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DES PENSÉES INSPIRANTES 
 
 
 

"Ce qu'il y a d'incompréhensible, c'est que l'univers soit 
compréhensible." 

Albert  Einstein 
  
 

"Le hasard est le pseudonyme de Dieu quand Il ne veut pas signer."  

            Anatole  France 
 
 

“Si j’ai appris une chose au cours de ma longue vie, c’est que toute 
notre science, confrontée à la réalité, apparaît primitive et enfantine – 

et pourtant, c’est ce que nous possédons de plus précieux.” 

Albert  Einstein 
 
 

“Sa sacrée majesté le Hasard décide de tout.” 

                                                           Voltaire 
 
 

“Toute pensée émet un coup de dés.” 

                         Stéphane  Mallarmé 
 
 
“Le mathématicien, emporté par son courant de symboles traitant de 
vérités purement formelles, peut cependant obtenir des résultats d’une 

importance infinie pour notre description de l’univers physique.” 

Karl  Pearson 
 
 

“Ainsi, joignant la rigueur des démonstrations de la science à 
l’incertitude du sort, et conciliant ces deux choses en apparence 

contradictoires, elle peut, tirant son nom des deux, s’arroger à bon 
droit ce titre stupéfiant: la géométrie du hasard. ” 

             Blaise  Pascal 
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"Dieu est subtil, mais il n'est pas malveillant." 

Albert  Einstein 
 
 

"Une intelligence qui, à un instant donné, connaîtrait toutes les forces 
dont la nature est animée et la situation respective des êtres qui la 

compose embrasserait dans la même formule les mouvements des plus 
grands corps de l'univers et ceux du plus léger atome ; rien ne serait 
incertain pour elle, et l'avenir, comme le passé, serait présent à ses 

yeux." 

Marquis  Pierre-Simon  de  Laplace 
 
 

"Le plus beau sentiment du monde, c’est le sens du mystère. Celui qui 
n’a jamais connu cette émotion, ses yeux sont fermés." 

Albert  Einstein 
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GENERAL INTRODUCTION 
 
 
Due to technological advances and to increasing competitiveness of countries of low 

production costs, the industrial sectors of developed countries have to face constantly new 

challenges which are increasingly difficult. These challenges have as principal objective the 

maximization of competitiveness by the reduction of production costs, the augmentation of 

the installations profitability, and the creation of innovative products by guaranteeing staff 

and equipments security, and by respecting the regulations in terms of environmental 

requirements. The development of solutions capable of improving the production systems 

performances is then necessary in order to maintain the production sites survival at the heart 

of the developed countries [1]. Industry is one of the engines of the economic development of 

a country. 

 

The performance was always a major preoccupation of companies. Nowadays, its 

evaluation is not only a function of productivity but also of flexibility, costs, delays, quality, 

safety, social performances, environmental performances, etc. We have shifted then from a 

one-criterion-evaluation to a multi-criteria-evaluation that can extend the products complete 

life cycle. We speak then of global performances and long-lasting development. Maintenance 

is thus a strategic point in the competitiveness progress and improvement. Hence, 

maintenance knows nowadays a spectacular upswing. In fact, maintenance provides the 

possibility of exploiting enterprise resources in order to improve their performances by 

optimizing the utilization of human and material means. Since its beginning, maintenance has 

not ceased to progress and improve due to the emergence of Information and Communication 

Technologies (ICT) as well as due to the requirement and exigency imposed by the 

worldwide economic context. Maintenance has become a true discipline with its own 

methodologies and concepts. 

 

To make the classical strategies of maintenance more efficient and to take into 

account the evolving product state and environment, prognostic models need to be developed 

as a complement of existent maintenance strategies. When the maintenance strategy includes 

a prognostic function of the equipment remaining useful lifetime, we speak of Prognostics 

and Health Management (PHM), a domain from which has emerged the "PHM society". 
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The prognostic is a quite new area of interest, it is the ability to “predict and prevent” 

possible fault or system degradation before failures occur. Actually, If it is possible to predict 

the condition of machines and systems, maintenance actions can be taken ahead of time. As a 

result, minimum downtime can be achieved. Prognosis has been defined as “prediction of 

when a failure may occur” i.e. a means to calculate the Remaining Useful Lifetime (RUL) of 

an asset. In order to make a good and reliable prognosis it must have a good and reliable 

diagnosis. 

 

As a recent discipline, prognostic is a key sub-process for the proactive maintenance 

[2] for Maintaining systems in Operational Condition (MOC). The integration of a prognostic 

function in a proactive maintenance process allows in advance, guaranteeing to respond to the 

different tasks assigned to the system, and to prevent a functioning breakdown as well as 

expensive maintenance interventions.  Let us take for example a ship making journeys for 

several weeks; it is more appropriate to change an equipment or to embark good replacement 

equipments before starting the journey than to make a maintenance intervention on the other 

side of the planet [3].  

 

The systems major part (planes, ships, vehicles, petrochemical systems, etc.) presents 

a big complexity in terms of their hybrid character. The continuous aspect of the mechanical 

parts (degraded failure: fatigue for instance) is largely related to the discrete aspect of the 

electric and electronic parts (binary failure: On/Off). They are systems that contain a large 

number of variables having complex relationships; hence, they are called: complex systems. 

Whereas there exists nowadays for the domain of diagnostic instruments that integrate the 

notion of systems due to experience and methods acquired in the last decades.  

 

Few tools or very specific tools are available in the prognostic domain. Most of the 

publications on this topic present prognostic in the framework of an elementary system. The 

objective of diagnostic is to detect and to explain the occurrence of a system failure or 

breakdown whereas the objective of prognostic is to predict the future state of degradation of 

a system extrapolated from its current state. In the case of diagnostic we walk backward in 

time, whereas in the case of prognostic we walk forward in time, or in other words, we 

anticipate time.  

 



                                                                       3 
 

Moreover, predicting the remaining useful lifetime of industrial systems becomes an 

important aim for industrialists to overcome the occurrence of sudden failures that can lead to 

very expensive consequences. Then, the recent prognostic approaches try to compensate for 

the inconveniences emanating from classical maintenance strategies because they neglect the 

evolving product state and environment. The earlier recent developments in system design 

technology like in aerospace, defense, petro-chemical and automotive industry have the goal 

to ensure their high availability. 

 

In the Automatic meaning of the term, prognostic is generally associated with the 

notion of degradation which represents the accumulation of the system wear out. A 

prognostic consists of predicting the future evolution of degradation by taking into 

consideration the factors that modify the degradation dynamics. These factors can be 

subdivided into two categories: the factors linked to the solicitation of the system (road 

excitation in mm, gas pressure in MPa, etc.) and those linked to the environment in which the 

system evolves (humidity, temperature, soil pressure, etc.). Usually, the influence of these 

two components on degradation is not very well known or even totally ignored.  

 

Various methods have been applied to the prognostic of degraded components. 

Generally, they are classified in three fundamental families: 

 
- The approaches based on models (Model-based prognostics) 

- The approaches guided by data (Evolutionary or trending models) 

- The approaches based on probabilistic techniques (Experience-based prognostics) 

 

The model-based prognostic approach is very precise because it has mainly two 

advantages: the capacity of including the systems physical information and the capacity of re-

adaptation to any new information. The data-driven approach requires a large and reliable 

data sample in order to be accurate. The experience-based approach is well adapted to 

complex systems but requires an excellent historic data, large feedback and expert 

knowledge. The new prognostic procedure proposed in this work belongs to the first 

approach. 

 

This thesis is dedicated to the prognostic evaluation of dynamic systems. The work 

presented here aims at developing an advanced tool to treat the prognostic evaluation in linear 
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and nonlinear deterministic context in a first part as well as in the stochastic context in a 

second part. Our purpose is to prepare a general prognostic tool that can be capable of well 

predicting the RUL of a system based on an analytical damage accumulation law in either a 

deterministic or a stochastic context. 

 

Chapter I is devoted to a general prognostic state-of-the-art that encompasses the 

prognostic approaches existing in specialized literature. Chapter II defines the adopted 

damage criterion and damage accumulation then develops a recursive model expressed in 

terms of a degradation index based on a linear aspect of damage accumulation. In order to 

illustrate the presented methodology, the simulation of an automotive suspension system is 

considered. Then, a simulation of petrochemical pipelines is illustrated in three modes: 

unburied, buried, and offshore. Chapter III introduces a nonlinear model for damage 

accumulation followed by the same applications. Finally, Chapter IV expands the proposed 

deterministic paradigm to a stochastic domain. The two applications to suspensions and 

pipelines are considered in this final chapter. 
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I.1 - Introduction 

In the current chapter we present the evolution of maintenance in order to introduce 

the concept of intelligent maintenance and the role of Prognostics and Health Management 

during the system life cycle. It develops also the state of the art of prognostic approaches: 

model-based prognostic, data-based prognostic, and experience-based prognostic. This state 

of the art paves the way for the present work and contribution to this field. 

 

Whether in the domain of mechanics or in civil engineering or in electronics, the 

desire and the need to make a diagnostic as precise as it can be and to acquire real capacities 

of prognostic, exist since the first human exploitation of expensive and complex machines. 

This motivation led to a great number of scientific and industrial works in the purpose to 

develop and implement different levels of diagnostic and prognostic and hence to optimize 

maintenance strategies [1]. Maintenance activities have always existed. At the beginning, they 

consisted of an intervention after a system failure. But rapidly, the unpredicted and sometimes 

very long shutdowns, due to maintenance interventions, were found to be very expensive. 

Therefore more advanced maintenance strategies have evolved and were afterward developed. 

  
I.1.1 - Maintenance Evolution 

The different maintenance concepts can be classified into three big categories which 

are: corrective maintenance, preventive maintenance, and predictive maintenance. The 

corrective maintenance is the maintenance that intervenes after the occurrence of failure in the 

system, whereas the preventive maintenance is realized when the system is currently 

functioning [2]. It is important to note that corrective operations intervene only when a failure 

occurs, whereas preventive maintenance can be programmed in function of different 

parameters.  

 

Predictive Maintenance (PdM) techniques help determine the condition of in-service 

equipment in order to predict when maintenance should be performed. This approach offers 

cost savings over routine or time-based preventive maintenance, because tasks are performed 

only when warranted. The main value of Predicted Maintenance is to allow convenient 

scheduling of corrective maintenance, and to prevent unexpected equipment failures. The key 

is "the right information in the right time". By knowing which equipment needs maintenance, 

maintenance work can be better planned (spare parts, people etc.) and what would have been 

"unplanned stops" are transformed to shorter and fewer "planned stops", thus increasing plant 

http://en.wikipedia.org/wiki/Preventive_maintenance
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availability. Other advantages include increased equipment lifetime, increased plant safety, 

fewer accidents with negative impact on environment, and optimized spare parts handling. 

 

The concept of corrective maintenance has the goal of resetting the system to its 

normal functioning state after the occurrence of its failure. 

 

During the seventies, the concept of preventive maintenance has appeared, and it has 

the goal of reducing the probability of failure as well as to optimize the costs related to the 

system usage. One of the first used strategies was the systematic maintenance that consists of 

executing regular interventions at equal time intervals, following an a priori and well 

determined schedule. The optimization of such strategy consists of evaluating the operations 

periods albeit in preventing the system failure by following very frequent operations. The 

system availability is thus increased but financially this strategy remains not very rewarding 

and many studies have shown that the usage time is not the only factor leading to failure 

occurrence. The periodicity of interventions can be calculated in function of time or of the 

number of usage units (number of functioning cycles, number of kilometers, number of 

manufactured products, etc...). 

 

Since the eighties, due to the evolution of information resources, new maintenance 

strategies were born. Their principle consists of using real-time information in order to 

monitor continuously certain significant parameters of degradation or of system performance. 

We speak then of conditional maintenance. The interventions planning rely then on the 

existence and determination of the critical thresholds of these significant parameters; hence, 

we speak of decision thresholds. Thus, the predictive maintenance appears. It is subordinated 

to the analysis of the surveyed evolution of the significant parameters of degradation. The 

estimation of the output of this parameters monitoring, allows to delay or to speed up 

maintenance interventions. 

 

The conditional and predictive maintenances assume that the intervention will occur 

before the occurrence of the failure of the monitored system evolution. This is why, during the 

nineties, new methodologies, called proactive maintenance, were invented in order to monitor 

continuously not the system evolution but the evolution of primary causes of failure 

occurrences of the monitored system. 
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It is important to note that during the period of the evolution of maintenance 

strategies, we observe also a change in maintenance management. In fact, distant maintenance 

has rapidly evolved and advanced local maintenance due to communication networks. 

Following the Internet big bang, the concept of distant maintenance has transformed to e-

maintenance [3]: it is a concept that uses web services for a better cooperation among the 

different components of maintenance, for a better sharing of knowledge, and a follow up in 

real time of the system from anywhere around the world. The emergence of these concepts 

and the economic context allowed the enterprises to externalize this service by using 

specialized agents. 

 

I.1.2 - Maintenance Optimization 
The maintenance optimization consists of finding a middle point between preventive 

maintenance and corrective maintenance, all this by respecting fixed objectives. The 

maintenance interventions dates are then determined in a way to optimize a criterion reliant 

on maintenance cost, on equipments availability, as well as on security, or more on a 

compromise among the three of them. 
 

Moreover, if we have many ways of monitoring many financial resources, and if we 

replace very frequently the system equipments, then we will observe few failures. On the 

contrary, if we dispose few financial means, and we don't do the equipment maintenance, then 

we will observe a great number of failures. It seems evident that the failure costs are inversely 

proportional to the maintenance costs. In fact, the money saved due to less maintenance will 

be spent on the interventions for the system recovery in order to return to its normal state. The 

absence of system maintenance leads equally to system failures in chain. The sum of the costs 

of maintenance and failures represents the total cost to maintain the system functioning. An 

optimal maintenance is a maintenance that minimizes at the same time the costs related to 

systematic maintenance and the costs related to system recovery after a failure. This optimal 

maintenance can be attained by using a helping automated system to maintenance in order to 

identify the equipments that have to be maintained and sustained. 
 
This first analysis shows that there exists an increasing interest in intelligent 

maintenance in which surveillance occupies a fundamental place [4]. In the scientific 

community, principally in the Automatic and Artificial Intelligence communities, surveillance 

led and is still leading to a big number of research and works. These works have equally 

evolved with time, starting from a simple detection of a bad functioning, passing by failures 
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diagnostic and degradation diagnostic, and is oriented nowadays to prognostic and the 

prediction of degradation and failures. The following section presents the intelligent 

maintenance as well as the principal concepts and the notion of degradation for prognostic is 

then introduced, followed afterward by the state of the art of the known approaches to 

prognostic. At the end of this chapter, a summary of the different approaches is presented. 
 

I.2 - Intelligent Maintenance 
As we have already discussed in the previous paragraph, the maintenance function 

cannot be reduced to the sole activity of maintenance of a set of machines. It has also the task 

to intervene during the whole system exploitation cycle: the choice and the conception of the 

material, the determination of the maintenance plans, the organization and the logistic of the 

maintenance activities, the follow up and the analysis of the system evolution, the prediction 

of the system future evolution, etc. The intelligent maintenance differs from the traditional 

policies of maintenance which are based on a static threshold of alarm. The power of 

intelligent maintenance lies in the analysis and the follow up of the health of the equipments 

coming from a set of data inferred from the ERP (Enterprise Resource Planning), the MPAC 

(Management of Production Assisted by Computers), the MMAC (Management of 

Maintenance Assisted by Computers), or even from surveillance systems which are based on 

the measurements of physical variables provided by sensors. This dynamic follow up of the 

performances and of the system state of degradation requires the acquisition, the centralized 

management, the validation, and finally the analysis of the huge set of data of very different 

nature. 
 

Appearing at the beginning of the third millennium, the term Prognostic and Health 

Management (PHM) was defined as an approach that uses measurements, models and 

algorithms to detect failures, to evaluate the health and to predict the system degradation 

evolution [5]. The PHM is a sustaining approach during the whole system life cycle, and 

whose objective is to reduce, even also to eliminate the inspections of the system and the 

maintenance at regular intervals, by using monitoring and prediction instruments dedicated 

and related to the logistic chain of the system, leading hence to an unprecedented reactivity. 

Inheriting the principles of Condition Based Maintenance (CBM), the concept of PHM 

expands its capacities and proposes a robust framework for the optimization of maintenance 

and of the logistic in order to increase the operational availability of the system.  

 

 



 

10 
 

A modern tool of PHM can include a great number of functions [6] such as: 
 
- The detection and the isolation of failures 

- Advanced algorithms of diagnostic and prognostic 

- Algorithms of failures and degradation tolerance 

- Estimation of the remaining useful lifetime of an equipment 

- The follow up of the health and/or of the degradation of an equipment 

- The filtering: the alarms and information management by yielding the right  

   information to the right person at the right time 

- Helping algorithms to the decision making for the system management 

- Etc. 

 

The major part of these functions is the evolutions of the functions put in order in 

monitoring and diagnostic systems [7]. Based on the concepts of the management of 

equipments health, the tool of PHM uses these functions in a complementary way in order 

that they have a better impact on maintenance activity, rather than by using them each one 

alone. Even if each of these functions is developed and improved at the same time as the tool 

of PHM, the prognostic represents a new function which seems to be very difficult and even 

to be risky from a technological point of view [8]. In literature, the PHM approach of 

maintenance is usually represented by the cycle PHM [8,9].  

 

One of the main differences is the positioning of the diagnostic relatively to 

prognostic. The implementation of the PHM approach is done in two phases: 

 

- A first phase that has the objective of studying which factors act on the system health 

and how they influence it. This study allows determining which health indicators pertain for 

the considered system and to establish the adequate diagnostic and prognostic algorithms. 

- A second phase that consists in the integration and the implementation of the tools 

determined in the first phase. The first step is a step of signal processing in order to extract the 

system health indicators. These indicators are used by the step of monitoring to estimate the 

system current health state. The current health state serves then as a starting point for the 

diagnostic and prognostic algorithms whose corresponding goals are the isolation of failures 

and the prediction of the system health evolution. The outputs of these algorithms are used to 

adjust the plan of maintenance and/or to modify the system control parameters. We speak then 

of tolerance to failures or to degradation. 
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The Prognostic is currently one of the most difficult aspects in the PHM cycle as well 

as the aspect having the biggest potential in terms of reducing the costs of functioning and of 

logistic during the whole lifetime cycle of a complex system, even in terms of improving its 

availability and security [10]. With the advent of the prognostic techniques, we observe 

equally a change in the behavior of the industrialists who do not buy anymore nowadays a 

maintenance service but who buy an availability machine. 

 

I.3 - Degradation Prognostic 

I.3.1 - Degradation versus Prognostic 
Diagnostic and prognostic are two words of Greek origins. In the etymological sense, 

diagnostic is the acquisition of knowledge from observable signs, whereas prognostic is 

precognition or knowing in advance. In the automatic sense, the meaning of the two words is 

more precise and technical. Diagnostic consists in the regression in time in order to explain 

why the system is in a given state at instant t. Prognostic consists of anticipating in time in 

order to predict the system future state at the instant t + ∆t. Diagnostic and prognostic are two 

parallel processes that can be used complementarily or separately [1]. 
 
Diagnostic and prognostic remain intrinsically linked by the chain "causes-

consequences", as well as by the concepts that they manipulate to learn: defects, failures and 

degradations. These last concepts have in literature different definitions for different authors. 

We will use the following definitions [10]: 
 

- A fault is the deviation in behavior between an observed characteristic and a 

theoretical characteristic. 

- A failure is the inability of an equipment to accomplish its function. 

- A degradation is the wear out of the equipment, and the decrease of its 

  performances. 

 

Fault and failure are concepts that we qualify as discrete since they represent a state of 

the equipment, whereas degradation is a continuous concept that evolves during the 

equipment lifetime.     
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I.3.2 - Equipment Degradation Trajectory 
The Assurance In Functioning (AIF) is nowadays a discipline largely used in order to 

predict equipment failures. The component of this discipline dedicated to prediction is the 

reliability that characterizes the probability that an apparatus accomplishes a required function 

in given conditions, and during a given time [11]. The graphs of oriented states are a tool used 

by reliability experts in order to represent the evolution of equipments states. The nodes of the 

graph constitute the equipment states and the arcs represent the transition among states (figure 

1.1). 
           

 

 

 

 

 

 

 

 

 

 

 

 
 

     
Figure 1.1 - Diagnostic-Prognostic Chain of "Causes-Consequences". 

 
The state "New" represents the equipment newly coming from the factory. It is a phase 

whose objective is to eliminate the initial faults. Following this phase, the equipment is put in 

service and is integrated in a set in order to function in its nominal state. When the equipment 

reaches the end of its life, it passes to the state of fault. In the fault state, the equipment is still 

functioning but in a non-nominal way and with reduced performances, till it passes to the state 

of failure where it is no more functioning. When the equipment is in the state of fault or the 

state of failure, an operation of maintenance allows restoring the equipment nominal state 

(figure 1.2). 
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The reliability community has a discrete vision of the equipment life to the contrary of 

the automatic community of PHM that characterizes the life of an equipment by a continuous 

variable. The members of the automatic community consider that degradation is a process that 

evolves during the whole equipment lifetime till it attains a critical threshold of fault that 

leads to the state of failure. This variable is generally an indicator of health or of degradation 

of the equipment and that is normalized between 0 and 1 where degradation is the 

complement of the 1 of health. 

 

 

 

 

 

 

 

 

 

 

       

 

                              Progression of Degradation 
               
                    Figure 1.2 - Oriented Graph of the Equipment Life States 

 

A degradation trajectory is defined in a state space as the way followed by the 

degradation state, in function of the modes of equipment degradation. Most of the equipments 

have many modes of degradation, where each mode has a unique trajectory [5]. The objective 

of PHM tools is to follow and to update the real degradation trajectory of given equipment 

and to predict the evolution of this trajectory in function of the future usage of the equipment 

[12] (figure 1.3). 

 

In damage theory, there exist two types of degradation: isotropic and non-isotropic. 

The models of isotropic degradation are the simplest models of damage theory, where the 

nonlinear degradation behavior is represented by one internal variable [13]. This variable can 

be considered as a degradation indicator. In the case of non-isotropic degradation models, the 

nonlinear degradation behavior is represented by a tensor [14]. In the PHM approaches, we 

consider usually the isotropic models, because they are generally sufficient in order to achieve 
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a good prediction and measurement of the remaining useful lifetime of an equipment [15]. 

Each scientific discipline has its own proper models, but whatever the concerned 

phenomenon, the degradation trajectory emanating from these models, adopts either a linear, 

concave, or convex form (figure 1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
             
           Figure 1.3 - Estimated and Nominal Degradation Trajectory of an Equipment. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

                                       
                                  Figure 1.4 - Different Trends for Degradation Trajectory. 
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I.3.3 - Definition and Methodologies 
In literature, from one author to another, the definition of prognostic changes [16-21], 

but they all agree on one point: prognostic is a process encompassing a capacity of prediction. 

The main difference among the proposed definitions is the horizon on which this prediction is 

performed. For some authors, prognostic is the capacity to detect and isolate the newborn 

defects or even the elements leading to defects. For others, prognostic is the capacity to 

estimate the remaining useful lifetime (RUL) of an equipment in function of its functioning 

history and its future usage. The remaining lifetime is typically defined in terms of time, of 

charge cycle, or of mission [5]. In the first case, the horizon of prediction is the short term 

since the defect already exists, whereas in the second case, the horizon is the long term. The 

expression "predictive diagnostic" is more explicit in the first case [7]. 

 

Whatever the methodology used for prognostic or predictive diagnostic, the notion of 

degradation is an intrinsic element since it characterizes the equipment usage. The predictive 

diagnostic can be considered as being the diagnostic of a degradation state, where the 

degradation state is a sub-state of the equipment nominal state. A notion equally linked to 

prognostic is the notion of uncertainty since it is very difficult to predict the future in a sure 

and certain way [22]. 

 

The analysis of different methodologies of prognostic in literature allows us to put in 

evidence two principles of prognostic approaches. The difference between the two principles 

is situated at the level of usage of the degradation variables in a direct or indirect way. 

 

In the first principle of approach, where these variables are used, the process of 

prognostic is based on the concept of degradation trajectory. It consists of estimating the 

evolution of the trajectory from the available given data and to make this trajectory evolve in 

the future by using or not the future utilization conditions of the equipment. In the second 

principle of approach, we do not seek to know the level of the equipment degradation. It 

consists of estimating, then to extrapolate an indicator, such as for example the RUL, from the 

observations of the equipment output variables. 

 

The behavior of the equipment is represented by an input variable vector U, an output 

variable vector Y, and three functions that express: 
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Diagnose   Prognose   Sense   Decide   

 

- The evolution of the internal variables that characterizes the equipment dynamics, its 

behavior in function of the input variables, in function of its environment, and in function of 

its degradation state. 

- The evolution of the degradation variables. It is this evolution that defines the 

degradation trajectory of the equipment. It is conditioned by the usage of the equipment and 

characterized by its environment and its input variables as well as by the internal variables. 

- The output function that defines the output variables from the internal variables. The 

output variables are directly observable on the contrary to the internal variables. 
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Table 1.1 - Key Elements in the Prognosis Process. 

 

As indicated in table 1.1 [23], the fundamental goal of all of these approaches is to 

facilitate decisions based on better information  whether for mission planning in the field 

(over the short term), or sustainment at the depot (over the longer term). In fact, the optimum 

prognosis system is likely to be some combination of traditional data-driven methods and 

probabilistic mechanics methods. Thus, in many respects the above tools can be viewed as 

being complementary. 
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I.4 - Prognostic Definition  
The term prognostic founds its origin in the Greek word “progignôskein” which means 

“to know in advance”. Industrial Prognostic is called the prediction of a system’s lifetime and 

corresponds to the last level of the classification of damage detection methods introduced by 

[1]. Prognostic can also be defined as a probability measure: a way to quantify the chance that 

a machine operates without a fault or failure up to some future time. This "probabilistic 

prognostic value" is all the more an interesting indication as the fault or failure can have 

catastrophic consequences (e.g. nuclear power plant) and maintenance manager need to know 

if inspection intervals are appropriate. However, a small number of papers address this 

connotation for prognostic [24,25].  

 

Finally, although there are some divergences in literature, prognostic can be defined 

as: "prognostic is the estimation of time to failure and risk for one or more existing and future 

failure modes" [26]. In this connotation, prognostic is also called the "prediction of a system's 

lifetime" as it is a process whose objective is to predict the remaining useful life (RUL) before 

a failure occurs given the current machine condition and past operation profile [27]. The main 

steps defined in this standard are summarized in figure 1.5. 

 
 

The first step consists of monitoring the system by a set of sensors or inspections 

achieved by operators. The monitored data are then pre-processed in order to be used by the 

Diagnostic module. The output of this module identifies the actual operating mode. This state 

is then projected in the future, by using adequate tools, in order to predict the system’s future 

state. The intersection point between the value of each projected parameter or feature and its 

corresponding alarm threshold leads to what is known as RUL (Remaining Useful Life) of the 

system (figure 1.6). Finally, appropriate maintenance actions can be taken depending on the 

estimated RUL. These actions may aim at eliminating the origin of a failure which can lead 

the system to evolve to any critical failure mode, delaying the instant of a failure by some 

maintenance actions or simply stopping the system if this is judged necessary.  

 

Monitoring Diagnostic Prediction Posterior 
actions

                    Figure 1.5 - Summary of the ISO 13381-1: 2004 Standard Main Steps 
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Figure 1.6 - RUL Interval Definition. 

 

I.5 - The Role of Prognostic in Lifetime Process  
Each system or component of a system passes by three periods during its functioning 

life. The last phase during each system life represents the degradation period leading to failure 

by progressive deterioration. It is important to predict, at each instant, the remaining lifetime 

in order to prevent expensive defects and to avoid catastrophic failures.  

 

Prognostic is a process encompassing a capacity of prediction. It is the ability to 

estimate the remaining useful lifetime (RUL) of equipment in terms of its functioning history 

and its future usage. Predicting the RUL of industrial systems becomes currently an important 

aim for industrialists knowing that the failure, whose consequences are generally very 

expensive, can occur suddenly.  

 

The classical strategies of maintenance [8] based on a static threshold of alarm are no 

more efficient and practical because they do not take into consideration the instantaneous 

product functioning state. Adopting preventive systematic maintenance by frequent 

replacement to increase the system availability is an expensive strategy [28,29].  The 

introduction of a prognostic approach as an "intelligent" maintenance consists of the analysis, 

the health follow up and monitoring, based on physical measurements using sensors. 

 



 

19 
 

The RUL of a system in service can be expressed in hours of functionning, in 

Kilometers run or in cycles. If we can effectively predict the condition of machines and 

systems, maintenance actions can be taken ahead of time. Good and reliable prognosis needs 

good and reliable diagnosis. 

 

The science and technology of prognosis and structural health management offer the 

potential for significant enhancements in the safety, reliability and availability of high-value 

resources [30,31]. This concept is based on a closed-loop process whose successful 

implementation depends on the integration of several multi-disciplinary elements including 

[23]: 

1) Onboard sensing of operational parameters and material damage states;  

2) Diagnosing trends, fault conditions, and underlying damage;  

3) Predicting remaining useful life in terms of probability of failure and limits on 

reliable performance, 

4) And deciding upon appropriate courses of action: whenever or not the resource is 

capable of performing a given mission, or alternatively, is in need of inspection, maintenance, 

or replacement.  

 

I.6 - State-of-the-Art of the Prognostic Approaches  
Various approaches to prognostics have been developed that range in fidelity from 

simple historical failure rate models to high-fidelity physics-based models [32]. The required 

information (depending on the type of prognostics approach) include: engineering model and 

data, failure history, past operating conditions, current conditions, identified fault patterns, 

transitional failure trajectories, maintenance history, system degradation and failure modes.  

