E. Amaldi and M. Mattavelli, The MIN PFS problem and piecewise linear model estimation, Discrete Applied Mathematics, vol.118, issue.1-2, pp.115-143, 2002.
DOI : 10.1016/S0166-218X(01)00260-8

N. Aronszajn, Theory of reproducing kernels. Transactions of the, pp.337-404, 1950.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, vol.50, issue.2, pp.174-188, 2002.
DOI : 10.1109/78.978374

F. Aurenhammer, Voronoi diagrams---a survey of a fundamental geometric data structure, ACM Computing Surveys, vol.23, issue.3, pp.345-405, 1991.
DOI : 10.1145/116873.116880

L. Bako, Identification of switched linear systems via sparse optimization, Automatica, vol.47, issue.4, pp.668-677, 2011.
DOI : 10.1016/j.automatica.2011.01.036

URL : https://hal.archives-ouvertes.fr/hal-00584246

L. Bako, K. Boukharouba, E. Duviella, and S. Lecoeuche, A recursive identification algorithm for switched linear/affine models, Nonlinear Analysis: Hybrid Systems, vol.5, issue.2, pp.242-253, 2011.
DOI : 10.1016/j.nahs.2010.05.003

L. Bako, K. Boukharouba, and S. Lecoeuche, An 0 -1 norm based optimization procedure for the identification of switched nonlinear systems, Proceedings of the 49th IEEE International Conference on Decision and Control, pp.4467-4472, 2010.

L. Bako, V. L. Le, F. Lauer, and G. Bloch, Identification of mimo switched statespace models, Proceedings of American Control Conference, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00798991

L. Bako, G. Mercère, and S. Lecoeuche, On-line structured subspace identification with application to switched linear systems, International Journal of Control, vol.82, issue.8, pp.1496-1515, 2009.
DOI : 10.1109/97.410547

L. Bako and R. Vidal, Algebraic identification of MIMO SARX models. Hybrid Systems: Computation and Control, pp.43-57, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00280409

G. Baudat and F. Anouar, Feature vector selection and projection using kernels, Neurocomputing, vol.55, issue.1-2, pp.21-38, 2003.
DOI : 10.1016/S0925-2312(03)00429-6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, A bounded-error approach to piecewise affine system identification, IEEE Transactions on Automatic Control, issue.10, pp.501567-1580, 2005.

A. Bemporad and M. Moran, Control of systems integrating logic, dynamics, and constraints, Automatica, vol.35, issue.3, pp.407-428, 1999.
DOI : 10.1016/S0005-1098(98)00178-2

K. P. Bennett and O. L. Mangasarian, Robust linear programming discrimination of two linearly inseparable sets, Optimization Methods and Software, vol.1, issue.1, pp.23-34, 1992.
DOI : 10.1080/10556789208805504

K. P. Bennett and O. L. Mangasarian, Multicategory discrimination via linear programming. Optimization Methods and Software, pp.27-39, 1994.

J. Borges, V. Verdult, and M. Verhaegen, ITERATIVE SUBSPACE IDENTIFICATION OF PIECEWISE LINEAR SYSTEMS, Proceedings of the 14th IFAC Symp. on System Identification, pp.368-373, 2006.
DOI : 10.3182/20060329-3-AU-2901.00054

L. Bottou, O. Chapelle, D. Decoste, and J. Weston, Large scale kernel machines, 2007.

K. Boukharouba, L. Bako, and S. Lecoeuche, Identification of piecewise affine systems based on Dempster-Shafer Theory, Proceeding of 15th IFAC Symposium on System Identification, pp.1662-1667, 2009.
DOI : 10.3182/20090706-3-FR-2004.00276

S. Boyd and L. Vandenberghe, Convex optimization, 2004.

M. S. Branicky, Introduction to hybrid systems. Handbook of Networked and Embedded Control Systems, pp.91-116, 2005.

L. Breiman, Hinging hyperplanes for regression, classification, and function approximation, IEEE Transactions on Information Theory, vol.39, issue.3, pp.999-1013, 1993.
DOI : 10.1109/18.256506

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, 2001.
DOI : 10.1145/1961189.1961199

E. J. Candès, Compressive sampling, Proceedings of the International Congress of Mathematicians: Madrid, pp.1433-1452, 2006.
DOI : 10.4171/022-3/69

E. J. Candès and T. Tao, Decoding by Linear Programming, IEEE Transactions on Information Theory, vol.51, issue.12, pp.4203-4215, 2005.
DOI : 10.1109/TIT.2005.858979

E. J. Candès, M. B. Wakin, and S. P. Boyd, Enhancing Sparsity by Reweighted ??? 1 Minimization, Journal of Fourier Analysis and Applications, vol.7, issue.3, pp.877-905, 2008.
DOI : 10.1007/s00041-008-9045-x

G. C. Cawley and N. L. Talbot, Efficient formation of a basis in a kernel induced feature space, Proceedings of the European Symposium on Artificial Neural Networks, pp.1-6, 2002.

