P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Physical Review, vol.109, issue.5, pp.1492-1505, 1958.
DOI : 10.1103/PhysRev.109.1492

V. Bach, Error bound for the Hartree-Fock energy of atoms and molecules, Communications in Mathematical Physics, vol.112, issue.5, pp.527-548, 1992.
DOI : 10.1007/BF02097241

V. Bach, E. H. Lieb, M. Loss, and J. P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory, Physical Review Letters, vol.72, issue.19, pp.2981-2983, 1994.
DOI : 10.1103/PhysRevLett.72.2981

V. Bach, E. H. Lieb, and J. P. Solovej, Generalized Hartree-Fock theory and the Hubbard model, Journal of Statistical Physics, vol.4, issue.1-2, pp.3-89, 1994.
DOI : 10.1007/BF02188656

R. Bass, Uniqueness in law for pure jump Markov processes, Probab. Theory Related Fields, pp.271-287, 1988.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, pp.3098-3100, 1988.
DOI : 10.1103/PhysRevA.38.3098

P. Billingsley, Convergence of probability measures, 1968.
DOI : 10.1002/9780470316962

X. Blanc, C. L. Bris, and P. , A Definition of the Ground State Energy for Systems Composed of Infinitely Many Particles, Communications in Partial Differential Equations, vol.35, issue.1-2, pp.439-475, 2003.
DOI : 10.1081/PDE-120019389

X. Blanc and M. Lewin, Existence of the thermodynamic limit for disordered quantum Coulomb systems, Journal of Mathematical Physics, vol.53, issue.9, p.95209, 2012.
DOI : 10.1063/1.4729052

URL : https://hal.archives-ouvertes.fr/hal-00662052

J. Bouclet, F. Germinet, A. Klein, and J. H. Schenker, Linear response theory for magnetic Schr??dinger operators in disordered media, Journal of Functional Analysis, vol.226, issue.2, pp.301-372, 2005.
DOI : 10.1016/j.jfa.2005.02.002

L. Boulton, N. Boussaid, and M. Lewin, Generalised Weyl theorems and spectral pollution in the Galerkin method, Journal of Spectral Theory, vol.2, pp.329-354, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00536270

L. Boulton and M. Levitin, On approximation of the eigenvalues of perturbed periodic Schr??dinger operators, Journal of Physics A: Mathematical and Theoretical, vol.40, issue.31, pp.9319-9329, 2007.
DOI : 10.1088/1751-8113/40/31/010

J. Bourgain and A. Klein, Bounds on the density of states for Schrödinger operators, ArXiv e-prints, 2011.

H. Brezis, Semilinear equations in ? N without condition at infinity, Applied Mathematics & Optimization, vol.7, issue.1, pp.271-282, 1984.
DOI : 10.1007/BF01449045

É. Cancès, M. Defranceschi, W. Kutzelnigg, C. L. Bris, and Y. Maday, Computational quantum chemistry: a primer, in Handbook of numerical analysis, Handb. Numer. Anal, vol.X, pp.3-270, 2003.

É. Cancès, A. Deleurence, and M. Lewin, A New Approach to the Modeling of Local Defects in Crystals: The Reduced Hartree-Fock Case, Communications in Mathematical Physics, vol.9, issue.8, pp.129-177, 2008.
DOI : 10.1007/s00220-008-0481-x

É. Cancès and V. Ehrlacher, Local Defects are Always Neutral in the Thomas???Fermi???von Weisz??cker Theory of Crystals, Archive for Rational Mechanics and Analysis, vol.27, issue.3, pp.933-973, 2011.
DOI : 10.1007/s00205-011-0440-0

É. Cancès, V. Ehrlacher, and Y. Maday, Periodic Schr??dinger Operators with Local Defects and Spectral Pollution, SIAM Journal on Numerical Analysis, vol.50, issue.6, pp.3016-3035, 2012.
DOI : 10.1137/110855545

É. Cancès, S. Lahbabi, and M. Lewin, Mean-field electronic structure models for disordered materials Mean-field models for disordered crystals, Proceeding of the International Congress on Mathematical Physics, 2012.