 

Putting at work a prognostic process consists of executing a set of treatment from 

input information. The different approaches of prognostic are grouped in function of their 

applicability as well as their economic yield. They are three families [20,32]: 

 

- The approaches based on models (Model-based prognostics) 

- The approaches guided by data (Evolutionary or trending models) 

- The approaches based on experience (Experience-based prognostics) 
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The pyramid reproduced in the figure 1.7 highlights the hierarchy of these different 

families. According to [33], making the choice of an approach family is done by answering 

two questions: 

 -  Is it possible to construct a physical model for the degradation mechanisms? 

 -  Is the instrumentation of the equipment sufficient in order to evaluate a degradation 

evolution indicator? 

 

If the answer to the first question is positive, the implementation of an approach based 

on physical models is considered. Moreover, if the answer to the second question is positive, 

an approach guided by data is possible. In the case where the answer to the two questions is 

negative then an approach based on expert knowledge and feedback is the best solution. A 

study realized on more than 100 publications in the field of prognostic [34] shows that in the 

industrial sector, the approaches guided by data and based on experience are the most 

implemented ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     
                                       Figure 1.7 - Prognostic Technical Approaches. 
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I.6.1 - Prognostic Based on Models     
This approach is also called model-driven or physical model. As its name indicates, 

this approach family uses models that can be of two different types [35,10]: 

 

- Model based on the equipments physics 

- Mathematical models constructed by experimentation 

 

This "Physical model" is based on mathematical description of degradation process 

and on its level evolution using NDI monitoring (Non-Destructive Inspection). It is described 

to be more flexible and precise than the two other approaches.  

 

The degradation is then considered as a continuous variable whose evolution is 

characterized by a deterministic or a stochastic law. The concept of these methodologies is to 

make the constructed model evolve till a wanted future instant, from an initial degradation 

state and the future usage of the equipment [36]. The equipment is considered as faulty when 

the degradation variable reaches a predefined threshold in the case of an isotropic model, or a 

predefined surface in the case of non-isotropic model. These models can be: nonlinear 

equations [37], models defined by expert analysis [38], or even by physical models of 

chemical corrosion [39], of mechanical fatigue [40], etc. 

 

For some equipments and critical structures, it is necessary to estimate the initiation 

and the crack propagation. The models based on crack propagation are interested in the 

problems dealing with material properties, and they have evidently an important interest in 

prognostic, but they are usually adapted for a real-time treatment due to their big 

computational complexity [8]. A technique, among others, capable of predicting the slope of 

increase and the directions of the crack, is the simulation by decomposition in finite elements. 

 

The decomposition in finite elements is used to study the behavior of an equipment in 

different disciplines such as thermodynamics, fluids mechanics, structures mechanics 

etc...The method of finite elements is based on the idea that a complex system can be 

subdivided into small parts called elements. Each element is completely defined by its 

geometry and its physical properties. The study of each element is then simpler than the study 

of the complete structure that they compose. Each element can be considered as a continuous 

part of the structure. The decomposition in finite elements converts a continuous structure into 

a system of algebraic equations or into ordinary differential equations. The solution of a 
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problem using the theory of finite elements invokes methods of research of simultaneous 

solutions to the reaction of each element to charges, to constraints, and to the interaction 

among the adjacent elements. An example of the application of this theory is the prognostic 

for a system of transmission of a helicopter; it is presented in [41]. 

 

The model-based methods assume that an accurate mathematical model can be 

constructed from first principles. This approach to prognostic requires specific failure 

mechanism knowledge and theory relevant to the monitored machine. The existing papers 

propose different model based solution for the industrial problems. Bartelmus and Zimroz 

[42] estimated through a demodulation process, the vibration signal for a planetary gearbox in 

good and bad conditions. Kacprzynski et al. [43] proposed fusing the physics of failure 

modeling with relevant diagnostic information for helicopter gear prognostic. 

 

Chelidze and Cusumano [44] proposed a general method for tracking the evolution of 

a hidden damage process given a situation where a slowly evolving damage process is related 

to a fast, directly observable dynamic system. Luo et al. [45] introduced an integrated 

prognostic process based on data from model-based simulations under nominal and degraded 

conditions. Oppenheimer and Loparo [46] applied a physical model for predicting the 

machine condition in combination with a fault strengths-to-life model, based on a crack 

growth law, to estimate the RUL. Adams [37] proposed to model damage accumulation in a 

structural dynamic system as first/second order nonlinear differential equations. Chelidze [47] 

modeled degradation as a "slow-time" process, which is coupled with a "fast-lime", 

observable subsystem. The model was used to track battery degradation (voltage) of a 

vibrating beam system.  

 

Li et al. [48] and [49] introduced two defect propagation models via failure 

mechanism modeling for RUL estimation of bearings. Ray and Tangirala [50] used a 

nonlinear stochastic model of fatigue crack dynamics for real-time computation of the time-

dependent damage rate and accumulation in mechanical structures. A different way of 

applying model-based approaches to prognostic is to derive the explicit relationship between 

the condition variables and the lifetimes (current lifetime and failure lifetime) via failure 

mechanism modeling. Two examples of research along this line are [51] for machines 

considered as energy processors subject to vibration monitoring and [52] for bearings with 

vibration monitoring. In [53] and [54] the problem of forecasting machine failure is illustrated 

for a high power fan bearing and a railroad diesel engine. Engel et al. [18] discussed some 
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practical issues regarding accuracy, precision and confidence of the RUL estimates. Lesieutre 

et al. [55] developed a hierarchical modeling approach for system simulation to assess the 

RUL.  

 

A first example is given by Chelidze who models the loss of tension (degradation) of a 

battery providing energy to an electromagnetic oscillator, by coupling two models [56,57]: 
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where x is an observable variable of the system state, φ  is an internal scalar variable related to 

the degradation, ε  represents the difference in time scale, 10 <<< ε . )(φµ  represents the 

variation of the battery characteristics in function of the degradation. Moreover, a Kalman 

filter is used to determine the current value )(~ tφ  in function of the observed measures. The 

estimation of the Time To Failure (TTF) denoted by TTFT  is then given by the solution of the 

equation [58]: 

                                                       )(φφ g=                                                                    (2) 

 

where g  is obtained by applying the concept of means to g. The model of degradation used 

for prognostic is then related to the original slow subsystem (1) by taking the mean on a long 

period of the field of vectors of g, hence the time to failure will be: 

 

                                           ∫=
limit

)(~ )(
φ

φ φ
φ

tTTF g
dT                                                               (3) 

with limitφ  is the critical value of degradation for which the battery is considered as unusable. 

 

A second example is the proposition of the generic methodology in the case of models 

with an application to a quarter of a vehicle suspension [59]. This used model is very close to 

the previous one: 
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where x is the system state vector, θ  is the degradation state vector, λ  is the system 

parameter vector in function of the degradation state, u is the system input vector, ε  is the 

time scale, y is the system output vector, and v is the measure noise. 

  

The generic methodology proposed for model based prognostic is reproduced in figure 

1.8 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 1.8 - Generic Methodology for the Model-Based Prognostic According to [60] 

 

 

 The first step consists of establishing a model using coupled differential equations (4). 

The second step is the simulation of the model obtained under different operating conditions. 

The input vector u is an uncertain element corresponding to inputted loading or excitation. It 
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vector) whose parameters are defined by the laws of probability. A Monte Carlo simulation is 

then executed for each operating mode. The result is a set of degradation trajectories. 

 

 During the simulation, in order to decouple the slow-time mode from the fast-time 

mode, the principle of the mean is used. That means that the state of degradation is computed 

at a fixed period before injecting it in the fast-time mode. The different trajectories obtained 

for the different functioning modes define the prognostic model. The degradation estimation 

step consists of defining a method of degradation observation or an image of degradation 

from the system measure vector y. The follow up step of degradation allows on one hand to 

determine the current value of the degradation state and on the other hand to construct a 

prediction model of the operating modes by using a tool such as Markov models. To finish, 

the prognostic is realized by projecting the degradation trajectory following the prediction 

model of the functioning mode established in the previous step, until the state of degradation 

reaches the limit threshold limitφ . 

  

The estimation of the degradation state is a key point in the success of the 

methodology but it remains very difficult due to the fact of the very weak degradation 

dynamics and due to the measurements noises. A method based on the use of observers of 

convergence in finite time in order to estimate the state of degradation of a model similar to 

(4), is presented in [61]. 

 

I.6.1.1 - Advantages and Drawbacks of the First Approach  
The main advantage of model based approaches is their ability to incorporate physical 

understanding of the monitored system [58]. In addition, in many situations, the changes in 

feature vector are closely related to model parameters and a functional mapping between the 

drifting parameters and the selected prognostic features can be established [58]. Moreover, if 

the understanding of the system degradation improves, the model can be adapted to increase 

its accuracy and to address subtle performance problems. Consequently, they can significantly 

outperform data-driven approaches (next section). But, this closed relation with a 

mathematical model may also be a strong weakness: it can be difficult, even impossible to 

catch the system's behavior. Further, some authors think that the monitoring and prognostic 

tools must evolve as the system does. 
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I.6.2 - Prognostic Guided by Data 
This approach is also called Data-driven or evolutionary or trending or estimation-

based approach or artificial intelligence. 

 

In certain cases, it happens that we dispose of a database containing the history of 

scenario degradation/failure represented by a set of time series. These bases are given without 

the use of a physical model of equipment behavior. The evolution of the degradation indicator 

is then realized with the help of a statistical method. Depending on the method used, three 

classes of approaches can be distinguished [32,62]:   

 
- The prognostic by trend analysis 

- The prognostic by learning 

- The prognostic by state estimation 

 

            The indicator or the indicators of degradation are primordial elements of prognostic 

driven by data. They are determined by a statistical calculation that quantifies the state of the 

equipment wear out. The multi-variables statistical techniques are powerful tools capable of 

compressing data and reducing their dimensions in a way that the essential information is 

maintained. They can also manipulate the noise and the correlation in order to extract 

information efficiently. The principle function of this type of techniques is, using a 

mathematical procedure, to transform a certain number of correlated variables into a smaller 

set of non-correlated variables [63]. 

 

The data-based approaches require that the information extracted from sensors be 

sufficient in quality and quantity in order to evaluate the current state or the image of the 

current state of the system degradation. 

 

The concept of this approach consists of collecting information and data from the 

system and projecting them in order to predict the future evolution of some parameters, 

descriptors or features, and thus, predict the possible probable faults. Without being 

exhaustive, mathematical tools used in this approach are mainly those used by the artificial 

intelligence community, namely: temporal prediction series, trend analysis techniques, 

neuronal networks, neuro-fuzzy systems, hidden Markov models and dynamic Bayesian 

networks [4,7,62].  
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The advantage of this approach is that, for a well monitored system, it is possible to 

predict the future evolution of degradation without any need of prior mathematical model of 

the degradation. However, the results obtained by this approach suffer from precision, and are 

sometimes considered as local ones (for the case of neural networks and neuro-fuzzy 

methods). In addition, the monitoring system must be well designed to insure acceptable 

prognostic results. 

 

The Data-driven approaches use real data gathered on-line with sensors or by operator 

measures to approximate and track features revealing the degradation of components and to 

forecast the global behavior of a system. Indeed, in many applications, measured input/output 

data is the major source for a deeper understanding of the system degradation. Data-driven 

approaches can be divided into two categories: artificial intelligence (AI) techniques (neural 

networks, fuzzy systems, decision trees, etc.), and statistical techniques (multivariate 

statistical methods, linear and quadratic discriminators, partial least squares, etc.) [4,7,62]. 

 

I.6.2.1 - Prognostic by Trend Analysis 
This type of approach is based on the derivation of the indicator of the degradation 

state from its normal functioning state. The tools used in order to put in work these 

approaches are the tools of prediction of time series and the models of multi-variables 

classification. The choice of a tool depends on the number of degradation indicators as well as 

on the number of modes of functioning identified. 

 

 The tool may be very simple like for example a linear regression. In this case, the n 

last points computed from the degradation indicator are used to estimate the coefficients of 

the affine function characterizing the indicator trend. Prognostic is then accomplished by the 

determination of the point of intersection of this function with the critical threshold of failure. 

The result of prognostic is then in this case, the time before equipment failure [44]. Based on 

the same principle, a predictive model of type ARMA (Auto Regressive with Mobile 

Average) can be used [64]. The parameters of this model are then updated in real time with 

the help of a least squares algorithm. The authors in [65] use a prediction method for the 

degradation state of a compressor. The tool used for this type of prognostic could be the 

Principle Components Analysis technique (PCA) or the linear and quadratic discrimination 

[66]. These tools can be also applied on temporal indicators or on frequency indicators [67]. 
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 Generally, this type of prognostic gives better results at the system level rather than at 

the equipment level since the system performances degradation is usually the result of the 

interaction of the different constituent equipments with degraded functioning [44]. The trend 

analysis and the indicator prevision can be also realized in function of the variables 

influencing the degradation [68]. 

 

I.6.2.2 - Prognostic by Learning 
 This type of prognostic uses principally techniques issued from machine learning and 

artificial intelligence. Currently, the principle techniques used are Artificial Neural Networks 

(ANN) [69]. An ANN is a tool, generally used for nonlinear models, that allows establishing a 

functional relation between an inputs vector and a desired outputs vector. The parameters of 

these models are adjusted in order to have optimal performances. Different techniques can be 

used to adjust these parameters such as the optimization technique. 

 

 The network is, firstly, trained by using data representing the evolution of degradation 

during the whole equipment lifetime, until a failure occurs. Afterward, the network is used to 

detect or predict an evolution of the degradation indicator using other data, always remaining 

in the same modes of functioning during the period of learning. The inputs of the network are 

generally the discrete values of the indicators from instant nkt −  till kt  and the outputs are: 

 

 - Either the current state of the equipment. In this case the network realizes a 

classification in order to know the input situation based on the learned situations. 

 - Or either the values of the degradation indicators at instant Tkt + . The network 

realizes then an extrapolation from the input situation. 

 

 In the domain of ANN, the Dynamic Wavelet Neural Networks (DWNN) are used. 

Their structure is of the form: 

 

                                        ( )nkkmkkk uuyyy −−+ = ,,,,,WNN1                                                 (5) 

 

with ku is the input vector and ky  is the output vector, m and n as being the number of inputs 

and outputs history vectors and which are kept in memory.  
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WNN is a neural network with static wavelets. It is then a recursive model that links in 

a dynamic way actual, old, and future data. This type of networks can be trained in function of 

time, by using algorithms which can be advanced ones such as the genetic algorithms [70], 

[71]. One of the principal advantages of this kind of networks is that the input vector can be 

made out of signals of different kinds and even of a mixture of temporal and frequency 

signals. This network was used for prognostic from the vibrations signals of a rotating 

machine [72] and also for the prediction of a crack evolution in a compressor. 

 

 Other forms of ANN can be also used [73,74] such as the recurrent networks of radial 

functions. An application for the prognostic of a gas oven is presented in [75]. A case study 

on the prognostic of the failure of the opening door system in an airport bus is described in 

[76]. 

 

 Since few years, other techniques such as the Relevance Vector Machine (RVM) 

algorithm have been used [77]. It allows the construction of a probabilistic model of a 

Bayesian form representing the generalized linear model in a form of function identical to the 

algorithm of Support Vectors Machine (SVM). The algorithm RVM considers a set of n given 

data { }ii yx ,  with [ ]ni ,1∈  and with x  a vector of dimension q associated with iy .  

 

The algorithm was initially defined in order to determine the probability 

( ) ( )2),(~| σxfNxyp  where 2σ  is the variance of the noise added to the data. The principle 

of the algorithm is to guess the underlying probability distribution that generates the data: 
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where φ  is a matrix containing the nucleus. The prediction function obtained then is of the 

form: 

                                            ( ) ( )∑
=

+=
n

i
ii xxxf

1
0, ωφω                                                       (7) 

 
with iω  as the weights associated with each support [78]. The key concept of the algorithm 

RVM for prognostic is its probabilistic interpretation of the output y. 
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 Other techniques like fuzzy logic can be equally used to complement the tools of 

machine learning for the prognostic of learning [79]. Fuzzy logic, particularly, allows the use 

of linguistic variables in the dynamic model in order to treat uncertainty that lies at the heart 

of the performance of a prognostic algorithm [80]. 

 

Within the field of maintenance problems, Artificial Neural Networks (ANNs) and 

neuro-fuzzy systems (NF) have successfully been used to support the detection, diagnostic 

and prediction processes, and research works emphasize the interest of using it 

[71,81,82,83,84]: ANNs and NFs are a general and flexible modeling tool, especially for 

prediction problems.  

 

I.6.2.3 - Prognostic by State Estimation 
  The approach by state estimation is usually used when a monitoring system by images 

and pattern recognition is already put at work on the equipment [85]. The form is, in this case, 

considered like an image of the equipment degradation. The goal of prognostic is then to 

predict the form evolution. Prognostic by state estimation assumes that the degradation 

evolution can be expressed by the following stochastic form of discrete time [8]: 
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where kx  is a vector containing the degradation state, and kω  and kν  are the parameters of 

the environment that influence the evolution of the degradation, they are non-Gaussian noises, 

kf  and kg  are functions, and kz  is a vector of degradation state. 

 

Like in the other prognostic approaches, the first step consists first of all in estimating 

the current vector kx , and then prognostic is done. Two cases are possible depending on the 

form of functions kf  and kg . 

 

  In the case where kf  and kg  are such that: 
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where 1−kA  is a matrix containing the model transition parameters, it is possible to predict the 

evolution of the sequence { }ikx +ˆ , [ ]ni ,1∈ , from the sequence of observations { }jx̂ , [ ]kj ,0∈ . 

This technique was applied on engines of continuous currents [86] and on gear systems when 

combined to fuzzy logic [87]. 

 

 If now kf  and kg  are nonlinear functions, it is possible to use a method based on 

particular filtering [80] that seeks to remove noise, to reduce data size by compression, and to 

smooth the resulting time series in order to identify their general patterns (velocity, 

acceleration, etc.), and this by using typical signal-processing algorithms (median filter and 

rectangular filter). The estimation of the current state is then given by the knowledge of 

process model and by the estimation of the previous state: 

 

                               ( ) ( ) ( )∫ −−−−− = 11,,1111,,1 ||| kkkkkkk dxzxpxxpzxp                          (10) 

 

The prediction of the degradation evolution from the estimation of the current state on 

a horizon q is given then by: 

 

                         ( ) ( ) ( )∫ ∏ −+

+

+=
−+ = 1,,

1
1,1,,1 ||| pkk

qk

kj
jjkkkqk dxzxpzxpzxp                          (11) 

 

 An example of fault anticipation with the help of particular filtering is a system 

composed of three curves and presented in [88]. Using the same principle, an application of 

time prediction before failure of a system having a crack, is achieved in [89]. 

 

I.6.2.4 - Advantages and Drawbacks of the Second Approach 
The strength of data-driven techniques is their ability to transform high-dimensional 

noisy data into lower dimensional information for diagnostic/prognostic decisions. AI 

techniques have been increasingly applied to machine prognostic and have shown improved 

performances over conventional approaches. 

 

In practice however, it isn't easy to apply AI techniques due to the lack of efficient 

procedures to obtain training data and specific knowledge. So far, most of the applications in 
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the literature just use experimental data for model training. Thus, data-driven approaches are 

highly-dependent on the quantity and quality of system operational data. 

 

 I.6.3 - Prognostic Based on Experience 

This approach is called experience based or probability based or statistical based 

prognostic approach. 

 

It is necessary where we cannot use the two previous approaches. It is based on a 

reliability function or on a Bayesian process where the parameters are taken from feedback 

experience or expert opinion. Its disadvantages are the incapacity to treat complex systems of 

many components and its exclusive binary principle (success/failure) rather than continuous 

states of degradation. 

 

When obtaining a physical model of an equipment is difficult and it is impossible to 

estimate degradation from the sensors installed on the equipment, prognostic based on 

experience can be the only alternative [32]. This form of prognostic is the less complex but 

requires an excellent feedback from experts in form of historical data, of knowledge base or 

of expert data. This expertise allows a stochastic or probabilistic modeling of degradation. It 

is the form the best adapted to complex systems that are very difficult to model physically and 

whose degradation indicators are sensitive to usage conditions [33]. 

 

This prognostic approach consists of using probabilistic or stochastic models of the 

degradation phenomenon, or of the life cycle of the components, by taking into account the 

data and knowledge accumulated by experience during the whole exploitation period of the 

industrial system.  

 

The probabilistic model can be a simple probability function or a modeling in the form 

of stochastic process. In this framework, the most used probability functions are: Weibull law, 

exponential law when the failure rate is supposed to be constant, and normal, log-normal and 

Poisson laws. The parameters of each law are estimated from the data gathered during the 

whole exploitation period of time (experience feedback, maintenance data, etc.). Stochastic 

process models can be Markovian or semi-Markovian. 

 

The experience-based models [62] are based on measurements taken from health 

monitoring of machine like for example those based on expert judgment, stochastic model, 
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Markovian process, Bayesian approach, Reliability analysis, Optimization of preventive 

maintenance, etc.). Their prognostic methodology proves to be simple but inflexible toward 

changes in system behavior and environment.  

 

I.6.3.1 - Stochastic Approach 
This type of approach is characterized by modeling the equipment life by a stochastic 

degradation process. The major part of the works in this field represents the degradation 

process by Markovian or semi-Markovian models [90,91]. The equipment passes then 

through different states of degradation. Prognostic consists of determining either the 

remaining useful lifetime, or the probable future state or states of the equipment in function of 

its current state if the process used is Markovian or in function of its state and of time spent in 

this state if the process is semi-Markovian. 
 

Figure 1.9 illustrates a semi-Markovian process. The set { } [ ]njd j ,1, ∈ , represents the 

different degradation states: 1d  no degradation, ... , nd  maximal degradation. The jip ,  

represent the transitions probabilities from state id  to state jd . The remaining useful lifetime 

of the equipment νT  is given by: 

 

                                                  ( )∑
=

=
n

j
jdDT

1
ν                                                             (12) 

 
with ( )jdD  is the duration associated with the state jd . The prognostic algorithm used is the 

following [92]: 

 

 - Obtain the transition probabilities matrix from a learning procedure. 

 - Determine the probability densities of the duration of each state jd . 

 - Identify the current state kd  of the equipment. 

 - Calculate the current remaining useful lifetime kRUL  from the remaining useful 

lifetime 1+kRUL  at next instant in terms of the transition probability between the two instants 

and the self-state probability.    

 

                           ( )( ) 11,1, +++ ++= kkkkkkkk RULpRULdDpRUL                                     (13) 
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Figure 1.9 - Prognostic Based on a Hidden Semi-Markovian Process. 

 

 The use of the semi-Markovian model is preferable compared to the Markovian model 

since, the latter, assumes that the characteristics of the degradation process cannot be 

modified gradually with time. Moreover, the previous models are insufficient in order to 

model the degradation process that takes into consideration factors of influence linked to the 

environment or the equipment use. To do so, it is necessary to use models of state change that 

take into consideration the influence of these factors. The state of these factors modifies the 

value of the evolution parameters of the degradation process model [33]. 

 

I.6.3.2 - Reliability Approach               
 This approach is based on a probabilistic modeling of the failure instant, of the 

equipment reliability. The reliability of an equipment group at an instant t is the probability of 

operating without failure during the period [ ]t,0 . Although it is represented by a temporal 

form, this definition remains valid with other units such as the kilometer or even the number 

of cycles of operation. The reliability function )(tR  of an equipment is determined from a 

large population of the same equipment. It is computed by: 

 

                               0,
elements ofnumber  Total

instant  at the lifein  elements ofNumber )( ≥∀= tttR                       (14) 

  

The function )(tR  allows, then, to define )(tf , the probability density of the variable 

T which represents the failure instant. The function dttf )(  characterizes thus the probability 

that the failure instant T is between t and t + dt. 
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There exists many standard distribution functions that allow to model )(tf . The 

mostly used is the Weibull distribution: 
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Where: 

β  is the form or shape parameter,  

η  the scale parameter,  

and γ  the shifting parameter function of time or location. 

 

We note that the curves of the Weibull distribution change in shape considerably for 

different values of the parameters, particularly the parameter β . If β =1, The Weibull 

distribution reduces to the exponential distribution. For values of 1>β   the curves become 

somewhat bell-shaped and resemble the Normal curves but display some skewness. 

 

Other distributions are equally used such as: the Poisson law or the Binomial law, the 

normal law, the exponential law, the gamma law, etc... 

 

 In the reliability approaches, prognostic is achieved with the help of the rate of failure 

)(tλ  that defines the conditional probability of the occurrence of a failure at instant t given 

that the device survived until instant t-1. In the case of a Weibull distribution, )(tλ is as 

follows: 
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 Experimental observation shows that )(tλ  has the form of a curve said bathtub curve 

reproduced in figure 1.10. The evolution of )(tλ  is generally decomposed into three periods: 

 

 - Youth symbolizes the precocious failures, in the case of a Weibull law: 1<β , 

 - Exploitation where the failure rate is almost constant, 1≈β , 

 - End of life, wear-out, where we observe the occurrence of failures, 1>β . 
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Figure 1.10 - The Bathtub Curve of Failure Rate versus Time. 

 

 In real usage conditions, reliability and degradation of an equipment are influenced by 

two sets of parameters [93]: 

 

 - The environment (temperature, humidity, etc), 

 - The mode of functioning (work load, state, etc). 

 

 In modeling point of view, the introduction of a vector )(tz  permits to take into 

consideration these two sets of parameters in the expression of )(tR  or )(tλ . In the first case, 

the deterioration process )(tR  is accelerated. We speak hence of an Accelerated Life Model 

(ALM) [94]: 

         
( ) 0,)()( )(

0 ≥∀= Ψ ttRtR tz                                             (18) 

 

In the second case, the rate of failure )(tλ  increases in function of usage conditions. 

We speak thus of Proportional Hazard Model (PHM) [95]: 

 

                                ( ) 0),()()( 0 ≥∀Ψ= tttzt λλ                                          (19) 

 

( ))(tzΨ  is a function of the vector )(tz . It represents the physical behavior that governs the 

degradation in terms of the environment and the mode of functioning of the equipment. )(0 tR  
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and )(0 tλ  are respectively the reliability and the rate of failure in the nominal usage 

conditions. 

 

 In the domain of the prediction of the reliability of electronic systems, a consortium of 

eight industrials of defense aeronautics, has developed a new methodology called FIDES 

(Fonds D'investissement pour le Développement Économique et Social) [96]. This 

methodology is based on taking into consideration three components: Technology, Process, 

and Usage. The usage considers the equipment employment constraints through the profile of 

the mission, by subdividing the mission into phases into which the constraints are constant. 

The objective of the FIDES models is to allow a realistic evaluation of the electronic 

equipments reliability including for the equipments that encounter severe environments. The 

general model is of the form [97]: 

 

                  ∑ ∏= onsContributi  ProcessonsContributi  Physicalequipmentλ                                (20) 

 

where the term Physical Contributions is an additive term that represents the physical and 

technological contribution to reliability such as: the type of materials used in the equipment 

construction. The term Process Contributions is a multiplicative term that represents the 

impact of the development process, of production and exploitation on reliability. This 

methodology gave birth to a guiding manual containing, for each electronic equipment, tables 

of the different factors that contribute to reliability. 

 

I.6.3.3 - Advantages and Drawbacks of the Third Approach 
The advantage of the methods of this approach is that it is not necessary to have 

complex mathematical models to do prognostic. Moreover, this approach is easy to apply on 

systems for which significant data are stored in a same standard that facilitates their use. For 

example, a company which has built during a long period of time a production and 

maintenance database with some minor rules and standards for data storing, can easily get the 

estimation of the parameters of the probability laws. 

 

However, the main drawback of this approach dwells in the amount of data needed to 

estimate the parameters of the used laws. Indeed, huge and significant amount of exploitation 

data are needed in order to determine parameters that model faithfully the degradation 

phenomenon or the life cycle of the concerned system. Consequently, this approach cannot be 

http://fr.wikipedia.org/wiki/Fonds_d%27investissement_pour_le_d%C3%A9veloppement_%C3%A9conomique_et_social
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applied in the case of new systems for which data from experience feedback do not exist. The 

other kind of problem is that in most cases, it is necessary to filter and pre-process the data to 

extract the useful ones, because the stored data are not always directly exploitable (for 

example, in the same company, two maintenance operators may enter in two different 

information or appreciations for the same resolved problem). 

 

I.6.4 - Methodology Based on Abaci of Degradation 

 Several prognostic studies are proposed and are based on abaci of degradation under a 

class of increasing functions without any analytic form like in the work of Peysson et al. [98]. 

Their approach belongs to the Data-driven family of prognostic approaches. 

 

The prognosis work of Peysson et al. on a vehicle suspension system was based on the 

abacus of degradation under a class function ℱ. We know that these functions are increasing. 

Figure 1.11 shows three modes of degradation relative to the three states of the road (very 

good condition in red, fair condition in blue, and severe condition in green).  

 

 

 

 

 

 

 

 

 

 
 

 

The degradation set 𝒟𝒟r is given by: { })(),(),( 3,12,11,1
1 τττ ∆∆∆=rD  (figure 1.12) . To 

obtain this set, the values of the following parameters must be calculated by:  
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       Figure 1.11 - The Three Modes of Degradation.                    Figure 1.12 - The Modelisation of the Abaci  
                                                                                                                              of Degradation.   
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Where, 

:x the operating time 

:y the degradation state,  with: ba yy <  

:e the deviation from extreme points : eyey −+ ;  

 

The results of the three modelisations for abaci of degradation are indicated in [98]. 

 

The values of the triplets ),,(and),,( bbbaaa eyxeyx for the three modes are called the 

abaci coefficients and are indicated in [98]. For the unique utilization profile 1,1u , the 

environmental variable (state of the road) is made discrete into three context conditions

{ }321 ,, ccc , shown in [98]. 

