A. , R. And-delmas, and J. , Williams' decomposition of the Lévy continuum random tree and simultaneous extinction probability for populations with neutral mutations

B. , A. And-goldschmidt, and C. , Asymptotics of the allele frequency spectrum associated with the bolthausen-sznitman coalescent, Electronic Journal of Probability, vol.13, pp.486-512, 2008.

B. , J. Berestycki, N. And-limic, and V. , A small-time coupling between Lambdacoalescents and branching processes. to appear in Ann, Appl. Proba, 2013.

B. , J. Berestycki, N. And-schweinsberg, and J. , Beta-coalescents and continuous stable random trees, Ann. Probab, vol.35, issue.5, pp.1835-1887, 2007.
DOI : 10.1214/009117906000001114

URL : http://arxiv.org/abs/math/0602113

B. , J. Berestycki, N. And-schweinsberg, and J. , Small-time behavior of beta coalescents, Annales de l'Institut Henri Poincare (B) Probability and Statistics 44, pp.214-238, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00292057

B. , J. Fontbona, J. And-martínez, and S. , On prolific individuals in a supercritical continuous-state branching process, J. Appl. Probab, vol.45, issue.3, pp.714-726, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00332305

B. , J. And, L. Gall, and J. , The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probability Theory and Related Fields, pp.249-266, 2000.

B. , J. And, L. Gall, and J. , Stochastic flows associated to coalescent processes. Probability Theory and, pp.261-288, 2003.

B. , J. And, L. Gall, and J. , Stochastic flows associated to coalescent processes II: Stochastic differential equations, Annales de l'Institut Henri Poincare (B) Probability and Statistics, pp.307-333, 2005.

B. , J. And, L. Gall, and J. , Stochastic flows associated to coalescent processes III: Limit theorems, Illinois J. Math, vol.50, pp.1-4, 2006.

P. Billingsley, Convergence of probability measures, second ed. Wiley Series in Probability and Statistics: Probability and Statistics, 1999.

N. H. Bingham, Continuous branching processes and spectral positivity, Stochastic Processes and their Applications, vol.4, issue.3, pp.217-242, 1976.
DOI : 10.1016/0304-4149(76)90011-9

URL : http://doi.org/10.1016/0304-4149(76)90011-9

B. , M. Blath, J. Capaldo, M. Etheridge, A. M. Möhle et al., Alpha-stable branching and beta-coalescents, Electronic Journal of Probability, vol.10, pp.9-303, 2005.

B. , E. And, and A. Sznitman, On Ruelle's probability cascades and an abstract cavity method, Comm. Math. Phys, vol.197, issue.2, pp.247-276, 1998.

C. , M. Lambert, A. And, U. Bravo, and G. , Proof(s) of the Lamperti representation of continuous-state branching processes, Probability Surveys, vol.6, pp.62-89, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00257619

D. , D. A. And-perkins, and E. A. , Historical processes, Mem. Amer. Math. Soc, vol.93, pp.454-179, 1991.

D. , A. Greven, A. And-pfaffelhuber, and P. , Path-properties of the tree-valued Fleming-Viot process. ArXiv e-prints, 2012.

D. , P. And-kurtz, and T. G. , Particle representations for measure-valued population models, Ann. Probab, vol.27, issue.1, pp.166-205, 1999.

D. , T. And-labbé, and C. , On the eve property for CSBP, 2013.

D. , T. And, L. Gall, and J. , Random trees, Lévy processes and spatial branching processes, Astérisque, pp.281-147, 2002.

D. , T. And-winkel, and M. , Growth of Lévy trees. Probability Theory and Related Fields, pp.3-4, 2007.

E. Karoui, N. And-roelly, and S. , Propri??t??s de martingales, explosion et repr??sentation de L??vy???Khintchine d'une classe de processus de branchement ?? valeurs mesures, Stochastic Processes and their Applications, pp.239-266, 1991.
DOI : 10.1016/0304-4149(91)90093-R

E. , S. N. And-kurtz, and T. G. , Markov processes ? characterization and convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, 1986.

F. , W. H. And, and M. Viot, Some measure-valued Markov processes in population genetics theory, Indiana Univ. Math. J, vol.28, pp.5-817, 1979.

N. Freeman, The number of non-singleton blocks in Lambda-coalescents with dust, 2011.

G. , A. Iksanov, A. And-marynych, and A. , On ?-coalescents with dust component, J. Appl. Probab, vol.48, issue.4, pp.1133-1151, 2011.

G. , C. And-martin, and J. , Random recursive trees and the Bolthausen-Sznitman coalescent, Electronic Journal of Probability, vol.10, pp.718-745, 2005.

G. , A. Pfaffelhuber, P. And, and A. Winter, Tree-valued resampling dynamics martingale problems and applications, Probab. Theory Related Fields, vol.155, pp.789-838, 2013.

G. , A. Popovic, L. And, and A. Winter, Genealogy of catalytic branching models, Ann. Appl. Probab, vol.19, issue.3, pp.1232-1272, 2009.

J. , J. And-shiryaev, and A. N. , Limit theorems for stochastic processes, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 2003.

L. Gall and J. , Spatial branching processes, random snakes and partial differential equations, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, 1999.
DOI : 10.1007/978-3-0348-8683-3

L. Gall, J. And, L. Jan, and Y. , Branching processes in L??vy processes: the exploration process, The Annals of Probability, vol.26, issue.1, pp.213-252, 1998.
DOI : 10.1214/aop/1022855417

L. , R. Pemantle, R. And-peres, and Y. , Conceptual proofs of L log L criteria for mean behavior of branching processes, Ann. Probab, vol.23, issue.3, pp.1125-1138, 1995.

P. , P. Wakolbinger, A. And-weisshaupt, and H. , The tree length of an evolving coalescent, Probab. Theory Related Fields, vol.151, pp.3-4, 2011.

S. , I. W. Tavaré, S. And-watterson, and G. A. , On the genealogy of nested subsamples from a haploid population, Adv. Appl. Probab, vol.16, pp.471-491, 1984.

V. A. Volkonski-?-i, Random Substitution of Time in Strong Markov Processes, Theory of Probability & Its Applications, vol.3, issue.3, pp.332-350, 1958.
DOI : 10.1137/1103025