and therefore could not be retrieved on

time from the HP-DHT. They could, however, still be received from one of the



116
Chapter 7. Content based enhancements in P2P-TV: promises and

drawbacks

Figure 7.5: Chunk loss and signaling bandwidth for different DHT parameters

neighbors;

• slots B, in the Request Window (RW), can be requested from the HP-DHT;

• slots C, in the rest of the buffer, are retrieved, like slots A, by the gossip

protocol only.

In this subsection, we evaluate the performance, either in terms of chunk losses or

signaling overhead, while tuning the parameters concerning the HP-DHT Request

Window.

7.3.6.1 Request Interval.

The first parameter we would like to tune (denoted by REQ_INTERVAL) is the mini-

mum period between two chunk requests to the HP-DHT made by the same peer.

By decreasing REQ_INTERVAL, the number of requests increases and, consequently,

the number of retrieved chunks increases which, in turn, leads to loss minimization.

Thanks to the pseudo-cache mechanism, messages tend not to propagate along the

whole routing path, and the signaling overhead is kept very low, regardless of the

parameter value. On the other hand, a simple DHT tends to propagate request

messages across all of the log(N) hops of the routing path, causing a rapid increase

in the signaling, when the REQ_INTERVAL is set to a low value.

In Figure 7.5 (a), the gossip+DHT signaling overhead is studied against different

values of REQ_INTERVAL. The average signaling overhead, using a traditional DHT

without optimization reaches 7% of the video rate (118.8 Kbps vs. 1.4 Mbps), while

the benefit, in terms of reduced chunk loss, does not exceed the 1%. These results

show that a traditional DHT integration in real-time gossip based systems does not

yield any improvements on its own.

In contrast to this, with the lowest REQ_INTERVAL and considering the above

video rate, the HP-DHT signaling adds only a 0.8% overhead, while bringing an

average of 7% gain on chunk loss. For that reason, we considered safe to keep the

lowest parameter as the default one for the other simulations.



7.3. Performance analysis 117

7.3.6.2 Request Windows Offset.

The Request Window Offset (denoted by RWO) defines the temporal shift of the

DHT Request Window (denoted by RW) inside the decoding buffer (as shown in

Figure 7.4). If a RWO = 0 is chosen, the Request Window will contain the oldest

chunks, near to their deadline. By increasing the RWO, we shift the Request Window

towards the most recent chunks. Figure 7.5 (b) shows that a point of optimum

for the Window Offset is the medium-to-low value of 1.5s. There are, in fact, two

aspects to consider when tuning the RWO:

• the DHT Request Window has to be close enough to the end of the decoding

buffer in order to include the oldest missing chunks, that are close to expiration

and have not been delivered by the gossip neighbors. Missing chunks, close

to the deadline, have a high probability of being missing also in the peer’s

neighborhood, and making a content-driven request could help to overcome

the so-called content-bottleneck chunk losses [Ciullo 2010];

• on the other hand, choosing a Window Offset close to 0 means requesting

chunks too close to the deadline, i.e. chunks that would probably expire before

the request could be satisfied.

In this case, the signaling of both gossip+DHT and HyDeA remains steady for each

parameter, since increasing it does not lead to an increase in the number of requests.

However, as shown before, the HP-DHT signaling remains lower than the DHT one

by a factor of 10.

7.3.6.3 Request Window Width.

The Request Window Width (denoted as RWW) is the size, in seconds, of the Request

Window. As shown in Figure 7.5 (c), the Request Window Width is not particularly

relevant, neither in terms of losses, nor in terms of signaling overhead. That is

because the HP-DHT scheduler always gives priority to the oldest chunk in the

window. Because of that, even in presence of a wider RW, the chunks requested

will always be the ones close to the window’s end, and due to the limited request

interval, increasing the size does not lead to an increased number of requests.

7.3.7 Comparison with an adaptive overlay

In this last section we perform a brief comparison against a gossip protocol with a

topology optimized overlay [Ren 2008], to see whether the improvements introduced

by the content based layer persist. The reference used in this test is a gossip based

overlay where each peer can increase or decrease the number of neightbors according

to its upload bandwidth. Moreover, the choice of neighbors can be performed either

randomly or according to latency criteria. For our tests we decided to have the most

part of neighbors (80%) selected according to latency criteria and the rest (20%)

chosen randomly, since it showed to be the best performing setup in thsi scenario.



118
Chapter 7. Content based enhancements in P2P-TV: promises and

drawbacks

Figure 7.6: Chunk loss at different playout delays (a), Chunk loss per peer (b) and

Bandwidth exploitation per peer (c)

Even with an adaptive overlay, the addition of HyDeA shows consistent im-

provements, although lower compared to a static gossip overlay. The improvements

remain stable for different Playout Delays, and are around 7-8% better than the sole

gossip (Figure 7.6 (a)).

However in this scenario the HP peers bandwidth exploitation is greatly reduced

(Figure 7.6 (c)) and the chunk loss improvements are more evenly spread across all

peer classes (Figure 7.6 (b)). This can be explained by the adaptive mechanism of

the gossip overlay who contributes by itself in increasing the upload bandwidth if

available.

This is only a first test, we have reasons to believe that a further tuning of the

system could further increase, if required, the HP peers upload throughput.

7.4 Conclusion

In this chapter we discussed and analyzed the possibility of a hybrid algorithm (Hy-

DeA) for chunk delivery in P2P-TV systems, using either a gossip-based approach or

a content-based mechanism for spreading and retrieving chunks. We introduced two

technologies to optimize content-based delivery real-time scenarios: pseudo-cache

and bandwidth-selective peer join. They are able to (i) speed up chunk diffusion

and lower the signalling overhead for content-driven retrieval, and (ii) increase band-

width exploitation, thus decreasing chunk losses. The algorithm proposed is easy to

implement over existing gossip protocols, and is able to maintain backward compat-

ibility. Simulation results not only show that such a system consistently improves

the performances of gossip-based systems, but also demonstrate that integrating a

retrieval mechanism based on traditional DHT can not improve gossip delivery in

real time contexts. In fact, when the playout delay is particularly small, the content-

driven lookup mechanism has to be sped up in order to cut logarithmic DHT routing,

allowing for on-time retrieval of requested chunks. Furthermore, having a pull mech-

anism targeting only high performing peers allows for a better exploitaition of their



7.4. Conclusion 119

spare upload bandwidth to the advantage of the least performing ones, who would

otherwise be penalized by the tit-for-tat policy, without noticeable consequences on

the rest of the overlay. The system has been tested with an extensive simulation

campaign, and a real implementation is under development.





Chapter 8

CCN-TV: a data-centric approach
to real-time video services

Contents
8.1 Introduction and Related Work . . . . . . . . . . . . . . . . . 122

8.2 Basic background on CCN . . . . . . . . . . . . . . . . . . . . 123

8.3 CCN-TV architecture . . . . . . . . . . . . . . . . . . . . . . . 124

8.3.1 Channel bootstrap . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3.2 Flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.3.3 Interest routing . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.4 CCN-TV messages . . . . . . . . . . . . . . . . . . . . . . . . 128

8.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.4.1 Interest generation process . . . . . . . . . . . . . . . . . . . 131

8.4.2 QoS and QoE . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Content-Centric Networking (CCN) is a promising data-centric architecture,

based on in-network caching, name-driven routing, and receiver-initiated sessions,

which can greatly enhance the way Internet resources are currently used, making

support for a broader set of users with increasing traffic demands possible. The CCN

vision is, currently, attracting the attention of many researchers across the world,

since it has all the potential to become ready to the market, to be gradually deployed

in the Internet of today, and to facilitate a graceful transition from a host-centric

networking rationale to a more effective data-centric working behaviour. At the

same time, several issues have to be investigated before CCN can be safely deployed

at the Internet scale. They include routing, congestion control, caching operations,

name-space planning, and application design. With reference to application-related

facets, it is worth noticing that the demand for TV services is growing at an expo-

nential rate over time, thus requiring a very careful analysis of their performance in

CCN architectures. To this end, in the present contribution we deploy a CCN-TV

system, capable of delivering real-time streaming TV services, and we evaluate its

performance through a simulation campaign based on real-world topologies.



122
Chapter 8. CCN-TV: a data-centric approach to real-time video

services

8.1 Introduction and Related Work

Due to the relevant importance that content sharing applications are going to play

in the upcoming future [Cis 2011,Ahlgren 2011], the Content Centric Networking

(CCN) rationale [Jacobson 2009b] has been proposed as a possible way to drive the

current host-centric Internet paradigm towards a novel content-centric behaviour.

It is based on in-network caching operations, receiver initiated data exchange, hier-

archical content naming, and native support to security and privacy.

In a CCN, contents are split in chunks which are requested using opposite Interest

messages, generated at the client side. Each Interest is then routed until it reaches

a node which has, in its own cache, a copy of the requested item. Then, this copy

is sent, as a Data message, back along the path the Interest had gone through.

Intermediate nodes can cache the Data before forwarding it to the next node (more

details on the CCN working behavior is provided in Section 8.2).

Since its birth, the CCN vision has gained a warm attention from both scientific

and industrial communities to discover the bounds of its real potential from dif-

ferent perspectives. Many studies have focused on modeling and designing caching

strategies and data-transfer performance such as in [Carofiglio 2011a]- [Rossi 2012].