É. Cancès and C. L. Bris, Can we outperform the DIIS approach for electronic structure calculations?, International Journal of Quantum Chemistry, vol.110, issue.2, pp.82-90, 2000.
DOI : 10.1002/1097-461X(2000)79:2<82::AID-QUA3>3.0.CO;2-I

É. Cancès and M. Lewin, The Dielectric Permittivity of Crystals in the Reduced Hartree???Fock Approximation, Archive for Rational Mechanics and Analysis, vol.129, issue.1, pp.139-177, 2010.
DOI : 10.1007/s00205-009-0275-0

R. Carmona and J. Lacroix, Spectral theory of random Schrödinger operators, Probability and its applications, 1990.

I. Catto, C. L. Bris, and P. Lions, The mathematical theory of thermodynamic limits: Thomas-Fermi type models, Oxford mathematical monographs, 1998.

A. Chatterjee and A. Voter, Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants, The Journal of Chemical Physics, vol.132, issue.19, p.194101, 2010.
DOI : 10.1063/1.3409606

E. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, 1996.

J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien: algèbres de Von Neumann, no. n ? 25 in Cahiers scientifiques, 1969.

N. Dombrowski, Contribution à la théorie mathématique du transport quantique dans les systèmes de Hall, 2009.

R. Dreizler and E. Gross, Density Functional Theory, 1990.
DOI : 10.1007/978-3-642-86105-5

D. Dürr, S. Goldstein, and J. L. Lebowitz, A mechanical model of Brownian motion, Communications in Mathematical Physics, vol.69, issue.4, pp.507-530, 1980.
DOI : 10.1007/BF02046762

C. Dykstra, G. Frenking, K. Kim, and G. Scuseria, Theory and Applications of Computational Chemistry: The First Forty Years, 2011.

H. Eyring, The Activated Complex in Chemical Reactions, The Journal of Chemical Physics, vol.3, issue.2, pp.107-115, 1935.
DOI : 10.1063/1.1749604

C. Fefferman, The thermodynamic limit for a crystal, Communications in Mathematical Physics, vol.9, issue.3, pp.289-311, 1985.
DOI : 10.1007/BF01205785

K. Fichthorn, R. Miron, Y. Wang, and Y. Tiwary, Accelerated molecular dynamics simulation of thin-film growth with the bond-boost method, Journal of Physics: Condensed Matter, vol.21, issue.8, p.84212, 2009.
DOI : 10.1088/0953-8984/21/8/084212

M. E. Fisher and D. Ruelle, The Stability of Many???Particle Systems, Journal of Mathematical Physics, vol.7, issue.2, pp.260-270, 1966.
DOI : 10.1063/1.1704928

R. L. Frank, M. Lewin, E. H. Lieb, and R. Seiringer, A positive density analogue of the Lieb-Thirring inequality, Duke Math, J, 2013.

C. Freysoldt, J. Neugebauer, and C. G. Walle, Finite-Size Corrections for Charged-Defect Supercell Calculations, Physical Review Letters, vol.102, issue.1, p.16402, 2009.
DOI : 10.1103/PhysRevLett.102.016402

G. Friesecke, The Multiconfiguration Equations for Atoms and Molecules: Charge Quantization and Existence of Solutions, Archive for Rational Mechanics and Analysis, vol.169, issue.1, pp.35-71, 2003.
DOI : 10.1007/s00205-003-0252-y

G. Friesecke, O. Junge, and P. Koltai, Mean Field Approximation in Conformation Dynamics, Multiscale Modeling & Simulation, vol.8, issue.1, pp.254-268, 2009.
DOI : 10.1137/080745262

J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Communications in Mathematical Physics, vol.4, issue.2, pp.151-184, 1983.
DOI : 10.1007/BF01209475

F. Germinet and A. Klein, Bootstrap Multiscale Analysis and Localization??in Random Media, Communications in Mathematical Physics, vol.222, issue.2, pp.415-448, 2001.
DOI : 10.1007/s002200100518

URL : https://hal.archives-ouvertes.fr/hal-00092744

M. Ghimenti and M. Lewin, Properties of periodic Hartree???Fock minimizers, Calculus of Variations and Partial Differential Equations, vol.33, issue.4, pp.39-56, 2009.
DOI : 10.1007/s00526-008-0196-z

D. Givon, R. Kupferman, and A. Stuart, Extracting macroscopic dynamics: model problems and algorithms, Nonlinearity, vol.17, issue.6, pp.17-55, 2004.
DOI : 10.1088/0951-7715/17/6/R01

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Goldshein, S. Molchanov, and L. Pastur, A pure point spectrum of the stochastic one-dimensional Schrödinger operator, Functional Analysis and Its Applications, pp.11-12, 1977.

