D. Effet-d-'un-stress-chimique-sur-les-bicouches, 138 2.3.1. Action de l'alcool Effet de la protéine sHsp Lo18 sur une bicouche stressée, p.143

.. Influence-de-la-surface-sur-l-'adsorption-de-la-protéine, 166 4.1.1. Surface non fonctionnalisée, p.169

. Amides, Appréhender ces phénomènes peut aider à l'innovation dans le domaine des nanobiocapteurs

]. G. Bibliographie1, D. Wirth, P. V. Drion, C. Dessy-doize, and E. S. Christians, Les protéines de choc thermique (heat shock proteins), Ann. Méd. Vét, pp.146-201, 2002.

K. A. Morano, . Wiley, M. Malden, and . Etats-unis, New tricks for an old dog : The evolving world of hsp70 Hayer-Hartl, Converging concepts of protein folding in vitro and in vivo, Nat Struct Mol Biol, vol.16, pp.574-581, 2007.

]. B. Garrido, C. Didelot, C. Zermati, Y. Schmitt, E. Kroemer et al., Heat shock proteins 27 and 70: antiapoptotic proteins with tumorigenic properties, Cell Cycle, vol.22, issue.4, pp.2592-2601, 2006.

S. Sugimoto, C. Higashi, K. Saruwatari, J. Nakayama, and K. Sonomoto, A gram-negative characteristic segment in Escherichia coli DnaK is essential for the ATP-dependent cooperative function with the co-chaperones DnaJ and GrpE, FEBS Letters, pp.581-2993, 2007.

]. J. Mou, S. Sheng, R. Ho, and Z. Shao, Chaperonins GroEL and GroES: views from atomic force microscopy, Biophysical Journal, vol.71, issue.4, pp.71-2213, 1996.
DOI : 10.1016/S0006-3495(96)79422-5

URL : http://doi.org/10.1016/s0006-3495(96)79422-5

]. S. Doyle and S. Wickner, Hsp104 and ClpB: protein disaggregating machines, Trends in Biochemical Sciences, vol.34, issue.1, pp.40-48, 2009.
DOI : 10.1016/j.tibs.2008.09.010

A. Mogk, Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation, Intermediates in the Folding Reactions of Small Proteins, pp.59-631, 1990.
DOI : 10.1046/j.1365-2958.2003.03710.x

S. E. Jackson, How do small single-domain proteins fold?, Folding and Design, pp.81-91, 1998.

]. J. Kubelka, J. Hofrichter, and W. A. Eaton, The protein folding ???speed limit???, Current Opinion in Structural Biology, vol.14, issue.1, pp.76-88, 2004.
DOI : 10.1016/j.sbi.2004.01.013

]. D. Jong, Genealogy of the alpha-crystallin-small Heat-Shock Protein superfamily, 1998.

M. Ehrnsperger, The Dynamics of Hsp25 Quaternary Structure: STRUCTURE AND FUNCTION OF DIFFERENT OLIGOMERIC SPECIES, Journal of Biological Chemistry, vol.274, issue.21, 1999.
DOI : 10.1074/jbc.274.21.14867

M. Kotlyarov and . Gaestel, Mouse Hsp25, a small heat shock protein, European Journal of Biochemistry, vol.267, pp.1923-1932, 2000.

R. A. Lindner, A. Kapur, M. Mariani, S. J. Titmuss, and J. A. Carver, Structural alterations of alpha-crystallin during its chaperone action, European Journal of Biochemistry, vol.258, issue.1, 1998.
DOI : 10.1046/j.1432-1327.1998.2580170.x

]. X. Zhang, X. Fu, H. Zhang, C. Liu, W. Jiao et al., Chaperone-like activity of ??-casein, The International Journal of Biochemistry & Cell Biology, vol.37, issue.6, pp.1232-1240, 2005.
DOI : 10.1016/j.biocel.2004.12.004

T. H. Macrae, Structure and function of small heat shock/??-crystallin proteins: established concepts and emerging ideas, Cellular and Molecular Life Sciences, vol.57, issue.6, pp.899-913, 2000.
DOI : 10.1007/PL00000733

P. Arrigo, J. Buchner, and M. Gaestel, Regulation of Hsp27 Oligomerization, Chaperone Function, and Protective Activity against Oxidative Stress / Tumor Necrosis Factor ? by Phosphorylation, Journal of Biological Chemistry, vol.274, pp.18947-18956, 1999.

]. M. Haslbeck, S. Walke, T. Stromer, M. Ehrnsperger, H. E. White et al., Hsp26: a temperature-regulated chaperone, The EMBO Journal, vol.18, issue.23, pp.18-6744, 1999.
DOI : 10.1093/emboj/18.23.6744

T. Stromer, M. Bethesda, E. L. Friedrich, K. C. Giese, N. R. Buan et al., Analysis of the Interaction of Small Heat Shock Proteins with Unfolding Proteins, Interactions between Small Heat Shock Protein Subunits and Substrate in Small Heat Shock Protein-Substrate Complexes, pp.1080-1089, 2003.
DOI : 10.1074/jbc.M301640200

P. A. Van-der-merwe, P. R. Crocker, M. Vinson, A. N. Barclay, R. Schauer et al., Localization of the putative sialic acid-binding site on the immunoglobulin superfamily cell-surface molecule CD22, J Biol Chem, vol.271, pp.9273-9280, 1996.