G. C. Cawley and N. L. Talbot, Reduced rank kernel ridge regression, Neural Processing Letters, vol.16, issue.3, pp.293-302, 2002.
DOI : 10.1023/A:1021798002258

A. Cochocki and R. Unbehauen, Neural networks for optimization and signal processing, 1993.

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.1, issue.3, pp.273-297, 1995.
DOI : 10.1007/BF00994018

M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok, Introduction to compressed sensing. Compressed Sensing: Theory and Applications, 2012. [31] B. De Schutter and B. De Moor. The extended linear complementarity problem and the modeling and analysis of hybrid systems, pp.635-636, 1999.

D. Schutter, T. Van-den, and . Boom, Model predictive control for max-plus-linear discrete event systems, Automatica, vol.37, issue.7, pp.1049-1056, 2001.
DOI : 10.1016/S0005-1098(01)00054-1

D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, vol.52, issue.4, pp.1289-1306, 2006.
DOI : 10.1109/TIT.2006.871582

URL : https://hal.archives-ouvertes.fr/inria-00369486

D. L. Donoho and M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via ??1 minimization, Proceedings of the National Academy of Sciences, pp.2197-2202, 2003.
DOI : 10.1073/pnas.0437847100

D. L. Donoho and X. Huo, Uncertainty principles and ideal atomic decomposition, IEEE Transactions on Information Theory, vol.47, issue.7, pp.2845-2862, 1999.
DOI : 10.1109/18.959265

S. Ernst, Hinging hyperplane trees for approximation and identification, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), pp.1266-1271, 1998.
DOI : 10.1109/CDC.1998.758452

T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines, Advances in Computational Mathematics, vol.13, issue.1, pp.1-50, 2000.
DOI : 10.1023/A:1018946025316

T. Falck, Nonlinear System Identification using Structured Kernel Based Models, 2013.

G. Ferrari-trecate, M. Muselli, D. Liberati, and M. Morari, A clustering technique for the identification of piecewise affine systems, Automatica, vol.39, issue.2, pp.205-217, 2003.
DOI : 10.1016/S0005-1098(02)00224-8

S. Fine and K. Scheinberg, Efficient svm training using low-rank kernel representations, The Journal of Machine Learning Research, vol.2, pp.243-264, 2002.

M. Fornasier and H. Rauhut, Compressive Sensing, Handbook of Mathematical Methods in Imaging, pp.187-229, 2011.
DOI : 10.1007/978-3-642-27795-5_6-5

A. Garulli, S. Paoletti, and A. Vicino, A survey on switched and piecewise affine system identification, Proceedings of the 16th IFAC Symposium on System Identification, pp.344-355, 2012.
DOI : 10.3182/20120711-3-BE-2027.00332

A. Gionis and H. Mannila, Segmentation algorithms for time series and sequence data, The SIAM International Conference on Data Mining: A Tutorial, 2005.

R. Gribonval and M. Nielsen, Sparse representations in unions of bases, IEEE Transactions on Information Theory, vol.49, issue.12, pp.3320-3325, 2003.
DOI : 10.1109/TIT.2003.820031

URL : https://hal.archives-ouvertes.fr/inria-00570057

Y. Hashambhoy and R. Vidal, Recursive Identification of Switched ARX Models with Unknown Number of Models and Unknown Orders, Proceedings of the 44th IEEE Conference on Decision and Control, pp.6115-6121, 2006.
DOI : 10.1109/CDC.2005.1583140

W. Heemels, J. M. Schumacher, and S. Weiland, Linear complementarity systems, SIAM Journal on Applied Mathematics, vol.60, issue.4, pp.1234-1269, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00834580

W. P. Heemels, B. D. Schutter, and A. Bemporad, Equivalence of hybrid dynamical models, Automatica, vol.37, issue.7, pp.1085-1091, 2001.
DOI : 10.1016/S0005-1098(01)00059-0

K. Huang, A. Wagner, and Y. Ma, Identification of hybrid linear time-invariant systems via subspace embedding and segmentation, Proceedings of the 43rd IEEE Conference on Decision and Control, pp.3227-3234, 2005.

