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One

Introduction

1.1 Objectives

The goal of my research work is the design and implementation of a new gen-
eration of web applications where content is made richer and long lasting and
processing made simpler, more flexible, safer and more effective. Designing
models consists of defining document domain specific languages capable of
describing and representing a wide variety of electronic documents together
with their processing. By variety, I mean document classes ranging from tra-
ditional documents such as books, technical manuals, scientific articles, web
applications, multimedia presentations up to active and interactive documents
combining video, audio, 3D objects, RSS feeds, blogs, forms. Such documents
can be active and reactive to user and program inputs and may potentially live
in a complex distributed computing environment made of remote application
servers and databases. Today, this variety keeps increasing as the result of
innovations made both by new generations of web applications and also by the
multiplication of distribution channels such as mobile devices, set top boxes,
interactive television, tablets, etc.

One of the main requirements for document representation is independence
from the manipulating software and the underlying hardware architecture, for
obvious reasons related to their sustainability. It must also satisfy long-term
access constraints and storage and need to have high readability to facilitate
their use and repurposing in future applications. These constraints are so
crucial that document representation is implicitly expected to be rather de-
scriptive, rich enough to cover a wider range of document classes while being
sufficiently flexible to accommodate future uses that are unknown at design
time.

Similar requirements are expected for document processing. Document ma-
nipulation programs are characterized by a set of "typical" tasks, which consist
in updating, transmitting, displaying, transforming, adapting, repurposing, or
publishing documents on a given infrastructure. One of the peculiarities of
these tasks is the predominance of tree and graphical structure manipulation,
either to update the content or its displayed form. Languages such as XSLT
or XQuery have been designed to serve as domain specific languages for such
manipulations. They have been both equipped with tree querying mechanisms
which allow selecting, extracting and combining tree fragments using regular
path expressions, via XPath. Additionally, content models are often described
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2 CHAPTER 1. INTRODUCTION

using regular tree constraints (XML Schemas) [Bray et al., 2004] that each
document instance either read or produced must adhere to. Regularity was
introduced in content representation and processing to provide more abstract
representations and powerful processing. However, a lack of appropriate sup-
porting tools often resulted in complex programs that are difficult to maintain
and make evolve, vulnerable to errors and resource hungry, both in terms of
memory and speed.

Today, web content and applications are becoming the main interface to
performing all kinds of daily tasks such as stating and paying government
taxes, booking plane or train tickets, planning holidays, shopping, managing
bank accounts, etc. As a consequence, it is becoming increasingly important to
study their foundations, enhance their capabilities, facilitate their design, ver-
ify their correctness, optimize them automatically and make them more flexible
and adaptive. The present work aims at contributing to these objectives and to
a new generation of content models and programming languages. Since stan-
dards are key success factor in this research area, I do actively contribute to web
standards either by proposing new ones such as for SMIL [Layaïda & Ossen-
bruggen, 2001] or by enhancing existing ones such as XML and XQuery[Boag
et al., 2006].

1.2 Overview of the research area

The hypermedia research area has experienced considerable mutations over the
last twenty years. Just before the web was born, it was easier to identify the
scientific community, its main conferences such as ACM Hypertext, Electronic
Publishing, ECHT, and the overall scientific topics. Starting from the early
1990s, and the exponential growth and impact brought by the web success,
addressed topics became much broader in scope and progressively encompassed
other areas of research. Today the World Wide Web Conference scientific topics
include human machine interfaces, knowledge representation, machine learning,
networking, information retrieval, databases, programming languages, social
networks, etc. Even some fundamental subjects related to logical reasoning,
foundations of databases and language theory are being revisited for the web
development.

To better understand current scientific trends and challenges, one needs to
examine closely the initial design goals of the World Wide Web project, which
was initiated and developed by Tim Berners-Lee and Robert Cailliau at CERN.
Beyond the development of a global hypertext system, simpler design princi-
ples compared to those prevailing in the literature at that time were made the
priority. More precisely, systems such as Dexter [Halasz & Schwartz, 1994],
NoteCards, Intermedia or Hyper-G [Conklin, 1987; Kappe et al., 1993; Akscyn
et al., 1988], reference models in the community, were considered by the web
inventors to be too centralized and too closed [Berners-Lee et al., 1992]. As a
matter of fact, the rule in hypertext was monolithic design based on a single
integrated application built on top of a centrally managed and uniform stor-
age system. These systems favored a disciplined use of content by enforcing a
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stricter consistency of hyperlinks relating pieces of information, stronger syn-
tactic rules for content description and publication (entities created in theses
system are uniquely identified by universal names issued by a central author-
ity). In contrast, the web architecture was designed to be highly decentralized,
open and based on a number of shared, application independent principles.
Resources and links between them can be created and added freely without
any guarantees on resource availability, or on document and link consistency.
These principles have resulted in the development of three key components
that are the cornerstones of the web:

• A universal resource naming and addressing scheme for locating
and retrieving hypertext documents, images, emails, indexes, files, etc.:
the so-called universal resource identifiers or URIs.

• A hypertext document format: HTML, the hypertext markup lan-
guage. HTML is a text based format with presentation oriented markup
or tagging simple enough to be used by novice users.

• A network communication protocol: the hypertext transport pro-
tocol HTTP which is a stateless TCP/IP based protocol for retrieving
remote resources.

The notion of sharing described by Berners-Lee corresponds to the notion
of standard as practiced by organizations such as ISO, IETF and later by the
W3C created specifically for the web. Standards where usually intended to
achieve technically, by means of consensus or vote, the technical conditions
of interoperability between systems for mature technology. In contrast, web
formats, protocols and languages were designed in a very prospective manner
meant to guide future developments and to “realize the full potential of the
web”. This is particularly exemplified by the Semantic Web activity, database
oriented programming languages such as XQuery [Boag et al., 2006] or mobile
web initiatives launched well ahead of industry demand.

Interestingly, content, one of the main building blocks of the web did have
only a limited success in its development. Putting aside the fierce browser war
and patent disputes, some initiatives such XHTML and CDF (Compound doc-
uments Formats) faced strong challenges and were later simply discontinued,
despite user demand for richer content. XHTML was an attempt to reinforce
syntactic correctness by reformulating HTML in XML while the CDF initia-
tive was more ambitious. It targeted the design of a more advanced document
model which accounts for the different content facets by promoting the integra-
tion of several specialized languages developed independently, namely HTML,
SVG, SMIL and XForms. The idea in combining such formats is to answer
the growing needs and user demands for richer Web applications and content.
The idea was also to ensure that content and the skills required to produce
it remain uniform on all platforms, ubiquitous, accessible to all, and cost ef-
fective. However, unlike HTML, most of these languages are XML-based and
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each one comes with its own schema that can be regarded as functional gram-
mar that pertains to a specific area of functionality: for example, SVG enables
vector graphics; XForms addresses form input collection and submission; SMIL
describes temporal synchronization. Most existing web applications today, if
represented using CDF, would use at least a combination of two or more of
these languages. One of the major scientific challenges was to find appropri-
ate means to produce new languages, by composition of separately defined
ones. While the difficulty may seem simple since syntactic, there is no clear
method today to achieve such a goal easily. At semantic level, it is even more
challenging. Defining a uniform presentational model which accounts for such
a rich content while supporting advanced and consistent styles and exposing
appropriate APIs for content manipulating programs is today beyond reach.

From an architectural point of view, most of existing web applications can
easily fit the typical three-tier architecture (user interface, application and
storage). However, a closer look at how the different tiers are designed re-
veals serious problems and a major «impedance mismatch» problem [Lämmel
& Meijer, 2007]. First, a web page is no longer guaranteed to display or to be-
have uniformly on the already fairly large variety of platforms. The complexity
and burden to manage such complexity has been progressively transferred to
the UI designers, which are required to implement specific functions for each
one of them. Second, the application tier where content and data are pro-
cessed and stored is facing a triple collision of, hard to reconcile, data models:
documents structures (trees), programming languages (often object-oriented)
and databases (often relational). Most of the issues raised above are today
subcontracted to low-level programming such as JavaScripting or to a jungle
of frameworks. This comes at the cost of severely compromising accessibility,
maintainability, reliability, security, and performance and contributes greatly
to web fragmentation.

In summary, the web has badly accommodated an inadequate infrastruc-
ture, mainly obtained by ad hoc extensions. This reveals the weakest compo-
nent in its initial design: content. As a result, appropriate abstractions are
still needed to make it richer, more reliable, secure, efficient and flexible. In
the recent period, there are clear signs of a renewed interest and increasing
activity both in content representation as witnessed by HTML5 and in web
programming through XQuery3 [Engovatov & Robie, 2010].

1.3 Document Organization

After this introduction, this document is organized as follows:
Chapter 2, presents a brief introduction to electronic documents, the sep-

aration principle together with the main document dimensions. Then I sum-
marize the research topics I addressed and the contributions I made since I
was hired as a researcher at Inria. For each of these contributions, I give refer-
ences to relevant publications describing in more details the results and, when
applicable, I indicate the names of collaborators involved in the research work
together with those of supervised PhD students.
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In Chapter 3, I give a curriculum summarizing the theses I supervised, the
projects and contracts that funded my research work, administrative responsi-
bilities, community involvement, technology transfer, standardization and soft-
ware development. My teaching activities as well as the complete list of my
scientific publications are given in the last part of this chapter. In the re-
maining part of the document, I present in detail only a sample of my most
recent research work related to XML reasoning. This work is described through
a selection of three extended articles focusing on XML static analyses, XML
schema evolution management in programs and finally, a more advanced XML
logic featuring functions and parametric subtyping.

Chapter 4 introduces a logic for reasoning over finite trees, a sound and
complete decision procedure for checking the satisfiability of a formula of the
logic as well as its effective implementation. The logic is a variant of the µ-
calculus adapted for finite trees and equipped with backward modalities and
nominals. Specifically, the logic is an alternation-free modal µ-calculus with
converse, where formulas are cycle-free, and which is interpreted over finite
ordered trees. The time complexity of the satisfiability-testing algorithm is
optimal: 2O(n) in terms of formula size n. I present crucial implementation
techniques like the use of symbolic techniques (BDD) and heuristics used to
make the algorithm as fast as possible in practice. Our implementation is avail-
able online, and can be used to solve logical formulas of practically significant
size.

In Chapter 5, the problem of XML Schema evolution is studied. In the
ever-changing context of the web, XML schemas continuously change in or-
der to cope with the natural evolution of the entities they describe. Schema
changes have important consequences. First, existing documents valid with re-
spect to the original schema are no longer guaranteed to fulfill the constraints
described by the evolved schema. Second, the evolution also impacts programs
manipulating documents whose structure is described by the original schema. I
propose a unifying framework for determining the effects of XML Schema evo-
lution both on the validity of documents and on queries. The system is very
powerful in analyzing various scenarios in which forward/backward compatibil-
ity of schemas is broken, and in which the result of a query may not be anymore
what was expected. Specifically, the system offers a predicate language which
allows one to formulate properties related to schema evolution. The system
then relies on exact reasoning techniques introduced in the previous Chapter.
The system was tested with real-world use cases, in particular with the main
standard document formats used on the web, as defined by W3C. The system
identifies precisely compatibility relations between document formats. In case
these relations do not hold, the system can identify queries that must be re-
formulated in order to produce the expected results across successive schema
versions.

Chapter 6 considers a type algebra equipped with recursive, product, func-
tion, intersection, union, and complement types together with type variables
and implicit universal quantification over them. In particular, I focus on the
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subtyping relation recently defined by Castagna and Xu [Castagna & Xu, 2011]
over such type expressions and show how this relation can be decided in 2O(n),
answering an open question. The novelty, originality and strength of the pro-
posed solution reside in introducing a logical modeling for the semantic sub-
typing framework. The semantic subtyping is modeled in a tree logic and
satisfiability-testing algorithm is used in order to decide subtyping. I report
on practical experiments made with a full implementation of the system. This
provides a powerful polymorphic type system aiming at maintaining full static
type-safety of functional programs that manipulate trees, even with higher-
order functions, which is particularly useful in the context of XML.

Chapter 7 concludes this work and draws some perspectives for the future.



Two

Research summary

In order to define the vocabulary used in this document, I first define what I
mean by document. The word comes from the Latin documentum which has
a root from docere, which means teaching. A document is an object carrying
meaning used to transmit knowledge. A document is often not dissociated
from the media on which it is conveyed or exchanged, the medium such as
paper or a computer file, giving it a form of continuity or stability over time.
The information carried on this medium is usually encoded as a variety of
more or less complex symbols such as characters, glyphs, figures, diagrams,
tables, annotations, etc. Because of the physical connotation attached to the
medium and symbols, the amount of information contained in a document is
often considered as finite or at least clearly delimited.

Traditionally, a document is created by an author or a group of authors
and consumed by readers. This separation of roles is however less clear today.
Collaborative platforms such as wikis allow a group of users to concurrently
author and read documents collectively. More generally, the acceleration of
the virtualization in the Web era has profoundly modified not only editorial
chains but also the precise meaning attributed to the word document. In the
sequel, the term can sometimes mean a video enriched with textual annotations
and images, it can also mean real-time flow of information news, tweets, blogs,
dynamically generated documents from user profiles, etc.

The first generation of electronic document management systems were de-
signed to reproduce the classical document preparation tasks on computer sys-
tems such as copy/pasting, formatting and typesetting, correcting, annotating
and archiving. The final goal of the entire chain was often publishing on paper,
web sites or other media such as portable document format (pdf) files or CD
Rom. Today, a large amount of documents are dynamic and some have a very
short lifecycle such as tweets. In addition, some documents containing time-
based media such animated graphics, audio and video are consumed only on
electronic devices. As a result, the concept of document becomes difficult to
identify because one can no longer refer to specific characteristics such as the
basic elements that compose it, or its stability over time (its persistent nature).

Today, document addresses on the web can refer to, in an indistinguishable
manner, stable, slow evolving or dynamically generated content obtained via
complex web services invocations such as REST [Fielding, 2000]. Similarly,
documents do frequently embed programs that perform all kinds of tasks such

7



8 CHAPTER 2. RESEARCH SUMMARY

as modifying the content in a context sensitive manner depending on the user
location, language and other parameters. The boundary between content and
computations is becoming fuzzy and the various attempts to establish stan-
dardized interfaces between them (such as DOM) did so far have only little
success. Such interactions are often bypassed by low-level script manipulations
violating a key principle of electronic documents: the separation principle.

2.1 Separation principle

One of the fundamental principles of electronic documents, which emerged in
the late 60s, is the separation principle. This principle consists in describ-
ing separately the structure and content of a document (headings, chapters,
sections, paragraphs, links, etc.) from its presentation or physical form (on
the screen, on paper, and so on). This principle has been introduced to meet
several needs:

• Ensure that documents are long lasting: a more direct access to
content and document organization allows easier maintenance and con-
version against possible technology changes.

• Facilitate publishing on various media or in different forms or vari-
ants of the same document when needed.

• Facilitate exchange, update and repurposing of documents between
users and applications. Often documents are the result of successive
updates made by users and applications from different organizations.

The separation principle is put into practice by syntactic techniques, which
allows highlighting the structure of a document: it is the tagging or marking
process. Tagging, which appeared for electronic documents in the late 70s,
consists of placing marks around textual elements. It comes in three distinct
flavors:

1. The presentational mark up which corresponds to codes which produce
a visual effect on the display or paper: for example making some text
fragment render in bold, italic or in particular font, etc.

2. Procedural mark up, whose primitive elements are presentation functions.
These functions are enriched, in a procedural programming environment,
by a stack of more complex routines or macros that produce complex pre-
sentation constructions: troff, TEX, LATEX are examples of such marking.

3. Descriptive mark up describes what the marked text is meant to repre-
sent rather than how to display or process it by means of labels or tags.
Labels are text marks carrying a description, whose only reading is sup-
posed to suggest what the marked item represents: chapter, title, section,
paragraph, appendix, etc.
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Descriptive markup is used as the primary technique to ensure the sep-
aration principle. It is indeed possible to obtain formatted documents, i.e.
having a publishable form, by enriching a document marked up descriptively
via styles attachment or by conversion (transformation) to a presentational for-
mat. A typical example of such operation are CSS attachment to XML content
or the conversion of documents from the DocBook DTD [Walsh & Muellner,
1999] to XSL-FO [Berglund, 2006] for printing or to HTML for browser display.
Descriptive markup was the main motivation behind the introduction of meta-
languages such as GML [Goldfarb, 1996], SGML [ISO-SGML, 1986] and later
XML [Bray et al., 2004]. Such meta-language oriented documents formats are
often called structured documents.

One of the objectives pursued in my research work is to enforce as much
as possible the separation principle in order to make content processing more
powerful. To that end, my approach consists in designing independent yet
combinable languages to describe the document layout, its temporal behavior
or synchronization, its network of hyperlinks together with clean programming
interfaces giving well-defined access to content and its various facets. The
ultimate goal is to achieve a universal content representation that accounts for
all of its dimensions while remaining adaptive enough (by transformation) to
accommodate its various uses.

2.2 Document dimensions

Structured document models are based on an abstract representation that re-
flects the internal structure of the documents [ISO/IEC, 1997]. In general, the
document structure description is organized around four dimensions [André
et al., 1989; Layaïda, 1997], if we except interfaces with programs:

• The logical dimension allows to link "syntactically" document elements
(or objects) by means of composition or order relations. For example, a
chapter may contain sections and an author description can be character-
ized by a family name followed by one or more given names: first given,
the second given, etc. These links are inherently hierarchical and ordered.

• The spatial dimension allows to describe style information (such as
fonts and colors for text) and geometrical arrangement of elements on
screen or paper. It allows also allocating channels and rendering at-
tributes for other types of content such as audio, video and animations.

• The temporal dimension allows to describe the temporal organization
of objects in the document overs time and synchronization relations be-
tween them. Each document element is characterized by a time interval
during which it is displayed or heard.

• The hypermedia dimension (hypertext when restricted to text docu-
ments) often describes non-hierarchical and more semantic relationships
between documents or parts of documents. Such relations describe links,
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indexes, cross-references, notes, table of contents, etc. They represent
the main support for navigation within and between documents.

Each of these dimensions led to a family of dedicated languages. First, at
a higher level, SGML, XML DTD [Bray et al., 2004], XML Schemas, Schema-
tron [ISO, 2006a], RelaxNG [Clark & Murata, 2001] or NVDL [ISO, 2006b]
have been defined to serve as meta-languages intended to describe the syn-
tax for other languages (for example those describing the different dimensions
including programs such as transformations). Most of the languages used to
describe the logical dimension such as DocBook [Walsh & Muellner, 1999] or
ATA [ATA, 1997] use these XML meta-languages. Both SMIL for the tempo-
ral dimension and SVG [Schmitz & Cohen, 2001] for vector graphics use XML
also. However, several exceptions exist. Notably, CSS and DSSSL [ISO/IEC,
1996], for the spatial dimension, do have their own syntax while interestingly
XSL-FO [Berglund, 2006], serving similar purposes, does not, as does XQuery
for programs compared to XSLT. Languages such as XPath, used for queries,
XLink and XPointer (both XPath-based describe the hypermedia dimension)
are compact languages involving only short expressions and for that reason do
not use XML. Overall, syntax used in document representation and processing
is not always uniform but the XML syntax remains widely predominant. Fig-
ure 2.1 gives an overview of W3C languages and protocols. On top of the http
protocol and URIs, XML is considered as one the main metalanguages for the
other web languages.

Figure 2.1: W3C languages and protocols stack.

A traditional (static) electronic document is only equipped with the first
two dimensions. A hypermedia document (often called hypertext when content
is restricted to text) is a static document to which the hypermedia dimension
is added. When the temporal dimension is involved, it is often referred to as a
multimedia document.

Languages for expressing the formatted version of a document on the web,
which is displayed to the user, form a particularly important family of lan-
guages. They represent a presentation vocabulary common to all documents
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and applications on the web and their support is natively supported once and
for all within browsers. As a result, they play a key role and are crucial in the
web infrastructure. They represent also the visible part of the web accessible
to users and indexed by crawlers of search engines.

In general, document-processing programs are often complex and costly to
design. In order to make such programs more reusable, they are designed to
operate on document models (grammars) instead of specific instances. Typ-
ical examples are XML transformations that produce Web pages from XML
documents. When such transformations are designed to work on schemas,
all conforming instances can benefit from this processing. Similarly, if pages
graphical forms need to be updated, only the style or transformation attached
to the model is modified, and updating pages is simply obtained by reapplying
this new style/transformation to all documents. For such generic processing
to work, transformations and style sheets need to rely solely on the type in-
formation contained in the document elements. Type information is mainly
carried by tag names and the structural properties (composition and order) of
the different elements in the grammar.

In practice, there are two types of language on the web:
User-oriented Languages: Languages like HTML which are intended

for display. They are often tolerant to syntactic rules such as incorrect hi-
erarchical nesting of elements and incorrect use of opening and closing tags:
well-formedness. Most of the browsers do not require syntactic correctness
to display the document. This tolerance originates back to the first days of
the web where HTML parsers were designed to accommodate the maximum
syntax error as the web pages were produced primarily using text editors. Web
application designers continue to rely on such browser tolerance and do con-
sider that well-formedness and validity are too cumbersome. Such tolerance has
greatly contributed to slowing the adoption of XML in browsers as evidenced
by the latest HTML5 where more syntactic rigor is still questioned. The large
amount of incorrect documents, HTML-producing applications combined with
the successive HTML versions standardized during the last two decades make
HTML parsing quite challenging. The HTML parser represents one of the most
complex and sensitive pieces of software in browsers and crawlers alike on the
web.

Machine-oriented languages: These are the languages based on the
XML syntax that require that documents are be both well formed and valid.
Languages such as BPEL [Jordan & Evdemon, 2007] WSDL [Christensen et al.,
2001] or UDDI [Clement et al., 2004] for web services [Gudgin et al., 2007],
DocBook [Walsh & Muellner, 1999] documents and formats such as XSL-FO
[Berglund, 2006] being mainly manipulated by the programs, incorrect docu-
ments may result in errors serious enough to compromise the entire processing
outcome.

In the remainder, documents are considered to belong to this second cate-
gory. Syntactic correctness is important as it represents the main vehicle for
introducing generic processing but also relations in the document structures.
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At a more abstract level, documents can be considered as entities composed
of a finite set of basic pieces of information linked by relationships of different
sorts (compositional for the logical dimension, spatial, temporal and hyperme-
dia). These basic pieces are also equipped with properties such types, geometric
sizes and durations giving them an existence along each of these dimensions.
Documents are themselves organized into classes using models. Models, prop-
erties and relationships allow describing a fairly wide range of documents in
use today.

2.3 Time-based documents and runtime support

Publications: ACM Multimedia 1998 [Jourdan et al., 1998], DDEP 2000
[Villard et al., 2000].
Students: Loay Sabry-Ismaïl and Lionel Villard, PhD Thesis.

The first years of my research work were dedicated to extending Madeus 1
[Layaïda, 1997], designed during my PhD, to generic document models. The
result of this work is called Madeus 2. Madeus 2 refers to a document model
and an authoring and presentation system at the same time. The motivation
behind the design of Madeus 2 [Villard, 2002; Villard et al., 2000] was to equip
user defined XML document models with all of their dimensions and to provide
a strong integration between these dimensions. As a first step toward that
goal, was the definition of a generic presentation vocabulary for all XML classes
where the temporal dimension plays a central role. Then, the general approach
I followed consists of producing the presentation by relying on XML types to
generate, by transformations, the other dimensions.

One of the major distinctive characteristics of Madeus 2 [Villard, 2002],
compared to systems proposed in the literature, is a generalized use of con-
straints. These constraints are introduced via relations, as a means to describe
the entire presentation of a document. For example, the spatial positioning is
specified using geometric relationships such as «right of», «left of», «centered
with», etc. Temporal synchronization is also performed by means of relations
such as «during», «before», «after», «strongly synchronized», etc. These var-
ious relations are derived from schema information, conveyed by the element
names (their type). However, the coexistence of relations of different dimen-
sions yields complex structures that are often intricate and differ in shape from
the logical organization. For example, geometric box nesting used in layout
models does not necessarily match nesting used for temporal synchronization
nor schema ones. As a result, the authoring process consists of first describing
content elements independently of their use in the document. Then, they are
inserted into the presentation by reference. This promotes content reuse within
the same document without resorting to duplication. In Madeus, relations are
added either to named elements (via their identifiers) or generically when they
are derived from the type.

A downside of using constraints is the possible introduction of inconsis-
tencies. Madeus 2 implements inconsistency detection algorithms to enforce
constraint satisfiablility in documents. In addition, values for the spatial and
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temporal positioning such as durations and positions on the screen are au-
tomatically calculated by constraint solvers [Villard et al., 2000]. Relations
allow to capture more semantic presentational interdependencies within the
document and relieves authors from specifying low-level details such as values.
The work on Madeus 2 served as the basis for the SMIL language, incremental
transformations and automatic adaptations described hereafter.

2.3.1 The SMIL language

Publications: W3C recommendations SMIL 1 [Hoschka et al., 1998], SMIL
2.0 [Layaïda & Ossenbruggen, 2001; Ayars et al., 2001], SMIL 2.1 [Layaïda,
2005; Bulterman et al., 2005], SMIL DOM Note [Schmitz et al., 1999] and
CCBR 1998 [Layaïda & Karmouch, 1998].

The goal behind the design of SMIL (Synchronized Multimedia Integration
Language) was to promote a universal standard language for temporal syn-
chronization on the web. The main idea was to extend presentation languages
such as HTML with synchronization features using markup. A first version was
defined in 1998 and the language evolved in successive versions by incorporat-
ing more and more features. A typical SMIL presentation contains references
(URIs) to media objects but does not include multimedia objects themselves.
The core of the language is the temporal model but SMIL describes also other
time-dependent features such as animation and a simple form of content adap-
tation to terminals (choice of content based on language, flow, resolution, etc.).
SMIL hypermedia links are also timed and provide time sensitive access to dif-
ferent portions of a presentation. A peculiarity of the language is that it does
not describe the encoding format for media objects for transport protocols, but
focuses on the other aspects of a multimedia presentation: their synchroniza-
tion.

Synchronization in SMIL is structured by a nested set of temporal con-
tainers delimited by XML tags. Instead of using a single fixed time reference,
SMIL timing is made relative using these containers. Time containers allow
for displaying elements in parallel (<par> tag), in sequence (<seq> tag) or in
a mutually exclusive manner (<excl> tag). If the objects of a container are
parallel, specific attributes allow the description of finer synchronization con-
straints such as lip-syncing a video with an audio. In addition, the temporal
model can also describe the user interaction and combining scheduling with
interactivity. These interactions are introduced by "events" that can trigger
cascades of other events such as the start or stop of other elements in a presen-
tation. In addition, SMIL animations can combine tightly, via interpolations,
vector graphics constructs such as geometric paths with timing to yield com-
plex continuous visual effects. The language syntax was designed specifically
to integrate well with other host XML languages such as SVG and XHTML via
namespaces. Overall, proposed timing constructs and synchronization schemes
are actually much richer and can describe even more complex scenarios with
relative ease (declarative). In addition, the SMIL language has been designed
to be extensible and has several flavors [Layaïda & Ossenbruggen, 2001]: basic,
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tiny, mobile, advanced mobile and full together with a scalability framework.
A full description of the language is beyond the scope of this document and a
gentle introduction to SMIL can be found in [Bulterman, 2001].

I played a key role in SMIL. I was one of the initial founders of the technical
group and a main contributor. In particular, I contributed to the definition of
the language requirements and edited the technical specification of the recom-
mendation. I have also contributed to reference implementations, a prerequisite
for specifications to reach the recommendation status. Today, SMIL is used
in mobile telephony as the main format for MMS [3GPP, 2009] (Multimedia
Messaging) and for interactive streaming services PSS [3GPP, 2011]. It is also
used as a central component in the DAISY language, which is a standard for
people with disabilities. It is deployed in a large number of industrial appli-
cations such as advertising, high-definition camcorders, audio books, etc. At
ISO, SMIL was introduced to serve as a textual scene description for MPEG4
(XMT) [Kim et al., 2000]. Recently, other team members have also studied
and implemented SMIL Timesheets [Cazenave et al., 2011]. This proposed
standard offers a generic mechanism to add SMIL timing to XML. The work
shows explicitly how SMIL Timesheets can be combined with HTML 5 [Hick-
son, 2011], CSS [Etemad, 2010] and SVG [Dahlström et al., 2011; Schmitz &
Cohen, 2001] in a multimedia document.

2.3.2 Synchronized Presentations Scheduling

Publications: TSI 2002 [Hagimont & Layaïda, 2002], MTAP 2002 [Layaïda
et al., 2002], SMC 2001 [Layaïda et al., 2001] and [Fargier et al., 1998].
Student: Loay Sabry-Ismaïl, PhD thesis.

If we focus on the temporal dimension, a document presentation is the pro-
cess of rendering media objects over time according to the temporal scenario
specified at authoring stage. The various objects are displayed according to
values specified explicitly or calculated from temporal relations. Since content
is generally stored in a distributed environment, such as remote audio and
video servers, this operation is subject to limited and time varying resources
(bandwidth, CPU, etc.). These constraints often result in some temporal devi-
ations and uncertainty. Some objects behave in an indeterministic manner and
their durations do not necessarily match the specified values. Remote access
latencies of audio and video streams, layers of buffering, congestion are com-
mon examples of delay sources. These delays can propagate in the scenario,
via temporal relations, affecting the presentation global synchronization and
its quality.

It is then necessary to ensure that timing constraints are met as much
as possible despite these uncertainties. There are two approaches for dealing
with presentation indeterminism. In the first approach, most commonly used,
each time the presentation gets out of synchronization, some actions are taken
immediately to bring the scenario back to the predefined case. Usually this
operation is achieved at the cost of either blocking some of the objects, skipping
the content of some objects or delaying some others. In other words, the author
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specifications are violated. In the second case, one attempts first to determine if
these delays can be taken into account while maintaining or at least remaining
close to the scenario specified by the author. The later method requires some
means to adjust the scenario according to the author’s intent.

The general idea I explored belongs to the second method. It consists of tak-
ing advantage of the flexibility of temporal scenarios to build synchronization
algorithms that incur the least de-synchronizations in the scheduling opera-
tion. First, I have investigated reasoning techniques for analyzing temporal
constraints under uncertainty [Fargier et al., 1998]. Second, I proposed the
use of intelligent schedulers, which allows rendering of a multimedia presenta-
tion while handling the indeterministic behavior of objects. These schedulers
monitor the evolution of a scenario in response to different events of a pre-
sentation (start event, termination, notification of delays). The elements of a
multimedia presentation are modeled with two basic constructs: controllable
and incontrollable temporal intervals. These two constructs distinguish inter-
val durations that can be adjusted by the scheduler from those corresponding
to external uncertainties. The overall presentation scheduling is then cap-
tured by a directed acyclic graph where nodes represent instants or events and
arcs represent temporal intervals differentiated according to their type. The
flexibility of controllable objects in the graph is then used to compensate for
unpredictable delays of incontrollable objects according to the graph topol-
ogy. When a solution becomes impossible to find, the scheduler minimizes the
impact of desynchronization in space (number of violated requirements) and
time (desynchronization period). This work was conducted in collaboration
with Verimag Laboratory [Altisen et al., 1999]. Furthermore, Gregor Gößler
devoted a detailed study of this problem in his master’s thesis [Gößler, 1998]
by exploring automata-centric methods. More recent studies continue to im-
prove on these results in particular in the framework of controller synthesis
[Abdeddaim et al., 2009].

As a complement to client-side synchronization, I studied end-to-end sys-
tem methods to improve the overall quality of service of a presentation. In
particular, I explored code mobility as a means to dynamically adapt remote
content to fit client timing constraints and resources. Mobile code has been
also used to extend the functionality of a remote content server on behalf of
a scheduler. For example, such code can adjust audio and video data prior to
their transmission to the client application. A proxy-site is also an interesting
peer to achieve this task since typical mobile-oriented infrastructures are often
split in two levels of performance. The first level corresponds to fast content
and application servers interconnected with reliable backbone connections and
the second level is composed of performance varying devices with wireless con-
nectivity. The experimental results we have obtained show that it is possible to
gracefully adjust content access to client computational power and to available
bandwidth. We have also shown that such infrastructure can be used to adapt
statically encoded streaming content and personalize parameters such as size,
resolution, number of colors, etc. In addition, the code deployed remotely is
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often very negligible in size compared to video and audio payloads. The overall
interoperability can also be improved as it becomes possible to adapt on the fly
formats and protocols to client supported ones [Hagimont & Layaïda, 2002].

2.4 Document Adaptation

The means of accessing the web have greatly evolved in recent years by the in-
troduction of both various types of terminals and communication media chan-
nels. This period has witnessed an impressive growth in wireless broadband
networks deployment that became an integral part of the Internet. Both mo-
bile phone networks such as third generation networks and WiFi are now part
of the web infrastructure. At the same time, more and more devices became
connected such as cellular phones, tablets, television sets, game consoles and
all sorts of embedded devices. All are multimedia, in the sense that they are
used to access multiple media, including rich web content and continuous media
such as video and music.

This double evolution in content and access methods raises the question
of the adequacy between content and the means for accessing it. With this
variety, one needs to ensure an access in good conditions to the same multimedia
resources, from different devices, using different software, and across networks
with different characteristics. Yet the vast majority of content deployed on the
web was designed for desktop PCs, which have generally more resources than
other terminals. This is the problem of content adaptation that we address in
this work.

The pragmatic approach to adaptation consists in developing content vari-
ants targeted to particular devices, possibly in a specifically tuned format or
representation. This is typically the approach used by many content publish-
ers: a website for each terminal. It is also similar to choices made in the past
by telecom operators such as WAP [OMA, 2001a]: the WML format [OMA,
2001b], optimized for small screen terminals with low bandwidth connectivity.
But these approaches contradict the web philosophy of building a universal in-
formation space accessible to all. The risk they introduce is web fragmentation
that would lead to a web for mobile phones containing only the information
produced for these devices, a web for TVs, a web for PDAs, etc. This brings
strong user restrictions for each type of device: they have access to only part
of the information. This also leads to high costs for content producers seeking
a wide audience: they must produce several times the same information in
different formats for different types of devices.

In practice, designers produce a very limited set of such adapted content:
usually, one for desktop PCs and a second one for mobile terminals. The rea-
son behind this is that they are more comfortable with specific designs tied to
particular screen sizes and terminal characteristics. When they create content,
they do generally engage in a cyclic process where they specify and check the
result directly on a specific terminal. With such a process, it becomes hard to
address correctly a richer set of terminals. Furthermore, multimedia documents
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formats are now defined as progressively richer sets of sub-languages with in-
creasing features. This will likely make any adaptive design more complex if
not impossible without automatic processing.

The work I have carried out consists in developing automatic adaptation
methods for multimedia content together with supporting architectural frame-
works. More precisely, I proposed two adaptation approaches; one based on
structural transformations operating on a more advanced web architecture, the
other based on presentation "semantics".

2.4.1 Adaptation by structural transformations

Publications: TSI 2005 [Layaïda et al., 2005], MDM 2004 [Lemlouma &
Layaïda, 2004], SAINT 2003 [Lemlouma & Layaïda, 2003a], ELPUB 2003 [Lem-
louma & Layaïda, 2003b], MMM 2001 [Lemlouma & Layaïda, 2001].
Student: Tayeb Lemlouma, PhD thesis.

The first approach we considered promotes the use of as "universal" as
possible formats. In this approach, each document is authored only once and
stored in a single form. When a client accesses the document, an adapted
version that takes into account the specific client "context" is generated, by
transformation, from this single source. The context includes the hardware
and software characteristics of the client device, its network capabilities, but
also user abilities/disabilities and preferences.

First, we have defined a general architecture of automatic content adap-
tation (see Figure 2.2) called NAC. Then, we studied how to modularize web
languages to create progressively richer sets of sub-languages with increasing
features. At a syntactic level, modularization consists in describing languages in
a more flexible way by combining XML elements and attributes into functional
groups. Each group is used to describe a particular aspect of the document,
such as layout, synchronization, transitions, animations, etc. A group can in
turn be organized as a set of modules that correspond to functionality levels
from the most basic to the more advanced. This creates dependencies between
modules.

A language for a given device or conforming to a certain profile is described
as a consistent collection of modules. This collection defines an XML lan-
guage corresponding to the target of the adaptation transformation. When
a web document is accessed, a negotiation phase between the client and the
server is engaged to identify this target language. Since documents are also en-
coded using a particular profile (called document profile), adapting falls back
to transforming such content to the negotiated one. Transformations have been
modularized in NAC so that they are capable of transcoding between any pair
of SMIL language profiles.

To facilitate this negotiation phase, a general schema, called UPS (Universal
Profiling Schema) was defined for describing machine capabilities (terminals,
servers or proxies), users preferences together with network characteristics.
UPS is built on top of CC/PP [Klyne et al., 2004] and uses RDF [Lassila
& Swick, 1999]. This schema also covers content item descriptions such as
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Figure 2.2: Automatic Content Adaptation Architecture

basic media elements (audio, video, etc.) and allows for specifying equivalence
relations between objects. Equivalence relations include also media conversion
operations, such as image transcoding between different formats and modalities
such as text to speech. The results of this work have been contributed to
CC/PP [Klyne et al., 2004] and Device Independent Authoring [Smith, 2010]
W3C working groups.

Today, web content servers offer very limited support for negotiated content.
The HTTP protocol supports only some basic negotiation based on language,
media types and character encoding [Holtman & Mutz, 1998]. But usually
content structure is served as is to all clients. With increasing diversity on
the web, we foresee that the current infrastructure will evolve toward more
content-centered adaptation. The transformations explored in this work are
merely syntactic and sometimes lead to insufficient quality adaptations. To
enhance this quality, I explored a more “semantic” approach.

2.4.2 Semantic adaptation

Publications: MTAP 2011 [Laborie et al., 2011], IJCAI 2003 [Euzenat et al.,
2003].
Student: Sébastien Laborie PhD thesis, in collaboration with Jérôme Euzenat.

In the second line of work on adaptation, I proposed a semantic framework
in which a multimedia document is interpreted as a set of potential presenta-
tions [Euzenat et al., 2003]. The framework defines adaptation as the search
for a document compliant with the device constraints, which is as close as
possible to the presentations specified originally by an author. It does it in
a very general way, independent from the concrete multimedia document lan-
guages and independent from the main multimedia document dimensions, i.e.,
temporal, spatial and hypermedia. In [Laborie et al., 2011], we show how this
approach can be used for adapting the structure of multimedia documents in
concrete multimedia description languages without having to anticipate the
type of constraints imposed by the devices.
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For that purpose, we define a relational structure that captures the spatio-
temporal and hypermedia dimensions of multimedia documents. We have de-
veloped an adaptation algorithm, which transforms in a minimal way such a
structure according to device constraints.

