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Introduction

This thesis consists of two parts.

The first part deals with the uniqueness problems of meromorphic mappings under
some conditions on the inverse images of divisors which was started by R. Nevanlinna
[43] in 1926. He showed that for two nonconstant meromorphic functions f and g on
the complex plane C, if they have the same inverse images for five distinct values then
f = g, and that g is a special type of linear fractional transformation of f if they have
the same inverse images counted with multiplicities for four distinct values.

In 1975, H. Fujimoto generalized Nevanlinna’s results to the case of meromorphic
mappings of C" into PV (C). He showed [18] that for two linearly nondegenerate mero-
morphic mappings f and g of C into PV (C), if they have the same inverse images
counted with multiplicities for 3N + 2 hyperplanes in general position in P(C), then
f = g and there exists a projective linear transformation L of PY(C) onto itself such
that g = L. f if they have the same inverse images counted with multiplicities for 3N +1
hyperplanes in general position in PV (C). After that, this problem has been studied
intensively by a number of mathematicans as H. Fujimoto([18],[28],...), W. Stoll([58]),
L. Smiley([57]), M. Ru([55]), G. Dethloff - T. V. Tan([12], [13], [14]...), D. D. Thai - S.
D. Quang([63], [64]) and so on.

Here we introduce the necessary notations to state the results.

Let f : C* — PY(C) be a meromorphic mapping. For arbitrarily fixed ho-

mogeneous coordinates (wq : -+ : wy) on PY(C), we take a reduced representation
f=(fo:-: fn), which means that each f; is a holomorphic function on C" and
f(z) = (fo(z) : -+ : fn(2)) outside the analytic set {fo = -+ = fy = 0} of codimen-

sion > 2. Let H be a hyperplane in PY(C) given by H = {awy + ... + aywy = 0},
where A := (g, ...,an) # (0,...,0). We set (f,H) = SV a,fi. Then we can define

the corresponding divisor v(s )(2) which is rephrased as the intersection multiplicity



of the image of f and H at f(z).

For every z € C", we set

y (Z) 0 if V(f,H)(Z) > k’,
JH), <k = .
s virm(2) i v (z) <k,

Vs on(2) = v (2) i v (2) >k,
(rH),> 0 if l/(fyH)(Z> S k.

Take a meromorphic mapping f of C" into P (C) which is linearly nondegenerate over
C, a positive integer d, a positive integer k or k = oo and ¢ hyperplanes Hy, ...., H, in

PY(C) located in general position with
dim{z € C" : v, <k(2) >0 and vy <k(z) >0} <n -2 (1 <i<j<q),

and consider the set F(f, {H;}?

satisfying the conditions

4_1,k,d) of all meromorphic maps g : C* — PV(C)

(a) g is linearly nondegenerate over C,
(b) min (v(s,m,),<k, d) = min (Vg m,),<k: d) (1 <j <q),
(¢) f(z) =g(2) on U?:f{z € C" : ypm,),<k(z) > 0}.

When k = oo, for brevity denote F(f, {H;}]_,,00,d) by F(f,{H,}j_;,d). Denote
by £ S the cardinality of the set S.
The unicity problem of meromorphic mappings means that one gives an estimate

for the cardinality of the set F(f,{H;}! ,d). Some natural questions arise and we

=1k
state the following.

Question 1. How about the number of hyperplanes (or fixed targets) in PV (C)
are used?

Question 2. How about the truncated multiplicities (d and k)?

Question 3. Whether the fixed targets (hyperplanes) can be generalized to moving
targets (moving hyperplanes) or hypersurfaces?

On the question 1 and 2, we list some known results:
Smiley [57] # F(f, {H;}3Y™ 1) = 1, Thai-Quang [64] 4 F(f, {H;}>2™, 1) =1, N > 2,
Dethloff-Tan [15] # F(f, {H;}27" 1) = 1 for N > Ny(where the number Ny can be
explicitly calculated) and Chen-Yan [6] 4 F(f, {H;}22,1) = 1.

vi



When ¢ < 2N + 3, there are some results which were given by Tan [62] and Quang
[51],[52]. Those results lead us to the question.

What can we say about the unicity theorems with truncated multiplicities in the case
where ¢ < 2N + 27

The first purpose of this thesis is to study these problems. Firstly, we will give a
new aspect for the unicity problem with ¢ = 2N + 2, and we also study the unicity
theorems with ramification of truncations.

The second purpose of this thesis is to give some answers relative to the question
3. Our results are following the results of Ru [55], Dethloff-Tan [14], Thai-Quang [63].

On the other hand, there are many interesting unicity theorems for meromorphic
functions on C given by certain conditions of derivations. We would like to study the
unicity problems of such type in several complex variables for fixed and moving targets.

Parallel to the development of Nevanlinna theory, the value distribution theory of
the Gauss map of minimal surfaces immersed in R™ was studied by many mathemat-
icans, such as R. Osserman [47], S.S. Chern [7], F. Xavier [66], H. Fujimoto [20]-[24],
S. J. Kao [38], M. Ru [53]-[54] and others.

Let M now be a non-flat minimal surface in R?, or more precisely, a connected
oriented minimal surface in R®. By definition, the Gauss map G of M is the map
which maps each point p € M to the unit normal vector G(p) € S? of M at p.
Instead of G, we study the map g :== 1o G : M — C := CU {oo}(= P'(C)) for
the stereographic projection 7 of S? onto P!(C). By associating a holomorphic local
coordinate z = u + v/—1v with each positive isothermal coordinate system (u,v), M
is considered as an open Riemann surface with a conformal metric ds? and by the
assumption of minimality of M, g is a meromorphic function on M. After that, we can
generalize to the definition of Gauss map of minimal surfaces in R™. So there are many
analogous results between the Gauss maps and meromorphic mappings. One of them
is the small Picard theorem.

In 1965, R. Osserman [47] showed that the complement of the image of the Gauss
map of a nonflat complete minimal surface immersed in R? is of logarithmic capacity
zero in PY(C). In 1981, a remarkable improvement was given by F. Xavier [66] that
the Gauss map of a nonflat complete minimal surface immersed in R?® can omit at

most six points in P'(C). In 1988, H. Fujimoto [20] reduced the number six to four
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and this bound is sharp: In fact, we can see that the Gauss map of Scherk’s surface
omits four points in P'(C). In 1991, S. J. Kao [38] showed that the Gauss map of
an end of a non-flat complete minimal surface in R?® that is conformally an annulus
{z]0 < 1/r < |z| < r} must also assume every value, with at most 4 exceptions. In
2007, Jin-Ru [37] generalized Kao’s results for the case m > 3.

On the other hand, in 1993, M. Ru [54] studied the Gauss map of minimal surface
in R™ with ramification. That are generalizations of the above-mentioned results. A
natural question is that how about the Gauss map of minimal surfaces on annular ends
with ramification. The last purpose of this thesis answer to this question for the case
m = 3,4. We refer to Dethloff-Ha-Thoan [10] for the case m > 3. We would like to
note that the aspect of results in this thesis are different from their results.

We now sketch the content of each chapter of the present thesis

In chapter 1, we study the unicity theorems with truncated multiplicities of mero-
morphic mappings in several complex variables for few fixed targets. In particular,
we give a new unicity theorem for the above-mentioned first purpose of this thesis.
After that we study the unicity theorems with ramification of truncations which is an
improvement of Thai-Quang’s results in [64]. The last of this chapter we give a unicity
theorem of meromorphic mappings with a conditions on derivations.

In chapter 2, we study the unicity theorems with truncated multiplicities of mero-
morphic mappings in several complex variables sharing few moving targets. In partic-
ular, we improve strongly the results of Dethloff- Tan [14]. Beside that, we also give
a unicity theorem of meromorphic mappings for moving targets with a conditions on
derivations.

In chapter 3, we introduce the Gauss map of minimal surfaces in R™ and we study
the ramification of the Gauss map on annular ends in minimal surfaces in R3 R*. In
particular, we improve the results of S. J. Kao [38] by using the ideas of H. Fujimoto

[20] and M. Ru [54].

PuaM HoanGg Ha
2013
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Chapter 1

Unicity theorems with truncated
multiplicities of meromorphic
mappings in several complex
variables for few fixed targets

The unicity theorems with truncated multiplicities of meromorphic mappings of C"
into the complex projective space PV(C) sharing a finite set of fixed hyperplanes in
PV (C) have been studied intensively by H. Fujimoto, L. Smiley, S. Ji, M. Ru, D.D.
Thai, G. Dethloff, T.V. Tan, S.D. Quang, Z. Chen, Q. Yan and others. The unicity
problem has grown into a huge theory.

With the notations in §1.1, we report here briefly the unicity problems with multi-

plicities of meromorphic mappings
Theorem A.(Smiley [57]) If ¢ > 3N +2 then t F(f,{H;}_,,1) = 1.
Theorem B.(Thai-Quang [64]) If N > 2 then # F(f, {H;}3N™ 1) = 1.

Theorem C.(Dethloff-Tan [15]) There exists a positive integer Ny (which can be
explicitly calculated) such that § F(f,{H;}{_1,1) =1 for N > Ny and ¢ = [2.75N].

Theorem D.(Chen-Yan [6]) If N > 1 then t F(f, {H;}22 ™ 1) = 1.

Theorem E.(Tan [62]) For each mapping g € F(f, {H;}X[2, N +1), there exist a
constant o € C and a pair (i,j) with 1 <i < j < g, such that

(Hi, f) _ a(Hiag)
(Hj’f) (vag)'




Theorem F. (Quang [51]) Let fi and f3 be two linearly nondegenerate meromorphic
mappings of C" into PN(C) (N > 2) and let Hy,...., Hynyo be hyperplanes in PV (C)

located in general position such that
dim{z € C" : vy, m,y(2) > 0 and vy, g, (2) > 0} <n —2

for every 1 <1 < 7 < 2N + 2. Assume that the following conditions are satisfied.

(a) min{v(s, 1) <, 1} = min{vg, 1) <y, 13 (1 < < 2N +2),

(b) f1(2) = fo(2) on 22T {z € C" : vy, ) (2) > 0},

(¢) min{v(y, gy >N, 1} = min{y g, m)>n, 1} (1 < j <2N +2),

Then f1 = fs.

Theorem G. (Quang [52]) If N > 2 then # F(f, {H;}2Y% 1) < 2.

In the first part of this chapter, we would like to study the unicity theorems for
the case ¢ < 2N + 2. In particular, we shall prove Theorem 1.2 (Ha-Quang [33]) which
gives a new aspect of them in the first part of this chapter.

In [64], the authors showed that

Theorem H. (Thai-Quang [64]) (a) If N = 1, then # F(f, {H;}3N™ k,2) < 2
for k > 15.

(0) If N >2, then § F(f, {H}3N™ k,2) <2 for k> 3N + 3+ %.
(6) IFN >4, then § F(f,{HI k,2) <2 fork > 3N + 7+ NQ—:)
60

(d) If N >6, then t F(f, {H}2" k,2) <2 for k> 3N +11+ +—.

The second part of this chapter studies the unicity problems of meromorphic map-
ping with ramification of truncations. We are going to improve Theorem H by Theo-
rem 1.3 (Ha [31]). In particular, we use different truncations k; for each hyperplanes

H;(1 <i<gq), and we then give its corollaries.

As far as we know, there are many interesting unicity theorems for meromorphic
functions on C given by certain conditions of derivations. We will give a unicity theorem
of such type in several complex variables for fixed targets. That is a unicity theorem
with truncated multiplicities in the case where N +4 < ¢ < 2N + 2. We will prove
Theorem 1.4 (Ha-Quang [33]) in the last part of this chapter.



1.1 Basic notions and auxiliary results from Nevan-
linna theory

1.1.1. We set |[z]| = (|z1]* + -+ + |Zn|2)1/2 for z = (21,...,2,) € C" and define
B(r):={z€C":|lz]| <r}, Sr)={z€C":||z|]|=r} (0<r <o0).

Define
vaa(2) = (dd°||z|>)"™" and

o, (2) = d%og||z||* A (ddclogHzHQ)n_lon C"™\ {0}.

1.1.2. Let F' be a nonzero holomorphic function on a domain €2 in C". For a multi-
ol F

index o = (o, ..., ), we set o] = oy + ... + o, and DYF = ————— . We define
0% 2,...0% 2z,

the mapping vp : 0 — Z by
vp(z) := max {m : D*F(z) =0 for all a with |a| < m} (z € Q).

We mean by a divisor on a domain €2 in C" a mapping v : {2 — Z such that, for each
a € €2, there are nonzero holomorphic functions F' and G on a connected neighborhood
U of a (C Q) such that v(z) = vr(2) — vg(2) for each z € U outside an analytic set of
dimension < n — 2. Two divisors are regarded as the same if they are identical outside
an analytic set of dimension < n— 2. For a divisor v on Q we set |v| := {z : v(z) # 0},
which is a purely (n — 1)-dimensional analytic subset of 2 or empty.

Take a nonzero meromorphic function ¢ on a domain €2 in C". For each a € 2, we
choose nonzero holomorphic functions F' and G on a neighborhood U C ) such that
o= g on U and dim(F~'(0) N G~'(0)) < n — 2, and we define the divisors v, v3° by

Ve i= VR, Vg = Vg, which are independent of the choices of F' and G. Hence, they
are globally well-defined on (2.
1.1.3. For a divisor v on C" and for positive integers k, d (or k,d = 00), we define the

counting functions of v as follows. Set

v (2) = min {d, v(2)},

(d) 0 if v(z) > k,
(2) = {V(d)(z) if v(z) <k.



We define n(t) by

[ v(z)vaa(z)  ifn>2
_ JIvInB() e on2yn—1
n(t) = , where v,,_1(2) := (dd°||z .
(> ZV(Z) ifn=1 v 1( ) ( H H)
|2|<t

Similarly, we define  n(9(t), n(SdZ(t), n'? (t).
Define

t2n71

N(r,y):/n(t) dt (1 <r <o0).

Similarly, we define N(r, @), N(r, V(Sd,z), N(r, V(>d]2) and denote them by
N (r,v), Nédk)(r, v), N9(r,v) respectively.
Let ¢ : C* — C be a nonzero meromorphic function. Define N,,(r) = N(r,v,), prd) (r) =
d d d d
N (r.v,), NEL(r) = NE(rovp), NELy(r) = NS ().
For brevity we will omit the superscript (@ if d = cc.
Now, take a meromorphic mapping f of C* into PY(C) which is linearly nonde-

generate over C and ¢ hyperplanes Hy, ...., H, in PY(C) located in general position

with
dim{z € C" : v(s,m,),<k(2) > 0 and v(s,u,) <k(2) >0} <n—2 (1 <i<j<q),

and consider the set F(f,{H,}_,,k,d) of all meromorphic maps g : C" — PV(C)
satisfying the conditions

(a) g is linearly nondegenerate over C,

(b) min (v(z,m,) <k, d) = min (Vg,m <k, d) (1 <5 <q),

(¢) f(z) =g(2) on U?Zl{z € C": vy my),<k(z) > 0}

When k = oo, for brevity denote F(f, {H;}7_,,00,d) by F(f,{H;}j_,,d). Denote
by £ S the cardinality of the set S.
1.1.4. Let f : C* — PY(C) be a meromorphic mapping. For arbitrarily fixed ho-
mogeneous coordinates (wq : -+ : wy) on PY(C), we take a reduced representation

f="(fo: - fn), which means that each f; is a holomorphic function on C" and



f(z) = (fo(z) : -+ : fn(2)) outside the analytic set {fo = -+ = fy = 0} of codimen-
sion > 2.

