L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer, Math. Soc, vol.43, pp.359-364, 1938.

Y. Aihara, Finiteness Theorem for meromorphic mappings, Osaka J. Math, vol.35, pp.593-616, 1998.

W. Chen, Defect relations for degenerate meromorphic maps, Transactions of the American Mathematical Society, vol.319, issue.2, pp.319-499, 1990.
DOI : 10.1090/S0002-9947-1990-1010882-9

Z. Chen and Q. Yan, Uniqueness problem of meromorphic functions sharing small functions, Proc. Amer, pp.2895-2904, 2006.

Z. Chen and Q. Yan, Uniqueness theorem of meromorphic mappings from C n into P N (C) sharing 2N + 3 hyperplanes in P N (C) regardless of multiplicities

S. S. Chern, An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer, pp.771-782, 1955.

S. S. Chern and R. Osserman, Complete minimal surfaces in Euclideann-space, Journal d'Analyse Math??matique, vol.44, issue.2, pp.15-34, 1967.
DOI : 10.1007/BF02788707

G. Dethloff and P. H. Ha, Ramification of the Gauss map of complete minimal surfaces in {\mathbb{R}}^3 and {\mathbb{R}}^4 on annular ends, Annales de la facult?? des sciences de Toulouse Math??matiques, vol.23, issue.4
DOI : 10.5802/afst.1426

G. Dethloff, P. H. Ha, and P. D. Thoan, on annular ends, Colloquium Mathematicum, vol.142, issue.2
DOI : 10.4064/cm142-2-1

URL : https://hal.archives-ouvertes.fr/hal-01082240

G. Dethloff, S. D. Quang, and T. V. Tan, A uniqueness theorem for meromorphic mappings with two families of hyperplanes, Proc. Amer, pp.189-197, 2012.
DOI : 10.1090/S0002-9939-2011-11123-7

URL : https://hal.archives-ouvertes.fr/hal-00531022

G. Dethloff and T. V. Tan, Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets, Annales de la facult?? des sciences de Toulouse Math??matiques, vol.15, issue.2, pp.217-242, 2006.
DOI : 10.5802/afst.1120

URL : https://hal.archives-ouvertes.fr/hal-00467714

G. Dethloff and T. V. Tan, An extension of uniqueness theorems for meromorphic mappings, Vietnam J. Math, vol.34, pp.71-94, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00467715

G. Dethloff and T. V. Tan, Abstract, Nagoya Mathematical Journal, vol.155, pp.75-101, 2006.
DOI : 10.2748/tmj/1113247649

G. Dethloff and T. V. Tan, Uniqueness theorems for meromorphic mappings with few hyperplanes, Bulletin des Sciences Math??matiques, vol.133, issue.5, pp.501-514, 2009.
DOI : 10.1016/j.bulsci.2008.03.006

Y. Fang, On the Gauss map of complete minimal surfaces with finite total curvature , Indiana Univ, Math. J, vol.42, pp.1389-1411, 1993.

H. Fujimoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Mathematical Journal, vol.45, pp.1-23, 1975.
DOI : 10.2748/tmj/1178241480

H. Fujimoto, Non-integrated defect relation for meromorphic maps of complete Kähler manifolds into, Japanese J. Math, vol.111, pp.233-264, 1985.

H. Fujimoto, On the number of exceptional values of the Gauss maps of minimal surfaces, Journal of the Mathematical Society of Japan, vol.40, issue.2, pp.40-235, 1988.
DOI : 10.2969/jmsj/04020235

H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, Journal of Differential Geometry, vol.29, issue.2, pp.245-262, 1989.
DOI : 10.4310/jdg/1214442873

H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces. II, Journal of Differential Geometry, vol.31, issue.2, pp.31-365, 1990.
DOI : 10.4310/jdg/1214444318

H. Fujimoto, Modified defect relations for the gauss map of minimal surfaces, III, Nagoya Mathematical Journal, vol.31, pp.13-40, 1991.
DOI : 10.1007/BF02788707