M. Griesemer and F. Hantsch, Unique Solutions to Hartree???Fock Equations for Closed Shell Atoms, Archive for Rational Mechanics and Analysis, vol.2, issue.158(2), pp.883-900, 2012.
DOI : 10.1007/s00205-011-0464-5

D. Griffiths, Introduction to quantum mechanics, 2005.

C. Hainzl, M. Lewin, and É. Séré, Existence of a Stable Polarized Vacuum in the Bogoliubov-Dirac-Fock Approximation, Communications in Mathematical Physics, vol.16, issue.3, pp.515-562, 2005.
DOI : 10.1007/s00220-005-1343-4

URL : https://hal.archives-ouvertes.fr/hal-00096315

C. Hainzl, M. Lewin, and J. P. Solovej, The mean-field approximation in quantum electrodynamics: The no-photon case, Communications on Pure and Applied Mathematics, vol.35, issue.4, pp.546-596, 2007.
DOI : 10.1002/cpa.20145

URL : https://hal.archives-ouvertes.fr/hal-00154147

M. Hairer, Ergodic Theory for Stochastic PDEs Lecture notes, Imperial College London, 2008.

B. Helffer and J. Sjöstrand, On diamagnetism and de Haas-van Alphen effect, Ann. Inst. H. Poincaré Phys. Théor, pp.52-303, 1990.

R. Hempel and W. Kirsch, On the integrated density of states for crystals with randomly distributed impurities, Communications in Mathematical Physics, vol.7, issue.3, pp.459-469, 1994.
DOI : 10.1007/BF02099980

G. Henkelman, B. P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, The Journal of Chemical Physics, vol.113, issue.22, pp.9901-9904, 2000.
DOI : 10.1063/1.1329672

P. Hislop, Lectures on Random Schrödinger Operators, in Fourth Summer School in Analysis and Mathematical Physics: Topics in Spectral Theory and Quantum Mechanics, Contemporary Mathematics), pp.41-131, 2008.

M. Hoffmann-ostenhof and T. Hoffmann-ostenhof, Schrödinger inequalities " and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A, issue.3, pp.16-1782, 1977.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, issue.3B, pp.864-871, 1964.
DOI : 10.1103/PhysRev.136.B864

J. Jacod and A. Shiryaev, Limit theorems for stochastic processes, 2003.
DOI : 10.1007/978-3-662-02514-7

O. Kallenberg, Foundations of modern probability, Probability and its Applications, 2002.

C. Kipnis and C. Landim, Scaling limits of interacting particle systems, 1999.
DOI : 10.1007/978-3-662-03752-2

W. Kirsch, Random Schr??dinger operators a course, Lecture Notes in Phys, vol.345, pp.264-370, 1989.
DOI : 10.1007/3-540-51783-9_23

W. Kirsch and F. Martinelli, On the ergodic properties of the spectrum of general random operators, J. Reine Angew. Math, vol.334, pp.141-156, 1982.

W. Kirsch and B. Metzger, The integrated density of states for random schrödinger operators, in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday, pp.649-698, 2007.

M. Klein, A. Martinez, R. Seiler, and X. P. Wang, On the Born-Oppenheimer expansion for polyatomic molecules, Communications in Mathematical Physics, vol.46, issue.4, pp.607-639, 1992.
DOI : 10.1007/BF02099269

F. Klopp, An asymptotic expansion for the density of states of a random Schrödinger operator with Bernoulli disorder, Random Oper. Stochastic Equations, vol.3, pp.315-331, 1995.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/PhysRev.140.A1133

H. Kunz and B. Souillard, Sur le spectre des op??rateurs aux diff??rences finies al??atoires, Communications in Mathematical Physics, vol.49, issue.2, pp.201-246, 1980.
DOI : 10.1007/BF01942371

S. Lahbabi, The Reduced Hartree???Fock Model for Short-Range Quantum Crystals with Nonlocal Defects, Annales Henri Poincar??, vol.104, issue.7, 2013.
DOI : 10.1007/s00023-013-0283-3