Multimedia
document

specification

Adapted
document

specification abstract
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Initial
document
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concrete
description
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Adaptation
(profile)
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Figure 2.3: Multimedia document adaptation strategy: a document in a con-
crete language is first (α̂) expressed as an abstract specification on which adap-
tation is performed; then, the result is transformed back in the initial format
(α̌).

In order to capture document dependencies semantically, we rely on an
abstract relation graph. From this initial relation graph and a given profile, we
compute adapted relation graph solutions, which are, close to the initial one
and such that all of their relations satisfy the profile. In particular, we consider
all possible relation graphs that satisfy a given profile and for each of them
we select those that are at minimal distance from the initial relation graph.
The distance between two relation graphs depends on a proximity measure
between relations beared by the same arc in both graphs. We consider that
the proximity between two relations relies on the conceptual neighborhood
between these relations and is measured by the shortest path distance in the
corresponding neighborhood graph.

The resulting semantic adaption is a three-step process: (1) abstracting the
original content format, followed by (2) adapting that abstract representation
to the device profile, and (3) producing an adapted version in the same format
as the input document (see Figure 2.3). This approach has many advantages.
First, it allows for defining a device independent format in the form of some
abstract relations between multimedia document objects; as new format ap-
pears, it can be used by only defining rules for extracting the abstract format
from the concrete one (α̂) and vice-versa (α̌).

2.5 Transformation-based authoring

Publications: WWW 2002 [Villard & Layaïda, 2002], DDEP 2000 [Villard
et al., 2000].
Student: Lionel Villard, PhD thesis.
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One of the main obstacles in using structured multimedia document models
is the lack of adequate XML authoring methods and tools. It is necessary to
have the ability to produce content easily but also to design transformations
capable of generating its displayed form, i.e. the presentation. These transfor-
mations are crucial since they are also used on content servers to produce such
presentations at access time. However, XML transformations are very often
associated with a “batch” type of design methods, execution and testing. As a
result, the transformation creation process is a tedious one in which programers
update, enrich, then empirically verify for correctness by applying some test
content. This kind of design method has several disadvantages:

• The heaviness of the design process: any change in the transformation
leads to a new cycle,

• The difficulty of identifying the sources of errors and to assess the effect
of a change on the transformation result,

• The cost of document presentation production at authoring: a small
modification of the source content requires reapplying the whole trans-
formation.

A typical operation that does not accommodate these drawbacks is inter-
active transformation-based content authoring. One of the key aspects for the
success of such frameworks is related to performance. In order to be usable,
they must be fast enough and context driven to meet the needs of WYSIWG
editing. In particular, it is critical that modifications of the source document
or the transformations are reflected promptly to the user. Therefore, mak-
ing transformation programs incremental becomes a major issue. Incremental
changes allow controlling the scope of the document changes so that they do not
require a global re-evaluation of the entire transformation, a costly operation.

In order to design such incremental methods, we have studied how to turn
the popular XSLT transformation language to become incremental. The gen-
eral idea consists of examining transformations in order to isolate, for each
modification type (content and transformation instructions), the document
portions that need to be re-evaluated. More precisely, we perform some static
analysis of XPath expressions, corresponding to patterns in XSLT, to identify
these portions. This analysis determines accurately the list of instructions to
be re-evaluated (called re-evaluation rules in our work). When a source node
matches the path expression, then the list of associated instructions becomes
likely to be re-executed. This analysis is facilitated by the pure nature of the
XSLT language, which is side effect free. We built an incremental XSLT eval-
uator, which was used as a core engine for DocBook [Walsh & Muellner, 1999]
and ATA [ATA, 1997] authoring tools. For example, the ATA tool was used
to showcase the editing of aircraft technical documentation (Lionel Villard’s
thesis was carried out in partnership with Airbus [Villard, 2002]).

The lessons learned from this work show that obtaining efficient incremental
transformations depends on how transformations are written. For example,
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limiting recursion and wildcard steps in path expressions can greatly enhance
performance. Another optimization is also related to path expressions. In
order to identify the list of instructions to re-evaluate, a pattern matching is
performed on the entire re-evaluation rule set. To avoid such an overhead,
one needs to establish statically the containment relations between all paths
contained in these rules. A pattern p1 is contained in another pattern p2 when
all nodes that match pattern p2 match pattern p1. So, in order to find the list
of instructions to re-evaluate, a successful pattern matching against p1 makes
pattern matching against p2 useless.

In general terms, more precise path expressions analysis will lead to more
accurate selections, and subsequently diminish useless re-evaluations and en-
hance performance. For that purpose, a more systematic and finer grained
analysis of path expressions combined with schemas becomes necessary.

2.6 Types and paths analysis

Publications: PLDI 2007 [Genevès et al., 2007a], TOIS 2006 [Genevès &
Layaïda, 2006b], DKE 2007 [Genevès & Layaïda, 2007], IJCAI 2011 [Bárcenas
et al., 2011], WWW 2012 [Genevès et al., 2012], Extreme Markup 2003 [Vion-
Dury & Layaïda, 2003].
Students: Pierre Genevès and Everardo Bárcenas Patiño, PhD thesis.

In the previous sections, we have emphasized the central role played by
transformations in XML processing. They are widely used to produce presen-
tations in content servers and to achieve all sorts of tasks. XML applications
most commonly use schemas for performing validation (also called dynamic
type-checking). Validation consists in using a schema validator that analyzes
a particular XML document in order to ensure that the document actually
complies with the schema. However, XML documents are often generated
dynamically. Typically, programs that manipulate XML first access data (pos-
sibly conforming to an available schema) using XPath expressions, and then
combine the results and output XML documents expected to conform to a
given schema. In addition, in the current web architectures increasingly domi-
nated by web services, content often undergoes several transformations before
producing a result. In addition, XML applications do frequently involve large
volumes of content. For example, in technical documentation, a single main-
tenance manual for the A320 Airbus studied in [Villard, 2002] weights several
hundred of megabytes. Consequently, it becomes crucial to analyze the XML
transformations in order to make them safe and efficient.

One of the key safety properties is to guarantee that transformations pro-
duce valid documents against their schema [Akpotsui, 1993; Akpotsui & Quint,
1992]. This is called static type-checking and consists in ensuring at compile-
time that invalid documents can never arise as outputs of XML processing
code. A static type checker analyzes a program, possibly in conjunction with
schemas that describe its input and output (depending whether such schemas
are available). This problem is known to be difficult. The static analysis
of the complete XPath language alone is undecidable. The variety and wide
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use of XPath in XML applications nevertheless raise some important research
questions: what is the largest XPath fragment with decidable static analysis?
Which fragments can be effectively decided in practice? How to determine if
an XPath expression is satisfiable on any of the XML trees defined by a given
schema? Does the result of an XPath expression over a valid document al-
ways conform to another schema? Is there an algorithm able to answer these
questions in an efficient way so that it can be used in practice?

One source of difficulty in such questions is that it involves a possibly infinite
quantification over a set of trees. XML types denote such sets. Furthermore,
a variety of factors contribute to its complexity such as the operators allowed
in XPath queries and the combination of them (recursion, bidirectional nav-
igation in trees, qualifiers, etc). On the other hand, schema languages have
been extensively studied and are now well understood as subsets of regular
tree languages [Murata et al., 2005]. However, although many attempts have
been made for better understanding static type-checking techniques, in partic-
ular through the design of domain specific languages [Hosoya & Pierce, 2003;
Benzaken et al., 2003], dealing with XPath effectively remained unsuccessful.

We started from the idea that two issues need to be answered in order
to solve such decision problems in XML. First, it was essential to identify
an appropriate formal framework with sufficient expressive power to capture
both regular tree languages and navigation introduced by XPath. Then we
had to find appropriate techniques to solve the satisfiability problem in that
framework. satisfiability allows determining whether a given property holds or
not. Then, it would be interesting to obtain an XML document that exemplifies
it. Such properties include the XPath containment, emptiness, equivalence and
coverage of XPath queries (in the presence or absence of regular types of trees).

A first important result was achieved through the design of a finite tree logic
adapted to XML, and its decision procedure. The logic is expressive enough
to capture regular tree types along with multi-directional navigation in finite
trees. It is decidable in single exponential time (specifically in 2O(n) steps where
n is the size of the input formula defined as its number of atomic propositions
and eventualities). This improves the best-known computational complexity
for finite trees. Another contribution is that we showed how to linearly com-
pile queries and regular tree types (including DTDs and XML Schemas) in
the logic. This offers a uniform notation for both constructs and facilitates
reasoning on them. The logic enjoys the nice property of being closed under
boolean operations which allows for reducing many problems to satisfiability.
It supports the full navigational features of XPath and covers the largest frag-
ment considered in the literature [Marx, 2004]. From the algorithmic point of
view, the decision procedure proved entirely feasible using symbolic techniques
borrowed from verification: BDD (Binary Decision Diagrams).

2.7 Managing evolution

Publications: ICFP 2009 [Genevès et al., 2009], TOIT 2011 [Genevès et al.,
2011], WWW 2010 [Layaïda & Genevès, 2010], ICSE 2011 [Genevès & Layaïda,
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2011].
Collaboration: Vincent Quint and Pierre Genevès.

In this work, we consider the problem of XML Schema evolution. In the
ever-changing context of the web, XML schemas continuously change in order
to cope with the natural evolution of entities they describe. Schema changes
have important consequences. First, existing documents valid with respect
to the original schema are no longer guaranteed to fulfill the constraints de-
scribed by the evolved schema. Second, the evolution also impacts programs
manipulating documents whose structure is described by the original schema.

We propose a unifying framework for determining the effects of XML Schema
evolution both on the validity of documents and on queries. The system is very
powerful in analyzing various scenarios in which forward/backward compati-
bility of schemas is broken, and in which the result of a query may not be
anymore what was expected. Specifically, the system offers a predicate lan-
guage, which allows one to formulate properties related to schema evolution
such as compatibility. The system then relies on exact reasoning techniques to
perform a fine-grained analysis of programs and schema changes. This yields
either a formal proof of the property or a counter-example that can be used
for debugging purposes. The system has been fully implemented and tested
with real-world use cases, in particular with the main standard document for-
mats used on the web, as defined by W3C. The system identifies precisely
compatibility relations between document formats. In case these relations do
not hold, the system can identify queries that must be reformulated in order
to produce the expected results across successive schema versions. The long-
term goal of this work is to find methods and techniques to reformulate XML
transformations automatically when schemas evolve.

2.8 Functions, polymorphism and subtyping

Publications: ICFP 2011 [Gesbert et al., 2011].
Collaboration: Pierre Genevès and Nils Gesbert (Postdoc).

The growing popularity of programming languages such as XQuery leads
to new needs. The first of these needs is the ability to support modularity in
larger applications. As applications become more and more distributed, a more
adequate support for web services interactions is also necessary. These new
needs require polymorphic type systems for XML programming languages. For
example, in XQuery [Boag et al., 2006] which is a typed functional language,
the support for higher-order functions, currently absent from the language,
appears as a requirement in the forthcoming third version [Engovatov & Robie,
2010]. Higher-order functions and parametric polymorphism are two of the
most powerful constructs in functional programming languages such as ML,
Caml or Haskell. In these languages, functions are considered as values like
any other values such as integers, lists, etc. In addition, they can be passed as
parameters or returned as results.

In XML, it is attractive to reach such powerful type systems where types
can denote not only data types such as schemas but also computations. To
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that end, function types need first to be supported in the manner of [Benzaken
et al., 2003; Castagna & Xu, 2011]. In addition, if functions can be made
parametric using type variables (parametric types), they become more generic
since they can operate on a large number of specific types. Such functions are
also important to promote code reuse.

We have studied parametric polymorphism for type systems aiming at main-
taining full static type-safety of functional programs that manipulate linked
structures such as trees, potentially with higher-order functions. We consider
a type algebra equipped with recursive, product, function (arrow), intersection,
union, and complement types. We first have shown how the subtyping relation
between such type expressions can be decided through a logical approach.

Our main result solves an open problem: we prove the decidability of the
subtyping relation when this type algebra is extended with type variables. This
provides a powerful polymorphic type system (using ML-style prenex poly-
morphism, where variables are implicitly universally quantified at top level),
for which defining the subtyping relation is not obvious, as pointed out in
[Castagna & Xu, 2011], and for which no candidate definition of subtyping
had been proved decidable before. The novelty, originality and strength of our
solution reside in introducing a logical modeling for the semantic subtyping
framework. Specifically, we model semantic subtyping in the finite tree logic
presented earlier and rely on a slightly modified satisfiability solver in order
to decide subtyping in practice. We obtain an EXPTIME (2O(n)) complexity
bound as well as an efficient implementation in practice.

2.9 Research Summary

The guiding motivation of my work is to promote declarative and typed rep-
resentation of content in documents and web applications. The overall goal is
to ease the design of web applications and make them richer, safer and more
efficient. During the last few years, I focused first on enriching content rep-
resentation to support a wider and more integrated set of features: temporal
synchronization, spatial positioning, logical organization and hypermedia links.
The central idea of my work consists in defining the various document dimen-
sions or facets with well-defined languages. Then the idea is to make them
combinable, by composition, within general document models such as Madeus
or more generally XML-defined languages. When possible, my work promotes
standard and universal languages. My work on temporal synchronization re-
sulted in a W3C recommended language called SMIL. This language has been
used in mobile infrastructure for Multimedia Messaging and integrated in other
languages such as SVG.

By making the different content facets more explicit, declarative languages
make possible advanced content processing such as intelligent scheduling, in-
cremental manipulations, automatic adaptation and personalization, verifica-
tion of content manipulations in programs, code optimizations, etc. Further-
more, dedicated languages such as XQuery are becoming more mature and offer
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better-suited programming frameworks. They put back regular tree types to-
gether with path expressions as first-class constructions in the language and the
corresponding type system. They also offer a programming model, which can
potentially be deployed at the three tiers of web applications (browser, mid-
dleware and storage). Recent studies have shown substantial gains in terms
of code readability and size [Bamford et al., 2009]. In addition, there is now
a real potential to build even more advanced tools based on these languages.
XQuery, for example, is equipped with a type system [Draper et al., 2010]. It
becomes possible to use static analysis techniques to enforce type safety and
optimize programs automatically.

Content processing that I studied in priority was related to typical content
manipulation tasks such as authoring, transformations, presentation rendering
and scheduling, etc. My work on incremental evaluation and adaptation shows
that it is possible to obtain advanced features by concentrating on analysis:

• content analyses to equip documents with automatic adaptation capabil-
ities

• transformations analyses to provide advanced editing tools based on in-
cremental evaluation or static type verification.

One of the major challenges for XML program analysis is to model appro-
priately types and queries, as they are the main constructs to model contents
and operations on them. Theses two constructs are also fundamental theoreti-
cally. XPath regular path queries, when slightly extended [Marx, 2004], exactly
correspond to first order logic on finite tree structures with two free variables.
On the other hand, XML schemas correspond to monadic second order logic
(MSO) on theses structures [Rabin, 1969].

We have shown that it is possible to obtain a logic covering these two pow-
erful constructs uniformly while remaining effective in practice. The difficulty
that we overcame is both theoretical and practical. We had to first estab-
lish a precise complexity bound for reasoning on such constructs. Then we
had to find appropriate techniques to solve them. In particular, the symbolic
techniques that we have introduced proved effective to achieve this dual ob-
jective. More recently, we were also able to extend the logic to support more
directly XML computation constructs such as functions, higher-order function
and polymorphism. As a result, we have been able to extend the analysis to
richer type algebra. This highlights subtle interconnections between logic on
one side, programming languages on the other side, which can be combined in
advanced tools such as compilers and other analyzers. This opens the door for
more ambitious and unified end-to-end programming models covering content
description, processing and distribution. At a higher level of abstraction, appli-
cations can be seen as a set of distributed functions connected by web services.
They can be analyzed for non-functional aspects such as performance by code
and data distribution, security and privacy enforcement while enhancing their
scalability on increasingly popular infrastructures such as the cloud.
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Curriculum

3.1 Supervised PhD students

For each student, I describe here the thesis research subject, the defense date,
the current student position and, when applicable, co-supervisors names. The
present list corresponds only to students to whom I served as main supervi-
sor and whose research subjects where those I was in charge of as principal
investigator.

Loay Sabry-Ismaïl: Distributed execution schema for multimedia docu-
ments. PhD thesis. Université Joseph Fourier. 25 January 1999. Co-supervised
with Vincent Quint.
Assistant Professor at Qatar University, Doha, Qatar.

Lionel Villard: Document models for authoring and adapting multimedia
presentations. PhD thesis. Institut National Polytechnique de Grenoble. 21
March 2002. Co-supervised with Cécile Roisin.
Permanent researcher at IBM Watson Research Center, New-York, United-
States.

Tayeb Lemlouma: Multimedia Services Negotiation and Adaptation Ar-
chitecture in Heterogeneous Environments. PhD thesis. Institut National Poly-
technique de Grenoble. 9 June 2004. Co-supervised with Cécile Roisin.
Assistant Professor at IUT of Lannion (Institut Universitaire de Technologie-
Université de Rennes I), France.

Pierre Genevès: Logics for XML. PhD thesis. Institut National Poly-
technique de Grenoble. 4 December 2006. Co-supervised with Vincent Quint.
Winner of the EADS prize in Information Sciences, awarded by the European
Aeronautic Defense and Space Company (EADS), 2007. Best thesis award
of Institut National Polytechnique de Grenoble, France, 2008. Finalist Cor
Baayen PhD award, ERCIM (European Research Consortium for Informatics
and Mathematics), 2008.
Research scientist at CNRS, France.

Sébastien Laborie: Semantic Adaptation of Multimedia Documents. PhD
thesis. Université Joseph Fourier. 28 May 2008. Co-supervised with Jérôme
Euzenat.
Assistant Professor at IUT de Bayonne et du Pays Basque. Université de Pau
et des Pays de l’Adour, France.

Everardo Bárcenas Patiño: Automated Reasoning on Trees with Car-
dinality Contraints. PhD thesis. Institut National Polytechnique de Grenoble.

27
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14 February 2011. Co-supervised with Vincent Quint.
Postdoc at Rice University, United States.

Melisachew Wudage Chekol: Regular Graph Queries Reasoning. PhD
student. Institut National Polytechnique de Grenoble. Third year. 2012. Co-
supervised with Jérôme Euzenat.
Postdocs:

Nils Gesbert, Tayeb Lemlouma.
Engineers:

Romain Deltour, Julien Guyard, Jan Mikáč, Alain Uginet, Yves Carbon-
neaux, Daniel Weck, Peter Hewat.
Masters students:

Loay Sabry-Ismaïl, Maximilien Laforge, Laurent Garçon, Stéphane Martin,
Sébastien Chassande-Barrioz, Jean-Charles San Severino, Daniel Weck, Peter
Hewat, Sébastien Laborie, Victor Diaz, Nebil Ben Mabrouk, Imène Issaoui.

3.2 Projects and Funding

ANR project Typex (2012-2015):
Partners: Preuves, Programmes et Systèmes (PPS) Laboratory, Université

Denis Diderot. Laboratoire de Recherche en Informatique (LRI), Université
Paris-Sud.

The goal of this project is to produce a new generation of XML program-
ming languages stemming from the synergy of integrating different approaches
into a unique framework. Languages whose constructions are inspired by the
latest results in the programming languages research; with precise and polymor-
phic type systems that merge PL typing techniques with logical-solver-based
type inference; with efficient implementations issued by latest researches on
tree automata and formally certified by latest theorem prover technologies;
with optimizations directly issued from their types systems and the logical for-
malizations and whose efficiency will be formally guaranteed; with the capacity
to specify and formally verify invariants, business rules, and data integrity, lan-
guages with a direct and immediate impact on standardization processes.

ANR project Codex (2009-2012):
Partners: Gemo EPI, Inria Saclay, Mostrare EPI, Inria Lille, LRI Lab-

oratory, Université de Paris Sud, PPS Laboratory, Université Denis Diderot,
Laboratoire Informatique (LI), Université François Rabelais de Tours, Innovi-
max Company.

A large family of standards have been or are currently developed by in-
ternational standardization bodies such as the World Wide Web Consortium
(W3C), ISO etc., for tasks as varied as querying, formatting, encoding scien-
tific content, modeling interactions between distributed parties or coordinating
such interactions, validating data according to given types, updating, scripting
etc. A unique dimension of the XML technology boom is the availability of
numerous free tools, enlarging the pool of potential developers, as it has never
been before, and fostering experimentation and innovation. Finally, another
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unique dimension is the rich interaction between academic research and indus-
trial players, taking place within standardization bodies, in international tech-
nical meetings, and more generally in the worldwide electronic arena of those
interested in XML technologies. The research work proposed in this project
pushed the frontier of XML technology innovation in three interconnected di-
rections. First, we studied languages, algorithms, and developed prototypes
for efficient and expressive XML processing, in particular advancing towards
massively distributed XML repositories. Second, we considered models for de-
scribing, controlling, and reacting to the dynamic behavior of XML corporas
and XML schemas with time. Third, we proposed theories, models and proto-
types for composing XML programs for richer interactions, and XML schemas
into rich, expressive, yet formally grounded type descriptions.

RIAM project SATIN (2003-2005): Satin (Synchronized applications
for interactive digital television) is a joint project with the httv company,
funded by the French ministry of industry through the RIAM network. Most
interactive television services broadcasted today are completely independent
from the audio-visual streams, as if the two worlds of television and interactive
applications were only sharing the same broadcast channel. The main goal of
Satin was to introduce some synchronization between the two kinds of con-
tents. To achieve this goal, a comprehensive environment was designed and
implemented for creating, producing, broadcasting and presenting interactive
digital television applications that are synchronized with audio-visual contents.
This project was based on Web standards, especially formats created by W3C
(XML, SMIL, XSLT, etc.), and the digital television standards from the MPEG
group. My main contributions concerned formats (based on XML and SMIL),
the editing environment, and the simulation component, which allows authors
to immediately get feedback on user experience.

Alcatel-Bell (2001-2005): This project was funded by Alcatel-Bell, a large
consumer electronics maker company. The collaboration subject was related
to the creation and deployment of interactive content on heterogeneous de-
vices such as advanced Internet connected phones, WAP-based mobiles, kiosks,
etc. We explored device independent content representation and context-aware
adaptation methods for these devices (Device Independent Authoring). We
have also explored how to use automatic negotiation and adaptation methods
to make content fit the best device capabilities and user preferences. Alca-
tel specific vocabularies were designed for the company’s product lines and an
internal content representation called MHML was used as a target language
for adaptation. Adaptation process was also used to generate content in other
formats such as XHTML, WML and VoiceXML.

Microsoft Research (2002-2004): This project proposal received a Mi-
crosoft Research Innovation Excellence Awards for Embedded Systems. The
proposed work was related to dynamic adaptation of embedded multimedia
applications using Microsoft’s Windows CE .Net. Multimedia applications are
increasingly deployed and run on mobile terminals, characterized by limited ca-
pacities in terms of network bandwidth, CPU, memory or display size. There-
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fore, managing Quality of Service for multimedia applications executed on mo-
bile terminals was the main subject of investigation. We have experimented
component-based dynamic adaptations on proxy nodes for adapting multime-
dia streams according to the requirements of the terminals. A perspective to
this work is to enable such adaptations on the terminal, which would allow
new QoS management strategies. We used Windows CE .Net, compact .Net
and DirectShow technologies to implement dynamic adaptation of embedded
multimedia applications.

Airbus (1999-2002): This was a joint project with Airbus France (Doc-
ument Engineering Associated Laboratory). The project was related to the
design of generic multimedia document models for aircraft maintenance and
the associated tool chains. The goal was to study the feasibility of extending
document models such as ATA to multimedia. The second goal was presenta-
tion generation using transformations applied to the Airbus A320 maintenance
manuals. One of the key aspects was to adapt the timing model in order to
coordinate on the field maintenance tasks with document presentation.

Innovatel-Cegetel (2000-2002): This project, funded by Innovatel-Cegetel,
aimed at designing a signaling and multimedia messaging system for embedded
devices equipped with GPRS. The signaling part was one of the first embedded
implementations of the SIP (Session Initiation Protocol) protocol under devel-
opment at IETF. The explored idea was to enhance messaging by multimedia
content via MMS (Multimedia Messaging Service) on the first generation of
Smart phones. We have developed an experimental SMIL-Basic client capable
of handling MMS but also streaming content compliant with the PSS draft
(Packet Switched Streaming Service).

Alcatel (1998-2001): This project was born out of an informal collabora-
tion with Alcatel’s Unité Information et Réseau of Corporate Research. The
contract was related to the specification, the design and validation of a mul-
timedia language called MHML, Alcatel proprietary language for embedded
devices. This work was based on a toolbox built on the Madeus 2 system. The
validation part relied on constraint solvers contained in the toolbox, which were
adapted to the MHML event-based timing model.

Dassault Aviation (1998-2000): This project, from the Génie program of
the French ministry of research, was related to interactive structured technical
documentation. The project involved the Opéra team and Dassault-Aviation.
My participation to the program was on the following lines: the study of trans-
formation techniques for presentation generation, the extension of structured
content models to timing and synchronization and the design of prototypes for
compositional multimedia presentations.

3.3 Administrative responsibilities

Member of Inria commission for scientific employment: 2007-to date.
The Inria Grenoble Rhône-Alpes commission is in charge of selecting
postdoc proposals and candidates, as well as assistant professors and
professors delegations and secondments.
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LIG laboratory council member (substitute): 2007-2010.
I served as a member of LIG Laboratory Council as a substitute. I was
appointed by Brigitte Plateau, head of the LIG Laboratory (Laboratoire
d’Informatique de Grenoble).

External project evaluator: 2003-2009.
I am a regular evaluator for several funding organizations such as ACI
Masse de Données, RNTL, RNRT, ANR, Qatar National Research Foun-
dation (QNRF), Programmes de coopération scientifique internationale
argentina- Inria/CNRS (SECYT), Inria associated teams.

Tenure position referee: 2008.
Referee for tenure position for Computer Science Department at the
Worcester Polytechnic Institute, MA, United-States, 2008.

Member of Inria GPCCMI committee: 2004-2007.
GPCCMI stands for «Groupe de Pilotage du Comité de Coordination
des Moyens Informatiques». The role of the committee was the man-
agement at the national level of budget, support activities organization,
project planning, technical assessment of IT services. The committee
included five members: Michel Cosnard (research centers directors rep-
resentative), Christine d’Argouges (head of human resources) and Eric
Gautrin (Head of IT Infrastructure) and myself. I have also participated
in a followup committee COSS (Comité d’orientations stratégiques et de
suivi) whose role was the specification of «schéma d’orientation du sys-
tème d’information (SOSI)». I was appointed by Gilles Kahn, Chairman
and CEO of Inria. 2004-2006.

Inria development commission member: 2002-2005.
The goal of this commission was to propose new development standards
and organization for software activities at Inria. We produced collectively
a software development best practices charter document entitled: «Un
processus de développement logiciel pour Inria». I was appointed by
Francois Rouaix, Inria Development Director.

Membre of UJF hiring committee: 2002-2004.
Member of hiring commission (commission de spécialistes) of assistant
professors at Université Joseph Fourier, Grenoble.

Inria ISDN representative: 2001-2004.
ISDN (Institut des Sciences du Document Numérique de la région Rhône-
Alpes) was a virtual laboratory funded by CNRS in the Rhône-Alpes
region coordinating research activities on document engineering.

Scientific manager of Calliope: 2000-2003.
Scientific Manager of the Digital Library Calliope at Inria (developed
in collaboration with IMAG and XRCE Laboratories). Calliope was an
on-demand scanning system of scientific articles, summary management
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servicing Inria researchers. I was appointed to this position by Jean-
Pierre Verjus, Inria Grenoble Rhône-Alpes Director.

External scientific evaluator at XRCE: 2002.
External Scientific Evaluator of Document Models and Transformation
Technologies Group DMTT at Xerox Research Center Europe, XRCE,
Grenoble, 2002.

Engineers hiring committee member: 2000-2002.
Member of Inria Grenoble Rhône-Alpes committe for the employment
of Software Development Engineers (Ingénieurs Associés). Appointed by
Bernard Espiau, Inria Grenoble Rhône-Alpes Director.

Ideas Laboratory Inria representative: 2000-2001.
I worked one day a week, for a period of one year and a half, at CEA center
in Ideas Laboratory (Pôle Minalogic). The project I was involved in was
related to the design and implementation of multimedia infrastructure
for mobile phones and handheld devices equipped with Leti/CEA sensor
prototypes. Appointed by Bernard Espiau, Inria Grenoble Rhône-Alpes
Director.

Thesis referee: Examiner
Cyril Concolato. Multimedia scenes description: representations and
optimizations. PhD thesis in computer science and networking, Départe-
ment Traitement du Signal et Images, Télécom ParisTech, Paris. 2007.

Kimiaei Asadi Mariam. Multimedia content adaptation with MPEG-
21: resource conversion and semantic scene adaptation. PhD thesis in
computer science and networking, ENST-COMELEC Communication et
Electronique, ENST. 2005.

Walid Mahdi. Semantic macro segmentation of audiovisual documents
using spatio-temporal indices. PhD in computer science, École Centrale
de Lyon, 18 Mai 2001.

3.4 Conference organization and program committees

SMIL’2003: European Conference on Synchronized Multimedia Integration
Language. I served as the conference organizer and program committee
chairman, February 2003, CNAM, Paris.

PDMS’2001: Authoring and broadcasting of synchronized content over the
internet (Production et Diffusion sur l’internet de documents Multimé-
dias Synchronisés). Four days summer school. I initiated and organized
this summer school and proposed the final program. This school attracted
90 participants: 35 industry, 45 academia and10 invited experts, August,
2001, Autrans, Isère.
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W3C WG Meeting’2000: Synchronized Multimedia Working Group Meet-
ing, World Wide Web Consortium, 34 participants, Montbonnot, France,
June 2000.

Program committees: I served as a program committee member of the fol-
lowing conferences: Medi 2012, ACM DocEng 2012, SVG Open 2010,
EGC 2008, IWH2XP 2004 (Workshop of WWW), ACM DocEng 2004,
KDMCD 2002, CIDE 2002, MediaNet 2002, OMTT 2003, MMM 2001,
ACM Multimedia 2000, WWW 2000, WWW 1999, ACM Multimedia
1999.

Reviews service : I am regular reviewer for the following journals: TOIS
(ACM Transactions on Information Systems), TOIT (ACM Transactions
on Internet Technology), TKDE (IEEE Transactions on Knowledge and
Data Engineering), IEEE Pervasive Computing, IPL (Information Pro-
cessing Letters), IEEE Multimedia Magazine, IEEE Multimedia Journal,
ACMMultimedia Systems Journal, Computer Journal of he British Com-
puter Society.

3.5 Technology transfer, standards and software

Technology transfer : Science and technology advisor of Raise Partner S.A.,
a start-up company created at Inria Grenoble Rhône-Alpes research cen-
ter. I was co-founder of the company and contributed to the design of a
high performance web infrastructure for risk management. I worked one
day a week for five years (under 25.2 valorization status), from 2005 to
2010.

W3C Standards : I have been a member of the W3C SYMM (Synchronized
Multimedia Working Group) from 1996 until 2008. I contributed to the
initial founding work of the group, to requirement specifications and was
both an author and editor of SMIL 1.0, 2.0 et 2.1 W3C recommendations.
I have also contributed to other groups such Device Independence Au-
thoring (DIA) and Composite Capabilities/Preference Profiles (CC/PP).

Software development

XML reasoning solver: A static analyzer for a finite tree logic adapted to
XML/XPath. This system allows solving problems such as XPath equiv-
alence, containment and overlap under type constraints (DTDs, XML
Schemas, Relax NG). The analyzer is built on top of a finite tree logic
solver for a new modal logic equipped with recursion and backward axes.
The solver is very fast in practice and uses symbolic techniques (Binary
Decision Diagrams). The solver has been recently extended to support
functions, parametric function and polymorphic subtyping. The soft-
ware is developed in java in collaboration with Pierre Genevès and Nils
Gesbert.
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NAC infrastructure: NAC (Negotiation and Adaptation Core) is a core in-
frastructure for adaptation and negotiation of multimedia services for
heterogeneous environments. The objective of the implemented core is
to allow clients (PDA, WAP phones, laptops, etc.) to use multimedia
content, which is adapted automatically to their preferences and capaci-
ties. Client descriptions (i.e. profiles) are declared in CC/PP structures
stored in an XML format and can be modified at anytime. NAC in-
cludes two kinds of adaptations: structural adaptation such as adapting
XHTML to WML, SMIL and HTML filtering, and media adaptation
such as image compression, text to SMS, remote text to speech. The
proposed core doesn’t make any assumption on the existing platform and
browsers. Players must only point the network connection to the server
or the proxy that uses the Adaptation and Negotiation Module (ANM).
Services are then adapted automatically. The software was developed in
java in collaboration with Tayeb Lemlouma.

MIP Phone/PocketSMIL: Is an embedded software for IP telephony based
on the Session Initiation Protocol (SIP) for signaling, on real-time stream-
ing protocol (RTSP) for session description and on the real-time transport
protocol (RTP) for synchronized audio and video payloads access. This
software has been also extended to demonstrate multimedia-messaging
(MMS) capabilities using SMIL. The software was written in C++ on
Windows CE and was transferred to Cegetel-Innovatel Company, SFR’s
research and development division. The software was developed in java
in collaboration with Daniel Hagimont.

IncXSLT engine: IncXSLT is an incremental transformation processor for
XSLT. This software was developed within the Xerces engine of the
Apache foundation. A series of authoring tools for several domain-specific
DTDs such as ATA and DocBook were developed with incXSLT as a ker-
nel component. The software was developed in java in collaboration with
Lionel Villard.

Madeus 1&2: Madeus is an authoring tool integrating authoring and presen-
tation of multimedia documents. It provides document authors with an
efficient and flexible way to specify a multimedia document while retain-
ing established declarative languages for temporal synchronization and
spatial positioning. The design principles of Madeus rely on constraints.
They are used as a document specification language and provide the re-
quired authoring abstractions. First, at the interface level, constraints
are used to combine intuitive graphical representations of temporal sce-
narios, like timelines, with the ease of modification by automatic updates
through constraint propagation. The tool maintains document consis-
tency in order to prevent authors from introducing errors when writing
complex presentations. Constraints are based on a powerful representa-
tion of scenarios as graphs, which are also used for scheduling and time-
based navigation. The software was developed first in C, then ported to
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java. The tool development was in collaboration with Loay Sabry-Ismaïl
for version 1, and Lionel Villard, Laurent Tardif and Tien Tran-Thuong,
for version 2.

Thot: Thot is a generic system for the development of document-centered ap-
plications based on the concept of structured active documents. It can be
used for building interactive system as well as automatic processors. It’s
the result of many years of research at Inria, CNRS and the University
of Grenoble (UJF), with a number of academic and industrial collabora-
tions. The Grif commercial products, for instance, are a result of these
collaborations. The Amaya tool is also built on top the Thot library for
web content editing. My role was the design of a multimedia manipula-
tion library within Thot for supporting multimedia content in structured
and web documents.

3.6 Teaching

During my research career, I have regularly taught courses at different lev-
els from undergraduate to graduate in different Universities and Engineering
schools. In additional to traditional computer science courses such as operat-
ing systems, networking and databases, I have introduced and put in place and
enhanced over time new teachings closer to my research activities. In particu-
lar, I have introduced master courses on multimedia programming and XML,
both from a programming language and database perspectives. My activities
covered the entire teaching spectrum from elaborating the courses content, to
practical lab manipulations, and exams. These courses have been taught at
different locations such as ENST Bretagne, Chambery, Ottawa or Lausanne.

Course Level Volume
Network protocols, routing and flow
control.

ENSERG-ENSIMAG 137 h

Web Standards: XML, XSL and
SMIL

ENST Bretagne (3ème année),
Université d’Ottawa, Canada

52 h

Algorithms, data structures and
functional programming

Deug A1, A2, Miass (Université
de Savoie)

75 h

Integrated applications and
databases

Deug SHS 2ème Année (Univer-
sité Pierre Mendès-France)

60 h

Operating systems principles and
architectures

ENSIMAG, ESIGEC, Maîtrise
(Université Joseph Fourier)

60 h

Hardware architecture of computer
systems

Licence (Université de Savoie) 10 h

Electronic multimedia documents,
SGML and structured authoring

DESS IDC Université Pierre
Mendès-France, EPFL (Lau-
sanne)

30 h

Semi-structured data and systems ENSIMAG (3ème année) 54
Structured multimedia systems DEA ISC, MW UJF-INPG 30 h
Multimedia systems principles on
the web

Master M2R SIGAL Grenoble 18 h
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Four

A Logic for Finite Trees

Abstract

We present a sound and complete satisfiability-testing algorithm and
its effective implementation for an alternation-free modal µ-calculus with
converse, where formulas are cycle-free, and which is interpreted over fi-
nite ordered trees. The time complexity of the satisfiability-testing algo-
rithm is 2O(n) in terms of formula size n. The algorithm is implemented
using symbolic techniques (BDD). We present crucial implementation
techniques and heuristics that we used to make the algorithm as fast as
possible in practice. Our implementation is available online, and can be
used to solve logical formulas of practically significant size.

4.1 Introduction

This chapter introduces a logic for reasoning over finite trees, a sound and
complete decision procedure for checking the satisfiability of a formula of the
logic as well as its effective implementation. The logic is a variant of µ-calculus
adapted for finite trees and equipped with backward modalities and nominals.
Specifically, the logic is an alternation-free modal µ-calculus with converse,
where formulas are cycle-free, and which is interpreted over finite ordered trees.
The time complexity of the satisfiability-testing algorithm is optimal: 2O(n) in
terms of formula size n. We present crucial implementation techniques like
the use of symbolic techniques (BDD) and heuristics that we used to make
the algorithm as fast as possible in practice. Our implementation is available
online, and can be used to solve logical formulas of practically significant size.

4.1.1 Related Work and Motivations

The propositional µ-calculus was introduced as a logic for describing properties
of graphs with labeled edges. It was invented by Dana Scott and Jaco de
Bakker, and further developed by Dexter Kozen into the version mostly used
nowadays [Kozen, 1983]. Several modal logics can be encoded in the µ-calculus,
including linear temporal logic, computational tree logic [Clarke & Emerson,
1981], CTL*, and propositional dynamic logic [Fischer & Ladner, 1979]. In
contrast with the importance and large applicative spectrum of the µ-calculus
satisfiability problem, only very few actual effective implementations have been
reported in the literature. The work found in [Tanabe et al., 2005] points
this out neatly: “the satisfiability testing problem for the µ-calculus is known
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to be decidable for a variety of extensions and subfragments, but effective
implementation has not necessarily been developed for all such logics”.