In that direction, it is now clear that the cache size may have a major impact on the

overall performance of a CCN even if finding an optimal caching strategy is still an

open problem to address. With respect to congestion control issues, instead, recent

studies show as the classic additive increase multiplicative decrease algorithm, at

the foundation of TCP, could be inherited by CCN, provided that some counter-

measures are employed to limit unfairness issues that could arise among contents

with different popularities [Grieco 2012,Carofiglio ]. Another very relevant topic in

CCN research covers routing operations, which are essential to properly drive the

dissemination of receiver generated Interest packets. To this end, the adoption of

Bloom filters appears a promising solution [Tortelli 2012,You 2012] that merits fur-

ther investigations. Starting from this premise, it is evident that all facets of CCN

are going to be afforded in an ebullient panorama of activities that cover both the

underlying mechanisms within the protocol architecture and the design of content

oriented applications and services. With reference to application-related features, it

is worth to notice that the demand for TV services is growing at an exponential rate

over the time [Cis 2011], thus requiring a very careful analysis of their performance

in CCN architectures. A preliminary study presented in [Li 2011] addresses time

shifted applications only, whereas live streaming operations are currently under in-

vestigation as testified in the interesting contribution [Xu 2012]. To complement the

research efforts of the community in a so relevant domain, the present manuscript

is intended to design a complete CCN-TV system encompassing all the main facets

of typical live streaming video services. The proposed CCN-TV has been tested

through a solid simulation campaign based on real topologies. To this end, the ccn-

Sim simulator [Rossini 2012] has been properly tailored to our purposes by adding

window based flow control, handling of playout delay and real-time data, advanced

logging functions, links with bandwidth constraints, and data session bootstrap-



8.2. Basic background on CCN 123

ping. Simulation results shown that in-network caching seems to play a minor role

in live streaming video services, mainly because cached data looses its utility after

the deadline is expired. On the other hand, the way CCN handles client requests

for TV contents helps improving the performance of the system with respect to a

plain IP infrastructure.

8.2 Basic background on CCN

Internet usage has undergone a radical change during the last ten years: content-

sharing applications are now dominant whereas the IP architecture still provides a

connection-less service among remote hosts [Ahlgren 2011]. Users ask for contents,

looking for what they intend to retrieve from the Internet while the language spoken

by the underlying IP infrastructure provides answers on where a packet should be

sent. This mismatch is actually overcome by a number of workarounds at different

levels of the protocol stack, which, indeed, limit the overall efficiency of the Internet.

The so-called Future Internet represents a family of possible solutions to the

aforementioned issues, embracing novel communication models that can better ac-

commodate and fulfill users’ requirements related to efficiency, security, support to

mobility, and integrated media experience [Ahlgren 2011].

At the present stage, many valid proposals for the Future Internet exist, such

as the Publish Subscribe Internet Routing Paradigm, the 4WARD NetInf project,

and the Cache-and-Forward Network Architecture, the Data-Oriented Network Ar-

chitecture and the CCN approach [Jacobson 2009b,Ahlgren 2012], having different

levels of compatibility with the IP paradigm.

Among them, the CCN vision looks promising since, besides being “data-centric”,

it can be gracefully integrated with today’s IP-based Internet. In a CCN, all con-

tent is unambiguously identified by a hierarchical name, allowing users to retrieve

information without being aware about the physical location of servers (e.g. IP

address). Also, commu-nication is receiver-driven and based on content chunk ex-

change, name-based routing, and self-certifying packets [Jacobson 2009b].

Nevertheless, the real performance bounds of a CCN and the actual benefits

it can bring to the Internet are still not entirely known, mainly because there are

many open issues that surround the CCN architecture, such as those related to: (i)

routing, (ii) congestion control, (iii) strategy layer design, (iv) name space definition,

(v) semantic layer, (vi) accurate models, and (v) fairness among heterogeneous

applications and contents having different popularities.

As specified before, CCN communications are driven by the consumer of data

and only two types of messages are exchanged (namely Interest and Data). A user

may ask for a content by issuing an Interest, which is routed within the CCN towards

the nodes in posses of the required information, thus triggering them to reply with

Data packets.

The routing operations are performed by the strategy layer only for Interest

packets. Data messages, instead, just follow the reverse path to the requesting user,



124
Chapter 8. CCN-TV: a data-centric approach to real-time video

services

allowing every intermediate node to cache the forwarded content.

CCN adopts a hierarchical structure for names, which leads to a name tree.

In particular, it is formed by several components, each one made by a number of

arbitrary octets (optionally encrypted), so that every name prefix identifies a sub-

tree in the name space. An Interest can specify the full name of the content or its

prefix, thus accessing to the entire collection of elements under that prefix.

Finally, since contents are exchanged based on their names, multiple nodes in-

terested in a particular data can share it using multicast suppression techniques over

a broadcast medium. Analyzing a CCN node, it is possible to identify three main

structures [Jacobson 2009b].

• the Content Store (CS): a cache memory that can implement different re-

placement policies as Least Recently Used (LRU) and Least Frequently Used

(LFU);

• the Forwarding Information Base (FIB): is similar to an IP FIB except for

the possibility to have a list of faces1 for each Content Name entry, thus

allowing Interest packets to be forwarded towards many potential sources of

the required Data;

• the Pending Interest Table (PIT): is a table used to keep track of the Interest

packets that have been forwarded upstream towards content sources, combin-

ing them with the respective arrival faces, thus allowing the properly delivery

of backward Data packets sent in response to Interests.

When an Interest packet arrives to a CCN node, the CS is searched to discover

whether a data item is already available as an answer to be sent immediately back

to the requesting user. Otherwise, the PIT is consulted to find out if others Interest

packets, requiring the same content, have been already forwarded towards potential

sources of the required data. In this case, the Interest ’s arrival face is added to the

PIT entry. Otherwise, the FIB is examined to search a matching entry, indicating

the list of faces the Interest has to be forwarded through. At the end, if there is not

any FIB entry, the Interest is discarded.

On the other hand, when a Data packet is received, the PIT table comes into

play, which, keeping track of all previously forwarded Interest packets, allows to

establish a backward path to the node that requested the data.

8.3 CCN-TV architecture

Unlike Video-On-Demand, real-time video distribution has to deal with a specific

class of problems to ensure the timely delivery of an ordered stream of chunks. Video

chunks have to be received in playing order and within a given time interval (the

1In CCN it is used the term “face” instead of the “interface” because packets are also exchanged

between application process, besides being forwarded only over real network interfaces.



8.3. CCN-TV architecture 125

playout delay), before they are actually played, thus “expiring”. A chunk not deliv-

ered before its expiration will result in degradation of the rendered video, impacting

the end user Quality of Experience; the extent of the video degradation may vary

depending on the video codec and the type of the lost frame. To solve these chal-

lenges, client nodes implement a receiving buffer queue where the chunks are stored

in order, that is emptied while the video is being played. Therefore, any chunk

not received before its playing instant becomes useless. To reduce the chance of

chunk loss several mechanisms can be put in place to retransmit requests for chunks

close to expiration. Furthermore, in modern codecs, such as H.264 [Wiegand 2003],

there are different types of video frames, encoded using intra-frame or inter-frame

techniques, each having a different level of importance. For example, the so called

I-frames, derived using intra-frame compression techniques, actually represent a full

video image, providing a fundamental reference for subsequent inter-frame encoded

images.

With this in mind in CCN-TV we considered a network of nodes requesting

different real-time video streams, identified by a channelID, served by one or more

broadcast server.

Unlike canonical UDP/TCP-based streaming, in CCN-TV each video chunk,

identified by a progressive chunk number, has to be requested individually, via a

dedicated Interest.

Although this might look costly at a first sight, CCN’s routing mechanisms

ensure that Interests for the same chunk do not propagate twice along the same

routing path (unless under specific conditions, as explained in Section 8.3.2), and

the caching strategy implemented by every node can make sure that Interests for

the most popular contents are served before going through the whole routing path.

Moreover, the Interest/data exchange allows for a natural flow control mechanism,

where each node can request for new chunks just when the old ones have arrived.

Herein we thoroughly describe the design rationale and all the details of the

CCN-TV system this work targets. Specifically, in what follows, we present: the

bootstrap phase, the flow control strategy, and the management of retransmitted

Interest packets.

8.3.1 Channel bootstrap

One challenge we are faced with in a real-time scenario is to bootstrap the channel

to be received. Bootstrapping a channel involves the operations of finding a routing

path to the nearest channel provider and locating the first valid chunkID of the video

stream. Due to video codec re-quirements, the video stream can be visualized only

once the first I-frame has been received. Therefore, a client has to first gather from

the server the first chunk (and the corresponding chunkID) of the last generated

I-frame. To do so, it sends an Interest packet for the URI: [domain]/[channelID],

with the Status field set to BOOTSTRAP and the Nonce field set by the client, as in

in Section 8.3.4. An Interest with Status = BOOTSTRAP would travel unblocked

until it reaches the first good stream repository (i.e. a node who can provide a



126
Chapter 8. CCN-TV: a data-centric approach to real-time video

services

CCN-TV Client CCN-TV ServerCCN network

last generated

I- frame: 23

chunkID: 234

Start channel:

domain: BBC

channelID: 3

Status: BOOTSTRAP

Nonce: #easd2

INT: bbc.co.uk/3

Status: BOOTSTRAP

Nonce: #easd2

INT: bbc.co.uk/3

Propagate? True

Check cache? False

FrameID: 23

DATA: bbc.co.uk/3/234

FrameID: 23

DATA: bbc.co.uk/3/234

INT: bbc.co.uk/3/235

INT: bbc.co.uk/3/236

RX Start

...

Figure 8.1: Bootstrap handshake

continuous real-time flow of chunks, not just cached ones).

To this Interest, the server responds with a data message in the format

[domain]/[channelID]/[chunkID], with chunkID being the first chunk of the last

generated I-frame, and the corresponding Frame ID field value. Upon receipt, the

node starts asking for subsequent chunks, using the sliding window mechanism de-

tailed in Section 8.3.2. The use of a nonce (a uniquely generated identifier) in the

Interest URI allows the Interest to propagate to the server without being blocked

along the routing path, as every bootstrap Interest for the same channel has a dif-

ferent nonce. It also avoids the retrieval of the data response from the cache of an

intermediate node; the risk, in this case, is the retrieval of a bootstrap data message

for a given channel from a cache containing an already expired chunk of an I-frame.



8.3. CCN-TV architecture 127

8.3.2 Flow control

From the moment a node receives the bootstrap data message, it can initiate the

sliding window mechanism to request the subsequent chunks in an optimal way.

Each node has a windows of size W to store W pending chunk. We define pending

chunk a chunk whose Interest has been sent by the node, and the window containing

the pending chunks a Pending Window. Together with the chunkID, we store in the

pending window other information, such as the timestamp of the first request and

the timestamp of the last retransmission. Whenever a new data message is received,

the algorithm described in Figure 8.2 runs over the Pending Window, to perform

the following operations:

1. Purge the Pending Window from all the chunks who are expired, i.e., who

have already been played, to free new space in the sliding window.

2. Retransmit all chunks that have not been received for a given timeout (onward

denoted as windowTimeout.