H. Fujimoto, On the Gauss curvature of minimal surfaces, Journal of the Mathematical Society of Japan, vol.44, issue.3, pp.427-439, 1992.
DOI : 10.2969/jmsj/04430427

H. Fujimoto, Value Distribution Theory of the Gauss map of Minimal Surfaces in R m, Aspect of Math, vol.21, 1993.
DOI : 10.1007/978-3-322-80271-2

H. Fujimoto, Unicity theorems for the Gauss maps of complete minimal surfaces, Journal of the Mathematical Society of Japan, vol.45, issue.3, pp.45-481, 1993.
DOI : 10.2969/jmsj/04530481

H. Fujimoto, Unicity theorems for the Gauss maps of complete minimal surfaces II, Kodai Math, J, vol.16, pp.335-354, 1993.

H. Fujimoto, Abstract., Nagoya Mathematical Journal, vol.64, pp.131-152, 1998.
DOI : 10.1090/conm/025/730045

H. Fujimoto, Uniqueness problem with truncated multiplicities in value distribution theory,II, Nagoya Math, J, vol.155, pp.161-188, 1999.

P. H. Ha, A unicity theorem with truncated counting function for meromorphic mappings, Acta Math. Vietnam, vol.35, pp.439-456, 2010.

P. H. Ha, An estimate for the Gaussian curvature of minimal surfaces in whose Gauss map is ramified over a set of hyperplanes, Differential Geometry and its Applications, vol.32
DOI : 10.1016/j.difgeo.2013.11.005

P. H. Ha and S. D. Quang, Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables for few fixed targets

P. H. Ha, S. D. Quang, and D. D. Thai, Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables sharing small identical sets for moving targets, Internat. J. Math, vol.21, pp.1095-1120, 2010.

S. Ji, Uniqueness problem without multiplicities in value distribution theory, Pacific Journal of Mathematics, vol.135, issue.2, pp.323-348, 1988.
DOI : 10.2140/pjm.1988.135.323

L. Jin and M. Ru, A unicity theorem for moving targets counting multiplicities, Tohoku Mathematical Journal, vol.57, issue.4, pp.589-595, 2005.
DOI : 10.2748/tmj/1140727074

L. Jin and M. Ru, Algebraic curves and the Gauss map of algebraic minimal surfaces, Differential Geometry and its Applications, vol.25, issue.6, pp.25-701, 2007.
DOI : 10.1016/j.difgeo.2007.06.014

S. J. Kao, On values of Gauss maps of complete minimal surfaces on annular ends, Mathematische Annalen, vol.113, issue.1, pp.315-318, 1991.
DOI : 10.1007/BF01445210

F. J. López and F. Martín, Complete minimal surfaces in $\mathbb{R}^3$, Publicacions Matem??tiques, vol.43, pp.341-449, 1999.
DOI : 10.5565/PUBLMAT_43299_01

R. Miranda, Algebraic Curves and Riemann Surfaces, Graduate Studies in Mathematics . Amer. Math. Soc, vol.5, 1995.
DOI : 10.1090/gsm/005

X. Mo and R. Osserman, On the Gauss map and total curvature of complete minimal surfaces and an extension of Fujimoto's theorem, Journal of Differential Geometry, vol.31, issue.2, pp.31-343, 1990.
DOI : 10.4310/jdg/1214444316

R. Nevanlinna, Einige Eindeutigkeitss??tze in der Theorie der Meromorphen Funktionen, Acta Mathematica, vol.48, issue.3-4, pp.367-391, 1926.
DOI : 10.1007/BF02565342

R. Nevanlinna, Analytic functions, 1970.
DOI : 10.1007/978-3-642-85590-0

E. I. Nochka, On the theory of meromorphic functions, Soviet Math. Dokl, vol.27, issue.2, pp.377-381, 1983.

J. Noguchi and T. Ochiai, Introduction to Geometric Function Theory in Several Complex Variables, Trans. Math. Monogr, vol.80, 1990.