We review below the works that are most closely related in terms of sup-
ported logical features (e.g., backward modalities, nominals), models of the
logic (trees), or from the point-of-view of the approach oriented toward an ef-
fective implementation (effective algorithmics). For instance, the work found
in [Pan et al., 2006] pursues a goal similar to ours for the modal logic K. The
approach yields effective BDD-based decision procedures for K, usable in prac-
tice. However, the expressive power of the logic is incomparable to the one of
the µ-calculus since K lacks recursion (no fixpoint) and backward modalities.

Backward Modalities
In applications, we often need to follow edges not only in the forward direction
but also in the backward direction. Therefore a research effort has been focusing
on temporal logics that can handle both directions of edges as modalities in
order to reason about both the “past” and the “future”. Although converse
modalities do not provide additional expressive power, they provide an advance
in terms of succinctness as they offer a notation for otherwise exponentially
larger formulas. Succinctness is a crucial matter when considering combined
complexity of the decision procedure. The satisfiability problem for the general
µ-calculus with converse modalities (MC) is known to be EXPTIME-complete
[Vardi, 1998]. The decision procedure is constructed by converting the problem
into the emptiness problem of the language recognized by a certain alternating
tree automaton on infinite trees. In order to solve the emptiness problem,
complex operations are required including determinization of parity automata
[Safra, 1988]. No implementation is reported.

The best known complexity for deciding MC is obtained through reduction
to the emptiness problem of alternating tree automata on infinite trees, which
can be done in 2O(n4·log n), where n is the size of the formula [Grädel et al.,
2002]. Again, no actual implementation has been reported.

A notable exception is the work found in [Tanabe et al., 2005, 2008], that
provides an implementation of a decision procedure for the alternation-free
fragment of the µ-calculus with converse (AFMC), whose time complexity is
2O(n·log n), noticing in passing that the decision procedure for the AFMC is less
complex than the one for the MC, as expected. The alternation-free restriction
makes much sense since the expressive power of AFMC exactly corresponds to
the one of weak monadic-second order logic [Kupferman & Vardi, 1999].

Trees
In applications of the satisfiability-checking problem, relevant models often
consist only of the set of finite trees (see, e.g., [Zee et al., 2008]). Therefore, even
if the AFMC lacks the finite model property (which is lost due to the addition
of converse modalities), it makes sense to search for finite trees satisfying a
given logical formula.

In this line of research, the work of [Afanasiev et al., 2005] presents a special
version of PDL for reasoning about finite sibling-ordered trees. However, the
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precise expressive power of the logic is still an open problem, although the logic
is subsumed by the AFMC.

In [Tanabe et al., 2005, 2008], models of the logic are Kripke structures
(infinite graphs). Owing to an additional logical formula that encodes König’s
lemma, models can be restricted to be binary-branching finite trees. However,
the authors notice that the performance of the decision procedure may not
be very attractive in this setting [Tanabe et al., 2005]. The authors do not
comment on the reasons, but our research gave us insights. Specifically, a first
source of inefficiency of this approach comes from the fact that the decision
procedure requires expensive cycle-detection for rejecting infinite derivation
paths for least fixpoint formulas. A second and even more fundamental source
of inefficiency is that the decision procedure of [Tanabe et al., 2005] must
compute a greatest fixpoint: it starts from all possible (graph) nodes and
progressively removes all inconsistent nodes until a fixpoint is reached. Finally,
if the fixpoint contains a satisfying (tree) structure then the formula is judged as
satisfiable. As a consequence, and unlike the algorithm presented in this article,
(1) the algorithm must always explore all nodes, and (2) it cannot terminate
until full completion of the fixpoint computation (otherwise inconsistencies may
remain). The present work shows how this can be avoided for finite trees. As
a consequence, the resulting performance of the decision procedure proposed
in this article, whose time complexity is 2O(n), is much more attractive.

In an earlier work, a logic for finite trees was presented [Tozawa, 2004], but
the logic is not closed under negation.

The connection with Automata

In our extended abstract [Genevès et al., 2007b], we showed the decidability
in time 2O(n) of the cycle-free fragment of the AFMC for finite trees. Since
then, alternative and closely related approaches based on tree automata have
been proposed with similar or higher complexity, but without implementation
[Calvanese et al., 2008; Libkin & Sirangelo, 2008; Calvanese et al., 2009; Libkin
& Sirangelo, 2010; Calvanese et al., 2010].

Automata-based approaches based on alternating two-way tree automata
(2ATA) for infinite trees have resisted implementation, as noticed in [Calvanese
et al., 2009], mainly because of complex determinization and parity games (see
[Calvanese et al., 2008, 2009], in which it is also mentioned that it is practically
infeasible to apply the symbolic approach in the the infinite tree setting).

A more appropriate automata version for finite trees is called weak alter-
nating two-way tree automata (2WATA) which are simpler when compared to
infinite tree automata-theoretic techniques. However, they require a conversion
to non-deterministic finite tree automata (NTFA) for testing non-emptiness.
The translation given in [Calvanese et al., 2010] yields an automaton with
2O(n2) states in terms of the number n of states of the original 2WATA.

In fact, neither of the papers [Libkin & Sirangelo, 2008; Calvanese et al.,
2008, 2009; Libkin & Sirangelo, 2010; Calvanese et al., 2010] provide an imple-
mentation. [Calvanese et al., 2008] even remarks that a naive implementation
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of their technique would result in a blow-up in complexity, requiring the use of
more elaborate techniques very similar to what we have done.

In [Libkin & Sirangelo, 2010], the authors acknowledge the fact that they
provide an alternative version of our pioneering work described in our extended
abstract [Genevès et al., 2007b]. 2WATA are interesting to shorten some proofs
but they do not simplify the implementation.

The present work can be regarded as the pioneering and only efficient im-
plementation of the logic or, alternatively, of the 2WATA framework.

For the sake of simplicity and uniformity between the satisfiability algo-
rithm, the proofs, and the implementation techniques, in the whole present
chapter we focus on the native modal logic in the finite case. This also em-
phasizes the fact that bottom-up construction of the finite tree model and
cycle-freeness come naturally and show exactly why the whole approach is ef-
ficient.

4.1.2 Contributions

Our main result is a satisfiability-testing algorithm for a logic for finite trees
whose time complexity is optimal: 2O(n) in terms of the formula size n, together
with its effective implementation through BDD techniques.

The essence of our results lives in a sub-logic of the AFMC, with a syntactic
restrictions called cycle-freeness on formulas, and whose models are finite trees.
Such restrictions are interesting from a theoretical point of view: we prove that,
under these conditions, the least and greatest fixpoint operators collapse in a
single fixpoint operator. This makes our logic closed under negation, and also
provide many opportunities to derive an efficient implementation.

The decision procedure is implemented and an online demonstration is pub-
licly available, as detailed in §4.5.5.

An extended abstract of this work was presented at the ACM Conference
on Programming Language Design and Implementation (PLDI), 2007 [Genevès
et al., 2007b]. The new material included in this chapter comprises the follow-
ing. The notion of cycle-freeness, a fundamental aspect of our logic, and its
formalization are much more detailed. Proofs have been added. A detailed
run of the algorithm is described. Implementation techniques and the opti-
mizations used to obtain a satisfiability-testing algorithm that performs well in
practice are also discussed in more details. More applications have also been
added.

4.1.3 Outline

The chapter is organized as follows. We first present our data model, trees with
focus, in §4.2. We then introduce the logic in §4.3. Our satisfiability algorithm
is introduced and proven correct in §4.4. Crucial implementation techniques
are discussed in §4.5. Applications such as Regular Language Equivalence and
XPath typing are reviewed in §4.6 together with augmented XQuery IDEs 4.7
and dead-code analysis for XQuery 4.8. We conclude in §4.9.
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4.2 Trees with Focus

In order to represent trees that are easy to navigate, we use focused trees,
inspired by Huet’s Zipper data structure [Huet, 1997]. Focused trees not only
describe a tree but also its context: its previous siblings and its parent, includ-
ing its parent context recursively. Exploring such a structure has the advantage
to preserve all information, which is quite useful when considering forward and
backward navigation.

Formally, we assume an alphabet Σ of labels, ranged over by σ. The syntax
of our data model is as follows.

t ::= σ[tl] tree
tl ::= list of trees

ε empty list
| t :: tl cons cell

c ::= context
(tl,Top, tl) root of the tree

| (tl, c[σ], tl) context node
f ::= (t, c) focused tree

A focused tree (t, c) is a pair consisting of a tree t and its context c. The
context (tl, c[σ], tl) comprises three components: a list of trees at the left of the
current tree in reverse order (the first element of the list is the tree immediately
to the left of the current tree), the context above the tree, and a list of trees
at the right of the current tree. The context above the tree may be Top if the
current tree is at the root, otherwise it is of the form c[σ] where σ is the label
of the enclosing element and c is the context in which the enclosing element
occurs.

In order to deal with decision problems such as containment of queries (i.e.
binary relations over tree nodes), we need to represent in a focused tree the
place where the evaluation of a query was started. To this end, we use a start
mark, often simply called “mark” in the following. We thus consider focused
trees where a single tree or a single context node is marked, as in σs[tl] or
(tl, c[σs], tl). When the presence of the mark is unknown, we write it as σ◦[tl].
We write F for the set of finite focused trees containing a single mark. The
name of a focused tree is defined as nm(σ◦[tl], c) = σ.

We now describe how to navigate focused trees, in binary style. There are
four directions, or modalities, that can be followed: for a focused tree f , f 〈1〉
changes the focus to the first child of the current tree, f 〈2〉 changes the focus
to the next sibling of the current tree, f

〈
1
〉
changes the focus to the parent of

the tree if the current tree is a leftmost sibling, and f
〈
2
〉
changes the focus to

the previous sibling.
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Lµ 3 ϕ,ψ ::= formula
> true

| p | ¬p atomic proposition (negated)
| s | ¬s start proposition (negated)
| X variable
| ϕ ∨ ψ disjunction
| ϕ ∧ ψ conjunction
| 〈a〉ϕ | ¬ 〈a〉> existential (negated)
| µXi.ϕi in ψ least n-ary fixpoint
| νXi.ϕi in ψ greatest n-ary fixpoint

Figure 4.1: Logic formulas

Formally, we have:

(σ◦[t :: tl], c) 〈1〉 def= (t, (ε, c[σ◦], tl))

(t, (tl l, c[σ◦], t′ :: tlr)) 〈2〉
def= (t′, (t :: tl l, c[σ◦], tlr))

(t, (ε, c[σ◦], tl))
〈
1
〉 def= (σ◦[t :: tl], c)

(t′, (t :: tl l, c[σ◦], tlr))
〈
2
〉 def= (t, (tl l, c[σ◦], t′ :: tlr))

When the focused tree does not have the required shape, these operations
are not defined.

4.3 The Logic

We introduce the logic as a sub-logic of the alternation free modal µ-calculus
with converse. We also introduce a restriction on the formulas we consider
and give an interpretation of formulas as sets of finite focused trees. We finally
show that this restriction and this interpretation make the greatest and smallest
fixpoint collapse, yielding a logic that is closed under negation.

4.3.1 Formulas

In the following, we use an overline bar to denote tuples. For instance, we write
Xi = ϕi for (X1 = ϕ1;X2 = ϕ2; . . . ;Xn = ϕn). Tuples of variables, such as
Xi, are often identified to sets.

In the following definitions, a ∈ {1, 2, 1, 2} are programs. Atomic proposi-
tions p correspond to labels from Σ. We also assume that a = a. Formulas
defined in Figure 4.1 include the truth predicate, atomic propositions (denot-
ing the name of the tree in focus), start propositions (denoting the presence
of the start mark), disjunction and conjunction of formulas, formulas under
an existential (denoting the existence of a subtree satisfying the sub-formula),
and least and greatest n-ary fixpoints. We chose to include a n-ary version of
fixpoints because regular types are often defined as a set of mutually recursive
definitions, making their translation in our logic more direct and succinct. In
the following we write “µX.ϕ” for “µX.ϕ in ϕ”.
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J>KV
def= F JpKV

def= {f | nm(f) = p}

JXKV
def= V (X) J¬pKV

def= {f | nm(f) 6= p}

Jϕ ∨ ψKV
def= JϕKV ∪ JψKV JsKV

def=
{
f | f = (σs[tl], c)

}
Jϕ ∧ ψKV

def= JϕKV ∩ JψKV J¬sKV
def= {f | f = (σ[tl], c)}

J〈a〉ϕKV
def= {f 〈a〉 | f ∈ JϕKV ∧ f 〈a〉 defined}

J¬ 〈a〉>KV
def= {f | f 〈a〉 undefined}

JµXi.ϕi in ψKV
def= let Ti =

(⋂{
Ti ⊆ F | JϕiKV [Ti/Xi] ⊆ Ti

})
i

in JψK
V [Ti/Xi]

JνXi.ϕi in ψKV
def= let Ti =

(⋃{
Ti ⊆ F | Ti ⊆ JϕiKV [Ti/Xi]

})
i

in JψK
V [Ti/Xi]

Figure 4.2: Interpretation of formulas

4.3.2 Model

We define in Figure 4.2 an interpretation of our formulas as subsets of F , the
set of finite focused trees with a single start mark. The interpretation of the
n-ary fixpoints first compute the smallest or largest interpretation for each ϕi,
bind the resulting sets Ti to the variables Xi, then returns the interpretation
of ψ.

To illustrate the interpretation of fixpoints, consider the two following for-
mulas ϕ = µX. 〈1〉X∨

〈
1
〉
X and ψ = νX. 〈1〉X∨

〈
1
〉
X, which respectively ex-

pand to µX. 〈1〉X ∨
〈
1
〉
X in 〈1〉X ∨

〈
1
〉
X and νX. 〈1〉X ∨

〈
1
〉
X in 〈1〉X ∨〈

1
〉
X.
The interpretation of ϕ is straightforward: associating the empty set to X,

we have

J〈1〉X ∨
〈
1
〉
XK[∅/X] ⊆ ∅

thus JϕK = ∅. Intuitively, there is no base case in the formula, hence the
smallest fixpoint is the empty one.

The interpretation of ψ is more complex: it is the set of every focused tree
with at least two nodes, one being the parent of the other. We now show that
the interpretation of ψ includes the focused tree f1 = (a[b[ε]], T ), where T is
the top-level context (ε,Top, ε). We do not specify the position of the mark as
it is not used in the query: it could be anywhere. Let f2 = f1 〈1〉, that is the
tree (b[ε], (ε, T [a], ε)). We thus have f2

〈
1
〉

= f1. Finally, let V be the mapping
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[{f1; f2}/X]. We compute as follow:

J〈1〉X ∨
〈
1
〉
XKV

= J〈1〉XKV ∪ J
〈
1
〉
XKV

=
{
f
〈
1
〉
| f ∈ JXKV ∧ f

〈
1
〉
defined

}
∪ {f 〈1〉 | f ∈ JXKV ∧ f 〈1〉 defined}

= {f1} ∪ {f2}

thus V (X) ⊆ J〈1〉X ∨
〈
1
〉
XKV , hence by definition of the largest fixpoint, we

have f1 ∈ JψK∅.
We now state a very simple property of fixpoints: the interpretation of a

formula is equal to the interpretation of any of its unfoldings.

Definition 4.3.1 (Unfolding of a formula). The unfolding of a formula ϕ is
the set unf (ϕ) inductively defined as

unf (ϕ) def= {ϕ} for ϕ = >, p,¬p,s,¬s, X,¬ 〈a〉>

unf (ϕ ∨ ψ) def= {ϕ′ ∨ ψ′ | ϕ′ ∈ unf (ϕ), ψ′ ∈ unf (ψ)}

unf (ϕ ∧ ψ) def= {ϕ′ ∧ ψ′ | ϕ′ ∈ unf (ϕ), ψ′ ∈ unf (ψ)}

unf (〈a〉ϕ) def= {〈a〉ϕ′ | ϕ′ ∈ unf (ϕ)}

unf (µXi.ϕi in ψ) def= unf (ψ{µXi.ϕi in ϕi/Xi}) ∪ {µXi.ϕi in ψ}

unf (νXi.ϕi in ψ) def= unf (ψ{νXi.ϕi in ϕi/Xi}) ∪ {νXi.ϕi in ψ}

Proposition 4.3.2. Let ϕ be a formula, for every unfolding ψ ∈ unf (ϕ), we
have JϕKV = JψKV .

4.3.3 Cycle-Free Formulas

As shown in §4.3.2, the smallest and greatest fixpoints do not coincide. We
now introduce a restriction that will make them collapse, requiring formulas
to be cycle-free. To define this notion, we first need to introduce the set of
paths of a formula. Given a formula ϕ, the set of its paths P(ϕ) is the set
of sequential chains of modalities contained in the formula. Writing ε for the
empty path, we have the following.

P(〈a〉ϕ) = {〈a〉 p | p ∈ P(ϕ)}
P(ϕ ∨ ψ) = P(ϕ) ∪ P(ψ)
P(ϕ ∧ ψ) = P(ϕ) ∪ P(ψ)
P(ϕ) = ε otherwise

Note that this notion is very syntactic, and unfolding a fixpoint in a formula
may change its set of paths.

A modality cycle in a path is a sub-sequence of the form 〈a〉 〈a〉. We new
define cycle-free formulas as formulas for which there is a bound in the number
of modality cycles of their paths, independent on the unfolding.
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ϕ = >, p,¬p,s, or ¬s
∆ ‖ Γ `RI ϕ

∆ ‖ Γ `RI ϕ ∆ ‖ Γ `RI ψ
∆ ‖ Γ `RI ϕ ∨ ψ

∆ ‖ Γ `RI ϕ ∆ ‖ Γ `RI ψ
∆ ‖ Γ `RI ϕ ∧ ψ ∆ ‖ Γ `RI ¬ 〈a〉>

∆ ‖ (ΓC 〈a〉) `RI ϕ
∆ ‖ Γ `RI 〈a〉ϕ

∀Xj ∈ Xi.
(

(∆ +Xi : ϕi) ‖ (Γ +Xi : _) `R\Xi
I\Xi

ϕj

)
∆ ‖ Γ `R\Xi

I∪Xi
ψ

∆ ‖ Γ `RI µXi.ϕi in ψ

∀Xj ∈ Xi.
(

(∆ +Xi : ϕi) ‖ (Γ +Xi : _) `R\Xi
I\Xi

ϕj

)
∆ ‖ Γ `R\Xi

I∪Xi
ψ

∆ ‖ Γ `RI νXi.ϕi in ψ

NoRec
X ∈ R Γ(X) = 〈a〉

∆ ‖ Γ `RI X

Rec
X 6∈ R ∆ ‖ Γ `R∪{X}I ∆(X)

∆ ‖ Γ `RI X

Ign
X ∈ I

∆ ‖ Γ `RI X

Figure 4.3: Deciding Cycle-free Formulas

Definition 4.3.3 (Cycle-free formula). A formula ϕ is cycle-free iff there exists
an integer n such that for any unfolding ψ ∈ unf (ϕ), for any path p ∈ P(ψ),
the number of modality cycles in p is strictly smaller than n.

For instance, the formula “µX = 〈1〉 (> ∨
〈
1
〉
X) in X” is not cycle free:

for any integer n, there is an unfolding of the formula such that a path with n
modality cycles exists. Similarly, the formulas ϕ and ψ in §4.3.2 are also not
cycle free. On the other hand, “µX = 〈1〉 (X ∨ Y ), Y =

〈
1
〉

(Y ∨ >) in X”
formula is cycle free: there is at most one modality cycle for each path, inde-
pendently of the number of unfoldings of its fixpoint.

Cycle-free formulas have a very interesting property, which we now describe.
To test whether a tree satisfies a formula, one may define a straightforward
inductive relation between trees and formulas that only holds when the root of
the tree satisfies the formula, unfolding fixpoints if necessary. Given a tree, if a
formula ϕ is cycle free, then every node of the tree will be tested a finite number
of time against any given subformula of ϕ. The intuition behind this property,
which holds a central role in the proof of lemma 4.3.6, is the following. If a
tree node is tested an infinite number of times against a subformula, then there
must be a cycle in the navigation in the tree, corresponding to some modalities
occurring in the subformula, between one occurrence of the test and the next
one. As we consider trees, the cycle implies there is a modality cycle in the
formula (as unbalanced cycles of the form 〈1〉 〈2〉

〈
1
〉 〈

2
〉
cannot occur). Hence

the number of modality cycles in any expansion of ϕ is unbounded, thus the
formula is not cycle free.

Although it provides the correct intuition, Definition 4.3.3 is not very prac-
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tical. We give in Figure 4.3 a decision procedure, in the form of an inductive
relation, that ensures that a formula is cycle free. In the judgement ∆ ‖ Γ `RI ϕ
of Figure 4.3, ∆ is an environment binding some recursion variables to their
formulas, Γ binds variables to modalities, R is a set of variables that have
already been expanded (see below), and I is a set of variables already checked.

The environment Γ used to derive the judgement consists of bindings from
variables (from enclosing fixpoint operators) to modalities. A modality may be
_ (no information is known about the variable), 〈a〉 (the last modality taken
〈a〉 was consistent), or ⊥ (a cycle has been detected). A formula is not cycle
free if an occurrence of a variable under a fixpoint operator is either not under
a modality (in this case Γ(X) = _), or is under a cycle (Γ(X) = ⊥). Cycle
detection uses an auxiliary operator to detect modality cycles:

ΓC 〈a〉 def= {X : (Γ(X)C 〈a〉)}

where
·C · 〈1〉 〈2〉

〈
1
〉 〈

2
〉

_ 〈1〉 〈2〉
〈
1
〉 〈

2
〉

〈1〉 〈1〉 〈2〉 ⊥
〈
2
〉

〈2〉 〈1〉 〈2〉
〈
1
〉
⊥〈

1
〉
⊥ 〈2〉

〈
1
〉 〈

2
〉〈

2
〉
〈1〉 ⊥

〈
1
〉 〈

2
〉

⊥ ⊥ ⊥ ⊥ ⊥

To check that mutually recursive formulas are cycle-free, we proceed the
following way. When a mutually recursive formula is encountered, for instance
µXi.ϕi in ψ, we check every recursive binding. Because of mutual recursion,
we cannot check formulas independently and we need to expand a variable the
first time it is encountered (rule Rec). However there is no need to expand
it a second time (rule NoRec). When checking ψ, as the formulas bound to
the enclosing recursion have been checked to be cycle free, there is no need to
further check these variables (rule Ign). To account for shadowing of variables,
we make sure that newly bound recursion variables are removed from I and R
when checking a recursion. One may easily prove that if ∆ ‖ Γ `RI ϕ holds,
then I ∩R = ∅.

This relation detects when a formula is not cycle free because, in this case,
there must be a recursive binding of Xi to ϕi such that ϕi{ϕi/Xi}{ϕj/Xj} ex-
hibits a modality cycle above Xi, where the Xj are other recursion variables
already defined (either in the recursion defining Xi or in an enclosing recursion
definition). Cycles are thus detected unfolding every recursive definition once
in every formula.

Note that we may wrongly detect a formula as having a cycle. For instance,
the formula µX. 〈1〉

〈
1
〉
X in > is said to include a cycle even though the vari-

able on which the cycle occurs never needs to be expanded. We have found
that in practice this approximation is precise enough to check formulas entered
by hand. We state that our approximation is correct.
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Lemma 4.3.4. Let ϕ be a formula. If ∅ ‖ ∅ `∅∅ ϕ, then ϕ is cycle-free.

Proof: [Sketch] We proceed by contraposition: we assume ϕ is not cycle-free,
and show that we cannot derive ∅ ‖ ∅ `∅∅ ϕ. As ϕ is not cycle-free, it is because
a modality and its inverse are under a recursion (either directly, or through a
conjunction or disjunction), or because a recursion variable is not guarded by
a modality. Focusing on this fixpoint, we can show that after expanding the
variable (rule Rec), when we encounter the variable again (rule NoRec), we
then either have Γ(X) = ⊥ or Γ(X) = _, thus the derivation is not possible.
�

We are now ready to show a first result: in the finite focused-tree interpre-
tation, the least and greatest fixpoints coincide for cycle-free formulas. To this
end, we prove a stronger result that states that a given focused tree is in the
interpretation of a cycle-free formula ϕ if it is in the interpretation of a finite
unfolding of the formula unff (ϕ). The definition of finite unfolding below is very
similar to Definition 4.3.1. The only difference is in the handling of a fixpoint:
the fixpoint itself is not included in the set of unfoldings. As a consequence,
formulas in unff (ϕ) do not contain any fixpoint operator and correspond to the
finite unfoldings of ϕ followed by the erasure of its fixpoints. Note that if there
is no base case to a fixpoint of a formula, as in µX. 〈1〉

〈
1
〉
X in X, then the

finite unfolding of this formula will be the empty set.

Definition 4.3.5 (Finite unfolding). The finite unfolding of a formula ϕ is
the smallest set unff (ϕ) inductively defined as

unff (ϕ) def= {ϕ} for ϕ = >, p,¬p,s,¬s, X,¬ 〈a〉>

unff (ϕ ∨ ψ) def= {ϕ′ ∨ ψ′ | ϕ′ ∈ unff (ϕ), ψ′ ∈ unff (ψ)}

unff (ϕ ∧ ψ) def= {ϕ′ ∧ ψ′ | ϕ′ ∈ unff (ϕ), ψ′ ∈ unff (ψ)}

unff (〈a〉ϕ) def= {〈a〉ϕ′ | ϕ′ ∈ unff (ϕ)}

unff (µXi.ϕi in ψ) def= unff (ψ{µXi.ϕi in ϕi/Xi})

unff (νXi.ϕi in ψ) def= unff (ψ{νXi.ϕi in ϕi/Xi})

Lemma 4.3.6. Let ϕ a cycle-free formula, then we have the following.

JϕKV =
⋃

ψ∈unff (ϕ)

JψKV

The intuition why this lemma holds is the following. Given a tree satisfying
ϕ, we deduce from the hypothesis that ϕ is cycle free the fact that every node
of the tree will be tested a finite number of times against every subformula of ϕ.
As the tree and the number of subformulas are finite, the satisfaction derivation
is finite hence only a finite number of unfolding is necessary to prove that the
tree satisfies the formula. As least and greatest fixpoints coincide when only
a finite number of unfolding is required, this is sufficient to show that they
collapse. Note that this would not hold if infinite trees were allowed: the
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formula µX. 〈1〉X is cycle free, but its interpretation is empty, whereas the
interpretation of νX. 〈1〉X includes every tree with an infinite branch of 〈1〉
children.

of Lemma 4.3.6. Let f in JϕKV , we show that it is in JψKV for some finite
unfolding ψ ∈ unff (ϕ). As recursive definitions are never negated, the converse
is immediate.

As hinted above, the result is a consequence of the fact that a sub-formula is
never confronted twice to the same node of f as there is no cycle in the formula.
It is thus possible to annotate occurrences of ν and µ with the direction the
formula is exploring for each variable, as in Figure 4.3, and prove the result by
induction on the size of f in this direction.

First, we unfold every formula once, to guarantee that the sub-formulas of
the shape µXi.ϕi in ψ are in fact of the shape µXi.ϕi in ϕj .

Then, we associate each recursion variable in every µ and ν of the initial
formula with a unique identifier. (From now on, we do not distinguish between
smallest and largest fixed points, as we handle them identically.) For every
recursive formula µXi.ϕi in ψ, we annotate every modality 〈a〉 ξ in every ϕj
where Xi is free in ξ with the variable Xi. Note that modalities may be
annotated with more than one variable.

We now detail how recursion identifiers and annotations are updated upon
unfolding and encountering modalities.

• Upon unfolding a recursive formula for the first time, the recursion iden-
tifiers are recorded and associated with the _ direction. Moreover, they
are also associated with an integer, the size of the tree f .

• Upon encountering a modality 〈a〉 annotated with identifiers, the direc-
tion of the identifiers is updated with the modality according to the ·C〈a〉
operator. As the formula is cycle-free, the resulting direction cannot be
⊥.

• Upon unfolding a recursive formula µXi.ϕi in ϕj whose identifiers have
been already recorded, the integer associated to Xj is updated to be the
longest path, defined below, of the current focused tree in Xj ’s direction.
As the formula is cycle-free, a direction must have been recorded for every
identifier.

We now define the longest path of a focused tree in a given direction. Given
a tree f and a direction 〈a〉, we define the longest path as the longest cycle-free
path of f compatible with the direction, i.e. that does not start in the 〈a〉
direction. By definition of the trees, if 〈a〉 is 〈1〉 or 〈2〉, then the path is only
made of 〈1〉 and 〈2〉 steps. If 〈a〉 is

〈
1
〉
or
〈
2
〉
, then the path is a sequence of〈

1
〉
or
〈
2
〉
steps followed by a sequence of 〈1〉 and 〈2〉 steps joined by either a〈

1
〉
〈2〉 or a

〈
2
〉
〈1〉 sequence.

We may now prove the property that f belongs to the interpretation of a
finite unfolding ψ of ϕ by progressively building it, relying on an induction on
the lexical order of:



4.4. SATISFIABILITY-TESTING ALGORITHM 55

1. the number of identifiers in ψ not yet annotated with a direction and an
integer;

2. the sum of the integers of every annotated identifier in ψ;

3. the size of ψ.

The base cases are for the true formula, the atomic proposition and its
negation, the start proposition and its negation, and the negation of the ex-
istential formula. The result is immediate for all these results as they do not
involve recursive formulas.

For the inductive case, we proceed by case on the syntax of ψ. The inter-
esting cases are recursive formulas (in every other case, the size of the formula
decreases while leaving the other induction metrics unchanged as annotations
are updated only when unfolding formulas). In the case of a formula involving
unannotated identifiers, they become annotated (thus decreasing the number of
unannotated identifiers) and associated to the size of the tree, and we conclude
by induction. In the case of an annotated formula recursion ψ = µXi.ϕi in ϕj ,
this formula may only have been produced by a previous expansion where Xj

was replaced by ψ. As the formula is cycle-free, at least one modality has
been encountered and it was annotated by Xj , since Xj was free in the for-
mula before the previous expansion. Moreover, every modality encountered
since the previous unfolding was also annotated by Xj , and as the formula is
cycle-free these modalities are all compatible. Thus the longest path of f in
Xj ’s direction has decreased by at least one, and as the other identifiers may
only have decreased, after expansion the sum has decreased, and we conclude
by induction.

In the rest of the chapter, we only consider least fixpoints. An important
consequence of Lemma 4.3.6 is that the logic restricted in this way is closed
under negation using De Morgan’s dualities, extended to eventualities and fix-
points as follows:

¬ 〈a〉ϕ def= ¬ 〈a〉> ∨ 〈a〉 ¬ϕ

¬µXi.ϕi in ψ
def= µXi.¬ϕi{Xi/¬Xi} in ¬ψ{Xi/¬Xi}

4.4 Satisfiability-Testing Algorithm

In this section we present our algorithm, show that it is sound and complete,
and prove a time complexity boundary. To check a formula ϕ, our algorithm
builds satisfiable formulas out of some subformulas (and their negation) of ϕ,
then checks whether ϕ was produced. We first describe how to extract the
subformulas from ϕ.

4.4.1 Preliminary Definitions

For ϕ = (µXi.ϕi in ψ) we define exp(ϕ) def= ψ{µXi.ϕi in Xi/Xi} which denotes
the formula ψ in which every occurrence of a Xi is replaced by (µXi.ϕi in Xi).
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We define the Fisher-Ladner closure cl(ψ) of a formula ψ as the set of
all subformulas of ψ where fixpoint formulas are additionally unwound once.
Specifically, we define the relation →e⊆ Lµ × Lµ as the least relation that
satisfies the following:

• ϕ1 ∧ ϕ2 →e ϕ1, ϕ1 ∧ ϕ2 →e ϕ2

• ϕ1 ∨ ϕ2 →e ϕ1, ϕ1 ∨ ϕ2 →e ϕ2

• 〈a〉ϕ′ →e ϕ
′

• µXi.ϕi in ψ →e exp(µXi.ϕi in ψ)

The closure cl(ψ) is the smallest set S that contains ψ and is closed under the
relation →e, i.e. if ϕ1 ∈ S and ϕ1 →e ϕ2 then ϕ2 ∈ S.

We call Σ(ψ) the set of atomic propositions σ used in ψ along with an-
other name, σx, that does not occur in ψ to represent atomic propositions not
occurring in ψ.

We define cl∗(ψ) = cl(ψ) ∪ {¬ϕ | ϕ ∈ cl(ψ)}. Every formula ϕ ∈ cl∗(ψ)
can be seen as a Boolean combination of formulas of a set called the Lean of
ψ, inspired from [Pan et al., 2006]. We note this set Lean(ψ) and define it as
follows:

Lean(ψ) =
{
〈a〉> | a ∈ {1, 2, 1, 2}

}
∪Σ(ψ)∪ {s} ∪ {〈a〉ϕ | 〈a〉ϕ ∈ cl(ψ)}

A ψ-type (or simply a “type”) (Hintikka set in the temporal logic literature)
is a set t ⊆ Lean(ψ) such that:

• ∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t⇒ 〈a〉> ∈ t (modal consistency);

•
〈
1
〉
> /∈ t ∨

〈
2
〉
> /∈ t (a tree node cannot be both a first child and a

second child);

• exactly one atomic proposition p ∈ t; we use the function σ(t) to return
the atomic proposition of a type t;

• s may belong to t.

We call Typ(ψ) the set of ψ-types. For a ψ-type t, the complement of t is the
set Lean(ψ) \ t.

A type determines a truth assignment of every formula in cl∗(ψ) with the
relation

.
∈ defined in Figure 4.4. Note that such derivations are finite because

the number of naked µXi.ϕi in ψ (that do not occur under modalities) strictly
decreases after each expansion.

We often write ϕ
.
∈ t if there are some T, F such that ϕ

.
∈ t =⇒ (T, F ). We

say that a formula ϕ is true at a type t iff ϕ
.
∈ t.

We now relate a formula to the truth assignment of its ψ-types.
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>
.
∈ t =⇒ (∅, ∅)

ϕ ∈ Lean(ψ) ϕ ∈ t
ϕ

.
∈ t =⇒ ({ϕ}, ∅)

ϕ1
.
∈ t =⇒ (T1, F1) ϕ2

.
∈ t =⇒ (T2, F2)

ϕ1 ∧ ϕ2
.
∈ t =⇒ (T1 ∪ T2, F1 ∪ F2)

ϕ1
.
∈ t =⇒ (T1, F1)

ϕ1 ∨ ϕ2
.
∈ t =⇒ (T1, F1)

ϕ2
.
∈ t =⇒ (T2, F2)

ϕ1 ∨ ϕ2
.
∈ t =⇒ (T2, F2)

ϕ
.

/∈ t =⇒ (T, F )
¬ϕ

.
∈ t =⇒ (T, F )

exp(µXi.ϕi in ψ)
.
∈ t =⇒ (T, F )

µXi.ϕi in ψ
.
∈ t =⇒ (T, F )

ϕ ∈ Lean(ψ) ϕ 6∈ t

ϕ
.

/∈ t =⇒ (∅, {ϕ})

ϕ1
.

/∈ t =⇒ (T1, F1) ϕ2
.

/∈ t =⇒ (T2, F2)

ϕ1 ∨ ϕ2
.

/∈ t =⇒ (T1 ∪ T2, F1 ∪ F2)

ϕ1
.

/∈ t =⇒ (T1, F1)

ϕ1 ∧ ϕ2
.

/∈ t =⇒ (T1, F1)

ϕ2
.

/∈ t =⇒ (T2, F2)

ϕ1 ∧ ϕ2
.

/∈ t =⇒ (T2, F2)

ϕ
.
∈ t =⇒ (T, F )

¬ϕ
.

/∈ t =⇒ (T, F )

exp(µXi.ϕi in ψ)
.

/∈ t =⇒ (T, F )

µXi.ϕi in ψ
.

/∈ t =⇒ (T, F )

Figure 4.4: Truth assignment of a formula

Proposition 4.4.1. If ϕ
.
∈ t =⇒ (T, F ), then we have T ⊆ t, F ⊆ Lean(ϕ) \ t,

and
∧
ψ∈T ψ ∧

∧
ψ∈F ¬ψ implies ϕ (every tree in the interpretation of the first

formula is in the interpretation of the second). If ϕ
.

/∈ t =⇒ (T, F ), then we
have T ⊆ t, F ⊆ Lean(ϕ) \ t, and

∧
ψ∈T ψ ∧

∧
ψ∈F ¬ψ implies ¬ϕ.

Proof: Immediate by induction on the derivations. �
We next define a compatibility relation between types to state that two

types are related according to a modality.

Definition 4.4.2 (Compatibility relation). Two types t and t′ are compatible
under a ∈ {1, 2}, written ∆a(t, t′), iff

∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t⇔ ϕ
.
∈ t′

∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t′ ⇔ ϕ
.
∈ t

4.4.2 The Algorithm

The algorithm works on sets of triples of the form (t, w1, w2) where t is a type,
and w1 and w2 are sets of types which represent every witness for t according
to relations ∆1(t, ·) and ∆2(t, ·).
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Upd(X) def= X ∪

 (t, w1(t,X◦), w2(t,X◦)) | s /∈ t ⊆ Typ(ψ)
∧ 〈1〉> ∈ t⇒ w1(t,X◦) 6= ∅
∧ 〈2〉> ∈ t⇒ w2(t,X◦) 6= ∅


∪

 (t, w1(t,X◦), w2(t,X◦))• | s ∈ t ⊆ Typ(ψ)
∧ 〈1〉> ∈ t⇒ w1(t,X◦) 6= ∅
∧ 〈2〉> ∈ t⇒ w2(t,X◦) 6= ∅


∪

 (t, w1(t,X•), w2(t,X◦))• | s /∈ t ⊆ Typ(ψ)
∧ 〈1〉> ∈ t⇒ w1(t,X•) 6= ∅
∧ 〈2〉> ∈ t⇒ w2(t,X◦) 6= ∅


∪

 (t, w1(t,X◦), w2(t,X•))• | s /∈ t ⊆ Typ(ψ)
∧ 〈1〉> ∈ t⇒ w1(t,X◦) 6= ∅
∧ 〈2〉> ∈ t⇒ w2(t,X•) 6= ∅


wa(t,X) def= {type(x) | x ∈ X ∧ 〈a〉> ∈ type(x) ∧∆a(t, type(x))}

type((t, w1, w2)) def= t

FinalCheck(ψ,X) def= ∃x ∈ X, dsat(x, ψ) ∧ ∀a ∈ {1, 2}, 〈a〉> /∈ type(x)

dsat((t, w1, w2), ψ) def= ψ
.
∈ t ∨ ∃x′, dsat(x′, ψ) ∧ (x′ ∈ w1 ∨ x′ ∈ w2)

X•
def= {x ∈ X | x = (_,_,_)•}

X◦
def= {x ∈ X | x = (_,_,_)}

Figure 4.5: Operations used by the Algorithm.