 

To analyze the trajectory of degradation of the resources, we take here the suspension 

as the only resource 𝓡𝓡, we consider a society of brake delivery equipped with two identical 

vehicles: veh1 and veh2. They make a weekly mission of the same duration (35 h) and of the 

same distance but with different road quality. They complete the same mission 𝓜𝓜 but they 

are subject to different environmental constraints (road state). The environmental sequences 

encountered by the two vehicles are respectively 1C  and 2C . The duration is expressed in 

hours by: 

 

                          (22) 

 

 

The analysis of degradation trajectory relative to the suspension resource of the two 

vehicles allows to better plan the maintenance of each vehicle in order to prevent failure and 

to increase the profitability. To estimate the time before suspensions failure, then the 

algorithm is executed while 1<D  (no failure case). The authors deduce in [98] the abaci 

curves and the degradation trajectories. 

 

According to the methodology of Peysson et al., the curve of each trajectory is given 

in terms of its use profile in function of the environmental context. The model can be simply 

modified to add some dynamics of degradation. The realized prevision allows us to determine 

the success of the mission. 
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This proposed approach can be treated by three different ways: 

 

- Firstly, before the mission, the analysis of the trajectory identifies the defective 

resources and it gives also the approximate availability time.  

- Secondly, after the mission, the necessary variables for the operating model are 

registered and stored during the mission in order to be treated, to analyze subsequently the 

degradation trajectories, and to know the mission impact on the system degradation. 

- Thirdly, during the mission, this way is the intersection between the two previous 

utilizations. The use during the mission allows readjusting the prevision in real time. The 

follow up of the degradation trajectories in real time and the correction of previsions can also 

be used as tools that help in decision making to minimize the resources of degradation.  

 

This methodology can also be used as a tool to understand the behavior of complex 

systems, in order to avoid strong degradations.  

 

Peysson et al. have concluded with an example of application using the GPS data. If 

we assume that the cartography GPS includes data on the state of the roads, then the GPS 

disposes meteorological previsions and is connected to the vehicle sensor.  

 

As the methodology of Peysson et al. is essentially based on expert systems, it is 

relying on the statistics of large measured data (as examples we can cite the works based on 

degradation behavior described by abaci and using expert description of system: Process-

Mission-Environment [12], the works based on artificial intelligence, machine learning [99], 

neural network [62], fuzzy logic [100], etc.).  

 

Their methodology based on abaci of degradation belongs to the Data-driven family of 

prognostic approaches. It is useful in many real cases (like the ship example where many 

internal and external parameters influence its mission). It is adequate when a huge number of 

data is necessary to be included into the prognostic process. 

 

I.7 - Summary 
We have presented in the previous sections a state of the art of the different 

approaches invented and applied for a prognostic function. Table 1.2 presents a comparative 

summary for a need of prognostic in the case of three families of approaches. We note that the 
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major part of the presented approaches apply for an elementary component of prognostic and 

remain difficult to use for a complex system. 

 

 In the approaches based on physical or mathematical models, the knowledge of the 

equations of the dynamic behavior of degradation makes their use very flexible. In case when 

the system properties or of degradation change, then the model parameters can be readjusted. 

But the development of such a model is very expensive because it is necessary to have a high 

level of qualification in order to master the mechanisms of equipment degradation. This type 

of model also presents computational difficulties during its simulation. 

 

 
                   Table 1.2 - Summary of the Three Prognostic Approaches [62] 
 

The approaches guided by data assume a reliable estimation of the state or the image 

of the current state of degradation in order to predict the future evolution of the system. The 

methods of trend analysis lack reactivity when facing a change in usage conditions. The 

efficiency of the learning methods is strongly linked to the sampling of data that serves to 

compute the model parameters. If an unlearned situation occurs, prognostic can be random. 

These methods based on state estimation require a model of the degradation indicator 

behavior and they are sensitive to the operating mode. 

 

Experience based prognostic, either the stochastic approach or the reliability approach, 

requires little expert knowledge of the degradation mechanisms. It remains easy to implement 

but it is not reactive when facing a change in the system operating mode. In fact, the models 

usually created and devised are considered as average models of many equipments. Although 

Prognostic accuracy  
                                     Experience-Based            Evolutionary                Physics-Based 
Engineering 
model 

Not required Beneficial Required 

Failure history Required Not required Beneficial 

Past operating 
conditions 

Beneficial Not required Required 

Current 
conditions 

Beneficial Required Required 

Identified fault 
pattern 

Not required Required Required 

Maintenance 
history 

Beneficial Not required Beneficial 

In general No sensors/no model Sensors/no model Sensors and model 
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many solutions were found in order to answer to the problem of reactivity, these models 

remain usually difficult to implement. In addition, the constructed models have only two 

states, a state of nominal operation and a state of failure and do not comprise a state of 

degraded operation. Many works were realized to increase the number of states and this by 

using Monte Carlo simulations, but computation time remains very long [101]. 

 

Facing this fact, [33] introduces a prognostic process based on the coupling of a 

probabilistic representation of the system state with an event representation of the surveillance 

of its components degradation. The process allows to predict the performance of the system at 

instant tt ∆+ , from the observation of the system current state at time instant t. The 

conception of the prognostic model takes place in four steps: 

 

- Knowledge formalization: this step consists of a functional analysis and a 

dysfunctional analysis (AMDEC and HAZOP) in order to determine two models. The 

operating model formalizes the operation of the system by using causal and qualitative 

relations, and relations among the different components. The dynamic model is based on the 

formalization of the set of the components degradation processes of the system by using 

Markovian processes. 

 

- Construction of the probabilistic behavioral model: this step consists of the 

integration of the operating model and of the dynamic model in a set of unique formalism: the 

Bayesian Dynamic Networks (BDN). This step is realized from the generic mechanism of 

construction. 

- Construction of the eventual model: This model formalizes the knowledge of the 

system current state, of its components, as well as its different actions of predicted 

maintenance. 

- Construction of the prognostic model: the model is constructed by coupling the two 

previous models. That means the integration of the eventual model in the probabilistic model, 

thus the result appears as a BDN. 

 

The realization of prognostic on a period of time, begins by updating the eventual 

model in function of the data issued from system monitoring. The integration of the eventual 

model in the prognostic model allows to initialize and to define a simulation scenario on that 

period of time. The simulation is then based on the temporal inference mechanism and on the 
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scenario defined by the maintenance operations. This methodology was applied on an 

experimental pressing system [97]. 

 

The advantage of this methodology is that it is applicable to a complex system and not 

only to one of its components, and prognostic is done in function of the maintenance actions. 

Hence, the prognostic model constructed does not take into consideration the modes of 

functioning to which the system is submitted.  

 

I.8 - Conclusion 
In this chapter a complete review of the prognostic approaches has been presented. 

The advantages and disadvantages of each of the three prognostic families have been also 

detailed. They show the great importance of these studies for the industrial systems.  

 

The methodology based on abaci of degradation was discussed and showed, as a 

consequence of this bibliographic study. 

 

For example, the main problem of the experience-based approach is that it cannot be 

applied in the case of new systems for which data from experience feedback do not exist. 

Also, the approaches guided by data lack reactivity when facing a change in usage conditions. 

When the approaches miss analytic forms like those based on abaci of degradation, they prove 

some inflexibility during application to various system behaviors. 

 

At the expense of cost, precision and accuracy are sought, thus the choice of a novel 

physical-based prognostic approach, based on a mathematical model of degradation, becomes 

an important goal in prognostic. Therefore, precise, useful, and elegant mathematical laws 

come to our help in the following chapters in order to achieve the goal of this thesis. Our 

proposed model is based on famous analytic laws of degradation like Paris-Erdogan's law 

which is a law of degradation by fatigue, and Palmgren-Miner's law which is a cumulative 

law of damage. Despite this fact, a long and complex analytical development will be made in 

the following chapters to achieve a novel degradation model as a tool for prognostic analysis. 

 

Whenever such analytic damage laws are available, the proposed approach permits to 

determine the Remaining Useful Lifetime (RUL) of the system.  
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II.1 - Introduction  
Predicting the remaining useful lifetime of industrial systems becomes currently an 

important aim for industrialists knowing that the failure which can occur suddenly is 

generally very expensive at the level of reparation, of production interruption, and is bad for 

reputation. The classical strategies of maintenance [1] are no more efficient and practical 

because they do not take into consideration the instantaneous evolving product state, so it is 

important to understand the product in real time in order to prevent a failure during operation. 

In fact, we introduce a prognostic approach that seeks to provide an intelligent maintenance. 

 

In specialized literature, several studies on prognostic procedure are presented, among 

them we mention, the model-based, statistic-based, and data-based models. The works based 

on abaci of degradation as in the work of Peysson et al. [2,3] are useful at this level. As the 

latter is related to the three influent components: process, mission, environment, it is a non-

analytic based model founded on expert knowledge and on a large database. 

 

A proposed analytic prognostic methodology based on some laws of damage in 

fracture mechanics is developed here. The damages are generally: crack propagation, 

corrosions, chloride attack, creep, excessive deformation and deflection, and damage 

accumulation. Whenever their analytic laws are available, the advantage of a prognostic 

approach based on a known damage law for a mechanical system is that it is adaptable to new 

situations and useful in determining the Remaining Useful Lifetime (RUL) of the system. 

 

The procedure proposed in this work belongs to the model based prognosis approach 

related to the physical model. It is focused on developing and implementing effective 

diagnostic and prognostic technologies with the ability to detect faults in the early stages of 

degradation. Early detection and analysis may lead to better prediction and end of life 

estimations by tracking and modeling the degradation process. The idea is to use these 

estimations to make accurate and precise prediction of the time to failure of components. 

Early detection also helps avoid catastrophic failures. 

 

Any prognostic methodology must lie on a type of damage. In mechanical systems, 

the damage can take many shapes. In this thesis, the case of fatigue degradation has been 
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chosen due to the fact that it can be mathematically formulated by available analytic laws 

such as Paris-Erdogan's and Palmgren-Miner's laws. 

 

This approach shows to be important in ensuring high availability of industrial 

systems, like in aerospace, defense, petro-chemistry and automobiles. Among these systems, 

the petrochemical industries can be cited as an example of prognostic importance for the 

reason of favorable economic and availability consequences on their exploitation cost [4]. 

 

Among petrochemical systems, pipelines serve to transport oil and natural gas 

between petrochemical plants. Their life prognostic is vital in this industry since their 

availability is crucial here. The main cause of failure for these systems is the fatigue due to 

internal pressure-depression variation along operating time. In pipelines study, the results of 

model simulations are done for three cases of pipes: unburied, buried, and offshore (under sea 

water). 

 

In automobile industry, like for example the suspension component, also this 

approach shows its importance for the same earlier reasons as it is explained later in this 

chapter. In vehicle suspension study the results of model simulations are done for three cases 

of road profile excitations. 

 

This chapter is organized as follows: first the mechanical model of fatigue is 

presented in the linear cumulative damage case then the prognostic model of fatigue failure is 

developed and finally a case study of pipelines system and vehicle suspensions is illustrated.  

 

II.2 - Proposed Prognostic Model 
The purpose of this thesis is to construct a process of prognostic capable of predicting 

the degradation trajectories of a complex system for a given mission under a given 

environment and starting from an initial known damage. The complex system is 

decomposable into sub-systems where each one 

can comprise a damage function. 
 
The fatigue failure is one of the famous 

damage phenomena in mechanical systems like 
 Figure 2.1 - Load fluctuation. 

 



56 
 

in aircraft where the wings are subject to the fluctuation of air pressure between a maximal 

value (σmax) and a minimal value (σmin) (figure 2.1) [5]. This type of loadings leads to crack 

propagation that can accelerate rapidly. Usually, micro-cracks exist originally in the materials 

due to fabrication process where stresses remain after manufacture. These micro-cracks are 

detected and measured and denoted by a0. 

 

The advantage of the choice of fatigue damage for the developed prognostic 

methodology is that it is a failure mechanism very well studied in literature and described 

under many known analytic laws. This mechanism has relatively the simplest formulation in 

comparison to the other damage phenomena. The fatigue characterizes the main failure cause 

of industrial equipments. 
  

II.2.1 - Damage Evolution Law 

The fatigue of materials under cyclic loading creates micro-cracks. Starting from an 

initial length 0a corresponding to an initial cycle number N0, the macro-cracks become 

detectable and unstable. These macro-cracks will grow under loading cycles N to a critical 

length aC reached at NC cycles and creating thus fractures that lead to failure. This evolution 

is represented in figure 2.2 in terms of normalized number of cycles N/NC for simplicity of 

reading. 

 

 

 

                             

 

 

 

 

                                                    Figure 2.2 - Pre-Crack fatigue damage. 

It can be assumed that 8/eaC = , where e and 𝓁𝓁 are respectively the device dimension 

in the crack direction and the perpendicular dimension to the crack direction (figure 2.3).  
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∆aN is the crack length increment due to a loading cycle dN. tN is the instant corresponding to 

cycle N and to crack length aN. 

 

 

 
          

 

 

 

 

 

 
 

    
  
 

Figure 2.3 - Crack length evolution. 

 

II.2.2 - Paris-Erdogan's Law 

The Paris-Erdogan's law [6] permits to determine the propagation rate of crack length 

a after its detection. The law of damage growth is given by equation (1): 

 

( ) )1(                                                                         mKC
dN
da

∆⋅=  

 
Where, 

C and m are the material and environment parameters. (0 < C << 1); (2 ≤ m ≤ 4); 

a is the crack length, N is the number of cycles (where the RUL is derived directly), and ΔK 

is the stress intensity factor. 

 

It can be distinguished (figure 2.4): 

- The long cracks that obey to Paris-Erdogan's law 

- The short cracks that serve to decrease the speed of propagation 

- The short physical cracks that serve to increase the speed of propagation. 
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The law can be written also as: 

 

 
 

 

 

 

 

 

 

 
   
 

 
 
 

 

                                Figure 2.4 - The three phases of crack growth, Paris-Erdogan's law. 

From the general form of Paris-Erdogan's law, McEvily A.J. and Ritchie R.O. [7] 

have proven the following form (equation 3): 

( ) ( ) (3)                                                                          m
max

m
eff KKC

dN
da

⋅∆⋅=  

Where opmaxeff KKK −=∆ , 

maxK : maximum stress intensity factor, 

opK : stress intensity factor required to open the fatigue crack. 

So the decoupled form where two different functions of crack length a and of load P 

can be deduced: 

( ) (4)                                                              )( 21 PaC
dN
da φφ ⋅⋅=  

 
Where, 

The function: ( )maaYa πφ ⋅= )()(1  

and the load function max
m KPPP == ;)()(2φ   ; 

( ) (2)                                                    logloglog KmC
dN
da

∆+=







     Phase I 
Low speed of 
 propagation 

 
 

Phase II 
       Stable      
  propagation 

 
 

Phase III 
High speed of 
propagation 
 
 

( )mKCdNda ∆=/  

http://upload.wikimedia.org/wikipedia/commons/f/f7/ParisLaw.png
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with Y(a): the geometric factor function of the body dimensions,  

and P : the load parameter. 

 

The Palmgren-Miner's rule can be used now to count the damages [8].  

 
II.2.3 - Palmgren-Miner's Rule    

The Palmgren-Miner's rule [8] serves to compute the cumulative damage di of 

different stresses levels σi  (i=1, i=2, ... , i=k) applied for ni cycles. Knowing that Ni is the 

total cycle's number of stress σi to be applied, and that lead to failure. The linear cumulative 

damage relative to applied stresses (i=1 to k) is given by (5) (figure 2.5): 
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                             Figure 2.5 - Palmgren-Miner's linear rule of damage. 

 

II.2.4 - WÖhler's Curve 

In material fatigue, it is important to know the critical level of applied stresses. When 

repeated stresses σ(t) are applied along the time under cyclic model, they are limited between 

two extreme values σmax and σmin. WÖhler's curve governs the relation between the applied 

stress levels σ and the critical number of cycles NC during the fatigue process of the material 

(figures 2.6 & 2.7). For example, if the equipment is loaded by a stress level σ1 then the 

critical cycle number is NC1. Each stress level has its own critical cycle number. 
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                                          Figure 2.6 - Cyclic applied stresses. 

 
The stress range: ∆σ = σmax - σmin 

The stress amplitude: ∆σ/2 

The stress mean: 
2

minmax σσσ +
=

 
 
 
 

 
        
 
 
 
 
 
 
 
                                        Figure 2.7 - WÖhler's curve of fatigue. 

 

II.2.5 - Stress Intensity Factor 

The stress intensity factor is an important term in Paris' law expression; it represents 

the effect of stress concentration in the presence of a flat crack. When a flat crack occurs in 

the system body, the internal stresses in this section change from a uniform to a non-uniform 

distribution around the crack (figure 2.8). This change is expressed by a factor KI called the 

stress intensity factor [9,10] given, for mode-I crack opening (mode I: the crack opening is in 

the same direction of applied stresses), by (6): 
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                                    Figure 2.8 - Non-uniform stress distribution near crack. 

 

II.2.6 - Additivity Rule in Palmgren-Miner's Rule.  

The case where damage is caused by fatigue is an important application of the 

additivity rule [11,12]. In this case the measurement of damage is the length of the fatigue 

crack. The additivity rule in Palmgren-Miner's rule [8] has been proposed as an empirical rule 

in case of damage due to fatigue controlled by crack propagation. The rule states that in a 

fatigue test at a constant stress amplitude ∆σi , damage could be considered to accumulate 

linearly with the number of cycles. Accordingly, if at a stress amplitude ∆σ1 the component 

has N1 cycles of life, which correspond to amount of damage aC, after ∆n1 cycles at a stress 

amplitude ∆σ1, the amount of damage will be (∆n1/ N1) aC. After ∆n2 stress cycles spent at a 

stress amplitude ∆σ2, characterized by a total life of N2 cycles, the amount of damage will be 

(∆n2/ N2) aC, etc. 

 

Failure occurs when, at a certain amplitude ∆σM , the sum of partial amounts of 

damage attains the amount aC , i.e. when  
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As a result, the analytical expression of the Palmgren-Miner's rule becomes: 
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Where Ni is the number of cycles needed to reach the specified amount of damage aC 

at constant stress amplitude ∆σi. 

The Palmgren-Miner's rule is central to reliability calculations yet no comments are 

made whether it is compatible with the damage development laws characterizing the different 

stages of fatigue crack growth. The necessary and sufficient condition for validity of the 

empirical Palmgren-Miner's rule is the possibility of factorizing the rate of damage as a 

function of the amount of accumulated damage a and the stress or strain amplitude ∆p:                                              

(9)                                                       )()()( pGaF
dN

Nda
∆⋅=  

The theoretical derivation of the Palmgren-Miner's rule can be found in Todinov [11]. 

A widely used fatigue crack growth model is the Paris-Erdogan's power law given by: 

                                                                                                  

( ) )1(                                                            )(              mKC
dN

Nda
∆⋅=  

Where,  

aaYK πσ ⋅∆⋅=∆ )(  : is the stress intensity factor range; C and m are material constants and 

Y(a) is a parameter which can be presented as a function of the amount of damage a.  

Clearly, the Paris-Erdogan's fatigue crack growth law can be factorized as in the 

previous stated equation and therefore it is compatible with the Palmgren-Miner's rule. In the 

cases where this factorization is impossible, the Palmgren-Miner's rule does not hold. Such 

as, for example, the fatigue crack growth law given by (10):                                            
 

(10)                                                     )(  DaB
dN

Nda
−⋅∆⋅= βγ  

discussed by Miller [11], who characterises physically small cracks.  
 
In the equation above: 

B and β are material constants,  

∆γ is the applied shear strain range, 

a is the crack length at cycle N, 

D is a threshold value. 
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Thus, following what has been said, the proposed model can use the additivity 

characteristic of Paris' law. 

 

II.2.7 - Maintenance and Diagnostic/Prognostic  

It is proved that the schedule-based inspection/maintenance NDI (Non Destructive 

Inspection) is less beneficial than the on-demand (or continuous) inspection with permanently 

installed sensors/condition based maintenance SHM (Structural Health Monitoring) for many 

reasons like the increased availability, quick assessment of potential/actual damage events, 

increasing safety, and performance of advanced materials. 

But the major technical challenges for SHM reside in the sensors. The monitoring 

should be directed to the detection of the cracks and corrosion, the multiple damage modes, 

the pre-crack fatigue damage, and the account for residual stresses. 

We can say that the NDI leads to prognostics based on the followings: 

-   NDI performed at the time of fabrication and as in-service inspections 

-   Condition based maintenance-active component monitoring 

- Move from diagnosis to prediction of remaining life and structural health 

monitoring/management. 

-   Prognostics (for machinery) is the prediction of a remaining safe or service life, based on 

an analysis of the system or material condition, stressors and degradation phenomena. 

 
For example, bearing crack faults may be prognosed by examining and predicting 

their vibration signals. 

 

The relation between maintenance and prognostic is summarized by figure 2.9. 

 
 
 
 
 
 
 
 
                                        Figure 2.9 - Diagnostic-Prognostic-Maintenance  
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II.2.7.1 - Flowchart of Various Components of Diagnostic/Prognostic/Maintenance    
             Process 
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II.2.7.2 - Cycle of Prognostic-Diagnostic-Maintenance 
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II.2.8 - Accumulation of Fatigue Damage 

In fatigue damage, to study the prognosis of a degraded component, our idea is to 

predict and estimate the end of life of an equipment component subject to fatigue by tracking 

and modeling the corresponding degradation function. To facilitate the analysis, it is 

convenient to adopt a normalized damage measurement [ ]1,0∈D  by using the advantage of 

the cumulative damage law of Palmgren-Miner (figure 2.5). In fact, this law helps estimate 

the lifetime of components subject to load cycles, it considers that the damage fraction id  at 

stress level iσ  is the ratio of in  over the total cycle number iN  producing the failure. 

 

For a body of equipment of thickness e, take the initial crack length as a0 (a0 ≤ a ≤ 

aC). Knowing that 1.01 ≤ e/a ≤ 10 and e/aC = 8, from (1) a recurrent form of crack length 

growth a can be deduced as [4]:  
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Where, 

ni  is the damage increment due to stress number i 

Ni is the total damage for stress number i 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Then, the cumulated total damage at cycle N is given by (12): 
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It can be easily proved that: 
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  Figure 2.10 - Cumulative stress levels.
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A recurrent form of degradation can be deduced as follows: 
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Hence, the new prognostic analytic model is presented by the general function given 

by (14): 

 
                     
  
 
 
 
And therefore, the degradation trajectories D(N) along the total number of loading cycles N 

can be drawn [13].  
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II.2.9 - Flowchart of the Prognostic Model 

The following flowchart summarizes all the procedures of the proposed model [14]: 
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II.2.10 - Environment Effects in the Proposed Prognostic Model 

The environment effects are taken into account through two parameters C and m. 

These parameters are related to the material in its environment. 

Large values of m (m>40) correspond to the case of brittle materials (brittle failure), 

and small values of m (m→2) correspond to the case of ductile materials (m = 2 fully plastic). 

Otherwise for fatigue failure the range value of m is: 2 ≤ m ≤ 3. The parameter m depends 

mainly on the specimen length. For lower toughness steels m is greater than or equal to 3 

[15]. 

Coefficient C is affected by the edges and consequently its value depends on whether 

it is the case of a plane stress or a plane strain. However, for the case of an infinite equipment 

body and far from the edge effects, the coefficient C takes a constant value [16]. 

C and m depend on the testing conditions, such as loading ratio σmin/σmax, on the 

geometry and size of the specimen, and on the initial crack length. 

These two parameters govern the behavior of the material during the fatigue process 

through the crack propagation. The environment influencing parameters on this process like 

temperature, humidity, geometry dimensions, material nature, water action, soil action, 

applied load location, body shape, are also represented by these two parameters C and m. 

These two parameters are evaluated by the mean of experiments in true conditions. 

Examples [15,16]:      C = 5.2.10-13 (free air)  

                                            C =1.3.10-14 (under soil)  

                                            C = 2.10-11 (offshore)  

                                            and m = 3 (metal). 
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II.3 - Application of the Prognostic Method to Industrial Systems 
To illustrate the proposed new analytic approach, it will be applied in this section to 

two important mechanical systems which are: the pipelines system in petrochemical industry 

and the suspensions in automotive industry. The prognostic studies of these two fields of 

industry are essential for economy reasons. 

II.3.1 - Vehicle Suspension Fatigue Life 

Fatigue analysis of a vehicle suspension (figure 2.11) by finite elements models was 

done in many works [17] beside the experimental results. It permits to define the location of 

potential fatigue cracks. The 

major feature of local strain 

fatigue lives to crack 

initiation. The original 

theories were developed for 

uniaxial stress conditions, and 

later, to eliminate the errors 

due to the simplified uniaxial 

conditions. 

 

It was proposed in literature [18,19] that for high cycle fatigue successful life 

estimates for biaxial stress conditions could be made using combinations of axial and shear 

stresses. 

 

There is much experimental 

evidence from fatigue testing carried 

out in the middle of the last century 

showing that stress gradients has an 

important effect on the total fatigue 

life of a component. Stress gradients 

have also been used in an attempt to 

explain the effect of notch 

sensitivity.  

 

  Figure 2.11 - Vehicle suspension system. 
 

Figure 2.12 - Relationship between endurance limit stress σe and 
                  the stress concentration factor Kt [13]. 
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Finite element analysis provides surface strains on the model but for real engineering 

components it is very difficult to determine the stress concentration factor at a notch (figure 

2.12). 

 

The stress concentration factor is the same as the stress intensity factor explained in 

paragraph II.2.5. 

 

The endurance limit stress is the stress level for which the critical number of loading 

cycles tends to infinity (refer to paragraph II.2.4). 
 
 
 
Where, 

σe is the smooth specimen endurance 

limit stress, 

Sth is the threshold stress for non-

propagation cracks, i.e. below Sth fatigue 

is not influent and Se= Sth 

 

Kt is the stress concentration factor, 

 

 
 

 

and we have:         Kt = .
specimen notched a oflimit   Endurance
specimen freenotch  a oflimit   Endurance  

 

The endurance limits [19] are obtained from standard rotating beam experiments 

carried out under certain specific conditions. It is given by:   Se = σe/ Kt. 

 

As the stress concentration factor increases, and that for many ductile metals, a 

minimum value of fatigue limit stress occurs and is Sth. Further increasing the stress 

concentration factor by sharpening the notch produces no further reduction in fatigue strength 

(figure 2.13). 

 

Figure 2.13 - Relationship between endurance limit stress σe and the  
          stress concentration factor Kt for crack initiation and total life. 
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The parts forming the vehicle suspension are indicated in figure 2.14 where the 

damper's element can be seen. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                      

 

                                   Figure 2.14 - Vehicle suspension components and crack possible location 

 
Using test data on plate and round bar specimens in aluminum alloy and steel 

materials have shown that if fatigue life to first crack initiation is considered, then the fatigue 

strength reduces with increasing stress concentration with no limiting value (figure 2.15). 

 

Many works [20,21,22] have shown that the constant amplitude endurance limit does 

not apply to the analysis of real service loading if some cycles in the loading exceed the 

constant amplitude endurance limit stress amplitude. For finite life design the larger cycles in 

the loading cause the endurance limit stress to be reduced significantly, with the result that 

small cycles contribute to the fatigue damage process. 

 

Figure 2.15 below [21] shows the results of strain-controlled constant amplitude tests 

on an aluminum alloy at high temperature. The Finite Element calculation made by the 

software SAFE (FE-SAFE) from an elastic Finite Element Analysis (FEA) shows excellent 

correlation for high cycle fatigue. For low cycle fatigue, at 1000 cycles the calculated fatigue 

life is conservative by a factor of 3. This is a commonly observed phenomenon at such low 

fatigue lives in components where yielding occurs across the entire section. For comparison, 

an elastic-plastic FEA analysis of the model was used as input into the FE-SAFE analysis, 

and the correlation with the test result was then excellent. 

Crack 
location in 
suspension 
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 Figure 2.15 - Comparison of test data with calculated lives from elastic and elastic-plastic FE analysis. 
 

This component was analyzed in FE-SAFE and compared with the results of fatigue 

testing. A scale factor was applied to the test loading to produce a failure. The correlation 

between the calculated life of 1631 repeats of the load history and the test life of 1650 repeats 

is extremely good.  

 
The steel component was analyzed [22] with a load-time history in one direction 

(figure 2.16). A scale factor was applied to produce a failure. The analysis used stresses from 

an elastic FEA; fatigue lives were calculated for each node on the model, using averaged 

nodal stresses. Experience has shown that this is much more accurate than using stresses at 

integration points or at the element centroid. 
 

          Figure 2.16 - Loading history for accelerated testing (left) and fatigue life contours (right).  
                               Test life: 1650 repeats of loading. Calculated life: 1631 repeats of loading. 
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In designing engine crank shafts (figure 2.16), the finite elements analysis is used to 

generate stress solutions. The FEA analysis shows that the principal stresses change their 

orientation and magnitude during the load cycle applied to the crank shaft. 

 

FE-SAFE uses the sequence of FEA analysis results to calculate the fatigue life at 

each node. FE-SAFE correctly identified the critical location in the crank shaft, using a 

Brown-Miller fatigue analysis, and correlated well with test results.  

 

A common theme from these validation exercises is that a uniaxial strain-life using 

the maximum principal stress can fail to identify the critical location, for components where 

biaxial stresses (Von-Mises) and particularly non-proportional stresses are present at the 

critical locations.  

 

In the computer-based fatigue analysis of the finite element model the type of loading 

depends very much on the customer's requirements. Some companies [22] specify a 

validation using simple sinusoidal loading, whereas other companies, such a Ford, require the 

application of measured time histories of vertical, braking and cornering forces on the tyre 

contact patch or wheel center (figure 2.17). At present, the test procedure uses a single 

actuator to apply the forces at the tyre contact patch, angled to produce a specific relationship 

between the three forces. FE-SAFE allows for different time histories to be applied in each 

direction, up to 4096 load histories of unlimited length. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                       
                                             Figure 2.17 - Application of force time histories. 



76 
 

II.3.1.1 - Types of Mechanical Effects, Their Mechanisms, and Possible Consequences 

The following flowchart describes the relationship between the sources, the 

mechanical effects and the consequences of various loading stresses [5]. 