Set || fIl = (Ifol* + -+ | fn]?)
The characteristic function of f is defined by

1/2

T(r.f) = / log|l |l — / log]| ||

5(r) 5(1)

Let H be a hyperplane in PV (C) given by H = {awo + ... + aywy = 0}, where
A = (ag,...,an) # (0,...,0). We set (f,H) = Zfioaz’fi- Then we can define the
corresponding divisor vy ) which is rephrased as the intersection multiplicity of the
image of f and H at f(z). Moreover, we define the proximity function of H by

1711 1) 1711 )
- log =t ——"¢g, — log ——————~—0p,
g a(r) /Sm T T /Sm B

1

N 1
where [|H|| = (32i1o [a:l*)>.
Let ¢ be a nonzero meromorphic function on C", which are occasionally regarded as a

meromorphic mapping into P!(C). The proximity function of ¢ is defined by
m(r, @) = / logmax (|¢|, 1)o,.
S(r)

1.1.5. Consider a vector-valued meromorphic function F' = (fo, ..., fx). For each a €
C", we denote by M, the set of all germs of meromorphic functions at a and, for
k= 1,2, ..., by F* the M,—submodule of MY*!hich is generated by the set {D*F :=
(D fo, ... D*fn); || < k}. Set lp(k) := ranky, F*, which does not depend on each
a € C". For a meromorphic map f = (fo : f1 : -+ : fy) : C* — PN(C), we set
Lp(K) = Ugo i) ().

Assume that meromorphic functions fy, ..., fy are linearly independent over C.
For N + 1 vectors o' := (1, ..., i) (0 < i < N) composed of nonnegative inte-
gers a;;, we call a set a = (a%al,...,a) an admissible set for F = (fo,..., fx) if
(D" F, ..., D" F} is a basis of F* for each & = 1,2, ..., ko := min{x’; lp(x') = N+1}.

1 N

By definition, for an admissible set (a®, a!, ..., o) we have

det (D*F, ..., D" F) £ 0.

1.1.6. As usual, by the notation ”|| P” we mean the assertion P holds for all r € [0, 00)

excluding a Borel subset E of the interval [0, 00) with [, dr < co.

bt



The following results play essential roles in Nevanlinna theory (see Noguchi-Ochiai
[46], Stoll [58],[59]).
1.1.7. The first main theorem. Let f : C* — PN(C) be a linearly nondegenerate
meromorphic mapping and H be a hyperplane in PN (C). Then

Ny (r) +mpu(r) =T, f) (r>1).

1.1.8. The second main theorem. Let f : C* — PN(C) be a linearly nondegenerate

meromorphic mapping and Hy, ..., H, be hyperplanes in general position in PN (C). Then

| (¢—N-1T rf<ZN§;V;) +o(T(r, ).

1.1.9. Lemma. (Thai-Quang [64]) Let f : C" — PY(C) be a linearly nondegenerate
meromorphic mapping. Let Hy, Ho, ..., H, be ¢ hyperplanes in PV (C) located in general
position. Assume that k > N — 1. Then

H (q S kNTq> )= Zi:(l - k;—+1) Ny (r) +o(T(r, ) -

1.1.10. Logarithmic derivative lemma. Let f be a nonzero meromorphic function

on C". Then

H m(r, Dajff)): Olog* T(r, f)) (a € Z7).

1.1.11. Denote by M*,, the abelian multiplicative group of all nonzero meromorphic
functions on C". Then the multiplicative group M*,,/C* is a torsion free abelian group.

Let G be a torsion free abelian group and A = (a4, as, ..., a,) a g—tuple of elements
a; in G. Let ¢ > r > s > 1. We say that the g—tuple A has the property (P, ) if any
r elements a;(1), ..., aj) in A satisfy the condition that for any given iy,...,i, (1 <14y <
.. < 1s <), there exist ji,....,Js (1 < j1 < ... < js <) with {iy, ..., 05} # {j1, -, Js}

such that Qi(iy)---Ql(is) = Qi(j1)--AU(js)-

1.1.12. Proposition. (Fujimoto [18]) Let G be a torsion free abelian group and
A = (ay,...,aq) a g—tuple of elements a; in G. If A has the property (P,5) for some
r,s with ¢ > r > s > 1, then there exist i1, ...,7q—ryo with 1 < i3 < ... < tg_py2 < @
such that a;;, = a;, = ... = a,_, .,

Take 3 mappings f*, f?, f2 with reduced representations f* := (f¥ : ... : f¥) and set

6



T(r) := S35, T(r, f¥). For each ¢ = (cq,...,cy) € CN*1\ {0}, we define (f*,c) =
SV cifF (0 <k < N). Denote by C the set of all ¢ € CN*1\ {0} such that

dim{z € C": (f*, H;)(2) = (f*,¢)(2) =0} <n—2

1.1.13. Lemma. Let Hy, Ho, ..., H, be q hyperplanes in PN(C) located in general
position. Assume that min(v s gy, d) = min(yp g,),d)(1 <k < 3),1 <d < N and
g > N+2. Then

|| T'(r, "y =0(T(r, f1)) for each (1<k<3).

Proof. By the Second Main Theorem, we have

Hence || T(r, f*)=0O(T(r, f')). Q.E.D.

1.1.14. Lemma. (Ji [35]) C is dense in CN 1.

k
, H;
1.1.15. Lemma. (Fujimoto [28]) For every c € C, we put FI/* = <{f’; ;) Then
,C

T(r, FF*) < T(r, f*) + o(T(r)).

1.1.16. Definition. (Fujimoto [28]) Let Fp, ..., Fiy be meromorphic functions on C”,

where M > 1. Take a set a := (o, ...,a™~1) whose components o

are composed of
n nonnegative integers, and set |a| = [a?| + ... + | ~!]. We define Cartan’s auxiliary

function by

1 1 1
DaO(L) Dao(i) o DaD(L)
®QE®Q(FO,...,FM) = FOFI“'FM Fo 11 .FM
fDaMfl(FiO> DO&MA(F%) o Dan(FLM)
1.1.17. Proposition. (Fujimoto [19]) Let o = (a2, --- ,a™) be an admissible set for

= (fo, -+, fn) and let h be a holomorphic function. Then,

det (D"O(hF), e ,DO‘N(hF)) = WVt det (D“O(F), . ,DO‘N(F)>



1.1.18. Lemma. (Fujimoto [28]) If ®*(F,G, H) =0 and ®*(%, 5, %) =0 for all o
with |a| < 1, then one of the following assertions holds :
(i) F=G,G=H orH=F.
(it) £,S and & are all constant.
1.1.19. Lemma. Suppose that ®*(Fy, ..., Fpr) #Z 0 with |of < w If
D = min {vp, <k, d} = min {vp, <, d} = --- = min {vp,, <p,,,d}

for some d > |, then vga(z9) > min {v1D(20),d—|al} for every zo € {2 : vy <k, (2) >

0} \ A, where A is an analytic subset of codimension > 2.

Proof. Set Hy := {z : vp, <1, (2) > 0}, then by the assumption we have Hy = H; =
... = Hy; := H. Denote by A the set of all singularities of H. Then A is an analytic
set of dimension at most n — 2. We assume that zp € H \ A. We choose a nonzero
holomorphic function h on a neighborhood U of z; such that dh has no zero and
HNU={z¢€U;h(z) =0}. Set mg := vp,(20) and g, := Fis for 0 < s < M. We can
write ¢, = h™™:p, on a neighborhood V(C U) of z, where ¢, are nowhere vanishing

holomorphic functions on V.

We first consider the case (4 (z) = d. We have

F, F Fy
F.D(L)  RBDC(L) o FyD(L) |
P — ' Fy : Fy : . Fyp _ Zﬁ‘io(_l)ZFiwi?
Fp. D" (&) FLDY () e Py DY)
D
where v; := det( SOk;k‘ =0,..,i—1,i+1,...M; 1=0,1,.... M — 1) are meromor-
Pk

phic functions.
al

D> o s D _ W
Pk Pk hletl?

By induction on | a! |, we can write each where ¥y is a

holomorphic function, and

Y

Dall Dali i Dali+1 ; Dallw

D D () = U LR O
_ %o Pi-1 Pit+1 M
I=(l1slr)
where [ = (I, ..., [pr) runs through all permutations of {0, 1, ..., M — 1} and ¢(I) denotes
the signature of a permutation [. This implies that v3° <| a [ . By the assumption
ve<k (20) > VW (29) = d, we have vga(29) > d— | o | .

After that, we consider the case 1 < v{19)(2,) < d. Then, by the assumption, we get

*

m =mog=mp=---= My = I/([d])(zo).
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We now write

1

=~ det (Da’(wk o)k =1, M 1= 0,1, ., M — 1>,
Popr- - PMm

and @, — @o = h™™ (P — Po), Where @ — @ is a holomorphic function.

By applying Proposition 1.1.17, it implies that

go— T 1 <D’( ) k M:1=01,...M >
= ———— ——det( D (o —@o);k=1,....,M; 1 =0,1,..... M — 1),
oPr1... Pt hm M Pk ¥0
and hence
R P
o = ﬁdet(pa (P —@0);k=1,....,M; 1=0,1,.... M — 1).
PoP1---PM

This yields that vga(z9) > m*. The proof is completed.

1.1.20. Lemma. Suppose that the assumptions in Lemma 1.1.19 are satisfied. If
Fy=---= Fy # 0,00 on an analytic subset H, which is defined in the proof of Lemma
1.1.19, then vea(z9) > M, V zy € H.

Proof. By using the same proof of Lemma 1.1.19, we now must only show that
Voo (29) > M for all regular points zg of H with Fj(29) # 0,00 (0 < k < M). Taking
a holomorphic function A on a neighborhood U of 2, such that dh has no zero and
HNU ={z e U| h(z) = 0}, we write ¢, := Fik_Fio = hiy, (1 < k < M) with nonzero
holomorphic functions 1, on a neighborhood of z;. We now use Proposition 1.1.17 to

have
P = FOFIFM det (Dallf/}vk,]{j = ]., ,M, [ = 07 1, ,M — ].)
= FoFlFMhM det (Dald}k;l{} = 17 ,M, | = O, ]_, 7]\4 - 1)

Thus, we get vga(z9) > M.

1.1.21. Lemma. Let f : C* — PN(C) be a linearly nondegenerate meromorphic
mapping. Let Hy, Hy, ..., H, be q hyperplanes in PY(C) located in general position.
Assume that k; > N —1 (1 < j <gq). Then

N I N
H(q—N—l —Zm)T(T;f) < 2(1— k.+1>N((jv\,[1){j),<kj(7’)+0(T(7"af)) :
j=1 J j= J




Proof. By the Second Main Theorem, we have

| (@=N=1T(r, f) <3 Niip) () +0(T(r, f)

N
<Y Ny e 0+ Nig,,), 5k (r)+o(T(r, f))
J=1 j=1 kj+1
q q N
=D Niginy.n, () kjﬂ(N(fH])(?’) Nig.m;) (7”)>+0(T('f’,f))
Jj=1 j=1
P . N ~_N T T
<D (U DN, () + D g T F) + 0T ).
j=1 J =1 '

Thus, we have a desired inequality. Q.E.D.

1.1.22. Lemma. Assume that there exists ®* = ®*([F10 . FIoM)y £ (0 for some
M(M —1)
cec o < MUY

Then, for each 0 <1 < M, the following holds:

,2 > |a| and the assumptions in Lemma 1.1.19 are satisfied.

M(M 1))

2 « (
[ NGO o MY NG () < N vge) < T +ZN oty (1) FO(T(r)).

J#Jo 1=0

JO

Proof. The first inequality is deduced immediately from Lemmas 1.1.19 and 1.1.20.

On the other hand, we also have
N(r,vga) <T(r,®*) + O(1) = N(r,vga) +m(r,®*) + O(1). (1.1.1)

We easily see that a pole of ®“ is a zero or a pole of some F7! and ®* is holomorphic
at all zeros with multiplicities < kj;, of F’! because of Lemma 1.1.19 (I € {0,..., M }).

Assume that z, is a zero of F%! with multiplicity > ki;,. We also see that if z; is a

Dei(1/FIob) _ o U :
pole of W, then it has multiplicity < |a;|. Thus, if zg is a pole of ®* then it
has multiplicity < o] = S0 ! o] < w This implies that

M(M 1>)

M
N(r,v3) <ZN ki (N +Y N  (112)
=0

and

m(r, ®%) <

-

ﬁ
Il
o

m(r, F) + O (Z m (r, %f,?'”) ) +0(1)

10



r, FP) +o(T(r))  (1.1.3),

Ms

where @io*F = 1/Fiok By ( 1. 1) (1.1.2) and (1.1.3), we get

M M 1))

M
(f Ay, (1) D T, F2) + o(T(r)
=0

Ms

T ]/(1)(1

M(M— 1))

(
S T(T) + Z N(fz QJO) >k”0

(r)4+o(T(r)). Q.E.D.

1.2 A unicity theorem with truncated multiplici-
ties of meromorphic mappings in several com-
plex variables sharing 2N + 2 hyperplanes

Theorem 1.2. (Ha-Quang [33]) Let f' and f? be two linearly nondegenerate mero-
morphic mappings of C" into PN (C) (N > 2) and let Hy, ...., Hyn o be hyperplanes in

PN(C) located in general position such that
dim{z € C" : y(p1 g (2) > 0 and v g, (2) >0} <n—2

for every 1 <i < j <2N + 2. Let m be a positive integer such that
- ( 2N +2 ) K 2N +2 )_2}_
N+1 N +1

Assume that the following conditions are satisfied.

(a) min{vp1 gy, 1} = min{v e gy, 1} (1 < j < 2N +2),

(6) [1(z) = [2(2) on U2z € €™ v iy (2) > 0,

(¢c) min{vp m)(2), vp2.m,)(2)} > N or v gy (2) = vige ) (2) (mod m) for all
ze (fYH)7H0) (1<j<2N+2).

Then f! = f2.

Proof. Suppose that f! # f2. For each i € {1, ...,q}, we define a divisor v; as follows

1 if min{y g g, (2), vp2,m(2)} > N,
vi(z) == 1 if vy (2) = vp2m,)(2)) < N,
0 otherwise.
Claim 1.2.1. Assume that i,j € {1,2,...,2N + 2} such that
(f' Hi)  (f* Hi)
(JL.H;)  (f%H))

11

Py = Z 0.



Then, we have

2 2N42
ZZ ooty (1) = NNy () 4+ N(rv))+ D D7 N g
s=1 v=i,j s= 15}7&5

<2 T(r,f)+0(1) (1.2.1)

Proof . For each z € (f', H,)"'(0), we consider the three following cases.
Case 1: min (v(p1 g,)(2), V(s2,m,)(2)) > N.
We have

min{v s g,y(2), V(p2,m,)(2)} = N + 1
2
= min{y ) (2), N} = N + 1,(2).

Case 2: vip1 ) (2) = Vip2,m,)(2) < N.
We have

min{v g g,y(2), V(p2,m,)(2)} = me{y (5,1 (2), N} = v ) (2)

> Zmin{y(fs,Hv)(z), N} — N +v,(2).
s=1

Case 3: z is not satisfied Case 1 and Case 2.

Then v,(z) = 0. We have

min{v g g,y(2), V(p2,m,)(2)} > me{l/(fa ) (2), N} —

= Zmin{y(fsﬂv)(z), N} — N +v,(2).
s=1
From the above cases, for every z € ( f 1 H,)71(0), we have
min{v s g, (2), V(p2,m,)(2)} > Zmln{y o) (2), N} = N 4+ 1(2).

By this inequality and by the definition of F;;, it is easy to see that

2N+2

vp,(2) > min{vp gy (2), vir2,m,)(2) ) + Z V(JH )
'U;éz]
2 N 2 2N+2
(V) (1 )
>3 (W@ ~ 5 i)+t 32 D o]
s=1 s=1 v=1
v#i,j

12



This yields that

Np, (r) > (2N((N) S(1) = NNy () + N (r, 1))

= ()
1
EN(F (r) (1.2.2).

1
4]

”MN TiMm

@e

On the other hand, we have

m(r, P;) <m (r, Effi—H;) +m (r, E]fcz gji ) +0(1)
<r{ ) ) )

(! Hj)

B (%, Hy)
v (n iy ) row
T(r, f') +T(r, f?) - Nm,) (r) = Nyzomy) (r) + O(1)

(F1Hy) (F2,H;)

= T(T’7 fl) —I— T(T’, f2) — N(f17Hj)(T') — N(fQ’H].)(T) —f- O(l)

and

N% (r) < N(r,p;), where pu;(z) = max{y(flﬂj)(z),V(fz’H].)}(z).