The algorithm proceeds in a bottom-up approach, repeatedly adding new
triples until a satisfying model is found (i.e. a triple whose first component
is a type implying the formula), or until no more triple can be added. Each
iteration of the algorithm builds types representing deeper trees (in the 1 and
2 direction) with pending backward modalities that will be fulfilled at later
iterations. Types with no backward modalities are satisfiable, and if such a
type implies the formula being tested, then it is satisfiable. The main iteration
is as follows:

X ← ∅
repeat
X ′ ← X

X ← Upd(X ′)
if FinalCheck(ψ,X) then
return “ψ is satisfiable”

until X = X ′

return “ψ is unsatisfiable”

where X ⊆ Typ(ψ) × 2Typ(ψ) × 2Typ(ψ) and the update operation Upd(·) and
success check operation FinalCheck(·, ·) are defined on Figure 4.5. The update
operation requires four almost identical cases to ensure that the optional mark
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T 3
{
|||

T 2
{
|||

T 1
{
|||

proved tree
structure

pending
backward
modalities

Figure 4.6: Algorithm’s principle: progressive bottom-up reasoning.

remains unique. The first case corresponds to the absence of the mark, the
second case to the presence of the mark at the top level, the third case to the
presence of the mark deeper in the first child, and the last case to the presence
of the mark deeper in the second child.

At each step of the algorithm, FinalCheck(·, ·) verifies whether the tested
formula is implied by newly added types without pending (unproved) backward
modalities, so that the algorithm may terminate as soon as a satisfying tree is
found.

We note Xi the set of triples and T i the set of types after i iterations:
T i =

{
type(x) | x ∈ Xi

}
. Note that T i+1 is the set of types for which at least

one witness belongs to T i.

4.4.3 Example Run of the Algorithm

In a sense, the algorithm performs a kind of progressive bottom-up reasoning
while ensuring partial (forward) satisfiability of subformulas, as illustrated by
Figure 4.6.

More specifically, Figure 4.7 illustrates a run of the algorithm for a sample
formula ψ. Lean(ψ) is computed, and the fixpoint computation starts: the
set of types T 1 contains all possible leaves. Each type added in T i (i ≥ 2)
requires at least one witness type found in T i−1 (else it would have been added
at some previous step j < i). In this example, a satisfying binary tree of depth
3 is found (as shown on Figure 4.7), therefore the algorithm stops just after
computing T 3. The first XPath query is not contained in the second one: a
counter-example tree is provided to the user (see Figure 4.7).

4.4.4 Correctness and Complexity

In this section we prove the correctness of the satisfiability testing algorithm,
and show that its time complexity is 2O(|Lean(ψ)|).

Theorem 4.4.3 (Correctness). The algorithm decides satisfiability of Lµ for-
mulas over finite focused trees.

Termination. For ψ ∈ Lµ, since cl(ψ) is a finite set, Lean(ψ) and 2Lean(ψ) are
also finite. Furthermore, Upd(·) is monotonic and each Xi is included in the
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〈
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〉
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T 3
{
|||

T 2
{
|||

T 1
{
|||
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c

binary to n-ary
tree encoding

Lean(ψ) : 〈1〉> 〈2〉>
〈

1
〉
>
〈

2
〉
> s a b c σ 〈2〉 c

〈
1
〉
s ... 〈2〉 η︸ ︷︷ ︸

topological propositions

︸ ︷︷ ︸
atomic propositions in ψ

︸ ︷︷ ︸
existential formulas in cl(ψ)

ψ = ϕ1 ∧ ¬ϕ2

ϕ1 = a ∧ (µY. 〈2〉 (c ∧ θ) ∨ 〈2〉Y ) ∧ 〈1〉 η

ϕ2 = c ∧ µX.
〈
1
〉
s ∨

〈
2
〉
X︸ ︷︷ ︸

θ

∧ 〈1〉µZ.b ∨ 〈2〉Z︸ ︷︷ ︸
η

Figure 4.7: Run of the algorithm for a sample formula.

finite set Typ(ψ) × 2Typ(ψ) × 2Typ(ψ), therefore the algorithm terminates. To
finish the proof, it thus suffices to prove soundness and completeness.

Preliminary Definitions for Soundness. First, we introduce a notion of partial
satisfiability for a formula, where backward modalities are only checked up to
a given level. A formula ϕ is partially satisfied iff JϕK0

V 6= ∅ as defined in Figure
4.8.

For a type t, we note ϕc(t) its most constrained formula, where atoms are
taken from Lean(ψ). In the following, ◦ stands for s if s ∈ t, and for ¬s
otherwise.

ϕc(t) = σ(t) ∧
∧

p∈Σ,p/∈t

¬p ∧ ◦ ∧
∧
〈a〉ϕ∈t

〈a〉ϕ ∧
∧
〈a〉ϕ/∈t

¬ 〈a〉ϕ

We now introduce a notion of paths, written ρ which are concatenations of
modalities: the empty path is written ε, and path concatenation is written ρa.

Every path may be given a depth:

depth(ε) def= 0

depth(ρa) def= depth(ρ) + 1 if a ∈ {1, 2}

depth(ρa) def= depth(ρ)− 1 if a ∈ {1, 2}

A forward path is a path that only mentions forward modalities.
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J>KnV
def= F JXKnV

def= V (X)

Jϕ ∨ ψKnV
def= JϕKnV ∪ JψKnV JpKnV

def= {f | nm(f) = p}

Jϕ ∧ ψKnV
def= JϕKnV ∩ JψKnV J¬pKnV

def= {f | nm(f) 6= p}

J
〈
1
〉
ϕK0
V

def= F JsKnV
def=
{
f | f = (σs[tl], c)

}
J
〈
2
〉
ϕK0
V

def= F J¬sKnV
def= {f | f = (σ[tl], c)}

J
〈
1
〉
ϕKn>0
V

def=
{
f 〈1〉 | f ∈ JϕKn−1

V ∧ f 〈1〉 defined
}

J
〈
2
〉
ϕKn>0
V

def=
{
f 〈2〉 | f ∈ JϕKn−1

V ∧ f 〈2〉 defined
}

J〈1〉ϕKnV
def=
{
f
〈
1
〉
| f ∈ JϕKn+1

V ∧ f
〈
1
〉
defined

}
J〈2〉ϕKnV

def=
{
f
〈
2
〉
| f ∈ JϕKn+1

V ∧ f
〈
2
〉
defined

}
J¬ 〈a〉>KnV

def= {f | f 〈a〉 undefined}

JµXi.ϕi in ψKnV
def= let Ti =

(⋂{
Ti ⊆ F | JϕiKnV [Ti/Xi]

⊆ Ti
})

i

in JψKn
V [Ti/Xi]

Figure 4.8: Partial satisfiability

We define a tree of types T as a tree whose nodes are types, T (•) = t,
with at most two children, T 〈1〉 and T 〈2〉. The navigation in trees of types
is trivially extended to forward paths. A tree of types is consistent iff for
every forward path ρ and for every child a of T 〈ρ〉, we have T 〈ρ〉 (•) = t,
T 〈ρa〉 (•) = t′ implies 〈a〉> ∈ t, 〈a〉> ∈ t′, and ∆a(t, t′).

Given a consistent tree of types T , we now define a dependency graph
whose nodes are pairs of a forward path ρ and a formula in t = T 〈ρ〉 (•) or the
negation of a formula in the complement of t. The directed edges of the graph
are labeled with modalities consistent with the tree. This graph corresponds
to what the algorithm ultimately builds, as every iteration discovers longer
forward paths. For every (ρ, ϕ) in the nodes we build the following edges:

• ϕ ∈ Σ(ψ) ∪ ¬Σ(ψ) ∪ {s,¬s, 〈a〉>,¬ 〈a〉>}: no edge

• ρ = ε and ϕ = 〈a〉ϕ′ with a ∈ {1, 2}: no edge

• ρ = ρ′a and ϕ = 〈a′〉ϕ′: let t = T 〈ρ〉 (•).

We first consider the case where a′ ∈ {1, 2} and let t′ = T 〈ρa′〉 (•). As T
is consistent, we have ϕ′

.
∈ t′ hence there are T, F such that ϕ′

.
∈ t′ =⇒

(T, F ) with T a subset of t′, and F a subset of the complement of t′. For
every ϕT ∈ T we add an edge a′ to (ρa′, ϕT ), and for every ϕF ∈ F we
add an edge a′ to (ρa′,¬ϕF ).
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We now consider the case where a′ ∈ {1, 2} and first show that we have
a′ = a. As T is consistent, we have 〈a〉> in t. Moreover, as t is a tree type,
it must contain 〈a′〉>. As a′ is a backward modality, it must be equal to
a as at most one may be present. Hence we have ρ′aa′ = ρ′ and we let
t′ = T 〈ρ′〉 (•). By consistency, we have ϕ′

.
∈ t′, hence ϕ′

.
∈ t′ =⇒ (T, F )

and we add edges as in the previous case: to (ρ′, ϕT ) and to (ρ′,¬ϕF ).

• ρ = ρ′a and ϕ = ¬ 〈a′〉ϕ′: let t = T 〈ρ〉 (•). If 〈a′〉> is not in t then
no edge is added. Otherwise, we proceed as in the previous case. For
downward modalities, we let t′ = T 〈ρa′〉 (•) and we compute ϕ′

.

/∈ t′ =⇒
(T, F ), which we know to hold by consistency. We then add edges to
(ρa′, ϕT ) and to (ρa′,¬ϕF ) as before. For upward modalities, as we have
〈a′〉> in t, we must have a′ = a and we let t′ = T 〈ρ′〉 (•). We compute
ϕ′

.

/∈ t′ =⇒ (T, F ) and we add the edges to (ρ′, ϕT ) and to (ρ′,¬ϕF ) as
before.

Lemma 4.4.4. The dependency graph of a consistent tree of types of a cycle-
free formula is cycle free.

Proof: The proof proceeds by induction on the depth of the cycle, relying on
the fact that the dependency graph is consistent with the tree structure (i.e. if
a 1 edge reaches a node, no 2 edge may leave this node). The induction case
is trivial: if there is a cycle of depth n, there must be a cycle of depth n− 1, a
contradiction.

The base case is for a cycle of depth 1. We describe one case, where the
cycle is (ρ, 〈1〉ϕ) −→1 (ρ1,

〈
1
〉
ψ) −→1 (ρ, 〈1〉ϕ). As ϕ must be a subformula of

ψ and ψ a subformula of ϕ, they are both recursive formula. An analysis of the
shape of ϕ, based on the derivations ϕ

.
∈ t =⇒ (T, F ) and ψ

.
∈ t′ =⇒ (T ′, F ′)

with 〈1〉ψ ∈ T and
〈
1
〉
ϕ ∈ T ′ then shows that ϕ is not a cycle-free formula, a

contradiction. �

Lemma 4.4.5 (Soundness). Let T be the result set of the algorithm. For any
type t ∈ T and any ϕ such that ϕ

.
∈ t, then JϕK0

∅ 6= ∅.

Proof:
The proof proceeds by induction on the number of steps of the algorithm.

For every t in Tn and every witness tree T rooted at t built from Xn, we show
that T is a consistent tree type and we build a focused tree f that is rooted (i.e.
of the shape (σ◦[tl], (ε,Top, tl ′))). The tree f is in the partial interpretation of
ϕc(t): f 〈ρ〉 ∈ Jϕc(T 〈ρ〉 (•))Kdepth(ρ)

∅ for any path ρ whose depth is 0 or more,
and f contains the start mark only if s occurs in T . We then show that for
all ϕ

.
∈ t, we have f ∈ JϕK0

∅.
The base case is trivial by the shape of t: it may only contain backward

modalities (trivially satisfied at level 0), one atomic proposition, and one start
proposition. Moreover there is only one tree of witnesses to consider, the tree
whose only node is t. If the atomic proposition is p, then the focused tree
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returned is either (ps[ε], (ε,Top, ε)) or (p[ε], (ε,Top, ε)) depending on the start
proposition.

In the inductive case, we consider every witness types for both down-
ward modalities, t1 and t2. For each of them, we consider every tree type
T1 and T2 and build a tree type rooted at t which is consistent by defini-
tion of the algorithm. By induction, we have f1 and f2 such that f1 〈ρ〉 ∈
Jϕc(T 〈1ρ〉 (•))Kdepth(ρ)

∅ and f2 〈ρ〉 ∈ Jϕc(T 〈2ρ〉 (•))Kdepth(ρ)
∅ for any path ρ

whose depth is 0 or more. If either T1 or T2 contains s, then f1 or f2 contains
the start mark by induction. Moreover, by definition of the algorithm, it is the
case for only one of them and s is not in t.

Let f1 be (σ◦1 [tl1], (ε,Top, tr1)) and f2 be (σ◦2 [tl2], (ε,Top, tr2)). Let f be the
tree (σ(t)◦[σ◦1 [tl1] :: tr1], (ε,Top, σ◦2 [tl2] :: tr2)) where σ(t)◦ is σ(t)s if s ∈ t,
and σ(t) otherwise. Note that f contains exactly one start mark iff s ∈ T .

We next show that if f1 〈ρ〉 is in Jϕc(T 〈1ρ〉 (•))Kdepth(ρ)
∅ , then the tree f 〈1ρ〉

is in Jϕc(T 〈1ρ〉 (•))Kdepth(ρ)
∅ , and the same for the other modality. This is shown

by induction on the depth of the path, remarking that every backward modality
at level 0 is trivially satisfied.

We then proceed to show that f satisfies ϕc(t) at level 0. To do so, we need
a further induction on the dependency tree. Let ρ be a path of the dependency
tree and ψ be a formula at that path in the dependency tree, we show that
f 〈ρ〉 ∈ JψKdepth(ρ)

V . To do so, we rely on f 〈ρ〉 ∈ JψKdepth(ρ)−1
V if depth(ρ) 6= 0.

In the base case at depth 0, the result is by construction as the formula is either
a backward modality or an atomic formula. In the base case at another depth,
the case is immediate by induction as the formula has to be an atomic formula
whose interpretation does not depend on the depth. In the induction case, we
conclude by the inductive hypothesis and by definition of partial satisfiability.

We conclude the proof by noticing that the final selected type has no back-
ward modality, hence Jϕc(t)K∅0 = Jϕc(t)K∅.

�

Lemma 4.4.6 (Completeness). For a cycle-free closed formula ϕ ∈ Lµ, if
JϕK∅ 6= ∅ then the algorithm terminates with a set of triples X such that
FinalCheck(ϕ,X).

Proof: Let f ∈ JϕK∅ be a smallest focused tree validating the formula such
that the names occurring in f are either also occurring in ϕ or are a single
other name σx. By Lemma 4.3.6, there is a finite unfolding of ϕ such that f
belongs to its interpretation. Hence there is a finite satisfiability derivation,
defined in Figure 4.9, of f 
ε ϕ.

In the satisfiability derivation, we assume the paths are normalized (11 = ε).
Hence every path is a concatenation of a (possibly empty) backward path ρb
followed by a forward path ρf .

This derivation has the following property, immediate by induction: let f
the initial focused tree, then f ′ 
ρ ϕ implies f ′ = f 〈ρ〉. Hence if f1 
ρ ϕ1 and
f2 
ρ ϕ2, then f1 = f2.
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f 
ρ >
nm(f) = p
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nm(f) 6= p

f 
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f 
ρ ϕ

f 
ρ ϕ ∨ ψ
f 
ρ ψ

f 
ρ ϕ ∨ ψ
f 
ρ ϕ f 
ρ ψ

f 
ρ ϕ ∧ ψ
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ρ1 ϕ
f 
ρ 〈1〉ϕ
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〈
1
〉
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〈
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f 〈a〉 undefined
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ρ µXi.ϕi in ψ

Figure 4.9: Satisfiability relation

We next use the satisfiability derivation to construct a run of the algorithm
that concludes that ϕ is satisfiable. We first associate each path to a type, which
we then saturate (adding formulas that are true even though the satisfiability
relation does not mention them at that path). We next show that every formula
at a path in the satisfiability relation is implied by the type at that path, and
that types are consistent according to the ∆a(t, t′) relation. We then conclude
that the types are created by a run of the algorithm by induction on the paths.

More precisely, we first describe how we build tρ. Let Φρ the set of formulas
at path ρ. We first add every formula of Φρ that is in Lean(ϕ), then we
complete this set to yield a correct type: if 〈a〉ψ ∈ Φρ then we add 〈a〉>; for
every modality a for which f 〈a〉 is defined we add 〈a〉>; if there is no atomic
proposition in Φρ then we add nm(f 〈ρ〉); finally if f 〈ρ〉 has the start mark we
add s.

We next saturate the types. For every path tρ if tρa exists, if 〈a〉ψ ∈
Lean(ϕ), and if ψ

.
∈ tρa then we add 〈a〉ψ to tρ. This procedure is repeated

until it does not change any type. Termination is a consequence of the finite
size of the lean and of the number of paths. The resulting types are satisfiable
as they are before saturation (since a focused tree satisfies them) and each
formula added during saturation is first checked to be implied by the type.

We next show (*): for any given path ρ, if ϕρ ∈ Φρ then ϕρ
.
∈ tρ, by

induction on the satisfiability derivation. Base cases with no negation are
immediate by definition of tρ as these are formulas of the lean. For base cases
with negation, we rely on the fact that f 〈ρ〉 satisfies the formula, hence we
cannot for instance have p and ¬p in Φρ. If ¬ 〈a〉> ∈ Φρ then we cannot
also have 〈a〉ψ ∈ Φρ as ρa is not a valid path, hence 〈a〉> is not in tρ thus
¬ 〈a〉>

.
∈ tρ. The inductive cases of this induction (disjunction, conjunction,

recursion) are immediate as they correspond to the definition of ·
.
∈ ·.

We next show that for every type tρ and tρa where a is a forward modality,
we have 〈a〉> ∈ tρa and ∆a(tρ, tρa). (Note that, by path normalization, the
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types considered may be t12 and t1 for modality 2.) The first condition is
immediate by construction of tρa as f 〈ρa〉 is defined. For the second condition,
let 〈a〉ψ ∈ tρ. If 〈a〉ψ ∈ Φρ, then it occurs in the satisfiability derivation with
an hypothesis fρa 
ρa ψ. In this case we have ψ

.
∈ tρa by (*). If 〈a〉ψ /∈ Φρ then

it was added during saturation and the result is immediate by construction.
Conversely, if ψ

.
∈ tρa then by saturation we have 〈a〉ψ ∈ tρ. We now consider

the case 〈a〉ψ ∈ tρa. The proof goes exactly as before, distinguishing the case
where the formula is in Φρa and the case where it was added by saturation.

We now show that there is a run of the algorithm that produces these types.
We proceed by induction on the paths in the downward direction: if tρa has
been proven for a partial run for a ∈ {1, 2}, then tρ is proven for the next
step of the algorithm. Moreover, we show that (tρ, {tρ1}, {tρ2}) is marked iff
a forward subtree of f 〈ρ〉 contains the start mark. The base case is for paths
with no descendants, hence no witness is required. The algorithm then adds
(tρ, ∅, ∅) to its set of types, with a mark iff s ∈ tρ, iff f 〈ρ〉 is marked.

We now consider the inductive case. By induction, a partial run of the
algorithm returns tρ1 and/or tρ2. We first show that tρ is returned in the next
step of the algorithm, taking these two types as witnesses. We first remark
that if either witness is marked then the other is not and the mark is not at
f 〈ρ〉, since there is only one start mark in f , and if the mark is at f 〈ρ〉, then
neither witness is marked. For each child a ∈ {1, 2} we have ∆a(tρ, tρa) and
〈a〉> ∈ tρa, hence the triple (tρ,W1,W2) with tρ1 ∈W1 and tρ2 ∈W2 is added
by the algorithm.

We may now conclude. At the end of the induction, the last path considered,
ρ0, has no predecessor, hence it is the longest backward only path. Since f 〈ρ0〉
is the root of the tree, we have

〈
1
〉
> /∈ tρ0 and

〈
2
〉
> /∈ tρ0 . Moreover, as the

start mark is somewhere in f , it is in a forward subtree of f 〈ρ0〉, hence the
final type is marked. Finally, tε is in the witness tree of the final type, and
since f 
ε ϕ, we have ϕ

.
∈ tε. �

We now present one of the main contributions of this chapter: the com-
plexity of our algorithm is 2O(n) where n is the formula size. It is well-known
that cl(ψ) is a finite set and its size is linear with respect to the size of ψ (i.e.,
the number of operators and propositional variables appearing in ψ) [Kozen,
1983]. Therefore |Lean(ψ)| is also trivially linear with respect to the size of ψ.1

Theorem 4.4.7 (Complexity). For ψ ∈ Lµ the satisfiability problem JψK∅ 6= ∅
is decidable in time 2O(n) where n = |Lean(ψ)|.

Proof: |Typ(ψ)| is bounded by
∣∣2Lean(ψ)

∣∣ which is 2O(n). During each iteration,
the algorithm adds at least one new type (otherwise it terminates), thus it
performs at most 2O(n) iterations. We now detail what it does at each iteration.
For each type that may be added (there are 2O(n) of them), there are two
traversals of the set of types at the previous step to collect witnesses. Hence
there are 2 ∗ 2O(n) ∗ 2O(n) = 2O(n) witness tests at each iteration. Each witness

1The acute reader may notice that for large formulas, |Lean(ψ)| is usually smaller than
the size of ψ since disjunctions, conjunctions and negations are not members of Lean(ψ).
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test involves a membership test and a ∆a test. In the implementation these
are precomputed: for every formula 〈a〉ϕ in the lean, the subsets (T, F ) of the
lean that must be true and false respectively for ϕ to be true are precomputed,
so testing ϕ

.
∈ t are simple inclusion and disjunction tests. The FinalCheck

condition test at most 2O(n) ψ-types and each test takes at most 2O(n) (testing
the formulas containing s against ψ). Therefore, the worst case global time
complexity of the algorithm does not exceed 2O(n). �

4.5 Implementation Techniques

This section describes the main techniques used for implementing an effective
Lµ decision procedure. Our implementation is publicly available and usable
through a web interface [Genevès & Layaïda, 2006a].

4.5.1 Implicit Representation of Sets of ψ-Types

Our implementation relies on a symbolic representation and manipulation of
sets of ψ-types using Binary Decision Diagrams (BDDs) [Bryant, 1986]. BDDs
provide a canonical representation of Boolean functions. Experience has shown
that this representation is very compact for very large Boolean functions. Their
effectiveness is notably well known in the area of formal verification of systems
[Edmund M. Clarke et al., 1999].

First, we observe that the implementation can avoid keeping track of every
possible witnesses of each ψ-type. In fact, for a formula ϕ, we can test JϕK∅ 6= ∅
by testing the satisfiability of the (linear-size) “plunging” formula ψ = µX.ϕ∨
〈1〉X ∨ 〈2〉X at the root of focused trees. That is, checking JψK0

∅ 6= ∅ while
ensuring there is no unfulfilled upward eventuality at top level 0. One advantage
of proceeding this way is that the implementation only need to deal with a
current set of ψ-types at each step.

We now introduce a bit-vector representation of ψ-types. Types are com-
plete in the sense that either a subformula or its negation must belong to a
type. It is thus possible for a formula ϕ ∈ Lean(ψ) to be represented using
a single BDD variable. For Lean(ψ) = {ϕ1, ..., ϕm}, we represent a subset
t ⊆ Lean(ψ) by a vector ~t = 〈t1, ..., tm〉 ∈ {0, 1}m such that ϕi ∈ t iff ti = 1. A
BDD with m variables is then used to represent a set of such bit vectors.

We define auxiliary predicates for programs a ∈ {1, 2}:

• isparenta(~t) is read “~t is a parent for program a” and is true iff the bit
for 〈a〉> is true in ~t

• ischilda(~t) is read “~t is a child for program a” and is true iff the bit for
〈a〉> is true in ~t

For a set T ⊆ 2Lean(ψ), we note χT its corresponding characteristic function.
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Encoding χTyp(ψ) is straightforward with the previous definitions. We de-
fine the equivalent of

.
∈ on the bit vector representation:

statusϕ(~t) def=



ti if ϕ ∈ Lean(ψ)
statusϕ′(~t) ∧ statusϕ′′(~t) if ϕ = ϕ′ ∧ ϕ′′
statusϕ′(~t) ∨ statusϕ′′(~t) if ϕ = ϕ′ ∨ ϕ′′
¬statusϕ′(~t) if ϕ = ¬ϕ′
statusexp(ϕ)(~t) if ϕ = µXi.ϕi in ψ

We note a → b the implication and a ↔ b the equivalence of two Boolean
formulas a and b over vector bits. We can now construct the BDD of the
relation ∆a for a ∈ {1, 2}.

This BDD relates all pairs (~x, ~y) that are consistent w.r.t the program a,
i.e., such that ~y supports all of ~x’s 〈a〉ϕ formulas, and vice-versa ~x supports
all of ~y’s 〈a〉ϕ formulas:

∆a(~x, ~y) def=
∧

1≤i≤m


xi ↔ statusϕ(~y) if ϕi = 〈a〉ϕ
yi ↔ statusϕ(~x) if ϕi = 〈a〉ϕ
> otherwise

For a ∈ {1, 2}, we define the set of witnessed vectors:

χWita(T )(~x) def= isparenta(~x)→ ∃~y [ h(~y) ∧∆a(~x, ~y) ]

where h(~y) = χT (~y) ∧ ischilda(~y).
Then, the BDD of the fixpoint computation is initially set to the false

constant, and the main function Upd(·) is implemented as:

χUpd(T )(~x) def= χT (~x) ∨

χTyp(ψ)(~x) ∧
∧

a∈{1,2}

χWita(T )(~x)


Finally, the solver is implemented as iterations over the sets χUpd(T ) until

a fixpoint is reached. The final satisfiability condition consists in checking
whether ψ is present in a ψ-type of this fixpoint with no unfulfilled upward
eventuality:

∃~t

 χT (~t) ∧
∧

a∈{1,2}

¬ischilda(~t) ∧ statusψ(~t)


.

4.5.2 Satisfying Model Reconstruction

The implementation keeps a copy of each intermediate set of types computed
by the algorithm, so that whenever a formula is satisfiable, a minimal satisfying
model can be extracted. The top-down (re)construction of a satisfying model
starts from a root (a ψ-type for which the final satisfiability condition holds),
and repeatedly attempts to find successors. In order to minimize model size,
only required left and right branches are built. Furthermore, for minimizing the
maximal depth of the model, left and right successors of a node are successively
searched in the intermediate sets of types, in the order they were computed by
the algorithm.
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4.5.3 Conjunctive Partitioning and Early Quantification

The BDD-based implementation involves computations of relational products
of the form:

∃~y [ h(~y) ∧∆a(~x, ~y) ] (4.1)

It is well-known that such a computation may be quite time and space consum-
ing, because the BDD corresponding to the relation ∆a may be quite large.

One famous optimization technique is conjunctive partitioning [Edmund
M. Clarke et al., 1999] combined with early quantification [Pan et al., 2006].
The idea is to compute the relational product without ever building the full
BDD of the relation ∆a. This is possible by taking advantage of the form of
∆a along with properties of existential quantification. By definition, ∆a is a
conjunction of n equivalences relating ~x and ~y where n is the number of 〈b〉ϕ
formulas in Lean(ψ) where ϕ 6= > and b ∈ {a, a}:

∆a(~x, ~y) =
n∧
i=1

Ri(~x, ~y)

If a variable yk does not occur in the clauses Ri+1, ..., Rn then the relational
product (4.1) can be rewritten as:

∃ [
∃yk

[
h(~y) ∧

∧
1≤j≤iRj(~x, ~y)

]
∧
∧
i+1≤l≤nRl(~x, ~y)

]
y1, ..., yk−1, yk+1, ..., ym

This allows to apply existential quantification on intermediate BDDs and
thus to compose smaller BDDs. Of course, there are many ways to compose
the Ri(~x, ~y). Let ρ be a permutation of {0, ..., n − 1} which determines the
order in which the partitions Ri(~x, ~y) are combined. For each i, let Di be the
set of variables yk with k ∈ {1, ...,m} that Ri(~x, ~y) depends on. We define Ei
as the set of variables contained in Dρ(i) that are not contained in Dρ(j) for
any j larger than i:

Ei = Dρ(i) \
n−1⋃
j=i+1

Dρ(j)

The Ei are pairwise disjoint and their union contains all the variables. The
relational product (4.1) can be computed by starting from:

h1(~x, ~y) = ∃ [
h(~y) ∧Rρ(0)(~x, ~y)

]
yk ∈ E0

and successively computing hp+1 defined as follows:

hp+1(~x, ~y) =


∃ [

hp(~x, ~y) ∧Rρ(p)(~x, ~y)
]

yk ∈ Ep
if Ep 6= ∅

hp(~x, ~y) ∧Rρ(p)(~x, ~y) if Ep = ∅

until reaching hn which is the result of the relational product. The ordering
ρ determines how early in the computation variables can be quantified out.
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This directly impact the sizes of BDDs constructed and therefore the global
efficiency of the decision procedure. It is thus important to choose ρ carefully.
The overall goal is to minimize the size of the largest BDD created during the
elimination process. We use a heuristic taken from [Edmund M. Clarke et al.,
1999] which seems to provide the best approximation and in practice has the
best performance. It defines the cost of eliminating a variable yk as the sum
of the sizes of all the Di containing yk:∑

1≤i≤n,yk∈Di

|Di|

The ordering ρ on the relations Ri is then defined in such a way that variables
can be eliminated in the order given by a greedy algorithm which repeatedly
eliminates the variable of minimum cost.

4.5.4 BDD Variable Ordering

The cost of BDD operations is very sensitive to variable ordering. Finding the
optimal variable ordering is known to be NP-complete [Hojati et al., 1996],
however several heuristics are known to perform well in practice [Edmund
M. Clarke et al., 1999]. Choosing a good initial order of Lean(ψ) formulas
does significantly improve performance. We found out that preserving locality
of the initial problem is essential. Experience has shown that the variable order
determined by the breadth-first traversal of the formula ψ to solve, which keeps
sister subformulas in close proximity, yields better results in practice.

4.5.5 Online Implementation

The system has been implemented as a web application. Interaction with the
system is offered through a user interface in a web browser. The tool is available
online from:

http://wam.inrialpes.fr/websolver/

A screenshot of the interface is given in Figure 4.10. The user can either enter a
formula through area (1) of Figure 4.10 or select from pre-loaded analysis tasks
offered in area (4) of Figure 4.10. The level of details displayed by the solver can
be adjusted in area (2) of Figure 4.10 and makes it possible to inspect logical
translations and statistics on problem size and the different operation costs.
The results of the analysis are displayed in area (3) of Figure 4.10 together
with counter-examples.

4.6 Examples and Experiments

In this section we report on practical experiments that we have made using
the solver implementation. These experiments can be tried with the online
implementation described above.



70 CHAPTER 4. A LOGIC FOR FINITE TREES

Figure 4.10: Screenshot of the Solver Interface.

4.6.1 Regular Language Equivalence

As a first, simple, application, we show how we can use our solver to decide the
equivalence of regular languages. To this end, we translate regular expressions
in formulas of our tree logic. The translation presented here is very naive;
the actual translation used in the online implementation (using the reg_exp
keyword) results in more concise formulas.

As illustrated in Section 4.2, our model does not allow the empty tree. To
translate regular expressions which may recognize the empty word, we add a
final letter e at the end of the expression. We also need to be careful with the
repetition of regular expressions, of the form R∗, if R is nullable (it accepts
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the empty word ε). A direct translation in this case would result in a recursion
variable appearing naked (i.e., without a surrounding modality). We thus
extract the non null part of R, written Rε, and translate R∗ as R∗ε . We first
recall how to naively extract from a regular expression R its nullable part
(either ε or ∅), written Rε, and its non null part, written Rε.

εε = ε εε = ∅
aε = ∅ aε = a

(R.R′)ε = Rε.R
′
ε (R.R′)ε = Rε.R

′
ε ∨Rε.R′ε ∨Rε.R′ε

(R∗)ε = ε (R∗)ε = (Rε)+

(R ∨R′)ε = Rε ∨R′ε (R ∨R′)ε = Rε ∨R′ε

The translation of a regular expression R with a continuation c is written
JRKc and is defined as follows.

JaKc = a ∧ 〈1〉 c
JεKc = c

JR.R′Kc = JRKJR′Kc
JR∗Kc = µx.c ∨ JRεKx if Rε 6= ∅
JR∗Kc = c if Rε = ∅

JR ∨R′Kc = JRKc ∨ JR′Kc

Given a regular expression R, we translate it in our logic as the formula
JRKe.

The expression F iff G is syntactic sugar for (F&G)|(¬F&¬G). It is satis-
fied if a tree can be found that has a node where either both F and G are true,
or where neither is. The negation of this formula is satisfied if there is a tree
with a node where either F&¬G or ¬F&G is true. It is unsatisfied if for every
tree and for every node, either F&G is true or ¬F&¬G is true: the formulas are
equivalent (they will always select the same set of nodes).

To check the equivalence of two regular expressions R1 and R2, we thus ask
the solver the question ¬(JR1Ke iff JR2Ke). If the formula is unsatisfied, the
languages are equivalent. If it is satisfied, the solver will return a word in one
language and not the other.

We illustrate this translation with several examples. To show that the
languages (ab)∗a and a(ba)∗ are equivalent, we run the following query in the
solver. (This code may be copied and pasted directly in the online demo.)

~
(let $X = (a & <1>e) | a & <1>(b & <1> $X) in $X)
<=>
(a & <1> (let $X = e | b & <1>(a & <1> $X) in $X))
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We now show the more complex language equivalence (a|b)∗ = a∗(ba∗)∗. To
this end, we need to circumvent a shortcoming of the solver. In the following
expressions, some fixpoint variables are not syntactically guarded, yet the is
no fixpoint expansions that would continue indefinitely without encountering
a guard. More precisely, when unfolding a $Z, there will always be a <1>
modality before reaching $Z again. As the more precise analysis of guardedness
and cycle-freeness (see Figure 4.3) is not yet implemented, we annotate these
recursive calls with <0> to let the solver know we guarantee these calls are
guarded.

~
((let $X = e | (a & <1>$X) | (b & <1>$X) in $X)
<=>
(let $X = <0>$Y | (a & <1>$X),

$Y = e | (b & <1>$Z),
$Z = <0>$Y | (a & <1>$Z)

in $X))

Finally, we show that if the languages are not equivalent, the solver pro-
vides a counter-example: a word that is in one language but not the other.
For instance, let us compare (a|b)∗ and a∗(ba∗)∗b. We thus try the following
formula.

~
((let $X = e | (a & <1>$X) | (b & <1>$X) in $X)
<=>
(let $X = <0>$Y | (a & <1>$X),

$Y = (b & <1>e) | (b & <1>$Z),
$Z = <0>$Y | (a & <1>$Z)

in $X))

To which the solver replies “Formula is satisfiable [total time: 4 ms]. A
satisfying finite binary tree model is [2 ms]: e.” Indeed, the empty word is
accepted by the first formula but not by the second.

We now extend our simple translation to study the equivalence of languages
of Kleene Algebra with Test (KAT) [Kozen, 1997].

To translate KAT formulas, we add boolean propositions, written _p, to
the logic. We also extend our model, annotating every node with the set of
propositions which are true at that node. These extensions carry over to the
algorithm straightforwardly, as we only need to add to the lean the set of
boolean propositions mentioned in the formula. This extension has in fact
been implemented in our solver and can be tried in the online version.

We extend our translation with a case for boolean propositions _p

J_pKc = _p ∧ c
J¬_pKc = ¬_p ∧ c
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Note that, unlike the translation for letters, we do not move to the next
letter. One may thus specify several propositions that must concurrently be
true.

As an example, consider the usual encoding of a while loop in KAT.

J(_pa)∗¬_pKe = µx.(¬_p ∧ e) ∨ (_p ∧ a ∧ 〈1〉x)

We can thus use the solver to test for language equality or inequality. For
instance, one may show that _bq∗ is different from (_bq)∗ as follows.

~
(_b & (let $X = e | q & <1>$X in $X)
<=>
let $X = e | _b & q & <1>$X in $X)

The satisfying word found is e ~_b, which is the empty word annotated
with the negation of _b: it belongs to the second language but not to the first.

4.6.2 Applications to XPath typing

Another natural application of the tree logic consists in the static analysis of
programs that manipulate XML documents seen as trees. Backward modalities
naturally capture XPath expressions that navigate upward in the tree in a
succinct manner. The translations of XPath and XML type expressions into
the logic are recalled from [Genevès & Layaïda, 2006c] in appendix to make
the article self-contained. We also give the semantics of XPath in terms of
focused trees, and prove that the generated formulas are cycle-free. Owing to
these translations, we can formulate several decision problems involving XPath
expressions e1, ..., en and XML type expressions T1, ..., Tn, for which the solver
provides a decision procedure. In particular, the following basic problems are
of special interest:

• XPath containment: E→Je1KJT1K ∧¬E→Je2KJT2K (if the formula is unsat-
isfiable then all nodes selected by e1 under type constraint T1 are selected
by e2 under type constraint T2)

• XPath emptiness: E→Je1KJT1K

• XPath overlap: E→Je1KJT1K ∧ E→Je2KJT2K

• XPath coverage: E→Je1KJT1K ∧
∧

2≤i≤n ¬E→JeiKJTiK

• Static type checking of an annotated XPath expression:
E→Je1KJT1K∧¬JT2K (if the formula is unsatisfiable then all nodes selected
by e1 under type constraint T1 are included in the type T2.)

• XPath equivalence under type constraints:
E→Je1KJT1K ∧¬E→Je2KJT2K and ¬E→Je1KJT1K ∧E→Je2KJT2K (This test can
be used to check that the nodes selected after a modification of a type
T1 by T2 and an XPath expression e1 by e2 are the same, typically when
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e1 /a[.//b[c/*//d]/b[c//d]/b[c/d]]
e2 /a[.//b[c/*//d]/b[c/d]]

e3 a/b//c/foll-sibling::d/e
e4 a/b//d[prec-sibling::c]/e
e5 a/c/following::d/e
e6 a/b[//c]/following::d/e ∩ a/d[preceding::c]/e

e7 *//switch[ancestor::head]//seq//audio[prec-sibling::video]

e8 descendant::a[ancestor::a]
e9 /descendant::*
e10 html/(head p body)
e11 html/head/descendant::*
e12 html/body/descendant::*

Figure 4.11: XPath Expressions Used in Experiments.