 

Stressors    Ageing mechanisms             Consequences 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

II.3.1.2 - Automatic Diagnostic of a Bad Suspension Bushing  

Automobile suspension bushings come in a variety of shapes, sizes and thicknesses, 

according to their application. Bushings may be made from several materials, including 

rubber, polyurethane, urethane and graphite composites. Bushings prevent wear to expensive 

suspension components by absorbing vertical and lateral forces produced by the vehicle over 

different terrain. They cushion and absorb shock on the chassis to keep it shock from entering 

the passenger compartment. While absorbing these vibrations, they still allow limited 

movement and flex in the suspension joints, keeping the wheels firmly grounded and on track 

during turning manoeuvres. A vehicle's owner may check all its suspension bushings for 

proper shape and condition. 
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II.3.1.3 - Prognostic Study for Vehicle Suspension Systems 

 
Let us consider a half-vehicle 

suspension system (figure 2.18) subject to 

non-regular road surface excitations [23]. It is 

composed from a front part and a rear part. 

To study the prognostic of this system, it is 

important to define the mechanical model in 

order to conclude the output response from 

the input excitation road. 

 

 

The dynamic equations of the system  

are given by: 
 

xm  + (fca + fka) + (fcb + fkb) = 0  

θI  + al (fca + fka) – bl (fcb + fkb) = 0 

aa xm 22   – (fca + fka) + k2a( aa wx −2 ) = 0  

bb xm 22   – (fcb + fkb) + k2b( bb wx −2 ) = 0 

=x ( bl ax1 + al bx1 )/ l  , 
l

xx ba )(
tan 11 −

=θ≈θ  

 ba lll +=  

fci = ci( ii xx 21  − ),  bai ,=   

fki = k1i( ii xx 21 − ),  bai ,=    

 

Where,                                        

m : vehicle mass,    I : moment of inertia 

am2 : mass of front wheel,   bm2 : mass of rear wheel 

θ : rotary angle of vehicle,   x : vertical displacement 

:ic friction coefficient of dumping ( bai ,= ) 

fca , fcb: dumping force of the front/rear wheel 

fka , fkb: restoring force of the front/rear wheel 

Figure 2.18 - Vehicle suspension model 
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k1a , k1b: spring constants of the front/rear suspension                                               

k2a , k2b: spring constants of the front/rear wheel 

ba xx 22 , : vertical displacement of the front/rear wheel 

ba xx 11 , : displacement of the vehicle body at front/rear wheel 

al , bl  : distance of the front/rear suspension to center 

ba ww , : irregular excitations from the road surface  

(See figure 2.19) 

 
 
 
 
 
 
 
 
 
 

                                                    Figure 2.19 - Road profile excitation. 

 

II.3.1.4 - System Identification 

  The model parameters are given by the following numerical data [23]: 

 
                         m  = 1200 kg, I = 2100 kg.m2 

                         am2 = 30 kg,   bm2 = 25 kg 

                          cb = 4000 N/m/s,  ca = 5000 N/m/s 

                         k1a = 56000 N/m,  k1b = 42000 N/m 

                         k2a = k2b = 152 kN/m, al = 0.9 m,  bl = 1.2 m 

 
The matrix form of the previous equations is given by (15): 

 
(15)                                                         EuKzzNzM =++   

 

Where M is the mass matrix, N is the dumping coefficients matrix, and K is the 

stiffness matrix. 

)(2 aa wx
)(2 bb wx  
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The input excitation vector is: [ ]Tba wwu =  

The output damper displacement vector is:                

 
The vertical accelerations baba xxxx 2211 ,,,   are measured variables. The matrices 

KNM ,, , and E  are given by: 
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The state vectors (damper displacements and velocity) are: 

 

                   








=

)(
)(

tz
tz

x


         ,       







=

)(
)(

tz
tz

x





 

 

II.3.1.5 - Fatigue Damage Modeling of a Suspension 

     The modeling of the suspension damage begins by determining the stress intensity factor   

composed of the multiplication of two functions: 

 

 

 

Where, 

)(1 aφ is the crack length function determined in terms of a geometric function Y(a),  

)(2 jPφ  is the loading function.  

[ ]Tbbaa xxxxz 2121=

( ) ( )( ) ( ) (6)                                  )()( 21 j
m

max

mm
I PaaaYK φφσπ ⋅=⋅⋅=
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Assume that the front suspension of the system has a crack length a perpendicular to 

the exterior load (figure 2.20). 

 

 

 

 
 
 
 
 
 
 
 
 
 
                                 
                                     Figure 2.20 - Suspension fatigue crack modeling. 

 

Let m = 2 be the material constant, then:  

Therefore, by empirical measurements, the first function can be considered as given 

by [24] (16): 
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Where, 

:Na  the crack length at cycle N, 

:e  the width of the mechanical component of the suspension.  

 

Assume that the maximum of Na is:                                                                                                 [5]                                                                                                                

 We define   )    as(8
C0

0

aa
e
a

a
a

aa
aD N

C

N

C

N
N <<=≈

−
=  

We replace 





 =

81
N

N
eDaφ  in equation (13) and we get: 

 
(17)                                             )()( 2111 jNNN PDDD φφη ⋅⋅+= −−  

;
8
eaC =

aa xx 21 −  caka ff ,  

caka ff ,  

a  

e  

𝓁𝓁 

( )( )21 )( aaYa πφ ⋅=
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Knowing that jP  is the load parameter, and we have 2
2 )( j

m
jj PPP ==φ . Moreover, η  is a 

material constant and we have 610.8 −=η  [24].  

II.3.1.6 - Simulation of the Degradation Model  

We will simulate the degradation model by generating the load jP  of road profile 

[ ]Tba ww  [3] under the Gaussian Normal law for the three modes of roads (table 2.1). 

 

From the system of equations (15), the solution of this system of matrices gives the 

output vector z.  

 

Then, the range of the suspension displacement is given, for the front wheel, by (18): 

 
  

We take as mean value jx  and standard variation
jxσ , we obtain a set of  { }rx  for 

each road mode )3,2,1( =r , the load parameter is always jP . 

We have the recursive formula (19) in terms of crack length: 
 
 
 

With [25]: 
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The amplitude of the stresses developed in the suspension due to ∆x j is simplified by 

(21): 

 
 

Where, 
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6
0 10.8 ; )( ; 2 −=−⋅== ηη aaCm C

(21)                                                           


j
j

x
E

∆
×=∆σ

GPa) 200( material suspension  theof modulus sYoung' :

excitation profile roadunder  (dilation)length   thisof  variationthe:
mm) 500 ( device suspension  theoflength   the:

=

∆
=

EE
xj



(18)                                                                           21
j
a

j
aj xxx −=∆



82 
 

Therefore, the recursive expression of the crack length for the suspension model is 

given by: 

 
 

 
 

 

From the equation 
0aa

aD
C

N
N −
= , the recursive expression of the degradation 

indicator for the suspension model becomes: 

 

II.3.1.7 - Simulation of Three Road Profiles 

 
To take into account various state of roads, we consider three different types of roads 

which are: severe, fair, and good. In the following table, we indicate the statistical 

characteristics of each type of roads. 

 
Table 2.1 - Statistical characteristics of each mode of roads 

 
 
 
 
 
 
 
 
 

 

 

The parabolic road profile for T = 2 seconds of a vehicle circulation time as a 

recurrent interval is considered. And this interval is repeated as needed until reaching the 

failure (DC = 1).  Figure 2.21 illustrates the road profile: 

 
 
 

Road 
 Mode 

Mean of ∆ jx  

( jx∆  in mm) 

Coefficient of 
Variation of 

jx∆  in  % 

Standard  
Deviation 
(in mm) 

Law 

Severe 
(mode 1)  

 100      15% 15 Normal 

Fair 
(mode 2) 

50      10% 5 Normal 

Good 
(mode 3) 

25     5% 1.25 Normal 
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                                                Figure 2.21 - Simulated road profile 
 

 

Each interval shows that the road profile contains a symmetric curve of width T/8 = 

0.25(s) with a peak value followed by a horizontal run of zero amplitude. 

 

II.3.1.8 - Simulation Results   

The prognostic study of a suspension is realized through the degradation simulation 

(equation 23). The methodology is composed of two parts: 

 

• In the first part, the simulation of the road profile for the three modes (severe, fair, and 

good) (table 2.1) is done using the Normal law from which ∆x and ∆σ are deduced.  

• In the second part, the crack length aN is cumulated at each cycle N (equation 22).  

 
The resulting curves D(N) are represented in the following three figures: 

 
 

jx∆  

Road profile ∆xj 

T (s) T (s) T (s) 

Time  t 
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Figure 2.22 - Degradation trajectory for the road with mode 1 profile. 
 

In mode 1 case (Severe), it is noted that (figure 2.22) for N = 6,836,000 cycles, the 

degradation DN reaches the critical value DC = 1. The deduced lifetime of the suspension is 

6,836,000 cycles of road excitation in mode 1. Moreover, the first sign of damage appears at 

about 2,500,000 cycles. Starting from 6,000,000 cycles, the slope of the degradation curve 

becomes very acute; hence damage is increasing very fast. 

 
Figure 2.23 - Degradation trajectory for the road with mode 2 profile. 

 
In mode 2 case (Fair), it is noted that (figure 2.23) for N = 10,850,000 cycles, the 

degradation DN reaches the critical value DC = 1. The deduced lifetime of the suspension is 

10,850,000 cycles of road excitation in mode 2. Moreover, the first sign of damage appears at 
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about 4,000,000 cycles. Starting from 10,000,000 cycles, the slope of the degradation curve 

becomes very acute; hence damage is increasing very fast. 

 
                                                     

Figure 2.24 - Degradation trajectory for the road with mode 3 profile. 
 

In mode 3 case (Good), it is noted that (figure 2.24) for N = 17,222,000 cycles, the 

degradation DN reaches the critical value DC = 1. The deduced lifetime of the suspension is 

17,222,000 cycles of road excitation in mode 3. Moreover, the first sign of damage appears at 

about 6,200,000 cycles. Starting from 16,000,000 cycles, the slope of the degradation curve 

becomes very acute; hence damage is increasing very fast. 

 
In addition, figure 2.25 recapitulates the three previous figures. 

 
Figure 2.25 - Degradation trajectory for the three modes of roads profiles. 
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II.3.1.9 - Analysis of the Simulation Results   

The expectation of the lifetime for mode 1 is nearly 63% of that of mode 2 and the 

expectation of the lifetime for mode 2 is nearly 63% of mode 3 (figure 2.25). It can be 

noticed from the obtained results that the increase of the suspension lifetime relative to the 

road of mode 3 is as follows: mode (1)/mode (3) % 152≈  and mode (2)/mode (3) % 59≈ . 

 

From the above, the three expected lifetimes are as follows: NC1= 6,836,000 cycles; 

NC2=10,850,000 cycles; NC3=17,222,000 cycles. Then, our prognostic procedure yields the 

Remaining Useful Lifetimes (RUL) for the three modes (figure 2.26) that can now be easily 

deduced from these three curves at any instant or any active cycle N as follows: 

 
    For mode 1: RUL1(N) = NC1 - N ; 

    For mode 2: RUL2(N) = NC2 - N ; 

    For mode 3: RUL3(N) = NC3 - N ; 

 
 

 
 

      Figure 2.26 - Remaining Useful Lifetimes estimated by the prognostic model. 
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II.3.1.10 - Conversion of RUL into Years   

To convert the suspension lifetime into years' unit, knowing that each cycle duration 

is 2 seconds (refer to figure 2.21), then:  RUL(s) = 2 × RUL(N). We assume that the 

suspension time usage is 10% of a day, which corresponds to 2.4 hours/day. 

     
The conversions from Cycles to Km and to Years, for a vehicle running with 50 km 

per hour, are given by the following literal expressions: 

 

From Cycles to Km: 

)(Cycles/Km 36
Cycles)(RUL

r)60(min/hou60(s/min)
)50(Km/hours/Cycle)(2Cycles)(RULRUL(Km) =

×
××

=  

 
From Km to Years: 

)Km/Year( 800,43
RUL(Km)

ear)365(days/Ykm/hour)( 50day)2.4(hours/
Km)(RUL RUL(Years) =

××
=  

 
 
Therefore, the RUL results can be expressed by the following units: Cycles, or Km, or Years.   
 

 

Thus, the expected lifetimes' durations are:  

 

For mode 1 : years 34.4
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(000,836,6

=
×××

×
 

 

For mode 2 : years 88.6
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(000,850,10

=
×××

×
 

 

For mode 3 : years 92.10
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(000,222,17

=
×××

×
 

 

Moreover, the validation of these results can be found in the work of reference [26] on 

the fatigue life of suspensions. An average life of 200,000 km is deduced under severe 

conditions and which corresponds to 4.57 years for a vehicle running with 50 km per hour 

and for 2.4 hours per day.  
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II.3.2 - Prognostic Study for Pipelines Systems 

II.3.2.1 - Introduction  

Pipelines are petrochemical systems that serve to transport oil and natural gas between 

sites. Pipelines tubes are considered as a principal component in petrochemical industries, 

their life prognostic is vital in this industry since their 

availability has crucial consequences on the exploitation 

cost. The main failure cause for these systems is the fatigue 

due to internal pressure-depression variation along the time. 

 

These pipelines are usually designed for ultimate 

limits states (resistance). Moreover, buried pipelines are 

subject to corrosion due to soil aggression effects. They are 

manufactured as cylindrical tubes of radius R and of 

thickness e. 

 

The DNV 2000 rules propose for pipelines a target probability of failure about 10-5. 

Their main failures are due to seismic ground waves, soil settlements, buckling, 

deformations, internal and external corrosion, stress concentration in welding and fitting, 

vibration and resonance, pressure fluctuation over a long period. The fatigue failures by 

cracks propagation are detected by cracks detection tools.  

 

A significant part of main pipelines are subjected to external cracking, which is a 

serious problem for the pipeline industry like, for example, in Russia [27], U.S., and Canada 

[28]. Identification of external cracks is achieved using different Nondestructive Evaluation 

(NDE) methods. If cracks are revealed during inspection, their influence on the remaining 

useful lifetime (RUL) of the pipeline should be assessed in order to choose what maintenance 

action should be used: do nothing/repair/replace. Pipeline integrity is assessed on the 

assumption that some defects after In-Line Inspection (ILI) may be: still undetected; detected, 

but not measured; detected and measured. 

Three case studies of pipes are considered here: unburied, buried (figure 2.27) and 

subsea (offshore pipes). Each one of these situations requires different physical parameters 

like: corrosion, soil pressure and friction, water and atmospheric pressure.  

     Figure 2.27 - Buried pipes. 



89 
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II.3.2.2 - Pipes Stress Modeling 

The pipes are cylindrical thin tubes since their thickness e to radius ratio is [29]: 

e/R ≤ 1/10.  

 

 
 
 
 
 
 
                                                          

 
                                                       Figure 2.28 - Cylindrical pipelines. 

 

In this case, the stresses due to internal pressure P are of membranes types without 

any bending forces. The stresses are circumferential (hoop stress) θσ  and longitudinal (axial 

stress) Lσ  (figure 2.28). They are given by (24):  

 
 
 

 

The critical position of cracks is longitudinal which is perpendicular to the direction 

of maximal stresses θσ . The crack has a depth (or length) a measured in the thickness 

direction (figure 2.29). Generally, the following ratio interval can be considered: 0.1 ≤ a/e ≤ 

0.99 

 
 
 
 
 
 
 
 
 

 
 

Figure 2.29 - Cracked pipe section. 
 
 

We can illustrate all stresses types in a pipe body by the following figure (figure 

2.30): 
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                                     Figure 2.30 - Stresses types distribution in pipe body 
 

It is mentioned here that only the first mode of crack (K = KI) is considered, i.e. the 

opening mode (the other modes are sliding and tearing mode).  

 

II.3.2.3 - State of Stresses in the Tube Body 

The tubes are modeled as cylindrical shells of revolution. When thin tubes of radius R 

and of thickness e are under internal pressure P, the state of stresses is membrane-like 

without bending loads. The membrane stresses are circumferential (hoop stress) σθ and 

longitudinal stresses (axial stress) σL (figure 2.31).These stresses are given by (24). 

 
 
 

  
 

 
 
                                                                                       
 
 
 
 
 
 

Figure 2.31 - Axial and hoop stresses in pipes. 

 

The critical cracks are those which are perpendicular to maximal stresses σθ (figure 

2.32), that means longitudinal cracks which are parallel to the tube axis. A crack is of depth 

“a” or of length “a”, measured in the direction of the tube thickness “e = R2 - R1”. R2 is the 

external radius and R1 is the internal radius of the pipe. 
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Body external crack 
 Embedded crack 

 

Body internal crack 
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Figure 2.32 - Crack length in radial direction. 

 

II.3.2.4 - Stress Intensity Factor 

The stress intensity factor for tubes is given by [10]: 
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Where, 

Y(a) is the geometric factor function of the pipeline geometric parameters (a, e), 

ICK : is the tenacity of material (or critical stress intensity factor) and is given by: 

                           (27)                                                               
)(1 2ν−
⋅

=
EJK IC

IC        

Where, 

JIC  is the resistant crack force of the material; E is the Young's Modulus andν is the Poisson  

ratio. Note that the factor KI must not exceed the value of KIC [4], and m = 3. 

 

II.3.2.5 - Degradation Model Expression of Pipes 

From the stress intensity factor defined above: 
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Then the damage accumulation is given in terms of the crack length by the following 

recursive relation:  
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And the degradation indicator of the pipe can be written as in (29):   
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II.3.2.6 - Simulations of Three Levels of Internal Pressure 

Consider a pipe of radius R = 240 mm and of thickness e = 8 mm transporting natural 

gas. In this case, the parameters are: C = 5.2×10-13 (free air), C = 1.3×10-14 (under soil), C = 

2×10-11 (offshore), and m = 3 (metal). 

 

Take the initial crack length a0 = 0.2 

mm. The internal pressure Pj is simulated 

following a triangular form to be similar to 

the real case of pipelines operating 

condition (pressure-depression) (figure 

2.33). For all three pipes cases, the function 

)(1 aφ  and the parameter m are the same [24]. 

                                                                                                  
 

Three maximal levels of Pj are considered which are P0 = 3 MPa, 5 MPa, and 8 MPa 

and with a repetition period T. At each of these levels, a degradation trajectory D(N) is 
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Figure 2.33 - Triangular simulation of internal pressure 
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deduced in terms of the cycle number N. When DN reaches the unit value, then the 

corresponding N = NC is the lifetime of the pipe in fatigue case. 

 

For simulation purposes, in table 2.2, the mean values of pressure Pj are considered as 

the maximal values P0. The coefficients of variation are δPj . 

 
   

                           
      Table 2.2 - Statistical characteristics of each pressure mode. 

 
 
 
 
 
 
 

 

The simulation of the analytic prognostic model (equation 29) is executed for each 

level of internal pressure (high, middle, and low). 

 

The estimation of a real lifetime system necessitates a huge amount of pressure 

simulations of order of hundreds of millions; hence, an approximated model of lifetime 

simulation of order of 10,000,000 iterations has been used. Consequently, a high capacity 

computer (CORE i7, 3 GHZ microprocessor with an 8 GB RAM) has been considered for 

this purpose. 

 

Usually, the pipelines may be placed in practice in three dispositions: onshore 

(unburied, buried), and offshore (under water) [30]. 

 

II.3.2.7 - Unburied Pipe Case 

This situation [31] is suitable outside cities between states and countries where they 

do not intercept any construction or transportation facilities. 

 

In this case, the normal service load includes only the internal pressure.  The results of 

degradation trajectory simulation (29) are shown in figure 2.34 below. The pipe lifetimes for 

this case are nearly 3.31 years for mode 1 (high pressure), 4.68 years for mode 2 (middle 

pressure), and 6.85 years for mode 3 (low pressure). In comparison with previous lifetimes' 

Pressure  
Mode jP (MPa) δPj (%) Law 

High (mode 1) 8 10%   Triangular 

Middle (mode 2) 5 10%   Triangular 

Low (mode 3) 3 10%   Triangular 
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studies on pipelines [32], it can be concluded that in relation with pipes dimensions, internal 

pressure, and pressure cycle, the order of magnitudes of the present values are realistic. 
 

It is noted that at the beginning (between 0 year and 1 year) all modes give the same 

degradation level of 0.25 where crack lengths are negligible when compared with the critical 

crack length aC.  

 

 

 

For three modes of internal pressure, the Remaining Useful Lifetimes for the unburied 

tubes are evaluated in years and illustrated in the figure 2.35. It is noted that these three 

curves are decreasing from their corresponding global lifetime to zero value where the 

degradation reaches the unit value DC. 

Figure 2.34 - Degradation evolution of unburied pipes under three modes of pressure. 
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II.3.2.8 - Buried Pipe Case 

This case is useful for many 

reasons (reduce plant congestion, 

fewer pipe bending, protection from 

ambient temperature changes, wind 

and other loads) [33]. This study is 

limited here to normal service loads 

that include only internal pressure 

Pint and soil action (figure 2.36). 

 

 

The soil effects on the pipe surface are [33]: the normal force S and the soil friction F 

given by: 

 

Figure 2.36 - Forces on a buried pipe under soil. 
 

Figure 2.35 - RULs evolution of unburied pipes under three modes of pressure. 
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dA: differential contact area. 
 

 
 

 
 
Compute the maximal stress: 

 
 

 
 

 
The effects of the force S on the pipe surface is expressed by an external pressure extP

that opposes the effects of an internal pressure Pint. 

 

Similarly, the effects of the friction force F on the pipe surface (σL,F) oppose the 

effects of the internal pressure Pint (σL) (figure 2.37). 

 

The depth of the pipe is taken H = 7R and the friction coefficient interval is [14]: 

0.5 ≤ µ ≤ 0.7. The soil specific weight is γ  = 9.843 kg/cm2. 

 

The weight per linear meter of pipe and gas content is given by equation (34): 

               

 

The specific gravity of the pipe material and of the natural gas are respectively:                    

γpipe = 7,850 kg/m3 and γgas = 600 kg/m3. 

 

From the simulation of the proposed analytic prognostic model (29), the pipe lifetimes 

are deduced from figure 2.38. They are 8.33 years for mode 1 (high pressure), 11.87 years for 

mode 2 (middle pressure), and 17.35 years for mode 3 (low pressure). It is noted that at the 

beginning (between 0 year and 3 years) all modes give the same degradation level of 0.25 

where crack lengths are negligible when compared with the critical crack length aC. Previous 
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Figure 2.38 - Buried pipe degradation function of lifetime for the three modes of internal pressure. 

Figure 2.39 - Buried pipe RULs function of degradation for the three modes of internal pressure. 

pipes lifetime studies [34] show that in relation to the pipes dimensions, pressure levels and 

pressure cycles, the order of magnitudes of these obtained values are realistic.   

 
 

The Remaining Useful Lifetimes in years are also evaluated for buried tubes for three 

modes of internal pressure and they are illustrated by the figure 2.39. We note that these three 

curves are decreasing from their corresponding global lifetime to zero value where the 

degradation reaches the unit value DC. 
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  Figure 2.41 - Offshore types for various depths.
  

II.3.2.9 - Offshore Pipe Case 

In this case, the situation where the pipes are under sea water (offshore pipeline) 

serving to transport oil or gas from marine offshore to refinery plant is considered [35,36,37]. 

They are subject, beside internal gas pressure, to external water and atmospheric pressure 

(figures 2.40 & 2.41). 

 

 
 

 

 

 
 

Figure 2.40 - Offshore pipelines network. 
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Figure 2.42 - Offshore pipe parameters. 

Consider a pipe (figure 2.42) of diameter φ = 480 mm and of thickness e = 8 mm, the 

external pressure around the offshore pipe is given by (35): 

 
 

 

Where, 

The depth of offshore pipe considered here is: H = 600 m. 

Atmosphere pressure at sea level = 1 atm = 0.101325 MPa.  

The specific weight of seawater is: ρw = 1,030 kg/m3. 

The gravitational attraction is: g = 9.81 m/s2. 

 

Then, the net maximal stresses in the pipe body are given by (36):  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the simulation of the proposed prognostic model for the offshore pipeline 

degradation and under three levels of internal pressure Pint , the pipe lifetimes are illustrated 

by figure 2.43. They are 10.27 years for mode 1 (high pressure), 14.84 years for mode 2 

(middle pressure), and 21.69 years for mode 3 (low pressure).  It is noted that at the 

(36)                                                                   )(                          int

e
RPP ext ⋅−

=θσ
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beginning (between 0 and 5 years) all modes give the same degradation level of 0.15 where 

crack lengths are negligible when compared with the critical crack length aC. Same remark, 

like in the previous two cases, applies for the realism of these lifetimes results [32,34].   

 
 

The Remaining Useful Lifetimes are evaluated in years for offshore tubes under three 

modes of internal pressure and we deduce figure 2.44. We note that the RULs curves are 

decreasing from their corresponding global lifetime to zero value where the degradation 

reaches the unit value DC. 

 
 

Figure 2.43 - Offshore pipe degradation function of lifetime for the three modes of internal pressure. 

Figure 2.44 - Offshore pipe RULs function of degradation for the three modes of internal pressure. 
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II.4 - Conclusion 

An analytic prognostic model is introduced in this chapter that permits to predict the 

Remaining Useful Lifetime (RUL) of dynamic systems. This model considers the fatigue as a 

damage parameter and hence it is based on well known laws of damage like Paris' and 

Miner's laws. An index of degradation was derived that varies from zero to one. Our 

proposed model is based on the link between this index D and the crack length a. Failure is 

produced when a reaches a critical length aC. Hence, our model is given by a simple function 

relating the instantaneous degradation to actual crack length as a measurement of actual 

damage. 

 

Our aim is to evaluate the evolution of the system lifetime at each instant. For this 

purpose the degradation trajectories have been used in terms of cycle numbers or the time of 

operation. From these degradation trajectories, the RULs variations are deduced. The 

prognostic of a complex system can be deduced from the prognostic of its sub-systems when 

their damage laws are available. 

 

To demonstrate the effectiveness of our model, two industrial examples have been 

considered in simulation in this chapter. These systems are the vehicle suspension systems 

and the petrochemical pipelines. For the vehicle suspension, three modes of road profiles are 

simulated. For the pipes, three types of pipes have been considered: unburied, buried, and 

offshore, and three modes of internal pressure are examined. 

 

In such industrial systems, this model proves that it is very convenient and it provides 

a useful tool for a prognostic analysis. Moreover, it is less expensive than other models that 

need a large number of data and measurements. 

 

In the following chapters we will enlarge this study by considering the nonlinear case 

of cumulated damage and the probabilistic influence of the basic parameters on degradation 

and on RULs evolution. 
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III.1 - Introduction 
Until now, damages have been assumed to accumulate linearly (Miner’s law) even 

though it is unlikely to be the case of brittle material. The present chapter intends to develop a 

more advanced prognostic tool by exploring the nonlinear side of cumulative damage. This is 

in order to take into account the nature and the mode of applied constraints and influent 

environment that can accentuate the nonlinear aspect related to some materials behavior 

subject to fatigue effects. 

 

In Chapter II we have considered the classical case of linear damage accumulation 

called Miner's law [1] widely used in specialized literature for most steel materials. In the 

present chapter we will explore the nonlinear case of damage cumulative law to take into 

account the real behavior of some materials subject to fatigue actions, especially when the 

nature of applied constraints and influent environment contribute to amplify the nonlinear 

aspect of damage. Its importance is clear since as we know it is not very well treated until 

now. In addition to this, the intended stochastic study, subject of Chapter IV, needs to 

consider this nonlinearity in cumulative damage. 

 

Figures 3.1 and 3.2 represent an example of linear and nonlinear damage 

accumulation laws [2,3]. Where n1 and n2 are the number of loading cycles, NR1 and NR2 are 

respectively the critical number of cycles for the loading levels ∆ε1 and ∆ε2, and t is the time 

of loading.  

 

These two figures show the influence of loading order between linear and nonlinear 

cases; in fact, when small loading ∆ε1 precedes high loading ∆ε2 (upper case) the linear rule 

(Palmgren-Miner) does not make the difference for this order whereas the nonlinear rule 

permits to give a convex curve of damage (figure 3.2) which can be modeled by a double 

linear damage rule (DLDR) (figure 3.1) (refer to paragraph III.3). When high loading ∆ε1 

precedes small loading ∆ε2 (lower case) also the linear rule is insensible to this order 

contrarily to the nonlinear rule where it gives a concave curve of damage (figure 3.2) modeled 

in some methods by a double linear damage rule (DLDR) (figure 3.1) (refer to paragraph 

III.3). 
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III.2 - State-of-the-Art: Nonlinear Damage Accumulation 
The subject of cumulative fatigue damage is extremely complex, and various theories 

have been proposed like in reference [4] to predict fatigue life in advance of service. The 

most widely known and used procedure is the linear damage rule commonly called the Miner 

rule. The linear damage rule, which indicates that a summation of cycle ratios is equal to 

unity, is not completely accurate; however, because of its simplicity and because of its 

agreement with experimental data for certain cases it is frequently used in design. If a new 

method is to replace the linear damage rule in practical design, much of the simplicity of the 

linear damage rule must be retained. For example, the double linear damage rule (DLDR) 

explained later, retains much of this simplicity and at the same time attempts to overcome 

some of the limitations inherent in the conventional linear rule. 

 

One of the limitations of the linear damage rule is that it does not consider the effect 

of order of loading. For example, in a two-stress-level fatigue test in which a high load is 

followed by a low load, the cycle ratio summation is less than 1, whereas a low load followed 

by a high load produces a cycle ratio summation greater than 1. 

 

The effect of residual stress is also not properly accounted for by the conventional 

linear damage rule, nor does it consider cycle ratios applied below the initial fatigue limit of 

the material [4]. Since prior loading can reduce the fatigue limit, cycle ratios of stresses 

applied below the initial fatigue limit should be accounted for [4]. 