W. Huyer and A. Neumaier, Global optimization by multilevel coordinate search, Journal of Global Optimization, vol.14, issue.4, pp.331-355, 1999.
DOI : 10.1023/A:1008382309369

I. Jolliffe, Principal component analysis, 2005.
DOI : 10.1007/978-1-4757-1904-8

A. Juloski, W. P. Heemels, G. Ferrari-trecate, R. Vidal, S. Paoletti et al., Comparison of Four Procedures for the Identification of Hybrid Systems, Hybrid Systems: Computation and Control, pp.354-369, 2005.
DOI : 10.1007/978-3-540-31954-2_23

A. L. Juloski, S. Weiland, and W. Heemels, A Bayesian approach to identification of hybrid systems, IEEE Transactions on Automatic Control, vol.50, issue.10, pp.1520-1533, 2005.
DOI : 10.1109/TAC.2005.856649

J. A. Suykens, T. Van-gestel, D. Brabanter, J. De-moor, B. Vandewalle et al., Least Squares Support Vector Machines, World Scientific, 2002.
DOI : 10.1142/5089

A. Khajehnejad, W. Xu, A. Avestimehr, and B. Hassibi, Weighted 1 minimization for sparse recovery with prior information, IEEE International Symposium on Information Theory, pp.483-487, 2009.

J. T. Kwok and I. W. Tsang, Linear dependency between ?? and the input noise in ??-support vector regression, IEEE Transactions on Neural Networks, vol.14, issue.3, pp.544-553, 2003.
DOI : 10.1109/TNN.2003.810604

C. Y. Lai, C. Xiang, and T. H. Lee, Identification and control of nonlinear systems via piecewise affine approximation, 49th IEEE Conference on Decision and Control (CDC), pp.6395-6402, 2010.
DOI : 10.1109/CDC.2010.5717032

F. Lauer, Estimating the probability of success of a simple algorithm for switched linear regression. Nonlinear Analysis: Hybrid Systems, pp.31-47, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00743954

F. Lauer and G. Bloch, Switched and PieceWise Nonlinear Hybrid System Identification, Proceedings of the 11th International Conference on Hybrid Systems: Computation and Control, pp.330-343, 2008.
DOI : 10.1007/978-3-540-78929-1_24

URL : https://hal.archives-ouvertes.fr/hal-00203121

F. Lauer, G. Bloch, and R. Vidal, Nonlinear hybrid system identification with kernel models, 49th IEEE Conference on Decision and Control (CDC), pp.696-701, 2010.
DOI : 10.1109/CDC.2010.5718011

URL : https://hal.archives-ouvertes.fr/hal-00514429

F. Lauer, G. Bloch, and R. Vidal, A continuous optimization framework for hybrid system identification, Automatica, vol.47, issue.3, pp.608-613, 2011.
DOI : 10.1016/j.automatica.2011.01.020

URL : https://hal.archives-ouvertes.fr/hal-00559369

L. Ljung, System identification: theory for the user, 1999.

J. Lunze, F. Lamnabhi-lagarrigue, R. Ma, and . Vidal, Handbook of hybrid systems control: theory, tools, applications Identification of deterministic switched ARX systems via identification of algebraic varieties, Proceedings of the 8th International Conference on Hybrid Systems: Computation and Control, pp.449-465, 2005.
DOI : 10.1017/CBO9780511807930

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp.281-297, 1967.

O. L. Mangasarian and D. R. Musicant, Large scale kernel regression via linear programming, Machine Learning, pp.255-269, 2002.