3. Transmit, for each slot that got freed by the received or expired chunks, the

Interest for a new one.

10.01 procedure SendInterest(PendingWindow, W, WinT imeout, Now, LastChunkID)
10.02 for each ChunkID in PendingWindow do

10.03 if ChunkID is expired Remove all expired pending Interests.
10.04 Remove ChunkID from PendingWindow
10.05 endif

10.06 if ChunkID.lastTransmissionTime < (Now - WindowTimeout) Resend stale Interests.
10.07 resend(Interest( ChunkID))

10.08 ChunkID.lastTransmissionTime = Now
10.09 endif

10.10 done

10.11 NumberNewChunks = W - size( PendingWindow ) Send new Interests to fill free slots.
10.12 for i in 1 ..NumberNewChunks do

10.13 send(Interest( LastChunkID ))

10.14 LastChunkID.lastTransmissionTime = Now
10.15 PendingWindow.add( LastChunkID )

10.16 LastChunkID++

10.17 done

Figure 8.2: Sliding window algorithm

Furthermore, the same operations are performed if a node doesn’t receive any

data for at least windowTimeout seconds, in which case, all the Interests for non-

expired chunks in the Pending Window are retransmitted, together with new chunks

if new slots have been freed due to expired chunks.

To provide a further insight, we reported in Fig. 8.3 an example of the conceived

sliding window algorithm, in which we have set the value of W to be equal to 3.



128
Chapter 8. CCN-TV: a data-centric approach to real-time video

services

Interest [chunkID=1, status=normal]

Data [chunkID=1]

!"#$%&'

CLIENT SERVER

Interest [chunkID=2, status=normal]

Interest [chunkID=3, status=normal]

Interest [chunkID=4, status=normal]

Interest [chunkID=2, status=normal]

Interest [chunkID=3, status=normal]

Interest [chunkID=4, status=normal]

Interest [chunkID=2, status=retransmit]

Interest [chunkID=3, status=retransmit]

Interest [chunkID=4, status=retransmit]

Interest [chunkID=2, status=retransmit]

Interest [chunkID=3, status=retransmit]

Interest [chunkID=4, status=retransmit]

Data [chunkID=2]

Data [chunkID=3]Lost!

Lost!

!"#$%&'

Interest [chunkID=4, status=retransmit]

Interest [chunkID=5, status=normal]

Interest [chunkID=6, status=normal]

Interest [chunkID=4, status=retransmit]

Interest [chunkID=5, status=normal]

Interest [chunkID=6, status=normal]

( ) *

window

ROUTER

) * +

) * +

) out delay

* out delay

+ , -

Figure 8.3: Sliding window example

8.3.3 Interest routing

As described in Section 8.2, CCN nodes along the routing path of an Interest will

stop the propagation of said Interest, if they have previously routed another Interest

for the same resource, and the correspondent data has note been sent back yet;

instead, they will simply update their Pending Interest Table adding the face from

where this newcomer Interest was originated, so to reroute the data back recursively

along the path the Interest has gone through.

This mechanism ensures flow control and limits the propagation of duplicate

Interests, in case several nodes in the same network are watching the same channel.

However, to make the Interest retransmission mechanism effective, a retransmit-

ted Interest needs to propagate all the way up to the server, or to the first node

with the desired chunk in cache. Therefore, retransmitted Interests carry the Status

field set to Retransmission to mark if the Interest is a retransmission or not, and

each node along the routing path propagates the Interests marked as retransmitted,

thus skipping the usual CCN mechanism, unless the correspondent chunk is found

in the cache.

8.3.4 CCN-TV messages

As detailed above, additional functionalities required by the system for real-time

video streaming are implemented on top of existing CCN data and Interest messages

via new fields carrying the required additional information. However, should the

situation require the system to conform to classical CCN messages, all additional

fields can be easily replaced by additional fields in the content name.



8.4. Simulation results 129

Packet type Field Content

Chunk Interest Content Name [domain]/[channelID ]/[chunkID ].

nonce Used only for the bootstrap phase.

Publisher Filter Not used.

Status Bootstrap, Normal, Retransmission.

Chunk Data Content Name [domain]/[channelID ]/[chunkID ].

Publisher ID Optional.

Signature Optional (for increased content authentica-

tion).

Stale Time Set to the frame time of the frame the chunk

belongs to.

Frame ID ID of the frame the chunk belongs to.

Data The request video chunk binary data.

Table 8.1: Messages used in CCN-TV

Table 8.1 shows how we made use of the classical CCN message fields, together

with the new fields and their use. In particular, CCN-TV Interests carry an addi-

tional Status fields marking if the Interest is a bootstrap Interest (Section 8.3.1), a

normal one or a retransmission (Section 8.3.3). Concerning CCN data message, we

extended the messages with an additional field, i.e., Frame ID, containing the ID of

the frame to which the embedded chunk belongs to.

8.4 Simulation results

In this section, we will evaluate performances of the proposed CCN-TV architecture.

To this end, we implemented it within ccnSim, i.e., an open source and scalable

chunk-level simulator of CCN [Rossini 2012] built on top of the Omnet++ framework

[omn ], dedicated to the evaluation of Video On Demand systems on top of CCN.

By itself, ccnSim models a complete video distribution systems, with a high degree

of fidelity concerning catalogs, requests and repositories distribution, and network

topologies. Since, however, it did not support the real-time constraints required by

our evaluations, it has been modified and improved in the following ways:

• we added support for links with bounded capacity and packets with a well

defined size, which was missing in ccnSim, to be able and estimate the CCN

behavior under some bandwidth constraints;

• due to the datarate channels, we implemented a transmission queue for each

face of each node, in order to properly manage the packet transmission;

• we added the support for synthetic video traces, so to be able to transmit and

receive chunk of real videos, and consequently being able to reconstruct the

received video and evaluate its PSNR;



130
Chapter 8. CCN-TV: a data-centric approach to real-time video

services

• due to possible expiration of Interests, we implemented a cleanup mechanism

for each node’s PIT, to avoid having in long term stale entries due to expired

chunks;

• we improved and enriched the logging system, so to be able to record each

node’s received chunks and reconstruct the received video;

• we added more controls server-side, to send a data only for those chunks who

have already been generated.

Furthermore, the following mechanisms, beyond the provided ones, have been

implemented in the simulator:

• the sliding window mechanism described above, and all the related data struc-

tures;

• the Interest forceful propagation in case of retransmission;

• constant data reception, until a channel is changed.

The extended ccnSim simualtor is available at [ccn ].

The aim of our study is to evaluate how the behavior of the CCN-TV system

is influenced by (i) the amount of the network bandwidth dedicated to real-time

streaming services, (ii) the windowTimeout adopted by the sliding window mecha-

nism, (iii) the playout delay, and (iv) the cache decision policy.

We focus the attention on the GEANT network, which interconnects the Euro-

pean research and education institutions and it is composed by 22 routers [GEA ].

Every node of the network is considered to be a direct CCN node, i.e. no TCP

or UDP encapsulation is implemented. We assume the presence of only one small

video streaming provider that offers 5 parallel real-time transmissions to remote

clients. It is connected to one of the nodes forming the GEANT topology. In every

simulation round, each video content is mapped to a video stream compressed using

H.264 [Wiegand 2003] at a average coding rate randomly chosen in the range [250,

2000] kbps. Clients, i.e., CCN nodes that download video contents from the server,

are connected to remaining nodes (1 client per node). In order to catch the behavior

of people watching TV, we modeled two groups of users: faithful and zapping. Faith-

ful users are attached to one video channel for the whole simulation. Zapping users,

instead, change frequently the channel among those offered by the server according

to a Poisson process with parameter λ = 0.0666. Further, the channel selection

process has been modeled considering that contents popularities follow a Zipf dis-

tribution. According to [Rossi 2011], the most of works presented in literature set

the parameter ↵ of the Zipf distribution in the range [0.6, 2.5]. In line with these

common settings, we set ↵ = 1. Once a client decides to watch a specific channel,

it performs the bootstrap process described in the previous section and then starts

sending Interest packets following the designed sliding window mechanism.

In our tests, we adopted the optimal routing strategy, already available within

the ccnSim framework. According to it, Interest packets are routed towards the



8.4. Simulation results 131

video server along the shortest path. On the other hand, three caching strategies

have been considered in our study: no-cache, LRU, and FIFO [Rossi 2011]. When

well known LRU or FIFO policies are adopted, we set the size of the cache to 100

chunks. The no-cache policy is intended to evaluate the performance of the CCN

without using any caching mechanism.

The window size W has been set to 10, ensuring that faces of the server are

almost fully loaded in all considered scenarios. Also, the transmission queue length

associated to each face, Q, has been set, in order to be larger than

Q = 2 ∗ Lc ∗ PD (8.1)

where Lc and PD represent link capacity and maximum propagation delay in the

considered network topology. All simulation parameters have been summarized in

Table 8.2.

8.4.1 Interest generation process

As a first step, we investigate the impact that the sliding window mechanism has on

the amount of sent Interest packets, which is shown in Figure 8.4. From these plots

it is evident that the highest windowTimeout, the lowest the total number of Interest

messages sent by end users. When the windowTimeout increases, the probability

that a given client does not receive any chunks within such a time interval decreases

and, as a consequence, also the number of retransmitted Interest packets decreases

as well. As a further confirm of this result, Figure 8.5 shows that the percentage

of duplicated Interest packets increases when the windowTimeout decreases due to

a high number of chunks that are unable to reach the client within the expected

timeliness.

As expected, the playout delay has a minor impact on the number of generated

Interest messages, which, as is known from the theory on sliding window mechanisms

[Kurose 2012], can be only influenced by window size (W ) and windowTimeout.

Also, caching operations do not have any significant impact on the number of

generated Interest messages. The main reason being that chucks stored in cache

memories lose their effectiveness after their deadline is expired.

On the other hand, the link capacity greatly influence the Interest transmission

rate. From Figure 8.4 emerges, in fact, that the number of Interest lowers when the

capacity of links decreases. This is because a limited bandwidth reduces the quota

of received chunks, thus preventing a rapid advancement of the sliding window. In

other terms, this result proves, once again, the effectiveness of the sliding window

mechanism in CCN.