R. Osserman, Global Properties of Minimal Surfaces in E 3 and E n, The Annals of Mathematics, vol.80, issue.2, pp.340-364, 1964.
DOI : 10.2307/1970396

R. Osserman, A survey of minimal surfaces, 1986.

R. Osserman and M. Ru, An estimate for the Gauss curvature of minimal surfaces in ${\bf R}\sp m$ whose Gauss map omits a set of hyperplanes, Journal of Differential Geometry, vol.46, issue.3, pp.578-593, 1997.
DOI : 10.4310/jdg/1214459977

S. D. Quang, Nevanlinna theory for meromorphic mappings and related problems, Doctoral thesis in Mathematics, 2010.

S. D. Quang, Unicity of meromorphic mappings sharing few hyperplanes, Annales Polonici Mathematici, vol.102, issue.3, pp.255-270, 2011.
DOI : 10.4064/ap102-3-5

S. D. Quang, A finiteness theorem for meromorphic mappings sharing few hyperplanes , Kodai Math, J, vol.35, pp.463-484, 2012.

M. Ru, On the Gauss map of minimal surfaces immersed in $\mathbf{R}^n$, Journal of Differential Geometry, vol.34, issue.2, pp.411-423, 1991.
DOI : 10.4310/jdg/1214447214

M. Ru, Gauss map of minimal surfaces with ramification, Transactions of the American Mathematical Society, vol.339, issue.2, pp.751-764, 1993.
DOI : 10.1090/S0002-9947-1993-1191614-3

M. Ru, A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer, pp.2701-2707, 2001.

M. Ru and W. Stoll, The second main theorem for moving targets, Journal of Geometric Analysis, vol.24, issue.4, pp.99-138, 1991.
DOI : 10.1007/BF02938116

L. Smiley, Geometric conditions for unicity of holomorphic curves, Contemp. Math, vol.25, pp.149-154, 1983.
DOI : 10.1090/conm/025/730045

W. Stoll, Introduction to Value Distribution Theory of Meromorphic Maps, Lecture Notes in Math, vol.950, pp.210-359, 1982.
DOI : 10.1007/BFb0061879

W. Stoll, Value distribution theory for meromorphic maps, Friedr. Vieweg and Sohn, 1985.
DOI : 10.1007/978-3-663-05292-0

W. Stoll, On the propagation of dependences, Pacific Journal of Mathematics, vol.139, issue.2, pp.311-337, 1989.
DOI : 10.2140/pjm.1989.139.311

T. V. Tan, A degeneracy theorem for meromorphic mappings with few hyperplanes and low truncation level multiplicities, Publ. Math. Debrecen, pp.74-279, 2009.

T. V. Tan, Uniqueness Problem of Meromorphic Mappings of C m into CP n, Doctoral thesis in Mathematics, 2005.

D. D. Thai and S. D. Quang, UNIQUENESS PROBLEM WITH TRUNCATED MULTIPLICITIES OF MEROMORPHIC MAPPINGS IN SEVERAL COMPLEX VARIABLES FOR MOVING TARGETS, International Journal of Mathematics, vol.16, issue.08
DOI : 10.1142/S0129167X05003132

D. D. Thai and S. D. Quang, UNIQUENESS PROBLEM WITH TRUNCATED MULTIPLICITIES OF MEROMORPHIC MAPPINGS IN SEVERAL COMPLEX VARIABLES, International Journal of Mathematics, vol.17, issue.10, pp.1223-1257, 2006.
DOI : 10.1142/S0129167X06003898

D. D. Thai and T. V. Tan, Meromorphic functions sharing small functions as targets , Internat, J. Math, vol.16, issue.4, pp.437-451, 2005.

F. Xavier, The Gauss Map of a Complete Non-Flat Minimal Surface Cannot Omit 7 Points of the Sphere, The Annals of Mathematics, vol.113, issue.1, pp.211-214, 1981.
DOI : 10.2307/1971139

K. Yamanoi, The second main theorem for small functions and related problems, Acta Mathematica, vol.192, issue.2, pp.225-294, 2004.
DOI : 10.1007/BF02392741

S. T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Math. J, vol.25, pp.659-670, 1976.