I. Maruta, T. Sugie, and T. H. Kim, Identification of multiple mode models via Distributed Particle Swarm Optimization, Proceedings of the 18th IFAC World Congress, pp.7743-7748, 2011.
DOI : 10.3182/20110828-6-IT-1002.02438

C. Novara, Sparse Identification of Nonlinear Functions and Parametric Set Membership Optimality Analysis, IEEE Transactions on Automatic Control, vol.57, issue.12, pp.3236-3241, 2012.
DOI : 10.1109/TAC.2012.2202051

H. Ohlsson and L. Ljung, Piecewise affine system identification using sum-ofnorms regularization, Proceedings of the 18th IFAC World Congress, pp.6640-6645, 2011.
DOI : 10.3182/20110828-6-it-1002.00611

URL : http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-60984

H. Ohlsson and L. Ljung, Identification of switched linear regression models using sum-of-norms regularization, Automatica, vol.49, issue.4, p.2013
DOI : 10.1016/j.automatica.2013.01.031

H. Ohlsson, L. Ljung, and S. Boyd, Segmentation of ARX-models using sum-of-norms regularization, Automatica, vol.46, issue.6, pp.1107-1111, 2010.
DOI : 10.1016/j.automatica.2010.03.013

N. Ozay, C. Lagoa, and M. Sznaier, Robust identification of switched affine systems via moments-based convex optimization, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pp.4686-4691, 2009.
DOI : 10.1109/CDC.2009.5399962

N. Ozay, M. Sznaier, C. Lagoa, and O. Camps, A Sparsification Approach to Set Membership Identification of Switched Affine Systems, IEEE Transactions on Automatic Control, vol.57, issue.3, pp.634-648, 2012.
DOI : 10.1109/TAC.2011.2166295

S. Paoletti, A. L. Juloski, G. Ferrari-trecate, and R. Vidal, Identification of Hybrid Systems A Tutorial, European Journal of Control, vol.13, issue.2-3, pp.242-260, 2007.
DOI : 10.3166/ejc.13.242-260

K. M. Pekpe, G. Mourot, K. Gasso, and J. Ragot, Identification of switching systems using change detection technique in the subspace framework, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pp.3720-3725, 2004.
DOI : 10.1109/CDC.2004.1429317

URL : https://hal.archives-ouvertes.fr/hal-00510894

J. C. Platt, Fast training of support vector machines using sequential minimal optimization, Advances in Kernel Methods: Support Vector Learning, pp.185-208, 1999.

P. Pucar and J. Sjöberg, On the hinge-finding algorithm for hingeing hyperplanes, IEEE Transactions on Information Theory, vol.44, issue.3, pp.1310-1319, 1998.
DOI : 10.1109/18.669422

J. Roll, A. Bemporad, and L. Ljung, Identification of piecewise affine systems via mixed-integer programming, Automatica, vol.40, issue.1, pp.37-50, 2004.
DOI : 10.1016/j.automatica.2003.08.006

R. Rosipal, M. Girolami, L. J. Trejo, and A. Cichocki, Kernel PCA for Feature Extraction and De-Noising in Nonlinear Regression, Neural Computing & Applications, vol.10, issue.3, pp.231-243, 2001.
DOI : 10.1007/s521-001-8051-z

B. Schölkopf, R. Herbrich, and A. Smola, A Generalized Representer Theorem, Computational Learning Theory, pp.416-426, 2001.
DOI : 10.1007/3-540-44581-1_27

B. Schölkopf, A. Smola, and K. R. Müller, Nonlinear Component Analysis as a Kernel Eigenvalue Problem, Neural Computation, vol.20, issue.5, pp.1299-1319, 1998.
DOI : 10.1007/BF02281970

B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, New Support Vector Algorithms, Neural Computation, vol.20, issue.5, pp.1207-1245, 2000.
DOI : 10.1016/S0893-6080(98)00032-X

S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. Murthy, Improvements to the SMO algorithm for SVM regression, IEEE Transactions on Neural Networks, vol.11, issue.5, pp.1188-1193, 2000.
DOI : 10.1109/72.870050

J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon et al., Nonlinear black-box modeling in system identification: a unified overview, Automatica, vol.31, issue.12, pp.311691-1724, 1995.
DOI : 10.1016/0005-1098(95)00120-8

A. Smola, B. Schölkopf, and G. Rätsch, Linear programs for automatic accuracy control in regression, 9th International Conference on Artificial Neural Networks: ICANN '99, pp.575-580, 1999.
DOI : 10.1049/cp:19991171

A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Statistics and Computing, vol.14, issue.3, pp.199-222, 2004.
DOI : 10.1023/B:STCO.0000035301.49549.88

T. Söderström and P. Stoica, System Identification, Journal of Dynamic Systems, Measurement, and Control, vol.115, issue.4, 1988.
DOI : 10.1115/1.2899207

E. Sontag, Nonlinear regulation: The piecewise linear approach, IEEE Transactions on Automatic Control, vol.26, issue.2, pp.346-358, 1981.
DOI : 10.1109/TAC.1981.1102596

T. Joachims and . Svm, Available at http://svmlight.joachims.org, 1998.

M. Tabatabaei-pour, M. Gholami, K. Salahshoor, and H. R. Shaker, A clusteringbased bounded-error approach for identification of PWA hybrid systems, Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision, pp.1-6, 2006.