8.4.2 QoS and QoE

The first important parameter that describes how CCN-TV settings affect the qual-

ity of service offered to end users is the chunk loss ratio, which represents the



132
Chapter 8. CCN-TV: a data-centric approach to real-time video

services

Table 8.2: Summary of simulation parameters
Parameter Value

Topology GEANT with 22 routers

Link capacity 40 Mbps and 100 Mbps

Number of real-time service

provides

1

Number of clients 21

Catalog size 5 files

Chunk size 10Kbytes

Video average bit rate 250kbps, 600kbps, 1000kbps and 2000kbps

W (window size) 10

Playout delay 10s and 15s

Window timeout 1s, 3s, and 5s

Caching strategy No cache, LRU, and FIFO

Cache size 100 chunks

Client zapping behavior 50% fixed, 50% changing on average every 15s

Simulation time 60s

Number of seeds 5

percentage of chunks that have not been received in time (i.e., before the expiration

of the playout delay) by clients.

From Figure 8.6, showing the chunk loss ratio measured in all considered network

scenarios, we note that playout delay plays a fundamental role. When the playout

delay increases, in fact, the client could receive a Data packet within a longer time

interval, thus reducing the amount of chunks discarded because out of delay. On

the other hand, a slight increment of the chunk loss ratio can be registered by

increasing the windowTimeout. If the client retransmits an Interest packet after

long time, there is the risk that the Data packet will be reached by the destination

after the expiration of the playout delay. In addition, we note that a reduction of the

link capacities leads to a higher number of lost chunks, due to increased latencies

induced by network congestion.

It is very important to remark that the presence of the cache can guarantee only

a small reduction of the chunk loss ratio. With our study, we found that, in the

presence of real-time flows, the cache does not represent an important CCN feature.

On the other hand, we noticed that the PIT plays a more relevant role. In fact,

in presence of live video streaming services, clients that are connected to a channel

request the same chunks simultaneously. In this case, a CCN router has to handle

multiple Interest messages that, even though sent by different users, are related to

the same content. According to the CCN paradigm, such a node will store all of

these requests into the PIT, waiting for the corresponding Data packet. As soon as

the packet is received, the router will forward it to all users that have requested the

chunk in the past. According to these considerations, the use of the cache will not



8.4. Simulation results 133

!

1 3 5
0

50

100

150

200

Window timeout [s]

N
u

m
b

er
 o

f 
In

te
re

st
 p

ac
k

et
s 

[1
03

]

(a)

1 3 5
0

50

100

150

200

Window timeout [s]

N
u

m
b

er
 o

f 
In

te
re

st
 p

ac
k

et
s 

[1
03

]

(b)

Figure 8.4: Total number of Interest packets sent by clients with playout delay of

(a) 10s and (b) 15s.

1 3 5
0

10

20

30

40

50

Window timeout [s]

P
er

ce
n

ta
g

e 
o

f 
d

u
p

li
ca

te
d

 I
n

te
re

st
 p

ac
k

et
s

(a)

1 3 5
0

10

20

30

40

50

Window timeout [s]

P
er

ce
n

ta
g

e 
o

f 
d

u
p

li
ca

te
d

 I
n

te
re

st
 p

ac
k

et
s

(b)

Figure 8.5: Percentage of duplicated Interest packets sent by clients with playout

delay of (a) 10s and (b) 15s.

produce a relevant gain of network performances. Indeed, the PIT helps reducing

the burden at the server side by avoiding that many Interest packets for the same

chunk are routed to the server.

To conclude our study, we have computed Peak Signal to Noise Ratio (PSNR),

which is nowadays one of the most diffused metrics for evaluating user satisfaction,

together with interactivity level, in real time video applications [Piro 2011]. Results

shown in Figure 8.7 are in line with those reported for chunk loss ratio (the PNSR

is higher in the same case in which the chunk loss ratio is lower). Again, link

capacity greatly influences the quality of the TV service provided to users. According

to [Ohm 2004], the obtained PSNR values can be translated to a Mean Opinion Score

(MOS) not less than 4, corresponding to satisfactory quality for almost all users.



134
Chapter 8. CCN-TV: a data-centric approach to real-time video

services

1 3 5
0

10

20

30

40

50

Window timeout [s]

C
h

u
n

k
 l

o
ss

 r
a
ti

o
 [

%
]

(a)

1 3 5
0

10

20

30

40

50

Window timeout [s]

C
h

u
n

k
 l

o
ss

 r
a
ti

o
 [

%
]

(b)

Figure 8.6: Chunk loss ratio with playout delay of (a) 10s and (b) 15s.

1 3 5
0

20

40

60

80

100

Window timeout [s]

P
S

N
R

 o
f 

th
e 

Y
 c

o
m

p
o

n
en

t 
[d

B
]

(a)

1 3 5
0

20

40

60

80

100

Window timeout [s]

P
S

N
R

 o
f 

th
e 

Y
 c

o
m

p
o

n
en

t 
[d

B
]

(b)

Figure 8.7: PSNR of the Y components of received videos with playout delay of (a)

10s and (b) 15s.

8.5 Conclusion

In this chapter, the effectiveness of TV services in a CCN has been investigated. To

this end, the ccnSim simulator has been modified to add several relevant features

such as window-based flow control, handling of playout delay and real-time data,

advanced logging mechanisms, and data session bootstrapping. Preliminary results

reported herein clearly show that the most relevant CCN feature to TV services is

the management of Interest packets through the PIT data structure. In fact, such

a mechanism limits the number of requests for the same chunk at the server side

for multiple clients watching the same TV channel, thus decreasing the link and the

computational load at the server.

The contributions of this chapter have been published as CCN-TV: a data-

centric approach to real-time video services, in Proceedings of Advanced Information

Networking and Applications (AINA), 2013, IEEE [Ciancaglini 2013].



Part IV

Conclusion





Chapter 9

Summary and concluding remarks

In this thesis, we have attempted to tackle different kinds of problems related to

content-addressable routing systems, with focus on key-based routing systems, in

the form of Structured Overlay Networks and the Future Internet architecture of

Content-Centric Networks.

In particular, we have covered two different axes, related to the co-operation of

heterogeneous structured overlay networks, and the exploitation of key- and content-

based routing in the real-time distribution of video content.

Overlay cooperation. The first covered topic deals with enabling co-operation

for heterogeneous structured overlay systems. The idea stems from several observa-

tions, the first one being the presence of several competing overlay architectures both

in research and on the market, each of these architectures having its own strengths

and weaknesses, and some heavily specialized for a particular class of applications

or data structures. The second observation is that many of these systems need to

deal with severe performance degradation in real-world scenarios that impair the

overall performance due to network artifacts, an impairment often proportional to

the size of the network. With this in mind, it is clear that the ability of interconnect-

ing several overlay networks efficiently and transparently becomes desirable, in the

perspective of both being able to design a new class of distributed applications sup-

porting, for example, different types of data or different classes of nodes (desktop,

server, mobile, ...), and being able to organize a large-scale network around smaller

clusters, centered around local properties of the data they manage. With regard to

these challenges, we presented a novel architecture that allows for transparent in-

terconnection of heterogeneous structured overlays, by exploiting co-located nodes

as a form of distributed gateways. Nodes in the network can efficiently discover

gateways to other networks by analyzing the underlying overlay traffic, or via ac-

tive notifications, in those cases where backward compatibility with existing peers

in the network has to be maintained. Together with a detailed description of the

architecture and an extensive evaluation by means of simulation and real-world de-

ployment, we provided a first mathematical model to aid the design and performance

evaluation of inter-connected systems of extremely large scale, conditions where the

aforementioned evaluation methods would be unfeasible. Furthermore, we provided

two examples of applications relying on a network of interconnected overlays, in the

form of proofs-of-concept, to show the potential and opportunities linked to such an

approach.



138 Chapter 9. Summary and concluding remarks

Content-based techniques in real-time video streaming. The second topic

unravels into two different aspects. First off, we analyzed if and how a key-based

routing systems would impact the performances of a mesh-based P2P-TV system.

P2P-TV systems have to retrieve content in an orderly and timely manner, while

relying on a fixed neighborhood of nodes with which to exchange data. One feature

of key-based routing systems, when using consistent hash functions is the generation

of pseudo-random traffic that evenly loads all of the peers in a system. With this

in mind, we tried to apply this concept to a P2P-TV system, in order to provide

each peer in the system with a “virtual neighbor”, reachable by issuing content-

addressable requests for the content close to expiration that have not been retrieved

yet by the mesh neighborhood. We analyzed the system under stressful conditions

and network load, implementing our content-based algorithm on top of the NAPA-

Wine network simulator, and compared it with both a static and an adaptive mesh

topology, to understand if such a solution would provide enough benefits to the over-

all system. We then moved on to a full content-centric approach, by implementing

and evaluating a complete real-time video streaming systems on top of the novel

Content-Centric Networks architecture. The idea was to determine what would be

the challenges of implementing such system on top of a complete host-less archi-

tecture such as CCN, adapting video streaming to CCN protocol packets, and to

analyze how the built-in caching mechanism would affect a distribution of real-time,

expiring content. The system, named CCN-TV, has been implemented on top of

ccn-sim, a CCN network simulator developed on top of the Omnet++ framework,

and extensive analysis in terms of overall traffic and Quality of Experience has been

provided.

9.1 Future directions

The following are some future research directions concerning the work presented in

this thesis:

Extension to unstructured overlays. The extension to interconnect unstruc-

tured overlay and devise a form of cooperation between structured and unstructured

overlays seems like a natural direction for the present research work. However, while

interconnecting different systems all based on the key-based routing approach pro-

vides a common ground amongst all the networks, unstructured overlays usually rely

on a keyword-based search paradigm, which would require a more careful design,

involving all the system tiers up to the application layer, to be effectively integrated

with key-based routing systems.