For every z € (f', H;)~'(0), it is easy to see that

vy (2) + v (2) — py(2) = min{yp gy (2), v, (2) )
> min{u(ngj)(z), N} + min{y(fzﬁj)(z), N} — N +v;(2).

Hence
2 2 2N+2
(N) (1) 1)
D @N( iy (1) = NN () + N(rov) + 3 Y N gy (r
s=1 s=1 v=1
V#L,J

< 2Np, (r) <2T(r,P;) = 2N

1
Py

(r) 4+ 2m(r, Pyj) + O(1).

<2 ZT(Ta F?) 4 2(N(r, p15) = Negry) (r) = Nigz, (1) + O(1)

N N 1
< 2ZT r f7) =2 N(fl)H (r )+N((f2)H)< ) — NN((fi,Hj)(T)WLN(Ta’/j))

+ 0( )
<2 T f) = > (2N (1) = NNy () + N(r,wy)) + O(1),

13



This implies that

2 2N+2
ZZ Ny (1) = NN gy (1) + N(rn))+ D Y0 N
s=1 v=i,j s=1 v=1
) #i.
<2 T(r, f*)+O().
s=1

This concludes Claim 1.2.1.

Claim 1.2.2. For every 1 <1 < 2N + 2, we have

2

| N(rv) = o) _T(r f*)).

s=1

Proof . By changing indices if necessary, we may assume that

(flle) (fl HQ) (flaHk?l)

_ _ ” (ffsHw) _ _ (ff Hy)

(f27H1) B (f2 HQ) B B (f27Hk1)J \(fszkH-l) B B (fzaHIQ)
groupl grt;lrpo

§—£ (f 7Hk2+1> - = (flaHks) 7—é §—£ (f17Hk’s_1+1) - = (flaHks)

\(f27Hk2+1) B B (anHks)J \(f27Hks—1+1) B (.f2>Hks)’
group 3 gr(:Gps

where k, = 2N + 2.

For each 1 <i < 2N + 2, we set

) i+ N if it <N+ 2,
x(i) =9 . o
1 —N—-2 if1> N+ 2.

L H;
Since f' # f?, the number of elements of every group is at most N. Hence (7, H)

( H;)
and E;; ; belong to distinct groups. This means that Ej::g:% % E; § (1<
i <2N + 2) Hence

(flvﬂxi) (fszxi) .
Pyiyi = (fl,H(i)) — (fQ’HZ)) £0(1<i<2N+2).

Summing up both sides of (1.2.1) over all pairs (i, x(7)), we have

2N+2

Z Z < Ny, () + 2N (r, yz))g 22N +2)) T(r, f*)+0(1) (1.2.3)

s=1

14



Then, by the Second Main Theorem we have

122N +2)> T(r Z Z( sz) ) + 2N (r, uz)>+0(1)

2N+2

4(N+1)Z +4ZNW,
ZTrfs (1.2.4).

s=1,2

This implies that

|| N(r,v;) = ZT

s=1,2

Claim 1.2.2 is proved.

Claim 1.2.3. Fori=1,...,2N + 2, the following assertions hold

2 2N+2
(1)
i) || Z Z — NN gy (r +Z Z ()
=1 o=x( ol
2 2
=23 T(r, f)+o(>_T(r f)) (125)
s=1 s=1
2
.. o (N) (1)
(i) || 2Np,,,(r) = 2 (QN( f_97HX(i))(T) — NN fs’HXm)m)
2N+2 2
1 S
FY Y N ) o0 T ) (126)
s=1 wv=1 s=1
v#EX(1),1

Proof. Since the inequality (1.2.4) becomes an equality, the inequalities (1.2.1) and
(1.2.2) must become equalities for all P, (;;. Moreover, we have || N(r, vy4)) = N(r,v;) =

o(32_, T(r, f*)). Then Claim 1.2.3 is proved.

15



Claim 1.2.4. Fori,j € {1,...,2N + 2} with P;; # 0, the following assertions hold
2 2N+2

N
i) || ZZ 2N(p sy () = NNy () + D0 D Mgy
s=1 v=i,j s=1 1})7&1,1;
2 2
=23 T, ) + o3 T(r 7)) (127)
s=1 s=1
2
N 1
(ii) || 2Np, (r) = > 2N((sz) NN((f;Hi)(r))
s=1
2 2N-+2 2
1 s
NN )+ T f7) (1.2.8)
s=1 v=1 s=1
v, g

Proof . Since P;; # 0, fl H% and éffj—H belong to two distinct groups. Therefore,

by changing indices again we may assume that i = x(j). Then Claim 1.2.4 is deduced
from Claim 1.2.3.

Now we return to prove the theorem. We consider two arbitrary indices 7,7 €

{1,...,2N + 2}. Since f' # f?, there exists an index k such that Py, # 0 and Py, # 0.
By (1.2.7), we have

2 2N+2
| ZZ — NN g () *ZZN
s=1 v=ik
2¢2kN+2
_E;Zk QN(J]‘Z)H) ~ NN 4 +ZZN((}3H>
s v=j, v;éjk

+o(D> T(r, f7)) =2 T(r, f*) + o> _T(r, f*)).

Thus
2
() 0 N (™)
] Z 2N(p: )y (r) = (N + DN gy (1)) = D (2N(7 (1)
s=1
2

— (N4 NGy (1) + 03 T(r, ) (1.2.9)

s=1
Combining (1.2.7) and (1.2.9), we get
2 2N+42
||22 NG () = (N DNGE iy () + 32 > Nigha
2 = 1 v=1
=2 T(r, f)+o(>_T(r, f)) (1.2.10)
s=1 s=1

16



1

H;

Assume that H; = {ajowo + - -+ + a;nwy = 0}. We set h; = E;Q’Hi

b (L HD - () ;
2N + 2). Then — = ’ "2 does not depend on representations of f! and
e PV AN

f2 respectively. Since chvzo airfir — hi - Zszo i for =0 (1 < i < 2N + 2), it implies
that det(aio, cey AN, aiohi, ey aiNhi; 1 S 1 S 2N + 2) = 0.

For each subset I C {1,2,...,2N + 2}, put h; = [[,; hi. Denote by Z the set of all

combinations I = (iq,...,inx11) with 1 <1y < ... <iny < 2N + 2.

(1<i<

For each I = (iy,...,in4+1) € Z, define
A = (_1)(N+1)2(N+2)+il+...+’iN+1 'det(am; 1<r<N+1,0<I< N).

det(a;;;1<s<N+1,0<I<N),
where J = (1, ..., jnv+1) € Z such that TU J = {1,2,...,2N + 2}.
Then ZIGZ A]h[ =0.
Take Iy € Z. Then

: A
A[Ohjo = — Z A[h[, 1.e. hlo = — Z ! h[.

TeT, I+, I€T, I+,

Remark that for each I € Z, then Ailfo Z 0.

Denote by t the minimal number satisfying the following:

There exist t elements 1[4, ..., I; € Z\ {Ip} and ¢ nonzero constants b; € C such that
hiy = > iy bihr,.

It is easy to see that t < ( 2N + 2 )—1.

N +1
Since hy, #Z 0 and by the minimality of ¢, it follows that the family {h;,,..., ks, } is

linearly independent over C.

Assume that ¢ > 2.

Consider the meromorphic mapping h : C* — P!~1(C) with a reduced representa-
tion h = (dhy, : ... : dhy,), where d is meromorphic on C".

If 2 is a zero (a pole, resp.) of h;, then vy g,)(2) # v(s2,1,)(2). Hence
max{v s m,)(2), v(p2,m,)(2)} > N or |y gy (2) — v(g2,m,)(2)| > m. Therefore, vi(z) = 1
or z is either zero or pole of h; with multiplicity at least m. This easily implies that if z
is a zero of dhy then v;(z) = 1 with one of indices i € {1,...,2N 4 2} or z is zero of dh;
with multiplicity at least m. We thus have, for every z & (f1)™ (H;) N (fY) " (H;)(1 <

17



i<j<2N+2).

2N+2
1

min{1, vg,(2)} < Z; vi(z) + El/dhl(z).
This implies that
2IN+2 1 1 2
1 s
I NG (r) < 30 N0 )+ N (1) < 2T, ) 03T )

for each I € 7.

By the Second Main Theorem, we have

t
| T(rh) <Y Ng, () + N, D) + oT(r, 1)
=1
t

(Y Nigo (1) + Nigo () + o(T(r, 1))

=1

< wﬂr, h)+ o(T(r,h)) + o> _T(r, *)).

m

This yields that || T(r,h) = O(Zizl T(r, %))

Consider the hyperplanes H; = {w; =0}, H, = {we = 0}, Hy = {byw+...+bw; =
0} in P*=!(C). Then

(h, Hy) hr, 1
T(rh) > 7(r, 0 Flz)>+0(1) =7(r, —12) LO(1) > N%_l +o(1),
T(r, h) > T(r, (A ~2))+0(1) - T(r, @>+0(1) >N+ 0(),
(h, Hs) Io ﬁ—
T(r,h) > T(r, (h, ~3))+0(1) - T(r, h—f) +o(1) = NY (1) +00)
(h, Hy) hr, ,?1) -
Hence 37'(r, h) > N“ )+ N“) )+ N(i)l (n+oQ).

Since Z— = 1 on the set U c(rusn rne Eis
where Ej = {z € C" : v5u,)(2) > 0} and (11 UIz) \ (11N 1)) U((I2Ul) \ (IaN1p))°U
(Iou )\ (Ign 1)) ={1,....,2N + 2}), it implies that
2N+2
Ng_l( )+N£_1( r) + Z N

h12 hIO hIl

Hence || 37(r,h) > Y252 N, (1) +0(1) = % T(r, £2)+o(T(r, 1)) (5 = 1,2).

h
Then || T'(r, f*) = 0 (s = 1,2). This is a contradiction. Thus, ¢ = 1. Then h—lo =
Iy

18



constant # 0. Hence, for each I € Z, there is J € Z \ {I} such that Z—; = constant #
0. Consider the free abelian subgroup generated by the family {[hq], ..., [hon+2]} of
the torsion free abelian group M*,/C*. Then the family {[hi], ..., [hanio]} has the
property Ponyiony1. It implies that there exist 2N + 2 — 2N = 2 elements, without

loss of generality we may assume that they are [hy], [hs], such that [hy] = [ha]. Then
hy
e C*
e C

Suppose that y # 1.

h _ _ _
Since hlg ; — 1 for each z € 2N (fY) T (HI\((Y) " (H)U(FY ' (Hy), it implies
2

that (J2%7 (f1)~ "(H;) = 0. By the Second Main Theorem, we have

2N+2

I @N-N-1T Z (i (1) + o(T(r, 1)) = o(T(r, 1)),

This is a contradiction. Thus, y = 1, i.e, h; = he. By changing reduced represen-
tations of f!, f? if necessary, we may assume that (f!, H;) = (f?, Hy). This yields that
(f', Hy) = (f* Hay) (1.2.11).

Now we consider

. e UMHY (Y
X(N+3)(N+3) 1(N+3) (' Hres) (/% Huis)

_ (fY H\)((f?, Hyys) — (f', Hyys))
(fY, Hnys)(f? Hyys)

Since (f1, H;)(2) = (%, Hi)(z) on U (FY) 7 (H)\ ((F) " (H) N (1) (Hy)) for
each 1 < < 2N + 2, it implies that

£ 0.

2N+2
2Npy o) (1) > 2Ny (1) + D 2N<}£H (1)
L ts
2 2 2N+42
> > (@2Nigey (r) = NN +Z Z N (1.2.12)
s=1 v;éN+3

Combining (1.2.8) and (1.2.12), we get

2

ING () = N (1) = o> T, f%)) (1.2.13)

s=1

From (1.2.9) and (1.2.13), for each i € {1,...,2N + 2} we have

2

13 @NG ) = (N + NG —OZT (1.2.14)

s=1
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On ther other hand, for every z € (f!, H;)~'(0), if v;(z) = 0 then either v y,)(2) =
Vi, (2) = N oor |vp my)(2) — vip2,m,)(2)] = m, hence

V(fl,Hi)<Z) + V(f2,Hi)<Z) Z 2N.

Thus

s=1
9 2
1 s
= aNN () + oS T(r, 1)
s=1 s=1
This implies that
) 2
N 1
1D Ny (1) = (N4 DN (1) = (N = 1) D NG (1)
s=1 s=1
2
+o() T(r, f%))
s=1

From this inequality and (1.2.14), it follows that

2 2

ZN(fg V) =0 T(r,f*) (1<i<2N+2).

s=1 s=1

By the Second Main Theorem, we have

2 2 2N+2 2 2
S N S S
1N+ DTEf) <D0 Y Ny () + 03T %) = oY T(r, f*)).
s=1 s=1 v=1 s=1 s=1
This is a contradiction. Hence f! = f2. Theorem 1.2 is proved. O

1.3 A unicity theorem for meromorphic mapping
sharing few fixed targets with ramification of
truncations

Theorem 1.3. (Ha [31]) Let f1, f?, f3 : C* — PN(C) be three meromorphic mappings
and let {H;}_, be hyperplanes in general position. Let d, k, ky;, ko, ks; be integers with
1 < Ky, kai ks < oo (1 <1 <gq). Weset M = max{kj}, m = min{k;;} (1 <j <
3,1<i<gq), k=max{t{i € {1,2--- ¢} | kji =m} | 1 < j <3}. Define by d=0 if
M =m and d=min{k;; —m >0|1<j<3;1<i<gq} if M #m. Assume that the
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following conditions are satisfied
(i) dim{z € C" : v(gs my,<k;, > 0 and vigs gy <k, > 0} < —2
(1<j<31<i<li<q)
(i) min(v(ss 1) <k 2) = min (Vgom) <eg, 2) (1 <j<t<3;1<i<q)
(ii) f' = f7 onUl_{z € C" 1 vy 1) <ina (2) > 0F (1 <5 <3).
Then f'= f? or f2 = f3 or 3 = f' if one of the following conditions is satisfied
16
1) N>2,3N—-1<¢g<3N+1 >3N+1+——— and
)N =2, <¢<3N+1m tltsy—g ™
2Nk 2N(q—k) 3N?+ N

m+1 m+d+1 M+1
32k +1)  6(4—k) 6k 24 — 6k 12

<14 —.
m+ 1 m+d+1 M(m+1)+M(m+d—|—1) +M
Before proving, we now give some corollaries that are given directly from Theorem 1.3.

(2¢g — 5N —3) >

2)N=1,q=4 and

*) Theorem 1.3 is deduced immediately from the theorem 1.3 by choosing M = m
and k= q .
*) When k = 1,M =m+dand d =1 or d =2, by using the case 1 of Theorem

1.3, we have the following

Corollary 1. Let f*, f2, f3 : C* — PN(C) be three meromorphic mappings and let
{H;}; 3N+1 be hyperplanes in general position. Let k; be positive integers with 1 < 1 <
3N + 1 satisfying the following conditions
(i) dim{z € C" : vipi gy <k, >0 and v gy <k, >0 <n—2 (1<i<I<3N+1)
(ii) min(v s my<k; - 2) = min (Vgemy <k, > 2) 1<j<t<3;1<i<3N+1)
(iii) f* = f7 on U3N+1{Z € C": vpma),<ka(2) >0 (1< <3).

Then fr' = f? or f2 = f3 or f2 = f if one of the following conditions is satisfied
a) N>2,kj="Fk +1 forevery2 <j <3N+1 and ky > 3N +2+

3(N—-1)
16
b) N>2kj =k +2 for every2 < j <3N +1 andk1>3N+1~l—m.