DTD Symbols Binary Type Variables
SMIL 1.0 19 11
XHTML 1.0 Strict 77 325

Table 4.1: Types Used in Experiments.

an input type changes and the corresponding XPath expression has to
change as well.)

We carried out extensive tests with the implementation2 [Genevès & Layaïda,
2006a] , and present here only a representative sample that includes the most
complex language features such as recursive forward and backward axes, inter-
section, large and very recursive types with a reasonable alphabet size. The
tests use XPath expressions shown on Figure 4.11 (where “//” is used as a
shorthand for “/desc-or-self::*/”) and XML types shown on Table 4.1. Ta-
ble 4.2 presents some decision problems and corresponding performance results.
Times reported in milliseconds correspond to the running time of the satisfi-
ability solver without the (negligible) time spent for parsing and translating
into Lµ.

The first XPath containment instance was first formulated in [Miklau &
Suciu, 2004] as an example for which the proposed tree pattern homomorphism
technique is incomplete. The e8 example shows that the official XHTML DTD
does not syntactically prohibit the nesting of anchors. For the XHTML case,
we observe that the time needed is more important, but it remains practically
relevant, especially for static analysis operations performed only at compile-
time.

2Experiments have been conducted with a JAVA implementation running on a Pentium
4, 3 Ghz, with 512Mb of RAM with Windows XP.
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XPath Decision Problem XML Type Time (ms)
e1 ⊆ e2 and e2 6⊆ e1 none 353
e4 ⊆ e3 and e4 ⊆ e3 none 45
e6 ⊆ e5 and e5 6⊆ e6 none 41
e7 is satisfiable SMIL 1.0 157
e8 is satisfiable XHTML 1.0 2630

e9 ⊆ (e10 ∪ e11 ∪ e12) XHTML 1.0 2872

Table 4.2: Some Decision Problems and Corresponding Results.

Figure 4.12: Overview of XQDT user interface.

4.7 Augmented IDE

As a proof of concept, we have integrated this static analysis inside an IDE: we
have equipped the XQuery Development Toolkit (XQDT) [XQDT, 2010] with
capabilities of statically detecting inconsistent paths. XQDT is a plugin for the
Eclipse environment that provides support for XQuery 1.1. In particular XQDT
provides code completion and code templates, as-you-type validation, and in-
tegration with existing XQuery evaluation engines. A screenshot of XQDT is
given in Figure 4.12.

4.7.1 Integration Principle

We have developed a plugin extension that takes an XPath expression e and a
schema S as parameters and checks for the inconsistency of e in the presence
of S. The analysis functions mark inconsistent path with syntax coloring ca-
pabilities offered by the IDE plugin. For this to be possible, the IDE plugin
interacts with the plugin extension in the following manner:
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1. the abstract syntax tree of the program is first analyzed in order to iden-
tify XPath expressions;

2. the evaluation context of each XPath expression is built: because some
XPath host languages (like XSLT or XQuery) allow variables to be de-
fined and then used in paths, this step is necessary for correctly replacing
variables occurring in paths by their definition;

3. when the static verification is triggered, each XPath expression and its
evaluation context as well as the schema chosen by the programmer are
transmitted to the plugin extension;

4. once the analysis is performed the plugin extension returns information
(line number, character index) in order to mark inconsistent paths in the
user interface.

4.7.2 Enriched Programming Experience

From the programmer’s point of view, the augmented XQDT plugin can be
used just as the usual XQDT plugin. The only difference happens when a
given XQuery program is opened through the user interface. Two new buttons
are then offered to the programmer. The first one allows him to choose a
given schema (notice that this is optional: by default no schema is assumed).
The second button allows the programmer to trigger the static analysis of
paths which marks inconsistent XPath expressions, in the same manner as
badly typed Java statements are marked in the classic Eclipse environment for
editing Java programs.

The user interface of the plugin extension is shown in Figure 4.13. The
screenshot shows an XQuery example where an XPath expression is automat-
ically identified and marked as inconsistent (independently of any schema). In
this case, the XPath expression “$r/parent::book/author” is trivially judged
inconsistent by the analysis since if we replace “$r” by its definition we obtain
an expression of the form:

//reviews/review/book/parent::book/author

that at some point attempts to navigate from a node labeled “review” to
children nodes labeled “book” and then going back to the parent node labeled
“book”, which contradicts the previous steps according to which this parent
node is labeled “review”. For this reason, evaluating this path always yields
an empty set of nodes, even independently from any schema. General path
inconsistencies are not so trivial to detect, especially those involving schema
information. This is why inconsistent paths are clearly marked à la Eclipse in
the user interface: they are underlined in red and marked with red icons both
in the left gutter and next to the scroll bar on the right in order to inform the
programmer.
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Figure 4.13: Static Analysis of Paths in Action.

4.8 Dead-Code Analysis for XQuery

In this section, we present a static analysis of XQuery programs, based on
the detection of inconsistent paths (with and without schema information) in
order to automatically detect and eliminate dead code. We first introduced
XQuery programs, and in particular the fragment that we consider, and then
the analysis of dead code.

4.8.1 XQuery Programs

An XQuery program basically takes one (or possibly several) XML document as
input, performs some computation based on its tree view, and finally outputs
a result in the form of another XML document. The core of the XQuery
language is composed of XPath expressions that make it possible to navigate
in the document tree and extract nodes that satisfy some conditions. For
instance, a simplistic XQuery program is:

<ul>
{
for $x in /descendant::book return
if $x/year>2008 then <li>$x/title<li> else ()

}
</ul>

where the for loop uses the XPath expression /descendant::book that tra-
verses the whole input XML document looking for book elements. The for
loop iterates over all these elements, and for each of them, returns the value of
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e ::=
()

| e,e
| <tag>e</tag>
| element{e}{e}
| if e then e else e
| for $var in e (where e)? return e
| let $var := e (where e)? return e
| (some | every) $var in e satisfies e
| typeswitch (e) cases
| $var
| path
| $var/path
| /path
| e op e
| f(e, ..., e)
| arithmeticExpr

cases ::=
default return e

| case Type return e cases

Figure 4.14: Syntax of XQuery Programs.

the title subelement, provided the year is greater than 2008. Executing this
program produces an XML tree as output, whose root element is named “ul”,
and whose content is populated by the execution of the loop, that creates an
XHTML-like list of book titles published after 2008.

In the remaining, we consider a fragment of the XQuery programming lan-
guage, whose syntax is given in Figure 4.14 (the semantics is described in [Boag
et al., 2006]). This fragment focuses on the core aspects of XQuery and in par-
ticular XPath expressions for navigating and extracting information from XML
trees. The syntax of XPath expressions we consider is given in Figure 4.17. We
consider all XPath features for navigating forward, backward and recursively
through nodes of the document. Furthermore, at each step in the navigation
the selected nodes can be filtered using qualifiers, that are boolean expression
between brackets that can test the existence or absence of paths. All major fea-
tures of XPath are supported except general counting and general comparisons
between data values (that are known to make XPath satisfiability undecidable
[Benedikt et al., 2005]).

4.8.2 XQuery Dead Code

In order to illustrate the practical relevance of our approach, consider the
following XQuery program:

<para>
{
for $x in //body//switch
where $x/animateMotion
return $x/*
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}
</para>

It is intended to be evaluated over SMIL3 documents. Specifically, it has been
written against the schema defining SMIL 1.0 documents. When applied to
such a document, it returns all children of switch elements that have at least
one animateMotion child, wrapped in a para element.

This code portion may be reused in the context of SMIL 2.0 documents.
However, in contrast to SMIL 1.0, the occurrence of animateMotion is not
permitted as a chid of switch in SMIL 2.0. In this case, the XPath expression
in the where clause is inconsistent, and therefore the whole for loop is dead
code. We explain how we make this static analysis automatic for a given
XQuery program and a given schema in the next subsections.

4.8.3 Dead-Code Analysis

We consider a given XQuery program P and a schema S that describes con-
straints over the set of documents that can serve as input to P . For each XPath
expression occurring in P , we check whether it is inconsistent in the presence
of S. In that case, we know statically that there is no need to evaluate the
path at runtime. Furthermore, we also know that all XQuery instructions that
depend on this path (dead code) may be removed.

This analysis is sound and complete over the XPath navigational fragment
shown in Figure 4.17. In order for the analysis to scale to programs with
more complex features, we make several conservative approximations. First,
we abstract over XPath features that make satisfiability undecidable (such as
data value comparisons). Second, we consider that XPath expressions return
sets of nodes (as in XPath 1.0) instead of node sequences (as in XPath 2.0
and XQuery). These approximations preserve soundness of our approach (if
dead code is detected, it can be safely eliminated as this is really dead code).
However, the analysis may be incomplete due to undecidable features, that
may prevent from finding some evil dead code.

4.8.4 Static Code Refactoring
Each path which is found inconsistent indicates dead code. We perform a
code dependency analysis that propagates this information in order to detect
and eliminate dead code from an XQuery program. The analysis consists of
inference rules of the form:

H

S,Γ : e −→ e′

Such a rule means that the original program e is rewritten into another pro-
gram e′ assuming some hypothesis H in the context of a schema S and a
variable environment Γ. The benefit of this rewriting is that e′ is dead-code
free. The rewriting is also safe in the sense that it preserves the semantics of

3SMIL is the standard language for expressing synchronized multimedia documents as
found in e.g., MMS mobile phone messages, and more generally on the web [Hoschka, 1998].
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S,Γ : e1 −→ ()

S,Γ : element{e1}{e2} −→ ()

S,Γ : e
i
−→ e′

i
i = 1, 2 e′1 6= ()

S,Γ : element{e1}{e2} −→ element{e′1}{e
′
2}

S,Γ : e
i
−→ () i = 1, 3

S,Γ : if e1 then e2 else e3 −→ ()

S,Γ : e1 −→ () S,Γ : e3 −→ e′3 e′3 6= ()

S,Γ : if e1 then e2 else e3 −→ e′3

S,Γ : e
i
−→ e′

i
i = 1, 2, 3 e′1 6= ()

S,Γ : if e1 then e2 else e3 −→ if e′1 then e′2 else e′3

S,Γ : e1 −→ ()

S,Γ : for $var in e1 (where e2)? return e3 −→ ()

S,Γ ∪ ($var, e1) : e3 −→ ()

S,Γ : for $var in e1 (where e2)? return e3 −→ ()

S,Γ : e1 −→ e′1 e′1 6= () S,Γ ∪ ($var, e′1) : e2 −→ ()

S,Γ : for $var in e1 where e2 return e3 −→ ()

Figure 4.15: XQuery Refactoring Rules.

the original program: executing the rewritten program yields the same result
than executing the original program. The only difference is that e′ is smaller
than e in terms of code size, and thus potentially executes faster.

One of the most basic rules consists in replacing an inconsistent path by
the empty node sequence, as follows:

¬satisfiable(path, S)
S,Γ : path −→ ()

where the predicate satisfiable(path, S) in the hypothesis is the boolean test
directly performed by the logical solver [Genevès et al., 2007b]. This rewrit-
ing is extended to other XQuery statements. Figure 4.15 details the rewriting
principle for three main XQuery constructs, namely the instruction for gener-
ating elements, the “if” statement and the “for” loop. For instance, the first
rule eliminates the instruction element{e1}{e2} (rewrites it to the empty se-
quence) provided the expression e1 rewrites itself to the empty sequence. The
third rule eliminates a whole if statement whenever both the if condition
and the else clause rewrite to the empty sequence. Rules for other XQuery
constructs follow the same principle and are similar.

4.8.5 Syntax Highlighting & Code Refactoring

The typical integrated development environment allows one to open an XQuery
program and to associate with it a schema4. The code analysis process is

4A variety of schemas are actually supported including DTDs, XML Schemas and Relax
NG definitions (see [Genevès et al., 2007b] for details).
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IDE

(1) Parsing (AST 

construction)

(2) AST Analysis

(3) Step by step 

subpath analysis

XQuery code

(4) Translation into 

logic

(5) Satisfiability solver

(6) Rewrite (dead 

code elimination)

AST

Logical formula

Syntax highlight

Rewrite action

Pruned AST

Schema (DTD, XSD…)

XPath expressions

subpaths

Figure 4.16: Code Analysis Diagram.

illustrated in Figure 4.16. First, the program is parsed to build an abstract
syntax tree (step 1 in Figure 4.16). The abstract syntax tree (AST) analysis
phase consists in extracting all the path expressions from the program and
checking their satisfiability individually (steps 2 to 5). Then, in a second step,
these paths are combined with the schema, and checked again for satisfiability
(steps 2 to 5 again). This if for clearly distinguishing inconsistent paths (e.g.
child::a/child::b[parent::c]) from inconsistent paths in the presence of
the schema. Each kind of inconsistent path is marked differently in the AST.
This makes it possible to inform the programmer, by underlining the empty
path expressions in a different color depending on the origin of the inconsistency
(self-contradiction or inconsistency in the presence of the given schema). More
specifically, each path is considered as a sequence of basic navigation steps
possibly with qualifiers. The first step is analyzed. Then each additional step
is successively appended to this initial step and the resulting path is analyzed
in turn (step 3). This makes it possible to identify precisely where the error
has been introduced in the path. For instance, in the previous example, this
step by step subpath analysis identifies the qualifier parent::c as causing the
error.

Whenever an inconsistent path is found, a refactoring command is provided
to the IDE user. When this command is triggered, the AST is pruned using
the rules presented earlier (step 6), and the new XQuery program is provided
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to the user.

4.9 Conclusion

We found very interesting that the practical restriction to trees and cycle-free
formulas led to theoretical implications such as the collapsing of the least and
greatest fixpoints. We were able to leverage this property to obtain an efficient
implementation.

We also emphasize that the fact that the algorithm is implemented as a least
fixpoint construction makes it possible to check for satisfiable formulas as soon
as possible, often not requiring the full fixpoint to be computed, as opposed
to algorithms based on greatest fixpoint computations that must eliminate all
contradictions and therefore complete the computation of the fixpoint all the
time.

The main result of this work is a sound and complete satisfiability-testing
algorithm for a sub-logic of the alternation-free modal µ-calculus with converse
for finite trees. The algorithm operates in time complexity 2O(n) in the length
n of a formula. It has been implemented and is available online.

As a direction for future work, we plan to study the extension of the logic
with counting operators. We have started this investigation for restricted form
of counting and interleaving [Bárcenas-Patiño, 2011], which we want to extend
to the full logic. As another perspective, notice that it is possible to configure
the solver such that, instead of computing one satisfying tree for a satisfiable
formula, it computes a regular tree type representation of the set of all satisfying
trees. Such a representation could be used in the setting of rich type systems
for programming and query languages such as XQuery [Boag et al., 2006] and
CDuce [Benzaken et al., 2003].

4.10 XPath and Regular Tree Languages

XPath [Clark & DeRose, 1999] is a powerful language for navigating in XML
documents and selecting sets of nodes matching a predicate. In their simplest
form, XPath expressions look like “directory navigation paths”. For example,
the XPath expression

/child::book/child::chapter/child::section

navigates from the root of a document (designated by the leading “/”) through
the top-level “book” node to its “chapter” child nodes and on to its child
nodes named “section”. The result of the evaluation of the entire expression
is the set of all the “section” nodes that can be reached in this manner. The
situation becomes more interesting when combined with XPath’s capability
of searching along “axes” other than “child”. For instance, one may use the
“preceding-sibling” axis for navigating backward through nodes of the same
parent, or the “ancestor” axis for navigating upward recursively. Furthermore,
at each step in the navigation the selected nodes can be filtered using qualifiers:
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Boolean expression between brackets that can test the existence or absence of
paths.

For the practical experiments, we consider an XPath fragment covering all
major features of the XPath 1.0 recommendation [Clark & DeRose, 1999] with
the exception of counting and comparisons between data values.

Figure 4.17 gives the syntax of XPath expressions. Figure 4.18 and Figure
4.19 give an interpretation of XPath expressions as functions between sets of
focused trees.

LXPath 3 e ::= XPath expression
/p absolute path

| p relative path
| e1 p e2 union
| e1 ∩ e2 intersection

Path p ::= path
p1/p2 path composition

| p[q] qualified path
| a::σ step with node test
| a::∗ step

Qualif q ::= qualifier
q1 and q2 conjunction

| q1 or q2 disjunction
| not q negation
| p path

Axis a ::= tree navigation axis
child | self | parent

| descendant | desc-or-self
| ancestor | anc-or-self
| foll-sibling | prec-sibling
| following | preceding

Figure 4.17: XPath Abstract Syntax.

4.10.1 XPath Embedding

We now explain how an XPath expression can be translated into an equivalent
Lµ formula that performs navigation in focused trees in binary style.

Logical Interpretation of Axes. The translation of navigational primitives,
namely XPath axes, is formally specified in Figure 4.20. The translation func-
tion, noted “A→JaKχ”, takes an XPath axis a as input, and returns its Lµ
translation, parameterized by the Lµ formula χ given as parameter. This
parameter represents the context in which the axis occurs and is needed for
formula composition in order to translate path composition. More precisely,
the formula A→JaKχ holds for all nodes that can be accessed through the axis
a from some node verifying χ.

Let us consider the path expression A→JchildKχ, translated as µZ.
〈
1
〉
χ ∨〈

2
〉
Z, which is satisfied by children of the context χ. These nodes consist of
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SeJ·K· : LXPath → 2F → 2F

SeJ/pKF
def= SpJpKroot(F )

SeJpKF
def= SpJpK{(σs[tl],c)∈F}

SeJe1 p e2KF
def= SeJe1KF ∪ SeJe2KF

SeJe1 ∩ e2KF
def= SeJe1KF ∩ SeJe2KF

SpJ·K· : Path→ 2F → 2F

SpJp1/p2KF
def=
{
f ′ | f ′ ∈ SpJp2K(SpJp1KF )

}
SpJp[q]KF

def= {f | f ∈ SpJpKF ∧ SqJqKf}

SpJa::σKF
def=
{
f | f ∈ SaJaKF ∧ nm(f) = σ

}
SpJa::∗KF

def=
{
f | f ∈ SaJaKF

}
SqJ·K· : Qualif→ F → {true, false}

SqJq1 and q2Kf
def= SqJq1Kf ∧ SqJq2Kf

SqJq1 or q2Kf
def= SqJq1Kf ∨ SqJq2Kf

SqJnot qKf
def= ¬ SqJqKf

SqJpKf
def= SpJpK{f} 6= ∅

SaJ·K· : Axis→ 2F → 2F

SaJselfKF
def= F

SaJchildKF
def= fchild(F ) ∪ SaJfoll-siblingKfchild(F )

SaJfoll-siblingKF
def= nsibling(F ) ∪ SaJfoll-siblingKnsibling(F )

SaJprec-siblingKF
def= psibling(F ) ∪ SaJprec-siblingKpsibling(F )

SaJparentKF
def= parent(F )

SaJdescendantKF
def= SaJchildKF ∪ SaJdescendantK(SaJchildKF )

SaJdesc-or-selfKF
def= F ∪ SaJdescendantKF

SaJancestorKF
def= SaJparentKF ∪ SaJancestorK(SaJparentKF )

SaJanc-or-selfKF
def= F ∪ SaJancestorKF

SaJfollowingKF
def= SaJdesc-or-selfK(SaJfoll-siblingK(SaJanc-or-selfKF )

)
SaJprecedingKF

def= SaJdesc-or-selfK(SaJprec-siblingK(SaJanc-or-selfKF )

)
Figure 4.18: Interpretation of XPath Expressions as Functions Between Sets
of Focused Trees.
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fchild(F ) def= {f 〈1〉 | f ∈ F ∧ f 〈1〉 defined}

nsibling(F ) def= {f 〈2〉 | f ∈ F ∧ f 〈2〉 defined}

psibling(F ) def=
{
f
〈
2
〉
| f ∈ F ∧ f

〈
2
〉
defined

}
parent(F ) def= {(σ◦[rev_a(tl l, t :: tlr)], c)

| (t, (tl l, c[σ◦], tlr)) ∈ F}

rev_a(ε, tlr)
def= tlr

rev_a(t :: tl l, tlr)
def= rev_a(tl l, t :: tlr)

root(F ) def= {(σs[tl], (tl,Top, tl)) ∈ F}
∪ root(parent(F ))

Figure 4.19: Auxiliary Functions for XPath Interpretation.

the first child and the remaining children. From the first child, the context
must be reached immediately by going once upward via 1. From the remaining
children, the context is reached by going upward (any number of times) via 2
and finally once via 1.

Logical Interpretation of Expressions. Figure 4.21 gives the translation of
XPath expressions into Lµ. The translation function “E→JeKχ” takes an XPath
expression e and a Lµ formula χ as input, and returns the corresponding Lµ
translation. The translation of a relative XPath expression marks the initial
context with s. The translation of an absolute XPath expression navigates to
the root which is taken as the initial context.

Figure 4.22 illustrates the translation of the expression “child::a[child::b]”.
This expression selects all “a” child nodes of a given context which have at least
one “b” child. The translated Lµ formula holds for “a” nodes which are selected
by the expression. The first part of the translated formula, ϕ, corresponds to
the step “child::a” which selects candidates “a” nodes. The second part, ψ,
navigates downward in the subtrees of these candidate nodes to verify that
they have at least one immediate “b” child.

Note that without converse programs we would have been unable to dif-
ferentiate selected nodes from nodes whose existence is tested: we must state
properties on both the ancestors and the descendants of the selected node. The
fact that the Lµ logic is equipped with both forward and converse programs
is important for supporting XPath5. Logics without converse programs may
only be used for solving XPath emptiness but cannot be used for solving other
decision problems such as containment efficiently.

5One may ask whether it is possible to eliminate upward navigation at the XPath level
but it is well known that such XPath rewriting techniques cause exponential blow-ups of
expression sizes [Olteanu et al., 2002].
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A→J·K· : Axis→ Lµ → Lµ
A→JselfKχ

def= χ

A→JchildKχ
def= µZ.

〈
1
〉
χ ∨

〈
2
〉
Z

A→Jfoll-siblingKχ
def= µZ.

〈
2
〉
χ ∨

〈
2
〉
Z

A→Jprec-siblingKχ
def= µZ. 〈2〉χ ∨ 〈2〉Z

A→JparentKχ
def= 〈1〉µZ.χ ∨ 〈2〉Z

A→JdescendantKχ
def= µZ.

〈
1
〉

(χ ∨ Z) ∨
〈
2
〉
Z

A→Jdesc-or-selfKχ
def= µZ.χ ∨ µY.

〈
1
〉

(Y ∨ Z) ∨
〈
2
〉
Y

A→JancestorKχ
def= 〈1〉µZ.χ ∨ 〈1〉Z ∨ 〈2〉Z

A→Janc-or-selfKχ
def= µZ.χ ∨ 〈1〉µY.Z ∨ 〈2〉Y

A→JfollowingKχ
def= A→Jdesc-or-selfKη1

A→JprecedingKχ
def= A→Jdesc-or-selfKη2

η1
def= A→Jfoll-siblingKA→Janc-or-selfKχ

η2
def= A→Jprec-siblingKA→Janc-or-selfKχ

Figure 4.20: Translation of XPath Axes.

E→J·K· : LXPath → Lµ → Lµ
E→J/pKχ

def= P→JpK((µZ.¬〈1〉>∨〈2〉Z)∧(µY.χ∧s∨〈1〉Y ∨〈2〉Y ))

E→JpKχ
def= P→JpK(χ∧s)

E→Je1 p e2Kχ
def= E→Je1Kχ ∨ E→Je2Kχ

E→Je1 ∩ e2Kχ
def= E→Je1Kχ ∧ E→Je2Kχ

P→J·K· : Path→ Lµ → Lµ
P→Jp1/p2Kχ

def= P→Jp2K(P→Jp1Kχ)

P→Jp[q]Kχ
def= P→JpKχ ∧Q←JqK>

P→Ja::σKχ
def= σ ∧A→JaKχ

P→Ja::∗Kχ
def= A→JaKχ

Figure 4.21: Translation of Expressions and Paths.
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Translated Expression: child::a[child::b]

a ∧ (µX.
〈
1
〉

(χ ∧s) ∨
〈
2
〉
X)︸ ︷︷ ︸

ϕ

∧ 〈1〉µY.b ∨ 〈2〉Y︸ ︷︷ ︸
ψ

χ

a ϕ

c

a

d

b

ϕ∧ψ

Figure 4.22: XPath Translation Example.

XPath composition construct p1/p2 translates into formula composition in
Lµ, such that the resulting formula holds for all nodes accessed through p2
from those nodes accessed through p1 from χ. The translation of the branching
construct p[q] significantly differs. The resulting formula must hold for all nodes
that can be accessed through p and from which q holds. To preserve semantics,
the translation of p[q] stops the “selecting navigation” to those nodes reached
by p, then filters them depending on whether q holds or not. We express
this by introducing a dual formal translation function for XPath qualifiers,
noted Q←JqK· and defined in Figure 4.23, that performs “filtering” instead of
navigation. Specifically, P→J·K· can be seen as the “navigational” translating
function: the translated formula holds for target nodes of the given path. On
the opposite, Q←J·K· can be seen as the “filtering” translating function: it
states the existence of a path without moving to its result. The translated
formula Q←JqKχ (respectively P←JpKχ) holds for nodes from which there exists
a qualifier q (respectively a path p) leading to a node verifying χ.

XPath translation is based on these two translating “modes”, the first one
being used for paths and the second one for qualifiers. Whenever the “filtering”
mode is entered, it will never be left.

The translation of paths inside qualifiers is also given in Figure 4.23. It
uses the translation for axes and is based on XPath symmetry: symmetric(a)
denotes the symmetric XPath axis corresponding to the axis a (for instance
symmetric(child) = parent).

We may now state that our translation is correct, by relating the interpre-
tation of an XPath formula applied to some set of trees to the interpretation
of its translation, by stating that the translation of a formula is cycle-free, and
by giving a bound in the size of this translation.

We restrict the sets of trees to which an XPath formula may be applied
to those that may be denoted by an Lµ formula. This restriction will be
justified in Section 4.10.2 where we show that every regular tree language may
be translated to an Lµ formula.

Proposition 4.10.1 (Translation Correctness). The following hold for an
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Q←J·K· : Qualif→ Lµ → Lµ
Q←Jq1 and q2Kχ

def= Q←Jq1Kχ ∧Q←Jq2Kχ

Q←Jq1 or q2Kχ
def= Q←Jq1Kχ ∨Q←Jq2Kχ

Q←Jnot qKχ
def= ¬ Q←JqKχ

Q←JpKχ
def= P←JpKχ

P←J·K· : Path→ Lµ → Lµ
P←Jp1/p2Kχ

def= P←Jp1K(P←Jp2Kχ)

P←Jp[q]Kχ
def= P←JpK(χ∧Q←JqK>)

P←Ja::σKχ
def= A←JaK(χ∧σ)

P←Ja::∗Kχ
def= A←JaKχ

A←J·K· : Axis→ Lµ → Lµ
A←JaKχ

def= A→Jsymmetric(a)Kχ

Figure 4.23: Translation of Qualifiers.

XPath expression e and a Lµ formula ϕ denoting a set of focused trees, with
ψ = E→JeKϕ:

1. JψK∅ = SeJeKJϕK∅

2. ψ is cycle-free

3. the size of ψ is linear in the size of e and ϕ

Proof: The proof uses a structural induction that “peels off” the compositional
layers of each set of rules over focused trees. The cycle-free part follows from
the fact that translated fixpoint formulas are closed and there is no nesting of
modalities with converse programs between a fixpoint variable and its binder.
Each XPath navigation step is cycle-free, and their composition yields a proper
nesting of fixpoint formulas which is also cycle-free. Figure 4.24 illustrates
this on an typical example. Finally, formal translations do not duplicate any
subformula of arbitrary length. �

4.10.2 Embedding Regular Tree Languages

Several formalisms exist for describing types of XML documents (e.g. DTD,
XML Schema, Relax NG). In our case we embed regular tree types into Lµ.
Regular tree types gather most of the schemas occuring in practice [Murata
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Translation of
into Lµ:

following-sibling::a
a∧
(
µZ.

〈
2
〉
s ∨

〈
2
〉
Z
)/preceding-sibling::b

b ∧ [µY. 〈2〉 ( ) ∨ 〈2〉Y ]

s

b
a

c
a

b

Figure 4.24: Example of Back and Forth – Yet Cycle-Free – XPath Navigation.

et al., 2005]6. We rely on a straightforward isomorphism between unranked
regular tree types and binary regular tree types [Hosoya et al., 2005a]. Assum-
ing a countably infinite set of type variables ranged over by X, binary regular
tree type expressions are defined as follows:

Lbt 3 T ::= tree type expression
∅ empty set

| ε leaf
| T1 | T2 union
| σ(X1, X2) label
| let Xi.Ti in T binder

We refer the reader to [Hosoya et al., 2005a] for the denotational semantics of
regular tree languages, and directly introduce their translation into Lµ:

J·K : Lbt → Lµ

JT K def= p ∧ ¬p for T = ∅, ε

JT1 p T2K
def= JT1K ∨ JT2K

Jσ(X1, X2)K def= σ ∧ succ1(X1) ∧ succ2(X2)

Jlet Xi.Ti in T K def= µXi.JTiK in JT K

where we use the formula p∧¬p as “false”, and the function succ·(·) takes care
of setting the type frontier:

succα(X) =


¬ 〈α〉> if X is bound to ε
¬ 〈α〉> ∨ 〈α〉X if nullable(X)
〈α〉X if not nullable(X)

according to the predicate nullable(X) which indicates whether the type T 6=
ε bound to X contains the empty tree. For example, Figure 4.27 gives the

6Notice, however, that we do not consider counting nor interleaving features that can be
found in e.g. XML Schemas. These features are beyond the scope of this document: see
[Bárcenas-Patiño, 2011] for a preliminary work on how to integrate counting constraints in
such a logic.
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<!ELEMENT article (meta, (text | redirect))>
<!ELEMENT meta (title, status?, interwiki*, history?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT interwiki (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT history (edit)+>
<!ELEMENT edit (status?, interwiki*, (text | redirect)?)>
<!ELEMENT redirect EMPTY>
<!ELEMENT text (#PCDATA)>

Figure 4.25: A Fragment of the DTD of the Wikipedia Encyclopedia.

$9 ->EPSILON
| text($Epsilon, $Epsilon)
| redirect($Epsilon, $Epsilon)
| interwiki($Epsilon, $9)

$6 ->EPSILON
| text($Epsilon, $Epsilon)
| redirect($Epsilon, $Epsilon)
| interwiki($Epsilon, $9)
| status($Epsilon, $9)

$5 ->edit($6, $Epsilon)
| edit($6, $5)

$14 ->EPSILON
| history($5, $Epsilon)
| interwiki($Epsilon, $14)

$4 ->EPSILON
| history($5, $Epsilon)
| interwiki($Epsilon, $14)
| status($Epsilon, $14)

$2 ->title($Epsilon, $4)
$17 ->text($Epsilon, $Epsilon)

| redirect($Epsilon, $Epsilon)
$1 ->meta($2, $17)
$article ->article($1, $Epsilon)
Start Symbol is $article
9 type variables.
9 terminals.

Figure 4.26: The Binary Encoding of the DTD of Figure 4.25.

translation of a DTD fragment of the Wikipedia encyclopedia [Voss, 2007]
shown on Figure 4.25. The intermediate binary tree type encoding of the DTD
is shown on Figure 4.26.

Note that the translation of a regular tree type uses only downward modal-
ities since it describes the allowed subtrees at a given context. No additional
restriction is imposed on the context from which the type definition starts. In
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(let_mu
X2=((((text & ~(<1>T)) & ~(<2>T)) | ((redirect & ~(<1>T)) & ~(<2>T)))

| ((interwiki & ~(<1>T)) & (~(<2>T) | <2>X2))),
X3=(((((text & ~(<1>T)) & ~(<2>T)) | ((redirect & ~(<1>T)) & ~(<2>T)))

| ((interwiki & ~(<1>T)) & (~(<2>T) | <2>X2)))
| ((status & ~(<1>T)) & (~(<2>T) | <2>X2))),

X4=(((edit & (~(<1>T) | <1>X3)) & ~(<2>T)) |
((edit & (~(<1>T) | <1>X3)) & <2>X4)),

X5=(((history & <1>X4) & ~(<2>T)) |
((interwiki & ~(<1>T)) & (~(<2>T) | <2>X5))),

X6=((((history & <1>X4) & ~(<2>T)) | ((interwiki & ~(<1>T)) & (~(<2>T)
| <2>X5))) | ((status & ~(<1>T)) & (~(<2>T) | <2>X5))),

X7=((title & ~(<1>T)) & (~(<2>T) | <2>X6)),
X8=(((text & ~(<1>T)) & ~(<2>T)) | ((redirect & ~(<1>T)) & ~(<2>T))),
X9=((meta & <1>X7) & <2>X8),
X10=((article & <1>X9) & ~(<2>T))

in
X10)

Figure 4.27: The Lµ Formula for the DTD of Figure 4.25.

particular, navigation is allowed in the upward direction so that we can support
type constraints for which we have only partial knowledge in a given direction.
However, when we know the position of the root, conditions similar to those
of absolute paths are added in the form of additional formulas describing the
position that need to be satisfied. This is particularly useful when a regular
type is used by an XPath expression that starts its navigation at the root (/p)
since the path will not go above the root of the type (by adding the restriction
µZ.¬

〈
1
〉
> ∨

〈
2
〉
Z).

On the other hand, if the type is compared with another type (typically to
check inclusion of the result of an XPath expression in this type), then there
is no restriction as to where the root of the type is (our translation does not
impose the chosen node to be at the root). This is particularly useful since an
XPath expression usually returns a set of nodes deep in the tree which we may
compare to this partially defined type.





Five

Impact of XML Schema Evolution

Abstract

We consider the problem of XML Schema evolution. In the ever-
changing context of the web, XML schemas continuously change in order
to cope with the natural evolution of entities they describe. Schema
changes have important consequences. First, existing documents valid
with respect to the original schema are no longer guaranteed to fulfill the
constraints described by the evolved schema. Second, the evolution also
impacts programs manipulating documents whose structure is described
by the original schema.

We propose a unifying framework for determining the effects of XML
Schema evolution both on the validity of documents and on queries.
The system is very powerful in analyzing various scenarios in which for-
ward/backward compatibility of schemas is broken, and in which the
result of a query may not be anymore what was expected. Specifically,
the system offers a predicate language which allows one to formulate
properties related to schema evolution. The system then relies on ex-
act reasoning techniques to perform a fine-grained analysis. This yields
either a formal proof of the property or a counter-example that can be
used for debugging purposes. The system has been fully implemented
and tested with real-world use cases, in particular with the main stan-
dard document formats used on the web, as defined by W3C. The system
identifies precisely compatibility relations between document formats. In
case these relations do not hold, the system can identify queries that must
be reformulated in order to produce the expected results across successive
schema versions.

5.1 Introduction

XML is now commonplace on the web and in many information systems where
it is used for representing all kinds of information resources, ranging from simple
text documents such as RSS or Atom feeds to highly structured databases. In
these dynamic environments, not only data are changing steadily but their
schemas also get modified to cope with the evolution of the real world entities
they describe.

Schema changes raise the issue of data consistency. Existing documents and
data that were valid with a certain version of a schema may become invalid
on a new version of the schema (forward incompatibility). Conversely, new
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documents created with the latest version of a schema may be invalid on some
previous versions (backward incompatibility). In particular, there are two ways
commonly used in the design of schemas. One consists in under constraining
the schema in the earlier versions when the design is not completely stable and
then constraining it in future versions progressively. The other way is more
conservative and consists in constraining the schema first and then relaxing
the constraints progressively. If we leave aside new elements and attributes
introduced between two successive versions of a schema, this is particularly
true for new combinations of elements (content models) added or restricted
through regular expressions in W3C Document formats recommendations (see
Section 5.5).

In addition, schemas may be written in different languages, such as DTD,
XML Schema, or Relax-NG, to name only the most popular ones. And it is
common practice to describe the same structure, or new versions of a structure,
in different schema languages. Document formats developed by W3C provide
a variety of examples: XHTML 1.0 has both DTDs and XML Schemas, while
XHTML 2.0 has a Relax-NG definition; the schema for SVG Tiny 1.1 is a DTD,
while version 1.2 is written in Relax-NG; MathML 1.01 has a DTD, MathML
2.0 has both a DTD and an XML Schema, and MathML 3.0 is developed with
a Relax-NG schema and also published with a DTD and an XML Schema.
An issue then is to make sure that schemas written in different languages are
equivalent, i.e. they describe the same structure, possibly with some differences
due to the expressivity of the language [Murata et al., 2005]. Another issue
is to clearly identify the differences between two versions of the same schema
expressed in different languages. Moreover, the issues of forward and backward
compatibility of instances obviously remain when schema languages change
from a version to another.

Validation, and then compatibility, is not the only purpose of a schema.
Validation is usually the first step for safe processing of documents and data.
It makes sure that documents and data are structured as expected and can
then be processed safely. The next step is to actually access and select the
various parts to be handled in each phase of an application. For this, query
languages play a key role. As an example, when transforming a document with
XSL, XPath queries are paramount to locate in the original document the data
to be produced in the transformed document.

Queries are affected by schema evolutions. The structures they return may
change depending on the version of the schema used by a document. When
changing schema, a query may return nothing, or something different from
what was expected, and obviously further processing based on this query is at
risk.

These observations highlight the need for evaluating precisely and safely
the impact of schema evolutions on existing and future instances of documents
and data. They also show that it is important for software engineers to pre-
cisely know what parts of a processing chain have to be updated when schemas
change. In this chapter we focus on the XPath query language which is used in
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many situations while processing XML documents and data. The XSL trans-
formation language was already mentioned, but XPath is also present in XLink
and XQuery for instance.

A part of this work concerning the impact of schema changes on XPath
queries was presented at the ACM International Conference on Functional
Programming (ICFP), 2009, [Genevès et al., 2009]. The present article aims
at covering the more general issue of schema evolution by taking into account
the impact on the validity of documents as well. In particular, we identify
criteria for the evolution of standard XML Schemas. We present a framework
for checking these criteria with the schemas specifying the main standard doc-
uments formats used on the web, as defined by W3C (see Section 5.5).

5.1.1 Outline

We first introduce the framework from a high-level perspective in Section 5.2:
we describe how the whole system is assembled, and which XML schemas and
queries are supported. In Section 5.3, we provide a more in-depth under-
standing of the underlying logic on which the system is built; in particular we
explain how XML constructs are mapped to this logical representation. Based
on this logical encodings, Section 5.4 introduces a predicate language specif-
ically designed for assessing the impact of schema evolutions. The following
sections respectively focus on applying the framework for studying the impact
of schema evolutions on the validity of documents (Section 5.5) and on queries
(Section 5.6). The full implementation of the system is presented in Section 5.7.
Finally, we discuss related work in Section 5.8 before concluding in Section 5.9.