Figure 3.1 - Linear damage accumulation. Figure 3.2 - Nonlinear damage accumulation. 

Palmgren- 
Miner rule 
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In addition, coaxing effects present in some strain-aging materials [4] in which the 

appropriate sequence of loading may progressively raise the fatigue limit are not accounted 

for by the linear damage rule. Various methods have been proposed as alternatives to the 

linear damage rule. None overcomes all the deficiencies, and many introduce additional 

complexities that either preclude or make their use extremely difficult in practical design 

problems. 

 

Fatigue damage increases with applied load cycles in a cumulative manner which may 

lead to fracture. Cumulative fatigue damage analysis plays a key role in life prediction of 

components and structures subjected to fields load histories. Since the introduction of damage 

accumulation concept by Palmgren-Miner, the treatment of cumulative fatigue damage has 

received increasingly more attention. As a result, many damage models have been developed. 

Even though early theories on cumulative fatigue damage have been reviewed by several 

researchers, no comprehensive report has appeared recently to review the considerable efforts 

made since the late 1970s. 

 

A general cumulative damage methodology is derived from the basic relation 

specifying crack growth rate (increment) as a power law function of the stress intensity factor. 

The crack is allowed to grow up to the point at which it becomes unstable, thereby 

determining the lifetime of the material under the prescribed stress program. 

 

Damage accumulation in materials is very important, but very challenging to 

characterize in a meaningful and reliable manner. As the possible damage accumulates, the 

remaining lifetime under future loads becomes more limited. The ultimate goal is to be able 

to predict the remaining lifetime as the past history of loading induces a growing state of 

damage. More succinctly, the common purpose is to be given a complete loading spectrum 

and then predict how far into the loading sequence the material can remain coherent before 

suffering catastrophic failure. 

 

The most common approach to such problems is to recognize that cracks under fatigue 

conditions usually grow in a manner with the rate of growth expressed as stress level (stress 

intensity factor) to some exponent. This is widely known as the Paris law and has been 

verified for many materials over many decades of change on log scales. This power law form 

is then used to predict the number of load cycles until the crack reaches a pre-selected, 
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unacceptable size. Particular models relate the rate of crack growth to nonlinear functions of 

the stress intensity factor. 

 

Another general approach is that of Linear Cumulative Damage, LCD. In this method 

increments of damage, expressed as fractions of lifetime at particular stress levels, are linearly 

added together to express total damage and thereby the lifetime (Palmgren-Miner Law). The 

method is completely empirical, but quite widely used because of its simplicity and utility. 

However, LCD is widely acknowledged to be inadequate. This is partially based upon its 

empirical nature and partly based upon its prediction of unsatisfactory results [5]. 

 

Miner's rule assumes that damage contribution from each cycle of the loading history 

is independent from the other cycles. Therefore, the damage inflicted by n stress cycles with 

defined magnitude S is given by: 

 

N
nD =  

   
Where N denotes the cycles to failure at S from the constant-amplitude S-N curve (WÖhler 

curve).  

 

For all stress levels this damage rules yields [1]: 

 

∑∑
==

==
m

i i

i
m

i
i N

ndD
11

 

 
Where ni is the number of cycles having amplitude Si. 

 

In the LCD, the measure of damage is simply the cycle ratio with basic assumption of 

constant work absorption per cycle, and characteristic amount of work absorbed at failure. 

The energy accumulation, therefore, leads to a linear summation of cycle ratio or damage. 

The main deficiencies with LCD are its load-level independance, load sequence independance 

and lack of load-interaction accountability. Howerver, due to the inherent deficiencies of the 

LCD, no matter which version is used, life prediction based on this rule is offen 

unsatisfactory. Experimental evidence under completely reversed loading condition often 

indicates that   1>∑ id    for a low-to-high (L-H) loading sequence, and   1<∑ id   for a 

(1) 

(2) 
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high-to-low (H-L) loading sequence. To remedy the deficiencies associated with the LCD, 

some authors like in reference [6] introduced the concept of damage curves and speculated 

that these curves ought to be different at different stress-levels.  

 
Then the first nonlinear load-

dependent damage theory was 

proposed by Marco and Starkey [6], it 

is represented by a power relationship 

∑= i
idD α where iα  is a variable 

quantity related to the ith loading level. 

The plots of these curves are shown in 

figure 3.3. In this figure, a diagonal 

straight line represents the Miner rule 

which is a special case of the above 

equation (2) with 1=iα . As illustrated 

by figure 3, life calculations based on 

Marco-Starkey theory would result in 

1>∑ id for L-H load sequence, and in 

1<∑ id  for H-L load sequence. 

                                                                                               

III.2.1 - Damage Theories Based on Endurance Limit Reduction 

On the other hand, the concept of change in endurance limit due to pre-stress exerted 

an important influence on subsequent cumulative fatigue damage research. Kommers and 

Bennett [6] further investigated the effect of fatigue prestressing on endurance properties 

using a two-level step loading method. Their experimental results suggested that the reduction 

in endurance strength could be used as a damage measure, but they did not correlate this 

damage parameter to the life fraction. This type of damage models based on endurance limit 

reduction are non-linear and able to account for the load sequence effect. Some of these 

models can also be used for predicting the instantaneous endurance limit of a material, if the 

loading history is known. None of these models, however, take into account load interaction 

effects.  

 

Figure 3.3 - Schematic representation of damage versus 
                    cycle ratio for the Marco-Starkey theory. 
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III.3 - Nonlinear-Damage-Based Prognostic 
Various approaches to prognostics have been developed that range in fidelity from 

simple historical failure rate models to high-fidelity physics-based models like in reference 

[7]. The required information (depending on the type of prognostics approach) include: 

engineering model and data, failure history, past operating conditions, current conditions, 

identified fault patterns, transitional failure trajectories, maintenance history, environment of 

equipment,  system degradation and failure modes. 

 

A number of different methods have been applied to study prognosis of degraded 

components. In general, prognostics approaches can be classified into three primary 

categories:  

 
(1) Model driven,  

(2) Data driven, 

(3) And probability-based prognostic techniques.  

 
The main advantage of model based approaches is their ability to incorporate physical 

understanding of the monitored system. In addition, in many situations, the changes in feature 

vector are closely related to model parameters and a functional mapping between the drifting 

parameters and the selected prognostic features can be established [1]. Moreover, if the 

understanding of the system degradation improves, the model can be adapted to increase its 

accuracy and to address subtle performance problems. Consequently, they can significantly 

outperform data-driven approaches. But, this closed relation with a mathematical model may 

also be a strong weakness: it can be difficult, even impossible to catch the system's behavior. 

Further, some authors think that the monitoring and the prognostic tools must evolve as the 

system does. 

 

An earlier proposed procedure [8] (Chapter II) belongs to the first prognostic 

approach. It is based on a physical model and leading to a normalized degradation indicator. 

It is focused on developing and implementing effective diagnostic and prognostic 

technologies with the ability to detect faults in the early stages of degradation. Early detection 

and accurate analysis may lead to better prediction and end of life estimates by tracking and 

modeling the degradation process. 
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The idea was to use these estimates to make accurate and precise prediction of the 

time to failure of components. The chosen failure mode was the fatigue failure formulated 

mathematically on the base of analytic damage laws of Paris and Miner. The last law is a 

linear cumulative damage model (figure 3.1). Even that these laws are very well known in 

mechanics of rupture but their uses in the present prognostic procedure help as a support for 

an example of a degradation expression. 

 

Past research has shown there is a nonlinear interaction effect between high cycle 

fatigue (HCF) and low cycle fatigue (LCF) in many engineering materials. This effect has 

been observed within uniaxial loadings, but is often more pronounced under multiaxial 

loading, particularly when the loading is non-proportional. An example here is the 

development of fatigue damage assessment methods for turbine engine materials combining 

the LCF and HCF cycles. 

 

The nonlinear interaction effect precludes the use of the most common technique for 

linear damage accumulation. A thorough review of nonlinear cumulative damage (figure 3.2) 

methodologies [9] shows that these techniques have included simple extensions of the linear 

damage rule to include nonlinear terms. Several nonlinear methods exist, including 

endurance-limit modification techniques, fracture-mechanics based approaches, continuum-

damage, and life-curve approaches. Traditional methods of damage summation have been 

shown to provide an inaccurate life prediction when multiple load levels are simultaneously 

considered. This is due to the effect that one load level has on the other(s). 

 

In the present study, the effect of HCF loading has had a more detrimental effect when 

coupled with the LCF loadings than predicted by a linear summation rule. Nonlinear damage 

accumulation theories can account for this influence and have shown an improvement in 

prediction. The stress levels were chosen to correspond to levels previously tested to failure, 

resulting in fatigue lives ranging from approximately 105 to 107 cycles. A nonlinear damage 

summation is required to properly define the fatigue process since the linear summation of 

damage is often not adequate to predict the service life of a component when subjected to 

variable-amplitude loadings.   
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III.3.1 - Disadvantages of Linear Damage Accumulation 

The most common method of summing 

damage for a loading spectrum is the Palmgren-

Miner linear damage rule [10] (figure 3.4). It is 

readily understood and easy to implement and is, 

therefore, the foundation for many of the other 

cumulative damage theories that have been 

proposed. Ideally, the summation of life ratios 

would equal one at failure.  

 

However, past experiments have yielded a range of ratios from 0.7 to 2.2 for uniaxial 

loadings, resulting in failure predictions erring just slightly on the side of non-conservative to 

more than the double for a conservative prediction [11]. For the biaxial loadings, a Miner's 

summation of 0.19 was found in these experiments [11], indicating thus extremely non-

conservative results as it is so far from failure point (equal to 1.0). This proves the 

dependence of Miner' law on the load directions. 

 

Also, the largest drawback of the linear damage rule is its inability to account for the 

order of loading. That is, the resulting failure prediction is independent of the load interaction 

effects that have been observed between high-cycle and low-cycle loadings. It is this 

shortcoming that has prompted the development of several nonlinear cumulative damage 

theories. Hence, different non-linear damage rules have been proposed in literature and 

presented as follows. 

 

III.3.2 - Double Linear Damage Rule (DLDR) 

The current form of the DLDR was proposed in 1966 

[12]. Instead of a single straight line, a set of two straight 

lines that converged at a common "Kneepoint" would be 

used (figure 3.5). It helps differentiate between the damage 

caused by the LCF and HCF for multi-level loadings. Its 

basis is the replacement of the continuous damage curve by 

two straight lines. Each linear phase can be analyzed by 

Figure 3.5 - Double Linear Damage 
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Palmgren-Miner linear damage rule. The difficulty encountered when utilizing the DLDR is 

establishing the location of the transitory point between the two loading phases (equation 3). 

 

The DLDR is represented by the equations (3) illustrated in figure 3.5. These 

equations permit to calculate the damage accumulation at each loading cycle with respect to 

the double linear damage rule. 
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Where, 

 n1/N1 and n2/N2  are loading phases, 

 α: material parameter. 

 

III.3.3 - Damage Curve Approach (DCA) 

To better describe fatigue failure using nonlinear 

damage, instead of a straight line, a single continuous 

curve reflects more accurately the influence of the 

loading (figure 3.6). For HCF loading a significant 

number of cycles had to be applied before enough 

damage could accumulate to cause a reduction in life. 

Once the appropriate number of cycles had been applied, 

the damage continued to accumulate at an ever-increasing 

rate and failure was soon to follow. For LCF loadings, this 

behavior was less pronounced.  

 

A workable equation based on early crack growth theories was provided [13]: 

α
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The implementation of the DCA model is illustrated in figure 3.5. The primary 

advantage in employing the DCA model lies in its ability to create identical damage curves 

Figure 3.6 - Damage Curve Approach. 

(3) 

(4) 
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for different life references. The linear damage line becomes the reference life that is used to 

establish the material constant in (4), and other damage curves shift values accordingly.  

 
Where, 

 D is the damage accumulated, 

 n1/N1, n2/N2 , and n3/N3 are the loading phases, 

 Nf  is the critical number of cycles, 

 Nref  is the reference number of cycles (reference life). 

 

III.3.4 - Double Damage Curve Approach (DDCA) 

Although the DCA shows large potential in accurately predicting failure in multi-level 

loading, there is one serious drawback when considering high-low loading. It can be seen 

upon examination that with the application of just a few high-amplitude cycles, there is a 

rapid decrease in remaining life at the low-amplitude load level. This result is from a lack of 

the low-range data needed to adjust the shape of the curve during the models conception. To 

improve the model, Manson and Halford [14] included a linear term to shift the curves away 

from the x-axis. 

 

The difficulty would be to allow this new term to have a significant influence at low 

life ratios but negligible effect at higher ratios. The resulting double damage curve approach 

(DDCA) closely approximated the DLDR in the lower-life regime and the DCA in the higher-

life regime, where each model performed best. The equation for the DDCA is shown in (5):  
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Where,  

     D = damage accumulated, 

     n = number of applied cycles at a given load level, 

     N = number of cycles required to fail at the same load  

            level as n. 

 
Figure 3.7 - Double Damage Curve  
                    Approach. 

(5) 
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are parameters, 
 
 
 

 5=γ  is a constant representing two intersecting straight lines which can be replaced by a 

  single curve, 

 βα ,  are material dependent parameters that must be experimentally determined (typically 

    taken as 0.25 and 0.4, respectively). 

 
The DDCA model is illustrated schematically in figure 3.7. Notice the linear damage 

accumulation at lower life ratios and curvilinear damage accumulation at higher life ratios. 

Notice that the DDCA model is a general form which can be applied to a wide range of 

materials and equipments. 
 

III.4 - Nonlinear Cumulative Damage Model 
 

The damage model proposed in this chapter, 

whose evolution is up to the point of macro-crack 

initiation, is represented in figure 3.8. The state of 

damage of a specimen at a particular cycle N during 

fatigue is represented by a scalar damage function D(N). 

The magnitude D0 = 0 corresponds to no damage, and   

DC = 1 corresponds to the appearance of the first macro-

crack (total damage). 

 

The following model is chosen for the nonlinear prognostic study. It represents the 

nonlinear evolution of damage D in terms of the number of cycle N given under the following 

first order nonlinear ordinary differential equation [15]: 
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Where, 

 :CN  the number of cycles at failure as a normalizing constant,  

 σ∆ : the stress range in a loading cycle, 

 0σ  :  the endurance limit, it is a function of the stress mean in a cycle: σ  

                             
2/  where;1)0()( 000 σσ

σ
σσσσ ∆<








−=

ult        
 

 ultσ :  the ultimate tensile strength of the material, 

 m and α : they are constants depending on the material and the loading condition (m ≈ 2.91                                                                              

                    and α ≈ 2.23). 

 

This nonlinear ordinary differential equation (6) needs to be solved in order to find an 

expression of D(N). 

 

III.4.1 - Solution of the Differential Equation of Degradation 

The solution of the differential equation (6) is presented as follows: 
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Where, 

00 )( DND =  is the damage at N = N0 cycles corresponding to an initial crack length a0. 

 

We choose an equivalent damage parameter, to be measured by structural health 

monitoring. The plotting of expression (7) of D(N) is presented in figure 3.9. 

 

 
 

Figure 3.9 - Nonlinear D(N) curve. 
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Failure case: 

At failure we have CNN =  and 1)( =CND , then equation (8) gives:  
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III.4.2 - Relation between D and N at a Specific Cycle N1  

Let us study the relation between the degradation D and the cycle of stress N. To do 

that easily let us integrate the relation of degradation between cycle 1 and cycle 2 assuming 

that failure occurs at cycle 2. 

 

From equation (6), it can be deduced that: 
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It can be inferred also: 
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Then: 
 
     

 
 
 

III.4.3 - Recursive Relation of Nonlinear Damage D 
 

To construct a recursive relation for the sequence of D, the procedure is as follows:  
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The previous recursive relation leads to a sequence of values DN  whose limit is DC=1:  

                                      1  ,  ,  ,  ,  ,  ,  , 1210 =+ CNN DDDDDD 

  
And as the stress-load is expressed in terms of time (t), then we can plot the curve of 
degradation D in terms of time (t). 
 

Therefore, our prognostic model in the nonlinear case is given by: 
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III.5 - Application to a Suspension System 
Reconsider the example of Chapter II concerning the vehicle suspension system and 

apply the nonlinear model of damage developed in paragraph III.4.3 (equation 12) in order to 

calculate the prognostic of this system. The following parameters are considered in the 

simulation [16]: 

 

 NC  is a normalizing constant taken to be equal to the number of cycles at failure (NC =107) 

 α = estimated to be 2.23,  

  m = 2.91, 

 2/σσ ∆=  is the stress load amplitude in one cycle, this parameter is generated as an  

 input load resulting from the road profile and whose mean is taken to be equal to 280 MPa, 

 0σ  is the fatigue limit (endurance limit of the material) taken to be equal to 180 MPa. 

 
       

Table 3.1 - Statistical characteristics of each mode of roads. 

 
 
 
 
 
 
 
 
 
 

 
 
 

For more details about the data of this application, refer to Chapter II. 
 

 

III.5.1 - Results of the Simulation 

The simulations of the degradation of a vehicle suspension subject to the severe, fair, 

and good modes of road profiles are represented respectively in figures 3.10, 3.11, and 3.12. 

 

Road 
Mode 

Mean of jx∆  

( jx∆  in mm) 

Coefficient of 
Variation of 

jx∆  in  % 

Standard  
Deviation 
(in mm) 

Law 

Severe 
(mode 1) 

100 15% 15 Normal 

Fair  
(mode 2) 

50 10% 5 Normal 

Good 
(mode 3) 

25 5% 1.25 Normal 
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Figure 3.10 - Suspension degradation under nonlinear law for severe mode of road excitation. 
 
 

 
Figure 3.11 - Suspension degradation under nonlinear law for fair mode of road excitation. 
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Figure 3.12 - Suspension degradation under nonlinear law for good mode of road excitation. 

 

Figures 3.13 and 3.14 represent respectively the evolution of degradation D and of the 

RULs for the suspension for three modes of roads with profile properties indicated in table 

3.1.    

    
Figure 3.13 - Suspension degradation under nonlinear law for three modes of road excitations. 
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Figure 3.14 - Suspension RULs under nonlinear law for three modes of road excitation. 

 
The RULs evaluations in figure 3.14 are deduced from the expression NC - N. In fact 

NC is the necessary cycle number to reach failure (appearance of the first macro-cracks) and 

N is the cycle number corresponding to a crack length aN . Note that N0 is the initial cycle 

number at the beginning taken generally equal to 0. These curves decrease from entire 

lifetime of the device to zero where DC = 1. From these curves we can deduce at each cycle N 

RUL(N) of the device and hence the prognostic result can be inferred. The expected lifetimes 

are as follows: 

 Mode 1:  NC1 =  9,047,700 cycles 

 Mode 2: NC2 = 12,063,800 cycles 

 Mode 3: NC3 = 18,095,400 cycles 

 

III.5.2 - Conversion of RUL into Years   

To convert the suspension lifetime into years' unit, knowing that each cycle's duration 

is 2 seconds, then:  

                                 RUL(s) = 2 × RUL(N). 

If we assume that the suspension time usage is 10% of a day (2.4 hours/day), then the 

expected lifetimes' durations are (refer to Chapter II, Paragraph 3.1.10):  
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For mode 2:  years 651.7
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(800,063,12

=
×××

×

 
 

For mode 3:  years 476.11
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(400,095,18

=
×××

×  

 
 
III.5.3 - Comparison with the Linear Case 

 
We can deduce from the two figures 3.15 and 3.16 that, first of all, the nonlinear case 

of damage is more optimistic and accurate than the linear case concerning the lifetime 

because the values are larger. Secondly, the decreasing of RULs in the nonlinear case is less 

steep at the end than the linear case because the nonlinear curves reach the zero value 

progressively. 

 
 

               
 
 
           
             
         NC1 = 6,836,000 cycles; NC2 = 10,850,000 cycles;            NC1 = 9,047,700 cycles; NC2 = 12,063,800 cycles;     
                           NC3 = 17,222,000 cycles.                                               NC3 = 18,095,400 cycles. 
                                                                                         
         

Finally, we can remark that near the failure zone where D = DC = 1 the nonlinear 

study seems to give here a more logical and realistic damage behavior for the different road 

profiles than the linear case where the damage curves become identical. In fact, between good 

Figure 3.15 - Linear case. Figure 3.16 - Nonlinear case. 
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and severe profiles, the nonlinear case makes the difference when approaching failure limit 

whereas the linear case does not. The optimistic results obtained from the nonlinear case can 

be explained by the fact that when the real nonlinear trends of degradation are of concave 

form then the damage accumulation is overestimated when using a linear form (figure 3.17).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Referring to the references [17,18,19,8], the validation of the present results cannot be 

explained without taking into consideration the nonlinear basis of the current study contrary 

to the linear damage model adopted in the previous references. Therefore, the results got here 

are realistic when compared to those obtained by the works of these authors.  

 
 
III.5.4 - Advantages of the Proposed Model 

In comparison with predictive RUL models available in literature [20], the advantages 

of the present model are: 

 

a) It is simple and practical in application to various industrial systems for fatigue life 

prediction. 

 

b) The fact of using a nonlinear law, if it exists, for damage accumulation, makes it more 

efficient and realistic in predicting the remaining useful lifetime. 

Figure 3.17 - Different degradation trends. 
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c) When multiple load levels are simultaneously considered, the linear law of damages 

accumulation like Miner's law leads to inaccuracy [10] in life prediction whereas the 

nonlinear law of damage permits to consider the effect mentioned above.  

 

d) It takes into account the load interaction effects between high-cycle and low-cycle 

loadings contrary to predictive models based on linear damage law. 

 

e) Its efficiency relatively to other models has been often more pronounced under multi-

axial loading, particularly when the loading is non-proportional. 

 

f) It considers the influent environment that can accentuate the nonlinear aspect related to 

some materials behavior subject to fatigue effects (brittle materials for example).  

 

g) The Paris' law of fatigue for crack growth adopted in the present model is simple to use 

and requires two parameters easily obtained. It is the simplest to perform because no load 

history has to be considered. In fact, it allows an excellent prediction model results for crack 

lives below 105 cycles. 

 

III.6 - Application to a Pipeline System 
Reconsider the example of Chapter II concerning the pipeline system and apply the 

nonlinear model developed in paragraph III.4.3 (equation 12). 

 

The deterministic triangular simulation of the three modes of internal pressure is made 

using the parameters given in table 3.2. 

  
Table 3.2 - Statistical characteristics of each pressure mode.

 

 
 
 
 
 
 
 
 

 
 

The study covers three types of pipes: unburied, buried and offshore. 

Pressure 
Mode jP (MPa) δPj (%) Law 

High 
(mode 1) 

8 10% Triangular 

Middle 
(mode 2) 

5 10% Triangular 

Low 
(mode 3) 

3 10% Triangular 
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III.6.1 - Unburied Pipe Case  

The case studied here is that of unburied pipes (in free air). The simulations of the 

pipe degradation for high, middle and low modes of internal pressure are represented 

respectively in figures 3.18, 3.19, and 3.20. 

 
          Figure 3.18 - Pipelines degradation under high mode pressure for nonlinear law case (unburied pipes). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
                                          

          Figure 3.19 - Pipelines degradation under middle mode pressure for nonlinear law case (unburied pipes). 
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Figure 3.20 - Pipelines degradation under low mode pressure for nonlinear law case (unburied pipes). 
 

The degradation evolution (figure 3.21) and the RULs evolution (figure 3.22) are 

obtained for each mode of internal pressure in terms of exploitation time and degradation 

state D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.21 - Pipelines degradation under three modes of pressure for nonlinear law case                        
(unburied pipes). 
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Figure 3.22 - RULs evolution for pipelines under three modes of pressure for nonlinear law case 

     (unburied pipes). 
 
 
 

The expected lifetimes deduced are as follows: 

 
Mode 1: NC1= 3.53  years 

Mode 2: NC2= 6.00  years 

Mode 3: NC3=10.59 years. 

 

III.6.1.1 - Comparison with the Linear Case 
 

 
 
 
NC1= 3.31 years; NC2= 4.68 years; NC3= 6.85 years.         NC1= 3.53 years; NC2= 6.00 years; NC3= 10.59 years. 
 

Figure 3.23 - Linear case. Figure 3.24 - Nonlinear case. 
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It can be deduced from these two figures 3.23 and 3.24 that first of all the nonlinear 

case of damage is slightly less conservative than the linear case concerning the lifetime. 

Secondly, the decreasing of RULs in the nonlinear case is less acute at the end than the linear 

case because the nonlinear curves reach progressively the zero value. 

 

Finally, we can remark that near the failure zone where D = DC = 1 the nonlinear 

study seems to give here a more logical and realistic damage behavior for the different 

pressure values than the linear case where the curves coincide. In fact, we note in the 

nonlinear case a clear difference between low and high pressures when approaching failure 

limit whereas the linear case does not. 

 

III.6.2 - Buried Pipe Case 

 
In the case of buried pipes (underground), the simulations of degradation under high, 

middle, and low modes of internal pressure are represented respectively in figures 3.25, 3.26, 

and 3.27. 

 

 
 

Figure 3.25 - Pipelines degradation under high mode of pressure for nonlinear law (buried pipes). 
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Figure 3.26 - Pipelines degradation under middle mode of pressure for nonlinear law (buried pipes). 

 
 

    
Figure 3.27 - Pipelines degradation under low mode of pressure for nonlinear law (buried pipes). 

 
 

We therefore obtain the degradation evolution (figure 3.28) and the RULs evolution 

(figure 3.29) for each mode of internal pressure in terms of exploitation time and degradation 

state D. 
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               Figure 3.28 - Pipelines degradation under three modes of pressure for nonlinear law (buried pipes) 

 

 
 

     Figure 3.29 - RUL evolution for pipelines under three modes of pressure for nonlinear law (buried pipes). 
 

The expected lifetimes deduced are as follows: 

Mode 1: NC1 =  8.84 years 

Mode 2: NC2 =15.03 years 

Mode 3: NC3 =26.54 years. 
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III.6.2.1 - Comparison with the Linear Case 

 
 
 
               NC1= 8.33 years; NC2= 11.87 years;                             NC1= 8.84 years; NC2= 15.03 years;  
                         NC3= 17.35 years.                                                 NC3= 26.54 years. 
 

 

We can deduce from the two figures 3.30 and 3.31 that first of all the nonlinear case 

of damage is obviously less conservative than the linear case concerning the lifetimes. 

Secondly, the decreasing of RULs in the nonlinear case is less acute at the end than the linear 

case because the nonlinear curves reach progressively the zero value. 

 

Finally, we can notice that near the failure zone where D = DC = 1 the nonlinear study 

seems to give here a more logical and realistic damage behavior for the different pressure 

values than the linear case where the curves coincide. In fact, we note in the nonlinear case a 

clear difference between the different pressures when approaching failure limit whereas the 

linear case does not. 

 

III.6.3 - Offshore Pipe Case 

For offshore pipes (under sea water), the simulations of degradation under high, 

middle, and low modes of internal pressure are represented respectively in figures 3.32, 3.33, 

and 3.34. 

 

Figure 3.30 - Linear case. Figure 3.31 - Nonlinear case. 
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     Figure 3.32 - Pipelines degradation under high mode of pressure for nonlinear law (offshore pipes). 
 

 

        
 

Figure 3.33 - Pipelines degradation under middle mode of pressure for nonlinear law (offshore pipes). 
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Figure 3.34 - Pipelines degradation under low mode of pressure for nonlinear law (offshore pipes). 

 
 

We therefore obtain the degradation evolution (figure 3.35) and the RULs evolution 

(figure 3.36) for each mode of internal pressure in terms of exploitation time and degradation 

state D. 

 

    
 
 

Figure 3.35 - Pipelines degradation under three modes of pressure for nonlinear law (offshore pipes). 
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Figure 3.36 - Pipelines RUL evolution under three modes of pressure for nonlinear law (offshore pipes). 

 
The expected lifetimes deduced are as follows: 

Mode 1: NC1 =10.92 years 

Mode 2: NC2 =19.11 years 

Mode 3: NC3 =33.67 years. 

 

III.6.3.1 - Comparison with the Linear Case 
 

 
  
         NC1= 10.27 years; NC2= 14.84 years;                                    NC1= 10.92 years; NC2= 19.11 years;  
                    NC3= 21.69 years.                                                                  NC3= 33.67 years. 
 

Figure 3.37 - Linear case Figure 3.38 - Nonlinear case 
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We can deduce from these two figures 3.37 and 3.38 that, first of all, the nonlinear 

case of damage is undoubtedly less conservative than the linear case concerning the lifetime. 

Secondly, the decreasing of RULs in the nonlinear case is less steep at the end than the linear 

case because the nonlinear curves reach progressively the zero value. 

 

Finally, we can notice that near the failure zone where D = DC = 1 the nonlinear study 

seems to give here a more logical and realistic damage behavior for the different pressure 

values than the linear case where the curves coincide. In fact, we can see in the nonlinear case 

a clear difference between the different pressures when approaching failure limit whereas the 

linear case does not. 

 

III.6.4 - Validation of the Pipelines Lifetimes  

Referring to the references [21,22,23], the present results of pipelines nonlinear 

damage model are realistic when compared to those obtained by the works of these authors. 

In comparison with the linear model, the lifetimes in the nonlinear case are more accurate and 

more economic since they lead to larger maintenance intervals. 

 

In fact, the typical lifetime of offshore pipes is 25 years on average [23] which is very 

close to the lifetimes' average for the offshore pipes obtained by the nonlinear simulation 

model: 

 

years 23.21
3

3) mode(for  years 67.332) mode(for  years 11.191) mode(for  years 92.10
≈

++

. 
 