*) When k£ =1 and M = m + d, by using the proof for the case 2 of Theorem 1.3,

we have the following

Corollary 2. Let f1, f?, f3 : C* — PYC) be three meromorphic functions and let
{H;}!_, be distinct points. Let k; (1 < i < 4) be positive integers satisfying the following
conditions

(i) dim{z € C" : v m,)<k;, > 0 and V(g5 gy <p, >0} <n—2
(1<j<31<i<l<4)
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() min (Vi my)y,<k, » 2) = min (Vg <k, » 2) (1<j<t<3;1<i<4)
(iii) f' = f7 on | J:_{z € C" LV ) <ke (2) > 0F (1< 5 <3)
Assume that one of the following conditions is satisfied
a) ky =9,k = k3 = ky = 66.
b) ki =10, ky = ks = ky = 36.
c) ky = 11,ky = ks = ky = 26.
d) ky =12 ky = k3 = ky = 21.
e) ky =13,ky = ks = ky = 18.
f) k=14, ky = kg = ky = 16.
Then f'= f? or f2= f3 or f3 = fL.
Proof. Case 1. ]\722,3N—1§q§3N+1,m>3N+1+L and

3(N—1)
2Nk 2N(q—k)_3N2+N
m+1 m+d+1 M+1
Firstly, we need the following.

(2¢g —5N —3) >

Claim 1.3.1. Denote by Q the set of all indices jy € {1, 2, ..., ¢} satisfying the following:

There exist ¢ € C and «a = (ap, o) with |a] < 1 such that ®@(FJol Fio2 Fiod) £ ().
Then @ is an empty set.

Proof. Assume that Q is non-empty. For every 1 < ¢ < 3 and j, € Q, by Lemma

1.1.22, we have

1) 1) 1)
| ¥ 22 N, 43Ny, ) T
J#Jo
and hence
(N)
H N(fi’Hjo <kijg +2; (f’ <NT +NZ (fl ]O)>li0(T)+O(T(’I“)).
J7Jo =1

(N) (N)
(N( Jo) <kwo ) t 2 Z N(fiij)vSkij (T))
i=1

J#Jo

< 3NT(r) + BNZ Ny 1y ) oy, (1) 0(T(r)

< 3NT(r +Z<km+1> (fi,Hjy)> ZJO()—FO(T( r))



3
Z 3N
i=1 tJo

Hence we see

(1.3.2)

3N
2 (1= DN <y, (1) 0(T(1)
10

> (0 and

On the other hand, since 1 —
Kijo +1

(r); N,y (1)} < T(r, f1) + o(T(r, f1)) for every 1 <@ <3,

(N)
maX{N(fiijO)vgkijO
(1.3.3)

we have
(1.3.4)

(f1,Hj),<kij

‘ ' 23"y N (r) < (3N + 1)T(r) + o(T(r)).

i=1 j=1

Using Lemma 1.1.21, we have

‘N A N )
qg—N—1-— E ' T(T, f ) < E : 1 - oo+ 1 N(fiaHj)vgkij
ij

j=1

Nk N(q_k) i N 4 (N) ;

(Q—N—l—m+1 —m+d+1>T(r,f)§ 1 - M+1>;N(fi,Hj),gk,-j<T)+0(T(T,f))
Nk N(g—Fk) N R

-N—-1- — Tr)y<|(|1- N T _

(q m+1 m—l—d+1) (r) < ( M+1 ;Fl (fi HJ)<1W(7")+0( (7))

(1.3.5)

From (1.3.4) and (1.3.5), we have

Nk N(g—k) N
(g N_1- _ T(r) < (3N + 1)(1 —
H <q Mt m+d+1) (M= BN+DA =377

Letting r — 400, we get

Nk N(g—k)
2 g-N—-1- . < (3N +1)(1 —
H (q m+1 m+d+1)_( 1 M—l—l)’

and hence ,
2Nk 2N(qg—k) 3N*+N

2g — 5N — 3) < — 1.3.6).

(24 )_m—i-l m+d—+1 M+1 ( )
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This is a contradiction. So we have §Q = 0

Claim 1.3.2. If ﬁ({l,Q Sqr\ Q>> 3N —1and N > 2then f! = f2, or f2= 3, or

Indeed, assume that 1,...,3N — 1 ¢ Q. By the density of C, it implies that
af il 2 sy -

Thus, there exists x;; 7 0 such that F/' = x;F/?, or F}* = x;; F}* or F}* = x;; F;'. We
may assume that Fj' = x;; F;>.

Suppose X;; # 1. Then we have the following:

If s m),<iy, (2) >0 (1 # 4, 5), then v g,)(2) > 0 or vip g y(2) > 0.

So we get

D i V((}37Hl)7§k1l( ) < vl (2) + v) ,, (2) outside a finite union of an-

(le)>k’1 (fLHj),>
alytic sets of dimension < n — 2. Hence

(1) (1)
Z ]\[f1 Hyp),<ky ) = N(f17Hi)7>klz( ) + ]V(f1 Hj), >k, (T)
l#1,5

1 1
< N, , ,
— klz + 1 (f17H2)7>k11 (T) + klj + 1

1 1 9
< Nep o Nemgr
=k 1 () (1) + ky, + 1 () (1) < m+1

By Lemma 1.1.21 and since k;; > N — 1, we have

N N
R R (e e S

I#i,] I#i,]

N(fl,Hj),>k?1j (T)

T(r, f1).

This yields that

(0= 5= X 270 = X (1 5 )N 20 () 0T 1)

l#i,5
N (1) 1
: N<1 - M + 1) Z N(flyHl)éku(T) + O(T<T7 f ))

I#i,5

s(1— N ) 2N, 1) + o, 1))

M+1)m+1

q—N—S—M <(1- N 2N_
m+ 1 M+1)m+1
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This means that

_ 2
Sy Na=2_oN N
m+1 m+1  (m+1)(M+1)
Thus ,
N 2N
g—-N-3< 14 (1.3.7)

m+1  (m+1)(M+1)

16
Moreover, since N > 2, 3N +1 > q and m > 3N + 1+ ————, we have

3(N —1)
_ _ 2
(BN-3)_ Ng . Nk Na-k _ Ng _ Ng _3N+N
2 m+ 1 m+1 m+d+1 " m+d+1 - M+1 = 2(M+1)
This implies that
5N+3 Nk N(qg—k N2+ N N 2N?
Lk k) 3NNy gy N .
2 m+1 m+d+1 2(M+1) m+1  (m+1)(M+1)

Combining the hypothesis and (1.3.7), we get a contradiction. Hence y;; = 1.
We define the subsets Iy, I, and I3 by
L={i: 1<i<3N-2and Fi\_,=F3_,},
={i: 1<i<3N-2and F3 _,=F3_,},
={i: 1<i<3N-2and F2_,=Fiy_,
Then one of them contains at least N indices. We may assume that §/; > N. Then
ft = f2. Thus the Claim is proved.
From Claim 1.3.1 and Claim 1.3.2 and ¢ > 3N — 1, Case 1 is proved.
Case 2. Assume that N =1 and ¢ = 4.
For each jy € Q, from (1.3.1), we get

( ZN ><3T()

3
3 1) Z
+ Z k 1 (N(fl’H]O)(T) o N(fl 7,]0 + (fl ]O) <l€lj0 ) _|_ O(T(T>)
i=1 N 40 ™

and Nl o (r) < Nigipy () < T, f) +o(T(r) (1< < 3).

0/ =Nijg

Hence
3 4 1 3 3
2 v
H2 Zl Zl N fl <k” S 3(1+m]0 + 1)T(T)+Zl<l mj, +1 >J\/v(fI Hjy), <k230( )+O(T(T))
(2 J 1=
<31+ ——)T() + i( S (r) +o(T(r)), (1.3.8)
- mj, + 1 mj, + 1 (/% Hi),<kijg



where m; = min{k; | 1 <i <3}(1 <j <4).

On the other hand, from Lemma 1.1.21, we have

H (2 - ; kz’jl—i- 1) ) < Z( >N((}27Hj)vﬁkij (r) +o(T(r, f)-

It implies that

k Ak .
(2_m+1_m+d+1)T(r’f)§Z(

7=1
Hence
k 4—k : N
(2_m+1_m—l—d+1> ;;( ) (71,1, () F0(T'(7)) (1.3.9)
From (1.3.8) and (1.3.9), we have
k 4—k M+1 1
_ _ <
H2(2 m+ 1 m—l—d+1>( ar T <30+ e )T

3

02N () 4 olT()

i=1 mj, + 1 o

This yields that

3
m;, + 1 k 4—k M+1
> 22— (22— — —
Z (fl Jo)<kwo ) <mj0_2>(( m+1 m+d+1>( M )

—-3(1+ o+ 1))T(?") +o(T(r)).
Hence
—3(1+ - 1))T(r) +o(T(r)) (1.3.10)

Assume that £Q > 3, i.e, Q D {Jo, 1, J2}-
By (1.3.10), we get

2
+1 k 4—k M+1
NG s 2(2 — =
‘ZZ ”s Z(mjs ( m+ 1 m—i—d—i—l)( M )

i=1 s=0 =0

1
mj, + 1

—3(1+ ))T(r) +o(T(r)).(1.3.11)
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Since there exists ¢ € C such that F7! — F72? £ () it implies that

2
ZN o (1) € Npgor_pn (1) < T(r 1) + T, £2) + O(1).

S=

Similarly, we have

2

> Nf}?H ik, (1) ST(r, f2) + T(r, f7) + O(1)

s=0
and
Z NG e, (1) ST 2+ T(r, 1) + 0(1),
Hence
2
ZN“) b, (1) <5 T +0(1) (1<i <3)
and

ZZN(f bk, (1) S 2.T(r) + O(1) (1.3.12)

i=1 s=0

From (1.3.11) and (1.3.12), we have

Z(mﬂerl)((z— b 4k )(MA}Ll)—?,(H & ))T(T)+0(T(T))-

mj, — 2 m+1 m+d+1

Letting » — 400, we get

2
m;, + 1 k 4 —k M+1 1
2> L) (2(2— — —3(1 .
T e (mjs—2><( m+1 m+d—|—1)( M ) =3 +mjs—|—1>>
On the other hand, the following function is increasing for ¢ > 2

)= (%) (2<2 a mlj— 1 mi—_cii 1)(M]; 1) -3+ t%))

So we get

m+ 1 k A—k  M+1 1
223.<—2)<2(2— - (7 )—3(1+—)>.

m — m+1 m+d+1

This means that

2(m—2)>(2<2_ ko A—k )(M+1)_3(1+m1 >).

3(m—+1) — m+1 m+d+1" M +1
Thus, we get
32k +1) 6(4 —k) 6k 24 — 6k . 12

1 .
mil midil MmiD MmidrD) - M
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This is a contradiction (remarking that the equality does not happen if maxy<;<4{m;} >
m ). Hence §Q < 2.

We now use the same argument in [64] to complete Case 2.

Without loss of generality, we may assume that 1,2 ¢ Q. By the density of C in
C2, it implies that (IJQ(FJ?O,Fjl,sz) =0 foreach 1 <¢<2,1<j <2 and for each

. k H;

a = (ag, o) with |a| < 1, where Fj* = E;k:H];

Applying Lemma 1.1.18 for ¢ = 1, j = 2, we have the following two cases.
(i) There exist 0 < Iy < Iy < 2 such that F}"* = F3" . Then fi = f%.

(ii) There are two distinct constants o, 8 € C\ {0, 1} such that Fy° = aF)! = BF)2.
We may assume that H; = {wy =0}, Hy = {w1 =0}, H;={wy—cw; =0} (c€
C\{0}). Then

0 1 2
(' Ha) =0 & i —cft =0 (0 _caf§><f_110>: 0
afi
2
(F2Hy) =0 & f2—cf? =06 (f0 — cBSY) (f—lo): 0
B
Hence {z € C" : v(j0 py) <oy (2) > 0} C U?:o I(f%). So that N((J}ngs),Skos (r) =0,

and

V(s H3) (2) = Vo _capo(2) and vip2 py)(2) = vpo_cgpo(2) for z € I(f°) U I(f) U I(f?)

Thus, we have v(s1 p,)(2) = Vpo_capo(2) (2 € C") and vy py)(2) = vpo_cgpo(2) (2 €
Ccm).

Put H} = {wy — caw; = 0}, HY = {wy — ¢fw; = 0}. Then we have the following:

e H5, Hi, HY are in general position.

1) _ M 1)

® V(0 1Y) = V(f1,Hy)- This yields V((f()ﬂé)é/,ﬁ3 = V(L) <k = V((fU,Hs),Skog
® V(jo.mty = V(52,Hs)- This yields V((}()),Hg),gk% = V((;;7H3)’§k23 = 1/((]102)717{3)79,03
By Lemma 1.1.21, we have
1 1 1
H (3_1—1_; ks + 1>T(T’ F) < (g N v O T INGG e ()

1 1
=Y {71 ke () + 0(T (s £°))

3 0 1 (1) (1) (1)
~ (1_m n 1)T(r’ f)= (1_M n 1> (N (0, 3), <o ) F N0, 1g) s (DN (50 1) <o (7)
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+o(T(r, f°))
o (1) 70 ) < (1= ) (VB syt DN D) s AN ) (1)
m+1 L — M+1 (f9,H3),<kos (f9,Hz),<ko3 (f9,Hz),<ko3 r

Fo(T(r, %)) = 3(1 = )N o (1) + o(T(r, )

M+1
So we get
3
(1- 25 )70 < ot )
This is a contradiction. Case 2 of Theorem 1.3 is proved. O]

1.4 A unicity theorem for meromorphic mapping
sharing few fixed targets with a conditions on
derivations

Take a meromorphic mapping f of C" into P (C) which is linearly nondegenerate over
C, a positive integer d, a positive integer k or k = oo and ¢ hyperplanes Hy, ...., H, in

PY(C) located in general position with
dim{z € C" : y(,,)(2) > 0 and (s, (2) >0} <n—-2 (1 <i<j<q),

and consider the set G(f,{H;}}_,,k,d) of all meromorphic maps g : C* — PY(C)
satisfying the conditions

(a) g is linearly nondegenerate over C,

(b) min{w s ) <k, dy = min{v(g u) <k, d} (1 <j <q),

(c) Let f=(fo:---: fn)and g = (go : -+ : gn) be reduced representations of
f and g, respectively. Then, for each 0 < j < N and for each w € JI_,{z € C" :
V(r.m,),<k(2) > 0}, the following two conditions are satisfied:

(i) If fj(w) = 0 then g;(w) =0,

(i) If fj(w)g;(w) # 0O then Do‘(j})(w = Da<g—> ) for each n-tuple o =
j 9gj
(a1, ..., ) of nonnegatlve integers with |o| = a1 + .
aa

09 2...0% 2,

» < d and for each

1 # j, where D¢ =

Remark that the condition (c) does not depend on the choice of reduced represen-

tations.
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The last part of this chapter proves the following.

Theorem 1.4. (Ha-Quang [33]) If N >4 and 2 < d < N — 1, then

3dN? — 2N? + 2Nd — 2N d>
H Y22 0y =1 h k -
PO A S )= Loreach k> —— o N T o

SN2 L d) with reduced

Proof. Suppose that there exists a mapping g € G(f,{H,};_,
representation ¢ = (go : -+ : gn) such that g # f. Then there exist indices i and

H; H;
J (0<i<j<N)such that P = E;’ H% - Eg’HZ)) # (. Define
y L4y y 415

I'=1(f)UI(g) Uig t<s<ant2-24 12 € C" vy m), <u(2)v(p.m.) <1 (2) > 0}

Then I is an analytic set of codimension 2 or emptyset.
Claim 1.4.1. The following assertion holds

3N+2-2d

Z Ny ) ST(r, f) + T(r.g) + o(T(r, ) + T(r,g))

Proof . We fix a point z ¢ I satisfying v(su,)<k(2) > 0 (¢t # j). Suppose that
fi(2) - gi(z) =0 (0 <1< N). Then g(2) =0 (0 <! < N). This means that z € I(g).
This is impossible. Hence, there exists an index [ such that fi(z) - ¢;/(z) # 0. This
implies that

DP,i(z) :DO‘(
! (f. H;) (9. 4;)
N fvaw N— g_v@iv
—D“(Zvoﬁ —Z;)VO;” )(z)—O, Via| <d

N
qu 0 J}I; @jv ZU 0 g g Qv

Hence vp,(2) > d. We have vp,, > SN g min{1, V(s,Hy),<k} outside an analytic
t#j
set of codimension 2. This yields that

3N+2—2d
d
Np,(r) > Z N((f)Ht) <(7)-

t=1
t#]

Using the argument in the proof of Theorem 1.2, we have

m(r, Py) <T(r, f) +T(r,9) = Nusy (r) = Ny (r) + O(1)

(7 Hy) (9.H;)
and
N (r) < N(r,v;), where v; = max{vy.m), Ven) }.
P (fH)  (9,Hy)
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Hence

3N+2-2d
Z N <) < Np, (7)
v#J
< T(r, Pyj)
:NL( ) +m(r, Pj)+ O(1)
<T(r, f) +T(r,9) + N(r,vj) = Ny (r)
(f,H;)
_N(QH)( )+O(T(Taf) +T<T7g))
(9,H;)
This gives
3N+2-2d
d
(N( 1) (1) + Ng.uy (1) — N(r, Vj))+ Z N((f)Hv) <(7)
(1) (9.H,) prt
v#]

ST(r, f)+T(r,g)+o(T(r, f) +T(r,9))
On the other hand, we have

d
vj(2) — vimy (2) — vign,) (2) + V((f?Hj)’gk(Z) =

(f,H;) (9,H;)
((?)H 5 <«(2) —min{veny) (2),veny (2)} <0
(FH) (9.H)

ouside an analytic set of codimension 2. Hence

N(r,vi) = Ny (r) = Ny (r) + NP ) () <0,

(f,H;) (9,H;)

This yields that

3N+2-2d

S NPy ) ST(r, )+ Tr,g) + o(T(r, f) + T(r, 9)).