H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D. Kim et al., A localized surface plasmon resonance based immunosensor for the detection of casein in milk, Science and Technology of Advanced Materials, vol.72, issue.4, p.331, 2007.
DOI : 10.1364/OL.27.000342

]. G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, p.930, 1986.
DOI : 10.1103/PhysRevLett.56.930

O. Marti, Atomic force microscopy of liquid???covered surfaces: Atomic resolution images, Applied Physics Letters, vol.51, issue.7, 1987.
DOI : 10.1063/1.98374

G. Meyer, Novel optical approach to atomic force microscopy, Applied Physics Letters, vol.53, issue.12, 1988.
DOI : 10.1063/1.100061

S. Gould, Molecular resolution images of amino acid crystals with the atomic force microscope, Nature, vol.332, issue.6162, 1988.
DOI : 10.1038/332332a0

O. Marti, Scanning probe microscopy of biological samples and other surfaces, Journal of Microscopy, vol.239, issue.3, 1988.
DOI : 10.1111/j.1365-2818.1988.tb01452.x

J. N. Lin, B. Drake, A. S. Lea, P. K. Hansma, and J. D. Anadrade, Direct observation of immunoglobulin adsorption dynamics using the atomic force microscope, Langmuir, vol.6, issue.2, 1990.
DOI : 10.1021/la00092a036

Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, 1993.

C. A. Putman, Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy, Biophysical Journal, vol.67, issue.4, 1994.
DOI : 10.1016/S0006-3495(94)80649-6

C. Moller, M. Allen, V. Ellings, A. Engel, and D. J. Muller, Tapping-Mode Atomic Force Microscopy Produces Faithful High-Resolution Images of Protein Surfaces, Biophysical Journal, vol.77, issue.2, 1999.
DOI : 10.1016/S0006-3495(99)76966-3

M. Bezanilla, B. Drake, and E. Nudler, Motion and enzymatic degradation of DNA in the atomic force microscope, Biophysical Journal, vol.67, issue.6, 1994.
DOI : 10.1016/S0006-3495(94)80733-7

F. A. Schabert, C. Henn, A. Engel, F. Gautel, J. M. Oesterhelt et al., Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy, Science, vol.268, issue.5207, pp.1109-1112, 1995.
DOI : 10.1126/science.7701347

P. E. Marszalek, A. F. Oberhauser, Y. Pang, and J. M. Fernandez, Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring, Nature, vol.396, pp.661-664, 1998.

M. Benoit, D. Gabriel, G. Gerisch, and H. E. Gaub, Discrete interactions in cell adhesion measured by single-molecule force spectroscopy, Nature Cell Biology, vol.2, issue.6, pp.313-317, 2000.
DOI : 10.1038/35014000

E. P. Wojcikiewicz, X. Zhang, A. Chen, and V. T. Moy, Contributions of molecular binding events and cellular compliance to the modulation of leukocyte adhesion, Journal of Cell Science, vol.116, issue.12, 2003.
DOI : 10.1242/jcs.00465

J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry et al., Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy, Biophysical Journal, vol.84, issue.3, pp.84-2071, 2003.
DOI : 10.1016/S0006-3495(03)75014-0

]. A. Berthier, C. Elie-caille, E. Lesniewska, R. Delage-mourroux, and W. Boireau, Label-free sensing and atomic force spectroscopy for the characterization of protein-DNA and protein-protein interactions: application to estrogen receptors, Journal of Molecular Recognition, vol.33, issue.15, pp.429-435, 2011.
DOI : 10.1002/jmr.1106

]. D. Tománek, G. Overney, H. Miyazaki, S. D. Mahanti, and H. J. Güntherodt, Theory for the Atomic Force Microscopy of Deformable Surfaces, Physical Review Letters, vol.63, issue.8, pp.876-879, 1989.
DOI : 10.1103/PhysRevLett.63.876

P. Puech, K. Poole, D. Knebel, and D. J. Muller, A new technical approach to quantify cell???cell adhesion forces by AFM, Ultramicroscopy, vol.106, issue.8-9, pp.637-644, 2006.
DOI : 10.1016/j.ultramic.2005.08.003

]. S. Ciraci, A. Baratoff, and I. P. Batra, Tip-sample interaction effects in scanning-tunneling and atomicforce microscopy, Physical Review B, pp.41-2763, 1990.

E. N. Pittenger, Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM, Metrology & Instrumentation Group, 2010.

. Heinz and H. Hassn, Applications of Force Volume Imaging with Atomic Force Microscopes, Veeco application note AN20, 2004.

A. J. Elkaakour, Z. Odin, C. Bouhacina, T. Michel, D. Curely et al., Comments on the use of the force mode in Atomic Force Microscopy for polymer films, 1994.