Moreover, the design procedures for offshore pipelines are still under development 

which has lead to a substantial field of research that deals with a proper physical 

determination of the many aspects of a pipeline life cycle. In general, many different aspects 

before and during the life cycle of a pipeline must be considered. In fact, planning demands a 

great deal of considerations. During the life cycle from fabrication to abandoning the installed 

pipeline after years of operation, the pipeline must provide safe transportation. Therefore, in 

case of failure, severe environmental pollution and great economic loss may occur. 
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III.7 - Conclusion 

In this chapter, the nonlinear aspect of damage accumulation is introduced in the 

developed model at the place of the linear accumulation of Miner. It allows taking into 

account the multiaxial loading, particularly when the loading is non-proportional, and a 

nonlinear interaction effect exists between LCF and HCF loading cycles. 

 

From the resolution of a first order nonlinear ordinary differential equation relating 

the degradation to the number of cycles, we deduce a recursive relation between two 

consecutive degradation measures beside the environmental and material parameters. The 

deduced relation constitutes the nonlinear prognostic model. 

 

This advanced prognostic model is applied to study the lifetime of two systems in 

simulation: the suspension components and the petrochemical pipelines in their three modes. 

The results of prognostic studies show that the nonlinear study gives a more logical and 

realistic damage behavior for the different loading values than the linear case. In fact, we note 

in the nonlinear case a clear difference between two extreme loadings when approaching 

failure limit whereas the linear case does not. 

 

The nonlinear case study of suspensions shows optimistic results explained by the fact 

that when the real trends of degradation have a concave shape then the damage accumulation 

is overestimated when using a linear shape.  
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IV.1 - Introduction 
In our analytical model of Chapter II, damages have been assumed to accumulate 

linearly (using Miner’s law) even though it is unlikely to be the case of brittle material. 

Afterward a nonlinear cumulative damage is explored in Chapter III [1] to take into account 

the level and the mode of the applied constraints and influent environment that can accentuate 

the nonlinear aspect related to some materials behavior subject to fatigue effects. 

 

Other reasons can disturb the prediction capacity of the model which is the 

fluctuations of some basic parameters; these factors can be taken into account by adopting a 

stochastic modeling. 

 

In the present chapter, a stochastic analysis is introduced in addition to the previous 

nonlinear model in order to make it more accurate in the RUL prediction. It is done by 

considering some parameters as random variables [2]. Our aim is to make the model a general 

prognostic tool that can be capable of well predicting the RUL of a system based on an 

analytical linear and nonlinear damage accumulation in either deterministic or stochastic 

context. Knowing that the RUL can be expressed in fatigue by means of various forms like: 

critical crack length aC or critical number of loading cycles NC or material tenacity KIC from 

which we can write various limit states or performance criteria. 

 
 

IV.2 - State-of-the-Art: Stochastic Fatigue Modeling 
There is a significant interest in improving our understanding of fatigue related 

damage and prediction of the useful residual life of components experiencing fatigue damage. 

One of the principal tools for modeling fatigue damage is linear elastic fracture mechanics, 

and the resulting models have facilitated the design of fatigue resistant mechanical and 

aerospace structural components [3]. Decision tools for failure prognostics must have the 

capability to incorporate material damage under both normal and peak operating conditions 

[3,4].  

 

The science and technology of prognosis and structural health management offer the 

potential for significant enhancements in the safety, reliability and availability of high-value 

resources [5,6]. This concept is based on a closed-loop process whose successful 
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implementation depends on the integration of several multi-disciplinary elements including 

[7]:  

 
1) Onboard sensing of operational parameters and material damage states;  

2) Diagnosing trends, fault conditions, and underlying damage;  

3) Predicting remaining useful life in terms of probability of failure and limits on 

    reliable performance;  

4) And deciding upon appropriate courses of action: whenever or not the resource is  

    capable of performing a given mission, or alternatively, is in need of inspection,  

    maintenance, or replacement. 

 

Considerable uncertainty exists in the usage and sensor inputs, as well as the required 

modeling and associated material property inputs. Consequently, there is an inherent need for 

the reasoning element of the prognosis system to be probabilistically-based. 

 

Complementing the variety of onboard sensors are traditional health monitoring 

software tools for pattern recognition, neural networks, Bayesian updating, expert systems, 

and fuzzy logic. The advantage of these tools is that, when properly applied, they are highly 

efficient and thus amenable to onboard monitoring and real-time data fusion and 

interpolation. However, the disadvantage of these tools is that they rarely involve 

consideration of the underlying physical processes. Consequently, they require considerable 

empirical calibration or "training" for each specific application of interest. 

 

In contrast, probabilistic life prediction is typically based on material property data, 

finite element thermal and stress analysis, pre-service inspection and in-service monitoring 

for defects, and damage accumulation algorithms. The advantage of this approach is that it is 

more amenable to linkage with the underlying physical mechanisms of damage (i.e., crack 

nucleation and growth). Thus, the process is inherently suitable for extension into materials 

prognosis, a novel concept that seeks to combine information on the material damage state 

with mechanistically-based predictive models. 

 

The fundamental goal of all of these approaches is to facilitate better-informed 

decisions  whether for mission planning in the field (over the short term), or sustainment at 

the depot (over the longer term). In fact, the optimum prognosis system is likely to be some 
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combination of traditional data-driven methods and probabilistic mechanics methods. Thus, 

in many respects the above tools can be viewed as being complementary. 

 

Probabilistic analyses of prognostic uncertainty were performed using a
 
probabilistic 

life prediction code DARWIN [8,9] as a demonstration platform. DARWIN integrates finite-

element stress analysis results, fracture-mechanics-based life assessment for low-cycle 

fatigue, material anomaly data, probability of anomaly detection, and inspection/monitoring 

schedules to determine the probability-of-fracture of rotor disks as a function of operating 

cycles. 

 

In the study on lives of turbine engines [7], enhancements were added to the 

DARWIN code to enable the type of analyses required for prognosis:  

 
1) Establishment of interface with engine sensor data;  

2) Adding of the fatigue crack initiation analysis to existing fatigue crack propagation 

    analysis;  

3) Incorporates the integration of crack initiation and propagation algorithms; 

    including correlation effects between the two damage processes;  

4) Adding a damage-based load filtering method to reduce computational time;  

5) Capability to analyze a large number of inspections (or interrogation  up to once 

    per flight cycle) to simulate continuous monitoring with an on-board sensor.  

 

Although DARWIN contains several probabilistic solutions methods, the analyses in 

reference to [7] were performed using Monte Carlo simulation. 

 
Other models have been proposed to describe the random behavior of fatigue crack 

growth in metals. In Yang and Manning’s stochastic model [10,11], a simple second order 

approximation of a deterministic crack growth model is used with a random component. An 

experimental study was conducted by Wu and Ni [12,13] using this concept, which confirmed 

the practical applications of Yang and Manning’s model. Other applicable models based on 

discrete continuous random processes were proposed by Sobczyk and Spencer [14]. 

Bogdanoff and Kozin [15,16] explored the Markov chain theory and utilized it to create 

discrete and continuous fatigue crack growth models. In earlier studies, Lin proposed a 

Fokker-Planck equation that relates the continuous Markov process [17]. 
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The Yang and Manning model is used in reference [18] to analyze the variable type 

loading because of its versatile functionality. This model utilizes only the crack growth rate 

and crack length data; the information about loading and material is not employed into the 

model and is accounted for in the random component and model parameters. 

 

For instance, with transitional loading the model parameters will vary as the fatigue 

damage propagates. The model parameter variability was taken into account in the data driven 

part of the analytical crack exceedance probability, which is the probability that the crack 

length will exceed a number of cycles, with the respective load period. To directly account for 

the variance in the crack growth rate, the random component is assumed to follow a 

lognormal distribution [19,20,21]. 

 

A significant part of main pipelines are subjected to external cracking, which is a 

serious problem for the pipeline industry like, for example, in Russia [22], in U.S., and in 

Canada [23]. Identification of external cracks is achieved using different Nondestructive 

Evaluation (NDE) methods. If cracks are revealed during inspection, their influence on the 

remaining life (RUL) of the pipeline should be assessed in order to choose what maintenance 

action should be used: do nothing/repair/replace. 

 

Pipeline integrity is assessed on the assumption that some defects after In-Line 

Inspection (ILI) may be: still undetected; detected, but not measured; detected and measured. 

It is possible to update the stochastic remnant life of pipelines using the data available due to 

ILI. 

 

A robust pipeline failure model is needed that could be used in practice. Usually 

pipelines demonstrate non-linear behavior of the material. Because of this, the toughness 

fracture criteria is used in reference [24], described by the J-integral of non-linear fracture 

mechanics. The J-integral is a good descriptor of crack growth. The works of Timashev [24] 

describe a new practical method of updating the stochastic remaining life of pipelines with 

defects using the latest ILI data. It describes a comprehensive algorithm for assessing pipeline 

remnant life taking into account the results of holistic statistical analysis of In-Line Inspection 

(ILI) data. 
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It is assumed that the pipeline segment wall has a longitudinal external crack of semi-

elliptical form and is described by the J-integral. The Limit State Function (LSF) is described 

as the difference of the critical and current value of the J-integral. The critical crack depth is 

defined using the notion of fracture toughness and the J-integral approach. 

 
 
IV.2.1 - Definition of the J-Integral 

Consider a nonlinear elastic body containing a crack (figure 4.1). 

  

 

 

 

 

 

The J-integral is defined as: 

                                               
dS

x
uTwdyJ i

i∫
Γ ∂

∂
−=  

Where ∫=
ij

ijijdw
ε

εσ
0

is the strain energy density, jiji nT σ= is the traction vector, Γ is an 

arbitrary contour around the tip of the crack, n is the unit vector normal to Γ   ; εσ , , and u 

are the stress, strain, and displacement field, respectively. 

  

The defined J-integral is a path-independent line integral and it represents the strain 

energy release rate of nonlinear elastic materials: 

                                                     dA
dJ Π

−≡  

Where WU −=Π  is the potential energy, the strain energy U stored in the body minus the 

work W done by external forces and A is the crack area.  
 

Crack 
X 

Y 

O 

n 

ds 

 (1) 

(2) 

Figure 4.1 - Nonlinear elastic body with a crack. 
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The probability of failure assessment algorithm is based on the Adaptive Important 

Sampling (AIS) procedure. Finally, the results of the latest ILI are fused into the algorithm, 

providing best possible assessment of pipeline remnant life as a random variable. 

 

The remaining life update for pipeline segment with crack-like defects using ILI data 

takes into account three possible outcomes: defect not discovered: defect is discovered but not 

measured; defect is discovered and measured. This result permits solving most important 

problems of pipeline maintenance: prioritization of pipeline segments for 

repair/rehabilitation; optimization of the time between ILI; minimization of pipe operational 

risk. 

 

Model-based prognostic techniques rely on a dynamic model of the predicted process. 

This approach uses a mathematical model of the process in order to implement the physical 

understanding of the system into the diagnostic problem. Such models should describe both 

nominal and faulty behavior of the system. As a result, it is possible to explain the fault 

progress in time, and to make End of Life (EOL) and RUL predictions. 

 

These methods involve the estimation of residuals as a deviation between the real 

system measurements and proposed model outputs. In the ideal case, the residuals are zero 

but in reality there are permanent noise and modeling errors. It is, therefore, expected that the 

residuals are small in the nominal working mode and larger in the presence of a failure. Once 

the residuals are obtained, it is possible to use some statistic representation to estimate the 

distribution of RUL as a function of present uncertainties and to calculate possible damage. 

 

The system modeling considered by the physics-based prognosis is derived by using 

physics laws and principles. Crack initiation models must include all the available 

information about component and its environment. The crack propagation models can be 

divided into two main groups: deterministic and stochastic. Deterministic crack propagation 

models, which usually describe the growth of the crack, are based on Paris’ law [25]. 

Stochastic crack propagation involves models with random parameters which can be 

estimated using Monte Carlo simulations. 

 

In reality, all previously mentioned parameters are affected by some probability of 

realization that influences the resulting RUL deduced from D(a). The sampling of the basic 
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parameters for a large number N leads to N curves of D(a) from which we can compute the 

mean curve )(aD  and the standard deviation 𝜎𝜎(D(a)). 

 

Two industrial applications are considered in order to prove the efficiency of the 

proposed model. The evaluation of the lifetime of suspension damping systems is considered 

as the main part of the vehicles prognostic purpose. The main source of suspension failure is 

the fatigue occurrence due to the road profile fluctuations. The life prognostic of 

petrochemical pipelines is vital in their domain since their availability has crucial 

consequences. Fatigue failure is their main failure cause due to internal pressure-depression 

variation along time. Usually, three situations for these pipes exist: unburied, buried and 

under sea water (offshore pipes). Each one of these situations requires different physical 

parameters like: corrosion, soil pressure and friction, water and atmosphere pressure. 

 
Hence, in the present chapter, the two main applications are treated as follows: 

 

First of all, the prognostic study is applied to predict the lifetime of a suspension 

system for the cases of linear and nonlinear damage accumulation in stochastic condition 

where one and two random variables are considered and which are the initial crack length and 

the road profile. 

 

Secondly, the prognostic study is applied to buried, unburied, and offshore pipes 

taking into account the linear and nonlinear damage cases and considering one and two 

random variables which are the initial crack length a0 with a lognormal simulation and the 

internal pressure P with a triangular simulation based on three models: uniformly sampling of 

the instant T, one-triangular period, and multi-triangular period. 

 

IV.3 - Stochastic Linear Damage Accumulation 
To estimate the residual lifetime in fatigue failure risk, an analytical prognostic model 

presented in Chapter II [26,27] aims giving a RUL prediction tool, whenever analytical 

physical laws exist. Such physical laws are: Paris-Erdogan [25] and the linear damage 

accumulation of Palmgren-Miner [28] laws.  

 

The analytical prognostic model consists of the evaluation of a normalized 

degradation indicator D (0 ≤ D ≤ 1) in terms of a load cycle number N. The fatigue failure is 
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reached when the crack size a grows to a critical size aC with respect to Paris' law where the 

necessary number of cycles is the critical number NC. Using Miner cumulative damage, after 

each one load cycle, the damage indicator D increases by a relative crack length increment da 

as indicated by the following equation: 

 

    010
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In Chapter III, an enhancement was made on the analytical model in order to 

introduce the nonlinear aspect of the damage accumulation [1]. This enhancement using a 

nonlinear damage function D(N) allows to perform a more accurate prognostic evaluation.  

 

The deterministic Paris' law is given by the following formula:    [ ]maKC
dN
da )(∆⋅=  

and                                               ; 

 
Where, 

 a is the crack length, 

 N is the load cycle, 

 C and m are the material and environment parameters (0 < C <<1) ; (2 ≤ m ≤ 4) [29], 

 ∆K(a) is the stress intensity factor range, 

 Y(a) is the geometric factor function of the body dimensions, 

 ∆σ is the applied stress range. 

 

IV.4 - Stochastic Modeling 

The stochastic modeling [30,2] aims considering some influent parameters as random 

variables and hence, the Paris' law becomes a stochastic crack propagation law. The 

diagnostic data permit to consider the initial crack length a0 as the main random variable 

where the second variable is the stress loading. Many other parameters can be also considered 

as random and the stochastic prognostic model can be expressed by the following general 

function: 

 

              ..).,~~,dimensions,~thickness,σ~loading,~()()(~
0 m, CeafctaPaD rog ==  

aaYaK πσ ⋅∆⋅=∆ )()(

(3) 
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The degradation indicator D variant from 0 to 1 gives us instantaneously the 

remaining useful lifetime (RUL) in terms of time, or cycle, or distance, depending on the type 

of the concerned device. 

 

A probabilization of the basic parameters leads to a probabilistic trajectory )(~ aD . 

Therefore, a bundle of curves D(a) is obtained for which a mean value and a standard 

deviation can be deduced. Hence, a characteristic curve DK(a) can be computed in terms of a 

fractal α% that depends on the level of the acceptable risk. The characteristic RUL is then 

deduced from DK(a). 

 

All previously mentioned basic parameters are affected by a some probability of 

realization that influences the resulting RUL deduced from )(~ aD . Contrary to the 

deterministic-based prognosis, the RULs concluded in stochastic-based prognosis are related 

to the probabilistic aspect. 

 

These relevant basic parameters must be modeled stochastically using a convenient 

well known probability distribution laws. For example, the initial crack length a0 can be 

modeled by either a normal or a lognormal distributions, the loading σ is modeled by a 

normal distribution. 

 

IV.5 - Stochastic RUL 
The last parameters must be modeled stochastically using convenient probability 

distribution laws. When this is not taken into consideration, the prognostic results may not 

reflect really the evaluated lifetime of a device. 

 

The estimated RUL is then no longer deterministic, but affected by some risk 

percentage in order to be realized. Hence a bundle of RULs trajectories can be plotted. 

 

Knowing that the RUL can be expressed by various forms like for example in fatigue 

by: crack length aC , or critical number of cycles NC , or material tenacity KIC depending on 

the chosen limit states: service limit state ( Caa ≤ ), or lifetime limit state ( CNN ≤ ), or 

strength limit state ( ICKK ≤ ).The RUL adopted in this work is the lifetime limit state: NC - N 

which is expressed in terms of the number of loading cycles. 
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IV.6 - Reliability Evaluation of Damage State 
Each of the limit states cited above is a function of random variables that makes them 

also random functions in their turn. For this reason, they occur with a certain probability. 

 

The evaluation of these probabilities is the main goal of this section. This can be done 

by many reliability methods. 

 

The term reliability is the probabilistic evaluation of a limit state performance on a 

domain of basic variables. In other words, it is obtained by the computation of the failure 

probability toward a criterion or a limit state. 

 

The methodology is as follows: 

1)  Identify the limit states that govern the lifetime of the structure. 

2)  Identify the basic parameters intervening in these limit states. 

3)  Deduce their probability density functions. 

4)  Compute the failure probability that quantifies the risk of non-satisfaction of these 

     limit states.   

 

Many types of methods exist: the Monte Carlo simulation, the approximate method 

FORM (First Order Reliability Method), and SORM (Second Order Reliability Method). 

 

The Monte Carlo simulation method is based on a large number of simulations, it is a 

time consuming tool and we must use N simulations when we want to evaluate a probability 

of order of 10 - (N+4)  (i.e. for a very small probability of failure, a huge simulation number is 

needed). 

 

The approximate method FORM is an iterative procedure that allows calculating an 

index of reliability (denoted β). The index β is the distance between the origin and the limit 

state equation G(t) = 0 in a standard space. Once we have calculated β we can deduce the 

failure probability: 

 

)( β−Φ=robP  
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In FORM approximation the real limit state (usually nonlinear) is replaced by its 

tangent plane at a specific point called the most probable failure point (MPFP). This point is 

the closest point on the curve: G(t) = 0 from the origin. 

 

The limit state G(t) divides the space into two regions: 

• First region where G(t) > 0 called safe region. 

• And the second region where G(t) ≤ 0 called failure region. 

 
Other methods aim to evaluate the probability of success of performance by means of 

the reconstruction of the system response PDF (probability density function) under an 

analytic form. 

 

In SORM approximation the real limit state (usually nonlinear) is replaced by its 

tangent parabola at the point MPFP which is the closest point on G(t) = 0 to the origin. 

 

The limit states are the functions of performance or of satisfaction of some criteria. In 

our model we are interested in the criteria of a lifetime; in fatigue case the serviceability limit 

state is usually used. 

 

The serviceability limit state governs the crack length a(N) at cycle N, in order to be 

under the allowable limit aC. This function is given by: 

 

 NCC aaNaaG −=−= )(  
 

The probability of failure is: 
  

 
 
 

The probability of success is:  
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IV.7 - Stochastic Basic Parameters 

IV.7.1 - Initial Crack Width a0 

The measurements of the initial crack length a0 

derived from sensors output are treated as realizations of a 

random variable 0
~a . Here we consider a Probability 

Density Function (PDF) for a0 that follows a lognormal 

distribution (figure 4.2), then:  
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With:  

ξ is the standard deviation of the variable Ln(a0) which is the equivalent normal                                               

   distribution, 

λ is the mean of the variable Ln(a0), 

Expectation of a0: ]2/exp[)( 2
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The allowable value of the crack length (aC) is fixed when the number of cycles 

reaches the critical value (NC) (figure 4.3).   

 
The probability of fatigue failure is given by: 

 

   

Where fN (aN) is the PDF of the crack width aN at cycle N.   

N
a
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Figure 4.2 - PDF of the crack length. 
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It can be assumed that 8/eaC =  [29], where e is the device dimension in the crack 

direction (figure 4.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

                                          Figure 4.3 - Pre-crack fatigue damage. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.4 - Probabilistic crack growth. 
 
 

IV.7.2 - PDF of Crack Length aN at Loading Cycle N 
 

Since the initial crack length a0 is a random variable, it is expected that the crack 

length at cycle N is also random and is denoted by Na~ . 
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 To calculate the PDF of Na~ , we proceed as follows: From Paris' law we can deduce: 
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If we integrate the two sides between the initial state N0 and an arbitrary state N, we get: 
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Then, we have the crack length aN given by the following expression: 
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And the initial crack length a0 is given by the following expression: 
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As: a0 ≤ aN ≤ aC , 

Therefore, if we have the PDF of a0: )( 00 af , then we can deduce the PDF of aN: )( NN af , and 

of aC: )( CC af , as follows:  
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Then the PDF of aN is given as follows: 
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IV.7.3 - PDF of the Initial Damage D0 

We have the relation between the initial crack length a0 and the initial damage D0 as 

follows: 
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The probabilistic transformation theory gives: 
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If the proposed law for a0 is lognormal, then the law of D0 is also lognormal with the 
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( ) 2
0

2
02

0
0 )1(

)(
2

1exp
2

1)(
D

aaLn
a

Df C

+
×







−

⋅
−

⋅⋅
= λ

ξπξ  

 

;
8

    and    
1

As
0

0
0

ea
D
Daa C

C =
+

=
 

Then we can write the PDF as follows: 
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After that we have determined the PDF of aN which is )( NN af  (equation 13), we can 

calculate the probability of failure by the following serviceability criterion: aC < aN . 
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IV.8 - Equation of the Stochastic-Based Prognostic 
The stress range in fatigue is governed by the WÖhler's curve (figure 4.5). The 

transversal crack is critical when it is normal to the stress loading range ∆σ (figure 4.6). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The degradation evolution in terms of the basic variables is the following stochastic 

recursive relation [30]: 

 

 
Where NDd ~

 is the probabilized damage increment at the end of each loading cycle N. 

 

IV.8.1 - Development of NDd ~
 

We have from Paris' law: 

      
;      as 

 
 

                                           
    

                                                                                                   
      
As:                                         and for dN = 1 (at the end of each one cycle) 
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Figure 4.5 - WÖhler's curve of fatigue.   Figure 4.6 - Critical crack length a perpendicular to  
                       stress loading. 
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For a stochastic initial crack length 0
~a , the probabilized damage increment is given 

under the following stochastic form:  

 
 
 

 
Where it is assumed that: aC = e/8 and 1.01 ≤ e/a ≤ 10. 

 
 

From equations (15) and (16), the prognostic model under the linear stochastic 

condition can be written as follows: 

 
   
 
 

The previous relation describes the degradation evolution in terms of the following 

random variables: initial crack size 0
~a , loading jσ~∆ , and the current crack size Na~ . This 

relation represents the stochastic recursive prognostic model as it permits to relate the 

degradation indicator ND~  to the basic random variables. 

 
At each loading cycle (0 ≤ N ≤ NC), the degradation indicator DN increments of a 

quantity dDN starting from D0 = 0 till reaching the unit value (DC = 1) which is the failure 

state. Equation (17) gives the realization of the stochastic degradation at cycle N. 

 

The parameters C and m are the variables with the environment and the material 

properties, these parameters can also be taken as random variables.  

 

IV.8.2 - Development of Nad~  

Inversely, in terms of crack width, the degradation can be expressed by the crack 

length increment at the end of each one loading cycle (dN = 1) by the following recursive 

relation: 

 

 
 
 

In the following sections, we will apply the proposed prognostic model (equations 17 

and 18) to industrial systems like vehicle suspensions and petrochemical pipelines. 
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IV.9 - Flowchart of the Stochastic-Based Linear Prognostic 
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IV.10 - Application to the Suspension System 
  

Referring to Chapter II, the same automotive suspension system is taken in this 

section as an industrial application. Two kinds of parameters are present in this application, 

deterministic parameters and random parameters. 

 

The two random variables in this application are the initial crack length a0 and the 

road profile variation ∆x that creates a range of stresses ∆𝜎𝜎. 

 

Consider the statistical lognormal parameters of the initial crack length a0 which are 

presented as follows: 

Mean value (or expectation): mm2.0)( 0 =aE   

Standard Deviation and Variance: 

 262
0

2
00 mm 10673.8)002945.0()()(mm002945.0)( −×===⇒= aaVa σσ  

 

And the statistical parameters of the initial damage D0 can be deduced as follows: 
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Moreover, the equivalent normal parameters of a0 are deduced as follows:
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The stress range in the suspension in terms of the road profile range is simplified by 

the following expression:  

 
 
 

Where, 
 

𝓁𝓁 : is the length of the suspension device (𝓁𝓁 = 500 mm) 

  jx∆ : is the variation of this length (dilation) under profile excitation (see table 4.1). 

E: is the Young's modulus of the suspension material (E = 200 GPa). 

 

We study two cases: the case of one random variable ( )jx~∆  and the case of two 

random variables which are the ( )jx~∆  and the initial damage ( )0
~a . 

 

IV.10.1 - Linear Stochastic Case 
 

This case is treated for one random variable and two random variables. 

 

IV.10.1.1 - One Random Variable 

We consider here the case of a linear damage (Miner's law) with one stochastic 

parameter ( )jx~∆  normally distributed from which we deduce the parameters of the applied 

stress range ( )jσ~∆  as follows: 
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The statistical parameters for each mode of road profile are summarized in table 4.1 

below.     
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Road 
Mode 

Mean of jx~∆  

( jx∆  in mm) 

Coefficient of 
Variation of 

jx~∆ (in %) 

Standard  
Deviation 
( )jx~∆σ  (in mm) 

Law 

Severe 
(mode 1) 

100 15% 15 Normal 

Fair  
(mode 2) 

50 10% 5 Normal 

Good 
(mode 3) 

25 5% 1.25 Normal 

 
 

                                          Table 4.1 - Statistical characteristics of each mode of roads profile. 
 

          
 
 
 
 
 
 
 

 
 
                                 

From the simulation of the stochastic prognostic model proposed under equation (17), 

the degradations evolution of the suspension is obtained and presented in figure 4.7 below. 
 

 
Figure 4.7 - Suspension degradation under linear damage law and stochastic road excitations. 

 
 

The lifetimes noted from figure 4.7 are as follows:  

Mode 1:   1,010,000 cycles. 

Mode 2:   3,995,000 cycles. 

Mode 3: 16,092,500 cycles. 

 

IV.10.1.1.1 - Conversion of Lifetimes into Years   

To convert the suspension lifetime into years' unit, assume that a new road profile 

realization occurs each 2 seconds. If we assume also that the suspension time usage is 10% of 
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a day (2.4 hours/day) then the expected lifetimes' durations are (refer to Chapter II, Paragraph 

3.1.10):  

 

For mode 1 : years 64.0
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(000,010,1

=
×××

×
 

 

For mode 2 : years 53.2
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(000,995,3

=
×××

×
 

 

For mode 3 : years 21.10
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(000,092,16

=
×××

×
 

 

 

IV.10.1.2 - Two Random Variables 

In this section, two stochastic parameters are considered for the linear case of damage 

accumulation and which are the following: 
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The parameters of the road profiles ( )jx~∆  are given in table 4.1. 

 

The results of degradations evolution of the suspension are presented in figures 4.8 

and 4.9 below.   
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Figure 4.9 - Zoom-in for the three cases. 
 

 

From the zooming-in shown in figure 4.9, we note that the fluctuations of the curve 

due to stochastic effects increase as the road condition gets better. This phenomenon can be 

explained by the fact that the stochastic dispersion parameters are more influent in good road 

condition (mode 3) case than in severe condition (mode 1) where the mean road profile is 

much higher (table 4.1). 

 

By comparison to the case of one random variable it is clear that the lifetimes decrease 

for the three modes as follows: 

Figure 4.8 - Suspension degradation under linear law of damage and stochastic road 
excitations and initial crack width. 
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            One random variable         Two random variables             Decrease (%) 

Mode 1    1,010,000 cycles       610,000 cycles    39.6% 

Mode 2    3,995,000 cycles    2,712,500 cycles    32.1% 

Mode 3  16,092,500 cycles  10,150,000 cycles    36.9% 

 
The conclusion drawn here is it is important to consider all parameters as random 

when these parameters show some sensibility on the lifetime value. 

 

IV.10.1.2.1 - Conversion of Lifetimes into Years   

To convert the suspension lifetime into years' unit, assume that a new road profile 

realization occurs each 2 seconds. If we assume also that the suspension time usage is 10% of 

a day (2.4 hours/day), then the expected lifetimes' durations are (refer to Chapter II, 

Paragraph 3.1.10): 

 

For mode 1 : years 39.0
365(days)2.4(hours)60(min)60(s)

s)(2cycles)(000,610
=

×××
×

 

For mode 2 : years 72.1
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(500,712,2

=
×××

×
 

For mode 3 : years 44.6
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(000,150,10

=
×××

×
 

 
 
IV.10.1.2.2 - Comparison: Deterministic - Stochastic Results (for Linear Damage Law)  

                                    

                     Deterministic case                                              Stochastic case (2 RV) 

Figure 4.10 - Deterministic and stochastic study of suspension degradation under linear damage law. 
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From figure 4.10, it can be noted that in the stochastic case the lifetimes are reduced 

significantly relatively to the deterministic case like as follows: 

Mode 1 (severe condition) : from  6,836,000 cycles to     610,000 cycles (nearly 91.1%) 

Mode 2 (fair condition)     : from 10,850,000 cycles to  2,712,500 cycles (nearly 75.0%) 

Mode 3 (good condition)  : from 17,222,000 cycles to 10,150,000 cycles (nearly 41.1%) 

 

It is a logical conclusion since the stochastic effects are generally negative on the 

suspension lifetimes. In fact, it is known that the dispersions (standard deviations) introduced 

by these random variables (load stresses induced by road profile and initial crack length of 

suspension) propagate through all the degradation equations and resulting in reduced lifetime 

values. Moreover, the better the road conditions the smaller the lifetime reductions. 