M. Tabatabaei-pour, K. Salahshoor, and B. Moshiri, A Modified k-plane Clustering Algorithm for Identification of Hybrid Systems, 2006 6th World Congress on Intelligent Control and Automation, pp.1333-1337, 2006.
DOI : 10.1109/WCICA.2006.1712564

F. E. Tay and L. J. Cao, Modified support vector machines in financial time series forecasting, Neurocomputing, vol.48, issue.1-4, pp.847-861, 2002.
DOI : 10.1016/S0925-2312(01)00676-2

A. R. Teixeira, A. M. Tomé, and E. W. Lang, Unsupervised feature extraction via kernel subspace techniques, Neurocomputing, vol.74, issue.5, pp.820-830, 2011.
DOI : 10.1016/j.neucom.2010.11.011

URL : http://ria.ua.pt/bitstream/10773/5289/1/neurocompoting2011.pdf

J. Tropp and A. C. Gilbert, Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit, IEEE Transactions on Information Theory, vol.53, issue.12, pp.4655-4666, 2007.
DOI : 10.1109/TIT.2007.909108

URL : http://authors.library.caltech.edu/9490/1/TROieeetit07.pdf

A. J. Van-der-schaft and J. M. Schumacher, Complementarity modeling of hybrid systems, IEEE Transactions on Automatic Control, vol.43, issue.4, pp.483-490, 1998.
DOI : 10.1109/9.664151

V. Vapnik, The nature of statistical learning theory, 1995.

V. N. Vapnik, The Nature of Statistical Learning Theory, 1995.

V. Verdult and M. Verhaegen, Subspace identification of piecewise linear systems, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pp.3838-3843, 2005.
DOI : 10.1109/CDC.2004.1429336

R. Vidal, Identification of PWARX hybrid models with unknown and possibly different orders, Proceedings of the American Control Conference, pp.547-552, 2004.

R. Vidal, Recursive identification of switched ARX systems, Automatica, vol.44, issue.9, pp.2274-2287, 2008.
DOI : 10.1016/j.automatica.2008.01.025

R. Vidal, Subspace Clustering, IEEE Signal Processing Magazine, vol.28, issue.2, pp.52-68, 2011.
DOI : 10.1109/MSP.2010.939739

R. Vidal and B. D. Anderson, Recursive identification of switched ARX hybrid models: exponential convergence and persistence of excitation, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pp.32-37, 2005.
DOI : 10.1109/CDC.2004.1428602

R. Vidal, Y. Ma, and S. Sastry, Generalized principal component analysis (GPCA), IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.12, pp.1945-1959, 2005.
DOI : 10.1109/TPAMI.2005.244

URL : http://arxiv.org/abs/1202.4002

R. Vidal, S. Soatto, Y. Ma, and S. Sastry, An algebraic geometric approach to the identification of a class of linear hybrid systems, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), pp.167-172, 2003.
DOI : 10.1109/CDC.2003.1272554

J. Wang, Identification of Switched Linear Systems, 2013.

J. Xu, X. Huang, and S. Wang, Adaptive hinging hyperplanes and its applications in dynamic system identification, Automatica, vol.45, issue.10, pp.2325-2332, 2009.
DOI : 10.1016/j.automatica.2009.06.013

Y. Zhao and D. Li, Reweighted $\ell_1$-Minimization for Sparse Solutions to Underdetermined Linear Systems, SIAM Journal on Optimization, vol.22, issue.3, pp.1065-1088, 2012.
DOI : 10.1137/110847445

. En-automatique, un modèle du système est la pierre angulaire des procédures comme la synthèse d'une commande, la détection des défaillances, la prédiction... Cette thèse traite de l'identification d'une classe de systèmes complexes, les systèmes dynamiques hybrides. Ces systèmes impliquent l'interaction de comportements continus et discrets