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, Effect of contact deformations on the adhesion of particles, Journal of Colloid and Interface Science, vol.53, issue.2, pp.314-326, 1975.
DOI : 10.1016/0021-9797(75)90018-1

K. L. Johnson, K. Kendall, and A. D. Roberts, Surface Energy and the Contact of Elastic Solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.324, issue.1558, pp.301-313, 1971.
DOI : 10.1098/rspa.1971.0141

]. D. Fotiadis, S. Scheuring, S. A. Müller, A. Engel, and D. J. Müller, Imaging and manipulation of biological structures with the AFM, Micron, vol.33, issue.4, pp.385-397, 2002.
DOI : 10.1016/S0968-4328(01)00026-9

K. Braig, The crystal structure of the bacterial chaperonin GroEL at 2.8 &#197, 1994.

A. Vinckier, P. Gervasoni, F. Zaugg, and U. Ziegler, Atomic Force Microscopy Detects Changes in the Interaction Forces between GroEL and Substrate Proteins, Biophysical Journal, vol.74, issue.6, 1998.
DOI : 10.1016/S0006-3495(98)78032-4

W. A. Fenton, Y. Kashi, K. Furtak, and A. L. Horwich, Residues in chaperonin GroEL required for polypeptide binding and release The hydrophobic nature of GroEL -substrate binding, American Society for Biochemistry and Molecular Biology, 1994.

J. Mou, D. M. Czajkowsky, S. Sheng, R. Ho, and Z. Shao, High resolution surface structure of E. coli GroES oligomer by atomic force microscopy, FEBS Letters, pp.381-161, 1996.

]. F. Valle, J. A. Derose, G. Dietler, M. Kawe, A. Plückthun et al., Imaging the native structure of the chaperone protein GroEL without fixation using atomic force microscopy, Journal of Microscopy, vol.203, issue.2, pp.195-198, 2001.
DOI : 10.1046/j.1365-2818.2001.00891.x

D. J. Müller, F. A. Schabert, G. Büldt, and A. Engel, Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy, Biophysical Journal, vol.68, issue.5, pp.68-1681, 1995.
DOI : 10.1016/S0006-3495(95)80345-0

A. L. Weisenhorn, M. Khorsandi, S. Kasas, V. Gotzos, and H. J. Butt, Deformation and height anomaly of soft surfaces studied with an AFM, Institute of Physics, Weast, Handbook of Chemistry and Physics, 1976.

M. Heuberger, Mapping the local Young's modulus by analysis of the elastic deformations occurring in atomic force microscopy, Nanotechnology, vol.6, issue.1, 1995.
DOI : 10.1088/0957-4484/6/1/003

]. M. Heuberger, G. Dietler, and L. Schlapbach, Elastic deformations of tip and sample during atomic force microscope measurements, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.2, pp.1250-1254, 1996.
DOI : 10.1116/1.588525

]. P. Maivald, Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology, vol.2, issue.2, 1991.
DOI : 10.1088/0957-4484/2/2/004

]. W. Xu, P. Mulhern, B. Blackford, M. Jericho, M. Firtel et al., Modeling and measuring the elastic properties of an archaeal surface, the sheath of Methanospirillum hungatei, and the implication of methane production., Journal of Bacteriology, vol.178, issue.11, pp.178-3106, 1996.
DOI : 10.1128/jb.178.11.3106-3112.1996

T. Y. Rho, G. M. Tsui, and . Pharr, Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials, vol.18, issue.20, pp.1325-1330, 1997.
DOI : 10.1016/S0142-9612(97)00073-2

. Torimitsu, Elastic modulus of suspended purple membrane measured by atomic force microscopy, Applied Surface Science, vol.254, pp.7877-7880, 2008.

S. G. Shroff, D. R. Saner, and R. Lal, Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy, 1995.

M. D. Antonik, A biosensor based an micromechanical interrogation of living cells, IEEE Engineering in Medicine and Biology Magazine, vol.16, issue.2, 1997.
DOI : 10.1109/51.582178

M. Fritz and P. K. Hansma, Imaging soft samples with the atomic force microscope: gelatin in water and propanol, Biophysical journal, pp.69-264, 1995.

]. A. Vinckier, C. Dumortier, Y. Engelborghs, and L. Hellemans, Dynamical and mechanical study of immobilized microtubules with atomic force microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.2, pp.1427-1431, 1996.
DOI : 10.1116/1.589113

]. L. Picas, F. Rico, and S. Scheuring, Direct Measurement of the Mechanical Properties of Lipid Phases in Supported Bilayers, Biophysical Journal, vol.102, issue.1, pp.1-03, 2012.
DOI : 10.1016/j.bpj.2011.11.4001

URL : https://hal.archives-ouvertes.fr/inserm-01363280

R. C. Barrett and C. F. Quate, High-speed, large-scale imaging with the atomic force microscope Scan speed limit in atomic force microscopy, 1991.