This concludes Claim 1.4.1.
From Claim 1.4.1 we have the following

3N+2-2d

S N celr) < (T £+ T 0)) 4+ olT(r, ) + T ).

v=1

By using Lemma 1.1.9 | we also have

NE M (2N +1—2d)(k+1) — N(3N +2 — 2d)
H Z N(f,Hi)vgk(r))Z E+1—N T(T, f)

+o(T(r, f))
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and

| 3N§:‘2dN(N) )= (2N +1—2d)(k+1) — N(3N + 2 — 2d)

(9,H:),<k - k‘l‘ 1—N T(T’, g)

+o(T(r,9)).

This implies that

2N (2N +1—2d)(k + 1) — N(3N +2 — 2d)
120+ T = — )

(T'(r, /) +T(r,9)) + o((T(r, ) + T(r,9)))-
Letting r — 00, we have

2N> (2N +1—2d)(k+1)— N(3N + 2 — 2d)
d — k+1—N ’

and hence
3dN? — 2N? + 2Nd — 2Nd>

k41<
N 3(d—1)N +d— 2

This is a contradiction. Thus, we have £ G(f, {Hi}f’ffz_?d, k,d) = 1 and Theorem
1.4 is proved. O
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Chapter 2

Unicity theorems with truncated
multiplicities of meromorphic
mappings in several complex
variables sharing small identical
sets

The unicity theorems with truncated multiplicities of meromorphic mappings of C" into
the complex projective space PV (C) sharing a finite set of fixed (or moving) hyperplanes
in PY(C) have received much attention in the last few decades, and they are related
to many problems in Nevanlinna theory and hyperbolic complex analysis .

For moving targets and truncated multiplicites, the following results are best and

due to Dethloff-Tan [14]. They proved the following (see §2.1 for notations).

Theorem of Dethloff-Tan [14] Let f, g : C* — PN(C) (N > 2) be two nonconstant
meromorphic mappings, and let {aj}?ffrl be “small” (with respect to f) meromorphic
mappings of C" into PN(C) in general position such that (f,a;) Z 0, (g,a;) Z0 (1 <
i < 3N+ 1) and f is linearly nondegenerate over R({a]}fffrl) Set M = 3N(N +

2
1) [(2]{,\[:12)] [(25:12) —1] +N(BN+4). Assume that the following conditions are satisfied.

(i) dim{z € C" : va,),<m(2) >0 and v(sa;)<m(z) >0} <n —2
(1<i<N+3, 1<j<3N+1).

(i) min{v(sq,), M} = min{vga,), M} ((1 <i <3N +1).

(i) f(z) = g(2) onU;ep{z € C" : vs.05),<aa(2) > 0}, where D is an arbitrary subset
of {1,--+ ,3N + 1} with D = N + 4.
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Then f = g.

We would like to emphasize here that the assumption D = N + 4 in the above-
mentioned theorem is essential in their proofs. It seems to us that some key techniques
in their proofs could not be used for §D < N + 4.

The first main purpose of the present chapter is to give a unicity theorem with
truncated multiplicities of meromorphic mappings in several complex variables sharing
N + 2 moving targets. In particular, we prove Theorem 2.2 (Ha-Quang-Thai [34]). It
is an improvement of the above-mentioned theorem of Dethloff-Tan.

In this chapter, we also would like to study the unicity problems of meromorphic
mappings in several complex variables for moving targets with conditions on deriva-

tions. We will prove Theorem 2.3 (Ha-Quang-Thai [34]) in the last part of this chapter.

2.1 Preliminaries

2.1.1. Let f : C* — PY¥(C) be a meromorphic mapping. For arbitrarily fixed ho-

mogeneous coordinates (wq : -+ : wy) on PY(C), we take a reduced representation

f="(fo: - : fn), which means that each f; is a holomorphic function on C" and

f(z) = (fo(z) : -+ : fn(2)) outside the analytic set { fo = -+ = fy = 0} of codimension
1/2

> 2. Set ||l = (Ifol*+ -+ |fn]?)
The characteristic function of f is defined by

T(r.f) = / log]l |l — / log/| ||

S(r) S(1)

Let a be a meromorphic mapping of C" into PV (C) with reduced representation

a=(ap:---:ay). The proximity function my,(r) is defined by
AL - [lall ] Tlall
myq(r) = / log=———0, — [ log=———0p,
! (7,a) (f,a)
S(r) S(1)
where ||a| = (|ao|* + -+ + |aN|2)1/2.

If f,a:C" — PY(C) are meromorphic mappings such that (f,a) Z 0, then
the First Main Theorem for moving targets in value distribution theory (see

Ru-Stoll [56]) states
T(T, f) + T(ra (l) - mf,a(r) + N(f,a)<r)'
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2.1.2. Let ay,...,a, (¢ > N + 1) be ¢ meromorphic mappings of C" into PV (C)
with reduced representations a; = (ajo : - : ajn) (1 < j < q). We say that a4, ...,q,

are located in general position if det(a;,;) # 0 for any 1 < jo < j1 < ... < jy < ¢

We also say that a4, ..., a, are located in pointwise general position if the hyperplanes
ai(z),...,a,(z) are in general position as a set of fixed hyperplanes at every point
z e (C".

Let M,, be the field of all meromorphic functions on C". Denote by R({aj };]_:1> C
M, the smallest subfield which contains C and all % with a;; # 0. Define ﬁ({aj };1.:1> C

aji
M,, to be the smallest subfield which contains all ;z € M, with h* € R({aj }jzl) for
some positive integer k.
Let f be a meromorphic mapping of C" into PV (C) with reduced representation f =
(fo:---: fn). Wesay that f is linearly nondegenerate over R({aj }321) (ﬁ({aj ;1.:1)>
if fo,..., fnv are linearly independent over R({aj}j.:l) (ﬁ({aj };1.:1), respectively).

Let f, a be two meromorphic mappings of C" into PV (C) with reduced representa-
N

tions f = (fo:--: fn),a=(ap:---:ay) respectively. Put (f,a) = >_ a;f;. We say
i=0
that a is "small” with respect to f if T'(r,a) = o(T'(r, f)) as r — oc.
Let f and a be nonconstant meromorphic mappings of C" into PV (C). For every

z € C", we set

0 if vira)(2) >k,
Vira)(2) i vg0)(2) < E,

V(f.a),<k(2) = {

Vs k() = Ura)(2) i vpa)(2) >,
(f.a),> 0 if V(f,a)(z) S k.

2.1.3. The second main theorem for moving targets. (Thai-Quang [63]) Let
f:C" = PN(C) be a meromorphic mapping. Let {a;}_, (¢ > N +2) be meromorphic
mappings of C" into PV (C) in general position such that f is linearly nondegenerate

over R({a;}{_,). Then

|| Ni_ 2T(’I", f) < ;N((}Ya)])(’f‘) + O(T(T‘, f)) + O(lrgjasqu(r’ aj)).
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2.2 A unicity theorem with truncated multiplicities
of meromorphic mappings in several complex
variables sharing few moving targets

In this section, we prove the following.
Theorem 2.2. (Ha-Quang-Thai [34]) Let k be a positive integer or k = oo and d be a

positive integer or d = oo such that the following is satisfied
3 n 6 2N +2 [ 2N +2 _2]< N +2 2N +2
d+1 k+1/\ N+1 N+1 N(N+2)(N(N+2)+1) k+1 )

Let f,g:C" — PN(C) (N > 2) be two nonconstant meromorphic mappings, and let

{aj}j?ffrl be “small” (with respect to f) meromorphic mappings of C" into PN(C) in
general position such that dim{z € C" : vy 4,) < (2)V(fa),<k(2) >0 <n—2 (1 <i <
J<3N+1).

Assume that f,g are linearly nondegenerate over R({aj}gfffrl) and the following are
satisfied.

(i) min (v(sm,),<k d) = min (Vg m) <k d) (1 <j <3N +1).

(it) f(z) = g(z) on Ujeplz € C" : vsa)) <n(v+2)(2) > 0}, where D is an arbitrary
subset of {1,--+ 3N + 1} with D = N + 2.

Then f = g.

Proof. Assume that f, g, a; have reduced representations
f = (f(] Lot fN>, g = (go P gN); a; = (aio P aiN)-

(i) Consider any 2N +2 meromorphic mappings of {ay, ..., agn 1}, to say, ai, ..., aanro.
i . h’L s Wi ) ® ; Wy
Define h; = (f, a:) (1<i<2N+2). Then — = M does not depend on
(g7ai) hj (gaai) : (fa &j)
representations of f and ¢ . Since Zi\[zo ainfr — hi - Z]kvzo aprgr =0 (1 <i < 2N +2),
it implies that det (a, ..., @in, @i, ..., aivhi; 1 < i < 2N +2) = 0.
For each subset I C {1,2,...,2N + 2}, put h; = [[,; hi. Denote by Z the set of all

N + l—tuples I = (il, ...,iN+1) with 1 <33 < ... < iN+1 < 2N + 2.

For each I = (i, ...,in11) € Z, define
A = (_1)(N+1)2(N+2)+1‘1+...+2'N+1 'det(am; 1<r< N+ 1,0 < [ < N)
det(a;;;1<s < N+1,0<I<N),
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where J = (1, ..., jny+1) € Z such that TU J = {1,2,...,2N + 2}.
Then ), ; Arh; = 0.
(ii) Take Iy € Z. Then Ay hy, = — ZIEZ,I#O Arhy, and hence hy, = — ZIGI’I#O AA—IfohI.
Notice that

A
A;#0(I€T) and

T € R({a;}3N™) (I € ).

Denote by ¢ the minimal number satisfying the following:

There exist ¢ elements I,...,I; € T\ {ly} and ¢ nonzero meromorphic functions

bi € R({a;}3N™) such that

thl (2.2.1).

Since hy, # 0 and by the minimality of ¢, it follows that the family {b,hy,, ..., bih, }
is linearly independent over C.

Assume that ¢ > 2.

Put by = —1. Then >_'_, bih;, = 0.

Put I =gl I=L\T#0(0<i<t)and [ =U._, I}, I' =N_ I}, Il =
I'\NT' #0 (1<i<t). We have Z—? =3 bihp (222).

Consider the meromorphic mapping h : C* — P!~1(C) with a reduced representa-
tion h = (iNLhIi/ SR Bhw), where / is meromorphic on C" satisfying v < zz‘eu§:11§’ Vi

Consider the meromorphic mapping b : C* — P*~1(C) with a reduced representation

b= (b; : ... : b)), where ¢ is meromorphic on C". We get
T(r.b) = oT(r, £)) and Nys,(r) < Nyw, (r) + Nu, (r) = o(T(r, 1)) (0°< i < 1)

If z is a zero (a pole, respectively) of h;, then v(f,q,)(2) # V(g.a,)(2). Hence v(s4,)(2) >
dor V(g a,)(2) > d. Thus, we have min{1, v;°(2) }+min{1, v, (2)} < min{l, v4,),>a(2)}.

_ 1 1 1 1
This yields that N,(Li)(r) + N%) (r) < N((f?ai)7>d(7‘) + N((g?ai)’>d(7‘) (2.2.3).

Consider the meromorphic mapping /' : C* — P'~!(C) with a reduced representa-
tion

1 - L7
h = (ﬁwblhhﬁ' U ﬁwbthhﬁ’)

By (2.2.1), the mapping A’ is linearly nondegenerate over C. By the Second Main
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Theorem for hyperplanes, it follows that

Define I” = |J;_, /. Denote by W the set ;c;#{z : ¥(ja,),>k(2) > 0}. Then

(1) _ @ ND (1)

N;th{/( ) - Nhll/_/( ) - + Z fa] >k; N(g7aj),>k;(/r))

i I”\I jer
and
1 1
N ) = N )+ N0 ()4 3 (N o) NG o),

h.ﬁ 1o (I"UI’)\IO jer”

I

For each J C {1,2,...,2N + 2}, put J¢ = {1,2,...,2N 4+ 2} \ J. It is easy to see that
I'CLiand I"\ I C I{ (1 <i<t),

Ibchyand (I"UT)\I, =I\I, =T\ (I,\I)=(TUIl)\ I, C I.

Hence
2N+2
Nf(;l), (r) < N;S) (r) + Nill)c N+ (N((},)aj)»k(r) + N((gl’)aj)v”“(r))
o
and N » (r) < N}Sz (r) + NS}) (r) + Z (N((})a )k () + Négl)ag) (7))
Ty 0 j=1
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Combining with (2.2.4), we deduce that

t 2N+2
1 1 1
| T 1) < (t-1)> (N&j(r) FND )+ 3 (M on()
=0 i j=1

= (t=1); ( N )+ 3OND )+ 37 (NG a0

JEIL; JeI¢ 7 j=1

+ N<(3Lj>,>k<r>)>+o<T<r, )

(QJ\JrV N 12) 212 (Z(N FND)

1€l \ el
2N+2

- Z( (fa)>k N((g)a) k(7 ))>+0(T(ij))

2N+2
12N +2\ [ /2N +2 " 0
_1 _9 (N N )
2(N+1> (N+1) ](Z 26)+ NO)
2N+2

+2 Z ( NP )+ N, j)7>k(r)>)+0(T(r, ) (2.2.5).

From (2.2.3) and (2.2.5) we get

1 /2N +2\ [ /2N +2 & W
170 1) <5 ( N+1 ) (N +1 ) R 2] 2 (N(f"”)”(r) + Voo
i=1

+2oNG )+ 2N () ) 4o(T(r, ) (2.2.6)

(frai),> (g,ai),>

N—

Consider the hyperplanes H; = {w; = 0}, Hy = {wy = 0}, H3 = {w; +...4+w; = 0}
in P*~!(C). Then

I 7w =7 (r, 7, Hl))+0(1> =7(r, M)m(n

(W', Ha) bahy
bih h
_ T(r, b; hz)+0(1) _ T(r, h—z>+0(T(T, )
> Ni) (r) +o(T(r, f))
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(', Hs)
=7(r, Z—Z)—I—O(T(r, )
> N () + olT(r. 1))
(W, Hy) b,

Hence || 3T(r. 1) = Ny} (1) + N}, (1) + N3, (r) +o(T(r. f)).

hry
hry by hry

hr
Since W = Lon the set U cp\ (qus sy E5\W, where Ej = {z € C" : v(y0),<nv42)(2) >
0} and

(DA (LU L) \ (LN 1)) U (DA (LU o) \ (120 10))) U(D\ (U )\ (loN 1)) = D,

we have that

(1) (1) (1) 1)
Nh[l 1( ) + Nhﬁ 1( ) Nhfo Z‘N(faZ <N(N+2) ( )
i1y h1o hry ieD
2N+2

(1)
a Z fa/z >l€ N(g7ai),>k(7ﬂ))’

Hence
2N+2
0 B B
8T R) 2 Y Nipy anivn (™) = D (Vg o1 () + Nighy 24 (1)
€D =1

On the other hand, we have

1) 1) 1)
H > Ny =D Ny () = Niply s wvivae (1)
€D €D
N+2 N+2
> ——T - T T

N +2
B e E T A Al

By the same way, we have

1 N +2
H ZN((gy)fli),gN(N-i-?)(r) = N(N +2)(N(N +2) + 1)T(7“, g9) +o(T(r,9))

€D
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From (2.2.6) and (2.2.7) we get

2N + 2\ [ (2N +2 & 0
H 3(N+1)[<N+1) 2] 37 (N alr) + Ny salr)
i=1
1
+2N((f,)ai (7 )+2Nga)>k(7’))
N +2

S NN+ (NN 12+ 1) (T(r, /) +T(r,9))

- Z O )+ N )+ o(T(r, )+ T(r,g)) (2.2.8).