 
IV.10.1.2.3 - RUL Evaluation of a Suspension in Stochastic Case 

 
The global RUL evaluations are deduced from the expression NC - N0. In fact NC is 

the necessary cycle number to reach failure (appearance of the first macro-cracks) and N0 is 

the initial cycle number at the beginning of service taken generally equal to 0. These curves 

decrease from total lifetime of the device to zero where D = DC = 1.  

 
From these curves we can deduce at each instant N the remaining useful lifetime of 

the device (RUL = NC - N) and hence, the prognostic result can be inferred (figure 4.11). 

 
 

Figure 4.11 - RUL evolution of the suspension stochastic degradation under linear damage law. 

RUL1 =      610,000 cycles 
RUL2 =   2,712,500 cycles 
RUL3 = 10,150,000 cycles 
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IV.10.1.3 - Validation of the Suspension Life under Linear Damage Rule   

The validation of these results can be found in the work of reference [31] on the 

fatigue life of suspensions. An average life of 100,375 km is deduced under normal 

conditions and which corresponds to 2.30 years for a vehicle running with 50 km per hour 

and for 2.4 hours per day.  

 

IV.10.2 - Nonlinear Stochastic Case 

 
IV.10.2.1 - Stochastic Nonlinear Cumulative Damage  

The case of fatigue degradation taken in the precedent section is mathematically 

formulated and based on the analytic laws of Paris and Miner. The last law is a linear 

cumulative damage model. Its largest drawback is its inability to account for the order of 

loading. That is, the resulting failure prediction is independent of the load interaction effects 

that have been observed between high-cycle and low-cycle loadings. 

 

Past research has shown there is a nonlinear interaction effect between high cycle 

fatigue (HCF) and low cycle fatigue (LCF) in many engineering materials. This effect has 

been observed within uniaxial loadings, but is often more pronounced under multiaxial 

loading, particularly when the loading is non-proportional. 

 

The nonlinear interaction effect precludes the use of the linear damage rule for 

damage accumulation. In the present study, the effect of HCF loading has had a more 

detrimental effect when coupled with the LCF loadings than predicted by a linear summation 

rule. Nonlinear damage accumulation theories can account for this influence and have shown 

an improvement in prediction. The stress levels were chosen to correspond to levels 

previously tested to failure, resulting in fatigue lives ranging from approximately 105 to 107 

cycles. A nonlinear damage summation is required to properly define the fatigue process 

since the linear summation of damage given by Miner's sum is often not adequate to predict 

the service life of a component when subjected to variable-amplitude loadings. 

 

The nonlinear cumulative damage is demonstrated in Chapter III and given at each 

cycle N by: 
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The growth of D(N) at the end of each cycle N in terms of the crack width a(N) is 

given by the following relation: 

 

 

Where, 

2/σσ ∆= : is the stress amplitude in one cycle, this parameter is generated as an input 

 load whose mean is taken to be equal to 280 MPa, 

0σ = the fatigue limit (is the endurance limit stress of material) taken to be equal to         

        180 MPa. 

 
Here two cases are considered: one random variable (loading       ) and two random 

variables (loading          and initial crack width         ).  

 

The stochastic nonlinear prognostic model can be written as follows:  
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IV.10.2.2 - Flowchart of the Stochastic-Based Nonlinear Prognostic 
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IV.10.2.3 - One Random Variable 

We consider here the case of a nonlinear damage with one stochastic parameter σ~∆  

following the normal law (table 4.1). 

 

 From the simulation of the stochastic prognostic model proposed under equation (22), 

the degradations evolution of the suspension is obtained and presented in figure 4.12.   

 
 

Figure 4.12 - Suspension degradation under nonlinear damage law and stochastic road excitations. 
 

 
The lifetimes noted from the figure 4.12 are for each mode as follows:  

Mode 1:   8,520,325 cycles. 

Mode 2: 11,134,900 cycles. 

Mode 3: 16,781,000 cycles. 

 

IV.10.2.3.1 - Conversion of Lifetimes into Years   

To convert the suspension lifetime into years' unit, assume that a new road profile 

realization occurs each 2 seconds. If we assume also that the suspension time usage is 10% of 
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a day (2.4 hours/day), then the expected lifetimes' durations are (refer to Chapter II, 

Paragraph 3.1.10):  

 

For mode 1 : years 4.5
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(325,520,8

=
×××

×
 

 

For mode 2 : years 06.7
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(900,134,11

=
×××

×
 

 

For mode 3 : years 64.10
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(000,781,16

=
×××

×
 

 

 
IV.10.2.4 - Two Random Variables 
 

We consider here the case of a nonlinear damage with two stochastic parameters: the 

loading from the road excitation σ~∆  and the initial crack length 0
~a   
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 The results of degradations evolution of the suspension are presented in figures 4.13 

and 4.14 below.   
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The lifetimes noted from the figure 4.13 are for each mode as follows:  

Mode 1:   8,613,825 cycles.  

Mode 2: 11,269,650 cycles. 

Mode 3: 16,881,000 cycles. 

 

From the zooming-in shown in figure 4.14, we note that the fluctuations of the curves 

due to stochastic effects are similar for all road conditions. This can be explained by the fact 

that in nonlinear damage, the stochastic dispersion effects dominate for all road conditions.  

 

By comparison to the case of one random variable, the following lifetimes are 

indicated: 

 

Figure 4.14 - Zoom in for the three cases. 
 

Figure 4.13 - Suspension degradation under nonlinear  
                      law and two random variables:                 
                      stochastic road excitations and initial   
                      damage. 
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            One random variable      Two random variables               Increase (%) 

Mode 1    8,520,325 cycles    8,613,825 cycles  1.1% 

Mode 2  11,134,900 cycles  11,269,650 cycles  1.2% 

Mode 3  16,781,000 cycles  16,881,000 cycles  0.6% 

 
Contrarily to the linear case, the lifetimes increase from one random variable to two 

random variables for all modes; this conclusion is explained by the fact that the nonlinearity 

dominates the stochastic effect. 

 
IV.10.2.4.1 - Conversion of Lifetimes into Years   

To convert the suspension lifetime into years' unit, assume that a new road profile 

realization occurs each 2 seconds. If we assume also that the suspension time usage is 10% of 

a day (2.4 hours/day), then the expected lifetimes' durations are (refer to Chapter II, 

Paragraph 3.1.10):  

 

For mode 1 : years 46.5
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(825,613,8

=
×××

×
 

 

For mode 2 : years 15.7
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(650,269,11

=
×××

×
 

 

For mode 3 : years 71.10
365(days)2.4(hours)60(min)60(s)
s)(2cycles)(000,881,16

=
×××

×
 

 

 

IV.10.2.4.2 - Comparison: Deterministic - Stochastic Results (Nonlinear Damage Law)   

 
To show the stochastic effects, a comparison is done between the deterministic results 

and the stochastic results (two random variables case). 
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                      Deterministic case                                              Stochastic case (2 RV) 
 

Figure 4.15 - Deterministic and stochastic study of the suspension degradation under nonlinear 
damage law. 

 

 
From figure 4.15, it can be noted that the lifetimes are reduced from the deterministic 

case to the stochastic case as follows: 

 
Mode 1 (severe condition): from  9,047,700 cycles to   8,613,825 cycles (nearly 4.8%) 

Mode 2 (fair condition)    : from 12,063,800 cycles to 11,269,650 cycles (nearly 6.6%) 

Mode 3 (good condition)  : from 18,095,400 cycles to 16,881,000 cycles (nearly 6.7%) 

 
It is noted that more the road conditions become better more the lifetime reductions 

become greater. Moreover, the fluctuations in stochastic curves are due to the stochastic 

dispersions (standard deviations). In fact, the stochastic effects are generally considerable on 

the suspension lifetimes due to the dispersions introduced by these random variables that 

propagate through all the degradation equations and resulting in reduced lifetime values.  

 

The final remark is that the stochastic effects dominate here over the nonlinear effects 

in lifetimes estimations. Hence, it is important to include the stochastic effects for a more 

realistic prognosis under the condition that we consider reliable statistical data for the initial 

crack widths and the road profile excitations. 
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IV.10.2.5 - Validation of the Suspension Life under Nonlinear Damage Rule   

The validation of these results can be found in the work of reference [32] on the 

fatigue life of suspensions. An average life of 322,000 km is deduced under normal 

conditions and which corresponds to 7.35 years for a vehicle running with 50 km per hour 

and for 2.4 hours per day.  

 

IV.11 - Application to the Pipeline Systems to Three Cases 
 

We restudy the prognostic of the pipeline system already treated in Chapter II; this, by 

taking into account the linear and the nonlinear damage law but this time for the stochastic 

case of variables [33]. The study is done for one and two random variables (internal pressure 

P0 and initial crack length a0). The geometric properties of pipes are presented in Chapter II. 

 
Three maximal levels of internal pressure P0 are considered (table 4.2) with a 

repetition period TP. At each of these levels, a degradation trajectory D(N) is deduced in 

terms of cycle number N. When D(N) reaches the unit value, then the corresponding N is the 

lifetime of the pipe that failed by fatigue.  

 
We simulate three modes of Pj with the statistical parameters given in table 4.2. 

 

  
 
 
 
 
 
 
 
 

  

IV.11.1 - Equation of the Stochastic-Based Prognostic 

In the case of pipes of thickness e, the stress ranges are created by the applied internal 

pressure; hence, the following relation gives the critical hoop stress range θσ∆  in terms of the 

pressure range ∆P (figure 4.16): 

 

 
 
 
 

Pressure 
Mode 

0P (MPa) 

High     (mode 1) 8 

Middle (mode 2) 5 

Low     (mode 3) 3 

  Table 4.2 - The three pressure modes. 

(23) 



179 
 

jjj
j

j PPP
e

RP
=−=∆

⋅
=∆ 0 : thatknowingσ

 
 
 
 
 
 
 
 
 
 

 

The simulation of the internal pressure following a triangular law P~∆  (figure 4.16) 

generates a sample of stress ranges σ~∆ following the same triangular law from the equation 

below: 

 

 
 

 
From the following equation: 
 

  
 
 
 

It can be deduced that:  
 

 
 
 

 
 
 
 

 

IV.11.2 - Generation of Internal Pressure Pi 

The Monte-Carlo simulation of the random Pi is completed using three models: 

 
Model A) : Triangular with uniform sampling of time t;  

Model B) : Over one initial triangular period TP; 

Model C) : Over multi triangular periods TP. 
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Figure 4.16 - Triangular pressure law.  
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IV.11.2.1 - Monte-Carlo Simulation Principle 

The Monte-Carlo simulation (figure 4.17) consists of a random sampling of a large 

number of u in [0,1] interval with the same probabilities (using the uniform distribution). As   

)( i
U

i uFu = (the second bisector) and hence )()( i
X

i
U

i xFuFu == , )(1 i
X

i uFx −= . The 

generation of ix  leads to the reconstruction of the random variable sample following the law

)(xFX . 

 

            
                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.17 - Monte-Carlo simulation principle. 

 

Where u is the uniform-based generated value.   

 

IV.11.2.2 - Model A: Uniform Generation of Time t 
 

Here, the triangular pressure Pj is simulated at each instant t considering a uniform 

distribution for the time t ∈[0,1]. 

 
 
 
 
 
  
 
 
 
 

                             
Figure 4.18 - Triangular simulation of the pressure in terms of uniform time sampling. 
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The simulated pressure diagram is given in terms of time t by the following function: 
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Where the variable t is simulated randomly under uniform law (figure 4.18). 

 

IV.11.2.3 - Model B: One Initial Triangular Period TP  

In this case, the internal pressure P is simulated by Monte-Carlo method using a 

triangular distribution over one initial period of pressure TP. 

 
The triangular law of the internal pressure is given by the following functions (figure 

4.19): 

 

The PDF function of P: 
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The Cumulative Density Function (CDF) of P: 
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Figure 4.19 - Triangular PDF function of P. 
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The inverse of the CDF function gives a realization Pj for P as follows: 
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Where, 

ju : the uniform-based generated value in the interval [0,1],    

ab
ac

−
−

=θ  , 

The mean value:    3)1(6
)1( 3 bcaP ++
≈

−
−

=
θ
θ

, 

The variance: 

 








−
−−

−×





 −

=
−×−

= 2

2

)(
))((1

1818
)1(1)(

ab
cbacabPV θθ . 

     
Here, the simulation of the internal pressure is completed along one period TP under a 

triangular law distribution of mean value P :  

3
0

3)1(6
)1( 0

3
PTPbcaP ++

=
++

≈
−
−

=
θ
θ

 

 
For the same initial period TP, each simulation gives a different realization of the 

PDF; thus, a new value for c = P0 is given, keeping always a = 0 and b = TP.    

 
We consider the following values for the simulation (figure 4.20): 

a = 0; b = TP (pressure interval); and c = P0 (pressure value). 

 
Where the period TP is a pressure interval that can be taken as a percentage of the maximal 
pressure P0. 
 

IV.11.2.4 - Model C: Multi-Triangular Period 

In this case, we do the Monte-Carlo simulation of the symmetric triangular 

distribution repeated stochastically along time with respect to a pressure period TP. In each 

period, a new simulation gives a different realization of the density function; thus, new values 

for a, b, c are given each time (figure 4.21).  

 

)( pfP

P 
a=0 b c 

)( 0PfP

TP 

Figure 4.20 - Triangular PDF of P. 
 

(29) 
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            Figure 4.21 - Multi-Triangular PDF function. 

 

We take the following values for each simulation: 
 
a = i×TP   ( i = instants:  0,1,2,...)    ;     b = a +TP         ;         c = (b+a)/2 
 

 

IV.11.3 - Linear Case of Damage 

In this part, the linear Miner's law of damage is used. One and two random variables 

are considered and which are the pressure P0 and the initial crack length a0. The simulation 

model adopted here for pressure P is the triangular law in terms of a uniform simulation of 

time t (model A). 

 

IV.11.3.1 - One Random Variable (Pressure)  

As for the deterministic study executed in Chapter II, the study encompasses three 

models for pressure generation (table 4.3) and three types of pipes: unburied, buried and 

offshore. 

 

 
 
 
 
 
 

 

 
IV.11.3.1.1 - Model A for Pressure Generation 

For the case of model A pressure generation, the degradation evolutions for the 

unburied pipes are given in figure 4.22. We note here the following lifetimes: 4.80 years 

Pressure 
Mode jP (MPa) δPj (%) Law 

High (mode 1) 8 10% Triangular 

Middle (mode 2) 5 10% Triangular 

Low (mode 3) 3 10% Triangular 

)( pfP  

P 

a=0 c 

ab −
2  

c b a 
c b a b 

TP TP TP
 

TP 

Table 4.3 - Statistical characteristics of each pressure mode. 
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(High pressure), 6.75 (Middle pressure), and 9.1 years (Low pressure). The results show a 

steep increase of degradation from the 4th year onward for the High mode while it is from 6.5 

years for the Middle mode and from 9 years for the Low mode. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             
 
 
                          Figure 4.22 - Unburied pipelines under linear damage law and stochastic P. 

                                    
 

  

In buried pipes case, the degradation evolutions for the case of model A of pressure 

generation are given in figure 4.23. The following lifetimes are noted: 4.50 years (High 

pressure), 6.30 (Middle pressure), and 10.5 years (Low pressure). The results show also a 

sharp increase of degradation from the 4th year onward for the High mode while it is from the 

6th year for the Middle mode and the Low mode shows more progressive increase in 

degradation with time. 

 

 

 
 
 

                             
 
 
 
 
 
 
 
 
 
 

 
                              Figure 4.23 - Buried pipelines under linear damage law and stochastic P. 
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The degradation evolutions for the offshore pipes for the case of model A of pressure 

generation are given in figure 4.24. We note here the following lifetimes: 18.5 years (High 

pressure), 22 years (Middle pressure), and 33 years (Low pressure). The results show a 

progressive increase of degradation along time for all pressure modes except for the Low 

mode where a steep increase is noted from 32 years after a clear progressive degradation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.24 - Offshore pipelines under linear damage law and stochastic P. 
 
IV.11.3.1.2 - Model B for Pressure Generation 

For the case of model B pressure generation, the degradation evolutions show 

different results from the model A. In fact, for the unburied pipes, the results are represented 

in figure 4.25. We note here the following lifetimes: 2.9 years (High pressure), 4.2 years 

(Middle pressure), and 6.5 years (Low pressure). The results show a progressive increase of 

degradation for all modes except for the High and Middle modes where steep increases occur 

at the final stage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                            Figure 4.25 - Degradation evolution for unburied pipe under stochastic P. 
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The degradation evolutions for the buried pipes for model B of pressure generation are 

given in figure 4.26. The following lifetimes are noted: 8.2 years (High pressure), 11.3 years 

(Middle pressure), and 15.9 years (Low pressure). The results show a progressive increase of 

degradation for all modes especially for the last mode. 
 

 
 
                                    Figure 4.26 - Degradation evolution for buried pipe with stochastic P. 

 

Finally, for model B of pressure generation, the degradation evolutions for the 

offshore pipes are given in figure 4.27. We note here the following lifetimes: 8 years (High 

pressure), 16 years (Middle pressure), and 20.5 years (Low pressure). The results show a 

progressive increase of degradation for all modes especially for the last mode. 

 
 
                                   Figure 4.27 - Degradation evolution for offshore pipe under stochastic P. 
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IV.11.3.1.3 - Model C for Pressure Generation 

 For the case of model C pressure generation, the degradation evolutions for the 

unburied pipes are given in figure 4.28. We note here the following lifetimes: 2.9 years (High 

pressure), 4.2 years (Middle pressure), and 6.5 years (Low pressure). The results show a steep 

increase of degradation for the modes High, Middle, and Low from the years: 2.5, 3.5, and 6 

respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                  Figure 4.28 - Degradation evolution for unburied pipe with stochastic P. 

 

The degradation evolutions for the buried pipes in the case of model C of pressure 

generation are given in figure 4.29. We note here the following lifetimes: 8 years (High 

pressure), 11.2 years (Middle pressure), and 17.2 years (Low pressure). The results show a 

steep increase of degradation for the modes High, Middle, and Low from the years: 6.5, 11.5, 

and 16.8 respectively. 

 
         Figure 4.29 - Degradation evolution for buried pipe with stochastic P. 
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For the offshore pipes in the case of model C of pressure generation, the degradation 

evolutions are given in figure 4.30. We note here the following lifetimes: 9 years (High 

pressure), 13.5 years (Middle pressure), and 22 years (Low pressure). The results show a 

progressive increase of degradation for all modes especially for the last mode. 

 

 
           Figure 4.30 - Degradation evolution for offshore pipe with stochastic P. 

 

IV.11.3.2 - Two Random Variables: Pressure (One Triangular Period) - a0 (Lognormal  
                   Law) 

Here, for each instant, the simulation of the internal pressure is done along one initial 

period TP (model B) under a triangular distribution law of mean value P : 

 

3
0

3
0 PTPbcaP ++

=
++

≈  

 
For the same initial period, each simulation gives a different realization of the density 

function; thus, a new value for c = P0 is given, keeping always a = 0 and b = TP.    

 

We consider the following values for the simulation: a = 0; b = TP (pressure interval); 

and c = P0 (pressure value). 

 
The Triangular simulation of the internal pressure, with respect to model B and for the 

three modes, leads to the applied stress blocks shown in figure 4.31. This figure shows that, 

for the three blocks of applied stresses, the randomness is clearly illustrated by the fluctuation 

values of these stresses with the cycle numbers. The mean values of the three blocks are 

respectively 240 MPa, 150 MPa, and 90 MPa. 
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The initial crack length is simulated along a lognormal law with the following 

parameters:  




==
=

mm002945.0)~()~(
mm2.0)~(

LawLognormal:~
00

0
0 aVa

aE
a

σ
 

The crack length a(t) growth versus time is given in figure 4.32 that shows for the 

three modes the length evolution from an initial value a0 to the critical value aC = e/8. They 

grow from an initial value a0 = 0.2 mm to the end of life where all curves a(t) reach the 

critical width aC = e/8 = 1. The High pressure mode reveals the fastest width increase. The 

critical crack lengths reached for each pressure mode at the instants are: 3.15 years, 5.3 years, 

and 6.8 years respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
             
 
 
 

Figure 4.31 - Applied stress blocks on pipes for three modes of pressure. 

Figure 4.32 - Crack length evolution with time for unburied pipe with random P0 and a0. 
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The simulation of the prognostic equation (17) previously developed permits to draw, 

for each level of pressure (High, Middle, and Low), the degradation trajectory D in terms of 

time t. The results of degradation trajectory simulations are shown in figure 4.33 below. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 4.33 - Degradation evolution for unburied pipe with triangular P0 and lognormal a0. 

 

Conversely, at each instant t, the Remaining Useful Lifetime RUL(t) = tC - t (figure 

4.34) can be deduced starting from the raw state of the pipe RUL(t0) = tC - t0 which gives the 

entire age of the pipe, till reaching the failure state (D = DC = 1) where RUL(tC) = tC - tC = 0 

(See example on figure 4.34 for Mode 1: High). The RULs for unburied pipes is nearly 3.6 

years for mode 1 (High pressure), 5.1 years for mode 2 (Middle pressure), and 6.35 years for 

mode 3 (Low pressure).  

 
Figure 4.34 - RUL evolution for unburied pipe with triangular P0 and lognormal a0. 

t0 

tC 

t 
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For buried pipes (figure 4.35), it is nearly 8.75 years for mode 1 (High pressure), 

12.08 years for mode 2 (Middle pressure), and 16.33 years for mode 3 (Low pressure).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 

 
Figure 4.35 - Degradation evolution for buried pipe with triangular P0 and lognormal a0. 

 

For offshore pipes (figure 4.36), it is nearly 10.00 years for mode 1 (High pressure), 

13.71 years for mode 2 (Middle pressure), and 21.43 years for mode 3 (Low pressure).  

 

 
Figure 4.36 - Degradation evolution for offshore pipe with triangular P0 and lognormal a0. 
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The degradation indicator D evolves from D0 to DC = 1 where the pipe is at the end of 

its life and this for each pressure mode. The obtained lifetime values are verified to be in the 

range of real lifetimes according to the references [33,34]. As we can notice, these curves are 

stochastic and the lifetimes deduced from them are also stochastic. Therefore, we do not have 

a unique value for the corresponding RUL(t), but a new realization is derived from each 

simulation of D(t) and the mean values )(RUL  and  )( ttD  can be inferred. 

 

IV.11.4 - Nonlinear Case  

In this case, we adopt the nonlinear law for damage accumulation developed in 

Chapter III. As in the previous linear case, we make the stochastic study for one and two 

random variables.  

 

IV.11.4.1 - One Random Variable (Pressure)  

Here, the internal pressure is the result of a triangular simulation using the model B. 

Three pressure modes are considered: High (in red), Middle (in blue), and Low (in green) 

where the values are given in table 4.3. The results are represented by the following figures.
  

       
 

Figure 4.37 - Degradation evolution of unburied pipes under stochastic P and nonlinear damage. 
 

We note from the previous figure 4.37 that the RULs are respectively: 3.53 years for 

mode 1, 5.89 years for mode 2, and 10.6 years for mode 3. It can be seen clearly that the 
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smoothness of all the curves can be explained by the dominance of the nonlinear effect on the 

stochastic one. The degradations increase largely at the final stage of their lives. 

 

 
       Figure 4.38 - Degradation evolution of buried pipe under stochastic P and nonlinear damage. 
 

From the previous figure 4.38, it is noted that the RULs are respectively: 8.8 years for 

mode 1, 14.7 years for mode 2, and 26.5 for mode 3. It can be seen clearly that the 

smoothness of all the curves can be explained by the dominance of the nonlinear effect on the 

stochastic one. The degradations increase considerably at the final stage of their lives. 

 

  
       Figure 4.39 - Degradation evolution of offshore pipe under stochastic P and nonlinear damage. 
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Figure 4.39 shows that the RULs are respectively: 11.2 years for mode 1, 19.4 years 

for mode 2, and 34.2 for mode 3. 

 

As in the three precedent simulations, it can be seen clearly that the smoothness of all 

the curves can be explained by the fact that the dispersion introduced from the stochastic 

condition is not very influent. Actuality, the nonlinear effect here dominates the stochastic 

one related to the random variable P. Moreover, degradations increase significantly at the 

final stage of their lives. 

 

The value obtained for pipes lifetimes are logical knowing that the end of life does not 

mean necessarily the total replacement of the pipe but that means that the pipe maintenance 

should be done now. 

 

IV.11.4.2 - Two Random Variables (Pressure and Initial Crack Length)  

In this section, two random variables are considered: the pressure and the initial crack 

length. We execute a triangular simulation of internal pressure P using model B for the three 

modes: High, Middle, and Low (table 4.3). The initial crack length is simulated as a 

lognormal distribution using the following parameters: 
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The equivalent normal parameters for a0 are inferred as follows: 
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The initial damage D0 is deduced from a0 as follows: 
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The nonlinear cumulative damage, previously demonstrated, is given at each cycle N 

by: 
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Figure 4.40 below reveals the crack width growth as a function of time t. It is noted 

that the low pressure mode reveals the lowest increase rate (slope) in crack width in 

comparison with the two other pressure modes. Consequently, these two previous modes 

reach earlier the critical width aC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The simulation of the prognostic equation (22) permits to draw the degradation 

trajectory for each level of pressure: High (red), Middle (blue), and Low (green), by 

considering the three cases of pipelines.  

Figure 4.40 - Crack width evolution with time of unburied pipe under stochastic 
                 pressure and initial crack length for nonlinear damage. 

 a(t) (mm) 

a0 
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The results for unburied pipes (figures 4.41 & 4.42) show that the pipe lifetime for 

this case is nearly 3.20 years for mode 1 (High pressure), 5 years for mode 2 (Middle 

pressure), and 9 years for mode 3 (Low pressure). The degradation curves show more steep 

evolution for the two first modes than the third mode. 

 

 
 

  Figure 4.41 - Degradation evolution of unburied pipe under stochastic P and a0 for nonlinear damage. 

Figure 4.42 - RUL evolution of unburied pipe under stochastic P and a0 for nonlinear damage. 
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For buried pipes (figure 4.43) the lifetime is nearly 7.49 years for mode 1 (High 

pressure), 12.91 years for mode 2 (Middle pressure), and 22.64 years for mode 3 (Low 

pressure). The degradation curves show also more steep evolution for the two first modes 

than the third mode. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The lifetimes for offshore pipes (figure 4.44) show that is nearly 9.25 years for mode 

1 (High pressure), 16.41 years for mode 2 (Middle pressure), and 28.72 years for mode 3 

(Low pressure). The degradation evolutions are steeper for the two first modes than the third 

mode. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 4.43 - Degradation evolution of buried pipe under stochastic P and a0 for nonlinear damage. 

Figure 4.44 - Degradation evolution of offshore pipe under stochastic P and a0 for nonlinear damage. 
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The stochastic influence can be seen through the variability over the curve realizations 

of D(t) obtained by many simulations and not from just one realization.  Contrarily to the case 

of one random variable, the curves are not smooth and the stochastic effects are clearer here. 

 

To more exploit these results, a mean curve )(tD can be plotted from the mean value 

of these realizations. The conservative curves are those that give the maximum values. For 

each mode, a characteristic curve of lifetime can be computed from the mean values, the 

standard deviation values, and a certain fractal percentage depending on the risk adopted by 

decision makers. 

 

IV.11.4.2.1 - Comparison: Deterministic - Stochastic Results (Nonlinear Damage Law) 

To show the stochastic effects, a comparison is done between the deterministic results 

and the stochastic results (figure 4.45). 

 

 

   

 
Figure 4.45 - Deterministic and stochastic (P, a0) study of offshore pipes degradation under nonlinear  

damage law. 
                        

 

                            Deterministic nonlinear             Stochastic nonlinear          Decrease (%) 

Mode 1             10.92 years      9.25 years   15.3% 

Mode 2  19.11 years    16.41 years   14.1% 

Mode 3  33.67 years    28.72 years   14.7% 
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For all modes of internal pressure, the lifetimes of pipes decrease about 15% from the 

deterministic case to the stochastic case. These reductions are explained by the fact that the 

dispersions introduced by the random variables have a negative effect on the lifetimes' 

predictions. The stochastic effect is more pronounced and effective for two random variables 

than for one random variable. The curves for each mode fluctuate and they constitute a bundle 

of trajectories which are the realizations of many simulations.  

 

IV.11.5 - Validation of the Pipelines Lifetimes in Stochastic Conditions 

The obtained lifetimes values for linear and nonlinear damage rules in stochastic 

conditions can be verified to be in the range of real lifetimes according to the references 

[34,35,36]. In fact, a fatigue life of pipes under good exploitation conditions was found to be 

26 years in average which is very close to the results obtained for pipes in mode 3 in 

stochastic nonlinear case. 
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IV.12 - Conclusion 

In this chapter the prognostic model is developed to consider the prognostic 

computation in stochastic conditions.  Hence, the model is a general one as it is based on the 

linear and nonlinear accumulation of damage due to fatigue crack propagation in stochastic 

conditions. These last conditions are taken into account by considering two random variables 

which are the applied loading and the initial crack length.  Two cases are explored separately: 

one random variable and two random variables. 

 

The fatigue failure is considered and the damage state of the device is measured by a 

degradation indicator in terms of the number of loading cycles starting from an initial 

damage. The lifetimes are concluded from the time reading at each instant on the degradation 

curve. The Remaining Useful Lifetimes at each instant are deduced from the degradation 

curve by subtracting the current instant from the last predicted instant. 

 

To show the efficiency of this stochastic prognostic model, it is applied to predict the 

fatigue life of vehicle suspension systems and of petrochemical pipelines under three modes 

of internal pressure. Lifetimes results are obtained for linear and nonlinear stochastic cases. 