D. A. Walters and J. P. Cleveland, Short cantilevers for atomic force microscopy, Review of Scientific Instruments, vol.67, issue.10, 1996.
DOI : 10.1063/1.1147177

M. B. Viani, T. E. Schaffer, and G. T. Paioczi, Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers, Review of Scientific Instruments, vol.70, issue.11, 1999.
DOI : 10.1063/1.1150069

P. K. Hansma and . Hansma, Probing protein-protein interactions in real time, Nat Struct Mol Biol, vol.7, pp.644-647, 2000.

]. T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito et al., A high-speed atomic force microscope for studying biological macromolecules, Proceedings of the National Academy of Sciences 98, pp.12468-12472, 2001.

T. Ando, . T. Kodera-n, T. Ando, T. Uchihashi, and . Fukuma, High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes, Progress in Surface Science, vol.83, issue.7-9, pp.337-437, 2002.
DOI : 10.1016/j.progsurf.2008.09.001

N. Kodera, Active damping of the scanner for high-speed atomic force microscopy, Review of Scientific Instruments, vol.76, issue.5, 2005.
DOI : 10.1063/1.1903123

M. Wendel and K. J. Lorenz-h, Sharpened electron beam deposited tips for high resolution atomic force microscope lithography and imaging, Applied Physics Letters, vol.67, issue.25, 1995.
DOI : 10.1063/1.115365

S. P. Gross, M. Vershinin, and G. T. Shubeita, Cargo Transport: Two Motors Are Sometimes Better Than One, Current Biology, vol.17, issue.12, pp.478-486, 2007.
DOI : 10.1016/j.cub.2007.04.025

URL : http://doi.org/10.1016/j.cub.2007.04.025

]. C. Revenu, R. Athman, S. Robine, and D. Louvard, The co-workers of actin filaments: from cell structures to signals, Nature Reviews Molecular Cell Biology, vol.283, issue.8, pp.635-646, 2004.
DOI : 10.1038/ncb0703-599

]. T. Ando, N. Kodera, Y. Naito, T. Kinoshita, K. Y. Furuta et al., A High-speed Atomic Force Microscope for Studying Biological Macromolecules in Action, pp.1196-1202, 2003.

]. N. Kodera, D. Yamamoto, R. Ishikawa, and T. Ando, Video imaging of walking myosin V by high-speed atomic force microscopy, Nature, vol.77, issue.7320, pp.72-76, 2010.
DOI : 10.1038/nature09450

N. Kodera, Y. D. Yifrach, and O. Horovitz-a, Video imaging of walking myosin V by high-speed atomic force microscopy, Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL, 1995.
DOI : 10.1038/nature09450

A. Azem and M. Kessel, Characterization of a functional GroEL[14](GroES[7])[2] chaperonin heterooligomer, 1994.

H. Taguchi, . M. Etats-unis, H. Shibata, T. Yamashita, H. Uchihashi et al., Single-molecule observation of protein-protein interactions in the chaperonin system High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin, pp.208-212, 2001.

]. H. Nakamoto and L. Vigh, The small heat shock proteins and their clients, Cellular and Molecular Life Sciences, vol.64, issue.3, pp.294-306, 2007.
DOI : 10.1007/s00018-006-6321-2

W. W. De-jong, G. J. Caspers, and J. A. Leunissen, Genealogy of the ??-crystallin???small heat-shock protein superfamily, International Journal of Biological Macromolecules, vol.22, issue.3-4, pp.151-162, 1998.
DOI : 10.1016/S0141-8130(98)00013-0

R. A. Lindner, A. Kapur, M. Mariani, S. J. Titmuss, and J. A. Carver, Structural alterations of alpha-crystallin during its chaperone action, European Journal of Biochemistry, vol.258, issue.1, pp.170-183, 1998.
DOI : 10.1046/j.1432-1327.1998.2580170.x

]. S. Studer, M. Obrist, N. Lentze, and F. Narberhaus, A critical motif for oligomerization and chaperone activity of bacterial ??-heat shock proteins, European Journal of Biochemistry, vol.166, issue.14, pp.3578-3586, 2002.
DOI : 10.1046/j.1432-1033.2002.03049.x

M. P. Jobin, F. Delmas, D. Garmyn, C. Divies, J. F. Guzzo et al., Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos, Biochemical and physiological studies of the small heat shock protein sHsp Lo18 from the lactic acid bacterium Oenococcus oeni, pp.601-610, 1997.

F. Coucheney, L. Gala, P. M. Amsterdam, S. Maitre, A. Weidmann et al., sHsp Lo18, interacts with the cell membrane and modulates lipid physical state under heat shock conditions in a lactic acid bacterium The oligomer plasticity of the small heat-shock protein sHsp Lo18 from Oenococcus oeni influences its role in both membrane stabilization and protein protection, Biochem J, pp.444-97, 2005.

J. C. Nielsen, C. Prahl, and A. Lonvaud-funel, Malolactic fermentation in wine by direct inoculation with freeze-dried Leuconostoc oenos cultures, 1996.