From (2.2.8) we also obtain

H (%Wiﬂ) (2J]\>[j12) [(2;\;[:512) - 2} (T(r, f) +T(r,9))

N +2 2N + 2
(N(N+2)(N(N+2) T1) ktd )(T(T» f)+T(r.g))

+o(T(r, f)+T(r,g)).

Letting r — oo, we get
3 n 6 2N 42 2N +2 ols N +2 _2N+2
d+1 k+1)\ N+1 N+1 TANWNA42)(N(N+2)+1) k+1 )

hi,
This is a contradiction. Thus, ¢t = 1. Then — = =b; € R({a; }227).
I

Hence, for each I € 7, there is J € Z \ {/} such that Z—j € R({a;}22).

(iii) Denote by M*, the abelian multiplicative group of all nonzero meromorphic
functions on C". Define J C M?*, to be the smallest subgroup which contains all
h € M*, with h* € R({a;}{_,) for some positive integer k. Then the multiplicative
group M*, /J is a torsion free abelian group.

Consider the free abelian subgroup generated by the family {[h4], ..., [hsn41]} of the

torsion free abelian group M*,/J, where h; = g: Zg (1 < i <3N +1). Then the
family {[h1], ..., [hsn+1]} has the property Panyoni1. It implies that there exist 3N +
1 —2N = N + 1 elements, to say, [h1], ..., [hn11], such that [hi] = ... = [hAn41]. Then
Z—GJ( <1< j< N+1), and hence

T(r,%)zo(T(r,f)) (1< N+1)

Consider the following four cases.
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Case 1. Suppose that there exist three indices {7,j,k}, (1 <i<j<k< N +1)
such that hl 7_é hj 7_é hk §é hl

We have
hi
T(r,—) > Ny, (r)+0O(1)
hj —7’—1
2 Z fal )<V Z (fa )+ O(1).
leD\{i,j} sefi,j}

1 .
Hence Nip <nvin (1) < acigy Nipu 1) +o(T(r, ), ¥ € D\ i, j}.
- 1
Similarly, we also have N((f,)al%gN(NH)(r) < Deeti, k} N(( )5) L(r) +o(T(r, f)) for

each | € D\ {j,k} and N(})a,) vove (1) < Xepim NV, (fas y>k(r) +o(T'(r, f)) for each
l € D\ {i,k}. So, we have

(1)
Niph v (™) < D Nfas k(1) +o(T(r, f))
sE{zyk}

for each [ € D. This implies that

| T(r, ) <D N (1) +o(T(r, f)
leD
<Y ONL v+ NEN+2) > NP () +o(T(r, f)
leD se{i,gk}
N(N+2)  3N(2N +2)

Then || T'(r, f) = o(T(r, f)). This is a contradiction.

Case 2. Assume that there exist two subsets I and J of the set {1,--- N + 1}
with INnJ =0, TUJ={1,--- ,N+1}, I > 2, #J > 2 such that

hi=h;Vi,jeland h;=h;Vi,jeJand hy %y Vkel, Vi€ J.

Choose elements i,k € I and j,t € J.We have

hi
T(r, E) > Nhi (r) 4+ O(1)
J h—j_l
=z Z Nfaz)<NN+2 Z (fa)>k r)+ O(1).
leD\{i,j} se{ig}
Hence N7, ) vy (1) < Eacgigy Nijanyor(r) +0(T(r, f)), VI € D\ {i, j}.
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. 1
Similarly, we also have N((f)a) N2y (T) S Dsernn N((f7)(ls)7>k(r) + o(T(r, f)) for
each [ € D\ {k,t}. So, we have

1 1
N((f,)al),gN(N+2) n< > fo,)a Jak(r) +o(T(r, ) Vi € D.
se{i,g,k,t}

Repeating the argument in Case 1, we have T'(r, f) = o(T'(r, f)). This is a contra-

dition.

Case 3. Assume that hy =--- = hy Z hyi1.

By the condition (i ) in the hypothesis of Theorem 2, we see that h; is a holomorphic
function for each 1 < ¢ < N.. Without loss of generality, we may assume that 1 =
hy = -+ = hy # hyy1. It is easy to see that there exist meromorphic functions
i (IN+2<I<3N+1, 1<i<N+1)such that

N+1

ar =Y cua; (N +2 <1< 3N+ 1) and Ny () + N1 (r) = o(T (1 f)).

Hence
N+1
f al chz f> az
gaal chz faaz (f?aN+1)

= (f,a0) + a7

N+1

—1)(f,an41) (N+2<I<3N+1).

By the conditions (i) and (ii), it is easy to see that if y(fa ) <k(2) =Tand (f, ani1)(2) #

1
0 then (cli(h
N+1

—1))(2) = 0. This implies the following

1 1
NP =N ) <N o () +o(T(r, )

hN41

=o(T(r,f)) (N+2<I<3N+1).

Thus, we have

N e S NG ) +o(T(r, f)) < T(r, f) + o(T(r, f)).

k+1
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On the other hand, we have

ON 3N+1
N

| T(r f) < N2 Z N((fjczl)(r)+0(T<T7 f))

I=N+2

2N2 3N+1 ) .
S N +2 Z (N((f,)al),gk(r> + N((f)al) >k:< )) + O(T(T> f))
I=N+2
8NN3

< o) Tt ).

Then || T(r,f)=o(T(r, f)) . This is a contradiction.
Case 4. hy = -+ = hyy;.
This yields f = g. The Theorem 2.2 is proved. ]

2.3 A wunicity theorem for meromorphic mapping
with a conditions on derivations

In the present section, we will prove the following.

Theorem 2.3. (Ha-Quang-Thai [34]) Let f,g : C* — PN(C) be two meromorphic
mappings, and k be a positive integer with k > 2N + 12N? 4+ 6N — 1. Let {a,}+?
be “small” (with respect to f) meromorphic mappings of C" into PN(C) in general

position such that

dim{z € C" : V(40.),<k(2)V(fa),<k(2) >0} <n—2 (1 <s <t <N +2).

Assume that f,g are linearly nondegenerate over R({a;}N1?) and the following are
satisfied.

(i) min (V(ﬁat),gk, 1) = min (V(ga),<k: 1) (1 <t N +2).

(ii) Let f = (fo:---: fn) and g = (go:---: gn) be reduced representations of f and g,

respectively. Then, for each 0 < j < N and for each w € {2 € C" 1 vj.ap) < (2) >

0}, the following two conditions are satisfied:

(a) If f5(w) = 0 then g;(w) =0,

(b) If fi(w)gj(w) # 0 then D‘X(?)(w) = Do‘(ﬁ) (w) for each n-tuple o =

(1, ..., ) of nonnegative integers with |a] = a1 + ... + a,, < 2N and for each

1 # j, where D* =
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Then f = g.
Remark that the condition (ii) in Theorem 2.3 does not depend on the choice of reduced

representations.

Proof. Assume that f # g and f, g, a; have reduced representations

f=0Uo: i fn), 9= (901 9n), @i = (a0 : ... - ain).

Lemma 2.3.1. Let f : C* — PN(C) be a meromorphic mapping such that f is lin-
early nondegenerate over C. Let ay,aq,...,ani2 be N + 2 “small” (with respect to f)
meromorphic mappings of C" into PN (C) located in general position. Then, for each

k> N — 1, we have

N+2

N(N +2) N ™)
| (- ) ren < 2 (1 257 )N <) + o2 1)
Proof . By the Second Main Theorem (see [63])
N+2
Z )+ o(T(r, )
N+2 N+2

N
Z (f aj) <k Z k—_HN(f,aj),>k(7“) +o(T(r, f))
7=1

N+2

N (N) N(N +2)

< ]ZI (1- k—H)N(f,aj),gk(T) + k—HT(T; f)+o(T(r, [)).
Hence

N(N +2) N+2 N "

|(1- 2D w0 < S (1 ) M ) ol
Claim 2.3.2  The following holds
N+2
1) 4N + 2
(2N +1) ; N(f,av),gk(r) < (1 + L1 (T(r, f) +T(r,9))

+o(T(r, f) +T(r,9))

Proof. Fix an index j (0 < j < N). Since g # f, there exists an index i (0 <7 < N)

such that P;; = —((]{33 - —83 #0
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We set I = I(f)UI(g) UUi< tcscvia{z € C" [V(p00),<k(2) - V(pa0),<k(2) > 0}. Then

I is an analytic subset of codimension 2 or an empty set.

Denote by 14 the divisor

vy = (max{0, (2N + 1) — V(faj) — I/(g’aj)}) - (min{1, V(f’a].)7<k}).

We show that vp,, > SSNPON + D) min{1, ypa.<n o — (2N + 1)1/8)%) ., outside

s#j
an analysis set of codimension 2.

Indeed, we fix a point z € UN 2 {w : vpa.<r(w) > 0} \ I.

If (f,a;)(z) # 0, suppose that fi(z)-gi(z) =0 (0 <1 < N). Then ¢g(2) =0 (0 <
[ < N). This means that z € I(g). This is impossible. Hence, there exist an index [
such that fi(z)g;(z) # 0. This implies that

e = e
I 1o Zf)vzo %aiv Zf}v:() z_jaiv B
ST b, T B, g, O O 2

Hence, in this case vp,(z) > 2N +1. (2.3.1)
Similarly, if (f, a;)(2) = 0 then

N N
Da«f? a;)(g,a;) — (g, a:)(f, ai))(z) = Da((lel)(Z %aw %ajv
v ) N v;O v=0
- Z o0 2 00 (2) =0 (jaf < 2N)

So, in this case we have v((f.a;)(g.a;)~(f.a;)(g.a:))(2) = 2N + 1. (2.3.2)

Suppose that (s, >x(2) = 0. We now consider two cases.

Case 1. Assume that v(sq,) <k(2) > 0 for some t with ¢ # j.

Then v(fa,),<k(2) = 0 (s # t), especially v(sq,)<r(2) = 0. Hence 14(2) = 0 and
Zivjlz@]\f + 1) min{1, v(q,),<k(2)} = 2N + 1. From (2.3.1), we have

s#£j

N+2
vp,(2) > Y (2N + 1) min{L, Uye,).<k(2)} + v0(2) — (2N + Dy, 24(2) (2.3.3)
t=1
4]
Case 2. Assume that v(s4;) <k(2) > 0.
This follows that (s, <k(2) = 0 for each t # j.

Then SN 22N + 1) min{1, v.4.) <k(2)} = 0.
s#£]
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On the other hand, since P;; = (f,a:)(9. ;) = (J.4)) (9, @) and by (2.3.2), we have
(f7 aj)(ga a’j)

P, (2) = V(fai)(@.a;)~(Fa)(9.00) (2) = V(f.a;) (%)

2) = V(g,a;)(%)
> (2N 4 1) = V5.0,)(2) = V(g (2).

Combining with vp,(2) > 0, we have

VPij (Z) Z maX{07 (2N + 1) o V(f,aj)(z) - V(g,aj)(z)}
> (max{0, (2N + 1) ~ g0)(2) — Vg (2)}) - (min{L, v <i(2)})

= I/()(Z)
N+2
= N+ D)min{l, vga, <k(2)} +10(2) = N + Dy, ) 4 (2) (2.34)

If V(sa;),5k(2) > 0 then 1y(z) = 0 and

N+2
s=1
SF#]

It implies that

N+2
VPij(Z) 202

> Z(?N + 1) min{1, v(a,),<k(2)} +10(2) — (2N + 1) ((f)a 1ok(2) (2.3.5)
s=1
i

Combining (2.3.4) with (2.3.5), we have

vp, (2) > Z(2N+1)m1n{1 Vigan<k(2)} +10(2) = @N + Dy, 4(2) (2.3.6)

for each z € UN T2 {w : v a.<r(w) > 0} \ I.

We also see that if 2 & U2 {w : v(f.4,),<k(w) > 0}, then

N+2

Z(QN—I—l)mm{l Ufas),<k(2)} +10(2) = 0.
gty
It implies that
N+2
vp,(2) > 3 (2N + Dmin{l, Usa, <k(2)} + v0(2) = @N + Dy, ) 4(2) (23.7)
s=1
s#j
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From (2.3.6) and (2.3.7), for each z ¢ I, we have

N+2
vp,(2) > (2N + 1) min{l, vy, <i(2)} +20(2) = @N + Dy, ) 4 (2).

s=1
s#£]

This yields that

N+2
1 1
Npy(r) = N +1) 37 N o (r) + N(rvo) = 2N + DN, (),
jAt=1

We now show that
(2) = Vg (2) = Vige (2) < = (2N + 1) minfL, vz, <6(2)} + 10(2)

(f,aq) (9,a4)

V_
Pij

+ 2N + )i ()
for each z & 1.

Indeed, it is easy to see that

v (2) = Viap (2) = Vigay (2) S max{viay (2), Ve (2)}
i (f:a4) (g9,a5) (fyaz) (9:a4)

— I/(f,aj)( ) — V(g,aj) (Z) < 0.
(fra4) (g,a4)

Fix z ¢ I. We consider two cases.
Case 1. Assume that (f,a;)(z) # 0.
If V(sa;),<k(2) > 0, then

v (2) =max{0, Vs,a;) + Vga;) = U(fai)(9.05)—(Fra5)(g.00) } ()

WV(f0;)(2) + V(gaa)(2) = (2N + 1) + 15(2)

1
Py

=V(sap (2) + Vigap (2) — (2N 4 1) min{1, V(f.a),<k(2 )+ vo(2)

(f,a;) (g,a;)
+ (2N + 1)l i (2).

If V(f,aj),gk(z) = O, then

V1 (2)=Viap (2) = Vigay (2) <O

(fﬂai) (g, ai)
— (2N —+ 1) mln{l Vfaj <k( )} + VO( ) (2N + 1>l/(()1”,)ai),>k("7’)'

1
2

So, we have

v (2) = V(e (2) = Ve (2) < = (2N + 1) min{1, vig0),<k(2)} + 10(2)
v (f:a;) (9,a4)

1
+ (2N + Dy (2).
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Case 2. Assume that (f,a;)(z) = 0.
If V(f,a),<k(2) >0, then vy, <x(2) = 0. It implies that

v (2)=Vyap (2) = Veap (2) <O
w (f.a;) (9,a;)

. 1
<= (2N + D)min{1, vga).<k(2)} +v0(2) + N + Dy, 4 (2).

If V(f.4,),5k(2) > 0, then
. 1
(2N + 1) min{1, v(sq,),<k(2)} < (2N + 1)1/((f7)ai)7>k(z).
It implies that

v (2) V.0 (2) = Vigap (2) <0
i (Fai) (9:a1)

. 1
<= (2N + D)min{1, v(ga).<k(2)} +00(2) + N + Dy, 4 (2).

From Case 1 and Case 2, we obtain

v (2) = Ve (2) = Ve (2) < = (2N + 1) min{1, vig0,),<k(2)} + 10(2)

1
Pij (Fra) (9,a7)

+ 2N + )l ()
for each z & I.
This yields that
(1)
N (1) = N(f,a;) (1) = Nig a)) (1) § = CNF DN, (1) + N (7 00)
(fsai) (9, a:)

ij

1
+ (2N + 1)N((f7{“),>k(r).