5.2 Analysis Framework

The main contribution of this chapter is a unifying framework that allows the
automatic verification of properties related to XML schema evolution and its
impact on the validity of documents and on queries. In particular, it offers
the possibility of checking fine-grained properties of the behavior of queries
with respect to successive versions of a given schema. The system can be used
for checking relations between schemas and whether schema evolutions require
a particular query to be updated. Whenever schema evolutions may induce
query malfunctions, the system is able to generate annotated XML documents
that exemplify bugs, with the goal of helping the programmer to understand
and properly overcome undesired effects of schema evolutions.

The system relies on a predicate language (presented in Section 5.4) specifi-
cally designed for studying schema and query compatibility issues when schemas
evolve. Specifically, predicates allow characterizing in a precise manner nodes
subject to evolution. For instance, predicates allow to distinguish new nodes
selected by the query after a schema change from new nodes that appear in
the modified schema. Predicates also allow to describe nodes that appear in
new regions of a schema compared to its original version, or even in a new
context described by a particular XPath expression. Predicates, together with
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select("a//b[ancestor::e]",
type("XHTML1-strict.dtd",
"html"))

XML Problem Description (Text
File)

Parsing and
Compilation

let $X=e & <1>$X...

Logical formula
over binary trees
with attributes

Satisfiability
Test

Unsatisfiable (property proved)

Satisfiable
Synthesis

Satisfying
binary tree
with
attributes

binary to
n-ary

Sample XML
document
inducing a bug

Figure 5.1: Framework Overview.

the composition language provided in the system allow to express and analyze
complex settings.

The system has been fully implemented [Genevès & Layaïda, 2006a] and
is outlined in Figure 5.1. It is composed of a parser for reading the text file
description of the problem (which in turn uses specific parsers for schemas,
queries, logical formulas, and predicates), compilers for translating schemas
and queries into their logical representations, a solver for checking satisfiability
of logical formulas, and a counter example XML tree generator (described in
[Genevès et al., 2008]).

We first introduce the data model we consider for XML documents, schemas
and queries.

5.2.1 XML Trees with Attributes

An XML document is considered as a finite tree of unbounded depth and arity,
with two kinds of nodes respectively named elements and attributes. In such
a tree, an element may have any number of children elements, and may carry
zero, one or more attributes. Attributes are leaves. Elements are ordered
whereas attributes are not, as illustrated on Figure 5.4. In this chapter, we
focus on the nested structure of elements and attributes, and ignore XML data
values.

5.2.2 Type Constraints

Our tree type expressions capture most of the schemas in use today either
written using DTD, XML Schema, Relax NG, etc. Users may thus define con-
straints over XML documents with the language of their choice, and, more
importantly, they may refer to most existing schemas for use with the sys-
tem. Instead of having one parser/compiler per schema language, we rely on a
common intermediate language in which all these languages are compiled. For
the intermediate language we consider the standard class of regular tree gram-
mars, commonly found in the literature [Hosoya et al., 2005b], to which we
have added the support of constraints over XML attributes (whose efficiency
is further discussed in section 5.3.3). In terms of expressive power, regular tree
grammars support constraints over trees which are more expressive than local
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tree grammars (DTDs) and single-type tree grammars (XML schemas), captur-
ing exactly the class of Relax NG schemas, and, more fundamentally finite tree
automata (see [Murata et al., 2005] for a formal characterization of the respec-
tive expressive power of these languages). In practice, we have implemented
parsers that produce this intermediate representation from a given DTD, XML
Schema, or Relax NG schema. We have implemented one compiler from this
representation into the logic. An advantage of this approach is that it is ex-
tensible: it is easy to know the supported features since (1) the intermediate
language is well-characterized and made explicit, and (2) extending the system
with new schema languages is easy since one does not need to implement new
compilers into the logic (and prove soundness, completeness and polynomial-
time translation), but rather simply express the new considered constraints in
the intermediate language.

Specifically, our unifying internal representation for tree grammars is made
of regular tree type expressions, extended with constraints over attributes.
Assuming a set of variables ranged over by x, we define a tree type expression
as follows:

T ::= tree type expression
∅ empty set

| () empty sequence
| T | T disjunction
| T , T concatenation
| l(a)[T ] element definition
| x variable
| let xi.Ti in T binder

The let construct allows binding one or more variables to associated formu-
las. Since several variables can be bound at a time, the notation x = T is used
for denoting a vector of variable bindings (possibly with mutual recursion).

We impose a usual restriction on the recursive use of variables: we allow
unguarded (i.e. not enclosed by a label) recursive uses of variables, but restrict
them to tail positions1. With that restriction, tree types expressions define
regular tree languages. In addition, an element definition may involve simple
attribute expressions that describe which attributes the defined element may
(or may not) carry:

a ::= attribute expression
() empty list

| list | a disjunction
list ::= attribute list

list, list commutative concatenation
| l? optional attribute
| l required attribute
| ¬l prohibited attribute

1For instance, “let x.l(a)[T ], x | () in x” is allowed.
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We use the usual semantics of regular tree types found in [Hosoya et al.,
2005b] and [Genevès et al., 2008].

5.2.3 Queries

The set of XPath expressions we consider is given by the syntax shown on Fig-
ure 5.2. The semantics of XPath expressions is described in [Clark & DeRose,
1999], and more formally in [Wadler, 2000]. We observed that, in practice,
many XPath expressions contain syntactic sugars that can also fit into this
fragment. Figure 5.3 presents how our XPath parser rewrites some commonly
found XPath patterns into the fragment of Figure 5.2, where the notation
(a::nt)k stands for the composition of k successive path steps of the same form:
a::nt/.../a::nt︸ ︷︷ ︸

k steps

.

query ::=
/path absolute path

| path relative path
| query | query union
| query ∩ query intersection

path ::=
path/path path composition

| path[qualifier] qualified path
| a::nt step

qualifier ::=
qualifier and qualifier conjunction

| qualifier or qualifier disjunction
| not(qualifier) negation
| path path
| path/@nt attribute path
| @nt attribute step

nt ::= node test
σ node label

| ∗ any node label
a ::= tree navigation axis

self | child | parent
| descendant | ancestor
| descendant-or-self
| ancestor-or-self
| following-sibling
| preceding-sibling
| following | preceding

Figure 5.2: XPath Expressions.

The next Section presents the logic underlying the predicate language.
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nt[position() = 1]  nt[not(preceding-sibling::nt)]
nt[position() = last()]  nt[not(following-sibling::nt)]
nt[position() = k︸︷︷︸

k>1

]  nt[(preceding-sibling::nt)k−1]

count(path) = 0  not(path)
count(path) > 0  path

count(nt) > k︸︷︷︸
k>0

 nt/(following-sibling::nt)k

preceding-sibling::∗[position() = last() and qualifier]
 preceding-sibling::∗[not(preceding-sibling::∗) and qualifier]

Figure 5.3: Syntactic Sugars and their Rewritings.

5.3 Logical Setting

It is well-known that there exist bijective encodings between unranked trees
(trees of unbounded arity) and binary trees [Thomas, 1990]. Owing to these
encodings binary trees may be used instead of unranked trees without loss
of generality. In the sequel, we rely on a simple “first-child & next-sibling”
encoding of unranked trees. In this encoding, the first child of an element node
is preserved in the binary tree representation, whereas siblings of this node are
appended as right successors in the binary representation. Attributes are left
unchanged by this encoding. For instance, Figure 5.5 presents how the sample
tree of Figure 5.4 is mapped.

<r c="␣" a="␣" b="␣">
<s d="␣">
<v/><w/><x e="␣"/>

</s>
<t/>
<u/>

</r>
XML Notation

a
b c

d

e

r

s t u

v w x

Figure 5.4: Sample XML Tree with Attributes.

The logic we introduce below, used as the core of our framework, operates
on such binary trees with attributes.
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a
b c

d

e

r

s

t

u

v

w

x

Figure 5.5: Binary Encoding of Tree of Figure 5.4.

5.3.1 Logical Formulas

The concrete syntax of logical formulas is shown on Figure 5.6, where the
meta-syntax 〈X〉� means one or more occurences of X separated by commas.
The user can directly encode formulas with this syntax in text files to be used
with the system [Genevès & Layaïda, 2006a]. This concrete syntax is used as
a single unifying notation throughout all the chapter.

ϕ ::= formula
T true

| F false
| l element name
| p atomic proposition
| # start context
| ϕ | ϕ disjunction
| ϕ & ϕ conjunction
| ϕ => ϕ implication
| ϕ <=> ϕ equivalence
| (ϕ) parenthesized formula
| ϕ̃ negation
| <p>ϕ existential modality
| <l>T attribute named l
| $X variable
| let 〈$X = ϕ〉� in ϕ binder for recursion
| predicate predicate (See Section 5.4)

p ::= program inside modalities
1 first child

| 2 next sibling
| -1 parent
| -2 previous sibling

Figure 5.6: Concrete Syntax of Formulas.
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Sample Formula Tree XML

a & <1>b

a

b <a><b/></a>

a & <1>(b & <2>c)

a

b

c <a><b/><c/></a>

e & <-1>(d & <2>g)

d

e g <d><e/></d><g/>
f & <-2>(g & ˜<2>T) none none

Figure 5.7: Sample Formulas and Satisfying Trees.

The semantics of logical formulas corresponds to the classical semantics of
a µ-calculus interpreted over finite tree structures. A formula is satisfiable iff
there exists a finite binary tree with attributes for which the formula holds at
some node. This is formally defined in [Genevès et al., 2007b], and we review
it informally below through a series of examples.

There is a difference between an element name and an atomic proposition2:
an element has one and only one element name, whereas it can satisfy multiple
atomic propositions. We use atomic propositions to attach specific information
to tree nodes, not related to their XML labeling. For example, the start context
(a reserved atomic proposition) is used to mark the starting context nodes for
evaluating XPath expressions.

The logic uses modalities for navigating in binary trees. A modality <p>ϕ
can be read as follows: “there exists a successor node by program p such that
ϕ holds at this successor”. As shown on Figure 5.6, a program p is simply one
of the four basic programs {1, 2, -1, -2}. Program 1 allows navigating from
a node down to its first successor, and program 2 allows navigating from a
node down to its second successor. The logic also features converse programs
-1 and -2 for navigating upward in binary trees, respectively from the first
successor to its parent and from the second successor to its previous sibling.
Table on Figure 5.7 gives some simple formulas using modalities for navigating
in binary trees, together with sample satisfying trees, in binary and unranked
tree representations.

The logic allows expressing recursion in trees through the recursive binder.
For example the recursive formula:

let $X = b | <2>$X in $X

means that either the current node is named b or there is a sibling of the current
node which is named b. For this purpose, the variable $X is bound to the

2In practice, an atomic proposition must start with a “_”.
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subformula b | <2>$X which contains an occurence of $X (therefore defining
the recursion). The scope of this binding is the subformula that follows the
“in” symbol of the formula, that is $X. The entire formula can thus be seen as
a compact recursive notation for a infinitely nested formula of the form:

b | <2>(b | <2>(b | <2>(...)))

Recursion allows expressing global properties. For instance, the recursive for-
mula:

˜ let $X = a | <1>$X | <2>$X in $X

expresses the absence of nodes named a in the whole subtree of the current
node (including the current node). Furthermore, the fixpoint operator makes
possible to bind several variables at a time, which is specifically useful for
expressing mutual recursion. For example, the mutually recursive formula:

let
$X = (a & <2>$Y) | <1>$X | <2>$X,
$Y = b | <2>$Y

in $X

asserts that there is a node somewhere in the subtree such that this node is
named a and it has at least one sibling which is named b. Binding several vari-
ables at a time provides a very expressive yet succinct notation for expressing
mutually recursive structural patterns (that are common in XML Schemas, for
instance).

From a theoretical perspective, the recursive binder let $X = ϕ in ϕ cor-
responds to the fixpoint operators of the µ-calculus. It is shown in [Genevès
et al., 2007b] that the least fixpoint and the greatest fixpoint operators of the
µ-calculus coincide over finite tree structures, for a restricted class of formulas
called cycle-free formulas.

5.3.2 Queries

The logic is expressive enough to capture the set of XPath expressions presented
in Section 5.2.3. For example, Figure 5.8 illustrates how the sample XPath
expression:

child::r[child::w/@att]

is expressed in the logic. From a given context in an XML document, this
expression selects all r child nodes which have at least one w child with an
attribute att. Figure 5.8 shows how it is expressed in the logic, on the binary
tree representation. The formula holds for r nodes which are selected by the
expression. The first part of the formula, ϕ, corresponds to the step child::r
which selects candidates r nodes. The second part, ψ, navigates downward
in the subtrees of these candidate nodes to verify that they have at least one
immediate w child with an attribute att.
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att

#

r ϕ

s

r

v

w

ϕ∧ψ

Translated Query: child::r[child::w/@att]

Translation:
r & (let $X=<-1># | <-2>$X)︸ ︷︷ ︸

ϕ

& <1>let $Y=w & <att>T | <2>$Y︸ ︷︷ ︸
ψ

Figure 5.8: XPath Translation Example.

This example illustrates the need for converse programs inside modalities.
The translated XPath expression only uses forward axes (child and attribute),
nevertheless both forward and backward modalities are required for its logical
translation. Without converse programs we would have been unable to dif-
ferentiate selected nodes from nodes whose existence is simply tested. More
generally, properties must often be stated on both the ancestors and the de-
scendants of the selected node. Equipping the logic with both forward and
converse programs is therefore crucial. Logics without converse programs may
only be used for solving XPath emptiness but cannot be used for solving other
decision problems such as containment efficiently.

A systematic translation of XPath expressions into the logic is given in
[Genevès et al., 2007b]. In this chapter, we extended it to deal with at-
tributes. We implemented a compiler that takes any expression of the frag-
ment of Figure 5.2 and computes its logical translation. With the help of
this compiler, we extend the syntax of logical formulas with a logical predi-
cate select("query", ϕ). This predicate compiles the XPath expression query
given as parameter into the logic, starting from a context that satisfies ϕ.
The XPath expression to be given as parameter must match the syntax of the
XPath fragment shown on Figure 5.2 (or Figure 5.3). In a similar manner,
we introduce the predicate exists("query", ϕ) which tests the existence of
query from a context satisfying ϕ, in a qualifier-like manner (without moving
to its result). Additionally, the predicate select("query") is introduced as
a shortcut for select("query", #), where # simply marks the initial context
node of the XPath expression3. The predicate exists("query") is a short-
cut for exists("query", T). These syntactic extensions of the logic allow the
user to easily embed XPath expressions and formulate decision problems out
of them (like e.g. containment or any other boolean combination). In the next
sections we explain how the framework allows combining queries with schema

3This mark is especially useful for comparing two or more XPath expressions from the
same context.
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information for formulating problems.

5.3.3 Tree Types

Tree type expressions are compiled into the logic in two steps: the first stage
translates them into binary tree type expressions, and the second step actually
compiles this intermediate representation into the logic. The translation pro-
cedure from tree type expressions to binary tree type expressions is well-known
and detailed in [Genevès, 2006]. The syntax of output expressions follows:

T ::= binary tree type expression
∅ empty set

| () empty tree
| T | T disjunction
| l(a)[x, x] element definition
| let xi.Ti in T binder

Attribute expressions are not concerned by this transformation to binary form:
they are simply attached, unchanged, to new (binary) element definitions. Fi-
nally, binary tree type expressions are compiled into the logic. This translation
step was introduced and proven correct in [Genevès et al., 2007b]. Originally,
the translation takes a tree type expression T and returns the corresponding
logical formula. Here, we extend it slightly but crucially: the logical translation
of an expression T is given by the function tr(T )ψϕ defined below, that takes
additional arguments ϕ and ψ:

tr(T )ψϕ
def= F for T = ∅, ()

tr(T1 | T2)ψϕ
def= tr(T1)ψϕ | tr(T2)ψϕ

tr(l(a)[x1, x2])ψϕ
def=
(
l & ϕ & tra(a) & succ1(x1) & succ2(x2)

)
| ψ

tr(let xii.Tii in T )ψϕ
def= let $Xi = tr(Ti)ψϕ in tr(T )ψϕ

The addition of ϕ and ψ (respectively in a new conjunction and a new
disjunction) is a key element for the definition of predicates in Section 5.4.
More precisely, this allows marking type sub-expressions so that they can be
distinguished in predicates, as explained in Section 5.3.4. In addition, ϕ and ψ
are either true, false, or simple atomic propositions. Thus, it is worth noticing
that their addition does not affect the linear complexity of tree type translation.
The function succ·(·) describes the type for each successor:

succp(x) =


˜<p>T if x is bound to ()
˜<p>T | <p>$X if nullable(x)
<p>$X if not nullable(x)

according to the predicate nullable(x) which indicates whether the type T 6= ()
bound to x contains the empty tree.
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The function tra(a) compiles attribute expressions associated with element
definitions as follows:

tra(()) def= notothers(())

tra(list | a) def= tra(list) & notothers(list)

tra(list, list′) def= tra(list) & tra(list′)

tra(l?) def= l |˜l

tra(l) def= l

tra(¬l) def=˜l

In usual schemas (e.g. DTDs, XML Schemas) when no attribute is specified
for a given element, it simply means no attribute is allowed for the defined
element. This convention must be explicitly stated in the logic. This is the role
of the function “notothers(list)” which returns the negated disjunction of all
attributes not present in list. As a result, taking attributes into account comes
at an extra-cost. The above translation appends a (potentially very large)
formula in which all attributes occur, for each element definition. In practice,
a placeholder atomic proposition is inserted until the full set of attributes
involved in the problem formulation is known. When the whole formula has
been parsed, placeholders are replaced by the conjunction of negated attributes
they denote. This extra-cost can be observed in practice, and the system allows
two modes of operations: with or without attributes4. Nevertheless the system
is still capable of handling real world DTDs (such as the DTD of XHTML
1.0 Strict) with attributes. This is due to (1) the limited expressive power
of languages such as DTD that do not allow for disjunction over attribute
expressions (like “list | a” ); and, more importantly, (2) the satisfiability-testing
algorithm which is implemented using symbolic techniques [Genevès et al.,
2008].

Tree type expressions form the common internal representation for a variety
of XML schema definition languages. In practice, the logical translation of
a tree type expression T are obtained directly from a variety of formalisms
for defining schemas, including DTD, XML Schema, and Relax NG. For this
purpose, the syntax of logical formulas is extended with a predicate type("·", ·).
The logical translation of an existing schema is returned by type("f", l) where
f is a file path to the schema file and l is the element name to be considered as
the entry point (root) of the given schema. Any occurrence of this predicate
will parse the given schema, extract its internal tree type representation T ,
compile it into the logic and return the logical formula tr(T )FT.

5.3.4 Type Tagging

A tag (or “color”) is introduced in the compilation of schemas with the purpose
of marking all node types of a specific schema. A tag is simply a fresh atomic

4The optional argument “-attributes” must be supplied for attributes to be considered.
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proposition passed as a parameter to the translation of a tree type expression.
For example: tr(T )Fxhtml is the logical translation of T where each element
definition is annotated with the atomic proposition “xhtml”. With the help
of tags, it becomes possible to refer to the element types in any context. For
instance, one may formulate tr(T )Fxhtml | tr(T ′)Fsmil for denoting the union of
all T and T ′ documents, while keeping a way to distinguish element types;
even if some element names are shared by the two type expressions.

Tagging becomes even more useful for characterizing evolutions between
successive versions of a single schema. In this setting, we need a way to distin-
guish nodes allowed by a newer schema version from nodes allowed by an older
version. This distinction must not be based only on element names, but also
on content models. Assume for instance that T ′ is a newer version of schema
T . If we are interested in the set of trees allowed by T ′ but not allowed by T
then we may formulate:

tr(T ′)FT &˜tr(T )FT

If we now want to check more fine-grained properties, we may rather be inter-
ested in the following (tagged) formulation:

tr(T ′)Fall &˜tr(T )̃ old_complement
T

In this manner, we can distinguish elements that were added in T ′ and whose
names did not occur in T , from elements whose names already occurred in T
but whose content model changed in T ′, for instance.

In practice, a type is tagged using the predicate type("f", l, ϕ, ϕ′) which
parses the specified schema, converts it into its logical representation T and
returns the formula tr(T )ϕ′ϕ . This kind of type tagging is useful for studying the
consequences of schema updates over queries, as presented in the next sections.

5.4 Analysis Predicates

This section introduces the basic analysis tasks offered to XML application
designers for assessing the impact of schema evolutions. In particular, we
propose a means for identifying the precise reasons for type mismatches or
changes in query results under type constraints.

For this purpose, we build on our query and type expression compilers, and
define additional predicates that facilitate the formulation of decision problems
at a higher level of abstraction. Specifically, these predicates are introduced as
logical macros with the goal of allowing system usage while focusing (only) on
the XML-side properties, and keeping underlying logical issues transparent for
the user. Ultimately, we regard the set of basic logical formulas (such as modal-
ities and recursive binders) as an assembly language, into which predicates are
translated.

We illustrate this principle with two simple predicates designed for checking
backward-compatibility of schemas, and query satisfiability in the presence of
a schema.
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• The predicate backward_incompatible(T , T ′) takes two type expres-
sions as parameters, and assumes T ′ is an altered version of T . This
predicate is unsatisfiable iff all instances of T ′ are also valid against T .
Any occurrence of this predicate in the input formula will automatically
be compiled as tr(T ′)FT &˜tr(T )FT.

• The predicate non_empty("query", T ) takes an XPath expression (with
the syntax defined on Figure 5.2) and a type expression as parameters,
and is unsatisfiable iff the query always returns an empty set of nodes
when evaluated on an XML document valid against T . This predicate
compiles into select("query", tr(T )FT & #) where the top-level predicate
select("query", ϕ) compiles the XPath expression query into the logic,
starting from a context that satisfies ϕ, as explained in Section 5.3.2.
This can be used to check whether the modification of the schema does
not contradict any part of the query.

Notice that the predicate non_empty("query", T ) can be used for checking
whether a query that is valid5 against a schema remains valid with an updated
version of a schema. In other terms, this predicate allows determining whether
a query that must always return a non-empty result (whatever the tree on
which it is evaluated) keeps verifying the same property with a new version of
a schema.

A second, more-elaborate, class of predicates allows formulating problems
that combine both a query query and two type expressions T , T ′ (where T ′ is
assumed to be a evolved version of T ):

• new_element_name("query", T , T ′) is satisfied iff the query query selects
elements whose names did not occur at all in T . This is especially useful
for queries whose last navigation step contains a “*” node test and may
thus select unexpected elements. This predicate is compiled into:

ẽlement(T ) & select("query", tr(T ′)FT)

where element(T ) is another predicate that builds the disjunction of
all element names occuring in T . In a similar manner, the predicate
attribute(ϕ) builds the logical disjunction of all attribute names used
in ϕ.

• new_region("query", T , T ′) is satisfied iff the query query selects ele-
ments whose names already occurred in T , but such that these nodes
now occur in a new context in T ′. In this setting, the path from the
root of the document to a node selected by the XPath expression query
contains a node whose type is defined in T ′ but not in T as illustrated
below:

5We say that a query is valid iff its negation is unsatisfiable.
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node
selected by
query

path from
root to
selected node
contains node
in T ′ \ T

XML document valid against T ′
but not against T

The predicate new_region("query", T , T ′) is logically defined as follows:

new_region("query", T , T ′) def=

select("query", tr(T ′)F_all &˜tr(T )˜ _old_complement
T )

&˜added_element(T , T ′)
& ancestor(_old_complement)

&˜descendant(_old_complement)
&˜following(_old_complement)
&˜preceding(_old_complement)

The previous definition heavily relies on the partition of tree nodes defined
by XPath axes, as illustrated by Figure 5.9.
The definition of new_region("query", T , T ′) uses added_element(T , T ′),
an auxiliary predicate, that builds the disjunction of all element names
defined in T ′ but not in T (or in other terms, elements that were added in
T ′). In a similar manner, the predicate added_attribute(ϕ,ϕ′) builds
the disjunction of all attribute names defined in T ′ but not in T . The
predicate new_region("query", T , T ′) is useful for checking whether a
query selects a different set of nodes with T ′ than with T because se-
lected elements may occur in new regions of the document due to changes
brought by T ′.

• new_content("query", T , T ′) is satisfied iff the query query selects ele-
ments whose names were already defined in T , but whose content model
has changed due to evolutions brought by T ′, as illustrated below:

node
selected by
query

subtree for
selected node
has changed
(new content
model)

XML document valid against T ′
but not against T
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The definition of new_content("query", T , T ′) follows:

new_content("query", T , T ′) def=

select("query", tr(T ′)F_all &˜tr(T )˜ _old_complement
T )

&˜added_element(T , T ′)
&˜ancestor(added_element(T , T ′))
& descendant(_old_complement)
&˜following(_old_complement)
&˜preceding(_old_complement)

The predicate new_content("query", T , T ′) can be used for ensuring
that XPath expressions will not return nodes with a possibly new con-
tent model that may cause problems. For instance, this allows checking
whether an XPath expression whose resulting node set is converted to
a string value (as in, e.g. XPath expressions used in XSLT “value-of”
instructions) is affected by the changes from T to T ′.

• new_sibling("query", T , T ′) is satisfied iff the query query selects ele-
ments whose names already occurred in T , but such that they now occur
with new potential siblings due to T ′. The notion of context, here, is
extended to be not only the chain of ancestors from the selected node to
the root but also the set of previous and following siblings of the selected
node.

self
ancestor

descendant

pr
ec

ed
ing

following

following-sibling

preceding-sibling

child

parent

Figure 5.9: XPath axes: partition of tree nodes.
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The previously defined predicates can be used to help the programmer iden-
tify precisely how type constraint evolutions affect queries. They can even be
combined with usual logical connectives to formulate even more sophisticated
problems. For example, let us define the predicate exclude(ϕ) which is satis-
fiable iff there is no node that satisfies ϕ in the whole tree. This predicate can
be used for excluding specific element names or even nodes selected by a given
XPath expression. It is defined as follows:

exclude(ϕ) def=˜ancestor-or-self(descendant-or-self(ϕ))

This predicate can also be used for checking properties in an iterative manner,
refining the property to be tested at each step. It can also be used for verifying
fine-grained properties. For instance, one may check whether T ′ defines the
same set of trees as T modulo new element names that were added in T ′ with
the following formulation:

˜(T <=> T ′) & exclude(added_element(T , T ′))

This allows identifying that, during the type evolution from T to T ′, the query
results change has not been caused by the type extension but by new compo-
sitions of nodes from the older type.

In practice, instead of taking internal tree type representations (as defined
in Section 5.2.2) as parameters, most predicates do actually take any logi-
cal formula as parameter, or even schema paths as parameters. We believe
this facilitates predicates usage and, most notably, how they can be composed
together. Figure 5.10 gives the syntax of built-in predicates as they are imple-
mented in the system, where f is a file path to a DTD (.dtd), XML Schema
(.xsd), or Relax NG (.rng). In addition of aforementioned predicates, the pred-
icate descendant(ϕ) forces the existence of a node satisfying ϕ in the subtree,
and predicate-name(〈ϕ〉�) is a call to a custom predicate, as explained in the
next section.

5.4.1 Custom Predicates

Following the spirit of predicates presented in the previous section, users may
also define their own custom predicates. The full syntax of XML logical spec-
ifications to be used with the system is defined on Figure 5.11, where the
meta-syntax 〈X〉� means one or more occurrence of X separated by commas.
A global problem specification can be any formula (as defined on Figure 5.6), or
a list of custom predicate definitions separated by semicolons and followed by a
formula. A custom predicate may have parameters that are instanciated with
actual formulas when the custom predicate is called (as shown on Figure 5.10).
A formula bound to a custom predicate may include calls to other predicates,
but not to the currently defined predicate (recursive definitions must be made
through the let binder shown on Figure 5.6).
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predicate ::=
select("query")

| select("query", ϕ)
| exists("query")
| exists("query", ϕ)

| type("f", l)
| type("f", l, ϕ, ϕ′)
| forward_incompatible(ϕ,ϕ′)
| backward_incompatible(ϕ,ϕ′)

| element(ϕ)
| attribute(ϕ)
| descendant(ϕ)
| exclude(ϕ)
| added_element(ϕ,ϕ′)
| added_attribute(ϕ,ϕ′)

| non_empty("query", ϕ)
| new_element_name("query", "f", "f′", l)
| new_region("query", "f", "f′", l)
| new_sibling("query", "f", "f′", l)
| new_content("query", "f", "f′", l)
| predicate-name(〈ϕ〉�)

Figure 5.10: Syntax of Predicates for XML Reasoning.

5.5 Impact of Standard Schema Evolution on Valid Documents

As depicted on Fig. 5.1, the whole system relies on a satisfiability solver for the
underlying logic. The main principe of the satisfiability-solver is an exhaustive
search for a tree that satisfies the formula. The search relies on a least fixpoint
computation that starts from all possible leaves and attempt to plug every
possible parent node at each further step. The algorithm terminates once the
initial formula has been found to hold in a given node of the tree. Otherwise, the

spec ::=
ϕ formula (see Fig. 5.6)

| def;ϕ
def ::=

predicate-name(〈l〉�) = ϕ′ custom definition
| def; def list of definitions

Figure 5.11: Global Syntax for Specifying Problems.
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algorithm terminates when no more parent nodes can be added. The algorithm,
as well as proofs of its soundness and completeness, optimal complexity, and
implementation techniques are detailed in [Genevès et al., 2007b].

We have carried out extensive experiments of the system in real world set-
tings, e.g. with popular web schemas such as XHTML, MathML, SVG, SMIL
(Table on Figure 5.12 gives details related to their respective sizes). In this
section, we show how the tool can be used to analyze different situations where
schemas changes have important consequences on the validity of existing doc-
uments.

Schema Variables Elements Attributes
XHTML 1.0 basic DTD 71 52 57
XHTML 1.1 basic DTD 89 67 83
MathML 1.01 DTD 137 127 72
MathML 2.0 DTD 194 181 97

Figure 5.12: Sizes of (Some) Considered Schemas.

One major role of organizations such as W3C is to contribute to the stan-
dardization effort leading to a unique widely accepted set of constraints for
a given class of documents. Designing a normative specification is a complex
process, which is made even harder by a few important considerations. For ex-
ample, when a language is designed, one need to take into account how future
versions of that language can evolve. For a particular version of a language,
not only the schema constraints allowed by that version need to be considered
but also how they can be modified in future versions. This allows to address
how an implementation of this version should process document variants added
by future schema versions.

Specifically, we identify three different properties for a specification:

• Forward compatibility: All instances of an older specification should be
valid with respect to newer specifications. This ensures that a document
can still be processed properly with applications implementing newer
specifications.

• Backward compatibility without added elements/attributes: New combi-
nations of old elements are not supposed to be introduced in later speci-
fications. Otherwise, an application implementing an older specification
will not able to process a document that conforms to some future speci-
fication, even if this document does not contain any element or attribute
introduced as extensions.

• Equivalence between schema versions: A given specification can be ex-
pressed in a variety of schema definition languages like DTD, XML Schema,
Relax NG. We expect the different schema versions of the same specifica-
tion to define the same set of documents modulo the expressivity of the
schema language [Murata et al., 2005].
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An XML schema definition (whether normative or not) often evolves over
time, as new needs often result in new features usually introduced as new
elements and attributes. However we believe that this normal evolution should
not break the three previous properties.

We report below on using the framework for characterizing the evolution
of the main standard document formats used on the web, including W3C
XHTML, SMIL, SVG and MathML, based on the criteria identified above.
This kind of analyses yield important observations on the validity of, poten-
tially, billions of documents.

5.5.1 XHTML Basic

The first test consists in analyzing the relationship (forward and backward
compatibility) between XHTML basic 1.0 and XHTML basic 1.1 schemas. In
particular, backward compatibility can be checked by the following command:

backward_incompatible("xhtml-basic10.dtd",
"xhtml-basic11.dtd", "html")

Executing the test yields a counter example as the new schema contains new
element names. The counter example (shown below) contains a style element
occurring as a child of head, which is not permitted in XHTML basic 1.0:

<html>
<head>

<title/>
<style type="_otherV"/>

</head>
<body/>

</html>

The next step consists in focusing on the relationship between both schemas
excluding these new elements. This can be formulated by the following com-
mand:

backward_incompatible("xhtml-basic10.dtd",
"xhtml-basic11.dtd", "html")

& exclude(added_element(
type("xhtml-basic10.dtd","html"),
type("xhtml-basic11.dtd", "html")))

The result of the test shows a counter example document that proves that
XHTML basic 1.1 is not backward compatible with XHTML basic 1.0 even if
new elements are not considered. In particular, the content model of the label
element cannot have an a element in XHTML basic 1.0 while it can in XHTML
basic 1.1. The counter example produced by the solver is shown below:
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<html>
<head>

<object>
<label>

<a href="...">
<img/>

</a>
<img/>

</label>
<param/>

</object>
<meta/>
<title/>
<base/>

</head>
<body/>

</html>

XTML basic 1.0 validity error: element a is not
declared in label list of possible children

5.5.2 SMIL

The second test consists in analyzing the relationship (forward and backward
compatibility) between several versions of the SMIL standard6, namely versions
1.0, 2.0, and 3.0. In particular, forward compatibility between 1.0 and 2.0 can
be checked by the following command:

forward_incompatible("SMIL10.dtd", "SMIL20.dtd", "smil")

The result of the test shows a counter example document that proves that
there exist valid SMIL 1.0 documents that are not valid anymore with respect
to SMIL 2.0. In fact that is because the content model of the layout element
is defined as any in SMIL 1.0, whereas it is more restricted in SMIL 2.0. We
observe that introducing any is a choice that has important consequences.
Indeed, a document that was playable with 1.0 implementations may no longer
be playable using 2.0 implementations. The counter example produced by the
solver is shown below:

<smil>
<head>

<layout>
<meta content="_otherV" name="_otherV"/>

</layout>
</head>

</smil>

6The first author was a member of the W3C SMIL working group and a co-author of
SMIL 2.0 and 2.1.
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SMIL 2.0 validity error:
Element layout content does not follow the DTD,
expecting (region|topLayout|root-layout|regPoint)*,
got (meta)

The lesson here is that introducing very permissive content models (like any)
has to be considered very seriously. Indeed, that means that all future ver-
sions of the standard should be at least as permissive. Otherwise, all content
produced with earlier (more permissive) versions becomes at risk. Therefore,
the initial content model has to be carefully designed in order to avoid such
situations.

The following example is even worse. We check forward compatibility be-
tween SMIL 2.0 and 3.0:

forward_incompatible("SMIL20.dtd",
"SMIL30Language.dtd", "smil")

We obtain the following counter-example:

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">
<body>

<switch>
<animateMotion/>

</switch>
<a href="..."/>

</body>
</smil>

This document is valid with respect to SMIL 2.0. However it does not validate
with respect to SMIL 3.0. That is because the content model for the switch
element was set to a more restrictive pattern in version 3.0 compared to 2.0,
as the following validation error message suggests:

SMIL 3.0 validity error :
Element switch content does not follow the DTD,
expecting ((metadata | switch)* , ((((animate | set |
animateMotion | animateColor) , (metadata | switch)*)* ,
(((par | seq | excl | audio | video | animation | text |
... switch)*)+)) | (layout , (metadata | switch)*)*)),

got (animateMotion)

Now we would like to know if the bug is limited to the occurrence of the
animateMotion element or whether it is more general. To this end, we pro-
gressively exclude elements named animateMotion, set, animateColor, and
animate, as follows:
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forward_incompatible("SMIL20.dtd",
"SMIL30Language.dtd", "smil")

& exclude(animateMotion) & exclude(set)
& exclude(animateColor) & exclude(animate)

We still obtain the following counter-example (valid w.r.t SMIL 2.0 but not
w.r.t SMIL 3.0), which shows that the forward incompatibility is not limited
to the occurence of the previous elements, but rather, to severe limitations of
the switch content model introduced in 3.0. In other words, switch is an
element which undermines SMIL forward compatibility.

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">
<body>

<switch>
<seq/>
<area/>

</switch>
<switch/>
<a href="..."/>

</body>
</smil>

5.5.3 SVG

The SVG test consists in analyzing the relationship (forward and backward
compatibility) between SVG 1.0 et 1.1. In particular, we examine the differ-
ent profiles (tiny, basic and full) from 1.0 and compare them to 1.1 schemas.
Backward compatibility can be checked by the following command:

forward_incompatible("svg10.dtd",
"svg11-flat-20030114.dtd", "svg")

The test is unsatisfiable meaning that SVG 1.1 is formally proven to be forward
compatible with SVG 1.0. This is good news as it means that all 1.0 documents
will be supported with 1.1 conforming implementations, without any exception.
In the case where a 1.0 document does not play with a 1.1 implementation,
this indicates a bug in the implementation and not in the SVG specification.

We observe here that the common practice of including a single doctype
declaration within a document is questionable, since a document is not only
valid w.r.t a given schema but also w.r.t to all future forward-compatible ver-
sions. Keeping track of this mapping between a document and several schemas
allows the document to be supported by a larger set of implementations.

Similar tests on the SVG 1.1 tiny, basic and full also exhibit good results.
This corresponds to the definition of these three profiles as strict subsets of
each other. Furthermore, we believe that the use of a modularized version
of a schema (as opposed to a complete redefinition) has helped in avoiding
compatibility problems.
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We now focus on testing the backward compatibility between the SVG basic
1.1 profile and SVG 1.0 profile. The test fails even if new features are left aside:

backward_incompatible("svg10.dtd",
"svg11-basic.dtd", "svg")

& exclude( added_element(type("svg10.dtd", "svg"),
type("svg11-basic.dtd","svg")))

& exclude(switch)

This test yields the following counter-example which confirms that there is
actually a flaw in the 1.1 specification:

<svg>
<image href="..." width="..." height="...">

<title/>
<title/>

</image>
</svg>

as it allows two title elements to occur inside an image element, which was
not allowed in the 1.0.

5.5.4 MathML

We apply a similar investigation approach to MathML 1.0 and its newer ver-
sion 2.0. We formulate a backward compatibility test without elements that
were added in version 2.0. Furthermore, we want to exclude immediate trivial
counter-examples involving the use of the declare element as well as of the
math element occuring within the annotation-xml element. For this purpose,
we use the following formulation:

backward_incompatible("mathml.dtd","mathml2.dtd","math")
& exclude( added_element( type("mathml.dtd","math"),

type("mathml2.dtd","math")))
& exclude(declare)
& (~descendant(math))

that bans the declare element from occuring in the whole tree (achieved with
the use of the exclude(declare) predicate), and prevents the math element
from ocurring in the root’s subtree (owing to the use of the (˜descendant(math))
predicate) The following counter-example is produced:

<math>
<apply>

<annotation-xml>
<mprescripts/>

</annotation-xml>
</apply>

</math>
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Such backward incompatibilities suggest that applications cannot simply ignore
new elements from newer schemas, as the combination of older elements may
evolve significantly from one version to another.