Overlay self-organization. The work done so far in Synapse involved mainly

defining and describing extensively the meta-protocol and proving the feasibility

of interconnected systems. As of now, there are still several interesting research

issues open: for example, how to organize a set of overlays around the data, and



9.1. Future directions 139

how to maintain self-organizing properties in the systems. With regard to this,

Rodriguez et al. [Pujol ] proposed an algorithm for social graph partitioning that

aims at minimizing, rather than the number of edges between clusters, the number

of nodes to be duplicated between clusters in order to reduce redundancy between

clusters. While their work was aiming at improving the performance of Facebook’s

NoSQL database system Cassandra [Lakshman 2010], it could be applied with the

intention of achieving self-organization in a peer-to-peer social network that would

rely on interconnected overlays to share the data securely just amongst a circle of

trusted contacts, while still being able to perform requests throughout the entire

system. Another aspect to be improved is the maintenance of the gateway tables:

in a high-churn environment, which one can expect in an overlay network, it becomes

important to reduce the presence of stale entries in the routing tables of a node and

to constantly find the best path to a foreign overlay. To achieve this, a study is

undergoing on how to use Cognitive Packet Networks [Gelenbe 1999] in order to

maintain an updated list of the best paths for a node, in terms of latency, load,

energy, reliability etc., to reach another overlay.

Better overlay modeling. The mathematical modeling proposed in this thesis

is a first attempt at providing a reliable way to estimate performance parameters

for networks with a number of nodes hypothetically going to infinity. In order to

achieve this, we need to make several simplifications on the scenario and gateway

configuration, simplifications that are currently being under study in a new version of

the model. Furthermore, the interest in modeling the interconnection of systems lies

beyond the simple overlay network scenario [Gao 2011], and a successful modeling

could be applied to fields other than distributed systems.

P2P-TV improvements. The analysis work carried on in Chapter 7 showed that

a key-based routing support for P2P-TV can provide performance improvements,

but only under certain conditions. In case of a uniform set of desktop class ma-

chines with DSL connections, the best solution still seems to be an adaptive mesh

based network. There are scenarios however where a content-based approach could

be successfully exploited, for example in presence of nodes with highly asymmetric

bandwidth (i.e. mobile terminals), where this approach could help “circumventing”

the tit-for-tat mechanism typical of BitTorrent-like distribution systems to provide

the least performing nodes with a CDN-like mechanism to retrieve missing data

without impacting the rest of the network. To achieve this, however, there are

several steps that need to be undergone: the system need a bandwidth estimation

mechanism and a proper incentive mechanism, to build the HP-DHT with the ap-

propriate class of nodes, and further analysis are required to better evaluate the

working parameters of such a system.

CCN-TV improvements. The study of media streaming over Content-Centric

Networks is still a relatively young topic. Further research in the field is being



140 Chapter 9. Summary and concluding remarks

carried out in order to better evaluate the performances and drawbacks of such

systems in more complex scenarios, involving a higher number of nodes and content

from multiple providers. Another currently ongoing research track involves the

analysis of CCN-TV in a crowd-sourced scenario, where several users can choose

to watch an arbitrary set of video feeds provided by a crowd attending a common

event. Furthermore, the CCN-TV caching layer would need further analysis: at the

moment, we are carrying out a research in order to design an optimized priority

cache that would take into account the type of frame being cached (I-, B, or P-

frame) and consequently manage its expiration and its priority in the transmission

queue.



Bibliography

[a] Equipage 06 website. http://www.equipage06.fr/. (Cited on page 80.)

[b] Google Maps website. http://maps.google.com. (Cited on pages 82 and 84.)

[c] NFC Forum website. http://www.nfc-forum.org/. (Cited on page 81.)

[d] Otto et co. website. http://www.ottoetco.org/. (Cited on page 80.)

[Aberer 2003] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,

M. Hauswirth, M. Punceva and R. Schmidt. P-Grid: a self-organizing struc-

tured P2P system. SIGMOD Rec., vol. 32, no. 3, pages 29–33, 2003. (Cited

on page 90.)

[Aberer 2005] K. Aberer, L.O. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi and

M. Hauswirth. The essence of P2P: a reference architecture for overlay net-

works. In Peer-to-Peer Computing, 2005. P2P 2005. Fifth IEEE International

Conference on, 2005. (Cited on pages vii, 2, 3 and 7.)

[Ahlgren 2011] B. Ahlgren, P. A. Aranda, P. Chemouil, S. Oueslati, L. M. Correia,

H. Karl, M. Sollner and A. Welin. Content, connectivity, and cloud: ingredi-

ents for the network of the future. IEEE Commun. Mag., vol. 49, no. 7, Jul.

2011. (Cited on pages 122 and 123.)

[Ahlgren 2012] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher and

B. Ohlman. A survey of information-centric networking. Communications

Magazine, 2012. (Cited on page 123.)

[Ali 2006] S. Ali, A. Mathur and H. Zhang. Measurement of Commercial Peer-To-

Peer Live Video Streaming. In Proc. of ICST Workshop on Recent Advances

in Peer-to-Peer Streaming, 2006. (Cited on page 104.)

[Baumgart ] I. Baumgart, B. Heep and S. Krause. OverSim: A Flexible Overlay

Network Simulation Framework. In Proc. of IEEE GI ’07. (Cited on pages 9

and 52.)

[Bertinat 2009] M. E. Bertinat, D. De Vera, D. Padula, F. Robledo, P. Rodriguez-

Bocca, P. Romero and G. Rubino. GoalBit: The First Free and Open Source

Peer-to-Peer Streaming Network. In Proc. of 5th international IFIP/ACM

Latin American conference on Networking, 2009. (Cited on page 105.)

[bit ] Bittorrent website. http://www.bittorrent.com. (Cited on page 2.)

[Bolla 2009] R. Bolla, R. Gaeta, A. Magnetto, M. Sciuto and M. Sereno. A mea-

surement study supporting P2P file-sharing community models. Computer

Networks, vol. 53, no. 4, pages 485–500, 2009. (Cited on page 68.)

http://www.equipage06.fr/
http://maps.google.com
http://www.nfc-forum.org/
http://www.ottoetco.org/
http://www.bittorrent.com


142 Bibliography

[Brampton 2006] A. Brampton, A. MacQuire, I. A. Rai, N. J. P. Race and L. Mathy.

Stealth distributed hash table: a robust and flexible super-peered DHT. In Pro-

ceedings of the 2006 ACM CoNEXT conference, 2006. (Cited on page 108.)

[Caesar 2006] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan and I. Sto-

ica. ROFL: Routing on Flat Labels. SIGCOMM Comput. Commun. Rev.,

vol. 36, no. 4, pages 363–374, 2006. (Cited on page 19.)

[Cappello et al. 2005] F. Cappello et al. Grid’5000: a Large Scale, Reconfigurable,

Controlable and Monitorable Grid Platform. In SC’05: Proc. The 6th

IEEE/ACM International Workshop on Grid Computing Grid’2005, pages

99–106. IEEE/ACM, 2005. (Cited on pages 9, 10 and 35.)

[Carofiglio ] G. Carofiglio, M. Gallo and L. Muscariello. Joint hop-by-hop and

receiver-driven interest control protocol for content-centric networks. In Pro-

ceedings of ICN Workshop, co-located with ACM SIGCOMM. (Cited on

page 122.)

[Carofiglio 2011a] G. Carofiglio, M. Gallo, L. Muscariello and D. Perino. Model-

ing data transfer in content-centric networking. In Int. Teletraffic Congress,

(ITC), 2011. (Cited on page 122.)

[Carofiglio 2011b] G. Carofiglio, V. Gehlen and D. Perino. Experimental Evaluation

of Memory Management in Content-Centric Networking. In IEEE ICC, 2011.

(Cited on page 122.)

[Castro 2003] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron and

A. Singh. SplitStream: High-bandwidth content distribution in cooperative

environments. In Proc. of International workshop on Peer-To-Peer Systems,

2003. (Cited on page 105.)

[ccn ] CCN-TV Webpage. http://telematics.poliba.it/ccn-tv/. (Cited on

page 130.)

[Ceballos 2006] M. R. Ceballos and J. L. Gorricho. P2P file sharing analysis for a

better performance. In Proc. of the 28th International Conference on Software

Engineering. ACM, 2006. (Cited on page 104.)

[Chawathe 2005] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca,

S. Shenker and J. Hellerstein. A case study in building layered DHT ap-

plications. In SIGCOMM ’05: Proceedings of the 2005 conference on Appli-

cations, technologies, architectures, and protocols for computer communica-

tions, pages 97–108. ACM, 2005. (Cited on page 90.)

[Cheng 2006] L. Cheng, R. Ocampo, K. Jean, A. Galis, C. Simon, R. Szabo, P. Ker-

sch and R. Giaffreda. Towards Distributed Hash Tables (De) Composition

in Ambient Networks. LNCS, vol. 4269, page 258, 2006. (Cited on pages 16

and 18.)

http://telematics.poliba.it/ccn-tv/


Bibliography 143

[Cheng 2007] L. Cheng. Bridging Distributed Hash Tables in Wireless Ad-Hoc Net-

works. In Global Telecommunications Conference, 2007. GLOBECOM ’07.

IEEE, pages 5159–5163, 2007. (Cited on page 17.)

[Ciancaglini 2010] V. Ciancaglini, L. Liquori and L. Vanni. CarPal: Interconnecting

Overlay Networks for a Community-Driven Shared Mobility. In Proceedings

of Trustworthy Global Computing 2010, 2010. (Cited on pages 10 and 90.)

[Ciancaglini 2012a] V. Ciancaglini, R. Gaeta, L. Liquori and R. Loti. Modeling and

analysis of large scale interconnected unstructured P2P networks. In Proc. of

ICPADS ’12, 2012. (Cited on pages 10 and 76.)

[Ciancaglini 2012b] V. Ciancaglini, G. N. Hoang and L. Liquori. Towards a Common

Architecture to Interconnect Heterogeneous Overlay Networks. In Proceed-

ingds of ICPADS conference 2012, 2012. (Cited on pages 9 and 59.)

[Ciancaglini 2012c] V. Ciancaglini, G. N. Hoang, P. Maksimovic and L. Liquori. An

Extension and Cooperation Mechanism for Heterogeneous Overlay Networks.

In Proceedings of HetNETS Workshop, NETWORKING Conference 2012,

2012. (Cited on pages 9 and 59.)

[Ciancaglini 2013] V. Ciancaglini, G. Piro, R. Loti, L. A. Grieco and L. Liquori.

CCN-TV: a data-centric approach to real-time video services. In Proceedings

of Advanced Information Networking and Applications (AINA). IEEE, 2013.

(Cited on page 134.)

[Cis 2011] Cisco Visual Networking Index: Forecast and Methodology, 2010-2015.