We now have

e ) < B0 o, o0

(f,a;) (9,a5)
<T(r, f)+T(r,g)— N (73 EJ; ZJD ~N (n %) +o(T(r, f))
+o(T'(r, 9))
ST 1) +T(r,9) = Nisa (1) = Noaan (1) +0(T(r. /) + T(r,9))
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Hence
N+2
1) 1
(2N +1 Z N((fa,) <«(r) + N(r,up) — (2N + 1)N((f,)¢lj),>k<r)
U#J

< Npy(r) <T(r,Py) = N (1) + m(r, Py) + O(1)

)

ST ) +T0r9) + No(r) = Nyay (1) = Ny (r) + o(T(r, f) + T(r, 9))

(fra;) (g,a;)
<T(r, )+ T(r,g) — @N + DN, | () + N(r, )

+ (2N + NG, () + o(T(r, f) + T(r, g)).

This implies that

N+2

1
(2N +1) Z N((f,)av),gk(r> < (1+

v=1

4N + 2
E+1

JT(r f) +T(r,9)) + o(T(r, f) +T(r,g))-

The Claim 2.3.2 is proved.

From Claim 2.3.2, we have

S NG alr) < (g + )T £) 4 T(r0)) + o(T0, ) + T(r, ).

Similarly, we also have

N+2 N+2 N+2

Z N((g]\,;)v),<k SN Z Ng (g,av), <k =N Z N (f:av), </~c

v=1 v=1

<N 2N

N +1 1) <T(T’ /) *T(7“79>>+0(T(73 )+ T(r.g)).

Hence
N+2

N N
Z(N((f,a)) ( )+N((g a)v) <k(7“))

v=1

(21311 1 ]{34—]|-V1) <T<7” f)+ T, 9>)+0(T(r, ) +T(r,9)).

On the other hand, by Claim 2.3.1, it implies that

N+2

| 3Nl 2 T

and Mo
k+1)— N(N +2
I3 N) Ly z B N2

FrioN L)
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Hence
2N AN

G+ 7

> (kb ;);ﬁ(]]\v” D (1(r, 1)+ 709)) + ol(T(r, 1) + T(r, ).

Letting r — o0, we have

J(T(r, f) +T(r,9))

2N AN (k+1) - N(N +2)
ON+1 k+1~  k+1-N

2N _ (k+1) - N(N +6)

2N +1 — k+1—-—N
contradiction. Thus, f = g and Theorem 2.3 is proved. [

Then . Hence k +1 < 2N3 + 12N? + 6N. This is a
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Chapter 3

Value distribution of the (Gauss map
of minimal surfaces on annular ends

Let M be a non-flat minimal surface in R3, or more precisely, a connected oriented
minimal surface in R3. By definition, the Gauss map G of M is the map which maps
each point p € M to the unit normal vector G(p) € S% of M at p. Instead of G, we
study the map g := 710G : M — C := CU{oo}(= P'(C)) for the stereographic projec-
tion 7 of S? onto P!(C). By associating a holomorphic local coordinate z = u + v/—1v
with each positive isothermal coordinate system (u,v), M is considered as an open
Riemann surface with a conformal metric ds? and by the assumption of minimality of
M, g is a meromorphic function on M.

In 1988, H. Fujimoto [20] proved Nirenberg’s conjecture that if M is a complete non-
flat minimal surface in R?, then its Gauss map can omit at most 4 points, and the bound
is sharp. In 1991, S. J. Kao [38] showed that the Gauss map of an end of a non-flat
complete minimal surface in R? that is comformally an annulus {z|0 < 1/r < |z| < r}
must also assume every value, with at most 4 exceptions.

On the other hand, in 1993, M. Ru [54] studied the Gauss map of minimal surface
in R™ with ramification. In this chapter, we shall study the Gauss map of minimal
surfaces in R?, R* on annular ends with ramification. In particular, we prove Theorem
3.4.6, Theorem 3.4.7 (Dethloff-Ha [9]). We would like to refer the case R™(m > 3)
with another aspect to Dethloff-Ha-Thoan [10].
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3.1 Minimal surface in R™

We recall some basic facts in differential geometry.

Let M be a connected oriented real 2-dimentional differential manifold and » =
(1, ey Tpy) + M — R™ an immersion.

For each point p € M, take a system of local coordinates (uy,us) around p which are

positively oriented. The tangent plane of M at p is given by

ox ox
T (M) := —_— —_— R
p(M) {Aﬁul +uau2lk,ﬂ € }

and the normal space of M at p is given by

" Ox Ox

where (X,Y") denotes the inner product of vectors X and Y.
The metric ds? on M induced from the standard metric on R™, called the first funda-

mental form on M, is given by

ox ox ox ox
d32 = ‘dl‘P = (dx, di[}) = (8_u1dU1 + 8_u2dU2, a_uldul + a—quu2)
= glldU% -+ 2g12du1du2 + gggdug,
Jor 0
where g;; 1= 8_5’8% 1 <i, 5 <2
i j

The second fundamental form of M with respect to a unit normal vector NN is given by

do® == Y by(N)duduy,

1<6,j<2

2
where b;;(N) := (af—axu,
iUl

3.1.1 Proposition. (Fujimoto [25]) For an arbitrary given regular curve in M, v :

(a,b) —> M, ~(t) = (ui(t),us(t)). it holds that

T \ds? ds? Y. 9iui]

N) (1<ij<2).

VN € Nv(t)(M)'
Then we may see that k., (V) depends only on N and the tangent vector of 7 at p. Take
a nonzero vector N € N,(M) and a unit tangent vector 7' € T,(M). Choose a curve

x(s) in M with arclength parameter s such that x(0) = p and (dz/ds)(0) = T, and
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define the normal curvature of M in the direction T with respect to the normal vector

N by
K(N,T) := Py
T \as )

We note «a the plane which includes the vectors N and 71" and let v be the curve which
is defined as the intersection of @ and M. By elementary calculation, we can show that

k(N,T) is the reciprocal of radius of curvature for the curve v in the plane a. Set

ki (N) == min{k(N, T); T € T,(M),|T| = 1},
ko(N) == max{k(N,T); T € T,(M),|T| = 1},

The mean curvature of M for the direction N at p is defined by

ki (N) + ka(NV)

H,(N) = 5

We remark that we may prove the following for the calculation of the mean curvature

_ 911522(]\7) + 922511(]\7) - 2912512(]\7)
2(g11922 — 9%)

H,(N)

(see Fujimoto [25] for example).
3.1.2 Definition. A surface M is called a minimal surface in R™ if H,(N) = 0 for
all pe M and N € N,(M).

Let M be a surface with a metric ds®. A system of local coordinates (uy,us) on
an open set U in M is called a system of isothermal coordinates on U if ds* can be

represented as

ds? = N (dud + du3),

for some positive C* function \ on U.

3.1.3 Theorem. (S. S. Chern, [7]) For every surface M, there is a system of isothermal
local coordinates whose domains cover the whole M.

3.1.4 Proposition. For an oriented surface M with a metric ds®, if we take two
positively oriented isothermal local coordinates (u,v) and (x,vy), then w = u++/—1v is
a holomorphic function in z = x +/—1y on the common domain.

Let x : M — R™ be an oriented surface with a Riemannian metric ds?. With each
positive isothermal local coordinate system (u,v) we associate the complex function
2z = u + v/—1v. By Proposition 3.1.4, we may regard M as a Riemann surface. Then
the metric ds? is given by

ds® = \2(du® + dv?),
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Or Ox or Ox
2 _ (9L Oy (0L OF
where A, = (au’au) (81}’01})'

Set complex differentiations

o (GO O (3,

0z ou ov 0z 0z
Then

=3 ()
-2(5(5) +i(5))
=23 (G v e %)

B 22 axz 83:1

81'1 61’2 2 6$n 2
-9 2 e
( 0z 0z L 0z
So we can rewrite the metric as
or,|*  |9xs|? o, |2 2
-9 = U Pt
ds® < el 9 +--+ 9% |d2|
0? o?
Define the Laplacian A, = e + 0 in terms of the complex local coordinate
u

z = u+ v/—1v. If we take another complex local coordinate &, then we have A; =
|dz/dE]PA,. Since A\ = \,|dz/d€|, the operator A = (1/A2)A, does not depend on the
choice of complex local coordinate z, which is called the Laplace-Bertrami operator.
3.1.5 Proposition. (Fujimoto [25]) It holds that

(i) (Az,X) =0, for each X € T,(M),

(it) (Az,N) =2H(N), for each N € N,(M).

3.1.6 Theorem. (Fujimoto [25]) Let x = (z1,...,2,) : M — R™ be a surface im-
mersed in R™, which is considered as a Riemann surface. Then M is minimal if and
only if each x; is a harmonic function on M, namely

o 0?
A, x; <8u2 + 602)@ 0, (1<i<n)

for every holomorphic local coordinate z = u + +/—1v.

3.1.7 Corollary. There exists no compact minimal surface without boundary in R™.
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Let x : M — R™ be a minimal surface immersed in R™.

3.1.8 Definition. A continuous curve y(¢) (0 <t < 1) in M is said to be divergent
in M if, for each compact set, there is some ty such that (t) € K for any ¢t > t,.
3.1.9 Definition. We define the distance d(p) (< +o0) from a point p € M to the
boundary of M as the greatest lower bound of the lengths of all continuous curves
which are divergent in M.

3.1.10 Definition. A minimal surface M immersed in R™ is said to be complete
if the image in R™ of every divergent curve on M has infinite length (equivalently,

d(p) = +oo for all p € M).

3.2 The Gauss map of minimal surfaces

Let x := (z1, -+ ,zm) : M — R™ be a surface immersed in R™.

We consider the set of all oriented 2 -planes in R™ which contain the origin and
denote it by II .

To clarify the set II, we regard it as a subset of the (m — 1)-dimensional complex
projective space P ~1(C) as follows. To each P € II, taking a positively oriented basis
{X,Y} of P such that

| X |=| Y |,(X,Y) =0, (3.2.1)

we assign the point ¢(P) = w(X — /—1Y), where m denotes the canonical projection
from C™ — {0} onto P™~1(C), namely, the map which maps each p = (wy,- -+ ,w,,) #

(0,---,0) to the equivalence class
(wi, -+ wy) = {(cwy, -, cwy);c e C—{0}}.

For another positive basis {X,Y} of P satisfying (3.2.1) we can find a real number 6
such that

X =r(cosf- X +sinf-Y),
Y

r(—sinf - X + cosf-Y),

S

where r := ——. Therefore, we can write

<

X — V=1V = reV (X — /1Y),
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This shows that the value ¢(P) does not depend on the choice of a positive basis of P
satisfying 3.2.1 but only on P. On the other hand, ¢(P) is contained in the quadric

Qm-_2(C) = {(wy, - ,wp);wi + -+ +w? =0)} c P"(C).

We can show that ¢ is bijective and we identify II with Q,,_».

We consider a surface x := (21, -+ ,x,) : M — R™ immersed in R™. For each
point P € M, the oriented plane T,,(M) is canonically identified with an element of II
after the parallel translation which maps p to the origin.

3.2.1 Definition. The (generalized) Gauss map of a surface M is defined as the map
of M into @Qy,—2(C) which maps each point p € M to ¢(T,(M)).

For a system of positively oriented isothermal local coordinates (u,v) the vectors X =

?, Y = ? give a positive basis of T,(M) satisfying the condition (3.2.1). Therefore,
u v
the Gauss map of M is locally given by
0xy 0%
G=¢(X —v_1y)= (22, ... Un
o )= (02 Xy
where z = u + /—1v. We may write G = (w; : -+ : w,,) with globally defined

holomorphic forms w; := dz; = ;Z dz (1<i<m).
z

3.2.2 Proposition. (Fujimoto [25]) A surface x : M — R™ is minimal if and only if
the Gauss map G : M — P™1(C) is holomorphic.

We say that a holomorphic 1—form w on a Riemann surface M has no real periods

Re/w:()
Y

for every closed cycle in M. If w has no real period, then the quantity

2(2) :Re[y o

z
20

if

depends only on z and 2, for a piecewise smooth curve v in M joining zy and z and

so x is a well-defined function of z on M, which we denote by

x(z) :Re/Z:w

from here on. Related to Proposition 3.2.2, we recall here the following construction
theorem of minimal surfaces.

3.2.3 Theorem. (Fujimoto [25] for example) Let M be an open Riemann surface and
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let wy,wa, ..., wy, be holomorphic forms on M such that they have no common zero, no

real pertods and locally satisfy the identity
fitfot-+fi=0

for holomorphic function f; with w; = f;dz. Set

z
T; = 2Re/ w;,
20

for an arbitrarily fived point zo of M. Then, the surface x = (xy,...,xy) : M — R™
is a minimal surface immersed in R™ such that the Gauss map is the map G = (w; :

twm) M — Q,—2(C) and the induced metric is given by

ds® = 2(Jwi]? + - + |wm|?). (3.2.2)

Now, let M be a Riemann surface with a metric ds? which is conformal, namely,
represented as

ds* = \2|dz|?

with a positive C'**° function A, in term of a holomorphic local coordinate z.
3.2.4 Definition. For each point p € M we define the Gaussian curvature of M at
p by

ALl
K= Kje = —Alog)\z( = —Lg)\z).

)2
For a minimal surface M immersed in R, using (3.2.2), we can show that
GATP 2|99k — 9kgil”

K=FKyp=-42291 _ i (3.2.3)
|9/6 (>_5=1 19513

where § = (g1, ..., gm), 9j = %, 1<j<m.

This implies that the curvature of a minimal surface is always non-positive.

If a minimal surface is flat (i.e., the Gauss curvature vanishes everywhere ), then (3.2.3)
implies that g;/g;, = const.(1 < i < n) for some iy with g;, # 0 and, therefore, that
the Gauss map ¢ is a constant map.

3.2.5 Proposition. (Fujimoto [25]) For a minimal surface M immersed in R™, M is

flat, or equivalently, the Gauss map of M is a constant if and only if it lies in a plane.
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3.3 Meromorphic functions with ramification

Let f be a nonconstant holomorphic map of a disc Ag := {z € C; |z| < R} into P!(C),

where 0 < R < oo. Take a reduced representation f = (fy : f1) on Ag and define

A = (1fol? + [f1) 2 W (fo, f1) = fofl = [1fi

Let a/(1 < j < q) be ¢ distinct points in P'(C). We may assume a’ = (a}, : a]) with
a2+ Jaf[> = 1(1 < j < q), and set

Fy:=ayfi —aifo (1< j <q).

3.3.1 Definition. One says that the meromorphic function f is ramified over a point
a = (ap : ay) € PYC)with multiplicity at least e if all the zeros of the function F :=
aofi — a1 fo have orders at least e. If the image of f omits a, one will say that f is
ramified over a with multiplicity oo.

3.3.2 Proposition. (Fujimoto [19, Propostion 2.1]) For each € > 0 there exist positive

constants Cy and p depending only on at,--- ,a? and on € respectively such that

111 ) Cull P W (fo, f)I?
Al >
e (H}Ll log(plIfI1*/1£51%) ) — TI_y| Fy |2 1og® (ull FI12/1F5[?)

3.3.3 Lemma. Suppose that ¢ — 2 — > 9 .2 > 0 and f is ramified over o/ with

J=1 m;

multiplicity at least m; for each j(1 < j < q). Then there exist positive constants C
and (> 1) depending only on @’ and m;(1 < j < q) which satisfy that if we set

. mL

Ol == (W (o, o)l
1—-L
I | Fy[ i log(ul L £I17/1F51%)

on Agr — {F1..F, =0} and v =0 on AgN{F...F, = 0}, then v is continuous on Ag

and satisfies the condition Alogv > v? in the sense of distributions.

Proof. First, we prove the continuousness of v.

Obviously, v is continuous on Ag — {F}...F, = 0}.

Take a point zp with Fj(zy) = 0 for some i. Then Fj(z) # 0 for all j # ¢ and
v, (z9) > m;. Changing indices if necessary, we may assume that fo(z9) # 0, then

ay # 0. Hence, we get

v (20) = I/(aé% —aiy (20) = U(Fi/fo)/(zo) =vr(z) — L.
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Thus,

q

1
Vary_, a2/ (20) = vw(20) = (1= m; 75 (20)
j=1

= () = 1= (1= o () = 222 15 0. (s

my; my;

So, lim,_,,, v(2) = 0. This implies that v is continuous on Ag.
Now, we choose constants C' and y such that C? and pu satisfy the inequality in Propo-

1_, —. Then we have
J=1 m;

sition 3.3.2 for the case e = ¢ — 2 —

L=

7, log I/ 1P/ %)

o o P (o, )R

= I [E P log?(ul| f112/1E51?)