URL : https://hal.archives-ouvertes.fr/hal-00797094

S. Lahbabi and F. Legoll, Effective Dynamics for a Kinetic Monte???Carlo Model with Slow and Fast Time Scales, Journal of Statistical Physics, vol.221, issue.1, 2013.
DOI : 10.1007/s10955-013-0877-7

URL : https://hal.archives-ouvertes.fr/hal-00772489

C. and L. Bris, A general approach for multiconfiguration methods in quantum molecular chemistry, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.11, issue.4, pp.441-484, 1994.
DOI : 10.1016/S0294-1449(16)30183-4

C. , L. Bris, T. Lelièvre, M. Luskin, and D. Perez, A mathematical formalization of the parallel replica dynamics, pp.119-146, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00596161

F. Legoll and T. Lelièvre, Effective dynamics using conditional expectations, Nonlinearity, vol.23, issue.9, pp.2131-2163, 2010.
DOI : 10.1088/0951-7715/23/9/006

URL : https://hal.archives-ouvertes.fr/hal-00399986

E. Lenzmann and M. Lewin, Dynamical ionization bounds for atoms, Analysis & PDE, vol.6, issue.5, 2013.
DOI : 10.2140/apde.2013.6.1183

URL : https://hal.archives-ouvertes.fr/hal-00721928

M. Levitin and E. Shargorodsky, Spectral pollution and second-order relative spectra for self-adjoint operators, IMA Journal of Numerical Analysis, vol.24, issue.3, pp.393-416, 2004.
DOI : 10.1093/imanum/24.3.393

URL : http://arxiv.org/abs/math/0212087

A. Levitt, Convergence of gradient-based algorithms for the Hartree-Fock equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.6, pp.1321-1336, 2012.
DOI : 10.1051/m2an/2012008

URL : https://hal.archives-ouvertes.fr/hal-00626060

M. Levy, Universal variational functionals of electron densities, firstorder density matrices, and natural spin-orbitals and solution of the v-representability problem, Proceedings of the National Academy of Sciences, pp.76-6062, 1979.

M. Lewin, A Mountain Pass for Reacting Molecules, Annales Henri Poincar???, vol.5, issue.3, pp.477-521, 2004.
DOI : 10.1007/s00023-004-0176-6

URL : https://hal.archives-ouvertes.fr/hal-00093523

M. Lewin and É. Séré, Spectral pollution and how to avoid it (with applications to Dirac and periodic Schrödinger operators, Proc. London Math. Soc, pp.864-900, 2010.

E. H. Lieb, Variational Principle for Many-Fermion Systems, Physical Review Letters, vol.46, issue.7, pp.457-459, 1981.
DOI : 10.1103/PhysRevLett.46.457

E. H. Lieb and J. L. Lebowitz, The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei, Advances in Mathematics, vol.9, issue.3, pp.316-398, 1972.
DOI : 10.1016/0001-8708(72)90023-0

E. H. Lieb and S. Oxford, Improved lower bound on the indirect Coulomb energy, International Journal of Quantum Chemistry, vol.2, issue.3, p.427, 1981.
DOI : 10.1002/qua.560190306

E. H. Lieb and R. Seiringer, The stability of matter in quantum mechanics, 2010.
DOI : 10.1017/CBO9780511819681

E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Communications in Mathematical Physics, vol.22, issue.3, pp.185-194, 1977.
DOI : 10.1007/BF01609845

E. H. Lieb and W. E. Thirring, Bound for the Kinetic Energy of Fermions Which Proves the Stability of Matter, Physical Review Letters, vol.35, issue.11, pp.687-689, 1975.
DOI : 10.1103/PhysRevLett.35.687

R. Miron and K. Fichthorn, Multiple-Time Scale Accelerated Molecular Dynamics: Addressing the Small-Barrier Problem, Physical Review Letters, vol.93, issue.12, p.128301, 2004.
DOI : 10.1103/PhysRevLett.93.128301

C. R. Molina, Etude mathématique des propriétés de transport des opérateurs de Schrödinger aléatoires avec structure quasi-crystalline, 2012.