White Paper, Jun. 2011. (Cited on page 122.)

[Ciullo 2010] D. Ciullo, M. A. Garcia, A. Horvath, E. Leonardi, M. Mellia, D. Rossi,

M. Telek and P. Veglia. Network Awareness of P2P Live Streaming Appli-

cations: a Measurement Study. IEEE Transactions on Multimedia, no. 12,

2010. (Cited on pages 104 and 117.)

[Crainiceanu 2007] A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke and

J. Shanmugasundaram. P-ring: an efficient and robust P2P range index

structure. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD in-

ternational conference on Management of data, pages 223–234. ACM, 2007.

(Cited on page 90.)

[Crespo 2005] Arturo Crespo and Hector Garcia-Molina. Semantic Overlay Net-

works for P2P Systems. In Agents and Peer-to-Peer Computing. Springer

Berlin Heidelberg, 2005. (Cited on page 5.)

[Cudré-Mauroux 2007] P. Cudré-Mauroux, S. Agarwal and K. Aberer. GridVine:

An Infrastructure for Peer Information Management. IEEE Internet Com-

puting, vol. 11, no. 5, 2007. (Cited on page 5.)



144 Bibliography

[Cutillo 2009] L.A. Cutillo, R. Molva and T. Strufe. Safebook: A privacy-preserving

online social network leveraging on real-life trust. Communications Magazine,

IEEE, 2009. (Cited on page 5.)

[Dabek ] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz and Ion Stoica. Towards

a Common API for Structured Peer-to-Peer Overlays. In Proc. of IPTPS

’03. (Cited on pages 7, 42 and 53.)

[Dabek 2001] Frank Dabek, M Frans Kaashoek, David Karger, Robert Morris and

Ion Stoica. Wide-area cooperative storage with CFS. ACM SIGOPS Operat-

ing Systems Review, 2001. (Cited on page 5.)

[Datta 2006] A. Datta and K. Aberer. The challenges of merging two similar struc-

tured overlays: A tale of two networks. In Proc. of IWSOS, 2006. (Cited on

page 16.)

[DC ] The Dublin Core Metadata Initiative. http://dublincore.org/. (Cited on

page 92.)

[DeCandia 2007] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-

han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall and Werner Vogels. Dynamo: amazon’s highly avail-

able key-value store. In ACM Symposium on Operating Systems Principles:

Proceedings of twenty-first ACM SIGOPS symposium on Operating systems

principles, 2007. (Cited on page 4.)

[EAD ] Encoded Archival Description. http://www.loc.gov/ead/. (Cited on

page 92.)

[Erice 2003a] L. G. Erice, E. W. Biersack, K. W. Ross, P. A. Felber and G. U.

Keller. Hierarchical P2P Systems. In Proc. of Euro-Par, 2003. (Cited on

pages 7 and 16.)

[Erice 2003b] L. G. Erice, K. W. Ross, E. W. Biersack, Pascal A. Felber and G. U.

K. Topology-Centric Look-Up Service. In Proc. of NGC, 2003. (Cited on

pages 7 and 16.)

[erl ] Erlang programming language website. http://www.erlang.org/. (Cited on

pages 10 and 68.)

[eur ] Europeana. http://europeana.eu/portal/. (Cited on page 92.)

[Feldmann 2007] A. Feldmann. Internet Clean-Slate Design: What and Why? SIG-

COMM Comput. Commun. Rev., vol. 37, no. 3, pages 59–64, 2007. (Cited

on page 16.)

[Fortuna 2010] R. Fortuna, E. Leonardi, M. Mellia, M. Meo and S. Traverso. QoE

in Pull Based P2P-TV Systems: Overlay Topology Design Tradeoffs. In Proc.

http://dublincore.org/
http://www.loc.gov/ead/
http://www.erlang.org/
http://europeana.eu/portal/


Bibliography 145

of 10th International Conference on Peer-to-Peer Computing, 2010. (Cited

on pages 109 and 111.)

[Francis 2000] P. Francis. Yoid: Extending the Internet Multicast Architecture. Rap-

port technique, AT&T Center for Internet Research at ICSI (ACIRI), 2000.

(Cited on page 84.)

[frb 1998] Functional Requirements for Bibliographic Records, 1998. www.ifla.org/

VII/s13/frbr/frbr.pdf. (Cited on page 92.)

[Furtado 2007] P. Furtado. Multiple Dynamic Overlay Communities and Inter-space

Routing. Lecture Notes in Computer Science, vol. 4125, page 38, 2007. (Cited

on page 17.)

[Gaeta 2011] R. Gaeta and M. Sereno. Generalized Probabilistic Flooding in Un-

structured Peer-to-Peer Networks. IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 22, pages 2055–2062, 2011. (Cited on page 68.)

[Gaeta 2013] R. Gaeta, V. Ciancaglini, R. Loti and L. Liquori. Interconnection of

large scale unstructured P2P networks: modeling and analysis. In Proceed-

ings of ASMTA Conference 2013, 2013. (Cited on pages 10 and 76.)

[Ganesan ] P. Ganesan, P. Krishna Gummadi and H. Garcia-Molina. Canon in G

Major: Designing DHTs with Hierarchical Structure. In Proc. of ICDCS ’04.

(Cited on pages 7 and 16.)

[Gao 2011] Jianxi Gao, Sergey V Buldyrev, H Eugene Stanley and Shlomo Havlin.

Networks formed from interdependent networks. Nature Physics, 2011. (Cited

on page 139.)

[Garces-Erice 2003] L. Garces-Erice, K. W Ross, E. W Biersack, P. A Felber and

G. Urvoy-Keller. Topology-Centric Look-Up Service. In NGC’03, Munich,

Germany, 2003. (Cited on page 20.)

[Garces-Erice 2004] L. Garces-Erice, P. A Felber, K. W Ross and G. Urvoy-Keller.

Data Indexing in Peer-to-Peer DHT Networks. In ICDCS 2004, Tokyo,

Japan, 2004. (Cited on page 40.)

[GEA ] Geant project website. http://www.geant.net/. (Cited on page 130.)

[Gelenbe 1999] Erol Gelenbe, Zhiguang Xu and Esin Seref. Cognitive packet net-

works. In Tools with Artificial Intelligence, 1999. Proceedings. 11th IEEE

International Conference on. IEEE, 1999. (Cited on page 139.)

[gnu ] Gnunet website. http://www.gnunet.org. (Cited on page 2.)

[Grieco 2012] L. A. Grieco, D. Saucez and C. Barakat. AIMD and CCN: past and

novel acronyms working together in the Future Internet. In Proceedings of

Capacity Sharing Workshop 2012 (CSWS’12) co-located with ACM SIG-

COMM CoNEXT 2012., Dec. 2012. (Cited on page 122.)

www.ifla.org/VII/s13/frbr/frbr.pdf
www.ifla.org/VII/s13/frbr/frbr.pdf
http://www.geant.net/
http://www.gnunet.org


146 Bibliography

[Harvey 2003] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer and A. Wolman.

SkipNet: a scalable overlay network with practical locality properties. In

USITS’03: Proceedings of the 4th conference on USENIX Symposium on

Internet Technologies and Systems, pages 9–9. USENIX Association, 2003.

(Cited on page 90.)

[i2p ] Invisible Internet Project Page. (Cited on page 5.)

[int ] Internet Stats. http://internetworldstats.com. (Cited on page 111.)

[Jacobson 2009a] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.

Briggs and R. L. Braynard. Networking named content. In Proceedings of

the 5th international conference on Emerging networking experiments and

technologies, 2009. (Cited on page 105.)

[Jacobson 2009b] Van Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.

Briggs and R. L. Braynard. Networking named content. In Proc. of Conf.

Next (CONEXT), Dec. 2009. (Cited on pages 5, 10, 122, 123 and 124.)

[Jeonghun 2008] N. Jeonghun and D. Sachin. Pseudo-DHT: Distributed Search Al-

gorithm for P2P Video Streaming. In Proc. of IEEE International Symposium

on Multimedia. IEEE Computer Society, 2008. (Cited on page 105.)

[Jimenez a] R. Jimenez, F. Osmani and B. Knutsson. Connectivity properties of

Mainline BitTorrent DHT nodes. In Proc. of IEEE P2P ’09. (Cited on

pages 5, 6 and 7.)

[Jimenez b] R. Jimenez, F. Osmani and B. Knutsson. Sub-Second Lookups on a

Large-Scale Kademlia-Based Overlay. In Proc. of IEEE P2P ’11. (Cited on

page 7.)

[Junjiro 2006] K. Junjiro, W. Naoki and M. Masayuki. Design and Evaluation of a

Cooperative Mechanism for Pure P2P File-Sharing Networks. IEICE Trans

Commun (Inst Electron Inf Commun Eng), vol. E89-B, no. 9, pages 2319–

2326, 2006. (Cited on page 18.)

[Kurose 2012] James F. Kurose and Keith W. Ross. Computer networking: A top-

down approach. Addison-Wesley Publishing Company, 6th édition, 2012.

(Cited on page 131.)

[Kwon 2005] M. Kwon and S. Fahmy. Synergy: an Overlay Internetworking Archi-

tecture. In Proc. of International Conference on Computer Communications

and Networks, pages 401–406, 2005. (Cited on page 18.)

[Labovitz 2000] C. Labovitz, A. Ahuja, A. Bose and F. Jahanian. Delayed Internet

routing convergence. SIGCOMM Comput. Commun. Rev., vol. 30, no. 4,

pages 175–187, 2000. (Cited on page 19.)

http://internetworldstats.com


Bibliography 147

[Lakshman 2010] Avinash Lakshman and Prashant Malik. Cassandra: a decentral-

ized structured storage system. ACM SIGOPS Operating Systems Review,

2010. (Cited on pages 4 and 139.)

[Leonardi 2008] E. Leonardi, M. Mellia, M. Meo and A. P. Couto da Silva.

Bandwidth-Aware Scheduling Strategy for P2P-TV Systems. In Proc. of

8th International Conference on Peer-to-Peer Computing, 2008. (Cited on

pages 104 and 111.)

[Li 2006] J. Li. Peer-to-Peer multimedia applications. In Proc. of the 14th annual

ACM international conference on Multimedia, 2006. (Cited on page 104.)