J. Guzzo, M. P. Jobin, and C. Divies, Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation, 1998.

J. Guzzo, M. Jobin, F. Delmas, L. Fortier, D. Garmyn et al., Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase, International Journal of Food Microbiology, vol.55, issue.1-3, pp.27-31, 2000.
DOI : 10.1016/S0168-1605(00)00209-9

J. Guzzo, F. Delmas, F. Pierre, M. P. Jobin, B. Samyn et al., A small heat shock protein from Leuconostoc oenos induced by multiple stresses and during stationary growth phase, Letters in Applied Microbiology, vol.24, issue.5, pp.393-396, 1997.
DOI : 10.1046/j.1472-765X.1997.00042.x

F. Delmas, C. Divies, and J. Guzzo, Biochemical and Physiological Studies of the Small Heat Shock Protein sHsp Lo18 from the Lactic Acid Bacterium Oenococcus oeni, 2000.

H. A. Demerdash, K. J. Heller, and A. Geis, Application of the shsp Gene, Encoding a Small Heat Shock Protein, as a Food-Grade Selection Marker for Lactic Acid Bacteria, Applied and Environmental Microbiology, vol.69, issue.8, pp.4408-4412, 2003.
DOI : 10.1128/AEM.69.8.4408-4412.2003

N. Lentze, J. A. Aquilina, M. Lindbauer, C. V. Robinson, and F. Narberhaus, Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins, European Journal of Biochemistry, vol.268, issue.12, pp.2494-2503, 2004.
DOI : 10.1146/annurev.biophys.24.1.495

D. J. Muller, M. Amrein, and A. Engel, Adsorption of Biological Molecules to a Solid Support for Scanning Probe Microscopy, Journal of Structural Biology, vol.119, issue.2, pp.172-188, 1997.
DOI : 10.1006/jsbi.1997.3875

Z. Liu, Z. Li, H. Zhou, G. Wei, Y. Song et al., Imaging DNA molecules on mica surface by atomic force microscopy in air and in liquid, Microscopy Research and Technique, vol.104, issue.4, pp.179-185, 2005.
DOI : 10.1002/jemt.20156

S. E. Bondos and A. , Detection and prevention of protein aggregation before, during, and after purification, Analytical Biochemistry, vol.316, issue.2, pp.316-223, 2003.
DOI : 10.1016/S0003-2697(03)00059-9

D. J. Muller, M. Amrein, and A. Engel, Adsorption of biological molecules to a solid support for Scanning Probe Microscope, 1997.

P. Zhou and T. Labuza, Effect of Water Content on Glass Transition and Protein Aggregation of Whey Protein Powders During Short-Term Storage, Food Biophysics, vol.13, issue.2-3, pp.108-116, 2007.
DOI : 10.1007/s11483-007-9037-4

K. K. Kim, R. Kim, and S. Kim, Crystal structure of a small heat-shock protein, Nature, vol.394, issue.6693, pp.595-599, 1998.
DOI : 10.1038/29106

T. A. Larsen, A. J. Olson, and D. S. , Morphology of protein???protein interfaces, Structure, vol.6, issue.4, pp.421-427, 1993.
DOI : 10.1016/S0969-2126(98)00044-6

J. Janin, Principles of protein-protein recognition from structure to thermodynamics, Biochimie, vol.77, issue.7-8, pp.497-505, 1995.
DOI : 10.1016/0300-9084(96)88166-1

S. Tanaka and M. Ataka, pH-dependent oligomerization of BPTI in undersaturated and supersaturated solutions studied by dynamic light scattering, Journal of Crystal Growth, vol.237, issue.239, 2002.
DOI : 10.1016/S0022-0248(01)01889-9

S. Miller, The structure of interfaces between subunits of dimeric and tetrameric proteins, "Protein Engineering, Design and Selection", vol.3, issue.2, 1989.
DOI : 10.1093/protein/3.2.77

P. J. Van-den-oetelaar, P. F. Van-someren, J. A. Thomson, R. J. Siezen, and H. J. Hoenders, A dynamic quaternary structure of bovine .alpha.-crystallin as indicated from intermolecular exchange of subunits, Biochemistry, vol.29, issue.14, pp.3488-3493, 1990.
DOI : 10.1021/bi00466a010

M. P. Bova, L. Ding, J. Horwitz, and B. K. Fung, Subunit Exchange of ??A-Crystallin, Journal of Biological Chemistry, vol.272, issue.47, pp.29511-29517, 1997.
DOI : 10.1074/jbc.272.47.29511

M. P. Bova, H. S. Mchaourab, Y. Han, and B. K. Fung, Subunit Exchange of Small Heat Shock Proteins: ANALYSIS OF OLIGOMER FORMATION OF ??A-CRYSTALLIN AND Hsp27 BY FLUORESCENCE RESONANCE ENERGY TRANSFER AND SITE-DIRECTED TRUNCATIONS, Journal of Biological Chemistry, vol.275, issue.2, pp.1035-1042, 2000.
DOI : 10.1074/jbc.275.2.1035

M. P. Bova, Q. Huang, L. Ding, and J. Horwitz, Subunit Exchange, Conformational Stability, and Chaperone-like Function of the Small Heat Shock Protein 16.5 from Methanococcus jannaschii, Journal of Biological Chemistry, vol.277, issue.41, pp.38468-38475, 2002.
DOI : 10.1074/jbc.M205594200

. Benesch, Quaternary dynamics and plasticity underlie small heat shock protein chaperone function, Proceedings of the National Academy of Sciences, vol.107, pp.2007-2012, 2010.