5.6 Impact of Schema Evolution on Queries

In this section, we report on using the framework in order to evaluate the
consequences of schema changes on XPath queries such as the ones found in
transformations like the MathML content to presentation conversion [Pietriga,
2005].

5.6.1 MathML Content to Presentation Conversion

MathML is an XML format for describing mathematical notations and cap-
turing both its mathematical structure and graphical rendering, also known as
Content MathML and Presentation MathML respectively. The structure of a
given equation is kept separate from the presentation and the rendering part
can be generated from the structure description. This operation is usually car-
ried out using an XSLT transformation that achieves the conversion. In this
test series, we focus on the analysis of the queries contained in such a trans-
formation sheet and evaluate the impact of the schema change from MathML
1.0 to MathML 2.0 on these queries.

Most of the queries contained in the transformation represent only a few
patterns very similar up to element names. The following three patterns are
the most frequently used:

Q1: //apply[*[1][self::eq]]
Q2: //apply[*[1][self::apply]/inverse]
Q3: //sin[preceding-sibling::*[position()=last()

and (self::compose or self::inverse)]]

The first test is formulated by the following command:

new_region("Q1","mathml.dtd","mathml2.dtd","math")

The result of the test shows a counter example document that proves that the
query may select nodes in new contexts in MathML 2.0 compared to MathML
1.0. In particular, the query Q1 selects apply elements whose ancestors can be
declare elements, as indicated on the document produced by the solver7:

<math xmlns:solver="http://wam.inrialpes.fr/xml"
solver:context="true">

<declare>
<apply solver:target="true">

<eq/>

7Notice that the solver automatically annotates a pair of nodes related by the query:
when the query is evaluated from a node marked with the attribute solver:context, the
node marked with solver:target is selected.
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</apply>
<condition/>

</declare>
</math>

To evaluate the effect of this change, the counter example is filled with
content and passed as an input parameter to the transformation. This shows
immediately a bug in the transformation as the resulting document is not a
MathML 2.0 presentation document. Based on this analysis, we know that the
XSLT template associated with the match pattern Q1 must be updated to cope
with MathML evolution from version 1.0 to version 2.0.

The next test consists in evaluating the impact of the MathML type evo-
lution for the query Q2 while excluding all new elements added in MathML
2.0 from the test. This identifies whether old elements of MathML 1.0 can be
composed in MathML 2.0 in a different manner. This can be performed with
the following command:

new_content("Q2","mathml.dtd","mathml2.dtd","math")
& exclude(added_element(type("mathml.dtd","math"),

type("mathml2.dtd", "math")))

The test result shows an example document that effectively combines MathML
1.0 elements in a way that was not allowed in MathML 1.0 but permitted in
MathML 2.0.

<math xmlns:solver="http://wam.inrialpes.fr/xml"
solver:context="true">

<apply solver:target="true">
<apply>

<inverse/>
</apply>
<annotation-xml>

<math/>
</annotation-xml>
<condition/>

</apply>
</math>

Similarly, the last test consists in evaluating the impact of the MathML type
evolution for the query Q3, excluding all new elements added in MathML 2.0
and counter example documents containing declare elements (to avoid trivial
counter examples):

new_region("Q3","mathml.dtd","mathml2.dtd","math")
& exclude(added_element(type("mathml.dtd","math"),

type("mathml2.dtd","math")))
& exclude(declare)
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The counter example document shown below illustrates a case where the sin
element occurs in a new context.

<math xmlns:solver="http://wam.inrialpes.fr/xml"
solver:context="true">

<apply>
<annotation-xml>

<math>
<apply>

<inverse/>
<sin solver:target="true"/>

</apply>
</math>

</annotation-xml>
</apply>

</math>

Applying the transformation on previous examples yields documents which
are neither MathML 1.0 nor MathML 2.0 valid. As a result, the stylesheet
cannot be used safely over documents of the new type without modifications. In
addition, the required changes to the stylesheet are not limited to the addition
of new templates for MathML 2.0 elements. The templates that deal with the
composition of MathML 1.0 elements should be revised as well.

5.7 System Implementation

We have implemented the whole software architecture described in Section 5.2
and illustrated on Figure 5.1. The tool presented in the previous chapter in
Section 4.5.5 was extended to support the predicates language presented here.

All the previous tests were processed in less than 30 seconds on an ordinary
laptop computer running Mac OS X. The 30s correspond to the most com-
plex use cases. Most complex means analyzing recursive forward/backward
and qualified queries such as Q3, under evolution of large and heavily recursive
schemas such as XHTML and MathML (large number of type variables, ele-
ments and attributes: see Table on Figure 5.12). These are the hardest cases
measured in practice with the implementation. Most of other schemas and
queries usually found in applications are much simpler than the ones presented
in this chapter and will obviously be solved much faster. Given the variety of
schemas occurring in practice, we focused on the most complex W3C standard
schemas. The full online implementation [Genevès & Layaïda, 2006a] allows
to run all the tests described in the chapter as well as user-supplied ones. It
shows intermediate compilation stages, generated formulae (in particular the
translation of schemas into the logic), and reports on the performance of each
step of the analysis.
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5.8 Related Work

Schema evolution is an important topic and has been extensively explored in
the context of relational, object-oriented, and XML databases. Most of the
previous work for XML query reformulation is approached through reductions
to relational problems [Beyer et al., 2005]. This is because schema evolution
was considered as a storage problem where the priority consists in ensuring
data consistency across multiple relational schema versions. In such settings,
two distinct schemas and an explicit description of the mapping between them
are assumed as input. The problem then consists in reformulating a query
expressed in terms of one schema into a semantically equivalent query in terms
of the other schema: see [Yu & Popa, 2005] and more recently [Moon et al.,
2008] with references thereof.

In addition to the fundamental differences between XML and the relational
data model, in the more general case of XML processing, schemas constantly
evolve in a distributed, independent, and unpredictable environment. The
relations between different schemas are not only unknown but hard to track.
In this context, one priority is to help maintaining query consistency during
these evolutions, which is still considered as a challenging problem [Sedlar,
2005; Rose, 2004]. The absence of evolution analysis tools for XML/XPath
contrasts with the abundance of tools and methods routinely used in relational
databases.

The work found in [Moro et al., 2007] discusses the impact of evolving
XML schemas on query reformulation. Based on a taxonomy of XML schema
changes during their evolution, the authors provide informal – not exact nor
systematic – guidelines for writing queries which are less sensitive to schema
evolution. In fact, studying query reformulation requires at least the ability
to analyze the relationship between queries. For this reason, a closely related
work is the problem of determining query containment and satisfiability under
type constraints [Benedikt et al., 2005; Colazzo et al., 2006; Genevès et al.,
2007b]. These static analysis tasks are also notably useful for performing query
optimization [Groppe et al., 2006].

The works found in [Benedikt et al., 2005; Groppe & Groppe, 2008] study
the complexity of XPath emptiness and containment for various fragments
with or without type constraints (see [Benedikt & Koch, 2009] and references
thereof for a survey). In [Colazzo et al., 2004, 2006], a technique is presented
for statically ensuring correctness of paths. The approach deals with emptiness
of XPath expressions without reverse axes. The work presented in [Genevès
et al., 2007b] solves the more general problem of containment, including reverse
axes.

The main distinctive idea pursued in this chapter is to develop a logical
approach for guiding schema and query evolution. In contrast to the previous
use of logics for proving properties such as query emptiness or equivalence, the
goal here is different in that we seek to provide the necessary tools to produce
relevant knowledge when such relations do not hold. From a complexity point-
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of-view, it is worth noticing that the addition of predicates does not increase
complexity for the underlying logic shown in [Genevès et al., 2007b].

We would also like to emphasize that, to the best of our knowledge, this
work is the first to provide precise analyses of XML evolution, that was tested
on real life use cases (such as XHTML and MathML types) and complex queries
(involving recursive and backward navigation). As a consequence, in this con-
text, analysis tools such as type-checkers [Hosoya & Pierce, 2003; Benzaken
et al., 2003; Møller & Schwartzbach, 2005; Gapeyev et al., 2006; Castagna &
Nguyen, 2008] do no match the expressiveness, typing precision, and analysis
capabilities of the work presented here.

5.9 Conclusion

In this article, we present an application of a unifying logical framework for ver-
ifying forward/backward compatibility issues caused by schemas evolution. We
provide evidence that such a framework can be successfully used to overcome
the obstacles of the analysis of XML schema evolution. This kind of analyses
is widely considered as a challenging problem in XML programming. As men-
tioned earlier, the difficulty is twofold: first it requires dealing with large and
complex language constructions such as XML types and XPath queries, and
second, it requires modeling and reasoning about evolution of such construc-
tions.

We presented the logical foundations of the framework. We then applied the
framework for analyzing two major issues due to schema evolution: first, the
consequence on the validity of documents and, second, the impact on queries.
The presented system detected several compatibility problems in the main doc-
ument formats used on the web. The same tool also allows XML designers to
identify queries that need reformulation in order to produce the expected re-
sults across successive schema versions. With this tool designers can examine
precisely the impact of schema changes over queries, therefore facilitating their
reformulation.

We gave illustrations of how to use the tool for schema evolution on realistic
examples. In particular, we considered typical situations in applications involv-
ing evolution of W3C schemas used on the web such as XHTML and MathML.
We believe that the tool can be very useful for standard schema writers and
maintainers in order to assist them enforce some level of quality assurance on
compatibility between versions.

One direction for future work is to search for techniques giving suggestions
on how to rewrite the query into an equivalent one to accommodate schema
changes.
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Functions, Polymorphism and Subtyping

Abstract

We consider a type algebra equipped with recursive, product, func-
tion, intersection, union, and complement types together with type vari-
ables and implicit universal quantification over them. We consider the
subtyping relation recently defined by Castagna and Xu over such type
expressions and show how this relation can be decided in EXPTIME,
answering an open question. The novelty, originality and strength of our
solution reside in introducing a logical modeling for the semantic sub-
typing framework. We model semantic subtyping in a tree logic and use
a satisfiability-testing algorithm in order to decide subtyping. We report
on practical experiments made with a full implementation of the system.
This provides a powerful polymorphic type system aiming at maintaining
full static type-safety of functional programs that manipulate trees, even
with higher-order functions, which is particularly useful in the context
of XML.

6.1 Introduction

This chapter studies parametric polymorphism for type systems aiming at
maintaining full static type-safety of functional programs manipulating linked
structures such as trees, potentially with higher-order functions. We consider a
type algebra equipped with recursive, product, function (arrow), intersection,
union, and complement types. We first show how the subtyping relation be-
tween such type expressions can be decided through a logical approach. Our
main result solves an open problem: we prove the decidability of the subtyping
relation when this type algebra is extended with type variables. This provides
a powerful polymorphic type system (using ML-style prenex polymorphism,
where variables are implicitly universally quantified at toplevel), for which
defining the subtyping relation is not obvious, as pointed out in [Castagna
& Xu, 2011] and discussed in Section 6.5.1, and for which no candidate defi-
nition of subtyping had been proved decidable before. The novelty, originality
and strength of our solution reside in introducing a logical modeling for the
semantic subtyping framework. Specifically, we model semantic subtyping in a
mu-calculus over finite trees and rely on a satisfiability solver in order to decide
subtyping in practice. We obtain an EXPTIME complexity bound as well as
an efficient implementation in practice.

123
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6.1.1 The Need for Polymorphism and Subtyping

Subtyping makes it possible to prove that term substitution in a program source
code preserves type-safety. For example, let us consider a simple property
relating polymorphic types of functions that manipulate lists. We consider a
type α, and denote by [α] the type of α-lists (lists whose elements are of type
α). The type τ of functions that process an α-list and return a boolean is
written as follows:

τ = [α]→ Bool (6.1)

where Bool = {true, false} is the type containing only the two values true
and false Now let us consider functions that distinguish α-lists of even length
from α-lists of odd length: such a function returns true for lists with an even
number of elements of type α, and returns false for lists with an odd number
of elements of type α. One may represent the set of these functions by a type
τ ′ written as follows:

even[α] → {true}
∧ odd[α] → {false} (6.2)

where {true} and {false} are singleton types (containing just one value). If
we make explicit the parametric types even[α] and odd[α], τ ′ becomes:

τ ′ = µv.(α× (α× v)) ∨ nil → {true}
∧ µv.(α× (α× v)) ∨ (α× nil) → {false} (6.3)

where × denotes the cartesian product, µ binds the variable v for denoting a
recursive type, and nil is a singleton type.

Obviously, a particular function of type τ ′ can also be seen as a less-specific
function of type τ . In other terms, from a practical point of view, a function of
type τ can be replaced by a more specific function of type τ ′ while preserving
type-safety (however the converse is not true). This is further formalized by
the notion of subtyping; in that case we write:

τ ′ 6 τ (6.4)

where 6 denotes a subtyping relation that can be defined in two fundamen-
tally different ways in the literature: either syntactically or semantically. In
this chapter, we define 6 as a semantic subtyping relation by adopting a set-
theoretic interpretation in the manner of [Frisch et al., 2008], in contrast with
more traditional subtyping through direct syntactic rules. As a main contribu-
tion, we show how to decide this relation.

This work is motivated by a growing need for polymorphic type systems
for programming languages that manipulate XML data. For instance, XQuery
[Boag et al., 2006] is the standard query and functional language designed for
querying collections of XML data. The support of higher-order functions, cur-
rently missing from XQuery, appears in the requirements for the forthcoming
XQuery 3.0 language [Engovatov & Robie, 2010]. This results in an increasing
demand in algorithms for proving or disproving statements such as the one
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of the example (6.4) with polymorphic types, but also with types of higher-
order functions (like the traditional map and fold functions), or more generally,
statements involving the subtyping relation over a type algebra with recursive,
product, function, intersection, union, and complement types together with
type variables and universal quantification over them.

6.1.2 Semantic Subtyping with Logical Solvers

During the last few years, a growing interest has been seen in the use of log-
ical solvers such as satisfiability solver and satisfiability-modulo solvers in the
context of functional programming and static type checking [Bierman et al.,
2010; Benedikt & Cheney, 2010]. In particular, solvers for tree logics [Genevès
et al., 2007b; de Moura & Bjørner, 2008] are used as basic building blocks for
type systems for XQuery.

The main idea in this chapter is a type-checking algorithm for polymorphic
types based on deciding subtyping through a logical solver. To decide whether
τ is a subtype of type τ ′, we first construct equivalent logical formulas ϕτ
and ϕτ ′ and then check the validity of the formula ψ = ϕτ ⇒ ϕτ ′ by testing
the unsatisfiability of ¬ψ using the satisfiability-testing solver. This technique
corresponds to semantic subtyping [Frisch et al., 2008] since the underlying
logic is inherently tied to a set-theoretic interpretation. Semantic subtyping
has been applied to a wide variety of types including refinement types [Bierman
et al., 2010] and types for XML such as regular tree types [Hosoya et al.,
2005b], function types [Benzaken et al., 2003], and XPath [Clark & DeRose,
1999] expressions [Genevès et al., 2007b].

This fruitful connection between logics, their decision procedures, and pro-
gramming languages permitted to equip the latter with rich type systems for
sophisticated programming constructs such as expressive pattern-matching and
querying techniques. The potential benefits of this interconnection crucially
depend on the expressivity of the underlying logics. Therefore, there is an
increasing demand for more and more expressiveness. For example, in the
context of XML:

• SMT solvers like [de Moura & Bjørner, 2008] offer an expressive power
that corresponds to a fragment of first-order logic in order to solve the
intersection problem between two queries [Benedikt & Cheney, 2010];

• full first-order logic solvers over finite trees [Genevès et al., 2007b] solve
containment and equivalence of XPath expressions;

• monadic second-order logic solvers over trees, and – equivalent yet much
more effective – satisfiability-solvers for µ-calculus over trees [Genevès
et al., 2007b] are used to solve query containment problems in the pres-
ence of type constraints.

6.1.3 Contributions

To the best of our knowledge, novelty of our work is threefold. It is the first
work that:
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• proves the decidability of semantic subtyping for polymorphic types with
function, product, intersection, union, and complement types, as defined
by Castagna and Xu [Castagna & Xu, 2011], and gives a precise com-
plexity upper-bound: 2(n), where n is the size of types being checked.
Decidability was only conjectured by Castagna and Xu before our result,
although they have now proved it independently; our result on complexity
is still the only one. In addition, we provide an effective implementation
of the decision procedure.

• produces counterexamples whenever subtyping does not hold. These
counterexamples are valuable for programmers as they represent evidence
that the relation does not hold.

• pushes the integration between programming languages and logical solvers
to a very high level. The logic in use is not only capable to range over
higher order functions, but it is also capable of expressing values from
semantic domains that correspond to monadic second-order logic such as
XML tree types [Genevès et al., 2007b]. This shows that such solvers
can become the core of XML-centric functional languages type-checkers
such as those used in CDuce [Benzaken et al., 2003] or XDuce [Hosoya &
Pierce, 2003].

6.1.4 Structure of the Chapter

We introduce the semantic subtyping framework in Section 6.2 where we start
with the monomorphic type algebra (without type variables). We present the
tree logic in which we model semantic subtyping in Section 6.3. We detail
the logical encoding of types in Section 6.4. Then, in Section 6.5 we extend
the type algebra with type variables, and state the main result of the chapter:
we show how to decide the subtyping relation for the polymorphic case in
exponential time. We report on practical experiments using the implementation
in Section 6.6. Finally, we discuss related work in Section 6.7 before concluding
in Section 6.8.

6.2 Semantic Subtyping Framework

In this section, we present the type algebra we consider: we introduce its syntax
and define its semantics in terms of semantic domains. This framework is the
one described at length in [Frisch et al., 2008]; we do not discuss its properties
here but just give the necessary definitions, that we will then extend with type
variables in Section 6.5.
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6.2.1 Types

Type terms are defined using the following grammar:

τ ::=
b basic type

| τ × τ product type
| τ → τ function type
| τ ∨ τ union type
| ¬τ complement type
| 0 empty type
| v recursion variable
| µv.τ recursive type

We consider µ as a binder and define the notions of free and bound variables
and closed terms as standard. A type is a closed type term which is well-formed
in the sense that:

• the negation operator only occurs in front of closed types;

• every occurrence of a recursion variable is separated from its binder by
at least one occurrence of the product or arrow constructor.

So, for example, µv.0 ∨ v is not well-formed, nor is µv.0→ ¬v.
Additionally, the following abbreviations are defined:

τ1 ∧ τ2
def= ¬(¬τ1 ∨ ¬τ2)

and
1 = ¬0

6.2.2 Semantic domain

Consider an arbitrary set C of constants. From it, we define the semantic
domain D as the set of ds generated by the following grammar, where c ranges
over constants in C :

d ::= domain element
c base constant

| (d, d) pair
| {(d, d′), . . . , (d, d′)} function

d′ ::= extended domain element
d

| Ω error

The function terms are finite sets of pairs representing nondeterministic
partial functions from D to D ∪ {Ω}: each pair (d, d′) in the set means that,
when given d as an argument, the function may yield d′ as a result. If d does
not appear as the first element of any pair, the operational interpretation is
that the function can still accept d as an argument but will not yield a result:
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this represents a computation which does not terminate. A pair of the form
(d,Ω) is used to represent a function rejecting d as an argument: when given
d, it yields an error.

This grammar is only able to represent functions which diverge but on a
finite number of possible arguments. However it is shown in [Frisch et al.,
2008] (Lemma 6.32) that considering only those functions does not affect the
subtyping relation.

6.2.3 Interpretation

We suppose we have an interpretation BJ·K of basic types b as subsets of C .
The predicate (d′ : τ) where d′ is an element of D or Ω and τ is a type is

defined recursively in the following way:

(Ω : τ) = false
(c : b) = c ∈ BJbK

((d1, d2) : τ1 × τ2) = (d1 : τ1) ∧ (d2 : τ2)
({(d1, d

′
1), . . . , (dn, d′n)} : τ1 → τ2) = ∀i, (di : τ1)⇒ (d′i : τ2)

(d : τ1 ∨ τ2) = (d : τ1) ∨ (d : τ2)
(d : ¬τ) = ¬(d : τ)

(d : µv.τ) = (d : τ{µv.τ/v})
(d : τ) = false in any other case

To prove this definition is well-founded, we first define the shallow depth
of a type term as the longest path, in its syntactic tree, starting from the root
and consisting only of µ, ∨, and ¬ nodes. We then use the following ordering
on pairs (d′, t) :

• d′1 6 d′2 if d′1 is a subterm of d′2

• τ1 6 τ2 if the shallow depth of τ1 is less than the shallow depth of τ2

• pairs are ordered lexicographically, i. e. (d′1, τ1) 6 (d′2, τ2) if either d′1 < d′2
or d′1 = d′2 and τ1 6 τ2.

Now we can see that all occurrences of the predicate on the right-hand side
of the definition are for pairs strictly smaller than the one on the left (in the
case of µv.τ , this is due to the well-formedness constraint: the variable being
substituted can only appear below a × or → node). Because all terms and
types are finite, this makes the definition well-founded.

The interpretation of types as parts of D is then defined as JτK = {d | (d :
τ)}. Note that Ω is not part of any type, as expected.

In this framework, we consider XML types as regular tree languages. An
XML tree type is interpreted as the set of documents that match the type.

6.2.4 Subtyping

The subtyping relation is defined as τ1 6 τ2 ⇔ Jτ1K ⊂ Jτ2K, or, equivalently,
Jτ1 ∧ ¬τ2K = ∅.
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6.3 Tree logic framework

In this section we introduce the logic in which we model the semantic subtyping
framework. This logic is a subset of the one proposed in [Genevès et al., 2007b]:
a variant of µ-calculus whose models are finite trees. We first introduce below
the syntax and semantics of the logic, before tuning it for representing types.

6.3.1 Formulas

Formulas are defined thus:

ϕ,ψ ::= formula
> true

| p | ¬p atomic proposition (negated)
| X variable
| ϕ ∨ ψ disjunction
| ϕ ∧ ψ conjunction
| 〈a〉ϕ | ¬ 〈a〉> existential (negated)
| µ(Xi = ϕi)i∈I in ψ (least) n-ary fixpoint

where a ∈ {1, 2} are programs, and I is a finite set. Atomic propositions p
correspond to labels from a countable set Σ. Additionally, we use the abbrevi-
ation µX.ϕ for µ(X = ϕ) in ϕ.

6.3.2 Semantic domain

The semantic domain is the set F of focused trees defined by the following
syntax, where we have an alphabet Σ of labels, ranged over by σ:

t ::= σ[tl] tree
tl ::= list of trees

ε empty list
| t :: tl cons cell

c ::= context
(tl,Top, tl) root of the tree

| (tl, c[σ], tl) context node
f ::= (t, c) focused tree

A focused tree (t, c) is a pair consisting of a tree t and its context c. The context
(tl, c[σ], tl) comprises three components: a list of trees at the left of the current
tree in reverse order (the first element of the list is the tree immediately to the
left of the current tree), the context above the tree, and a list of trees at the
right of the current tree. The context above the tree may be Top if the current
tree is at the root, otherwise it is of the form c[σ] where σ is the label of the
enclosing element and c is the context in which the enclosing element occurs.

The name of a focused tree is defined as nm(σ[tl], c) = σ.
We now describe how to navigate focused trees, in binary style. There are

four directions, or modalities, that can be followed: for a focused tree f , f 〈1〉
changes the focus to the first child of the current tree, f 〈2〉 changes the focus
to the next sibling of the current tree, f

〈
1
〉
changes the focus to the parent of
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the tree if the current tree is a leftmost sibling, and f
〈
2
〉
changes the focus to

the previous sibling.
Formally, we have:

(σ[t :: tl], c) 〈1〉 def= (t, (ε, c[σ], tl))

(t, (tl l, c[σ], t′ :: tlr)) 〈2〉
def= (t′, (t :: tl l, c[σ], tlr))

(t, (ε, c[σ], tl))
〈
1
〉 def= (σ[t :: tl], c)

(t′, (t :: tl l, c[σ], tlr))
〈
2
〉 def= (t, (tl l, c[σ], t′ :: tlr))

When the focused tree does not have the required shape, these operations
are not defined.

6.3.3 Interpretation

Formulas are interpreted as subsets of F in the following way, where V is a
mapping from variables to formulas:

J>KV
def= F JpKV

def= {f | nm(f) = p}

JXKV
def= V (X) J¬pKV

def= {f | nm(f) 6= p}

Jϕ ∨ ψKV
def= JϕKV ∪ JψKV Jϕ ∧ ψKV

def= JϕKV ∩ JψKV

J〈a〉ϕKV
def= {f 〈a〉 | f ∈ JϕKV ∧ f 〈a〉 defined}

J¬ 〈a〉>KV
def= {f | f 〈a〉 undefined}

Jµ(Xi = ϕi)i∈I in ψKV
def=

let S = {(Ti) ∈ P(F)I | ∀j ∈ I, JϕjKV [Ti/Xi] ⊂ Tj} in
let (Uj) =

(⋂
(Ti)∈S Tj

)
j∈I in JψK

V [Ui/Xi]

where V [Ti/Xi](X) = V (X) if X 6∈ {Xi} and Ti if X = Xi.
The lemma 4.2 of [Genevès et al., 2007b] says that the interpretation of

a fixpoint formula is equal to the union of the interpretations of all its finite
unfoldings (where unfolding is defined as usual). A consequence (detailed in
[Genevès et al., 2007b]) is that the logic is closed under negation, i. e. for any
closed ϕ, ¬ϕ can be expressed in the syntax using De Morgan’s relations and
this definition:

¬ 〈a〉ϕ def= ¬ 〈a〉> ∨ 〈a〉 ¬ϕ

¬µ(Xi = ϕi) in ψ def= µ(Xi = ¬ϕi{Xi/¬Xi}) in ¬ψ{Xi/¬Xi}

In the following, we consider only closed formulas and write JϕK for JϕK∅.

6.4 Logical Encoding

In the context of the present chapter, we want finite tree models of the logic
to correspond to types introduced in section 6.2. Thus, we first extend the
alphabet of node labels to be able to reason with type constructors. Then, we
present the translation of a type into a logical formula.
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6.4.1 Representation of domain elements

Let T be the set of (unfocused) trees. Set C = {B[tl] | tl ∈ T ∗}, where B is
a label not in Σ : the set of trees with a distinguished root B. Let Text be
the set of trees obtained by extending Σ with the four extra labels (→), (×),B
and Ω. Then DΩ can straightforwardly be embedded into Text in the following
way:

tree(c) = c

tree(Ω) = Ω[ε]
tree(d, d′) = (×)[tree(d) :: tree(d′) :: ε]

tree({(d1, d
′
1), . . . , (dn, d′n)}) =

(→)[tree(d1, d
′
1) :: . . . :: tree(dn, d′n) :: ε]

In the following we consider this embedding implicitly done, so DΩ ⊂ Text.

6.4.2 Translation of types

First of all, we can define basic types b, which are to represent sets of trees with
no special nodes but the distinguished root B, as the (closed) base formulas
of the logic. The full interpretation of formulas uses sets of focused trees, but
note that a toplevel formula cannot contain any constraint on what is above
or to the left of the node at focus, so it can be considered as describing just a
list of trees. The interpretation of a base type will then be a B root whose list
of children is described by the formula. Formally:

BJϕK def= {B[t :: tl2] | (t, (tl1, c[σ], tl2)) ∈ JϕK}

Note how the only part of the context taken into account in defining the se-
mantics is the list of following siblings of the current node.

Then, we translate the types into extended formulas obtained (as for ex-
tended trees) by adding to Σ the labels (×), (→),Ω and B. Straightforwardly
these formulas denote lists of trees in Text.

First define the following formulas:

isbase = µX.((¬ 〈1〉> ∨ 〈1〉X) ∧ (¬ 〈2〉> ∨ 〈2〉X)
∧ ¬B ∧ ¬(→) ∧ ¬(×) ∧ ¬Ω)

error = Ω ∧ ¬ 〈1〉>
isd = µX.(

(B ∧ 〈1〉 isbase)∨
((×) ∧ 〈1〉 (X ∧ 〈2〉 (X ∧ ¬ 〈2〉>)))∨
((→) ∧ (¬ 〈1〉>∨
〈1〉µY.((¬ 〈2〉> ∨ 〈2〉Y )∧

(×) ∧ 〈1〉 (X ∧ 〈2〉 ((X ∨ error) ∧ ¬ 〈2〉>))
))))
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isbase selects all tree lists which do not contain any of the special labels (the
fixpoint is for selecting all the nodes). error is straightforward. isd selects all
elements of D (actually, all tree lists whose first element is in D): either they
are a constant (a B node with a base list as children), or a pair (a (×) node
with exactly two children each of which is itself in D), or a function: a (→)
node with either no children at all or a list of children (described by Y) all of
which are pairs whose second element may be error.

We now associate to every type τ the formula fullform(τ) = isd ∧ form(τ),
with form(τ) defined as follows, where Xv is a different variable for every v and
is also different from X:

form(b) = B ∧ 〈1〉 b
form(τ1 × τ2) = (×) ∧ 〈1〉 (form(τ1) ∧ 〈2〉 form(τ2))

form(τ1 → τ2) = (→) ∧ (¬ 〈1〉>∨
〈1〉µX.((¬ 〈2〉> ∨ 〈2〉X)

∧ 〈1〉 (¬form(τ1) ∨ 〈2〉 form(τ2)))
)

form(τ1 ∨ τ2) = form(τ1) ∨ form(τ2)
form(¬τ) = ¬form(τ)

form(0) = ¬>
form(v) = Xv

form(µv.τ) = µXv.form(τ)

Recall that basic types b are themselves formulas, but that their interpreta-
tion as a type is different from their interpretation as a formula (see the first
paragraph of Section 6.4.2 and the definition of BJϕK, the interpretation as a
type, in terms of JϕK, the interpretation as a formula). This explains why the
translation of b contains b itself. The translation of product types is simple:
it describes a (×) node whose first child is described by form(τ1) and has a
following sibling described by form(τ2). The translation of arrow types has a
structure similar to what appeared in isd: it describes a (→) node with either
no children or a list of children recursively described by X (each node has ei-
ther no following sibling or a following sibling itself described by X). Each of
these nodes must have a first child which either is not of type τ1 or has a next
sibling of type τ2 — this means that these nodes represent pairs (di, d′i) such
that (di : τ1) ⇒ (d′i : τ2). The attentive reader may notice that the formula
form(τ1 → τ2) does not enforce in itself that all children of the (→) node are
actually pairs; the reason for that is that isd already enforces it.

We can see that the formulas in the translation do not contain any 〈2〉
at toplevel (i. e. not under 〈1〉), nor does isd. This means they describe a
single tree (they say nothing on its siblings), or in other words that in their
interpretation as focused trees, the context is completely arbitrary, as it is not
constrained in any way. Formally, we thus define the restricted interpretation
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of extended formulas as follows:

FJϕK def= {t | (t, c) ∈ JϕK}

That is, we drop the context completely.
Then we have FJfullform(τ)K = JτK. This is a particular case of the property

for polymorphic types which will be proved in the following section.
The main consequence of this property is that a type τ is empty if and only if

the interpretation of the corresponding formula is empty — which is equivalent
to the formula being unsatisfiable. Because their exists a satisfiability-checking
algorithm for this tree logic [Genevès et al., 2007b], this means this translation
gives an alternative way to decide the classical semantic subtyping relation as
defined in [Frisch et al., 2008]. More interestingly, it yields a decision procedure
for the subtyping relation in the polymorphic case as well, as we will explain
in the next section.

6.5 Polymorphism: Supporting Type Variables

So far we have described a new, logic-based approach to a question — semantic
subtyping in the presence of intersection, negation and arrow types — which
had already been studied. We now show how this new approach allows us, in
a very natural way, to encompass the latest work by adding polymorphism to
the types along the lines of [Castagna & Xu, 2011].

We add to the syntax of types variables, α, β, γ taken from a countable set
V. If τ is a polymorphic type, we write var(τ) the set of variables it contains
and call ground type a type with no variable. We sometimes write τ(α) to
indicate that var(τ) is included in α.

6.5.1 Polymorphic Subtyping: a problem of definition

The intuition of subtyping in the presence of type variables is that τ1(α) 6
τ2(α) should hold true whenever, independently of the variables α, any value
of type τ1 has type τ2 as well. However the correct definition of ‘independently’
is not obvious. It should look like this:

∀α, Jτ1(α)K ⊂ Jτ2(α)K

but because variables are abstractions, it is not completely clear over what to
quantify them. As mentioned in [Hosoya et al., 2009], a candidate — naive —
definition would use ground substitutions, that is, if the inclusion of interpre-
tations always holds when variables are replaced with ground types, then the
subtyping relation holds:

τ1(α) 6 τ2(α)⇔ ∀τ ground types, Jτ1(τ/α)K ⊂ Jτ2(τ/α)K (6.5)

Obviously the condition on the right must be necessary for subtyping to hold.
But deciding that it is sufficient as well makes the relation unsatisfactory and
somehow counterintuitive, as remarked in [Hosoya et al., 2009]. Indeed, suppose
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int is an indivisible type, that is, that it has no subtype beside 0 and itself.
Then the following would hold:

int× α 6 (int× ¬int) ∨ (α× int) (6.6)

This relation abuses the definition by taking advantage of the fact that for any
ground type τ , either JintK ⊂ JτK or JτK ⊂ J¬intK. In the first case, because
JτK ⊂ (J¬intK ∪ JintK), we have Jint × τK ⊂ Jint × ¬intK ∪ Jint × intK and then
the second member of the union is included in Jτ × intK. In the second case,
we directly have Jint× τK ⊂ Jint× ¬intK.

This trick, which only works with indivisible ground types, not only shows
that candidate definition (6.5) yields bizarre relations where a variable occurs in
unrelated positions on both sides. It also means the candidate definition is very
sensitive to the precise semantics of base types, since it distinguishes indivisible
types from others. More precisely, it means that refining the collection of base
types, for example by adding types even and odd, can break subtyping relations
which held true without these new types — this is simply due to the fact that it
increases the set over which τ is quantified in (6.5), making the relation stricter.
This could hardly be considered a nice feature of the subtyping relation.

The conclusion is thus that the types in (6.6) should be considered related
by chance rather than by necessity, hence not in the subtyping relation, and
that quantifying over all possible ground types is not enough; in other words,
candidate definition (6.5) is too weak and does not properly reflect the intuition
of ‘independently of the variables’. Indeed, (6.6) is in fact dependent on the
variable as we saw, the point being that there are only two cases and that
the convoluted right-hand type is crafted so that the relation holds in both of
them, though for different reasons.

In order to restrict the definition of subtyping, [Hosoya et al., 2009], which
concentrates on XML types, uses a notion of marking: some parts of a value
can be marked (using paths) as corresponding to a variable, and the relation
‘a value has a type’ is changed into ‘a marked value matches a type’, so the
semantics of a type is not a set of values but of pairs of a value and a marking.
This is designed so that it integrates well in the XDuce language, which has
pattern-matching but no higher-order functions (hence no arrow types), so
their system is tied to the operational semantics of matching and provides only
a partial solution.

The question of finding the correct definition of semantic subtyping in
the polymorphic case was finally settled very recently by Castagna and Xu
[Castagna & Xu, 2011]. Their definition does, in the same way as (6.5), follow
the idea of a universal quantification over possible meanings of variables but
solves the problem raised by (6.6) by using a much larger set of possible mean-
ings — thus yielding a stricter relation. More precisely, variables are allowed
to represent not just ground types but any arbitrary part of the semantic do-
main; furthermore, the semantic domain itself must be large enough, which is
embodied by the notion of convexity. We refer the reader to [Castagna & Xu,
2011] for a detailed discussion of this property and its relation to the notion
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of parametricity studied by Reynolds in [Reynolds, 1983]; we will here limit
ourselves to introducing the definitions strictly necessary for the discussion at
hand.

In this work, we do not use this definition with its universal quantifica-
tion directly. Rather, we retain from [Hosoya et al., 2009] the idea of tagging
(pieces of) values which correspond to variables, but do so in a more abstract
way, by extending the semantic domain, and define a fixed interpretation of
polymorphic types in this extended domain as a straightforward extension of
the monomorphic framework. We then show how to build a set-theoretic model
of polymorphic types, in the sense of [Castagna & Xu, 2011], based on this do-
main, and prove that the inclusion relation on fixed interpretations is equivalent
to the full subtyping relation induced by this model. Finally, we explain briefly
the notion of convexity and show that this model is convex, implying that this
relation is, in fact, the semantic subtyping relation on polymorphic types, as
defined in [Castagna & Xu, 2011]. These steps are formally detailed in the
following section.

6.5.2 Interpretation of polymorphic types

Let Λ be an infinite set of optional labels, and ι an injective function from V to
Λ. (It would be possible to set Λ = V, but for clarity we prefer to distinguish
labels which tag elements of the semantic domain from variables which occur
in types.) We extend the grammar of (extended) trees by allowing any node
to bear, in addition to its single σ label from Σ∪ {(→), (×),B,Ω}, any (finite)
number of labels from Λ. We write it σL[tl] where L is a finite part of Λ.
We extend C and D accordingly. When using the non-tree form of types, for
instance (d1, d2), we indicate the set of root labels on the bottom right like
this: (d1, d2)L (here L is the set of labels borne by the (×) node constituting
the root of the pair tree).

We then extend the predicate defining the interpretation of types given in
Section 6.2.3 with the following additional case:

(σL[tl] : α) = ι(α) ∈ L

In other words, the interpretation of a type variable is the set of all trees
whose root bears the label corresponding to that variable. The other cases
are unchanged, except that the semantic domain is now much larger. This
means that the same definition leads to larger interpretations; in particular,
the interpretation of a (nonempty) ground type is always an infinite set which
contains all possible labellings for each of its trees.

Subtyping over polymorphic types is then defined, as before, as set inclusion
between interpretations:

τ1(α) 6 τ2(α)⇔ Jτ1(α)K ⊂ Jτ2(α)K (6.7)

It may seem strange to give type variables a fixed interpretation, and on
the other hand it may seem surprising that this definition of subtyping does
not actually contain any quantification and is nevertheless stronger than (6.5)
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which contains one. The keypoint is that a form of universal quantification is
implicit in the extension of the semantic domain: in some sense, the interpreta-
tion of a variable represents all possible values of the variable at once. Indeed,
for any variable α and any tree d in the domain, there always exist both an
infinity of copies of d which are in the interpretation of α and another infinity
of copies which are not. From the point of view of logical satisfiability, this
makes the domain big enough to contain all possible cases.