[Li 2011] Z. Li and G. Simon. Time-Shifted TV in Content Centric Networks:the

Case for Cooperative In-Network Caching. In Proc. of IEEE ICC, Jun. 2011.

(Cited on page 122.)

[Liquori ] L. Liquori, C. Tedeschi, L. Vanni, F. Bongiovanni, V. Ciancaglini and

B. Marinkovic. Synapse: A Scalable Protocol for Interconnecting Heteroge-

neous Overlay Networks. In Proc. of Networking ’10. (Cited on page 9.)

[Liquori 2009] L. Liquori, C. Tedeschi and F. Bongiovanni. BabelChord: a Social

Tower of DHT-Based Overlay Networks. In 14th Symposium on Computers

and Communications (ISCC 2009). IEEE, 2009. Short paper. (Cited on

page 18.)

[Liquori 2010] L. Liquori, C. Tedeschi, L. Vanni, F. Bongiovanni, V. Ciancaglini

and B. Marinković. Synapse: A Scalable Protocol for Interconnecting Het-

erogeneous Overlay Networks. In NETWORKING ’10: Proceedings of the

9th International IFIP-TC 6 Networking Conference (to appear). Springer-

Verlag, 2010. (Cited on page 37.)

[Liu 2008] J. Liu, S. G. Rao, B. Li and H. Zhang. Opportunities and Challenges of

Peer-to-Peer Internet Video Broadcast. In Proc. of IEEE, Special Issue on

Recent Advances in Distributed Multimedia Communications, 2008. (Cited

on page 104.)

[Liu 2009] B. Liu, Y. Cui, Y. Lu and Y. Xue. Locality-Awareness in BitTorrent-Like

P2P Applications. IEEE Transactions on Multimedia, vol. 3, no. 11, 2009.

(Cited on page 104.)

[Locher 2007] T. Locher, R. Meier, S. Schmid and R. Wattenhofer. Push-to-Pull

Peer-to-Peer Live Streaming. In 21st International Symposium on Dis-

tributed Computing (DISC), 2007. (Cited on page 106.)

[log ] HyDeA Simulator Repository. http://www-sop.inria.fr/lognet/hydea/.

(Cited on page 111.)

http://www-sop.inria.fr/lognet/hydea/


148 Bibliography

[Luo 2008] X. Luo, Z. Qin, J. Han and H. Chen. "DHT-assisted probabilistic ex-

haustive search in unstructured P2P networks". In "Proc. of International
Symposium on Parallel and Distributed Processing, 2008.", 2008. (Cited on
page 106.)

[Magharei 2007] N. Magharei, R. Rejaie and G. Yang. Mesh or Multiple-Tree: A

Comparative Study of Live P2P Streaming Approaches. In IEEE INFOCOM
2007., may 2007. (Cited on page 110.)

[MAR ] MARC Standards. http://www.loc.gov/marc/. (Cited on page 92.)

[Marinković 2011] B. Marinković, L. Liquori, V. Ciancaglini and Z. Ognjanović. A

Distributed Catalog for Digitized Cultural Heritage. In Proceedings of ICT
Innovationsm 2010, 2011. (Cited on pages 10 and 99.)

[Maymounkov 2002a] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer

information system based on the XOR metric, 2002. (Cited on pages 4, 5
and 79.)

[Maymounkov 2002b] P. Maymounkov and D. MaziÃ¨res. Kademlia: A Peer-to-

peer Information System Based on the XOR Metric. In 1st International
Workshop on Peer-to-peer Systems, 2002. (Cited on pages 105 and 107.)

[min ] (Cited on page 5.)

[Muscariello 2011] L. Muscariello, G. Carofiglio and M. Gallo. Bandwidth and stor-

age sharing performance in information centric networking. In ACM SIG-
COMM workshop on Information-centric networking (ICN ’11), 2011. (Cited
on page 122.)

[nap ] Napa-Wine European Project. http://napa-wine.eu/. (Cited on pages 2,
10 and 111.)

[Newman 2001] M. E. J. Newman, S. H. Strogatz and D. J. Watts. Random graphs

with arbitrary degree distributions and their applications. Phys. Rev. E,
vol. 64, page 026118, Jul 2001. (Cited on pages 64 and 65.)

[Nguyen 2008] K. Nguyen, G. Ngo Hoang and H. N. Chan. Characterizing Chord,

Kelips and Tapestry algorithms in P2P streaming applications over wireless

network. In Proc. of International Conference on Communications and Elec-
tronics, 2008. (Cited on page 105.)

[Ohm 2004] J.R. Ohm. Multimedia communication technology. Springer, USA,
2004. (Cited on page 133.)

[omn ] Omnet++ Network Simulator. http://www.omnetpp.org. (Cited on pages 52
and 129.)

http://www.loc.gov/marc/
http://napa-wine.eu/


Bibliography 149

[Piro 2011] G. Piro, L.A. Grieco, G. Boggia, R Fortuna and P. Camarda. Two-level

Downlink Scheduling for Real-Time Multimedia Services in LTE Networks.
In IEEE Trans. Multimedia, to be published, volume 13, pages 1052 – 1065,
Oct. 2011. (Cited on page 133.)

[Pouwelse 2005] J. A. Pouwelse, P. Garbacki, D. H. J. Epema and H. J. Sips. The

Bittorrent P2P File-Sharing System: Measurements and Analysis. In Proc. of
International workshop on Peer-To-Peer Systems, 2005. (Cited on page 104.)

[Pujol ] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra
and P. Rodriguez. The little engine(s) that could: scaling online social net-

works. In Proc. of ACM SIGCOMM ’10. (Cited on page 139.)

[Ratnasamy 2001] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker.
A Scalable Content-Adressable Network. In ACM SIGCOMM, 2001. (Cited
on pages 4, 90, 105 and 108.)

[Ratnasamy 2003] Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah Estrin,
Ramesh Govindan, Li Yin and Fang Yu. Data-Centric Storage in Sensornets

with GHT, a Geographic Hash Table. Mobile Networks and Applications,
2003. (Cited on page 5.)

[Rekhter 1995] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP 4).
Internet Engineering Task Force: RFC 1771, 1995. (Cited on page 19.)

[Ren 2008] Dongni Ren, Y.-T. Hillman Li and S.-H. Gary Chan. On Reducing

Mesh Delay for Peer-to-Peer Live Streaming. In IEEE INFOCOM 2008.,
2008. (Cited on page 117.)

[Rossi 2011] D. Rossi and G. Rossini. Caching performance of content centric net-

works under multi-path routing (and more). In Technical report, Telecom
ParisTech, 2011. (Cited on pages 130 and 131.)

[Rossi 2012] D. Rossi and G. Rossini. On sizing CCN content stores by exploit-

ing topological information. In IEEE INFOCOM, NOMEN Worshop, 2012.
(Cited on page 122.)

[Rossini 2012] G. Rossini and D. Rossi. Large scale simulation of CCN networks.
In In Algotel 2012, 2012. (Cited on pages 122 and 129.)

[Salakhutdinov 2009] R. Salakhutdinov and G. Hinton. Semantic hashing. Inter-
national Journal of Approximate Reasoning, vol. 50, no. 7, pages 969–978,
2009. (Cited on page 90.)

[sec ] Second life website. http://secondlife.com/. (Cited on page 5.)

[Shafaat 2007] T. M. Shafaat, A. Ghodsi and S. Haridi. Handling Network Parti-

tions and Mergers in Structured Overlay Networks. In Proc. of P2P, pages
132–139. IEEE Computer Society, 2007. (Cited on page 16.)

http://secondlife.com/


150 Bibliography

[.Shen 2009] X .Shen, H. Yu, J. Buford and M. Akon. Handbook of peer-to-peer
networking. Springer Publishing Company, Incorporated, 2009. (Cited on
page 107.)

[Shen 2010a] H. Shen, L. Zhao, Z. Li and J. Li. A DHT-Aided Chunk-Driven Overlay

for Scalable and Efficient Peer-to-Peer Live Streaming. In Proc. of nterna-
tional Conference on Parallel Processing, 2010. (Cited on page 106.)

[Shen 2010b] X. Shen, H. Yu, J. Buford and M. Akon, editeurs. Handbook of Peer-
to-Peer Networking. Springer-Verlag, 2010. To appear. (Cited on page 6.)

[Stoica 2001] I. Stoica, R. Morris, D. Karger, M. Kaashoek and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup service for Internet Applications. In
ACM SIGCOMM, pages 149–160, 2001. (Cited on pages 3, 79 and 84.)

[Stoica 2003] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol

for internet applications. IEEE/ACM Trans. Netw., vol. 11, no. 1, 2003.
(Cited on pages 105 and 107.)

[syn ] Synapse OverSim implementation webpage. http://www-sop.inria.fr/

teams/lognet/synapseV2.0/. (Cited on page 54.)

[TEL ] The European Library. http://www.theeuropeanlibrary.org/. (Cited on
page 92.)

[tor ] The Onion Router project webpage. (Cited on page 5.)

[Tortelli 2011] M. Tortelli, I. Cianci, L. A. Grieco, G. Boggia and P. Camarda.
A fairness analysis of content centric networks. In Proc. of Int. Conf. on
Network of the Future, NOF, Paris, France, Nov. 2011. (Cited on page 122.)

[Tortelli 2012] M. Tortelli, L. A. Grieco and G. Boggia. CCN Forwarding Engine

Based on Bloom Filters. In Proc. of ACM Int. Conf. on Future Internet
Technologies, CFI, Seoul, Korea, Sep. 2012. (Cited on page 122.)

[Trunfio 2007] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini,
M. Pennanen, K. Popov, V. Vlassov and S. Haridi. Peer-to-Peer resource dis-

covery in Grids: Models and systems. Future Generation Computer Systems,
2007. (Cited on page 5.)

[une 2005] Recommendations for coordination of digitization of cultural heritage

in South-Eastern Europe, Conclusions of the Regional Meeting on Digi-

tization of Cultural Heritage. Review of the National Center for Dig-
itization, 2005. http://elib.mi.sanu.ac.rs/files/journals/ncd/7/

ncd07002.pdf. (Cited on page 92.)