T. M. Franzmann, M. Wühr, K. Richter, S. Walter, and J. Buchner, The Activation Mechanism of Hsp26 does not Require Dissociation of the Oligomer, Journal of Molecular Biology, vol.350, issue.5, pp.1083-1093, 2005.
DOI : 10.1016/j.jmb.2005.05.034

M. Rabe, D. Verdes, and S. Seeger, Understanding protein adsorption phenomena at solid surfaces, Advances in Colloid and Interface Science, vol.162, issue.1-2, pp.87-106, 2011.
DOI : 10.1016/j.cis.2010.12.007

URL : http://www.zora.uzh.ch/44154/1/Rabe1.pdf

K. C. Giese and E. Vierling, Changes in Oligomerization Are Essential for the Chaperone Activity of a Small Heat Shock Protein in Vivo and in Vitro, Journal of Biological Chemistry, vol.277, issue.48, pp.46310-46318, 2002.
DOI : 10.1074/jbc.M208926200

K. Nishihara, M. Kanemori, H. Kitagawa-yanagi, and T. Yura, Chaperone coexpression plasmids : Differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, Escherichia coli, 1998.

L. Joo and . Vigh, Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a "fluidity gene, Proc Natl Acad Sci, pp.95-3513, 1998.

S. Weidmann, A. Rieu, M. Rega, F. Coucheney, and J. Guzzo, Distinct amino acids of the Oenococcus oeni small heat shock protein sHsp Lo18 are essential for damaged protein protection and membrane stabilization, FEMS Microbiology Letters, vol.309, pp.8-15, 2010.

F. Narberhaus, Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network, Microbiology and molecular biology reviews, pp.64-93, 2002.

G. Wiegand, S. J. Remington, and C. Synthase, Citrate Synthase: Structure, Control, and Mechanism, Annual Review of Biophysics and Biophysical Chemistry, vol.15, issue.1, pp.97-117, 1986.
DOI : 10.1146/annurev.bb.15.060186.000525

K. A. Krukenberg, D. R. Southworth, T. O. Street, and D. A. , pH-Dependent Conformational Changes in Bacterial Hsp90 Reveal a Grp94-Like Conformation at pH??6 That Is Highly Active in Suppression of Citrate Synthase Aggregation, Journal of Molecular Biology, vol.390, issue.2, pp.278-291, 2009.
DOI : 10.1016/j.jmb.2009.04.080

K. Rajaraman, B. Raman, T. Ramakrishna, and C. M. Rao, Interaction of human recombinant ??A- and ??B-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation, FEBS Letters, vol.192, issue.2-3, pp.497-118, 2001.
DOI : 10.1016/S0014-5793(01)02451-6

T. A. Betts, C. A. Tipple, M. J. Sepaniak, and P. G. Datskos, Selectivity of chemical sensors based on micro-cantilevers coated with thin polymer films, Analytica Chimica Acta, vol.422, issue.1, pp.89-99, 2000.
DOI : 10.1016/S0003-2670(00)01062-X

T. Thundat, E. A. Wachter, S. L. Sharp, and R. J. Warmack, Detection of mercury vapor using resonating microcantilevers, Applied Physics Letters, vol.66, issue.13, pp.1695-1697, 1995.
DOI : 10.1063/1.113896

J. Tamayo, A. D. Humphris, A. M. Malloy, and M. J. Miles, Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor, Ultramicroscopy, vol.86, issue.1-2, pp.167-173, 2001.
DOI : 10.1016/S0304-3991(00)00082-6

E. Bourillot, Transversal mode and thermal analysis of an InP laser diode by near-field scanning probe microscopies, Journal of the Optical Society of America B, vol.25, issue.11, 2008.
DOI : 10.1364/JOSAB.25.001888

C. Gimzewski and . Gerber, A femtojoule calorimeter using micromechanical sensors, Review of Scientific Instruments, vol.65, pp.3793-3798, 1994.

T. Thundat, R. J. Warmack, G. Y. Chen, and D. P. Allison, Thermal and ambient???induced deflections of scanning force microscope cantilevers, Applied Physics Letters, vol.64, issue.21, pp.2894-2896, 1994.
DOI : 10.1063/1.111407

M. G. Da-silveira, E. A. Golovina, F. A. Hoekstra, F. M. Rombouts, and T. Abee, Membrane Fluidity Adjustments in Ethanol-Stressed Oenococcus oeni Cells, Applied and Environmental Microbiology, vol.69, issue.10, pp.69-5826, 2003.
DOI : 10.1128/AEM.69.10.5826-5832.2003

S. J. Singer and L. Nicolson, The Fluid Mosaic Model of the Cell Membrane, Cell membrane and Extracellular matrix, vol.175, pp.720-730, 1972.