 

The stochastic results for one random variable show that the nonlinear case is always 

dominant where the curves are not fluctuant. Contrarily, for two random variables case the 

stochastic effects become more influent and the curves of degradation are fluctuant and 

constituted of bundles of trajectories. In this case the lifetimes are reduced due to the 

dispersion effects. 
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CONCLUSION and FUTURE WORKS 
 

A prognostic model is introduced in this thesis that permits to predict the degradation 

trajectory of a dynamic system; it is based firstly on analytical laws of damage such as the 

crack propagation law and linear damage accumulation law. Secondly, it is based on 

nonlinear damage accumulation and finally, the stochastic influences are considered. 

 

In the approaches based on physical or mathematical models, the knowledge of the 

fundamental equations of the dynamic behavior of degradation appears to be very useful. In 

fact, in case we change the system properties or of degradation, the parameters can be 

readjusted and then the approach is adaptable to a new case. The approaches guided by data 

assume a reliable estimation of the current state of degradation in order to predict the future 

evolution of the system. They lack reactivity when facing a change in usage conditions and 

the efficiency is strongly linked to the sample of data that serves to compute the model 

parameters. The third approach which is the Experience-based approach requires little expert 

knowledge of the degradation mechanisms. It remains simple to implement but it is also 

insensitive to a change in the system operating mode. In addition, the models derived have 

only two states: a state of functioning, and a state of failure, and do not comprise a state of 

degraded functioning. 

 

The proposed model belongs to the first prognostic approach which is the model-

based approach. Whenever the analytic damage laws are available, this model can be 

adaptable to new situations or cases. In industrial systems, this model shows that it is 

convenient and practical as a flexible tool for prognostic analysis. 

 

The failure mode treated in this thesis is the fatigue of the device material. The 

considered damage is the crack propagation due to fatigue. The damage state of the device is 

measured by a degradation indicator D in terms of the number of loading cycles N. The 

proposed model is based on the link between a conventional index of degradation D that 

varies from zero to one and the crack length a. A failure is produced when a reaches a critical 

length aC. The model is then expressed by a recursive function relating the degradation in 

two consecutive cycles to the critical number of cycles and the endurance stress limit of the 
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material. From a detected initial crack, the degradation trajectories have been drawn in terms 

of cycle loading.  

 

The analytic prognostic model introduced in this thesis permits to predict, at each 

cycle or instant, the remaining useful lifetime of the system by a simple and practical way. 

The lifetimes are concluded from the time reading at each instant on the degradation curves 

or trajectories. To show the efficiency of this prognostic model, it is applied in simulation to 

predict the fatigue life of the petrochemical pipeline systems and of the vehicle suspension 

systems. In fact, the degradation trajectories deduced allow us to determine their remaining 

useful lifetimes.  

 

There are many causes and contributors to pipelines failures, including construction 

errors, material defects, pressure fluctuations, gas blows, internal and external corrosion, 

operational errors, malfunction of control systems and outside force damage (e.g., by third 

parties during excavation). Pipeline incidents can result in a loss of life, serious injury, 

property damage, and environmental damage, although major incidents are infrequent. In 

many cases, pipelines placed underground, under runways or roadways are required to resist 

the influence of the overlying soil and many surface traffic loads accidents as well as the 

effect of corrosion and material failure like fatigue. For these reasons, the fatigue life 

prediction is done for unburied, buried and offshore pipelines under three modes of internal 

pressure.  

 

Additionally, a nonlinear interaction effect exists between high cycle fatigue (HCF) 

and low cycle fatigue (LCF) in many engineering materials. It has been observed within 

uniaxial loadings, and more pronounced under multiaxial loading, particularly when the 

loading is non-proportional. This nonlinear modeling is especially important to take into 

account the nature of the applied constraints and influent environment that can accentuate the 

nonlinear aspect related to some materials behavior subject to fatigue effects. 

 

In the proposed nonlinear accumulation of damage, the damage state of the device is 

measured by a recursive nonlinear degradation function in terms of the number of cycles or 

usage time. This nonlinear prognostic model is applied to estimate the fatigue life of a 

pipeline system and a vehicle suspension system in order to reveal the effectiveness of this 

model. The RUL results obtained are compared to previous results of a linear model and the 
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differences are justified by the multiple trends of degradation (linear, convex, and concave). 

The present nonlinear prognostic model will allow us to include the stochastic aspect which 

will improve the intended prediction capacity of the model. 

 

In the extended stochastic model, based on the accumulation of damage due to fatigue 

crack propagation in stochastic conditions, the initial crack length and the loading are taken 

as random. The prognostic model becomes more precise in RUL prediction. Lifetime results 

are obtained for linear and nonlinear damage cases and the differences are justified by the 

multiple trends of degradation also. Stochastic crack propagation involves models with 

random parameters which can be estimated using Monte Carlo simulations. The stochastic 

parameters are affected by some probability of realization that influences the resulting RUL 

deduced from the degradation trajectory. 

 

As prospective and future works, it is planned to more develop the proposed 

prognostic methodology and apply it to a wide set of dynamic systems. This is by taking into 

consideration other analytic laws besides Paris-Erdogan's law for crack propagation and other 

damage accumulation laws. Additionally, more probabilistic basic parameters like the 

material and the environmental parameters can be considered. Furthermore, additional 

probabilistic laws for the parameters other than the Normal and the Log-normal laws can be 

explored. Also, it is planned to more explore the variability of the stochastic lifetimes and to 

deduce a bundle of degradation curves from which a mean curve and a characteristic lifetime 

curve can be inferred. The characteristic curve is the one attached to some predefined 

acceptable risk.  

 

As well, in the pipeline application, other internal pressure model fluctuation can be 

taken into account as for example the model of the Fourier series. In the automotive 

suspension system, the output variables (vertical displacements of dampers) can be derived 

from the input variables (road profile). This is done by a resolution of a convenient dynamic 

model by considering the inertial forces which are due to the vehicle oscillatory movement on 

a road with an irregular surface.   
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 THESIS ABSTRACTS 
 
 

Advanced Analytical Model for the Prognostic of 
Industrial Systems Subject to Fatigue 

 
The high availability of technological systems like aerospace, defense, petro-

chemistry and automobile, is an important goal of earlier recent developments in system 
design technology knowing that the expensive failure can generally occur suddenly.  

 
To make the classical strategies of maintenance more efficient and to take into 

account the evolving product state and environment, a new analytic prognostic model is 
developed as a complement of existent maintenance strategies. This new model is applied to 
mechanical systems that are subject to fatigue failure under repetitive cyclic loading. 
Knowing that, the fatigue effects will initiate micro-cracks that can propagate suddenly and 
lead to failure. 

 
This model is based on existing damage laws in fracture mechanics, such as the crack 

propagation law of Paris-Erdogan beside the damage accumulation law of Palmgren-Miner. 
From a predefined threshold of degradation DC, the Remaining Useful Lifetime (RUL) is 
estimated by this prognostic model. Damages can be assumed to be accumulated linearly 
(Palmgren-Miner's law) and also nonlinearly to take into consideration the more complex 
behavior of loading and materials. 

 
The degradation model developed in this work is based on the accumulation of a 

damage measurement D after each loading cycle. When this measure reaches the predefined 
threshold DC, the system is considered in wear out state. Furthermore, the stochastic 
influence is included to make the model more accurate and realistic.  

 
In this work, two main applications are considered: in automobile industry, a 

prognostic assessment of the suspension component permits to enhance its maintenance 
strategies; and in petrochemical industries, pipelines are studied to prevent the sudden and 
harmful leakage or blows. 
 
 
 
Keywords: Prognostic, Remaining Useful Lifetime, Fatigue, Degradation, Analytic model, 
Linear accumulation, Nonlinear accumulation, Damage, Stochastic. 
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Modèle Analytique Avancé pour le Pronostic des 
Systèmes Industriels Soumis à la Fatigue 

 
La disponibilité élevée des systèmes technologiques comme l'aérospatial, la défense, 

la pétrochimie et l'automobile, est un but important des nouveaux développements de la 
technologie de conception des systèmes sachant que la défaillance onéreuse survient, en 
général, soudainement. 

  
Afin de rendre les stratégies classiques de maintenance plus efficaces et pour prendre 

en considération l'état et l'environnement évolutifs du produit, un nouveau modèle de 
pronostic analytique est développé en tant que complément des stratégies de maintenance 
existantes. Ce nouveau modèle est appliqué aux systèmes mécaniques soumis à la défaillance 
par fatigue sous charge cyclique répétitive. Sachant que l'effet de fatigue va initier des 
microfissures qui peuvent se propager soudainement et conduire à la défaillance. 

 
Ce modèle est basé sur des lois d'endommagement existantes dans la mécanique de la 

rupture comme la loi de propagation de fissures de Paris-Erdogan à côté de la loi de cumul de 
dommage de Palmgren-Miner. A partir d'un seuil prédéfini de dégradation DC, la durée de vie 
résiduelle (RUL) est estimée à l'aide de ce modèle de pronostic. Les dommages peuvent être 
cumulés linéairement (Loi de Palmgren-Miner) et aussi non linéairement afin de prendre en 
compte un comportement plus complexe des chargements et des matériaux.  

 
Le  modèle de dégradation développé dans ce travail est basé sur une sommation 

d'une mesure de dommage D à la suite de chaque cycle de chargement. Quand cette mesure 
devient égale à un seuil prédéfini DC, le système est considéré dans l'état de panne. En plus, 
l'influence stochastique est incluse dans notre modèle pour le rendre plus précis et réaliste. 

 
Dans ce travail, deux applications principales sont considérées: dans l'industrie 

automobile, l'évaluation de pronostic des éléments de suspension permet d'améliorer ses 
stratégies de maintenance; et dans l'industrie pétrochimique, les pipelines sont étudiés afin de 
prévenir des fuites et des explosions soudaines et nocives.    

 
 
 

Mots-clefs: Pronostic, Durée de vie résiduelle, Fatigue, Dégradation, Modèle analytique, 
Cumul linéaire,  Cumul non-linéaire, Dommage, Stochastique. 
 
 
 
 
 
 
 
 
 
 
 
 
 



213 
 

RÉSUMÉ DE LA THÈSE 
 

Modèle Analytique Avancé pour le Pronostic des  
Systèmes Industriels Soumis à la Fatigue 

 

La disponibilité élevée des systèmes technologiques comme l'aérospatial, la défense, 

la pétrochimie et l'automobile, est un but crucial des nouveaux développements de la 

technologie de conception des systèmes. En général, la défaillance est onéreuse et elle 

survient soudainement. 

 

Le pronostic consiste en la capacité de ''prévoir et prévenir'' des défauts possibles ou 

de la dégradation du système avant l'occurrence des pannes. S'il était possible de prédire 

efficacement l'état des machines et des systèmes, les actions de maintenance peuvent être 

exécutées au bon moment. Le pronostic est défini comme "prédire la défaillance quand elle 

survient", autrement, parvenir à un moyen de calcul de la durée de vie résiduelle d'un 

composant. Afin d'obtenir un pronostic efficace et fiable, il est nécessaire d'avoir un 

diagnostic efficace et fiable. 

 

Au sens Automatique du terme, le pronostic est généralement associé à la notion de 

dégradation qui représente le cumul de l'usure d'un système. Il consiste à prévoir la future 

évolution de la dégradation en prenant en considération les facteurs qui modifient les 

dynamiques de la dégradation. Ces facteurs peuvent être divisés en deux catégories: les 

facteurs liés à la sollicitation du système et ceux liés à l'environnement dans lequel le système 

évolue. Normalement, l'influence de ces deux catégories sur la dégradation n'est pas bien 

connue. 

 

Comme les stratégies classiques de maintenance peuvent être améliorées puisqu'elles 

négligent l'état et l'environnement évolutifs du produit, alors les approches de pronostic ont 

prouvé leurs intérêts dans ce domaine. 

 

Différentes méthodes ont été appliquées au pronostic des composants dégradés. En 

général, les approches de pronostic peuvent être classifiées en trois catégories fondamentales: 
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(1) Approches "à base de modèles",  

(2) Approches "guidées par les données", et  

(3) Approches basées sur les techniques probabilistes.   

 

L'avantage principal des approches "à base de modèles" est leur capacité à inclure les 

informations physiques du système surveillé. De même, si les informations recueillies de la 

dégradation du système deviennent plus disponibles, alors le modèle de pronostic peut être 

réadapté pour prendre en compte ces nouvelles informations afin d'augmenter sa précision de 

prédiction et de traiter des problèmes de performance plus délicats.  

 

Cependant, les approches "guidées par les données" s'appliquent lorsque le modèle 

n'existe pas mais elles nécessitent un nombre suffisant de mesures de bonnes qualités afin de 

bien refléter l'image de dégradation du système. 

 

Les approches basées sur les techniques probabilistes nécessitent un excellent retour 

d'expérience (historique, données expertes, etc.) permettant une modélisation stochastique ou 

probabiliste de la dégradation. Ces approches sont bien adaptées aux systèmes complexes 

pour lesquels il est difficile d'avoir un modèle physique.  

 

 Une nouvelle procédure analytique de pronostic "à base de modèles" est développée 

dans cette thèse et appliquée aux systèmes mécaniques soumis à la fatigue sous charge 

cyclique répétitive; sachant que les effets de la fatigue initieront des microfissures qui 

peuvent se propager soudainement et conduire à la défaillance. 

 

Ce modèle est basé sur des lois d'endommagement existantes dans la mécanique de la 

rupture comme la loi de propagation de fissures de Paris-Erdogan à côté de la loi de cumul de 

dommage de Palmgren-Miner. A partir d'un seuil prédéfini de dégradation DC, la durée de vie 

résiduelle (RUL) est estimée à l'aide de ce modèle de pronostic. Les dommages peuvent être 

cumulés linéairement (Loi de Miner) et aussi non linéairement afin de prendre en compte un 

comportement plus complexe.  

 

Cette thèse est dédiée au pronostic des systèmes dynamiques. Les travaux de cette 

thèse ont pour but le développement d'un outil avancé permettant de traiter l'évaluation du 

pronostic dans un contexte déterministe linéaire et non-linéaire dans un premier temps, et 
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dans un contexte stochastique dans un second temps. Notre objectif est de préparer un moyen 

général de pronostic capable de bien prédire la durée de vie résiduelle (RUL) d'un système. 

Cette prédiction est basée sur un cumul analytique de dommage et ceci dans les deux 

contextes déterministe et stochastique. 

 

Notre modèle de dégradation est fondé sur un cumul d'une mesure de dommage D à la 

suite de chaque cycle de chargement. Quand cette somme devient égale à DC, le système est 

considéré dans un état de panne. En plus, l'effet stochastique est inclus dans notre modèle 

pour le rendre plus précis. 

 

Dans ce travail, deux applications principales sont considérées: dans l'industrie 

automobile où l'évaluation de pronostic des éléments de suspension permet d'améliorer ses 

stratégies de maintenance; et dans l'industrie pétrochimique dans laquelle les pipelines sont 

étudiés afin de prévoir des éventuelles fuites et des explosions soudaines et nocives.    

 

Le premier chapitre est consacré à la littérature et à l'état de l'art général de la science 

de pronostic. Il décrit amplement les différentes approches proposées dans ce domaine par les 

spécialistes de pronostic. 

 

En effet, dans ce premier chapitre, un tour d'horizon complet des approches de 

pronostic est présenté, aussi bien que les avantages et les inconvénients de chacune des trois 

familles de pronostic sont abordés. Il montre la grande importance de ces genres d'étude pour 

les systèmes technologiques et industriels. La méthodologie basée sur les abaques de 

dégradation est discutée. Elle a montré l'importance de cette nouvelle approche qui permet de 

surmonter les inconvénients des modèles de pronostic existants à conditions d'avoir un grand 

nombre de données disponibles et fiables.     

 

Le problème principal de l'approche basée sur l'expérience est qu'elle ne peut pas être 

appliquée dans le cas des nouveaux systèmes pour lesquels les données collectées par retour 

d'expérience n'existent pas ou s'avèrent insuffisantes. 

 

Les approches guidées par les données s'appuient sur une estimation fiable de l'image 

de l'état courant de dégradation afin de prédire la future évolution du système. L'efficacité des 

méthodes d'apprentissage est liée fortement à l'échantillon des données qui sert à calculer les 
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paramètres du modèle. Si une situation non apprise surviendra, le pronostic peut être 

aléatoire. De même, les approches guidées par les données manquent de réactivité face à des 

changements dans les conditions d'utilisation. Quand les approches sont dépourvues des 

formes analytiques, elles montrent souvent une inflexibilité durant l'application à des 

comportements variés des systèmes.  

 

L'approche de pronostic basée sur l'expérience nécessite peu de connaissance experte 

des mécanismes de dégradation. Elle reste facile à mettre en œuvre mais elle n'est pas 

réactive face à l'éventuel changement dans le mode de fonctionnement du système. En plus, 

les modèles construits dans cette approche, ont seulement deux états: un état de 

fonctionnement et un état de défaillance, ils ne comprennent pas un état de fonctionnement 

dégradé.   

 

Dans les approches basées sur les modèles mathématiques ou physiques, la 

connaissance des équations du comportement dynamique de la dégradation s'avère très utile. 

En cas de changement des propriétés du système ou de la dégradation, les paramètres peuvent 

être réajustés et le modèle peut être réadapté à un nouveau cas. Cependant, il est nécessaire 

d'avoir une haute qualification afin de bien maitriser les mécanismes de dégradation en 

question, d'où le coût élevé de l'utilisation ce type de modèle. Néanmoins, la précision et 

l'exactitude recherchées méritent le surcoût payé. Donc le choix d'une nouvelle approche à 

base physique, fondée sur un nouveau modèle mathématique de dégradation, devient logique 

et justifié. Par suite, des lois mathématiques précises, utiles et élégantes nous aideront dans 

les chapitres qui suivent afin d'achever le but de cette thèse. Notre modèle propose 

l'utilisation des lois analytiques de dommage.   

 

Le deuxième chapitre définit le critère adopté, à savoir la rupture par fatigue, et 

développe un modèle basé sur l'aspect linéaire de cumul de dommage. Le modèle de 

pronostic proposé dans cette thèse permet de prédire la trajectoire de dégradation d'un 

système dynamique; il est basé, premièrement, sur des lois analytiques de dommage à cumul  

linéaire déjà évoquées, deuxièmement, il est basé sur une loi de cumul non-linéaire de 

dommage (troisième chapitre) et troisièmement, il fait inclure les influences stochastiques 

(quatrième chapitre). 
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La loi de Paris nous a permis de modéliser l'évolution de la longueur de fissure avec 

le nombre de cycles de chargement dans la phase stable de propagation. A chaque cycle, la 

longueur de fissure subit un incrément; et quand cette longueur atteint une certaine valeur 

critique, au-delà de laquelle la rupture devient imminente, la pièce est déclarée en état 

défectueux. La mesure de dégradation adoptée est un scalaire D normalisé variant entre 0 et 1 

et relié au nombre de cycles à travers la loi de Miner en profitant de la propriété d'additivité 

linéaire de cette loi.  

 

Le mode de défaillance traité dans ce travail est la fatigue des matériaux du dispositif. 

Le dommage considéré est dû à la propagation de fissure par fatigue. L'état 

d'endommagement du dispositif est mesuré par un indice de dégradation D en fonction du 

nombre de cycles de chargement N.  Le modèle proposé est basé sur une relation entre un 

indice conventionnel de dégradation D et une longueur de fissure a. La défaillance sera 

déclarée quand a atteint la longueur critique aC. Le modèle est donc exprimé par une fonction 

linéaire récursive reliant la dégradation dans deux cycles consécutifs au nombre critique de 

cycles et à la contrainte limite d'endurance du matériau du système. A partir d'une fissure 

initiale détectée, les trajectoires de dégradation peuvent être tracées en fonction de cycles de 

chargement. 

 

Le modèle analytique de pronostic développé dans cette thèse permet de prédire, à 

chaque cycle ou instant, la durée de vie résiduelle (RUL) du système. Les durées de vie sont 

déduites à partir d'une lecture de temps, en chaque point, sur les courbes et les trajectoires de 

dégradation obtenues. 

 

Ce modèle appartient à la première famille des approches de pronostic. Dans le cas où 

les lois analytiques de dommage sont disponibles, ce modèle est qualifié d'adaptable aux 

nouvelles situations. A notre avis, ce modèle permettra d'assure un moyen utile pour l'analyse 

de pronostic des systèmes industriels.  

 

Afin d'illustrer la méthodologie présentée et de montrer son efficacité, l'approche 

proposée est appliquée à la prédiction de l'âge des deux systèmes en fatigue. L'étude 

considère premièrement l'application industrielle à un système de suspension d'automobile, et 

deuxièmement, l'application à un système pétrochimique comme les pipelines. Dans ces deux 
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applications, des courbes de dégradations sont déduites permettant ainsi de déterminer les 

durées de vie des éléments industriels étudiés. 

 

On considère dans notre application un système formé de la moitié d'une suspension à 

cause de la symétrie. Les suspensions sont soumises à un chargement répété dû à la surface 

d'une route non régulière. Cette surface est modélisée par une fonction polynomiale 

périodique. Trois modes d'excitation de route sont examinés en fonction de l'amplitude de la 

surface modélisée afin de tenir compte des cas extrêmes d'état de route et du fonctionnement 

de la suspension. 

 

En ce qui concerne la deuxième application, l'importance de l'étude du pronostic des 

pipelines réside dans le fait qu'il existe plusieurs origines de la défaillance de ces tuyaux, y 

compris: erreurs de construction,  défauts de matériaux, fluctuation de pression, explosion de 

gaz, corrosion interne et externe, erreurs opérationnelles, dysfonctionnement des systèmes de 

contrôle et force d'endommagement extérieure (issue d'un tiers durant l'excavation).      

 

Les accidents des pipelines peuvent conduire à des pertes de vie, à des blessures 

graves, à l'endommagement des propriétés et à la nuisance à l'environnement bien que les 

accidents majeurs sont rares. Dans plusieurs cas, les tuyaux placés sous terre, sous routes et 

sous autoroutes sont supposés résistants à l'influence des couches supérieures du sol et de 

plusieurs chargements routiers de trafic, aussi bien à l'effet de la corrosion et de la rupture de 

matériau par fatigue.  

 

Pour toutes ces raisons, la prédiction de vie en fatigue est effectuée pour des tuyaux 

avec leurs trois modes de placement: à surface, enterrés, et offshore (sous-marins). En plus, 

trois modes de pressions internes sont pris en compte afin d'explorer les cas extrêmes de 

fonctionnement. 

 

Dans le chapitre trois, nous introduisons une loi non linéaire pour le cumul de 

dommage à la place de la loi linéaire de Miner. L'importance de cette amélioration réside 

dans le fait qu'un effet non linéaire d'interaction existe entre la fatigue à haut cycle (HCF) et 

la fatigue à bas cycle (LCF) dans plusieurs matériaux utilisés surtout en génie mécanique. 

Cette non-linéarité est observée dans le chargement uni-axial et, encore plus prononcée, dans 

le chargement multiaxial. Ceci existe particulièrement quand le chargement est non 
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proportionnel. En plus, cette modélisation non-linéaire est encore importante puisqu'elle 

prend en compte la nature des contraintes appliquées et l'environnement influant. Ce dernier 

peut accentuer encore plus l'aspect non-linéaire relatif aux certains comportements de 

matériaux sous l'effet de la fatigue. En plus, des méthodes traditionnelles de cumul de 

dommage ont montré une prédiction de vie imprécise quand des niveaux de charge multiples 

sont simultanément considérés.  

 

Dans le modèle proposé ici, basé sur un cumul non-linéaire de dommage, l'état 

d'endommagement du dispositif est mesuré à chaque cycle par une fonction récursive non-

linéaire de dégradation en fonction des marges des contraintes appliquées et du nombre de 

cycles de chargement ou du temps écoulé de fonctionnement. 

 

Cette fonction récursive est déduite d'une résolution d'une équation différentielle 

ordinaire du premier ordre incluant la dérivée de la dégradation par rapport au nombre de 

cycles en fonction de contraintes de chargement, des paramètres des matériaux et de 

l'environnement, du nombre critique de cycles, de l'endurance et de la dégradation 

instantanée.  

 

Afin de montrer l'efficacité de ce modèle non-linéaire, il est appliqué pour prédire la 

vie en fatigue du système de suspension d'automobile et du système des tuyaux. Les résultats 

du calcul de la durée de vie résiduelle (RUL) sont comparés aux résultats issus du modèle 

linéaire et l'écart est justifié par les différentes tendances de dégradation (linéaire, convexe et 

concave).  

 

Dans les applications effectuées, les résultats optimistes du cas non-linéaire peuvent 

être expliqués par le fait que quand les tendances réelles de dégradation (non-linéaires) sont 

de formes concaves, alors le cumul de dommage est surestimé quand une forme linéaire est 

utilisée à la place d'une forme non-linéaire.   

 

Dans l'application aux pipelines, l'étude non-linéaire semble fournir un comportement 

de dommage plus réaliste pour les différentes valeurs de pression relativement au cas linéaire. 

En effet, contrairement au cas linéaire, le cas non-linéaire présente une nette différence entre 

les trois modes de pression quand on s'approche de l'état de défaillance. Ce modèle de 
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pronostic non-linéaire facilite l'introduction de l'aspect stochastique qui améliorera la capacité 

prédictive du modèle proposé.  

 

Le quatrième chapitre étend le paradigme déterministe développé dans cette thèse au 

domaine stochastique. Les outils de pronostic de défaillance doivent avoir la capacité 

d'inclure le dommage des matériaux sous des conditions de fonctionnement normales et 

extrêmes. Le modèle s'appuie sur un cumul de dommage dû à la propagation des fissures de 

fatigue dans des conditions probabilistes. La longueur initiale de fissure et le chargement 

appliqué sont considérés alors aléatoires.     

 

En plus, la durée de vie résiduelle (RUL) peut être exprimée en fatigue sous plusieurs 

formes: soit la longueur critique de la fissure aC soit le nombre critique de cycles de 

chargement  NC soit la ténacité des matériaux KIC. Nous pouvons écrire alors différents états 

limites ou différents critères de performance qui ne sont que les marges entre une mesure 

instantanée de dommage intrinsèque et une valeur limite (critique) à ne pas dépasser. 

Plusieurs états limites peuvent être alors considérés et rendus aléatoires si leurs variables de 

base sont probabilistes.   

 

Des incertitudes considérables existent dans l'utilisation et dans les entrées des 

capteurs aussi bien que dans la modélisation et dans les entrées des propriétés des matériaux 

associés. Par conséquence, il existe un besoin inhérent pour que les éléments du système de 

pronostic soient à base aléatoire.  

 

Étant donné que la modélisation stochastique considère quelques paramètres du 

système comme aléatoires, alors la loi de propagation de Paris devient stochastique. Les 

données de diagnostic permettent de prendre la longueur initiale de fissure a0 en tant qu'une 

première variable aléatoire et la contrainte de chargement en tant qu'une seconde variable 

aléatoire.  

  

Notre modèle de dégradation stochastique est donné sous la forme d'une relation 

récursive reliant deux réalisations consécutives de dégradation )~(~
11 −− NN aD  et )~(~

NN aD  en 

deux cycles voisins avec un incrément de dommage NDd ~
 à la fin de chaque cycle de 

chargement. Notons que chaque réalisation de dégradation est fonction d'une réalisation de 



221 
 

longueur de fissure a~  donnée à son tour en fonction d'une longueur initiale de fissure 0
~a  

rendue aléatoire. 
 

Donc, la relation récursive du modèle décrit l'évolution de la dégradation ND~  en 

fonction des variables aléatoires suivantes: longueur initiale de fissure 0
~a , chargement σ~∆  et 

la longueur courante de fissure Na~ . A chaque cycle de chargement N (0 ≤ N ≤ NC), l'indice 

de dégradation DN augmente d'une quantité dDN partant de D0 = 0 jusqu'à une valeur unitaire 

(DC = 1) qui n'est autre que l'état de défaillance du système. 
 

Ainsi, le modèle de pronostic devient plus précis dans la prédiction des RUL. Les 

résultats des durées de vie résiduelles sont obtenus pour le dommage dans les cas linéaires et 

non-linéaires et les différences sont justifiées aussi par les tendances multiples de 

dégradation.  La propagation stochastique de fissures implique des modèles avec des 

paramètres aléatoires qui peuvent être estimés en utilisant les simulations de Monte-Carlo. 

Ces paramètres stochastiques sont affectés par certaines probabilités de réalisation influant 

les RUL résultantes déduites des trajectoires de dégradation. Encore une fois, les deux mêmes 

applications déjà traitées concernant les suspensions et les pipelines sont considérées de 

nouveau dans ce quatrième chapitre. 
 

Comme perspectives, il est planifié de mieux développer la méthodologie de pronostic 

proposée et l'appliquer sur un large ensemble des systèmes dynamiques. Ceci est réalisé en 

prenant en considération d'autres lois analytiques de la propagation de fissures et d'autres lois 

de cumul de dommage.  
 

Ajoutons sur ceci qu'un plus grand nombre de paramètres de base peuvent être 

assimilées comme variables aléatoires, à noter, les paramètres des matériaux et de 

l'environnement et d'autres paramètres géométriques et mécaniques. De même, des nouvelles 

lois probabilistes autres que la loi Normale et la loi Log-Normale peuvent être explorées.  

 

Aussi, il est planifié de mieux aborder la variabilité des durées de vie stochastiques et 

d'en déduire un faisceau des courbes de dégradation. En effet, des paramètres de base rendus 

aléatoires aboutissent à une trajectoire de dégradation probabilisée )(~ aD . Ainsi, un faisceau 



222 
 

de courbes D(a) est obtenu pour lequel une courbe moyenne et une courbe d'écart-type sont 

déduites. Par conséquence, une courbe caractéristique DK(a) peut être calculée en termes d'un 

fractile α% qui dépend du niveau acceptable du risque. La valeur caractéristique de RUL est 

donc déduite à partir de la courbe DK(a). 
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