In order to show that, despite the appearances, Definition (6.7) accurately
represents a relation that holds independently of the variables, we rely, as
discussed above, on the formal framework developed by Castagna and Xu
[Castagna & Xu, 2011]. For this, we first introduce assignments η: functions
from V to P(D) (where D is the extended semantic domain with labels). Thus
an assignment attributes to each variable an arbitrary set of elements from the
semantic domain.

We then define the interpretation of a type relative to an assignment in the
following way: the predicate (d′ :η τ) is defined inductively in the same way as
the (d′ : τ) of Section 6.2.3 but with the additional clause:

(d :η α) = d ∈ η(α).

The interpretation of the polymorphic type τ relative to the assignment η is
then JτKη = {d | (d :η τ)}. This defines an infinity of possible interpretations for
a type, depending on the actual values assigned to the variables, and constitutes
a set-theoretic model of types in the sense of [Castagna & Xu, 2011]. The
subtyping relation induced by this model is the following:

τ1(α) 6 τ2(α)⇔ ∀η ∈ P(D)V , Jτ1(α)Kη ⊂ Jτ2(α)Kη (6.8)

which we can more easily compare to the candidate definition (6.5): it does in
the same way quantify over possible meanings of the variables but uses a much
larger set of possible meanings, yielding a stricter relation. We will now prove
that this relation is, for our particular model, actually equivalent to (6.7).

For this, let us first define the canonical assignment ηι as follows:

ηι(α) def= {σL[tl] ∈ D | ι(α) ∈ L}.

Then it is easily seen that the fixed interpretation JτK of a polymorphic type is
the same as its interpretation relative to the canonical assignment, JτKηι. What
we would like to prove is that the canonical assignment is somehow represen-
tative of all possible assignments, making the fixed interpretation sufficient for
the purpose of defining subtyping. This is done by the following lemma and
corollary.

Lemma 6.5.1. Let V be a finite part of V. Let η be an assignment. Let T
be the set of all types τ such that var(τ) ⊂ V . Then there exists a function
F ηV : D → D such that: ∀τ ∈ T, ∀d ∈ D, d ∈ JτKη ⇔ F ηV (d) ∈ JτKηι.

Proof. For d in D, let L(d) = {ι(α) | α ∈ V ∧ d ∈ η(α)}. Since V is finite, L(d)
is finite as well. We define F ηV (d) inductively as follows:
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• if d = BL[tl] then F ηV (d) = BL(d)[tl]

• if d = (d1, d2)L then F ηV (d) = (F ηV (d1), F ηV (d2))L(d)

• F ηV (Ω) = Ω

• if d = {(d1, d
′
1), . . . , (dn, d′n)}L then

F ηV (d) = {(F ηV (d1), F ηV (d′1)), . . . , (F ηV (dn), F ηV (d′n))}L(d)

So F ηV preserves the structure but changes the labels so that the root node of
F ηV (d) is labelled with L(d) and so on inductively for its subterms.

Let P(d, τ) = d ∈ JτKη ⇔ F ηV (d) ∈ JτKηι. We prove that it holds for all
pairs (d, τ) such that τ is in T by induction on those pairs, using the ordering
relation on them defined in Section 6.2.3, noticing that τ ∈ T implies that all
subterms (and unfoldings) of τ are in T as well. The base cases are:

• if τ is a variable. Then it is in V by hypothesis and P(d, τ) is true by
definition of L(d).

• if it is a base type. Then P(d, τ) is true because the interpretation of τ
is independent of assignments and labellings.

For the inductive cases, we suppose the property true for all strictly smaller
pairs (d, τ) such that τ is in T .

• For the arrow and product cases, the inductive definition of F ηV makes
the result straightforward.

• For the negation and disjunction cases, the result is immediate from the
induction hypothesis.

• For µv.τ , recall that the well-formedness constraint on types implies that
the type’s unfolding has a strictly smaller shallow depth than the original
type, hence we can use the induction hypothesis on the unfolding and
conclude.

Corollary 6.5.2. Let τ be a type.
⋃

η∈P(D)V
JτKη = ∅ if and only if JτKηι = ∅.

Proof. If the union is not empty, there exists η and d such that d ∈ JτKη. From
the previous lemma we then have F ηvar(τ)(d) ∈ JτKηι.

This corollary shows that the canonical assignment is representative of all
possible assignments and implies that the subtyping relation defined by (6.7)
is equivalent to the one defined by (6.8).
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Convexity of the model.. Definition (6.8) corresponds to semantic subtyping
as defined in [Castagna & Xu, 2011], but only on the condition that the un-
derlying model of types be convex. Indeed, we can see that this definition
is dependent on the set of possible assignments, which itself depends on the
chosen (abstract) semantic domain, so it is reasonable to think that increasing
the semantic domain could restrict the relation further. In other words, for the
definition to be correct, the domain must be large enough to cover all cases.
Castagna and Xu’s convexity characterises this notion of ‘large enough’. The
property is the following: a set-theoretic model of types is convex if, whenever
a finite collection of types τ1 to τn each possess a nonempty interpretation rel-
ative to some assignment, then there exists a common assignment making all
interpretations nonempty at once. This reflects the idea that there are enough
elements in the domain to witness all the cases.

In our case, it comes as no surprise that the extended model of types is
convex since any nonempty ground type has an infinite interpretation, which,
as proved in [Castagna & Xu, 2011], is a sufficient condition. But we need not
even rely on this result since Corollary 6.5.2 proves a property even stronger
than convexity: having a nonempty interpretation relative to some assignment
is the same as having a nonempty interpretation relative to the common canon-
ical assignment. This stronger property makes the apparently weaker relation
defined by (6.7) equivalent, in our particular model, to the full semantic subtyp-
ing relation Castagna and Xu defined. This allows us to reduce the problem of
deciding their relation to a question of inclusion between fixed interpretations,
making the addition of polymorphism a mostly straightforward extension to
the logical encoding we presented for the monomorphic case.

Interestingly, in [Castagna & Xu, 2011] the authors suggest that convexity
constrains the relation enough that it should allow reasoning on types, similarly
to the way parametricity allowed Wadler [Wadler, 1989] to deduce ‘theorems
for free’ from typing information. The fact that our logical reasoning approach
very naturally has this convexity property — indeed, it is difficult to think of a
logical representation of variables which would not have it — seems to corrob-
orate their intuition, although reasoning on types beyond deciding subtyping
is currently left as future work.

We now show how this extension of the type system is encoded in our logic.

6.5.3 Logical encoding of variables

We extend the logic with atomic propositions α which behave similarly as σ
except they are not mutually exclusive. The interpretation of these propositions
is defined as:

JαK = {(σL[tl], c) | ι(α) ∈ L}

J¬αK = {(σL[tl], c) | ι(α) 6∈ L}

The translation form(τ) of types into formulas is extended in the obvious
way by form(α) = α.

Theorem 6.5.3. With these extended definitions, FJfullform(τ)K = JτK.
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Proof outline: Preliminary remark: whenever ϕ does not contain any 〈2〉 at
toplevel (which is the case of the formulas representing types), then JϕK =
FJϕK×C where C is the set of all possible contexts. Hence, when considering
such formulas, set-theoretic relations between full interpretations are equivalent
to the same relations between first components.

First we check that FJisdK = D and reformulate the statement as D ∩
FJform(τ)K = JτK.

We make the embedding function tree explicit for greater clarity. What we
have to show is that, for any d in D, we have (d : τ) if and only if (tree(d), c)
is in Jform(τ)K for some (or, equivalently, for any) c.

The property is proved by induction on the pair (d, τ), following the defi-
nition of the predicate:

• for (c : b) it holds by definition.

• for ((d1, d2)L : τ1× τ2), let f = (tree((d1, d2)L), c). f is in Jform(τ1× τ2)K
if and only if f 〈1〉 is in Jform(τ1)K and f 〈1〉 〈2〉 is in Jform(τ2)K. (We
already know that the node name is (×) by the structure of d.) Just see
that the tree rooted at f 〈1〉 is tree(d1) and the one at f 〈1〉 〈2〉 is tree(d2).

• for functions, use the finite unfolding property and the fact the set of
pairs is finite, then see, similarly as above, that the correct properties are
enforced when navigating the tree.

• for union, negation and empty types, use the preliminary remark.

• for (d : α), just see that d ∈ ι(α) and d ∈ FJαK both mean that the root
node of d, which is the node at focus in the formula, bears the label ι(α).

• for (d : µv.τ), use the property that the interpretation of a fixpoint
formula and its unfolding are the same (lemma 4.2 of [Genevès et al.,
2007b]).

�

Corollary 6.5.4. τ1 6 τ2 holds if and only if fullform(τ1∧¬τ2), or alternatively
isd ∧ form(τ1) ∧ ¬form(τ2), is unsatisfiable.

6.5.4 Complexity

Lemma 6.5.5. Provided two types τ1 and τ2, the subtyping relation τ1 6 τ2
can be decided in time 2O(|τ1|+|τ2|) where |τi| is the size of τi.

Proof outline: The logical translation of types performed by the function
form(·) does not involve duplication of subformulas of variable size, therefore
form(τ) is of linear size with respect to |τ |. Since isd has constant size, the
whole translation fullform(τ) is linear in terms of |τ |. For testing satisfiability
of the logical formula, we use the satisfiability-checking algorithm presented
in [Genevès et al., 2007b] whose time complexity is 2O(n) in terms of the for-
mula size n. �
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6.6 Practical Experiments

In this section we report on some interesting lessons learned from practical
experiments with the implementation of the system in order to prove relations
in the type algebra.

6.6.1 Implementation

The algorithm for deciding the subtyping relation has been fully implemented
on top of the satisfiability solver introduced in Section 4.5.5.

In the polymorphic setting, a counter-example, that is, a model satisfying
a formula, is in principle, according to the extended semantics, a labelled tree.
However, as mentioned in Section 6.5.2, whenever a formula is satisfiable there
always exists an infinity of possible labellings which satisfy it. Therefore, rather
than proposing just one labelled tree, the solver gives a minimal tree together
with labelling constraints representing all labellings which make that particular
tree a counter-example. Namely, for each variable α, every node will be labelled
with α to indicate that it must be labelled with α for the formula to be satisfied,
with ¬α to indicate that it must not be, or with nothing if label α is irrelevant
for that particular node. This allows an easier interpretation of the counter-
example in terms of assignments: the subtyping relation fails whenever the
assignment for each variable α contains all the trees whose root is marked with
α and none of those whose root is marked with ¬α.

6.6.2 Concrete Syntax for Type Algebra

All the examples in the subsection that follows can be tested in our online pro-
totype. For this purpose, the following table gives the correspondence between
the syntax used in the chapter and the syntax that must be used in the imple-
mentation. Additionally, the embedding of a base formula of the logic into a
base type is provided by curly braces: {ϕ} is an abbreviation for isbase∧〈1〉ϕ.

Chapter Syntax Implementation Syntax
Type variables α, β, γ _a, _b, _g
Type constructors ×,→ *, ->
Recursive types µv.τ let $v = t in $v
Basic types 0,1 F, T
Logical connectives ∧,∨,¬,⇒ &, |, ,̃ =>
Subtyping ¬(τ1 6 τ2) nsubtype(t1,t2)

6.6.3 Examples and Discussion

The goal of this subsection is to illustrate through some examples how our
logical setting is natural and intuitive for proving subtyping relations. For
example, one can prove simple properties such as the one below:

(α→ γ) ∧ (β → γ) 6 (α ∨ β)→ γ (6.9)

This is formulated as follows:

nsubtype((_a -> _g) & (_b -> _g), (_a | _b) -> _g)
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(mu X8.(((
(let_mu
X5=(((BASE & <1>(mu X4.(((~(<1>T) | <1>X4) & (~(<2>T) | <2>X4))

& (~(ERROR) & ~(BASE) & ~(FUNCTION) & ~(PAIR)))))
| (PAIR & <1>(X5 & <2>(X5 & ~(<2>T))))) | (FUNCTION & (~(<1>T) | <1>X6))),

X6=(((~(<2>T) | <2>X6) & PAIR) & <1>(X5 & <2>((X5 | (ERROR & ~(<1>T))) & ~(<2>T))))
in
X5) & ((FUNCTION & (~(<1>T) | <1>(mu X1.((~(<2>T) | <2>X1) & <1>(~(_a) | <2>_g)))))

& (FUNCTION & (~(<1>T) | <1>(mu X2.((~(<2>T) | <2>X2) & <1>(~(_b) | <2>_g)))))))
& (~(FUNCTION) | (<1>T & (~(<1>T) | <1>(mu X7.((<2>T & (~(<2>T) | <2>X7))
| (~(<1>T) | <1>((_a | _b) & (~(<2>T) | <2>~(_g)))))))))) | (<1>X8 | <2>X8)))

Figure 6.1: Logical translation tested for satisfiability.

which is automatically compiled into the logical formula shown on Figure 6.1
and given to the satisfiability solver that returns:

Formula is unsatisfiable [16 ms].

which means that no satisfying tree was found for the formula, or, in other
terms, that the negation of the formula is valid. The satisfiability solver is seen
as a theorem prover since its run built a formal proof that property (6.9) holds.

Jerôme Vouillon [Vouillon, 2006] uses simple examples with lists to illustrate
polymorphism with recursive types. For instance, consider the type of lists of
elements of type α:

τlist = µv.(α× v) ∨ nil

where “nil” is a singleton type. The type of lists of an even number of such
elements can be written as:

τeven = µv.(α× (α× v)) ∨ nil

By giving the following formula to the solver :

nsubtype(let $v = (_a * _a * $v) | {nil} in $v,
let $w= (_a * $w) | {nil} in $w )

which is found unsatisfiable, we prove that

τeven 6 τlist

If we now consider the type of lists of an odd number of elements of type α:

τodd = µv.(α× (α× v)) ∨ (α× nil)

we can check additional properties in a similar manner, like:

(τeven ∨ τodd 6 τlist) ∧ (τlist 6 τeven ∨ τodd)

The following formula corresponds to the example (6.4) of the introduction:
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bool() = {true|false};
list() = let $l = (_a * $l) | {nil} in $l;
odd() = let $o = (_a * _a * $o) | (_a * {nil}) in $o;
even() = let $e = (_a * _a * $e) | {nil} in $e;

nsubtype ( (odd() -> {true}) & (even() -> {false}),
list() -> bool() )

This formula is found unsatisfiable by the solver, which proves the validity of
the subtyping statement (6.4).

Giuseppe Castagna (see section 2.7 of [Castagna & Xu, 2011]) gives some
examples of non-trivial relations that hold in the type algebra. For instance,
the reader can check that the types 1→ 0 and 0→ 1 can be seen as extrema
among the function types:

1→ 0 6 α→ β and α→ β 6 0→ 1

Our system also permitted to detect an error in [Castagna & Xu, 2011] and
provided some helpful information to the authors of [Castagna & Xu, 2011]
in order to find the origin of the error and make corrections. Specifically, in a
former version of [Castagna & Xu, 2011], the following relation was considered:

(¬α→ β) 6 ((1→ 0)→ β) ∨ α (6.10)

Authors explained how this relation was proved by their algorithm. However,
by encoding the relation in our system we found that this relation actually does
not hold. Specifically, this is formulated as follows in our system:

nsubtype (~_a -> _b, ((T -> F) -> _b) | _a)

The satisfiability solver, when fed this formula, returns the following counter-
example:

FUNCTION ~_a (PAIR(FUNCTION _a (#, ~_b ERROR), #), #)

FUNCTION represents (→) and PAIR represents (×). This is a binary tree rep-
resentation of the n-ary tree

(→)¬α[(×)[(→)α[ε] :: Ω :: ε] :: ε]

which corresponds to the domain element

{({}α,Ω)}¬α.

The inner (→) node has no children and thus represents the function which
always diverges: {}. More precisely, it represents a copy f of this function
that belongs to the interpretation of α. The root (→) node then represents a
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function which is not in JαK and which to f associates an error, while diverging
on any other input.

Now, why is it a counter-example to (6.10)? As the function diverges but
on one input f and that input is in JαK, it is vacuously true that on all inputs
in J¬αK for which it returns a result, this result is in JβK. Thus it does have the
type on the left-hand side. However, it does not have type α, nor does it have
type ((1→ 0)→ β). Indeed, f does have type 1→ 0 and our counter-example
function associates to it an error, which is not in JβK.

6.7 Related Work

We review below related works while recalling how the introduction of XML
progressively renewed the interests in parametric polymorphism.

The seminal work by Hosoya, Vouillon and Pierce on a type system for XML
[Hosoya et al., 2005b] applied the theory of regular expression types and finite
tree automata in the context of XML. The resulting language XDuce [Hosoya &
Pierce, 2003] is a strongly typed language featuring recursive, product, intersec-
tion, union, and complement types. The subtyping relation is decided through
a reduction to containment of finite tree automata, which is known to be in
EXPTIME. This work does not support function types nor polymorphism, but
provided a ground for further research.

In particular, Frisch, Castagna and Benzaken provide a gentle introduction
to semantic subtyping in [Frisch et al., 2008]. Semantic subtyping focuses on a
set-theoretic interpretation, as opposed to traditional subtyping through direct
syntactic rules. Our logical modeling presented in Section 6.4 naturally follows
the semantic subtyping approach as the underlying logic has a set-theoretic se-
mantics. Frisch, Castagna and Benzaken added function types to the semantic
subtyping performed by XDuce’s type system. This notably resulted in the
CDuce language [Benzaken et al., 2003]. However, CDuce does not support
type variables and thus lacks polymorphism.

Vouillon studied polymorphism in the context of regular types with arrow
types in [Vouillon, 2006]. Specifically, he introduced a pattern algebra and
a subtyping relation defined by a set of syntactic inference rules. A seman-
tic interpretation of subtyping is given by ground substitution of variables in
patterns. The type algebra has the union connective but lacks negation and
intersection. The resulting type system is thus less general than ours.

Polymorphism was also the focus of the later work found in [Hosoya et al.,
2009]. In [Castagna & Xu, 2011], it is explained that at that time a semanti-
cally defined polymorphic subtyping looked out of reach, even in the restrictive
setting of [Hosoya & Pierce, 2003], which did not account for higher-order
functions. This is why [Hosoya et al., 2009] fell back on a somewhat syntactic
approach linked to pattern-matching that seemed difficult to extend to higher-
order functions. Our work shows however that such an extension was possible
using similar basic ideas, only slightly more abstract.

The most closely related work is the one found in [Castagna & Xu, 2011],
in the same proceedings as the current chapter, which solves the problem of



144 CHAPTER 6. FUNCTIONS, POLYMORPHISM AND SUBTYPING

defining subtyping semantically in the polymorphic case for the first time, and
addresses the problem of its decision through an ad-hoc and multi-step algo-
rithm, which was only recently proved to terminate in all cases. Our approach
also addresses the problem of deciding their subtyping relation and solves it
through a more direct, generic, natural and extensible approach since our solu-
tion relies on a modeling into a well-known modal logic (the µ-calculus) and on
using a satisfiability solver such as the one proposed in [Genevès et al., 2007b].
This logical connection also opens the way for extending polymorphic types
with several features found in modal logics.

The work of [Bierman et al., 2010] follows the same spirit than ours: type-
checking is subcontracted to an external logical solver. An SMT-solver is used
to extend a type-checker for the language Dminor (a core dialect for M) with
refinement type and type-tests. The type-checking relies on a semantic subtyp-
ing interpretation but neither function types nor polymorphism are considered.
Therefore, their work is incomparable to ours.

The present work heavily relies on the work presented in [Genevès et al.,
2007b] since we repurpose the satisfiability-checking algorithm of [Genevès
et al., 2007b] for deciding the subtyping relation. The goal pursued in [Genevès
et al., 2007b] was very different in spirit: the goal was to decide containment
of XPath queries in the presence of regular tree types. To this end, the de-
cidability of a logic with converse for finite ordered trees is proved in a time
complexity which is a simple exponential of the size of the formula. The present
work builds on these results for solving semantic subtyping in the polymorphic
case.

6.8 Conclusion

The main contribution of this chapter is to define a logical encoding of the
subtyping relation defined in [Castagna & Xu, 2011], yielding a decision algo-
rithm for it. We prove that this relation is decidable with an upper-bound time
complexity of 2(n), where n is the size of types being checked. In addition, we
provide an effective implementation of the decision procedure that works well
in practice.

This work illustrates a tight integration between a functional language type-
checker and a logical solver. The type-checker uses the logical solver for decid-
ing subtyping, which in turn provides counter-examples (whenever subtyping
does not hold) to the type-checker. These counterexamples are valuable for
programmers as they represent evidence that the relation does not hold. As a
result, our solver represents a very attractive back-end for functional program-
ming languages type-checkers.

This result pushes the integration between programming languages and
logical solvers to an advanced level. The proposed logical approach is not only
capable of modeling higher order functions, but it is also capable of expressing
values from semantic domains that correspond to monadic second-order logics
such as XML tree types. This shows that such logical solvers can become the
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core of XML-centric functional languages type-checkers such as those used in
CDuce or XDuce.





Seven

Conclusion & perspectives

7.1 Contributions summary

The guiding motivation of my work is to promote declarative and typed rep-
resentation of content in documents and web applications. The goal is to ease
the design of web applications and make them richer, safer and more efficient.
During the last few years, I focused first on enriching content representation to
support a wider and more integrated set of features: temporal synchronization,
spatial positioning, logical organization and hypermedia links. The central idea
of my work consists in defining the document through various dimensions or
facets with well-defined languages. In particular, one of my first contributions
was the introduction of such languages for the temporal dimension of docu-
ments and making it seamlessly integrated with the other dimensions. Then,
I have introduced supportive methods for time-based languages such as in-
telligent scheduling and enhanced runtime support. My work on temporal
synchronization resulted in a W3C recommended language called SMIL. This
language has been used in mobile infrastructure for Multimedia Messaging and
integrated in other languages such as SVG.

Then I have considered the problem of content adaptation raised by the
double evolution of the web: by the introduction of various types of both ter-
minals and communications media channels. Mobile phone networks such as
third generation networks and WiFi have pushed the boundaries of the web
infrastructure much further from its initial vision. At the same time, more
and more devices became connected such as cellular phones, tablets, television
sets, game consoles and all sorts of embedded devices. In response to this
evolution, I have proposed web access frameworks based on negotiation and
automatic adaptation methods. More precisely, I have explored two adapta-
tion approaches; one based on structural transformations operating on a more
advanced web architecture, the other on presentation "semantics". My over-
all goal was to enforce a vision of the web were content is accessible for all
anywhere anytime and to avoid web fragmentation.

Then my focus shifted to content design and production. In particular, I
proposed an incremental framework aimed at enhancing our ability to produce
content easily but also to design transformations capable of generating content
presentation automatically. Transformations are crucial as they are today fre-
quently used on content servers to produce content presentations at access time.

147
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I have shown that efficient incremental transformations rely on precise static
analyses of types and path expressions in these transformations. These analy-
ses are not only limited to performance issues but are also critical for ensuring
one of the key transformation properties: safety. More precisely, type safety
consists in guaranteeing using some decision procedures that transformations
always produce valid documents against their schema.

The initial idea of this work consists in considering that two issues need to be
answered in order to solve such decision problems in XML. First, it was essential
to identify an appropriate formal framework with sufficient expressive power to
capture both regular tree languages and navigation introduced by XPath. Then
we had to find appropriate techniques to solve the satisfiability problem in that
framework. Satisfiability allows determining whether a given property holds or
not. Then, it would be interesting to obtain an XML document that exemplifies
it. Such properties include XPath containment, emptiness, equivalence and
coverage of XPath queries (in the presence or absence of regular types of trees).

A first important result was achieved through the design of a finite tree
logic adapted to XML and its decision procedure. The logic is expressive
enough to capture regular tree types along with multi-directional navigation
in finite trees. It is decidable in single exponential time (specifically in 2O(n)

steps where n is the size of the input formula defined as its number of atomic
propositions and eventualities). This improves the best-known computational
complexity for finite trees. Another contribution is that we showed how to
linearly compile queries and regular tree types (including DTDs and XML
Schemas) in the logic. This offers a uniform notation for both constructs and
facilitates reasoning on them. The logic enjoys the nice property of being closed
under boolean operations. It supports the full navigational features of XPath
and covers the largest fragment considered in the literature [Marx, 2004]. From
the algorithmic point of view, the decision procedure proved entirely feasible
using symbolic techniques borrowed from verification: BDD (Binary Decision
Diagrams).

In a follow-up work, I have considered with colleagues the problem of XML
Schema evolution. In the ever-changing context of the web, XML schemas
continuously change in order to cope with the natural evolution of entities
they describe. Schema changes have important consequences. First, existing
documents valid with respect to the original schema are no longer guaranteed
to fulfill the constraints described by the evolved schema. Second, the evolution
also impacts programs manipulating documents whose structure is described
by the original schema.

I explored unifying frameworks for determining the effects of XML Schema
evolution both on the validity of documents and on queries. The result is a
powerful system capable of analyzing various scenarios in which forward/back-
ward compatibility of schemas is broken, and in which the result of a query may
not be anymore what was expected. Specifically, the system offers a predicate
language, which allows one to formulate properties related to schema evolution.
The system then relies on exact reasoning techniques to perform a fine-grained
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analysis of programs and schema changes. This yields either a formal proof of
the property or a counter-example that can be used for debugging purposes.
The system has been fully implemented and tested with real-world use cases,
in particular with the main standard document formats used on the web, as de-
fined by W3C. The system identifies precisely compatibility relations between
document formats. In case these relations do not hold, the system can identify
queries that must be reformulated in order to produce the expected results
across successive schema versions. The long-term goal of this work is to find
methods and techniques to reformulate XML transformations automatically
when schemas evolve.

In a more recent work, I have investigated the means to obtaining powerful
type systems where types can denote not only data types such as schemas but
also computations. To that end, I studied how function types can be supported
in our logic in the manner of [Benzaken et al., 2003; Castagna & Xu, 2011].
In addition, if functions can be made parametric using variables (parametric
types), they become more generic since they can operate on a large number of
specific types. Such functions are also important to promote code reuse. To
that end, parametric polymorphism is studied for type systems aiming at main-
taining full static type-safety of functional programs that manipulate linked
structures such as trees, potentially with higher-order functions. To that end,
advanced type algebra equipped with recursive, product, function (arrow), in-
tersection, union, and complement types is introduced. I first show how the
subtyping relation between such type expressions can be decided through a
purely logical approach.

The main result along this research direction solves an open problem: we
prove the decidability of the subtyping relation when this type algebra is ex-
tended with type variables. This provides a powerful polymorphic type system
(using ML-style prenex polymorphism, where variables are implicitly univer-
sally quantified at top level), for which defining the subtyping relation is not
obvious, as pointed out in [Castagna & Xu, 2011], and for which no candidate
definition of subtyping had been proved decidable before. The novelty, origi-
nality and strength of our solution reside in introducing a logical modeling for
the semantic subtyping framework. Specifically, semantic subtyping is mod-
eled in the finite tree logic presented earlier and rely on a slightly modified
satisfiability solver in order to decide subtyping in practice. An EXPTIME
(2O(n)) complexity bound is obtained as well as an efficient implementation in
practice.

There are a number of directions for future work, from the results presented
above one can foresee more ambitious and unified end-to-end programming
models covering content description, processing and distribution. At a higher
level of abstraction, applications can be seen as a set of distributed functions
connected by web services. They can be analyzed for non-functional aspects
such as performance by code and data distribution, security and privacy en-
forcement while enhancing their scalability on increasingly popular infrastruc-
tures such as the cloud.
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7.2 Perspectives

The perspectives of my research work are drawn here in the form of a research
project I am currently proposing, as a project leader, with colleagues at LIG
Laboratory. Pierre Genevès, Cécile Roisin, Nils Gesbert and Jacques Lemor-
dant are taking part of this new adventure.

7.3 Motivations: social and economic challenges

During the last two decades, the web became crucial in our daily life activities
(work, banking, shopping, education, administration, leisure, social network-
ing). The web is now by far the largest mass of information that mankind has
ever gathered. This revolution is continuing its path toward a more compelling
user experience through richer content (such in HTML5, multimedia, 3D au-
dio and graphics) and ever increasing web applications via their reconversion
through services. The future of the web will be influenced by our ability to
leverage this unprecedented potential and to accomplish the successful synergy
of applications and richer content.

This fundamental revolution has been witnessed by a shift in the web itself
that moved from a rather static hypertext system, to a more dynamic envi-
ronment where content combined in web applications became the standard,
not only in content dissemination but also in application development. A new
generation of applications such as enterprise application software, collabora-
tive online publishing platforms, social networking, rating, shopping, mobile
navigation via augmented reality are reshaping the IT industry landscape.

This rapid revolution has been made possible mainly by hacking old technol-
ogy both for content and software that has now showed its severe limitations.
Web content is becoming difficult to integrate and extend to richer features
and applications are becoming harder to write, maintain, and evolve. As a
consequence, information built on such infrastructure has never been at such
a level of risk of a digital black hole. These facts are severely undermining
a web of trust, where technologies remain open, public and applications are
made reliable, secure and efficient.

This proposal aims at developing a vision of a web where content is enhanced
and protected, applications made easier to build, maintain and secure. We
seek at opening new horizons for the development of the web, enhancing its
potential, effectiveness, and dependability. In particular, we aim at making
significant contributions by obtaining fundamental results, building advanced
experimental applications showcasing these results and by contributing to Web
standards. The challenging part here is that contributing to each of these lines
of work requires progress in all of them simultaneously.

7.4 Objectives in terms of technology

Despite the major social and economic challenges that the evolution of the web
represents, current content representation practices and programming meth-
ods are severely limited. Designing web applications is becoming increasingly
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complex as it relies more and more on a jungle of programming languages,
tools and data formats, each targeted toward the different application layers
(presentation, application and storage). This often yields complex and opaque
applications organized in silos, which are costly, inefficient, hard to maintain
and evolve, and vulnerable to errors and security holes. In addition, the com-
munication aspects are often handled independently via remote service invo-
cations and hidden from the verification aspect. As a consequence, there is
an urgent need and a growing demand for a uniform programming framework
that captures the essence of web applications: advanced content, data and com-
munication. Furthermore, successful candidate frameworks must capture rich
document formats, data models and communication patterns. A crucial aspect
is to offer correction guarantees and flexibility in the application architecture.
For instance, applications need to be checked, optimized and managed as a
whole while leveraging on the consistency of their individual components and
data fragments.

7.5 Scientific goals and research directions

The main open problem that we can observe today is a lack of formalisms,
concepts and tools for reasoning simultaneously over documents and communi-
cation aspects in programs. The scientific challenge that we face is to establish
such a unifying framework in the context of the web. This is a difficult problem
that we propose to address along three complementary directions:

a) design of advanced web applications, which consists in building a new
generation of multimedia and augmented reality applications with new de-
sign foundations. The challenging part is to propose means to combine in
an easy and compositional manner rich content, augmented reality and data
gathered dynamically such as those stemming from environment and from
sensors.

b) modeling, which consists in capturing various aspects of document pro-
cessing, data and communication in a unifying model, and whose difficult
part consists of taking into account the peculiarities of the web that require
new programming models and the supporting theoretical tools that do not
exist today.

c) analysis, verification and optimization, which consist in guaranteeing
safety and efficiency properties of information systems, and whose hard part
consists in dealing with problems close to the frontier of decidability, and
therefore in finding useful balances between programming ease, expressivity,
complexity, succinctness, algorithmic techniques and effective implementa-
tions.

This research proposal aims at developing content models, formalisms, lan-
guages, concepts, algorithms, and tools for building a unifying framework,
along the three directions above. These directions are closely related and inter-
dependent. We intend to make contributions to each of them first, by obtaining
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fundamental results, second, by building advanced experimental applications
and tools and third, by contributing to Web standards. The overall goal is to
enable richer, more reliable, secure, and efficient systems. We give more details
on each direction below.

7.5.1 Design of advanced web applications

Specificity of web documents: ordered tree structures

Web documents (and in particular XML) provide a new field of study, for
which it is not possible to use already existing techniques without substantial
modifications. The peculiarity of web documents originates from their ordered
tree structure. These structures can for example be seen as a relaxation of
the classical relational model, one of the foundations of traditional databases,
where less rigid and homogeneous “data fields” are allowed. This data model
has proven to be very useful for representing various families of documents:
multimedia, hypertext, news articles, scientific documents, etc. However, it
needs to be revisited to account for richer and more dynamic content. It is
therefore necessary to develop new theoretical foundations, possibly drawing
on methods used in other domains of computer science.

One essential concept consists in describing classes of documents that share
the same requirements (e.g. web pages through XHTML, or mathematical for-
mulas through MathML). Mastering such representations and their interactions
is also crucial for reasoning over sets of documents. From a theoretical point of
view, this modeling task constitutes a renewal for the study of tree automata
and logical theories introduced in the late 1960’s. These theories are rapidly
evolving to support the new features provided by web documents, requiring
more and more expressiveness and succinctness. We intend to contribute to
this modeling effort, especially through contributions on modal logics such as
the modal µ-calculus, introduced more recently.

Universal content models and formats

Models and formats used for sharing multimedia content on the web must rep-
resent the many facets of multimedia documents. Their richness and versatility
determine how multimedia content can be processed and used in various con-
texts. During the last decade, content has shifted from mainly static pages
to highly dynamic and programmable ones. However, content was massively
produced in a hackish manner and very basic document features have been
subcontracted to scripting which became the "Jack of all Trades" technology
in browsers. In addition, a huge portion of the content on the web is today
not represented in an adequate manner, severely compromising their long-term
access and automatic processing.

It is vital to design rigorously documents to outlive any particular piece
of hardware or system where they may reside. Furthermore, we seek to build
advanced document models that allow us to describe the increasing variety
of modalities such as 3D sound, augmented reality and dynamic content (e.g.
data streams), which are becoming a commodity on mobile platforms and ap-
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plications. The difficulty here is to be able to create models and formats that
combine these aspects by declarative means in a consistent manner, both at
syntactic and semantic levels. They should be able to both enhance user ex-
perience and facilitate their manipulation by programs.

Supporting integrated, rich, dynamic and augmented content

Until now, content rendering on the web was mainly based on supporting me-
dia formats separately. It is still notably the case in HTML5 where vector
graphics, mathematical content, audio and video are supported as isolated me-
dia types. With their increasing support in browsers together with others such
as 3D audio and graphics, we need more than ever methods to integrate them
tightly and correctly in applications and in particular in browsers. In addition,
with the increasing use of web content in mobile terminals, we need to take
into account highly dynamic information flowing from sensors (positioning and
orientation move) and camera. This information needs to be captured and ef-
ficiently combined with content in web browsers. To reach that goal, we need
to ease the manipulation of such content with carefully designed programming
interfaces and by developing supporting integrative methods. The challenge is
to find appropriate abstractions while hiding the increasing complexity of such
content.

7.5.2 Modeling documents, data and communications

The web is traditionally composed of resources (data and documents) and ser-
vices (applications) that exchange resources. The frontier between the two
becomes fuzzy as more and more scripting occurs in web pages. However,
scripting is currently done at a very low level (e.g. similar to an assembly lan-
guage) and this prevents many sorts of analysis and processing. If we consider
XML programming at a higher level then, in the same way as XML documents
are twofold — the raw content and its type — we can consider two aspects
of a programming language, with respect to XML: whether or not it provides
syntactic support to process XML documents (content side), whether or not
it can enforce document constraints (type side) and, finally whether or not it
offers the means to integrate smoothly with external services (communication
side). We believe that there is a need for higher-level abstractions that make
machine processing possible or easier, and that integrate/encompass all these
aspects. Current programming technology is still very limited from this per-
spective. For example, XQuery, which is a good candidate for a uniform and
high-level language, has a very imprecise type system and has no communi-
cation facilities. It is also agnostic to some important content facets such as
style, layout, synchronization and dynamics.

More generally, representing in a uniform way data and programs is a first
step toward higher order programming, as noticed by Luca Cardelli in his work
on semi-structured computation when he remarks: “if we can take advantage
of the similarities [between mobile computation and semi-structured data] and
generalize them, we may obtain a broader model of data and computation on



154 CHAPTER 7. CONCLUSION & PERSPECTIVES

the Internet.” 1 We believe that this important step can be investigated along
several directions. One direction consists of extending expressive modal logics
with, for instance, function types for representing programs. Another direction
consists of considering process calculi as the missing part for, e.g., extending the
XQuery data model with a broader computation model accounting for higher
order capabilities such as parametric polymorphism, functions, etc.

7.5.3 Analysis by reasoning

Type-checking web applications

Developing safer web applications depends on the quality of the methods, that
we will be able to produce in order to enable the correct manipulation of data
in applications. Classical program verification techniques fail to extend to rich
data manipulations, which are the core of web programming.

We propose to develop web program analysis techniques (verification and
optimization), which allow the detection of errors and the enhancement of per-
formance in data manipulation. We will concentrate on techniques based on
type checking by introducing appropriate type systems and reasoning tech-
niques on programs. The main challenge here is to find decidable methods
whose complexity does not preclude their practical applicability. To reach this
goal, we intend to use logical methods such as modal logics and satisfiability
solvers where we gained significant experience.

Global verification of data manipulation and exchange

We seek to build global analysis and verification techniques encompassing errors
in data manipulation, data exchanges in communication protocols and the in-
teractions between application components. The type systems approach seems
particularly appropriate since it allows, by construction, to ensure global prop-
erties of a web application by a local and modular verification of its components.
As such, it will constitute an important object of investigation. Specifically, we
will focus on type systems based on the modeling described in Section 7.5.2.
The expected benefit of such a formalization is to leverage on the extension of
the large toolbox of proof methods and theoretical results that equip existing
calculi. Ideas, concepts, and techniques from process calculi have been success-
fully applied to the study of behavioral properties of distributed systems, and
of type systems for concurrent (functional and/or object-oriented) languages.
Overall, we seek to integrate all these aspects in a uniform and sound type
system.

Designing for evolution

In the ever-changing context of the web, XML schemas continuously change
in order to cope with the natural evolution of the entities they describe. A
change in the schema may require updates of programs that must cope with

1Luca Cardelli. "Semistructured Computation". In Research Issues in Structured and
Semistructured Database Programming. Lecture Notes in Computer Science, Volume 1949,
2000.



7.5. SCIENTIFIC GOALS AND RESEARCH DIRECTIONS 155

the newly described set of valid documents. We propose to introduce new meth-
ods and tools for determining and facilitating program updates resulting from
these changes. Similarly, web services evolve over time, through the modifica-
tions of their interfaces. We intend to develop reasoning techniques capable of
analyzing programs, schemas and communications in order to automate and ef-
ficiently guide these unavoidable updates. Such methods are crucial to enforce
quality assurance in web applications and to help tackling forward/backward
compatibilities issues.
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