P. A. Campbell, L. J. Sinnamon, C. E. Thompson, and D. G. Walmsley, Atomic force microscopy evidence for K+ domains on freshly cleaved mica, Surface Science, vol.410, issue.2-3, pp.410-768, 1998.
DOI : 10.1016/S0039-6028(98)00409-9

M. V. Maslova, L. G. Gerasimova, and W. Forsling, Surface Properties of Cleaved Mica, Colloid Journal, vol.66, issue.3, pp.322-328, 2004.
DOI : 10.1023/B:COLL.0000030843.30563.c9

A. Zhang and Y. Hou, Mixed urease/amphiphile LB films and their application for biosensor development, Bioelectrochemistry, vol.56, issue.1-2, 2002.
DOI : 10.1016/S1567-5394(02)00045-2

E. A. Vogler, Protein adsorption in three dimensions, Biomaterials, vol.33, issue.5, pp.1201-1237, 2012.
DOI : 10.1016/j.biomaterials.2011.10.059

T. Ballet, L. Boulange, Y. Brechet, F. Bruckert, and M. Weidenhaupt, Protein conformational changes induced by adsorption onto material surfaces: an important issue for biomedical applications of material science, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.58, issue.2, p.303, 2010.
DOI : 10.2478/v10175-010-0028-0

URL : https://hal.archives-ouvertes.fr/hal-00517316

D. M. Hylton, S. W. Shalaby, and R. A. Latour, Direct correlation between adsorption-induced changes in protein structure and platelet adhesion, Journal of Biomedical Materials Research Part A, vol.17, issue.378, 2005.
DOI : 10.1002/jbm.a.30295

R. F. Schultz, Introduction to Chemical and Biological Sensors, Institute of Physics Publishing, 1996.

C. Leung and R. E. Palmer, Adsorption of a model protein, the GroEL chaperonin, on surfaces, Institute of Physics, 2008.

M. H. Van-regenmortel, Analysing structure-function relationships with biosensors, Cellular and Molecular Life Sciences, vol.58, issue.5, pp.794-800, 2001.
DOI : 10.1007/PL00000900

H. Sota, Y. Hasegawa, and M. Iwakura, Detection of Conformational Changes in an Immobilized Protein Using Surface Plasmon Resonance, Analytical Chemistry, vol.70, issue.10, pp.2019-2024, 1998.
DOI : 10.1021/ac9713666

T. Mannen, S. Yamaguchi, J. Honda, S. Sugimoto, A. Kitayama et al., Observation of Charge State and Conformational Change in Immobilized Protein Using Surface Plasmon Resonance Sensor, Analytical Biochemistry, vol.293, issue.2, pp.293-185, 2001.
DOI : 10.1006/abio.2001.5141

F. Teillet, B. Dublet, J. P. Andrieu, C. Gaboriaud, G. J. Arlaud et al., The Two Major Oligomeric Forms of Human Mannan-Binding Lectin: Chemical Characterization, Carbohydrate-Binding Properties, and Interaction with MBL-Associated Serine Proteases, The Journal of Immunology, vol.174, issue.5, pp.2870-2877, 2005.
DOI : 10.4049/jimmunol.174.5.2870

J. P. Nolan and L. A. Sklar, Suspension array technology: evolution of the flat-array paradigm, Trends in Biotechnology, vol.20, issue.1, pp.9-12, 2002.
DOI : 10.1016/S0167-7799(01)01844-3

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh et al., Biomolecular screening with encoded porous-silicon photonic crystals, Nature Materials, vol.1, issue.1, pp.39-41, 2002.
DOI : 10.1038/nmat702

H. Zhu and M. Snyder, Protein chip technology, Current Opinion in Chemical Biology, vol.7, issue.1, pp.55-63, 2003.
DOI : 10.1016/S1367-5931(02)00005-4

G. Elia, M. Silacci, S. Scheurer, J. Scheuermann, and D. Neri, Affinity-capture reagents for protein arrays, Trends in Biotechnology, vol.20, issue.12, pp.19-22, 2002.
DOI : 10.1016/S1471-1931(02)00201-X

H. Petach and L. Gold, Dimensionality is the issue: use of photoaptamers in protein microarrays, Current Opinion in Biotechnology, vol.13, issue.4, pp.309-314, 2002.
DOI : 10.1016/S0958-1669(02)00329-4

K. B. Lee, S. J. Park, C. A. Mirkin, J. C. Smith, and . Mrksich, Protein Nanoarrays Generated By Dip-Pen Nanolithography, Science, vol.295, issue.5560, pp.1702-1705, 2002.
DOI : 10.1126/science.1067172