J. Mourrat, First-order expansion of homogenized coefficients under Bernoulli perturbations, Journal de Math??matiques Pures et Appliqu??es, vol.103, issue.1, 2013.
DOI : 10.1016/j.matpur.2014.03.008

P. T. Nam, Contributions to the rigorous study of the structure of atoms, 2011.

F. Nier, A variational formulation of schr??dinger-poisson systems in dimension d ??? 3, Communications in Partial Differential Equations, vol.71, issue.7-8, pp.1125-1147, 1993.
DOI : 10.1080/03605309308820966

M. Novotny, Monte Carlo Algorithms with Absorbing Markov Chains: Fast Local Algorithms for Slow Dynamics, Physical Review Letters, vol.74, issue.1, pp.1-5, 1995.
DOI : 10.1103/PhysRevLett.74.1

G. C. Papanicolaou and S. R. Varadhan, Boundary value problems with rapidly oscillating random coefficients of Colloq, Random fields, pp.835-873, 1979.

L. Pastur, Spectra of Random Selfadjoint Operators, Russ. Math. Surveys, pp.28-29, 1973.

L. Pastur and A. Figotin, Spectra of random and almost-periodic operators, Grundlehren der mathematischen Wissenschaften, 1992.

G. Pavliotis and A. Stuart, Multiscale methods: averaging and homogenization, 2007.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/PhysRevLett.77.3865

J. P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Physical Review B, vol.33, issue.12, pp.8800-8802, 1986.
DOI : 10.1103/PhysRevB.33.8800

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, vol.23, issue.10, pp.5048-5079, 1981.
DOI : 10.1103/PhysRevB.23.5048

E. Prodan and P. Nordlander, Hartree approximation I: The fixed point approach, Journal of Mathematical Physics, vol.42, issue.8, pp.3390-3406, 2001.
DOI : 10.1063/1.1379747

M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional analysis, 1972.

K. Reuter, First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Concepts, status, and frontiers, in Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System, pp.71-111, 2011.

C. C. Roothaan, New Developments in Molecular Orbital Theory, Reviews of Modern Physics, vol.23, issue.2, pp.69-89, 1951.
DOI : 10.1103/RevModPhys.23.69

W. Rudin, Real and complex analysis, 1987.

T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide, 2002.
DOI : 10.1007/978-1-4419-6351-2

C. Schütte, A. Fischer, W. Huisinga, and P. Deuflhard, A Direct Approach to Conformational Dynamics Based on Hybrid Monte Carlo, Journal of Computational Physics, vol.151, issue.1, pp.146-168, 1999.
DOI : 10.1006/jcph.1999.6231

C. Schütte and W. Huisinga, Biomolecular conformations can be identified as metastable sets of molecular dynamics, in Handbook of Numerical Analysis (Special volume on computational chemistry, pp.699-744, 2003.

R. Shepard, The Multiconfiguration Self-Consistent Field Method, Ab Initio Methods in Quantum Chemistry, p.63, 1987.
DOI : 10.1002/9780470142943.ch2

J. P. Solovej, Proof of the ionization conjecture in a reduced Hartree-Fock model, Inventiones mathematicae, vol.79, issue.1, pp.291-311, 1991.
DOI : 10.1007/BF01245077

P. Stollmann, Caught by disorder: bound states in random media, Progress in mathematical physics, 2001.
DOI : 10.1007/978-1-4612-0169-4

A. Stoneham, Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductor, Oxford Classic Texts in the Physical Sciences Series, 2001.

L. E. Thomas, Time dependent approach to scattering from impurities in a crystal, Communications in Mathematical Physics, vol.69, issue.4, pp.335-343, 1973.
DOI : 10.1007/BF01646745

N. Veniaminov, The Existence of the Thermodynamic Limit for the System of Interacting Quantum Particles in Random Media, Annales Henri Poincar??, vol.4, issue.5, pp.1-32, 2012.
DOI : 10.1007/s00023-012-0186-8

L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol.159, issue.1, pp.98-103, 1967.
DOI : 10.1103/PhysRev.159.98

A. Voter, Introduction to the Kinetic Monte Carlo method, in Radiation effects in solids, pp.1-23, 2007.

D. R. Yafaev, Mathematical scattering theory General theory, 1992.

G. M. Zhislin, Discussion of the spectrum of Schrödinger operators for systems of many particles, Trudy Moskovskogo matematiceskogo obscestva, pp.81-120, 1960.