[USy ] Unstructured Synapse GitHub Repository. http://www.github.com/

barravi/Synapse-Unstructured. (Cited on pages 67 and 68.)

http://www-sop.inria.fr/teams/lognet/synapseV2.0/
http://www-sop.inria.fr/teams/lognet/synapseV2.0/
http://www.theeuropeanlibrary.org/
http://elib.mi.sanu.ac.rs/files/journals/ncd/7/ncd07002.pdf
http://elib.mi.sanu.ac.rs/files/journals/ncd/7/ncd07002.pdf
http://www.github.com/barravi/Synapse-Unstructured
http://www.github.com/barravi/Synapse-Unstructured


Bibliography 151

[Varvello ] M. Varvello, C. Diot and E. Biersack. A Walkable Kademlia network for

virtual worlds. In Proc. of IPTPS ’09. (Cited on page 5.)

[Varvello 2011] M. Varvello, I. Rimac, U. Lee, L. Greenwald and V. Hilt. On the

design of content-centric MANETs. In Int. Conf. on Wireless On-Demand
Network Systems and Services, (WONS), Jan. 2011. (Cited on page 122.)

[Viger 2005] Fabien Viger and Matthieu Latapy. Efficient and Simple Generation of

Random Simple Connected Graphs with Prescribed Degree Sequence. In Com-
puting and Combinatorics, volume 3595 of Lecture Notes in Computer Sci-

ence, pages 440–449. Springer Berlin / Heidelberg, 2005. (Cited on page 69.)

[web 2007] A weblog about FRBR: Functional Requirements for Bibliographic

Records, 2007. www.frbr.org. (Cited on page 92.)

[Wiegand 2003] T. Wiegand, G.J. Sullivan, G. Bjontegaard and A. Luthra.
Overview of the H.264/AVC video coding standard. IEEE Trans. on Cir-
cuits and Systems for Video Technology, vol. 13, no. 7, pages 560 –576, Jul.
2003. (Cited on pages 125 and 130.)

[Xiao 2008] X. Xiao, Y. Shi and Y. Gao. On Optimal Scheduling for Layered

Video Streaming in Heterogeneous Peer-to-Peer Networks. In Proc. of the
16th annual ACM international conference on Multimedia, 2008. (Cited on
page 104.)

[Xu 2003a] Z. Xu, M. Mahalingam and M. Karlsson. Turning Heterogeneity into an

Advantage in Overlay Routing. In INFOCOM, 2003. (Cited on page 20.)

[Xu 2003b] Z. Xu, R. Min and Y. Hu. HIERAS: A DHT Based Hierarchical P2P

Routing Algorithm. In ICPP, 2003. (Cited on pages 7 and 16.)

[Xu 2012] H. Xu, Z. Chen, R. Chen and J. Cao. Live Streaming with Content

Centric Networking. In Proc. 3rd Int. Conf. on Networking and Distributed
Computing, Hangzhou, China, 2012., 2012. (Cited on page 122.)

[yac ] Yacy distributed search engine. http://www.yacy.net. (Cited on page 5.)

[Yang 2003] X. Yang. NIRA: a New Internet Routing Architecture. SIGCOMM
Comput. Commun. Rev., vol. 33, no. 4, pages 301–312, 2003. (Cited on
page 19.)

[Yiu 2007] W.-P. K. Yiu, X. Jin and S.-H. G. Chan. VMesh: Distributed Seg-

ment Storage for Peer-to-Peer Interactive Video Streaming. IEEE Journal
on Selected Areas in Communications, vol. 25, no. 9, pages 1717–1731, 2007.
(Cited on page 105.)

[You 2012] Wei You, B. Mathieu, P. Truong, J. Peltier and G. Simon. DiPIT: A

Distributed Bloom-Filter Based PIT Table for CCN Nodes. In Computer

www.frbr.org
http://www.yacy.net


152 Bibliography

Communications and Networks (ICCCN), 2012 21st International Confer-
ence on, pages 1 –7, 30 2012-aug. 2 2012. (Cited on page 122.)

[Z. Ognjanović 2009] B. Marinković Z. Ognjanović T. Butigan-Vučaj. Ncd recom-
mendation for the national standard for describing digitized heritage in ser-
bia. Springer, 2009. (Cited on pages 92 and 93.)

[Zaharia 2006] M. Zaharia and S. Keshav. Gossip-based search selection in hybrid

peer-to-peer networks. In Proc. of 5th International Workshop on Peer-to-
Peer Systems, 2006. (Cited on page 106.)

[Zhang 2010] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornot, D.K. Smat-
ters, B. Zhang, G. Tsudik, D. Krioukov, D. Massey, C. Papadopulos, T. Ab-
delzaher, L. Wang, P. Crowley and Yeh E. Named Data Networking (NDN)

Project. PARC Technical Report TR-2010-02, Oct. 2010. (Cited on page 5.)

[Zhou 2003] S. Zhou, G. R Ganger and P. Steenkiste. Balancing Locality and Ran-

domness in DHTs. Rapport technique, 2003. (Cited on page 20.)

[Zhu 2003] D. Zhu, M. Gritter and D. R. Cheriton. Feedback Based Routing. SIG-
COMM Comput. Commun. Rev., vol. 33, no. 1, pages 71–76, 2003. (Cited
on page 19.)



From key-based to content-based routing: system interconnection
and video streaming applications

Abstract: Key-based and Content-based routing are a novel approach to message
routing amongst nodes in a network, where the destination and path of a message
packet is determined not by a well-defined endpoint, but from the message content
itself. As such, it has been successfully applied in several networking fields, such as
Structured Overlay Networks (SON) and Content-Centric Networks (CCN). Struc-
tured overlays are a type of peer-to-peer applications where nodes - members of a
logical network - are responsible for a segment of the addressing space on top of
which resources are mapped, and messages are routed to the responsible node de-
pending on a key, which often derived by the resource ID; hence the name Key Based
Routing (KBR). Content-Centric Networks, on the other hand, are a new routing
protocol for the Future Internet, where the concept of nodes is dropped altogether
and a routing scheme exclusively based on the desired resource identifier is enforced.
The scope of this thesis is twofold: on the one side, we explore the topic of overlay
network interconnection and cooperation, and propose an architecture capable of
allowing several heterogeneous overlay networks, with different topologies and dif-
ferent routing schemes, to interact, thanks to a lightweight infrastructure consisting
of co-located nodes. Through the use of simulations and real-world deployment, we
show how this solution is scalable and how it facilitates quasi-exhaustive routing,
with even a relatively low number of well-connected co-located nodes. To address the
problem of scaling network design to millions of nodes, we propose a mathematical
model capable of deriving basic performance figures for an interconnected system.
Furthermore, we present two application examples that could greatly benefit from
such an architecture. On the other side, we investigate a little further into the capa-
bilities of content-based routing outside of its “comfort zone”: first, we analyze the
improvement that a SON could bring to a peer-to-peer real-time video streaming
system (P2P-TV), in terms of chunk loss and Quality of Experience. Then, we move
the approach to a fully content-based domain, implementing the P2P-TV solution
on top of Content-Centric Networks.

Keywords: Content-based routing, peer-to-peer, overlay networks, network
interoperability, overlay protocols, video streaming, p2p-tv.


	Introduction and scope of the thesis
	Context of the thesis
	Structured overlays and key-based routing
	Applications of overlay networks
	Towards Content-Centric Networks

	Problem definition
	Interconnection of overlay networks
	Content-based techniques in real-time video streaming

	Outline of the thesis

	I Design and modeling of interconnected overlay networks
	Opportunistic routing on structured overlays
	State of the art
	The Synapse Protocol
	``White box'' Synapse protocol definition
	The GET operation
	The PUT operation
	The JOIN and INVITE operations

	``Black box'' Synapse Protocol definition
	Accessing blackbox networks
	Data structure
	Algorithm

	The Simulations
	Settings
	Impact of Synapse nodes and their connection degree
	Effects of Time-To-Live
	Connectivity and Peers' churn

	The Experimentations
	JSynapse
	Open-Synapse

	Conclusion

	Optimal discovery mechanisms for distributed gateways
	Context
	Evolving the Synapse protocol
	Towards a common architecture to interconnect overlay networks

	The Synapse 2.0 Interconnection Framework
	Synapse Protocol Overview
	Synapse-node functionalities
	Synapse Routing Protocol
	Gateway node discovery strategies
	Synapse-node routing strategies
	Synapse-node structure.
	Self-organization via ``social networking'' primitives.

	A routing example
	Protocol implementation in OverSim
	Simulation Results
	Simulation settings
	Topology construction
	Configuration of gateway-nodes

	Experimental Results
	Conclusion

	Modeling of interconnected systems
	System description
	System description
	System model
	One overlay topology
	Interconnection of multiple P2P networks
	Search algorithm
	Hit probability
	A variation of the search algorithm 

	Results
	Model validation
	Model exploitation

	Conclusion


	II Applications on top of interconnected overlays
	CarPal: an example of social crowdsourced application
	Context
	Application architecture 
	Application principles
	CarPal in a nutshell
	Encoding CarPal in a DHT 
	Network architecture

	A Running example 
	Building the scenario
	Slice and Dice and encoding in the DHT
	Searching for a trip

	Conclusion

	A distributed digital archive for cultural heritage
	Context
	Application principles
	Case study
	Network join
	Storing a new record
	Record search 

	Conclusion


	III Beyond overlays: content-based routing for real-time video streaming
	Content based enhancements in P2P-TV: promises and drawbacks
	Introduction and Related work
	Gossip-based protocols 
	Content adressable networks
	Hybrid delivery algorithms

	System description
	High Performance DHT overlay
	Bandwidth selective peer join
	Chunk retrieval
	HP-DHT pseudo-cache
	Chunk seeding

	Performance analysis
	Settings
	HyDeA performance under different load conditions
	Bandwidth exploitation
	HyDeA performance at different playout delays
	Robustness to churning
	Signaling overhead evaluation for different HP-DHT parameters
	Comparison with an adaptive overlay

	Conclusion

	CCN-TV: a data-centric approach to real-time video services
	Introduction and Related Work
	Basic background on CCN
	CCN-TV architecture
	Channel bootstrap
	Flow control
	Interest routing
	CCN-TV messages

	Simulation results
	Interest generation process
	QoS and QoE

	Conclusion


	IV Conclusion
	Summary and concluding remarks
	Future directions

	Bibliography