V. W. Jones, J. R. Kenseth, M. D. Porter, C. L. Mosher, and E. Henderson, Microminiaturized Immunoassays Using Atomic Force Microscopy and Compositionally Patterned Antigen Arrays, Analytical Chemistry, vol.70, issue.7, 1998.
DOI : 10.1021/ac971125y

V. W. Jones, J. R. Kenseth, M. D. Porter, C. L. Mosher, and E. Henderson, Microminiaturized Immunoassays Using Atomic Force Microscopy and Compositionally Patterned Antigen Arrays, Microminiaturized Immunoassays Using Atomic Force Microscopy and Compositionally Patterned Antigen Arrays, pp.1233-1241, 1998.
DOI : 10.1021/ac971125y

M. Carrion-vazquez, A. F. Oberhauser, T. E. Fisher, P. E. Marszalek, H. Li et al., Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering, Progress in Biophysics and Molecular Biology, vol.74, issue.1-2, pp.63-91, 2000.
DOI : 10.1016/S0079-6107(00)00017-1

N. Crampton and W. A. Bonass, Formation of Aminosilane-Functionalized Mica for Atomic Force Microscopy Imaging of DNA, Langmuir, vol.21, issue.17, 2005.
DOI : 10.1021/la050972q

A. D. Bangham and R. W. Horne, Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope, Journal of Molecular Biology, vol.8, issue.5, pp.660-610, 1964.
DOI : 10.1016/S0022-2836(64)80115-7

D. C. Miller and G. P. Dahl, Early events in calcium-induced liposome fusion, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.689, issue.1, pp.165-169, 1982.
DOI : 10.1016/0005-2736(82)90201-2

D. Papahadjopoulos, S. Nir, and N. Düzgünes, Molecular mechanisms of calcium-induced membrane fusion, Journal of Bioenergetics and Biomembranes, vol.694, issue.2, pp.157-179, 1990.
DOI : 10.1007/BF00762944

N. Willem, Driving Forces for Protein Adsorption at Solid Surfaces, Biopolymers at Interfaces, 2003.

P. Roach, D. Farrar, and C. C. Perry, Interpretation of Protein Adsorption:?? Surface-Induced Conformational Changes, Journal of the American Chemical Society, vol.127, issue.22, pp.8168-8173, 2005.
DOI : 10.1021/ja042898o

K. Wadu-mesthrige, N. A. Amro, and G. Y. Liu, Immobilization of proteins on self-assembled monolayers, Scanning, vol.182, issue.5, pp.380-388, 2000.
DOI : 10.1002/sca.4950220607

H. Ellens, J. Bentz, and F. C. Szoka, Proton- and calcium-induced fusion and destabilization of liposomes, Biochemistry, vol.24, issue.13, pp.3099-3106, 1985.
DOI : 10.1021/bi00334a005

S. Paynter and D. A. Russell, Surface plasmon resonance measurement of pH-induced responses of immobilized biomolecules: conformational change or electrostatic interaction effects?, Analytical Biochemistry, vol.309, issue.1, pp.85-95, 2002.
DOI : 10.1016/S0003-2697(02)00255-5

D. Carriou, F. Mele, E. Bourillot, E. Lesniewska, and Y. Lacroute, A miniaturized low tension device of electroporation and handling of biological cells in-vitro (en préparation)

. Lesniewska, Dynamic of protein oligomerization studied by High-Speed Atomic Force Microscopy (soumis)

E. Lesniewska, E. Bourillot, D. Carriou, J. Gushina, E. Pudovkina et al., The study of living and fixing buccal epitheliocytes morphology by atomic force microscopy (accepté)

D. Carriou, F. Ronez, M. Baranowska, E. Bourillot, J. Guzzo et al., Dynamic of oligomerization of a small Hsp protein studied by High-Speed Atomic Force Microscope, CLIPP Proteomic platform meeting, 2012.

D. Carriou, F. Ronez, M. Baranowska, E. Bourillot, J. Guzzo et al., Dynamic of oligomerization of a small Hsp protein studied by High-Speed Atomic Force Microscope, 2012.

D. Carriou, F. Ronez, M. Baranowska, E. Bourillot, J. Guzzo et al., Conformational changes and variations of elasticity of a sHsp: sHsp Lo18, a function of pH, 2011.

D. Carriou, M. Ewald, E. Bourillot, and E. Lesniewska, Development of High-Speed Atomic Force Microscopy (HS-AFM) for Biology, CLIPP Proteomic platform meeting, 2011.

D. Carriou, M. Ewald, E. Bourillot, E. Lesniewska, N. Kodera et al., Characterization of interactions between proteo-nucleic structures by High-Speed Atomic Force Microscopy, 2010.

D. Carriou, M. Ewald, E. Bourillot, E. Lesniewska, N. Kodera et al., Characterization of interactions between proteo-nucleic structures by High-Speed Atomic Force Microscopy, Near-Field Microscopy Forum '10, 2010.

M. Ewald, D. Carriou, E. Bourillot, E. Lesniewska, N. Kodera et al., Observation of nanostructured surfaces by High-Speed atomic force microscopy Symposium Watching Biomolecules in Action, 2009.