L o M W G )
T [ F5 775 Log? (ul | £112/|F2)

=% (by |E;| < [If1I(1 < j < q)).

Alogv > Alog

Lemma 3.3.3 is proved.
3.3.4 Lemma. (Generalized Schwarz Lemma [1]) Let v be a nonnegative real-valued
continuous subharmonic function on Ag. If v satisfies the inequality Alogv > v? in

the sense of distributions, then

(2) < 2R
v(2) L ——.
= R2 |22
3.3.5 Lemma. For every 6 with ¢ —2 — 321 ml > q6 >0 and f is ramified over a’
J
with multiplicity at least m; for each j(1 < j < q), there exists a positive constant Cj

such that - _
—2-57 L
I = W (fo, o) 2R
q 1- =6 = COR2 — 2>
IS, [ Fy)

Proof. By using an argument as in (*) of the proof of Lemma 3.3.3, the above
inequality is correct on {Fy...F, = 0} for every Cy > 0 (the left hand side of the above
inequality is zero).

If z ¢ {F,...F, = 0}, using Lemma 3.3.3 and Lemma 3.3.4, we get

—9-_y¢ 1
A" =27 W (fo, Sl 2R
1— 1 — P2 _ 27
| By ™ log(ul| FIP/| B5[2) — B — 12l
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where C' and p are the constants given in Lemma 3.3.3.

On the other hand, for a given § > 0, it holds that
PN 2
ilir(l)x log(p/2%) < 400

SO we can set

C = sup 2°log(p/x?)(< +00).
0<x<1

Then we have

i IW(fo,fl)I

me_y | F
fo,f1| : (i)
e | Bl H 171

2 ZJ 17n

i

2-y9 | = q

f - ! lmJ w f 7f) F;

WA LI T bog(ull 117, )
T [ F5|' 5 log(ul|f|2/|Fy[2) j=i
. . ‘%_1%
CU £ 275077 (W (fo, o)

1,L
T | B3 log(ul| £11%/ | Fy[2)
6" 2R
S TR

This gives Lemma 3.3.5.

For our purpose, we shall give the following result which is contained in a classical
results of Nevanlinna (Nevanlinna [44]). We give here a direct proof of this result by
using Lemma 3.3.5.

3.3.6 Proposition. Let f : C — PY(C) be a holomorphic map. For arbitrary distinct
points a', ..., a1 € PY(C) suppose that f is ramified over o/ with multiplicity at least m;

for each j, (1 < j < q) satisfying

q
1
d(1-—)>2
=1 M

Then f is constant.

Proof. Assume that f is non-constant. Without loss of generality, we may assume
F;(0) # 0(1 < j < q) and W(fo, f1)(0) # 0. By our assumptions, for every R > 0 and
0 with

q

1
d(l-—)=2>4¢>0,

mA
j=1 J
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we apply Lemma 3.3.5 to the map f|a, : Ag — P'(C) to show that

~2-Eo o
LA =7 W o )l 2R
1 > Lops -

ey B R =]

By substituting z = 0 into the above inequality we conclude that R has to be bounded
by a constant depending only on a’,m; and on the values of f, F;, W(fo, f1) at the

origin. This is a contradiction.

3.4 The (Gauss map of minimal surfaces with ram-
ification

3.4.1 Definition. One says that a holomorphic map g : A — P™ !(C) of an open
Riemann surface A into P™~!(C) is ramified over a hyperplane H = {(wg : - :
Wpo1) € P™HC) 1 agwy + ... + @y 1wWp—1 = 0} with multiplicity at least e if all the
zeros of the function (g, H) := apgo + ... + @m_19m—1 have orders at least e, where
g=1(90: ... : gm—1) is a reduced representation of g. If the image of g omits H, one will
say that g is ramified over H with multiplicity co.

3.4.2 Theorem. (Ru [54]) Let M be a complete minimal surface immersed in R™ and
assume that the Gauss map g of M is k—nondegenerate (that is g(M) is contained in
a k—dimensional linear subspace of P™~(C), but none of lower dimension), 1 < k <
m —1. Let {H;}I_, be hyperplanes in general position in P~ (C). If g is ramified over
H; with multiplicity at least m; for each j, then

: ki ki

Y- —)<(k+1)(m- 5~ D+m

j=1
On the other hand, when m = 3, then the following holds.
3.4.3 Theorem. (Ru [54]) Let M be a non-flat complete minimal surface in R3. If
there are q (q > 4) distinct points a, ...,a? € PY(C) such that the Gauss map of M is
ramified over o’ with multiplicity at least m; for each j, then Z?Zl(l — m%) <A4.
3.4.4 Corollary. The Gauss map g of a non-flat complete minimal surface in R3
assumes every value on the unit sphere with the possible exception of at most four
values.
3.4.5 Theorem. (Kao [38]) Let M be a non-flat complete minimal surface in R® with
the Gauss map g and let A be an annular end of M which is conformal to {z| 0 < 1/r <
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|z| < r}, where z is a conformal coordinate. The Gauss map g assumes every value on
the unit sphere infinitely often, with the possible exception of at most four values on A.
3.4.6 Theorem. (Dethloff-Ha [9]) Let M be a non-flat complete minimal surface in R
and let A be an annular end of M which is conformal to {z| 0 < 1/r < |z| < r}, where
z is a conformal coordinate. If there are q (q > 4) distinct points a',...,a? € P(C)
such that the Gauss map of M is ramified over o’ with multiplicity at least m; for each

j on A, then Y5 (1 — m—) < 4.

Proof. For convenience, we recall some notations on the Gauss map of minimal surfaces
in R3.

Let © = (21, 29, 73) : M — R? be a non-flat complete minimal surface and g : M —
P!(C) the Gauss map. Let A be an annular end of M, that is, A = {2]0 < 1/r <
|z| < r < oo}, where z is a conformal coordinate. Set ¢; := Jz;/0z (i = 1,2,3) and
¢ = ¢1 — /—1¢. Then, the (classical) Gauss map g : M — P}(C) is given by

g9
$1 — V1’

and the metric on M induced from R? is given by
= |¢*(1 + |g/*)?|dz|? (see Fujimoto [25]).

Take a reduced representation g = (go : g1) on M and set ||g|| = (|go|® +|g1/?)"/%. Then
we can rewrite ds? = |h|*||g||*|dz|?, where h := ¢/g3. In fact, h is a holomorphic map
without zeros.

Since by assumption M is not flat, ¢ is not constant.

Assume that the theorem does not hold. Without loss of generality we may assume
that ¢ is ramified over o/ with multiplicity at least m; > 2forall1 <j <gqon A for

given ¢ distinct points a', ..., a? in P*(C) and

! 1
d(1-—)>4
=

Take ¢ with
q—4-— Zﬂlm]>6 qg—4— Zylm
q q+2 ’
and set p =2/(q —2 — jlm — q9). Then
0<p<l1 L>5—p>1(3.4.1).
"l-p  1-p
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Consider the open subset
Ar = Int(A) — {z[W (g0, 91)(2)-W (g0, 91)(1/2) = 0}

of A and we define a new metric

o, 2p

1
|G, ™ 0\ 5
=G5 ) |dz|? (3.4.2)

W (g0, 91)|

dr? = |h|12p<

on A, where G, := aégl —algo
We can show that dr is continuous and nowhere vanishing on A;. Indeed, A is without
zeroes on A; and for each zp € A; with Gj(z)) # 0 for all j = 1,...,¢ then dr is
continuous at zg.
Now, suppose there exists a point 2y € A; with G;(zy) = 0 for some j. Then G;(zy) # 0
for all i # j and vg,(20) > m;. Changing the indices if necessary, we may assume that
go(20) # 0 then al # 0. So, we get

VW(90791)(Z0) = V(aéz_é j)/ (20) = V(Gj/go)’ (20) = va; (20) =1 >0.

; J

This is a contradition with zy € A;.Thus, dr is continuous and nowhere vanishing on
Aj. Now, it is easy to see that dr is flat.

We now prove the following claim.

Claim 1. dr? is complete on the set {z||z] = r} U {2|W (g0, 91)(2) = 0}, i.e., the set
{z||z| = r} U{z|W (g0, g1)(2) = 0} is at infinite distance from any interior point in A;.

If W(go, 91)(20) = 0, then we have two cases.
Case 1. Gj(zy) = 0 for some j € {1,2,...,¢}.
Then we have G;(z) # 0 for all ¢ # j and vg,(2) > m;. By the same argument as

above we can show that

VW (g0.91)(20) = V@, (20) — 1.

Thus,
p
Vir(20) = ﬂ((l - m—J — ), (20) — Yw(go,a)(20))
_ P gk
=1 _p(l <mj + d)va,(20))
< _ 2P
=12,
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Case 2. Gj(z) #0forall1 <j <gq.

It is easily to see that vy, (z) < —IL.
So we can find a positive constant C' such that
C
|dr| = |dz|

|Z — ZO|5P/(1_I7)

in a neighborhood of zy and combining with (3.4.1) then d7 is complete on {z|W (g0, g1)(z) =

0}.

Now assume that dr is not complete on {z||z| = r}. There exists v : [0,1) — Ay,
where v(1) € {z||z|] = r}, so that |y| < oo. Furthermore, we may also assume
dist(v(0); {z||z| = 1/r}) > 2|7y|. Consider a small disk A with center at v(0). Since dr
is flat, A is isometric to an ordinary disk in the plane. Let ® : {|w| < n} — A be the
isometry. Extend @, as a local isometry into A, to the largest disk {|w| < R} = Ag.
Then R < |v|. The reason that ® cannot be extended to a larger disk is that the image
goes to the outside boundary {z||z| = r} of A;. More precisely, there exists a point wy
with |wo| = R so that ®(0,w,) = Iy is a divergent curve on A.

The map ®(w) is locally biholomorphic, and the metric on Ay induced from ds? through
® is given by
B ds? = |ho<I>|2||go(I>||4|j—Z|2|dw|2 (3.4.3).

On the other hand, ® is isometric, we have

(1--L1—&p 1
hITIY |G ™ I-p
|dw| = |dr| = (' | W' i > |dz|

(90, 91)IP
)
‘d—wllip — |h|H3:1|GJ| J 8
dz (W (g0, 91) [P
Set f = g(®), fo := go(P), f1 := g1(®P) and F; := G,(P). Since
dz

W(fo, f1) = (W(g(Jagl)o(I))%;

we obtain

%| _ |W<f07f1)|p
(1-L—9)
dw' (@), [
By (3.4.3) and (3.4.4), therefore, we get

d*ds? — <||f|| |W(1f0,f1)6|p> |d |2
JE T

<||f||q P2 |W(fo7f1)|> |dw|?
©|F |

(3.4.4).

65



Using the Lemma 3.3.5, we obtain

2
*ds* < O ( i =) |dw]?.

R2 — Juwl

Since 0 < p < 1, it then follows that

d </ d / B*ds < CF /R( 2Byl du] < +
< 5 = s < CP. ——P|dw 00,
R, Owo “Jo "R?—|w]

where dp, denotes the distance of the divergent curve I'y in M, contradicting the as-
sumption of completeness of M. Claim 1 is proved.
We now define

2

100G ()G (M) N
)| ’W(Qm91)(2)W(90,91)<%)’p> ‘dZ|

z

d7? = <|h(z)h(
= N(2)|dz?,

on A;. Then d7? is complete and flat on A; by Claim 1. Let u(z) = log A(z). Then
u(z) is a harmonic function on A;. Let D be the universal covering surface of A;. In
a neighborhood of any point of D, we may introduce an analytic function k(z) whose

real part is u(z), and the mapping

satisfies
w z ulz
|—| = ]ek( )| =et®) = ) (3.4.5).

Thus the length of any curve on D with respect to the metric d7 is equal to the length
of its image in the w—plane. By the simple connectivity of D, there exists a global
map of D into the w—plane which satisfies (3.4.5), and by the completeness of D, this
map must be a one-to-one map of D onto the entire w—plane. Thus D is conformally
equivalent to the plane, which is impossible by Proposition 3.3.6 . This proves Theorem

3.4.6. ]

We now recall some notations on the Gauss map of minimal surfaces in R*.

Let o = (11, 22, x3,74) : M — R* be a non-flat complete minimal surface in R*. As
is well-known, the set of all oriented 2-planes in R* is canonically identified with the
quadric

Q2(C) = {(wy : ... 1 wy)|wi+ ... +wj =0}
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in P3(C). By definition, the Gauss map g : M — Q3(C) is the map which maps each
point p of M to the point of Q3(C) corresponding to the oriented tangent plane of M
at p. The quadric Q5(C) is biholomorphic to P!(C) x P!(C)(e.g. Fujimoto [25]). By
suitable identifications we may regard g as a pair of meromorphic functions g = (g', g°)
on M. Let A be an annular end of M, that is, A = {2]|0 < 1/r < |z| < r < oo}, where
z is a conformal coordinate.

Set ¢; := Owx;/dz for i = 1,...,4. Then, ¢g' and ¢? are given by

g = ¢3 + vV —1¢y &= —¢3 + vV~ 14
¢1— V=1’ ¢1—V—1¢s

and the metric on M induced from R* is given by

ds® = o (1 + |g'[*) (1 + [g°*)|d=?,

where ¢ 1= ¢1 — V/—1¢s.
Take reduced representations ¢! = (g}, : ¢}) on M and set ||¢'|| = (|g}|*> + |g}|*)"/? for

[ =1,2. Then we can rewrite
ds® = |n*||g"|PP||g?]1|dz]? (3.4.6),

where h = ¢/(g595)-
3.4.7 Theorem. (Dethloff-Ha [9]) Suppose that M is a complete non-flat minimal
surface in R* and g = (g%, ¢%) is the Gauss map of M. Let A be an annular end of M
which is conformal to {z|0 < 1/r < |z| < r}, where z is the conformal coordinate. Let
a'l, ... al 6t . a®® be q1 + g2 (qu, g2 > 2) distinct points in P1(C).

(i) In the case g' # constant (I =1,2), if g' is ramified over a" with multiplicity at

least my; for each j (I =1,2) on A, then

Y1 = 311:1<1—mL1]) SQ, or g = ;12:1(1_#2]) §27 or
! + L >1
M~ 2 Yo —2 7 '

2 —

(11) In the case where one of g* and g* is constant, say g constant, if g* is

ramified over a*J with multiplicity at least my; for each j, we have the following

’YlZZ(l—L)SB.

m .
=1 1
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Proof. We first study the case g' # constant, for [ = 1,2. If ¢’ is ramified over a" with
multiplicity at least my; for each j, (I =1,2) and vy > 2,7, > 2, and

1 1

+ < 1.
M—2 1-—2

Choose do(> 0) such that v, — 2 — g;09 > 0 for all [ = 1,2, and

1 1

+ =1.
M =2=qd Y2—2— g0

If we choose a positive constant §(< dg) sufficiently near to d§y and set

po=1/(n—2—q0d),(l=1,2),

we have

5
O<pitp<l, —P S 1(1=12) (34.7).

L—p1—po
Consider the open subset

Ay = Int(A) — {212 W (gh, 6}) (). W (gh, g1)(1/2) = 0}

of A and we now define a new metric

1 8)p1 2 —0)p2 2
d (|h|H;1 1‘G1‘ 1j Hq 1’G2’ 23 )1P1P2|d2|2
W (gg, 91| |W(907 g3 )[P2

on A,, where G} := adgh —adgl(1=1,2).

Using the same arguments as in the proof of Theorem 3.4.6, we may see that dr is flat

and continuous on A,. We shall prove the following.

Claim 2. dr? is complete on the set {z||z] = r} U {z|]I=1.W (g}, ¢})(2) = 0},i.e., the
set {z||z| = r} U {2|]I1=12W (g}, ¢})(2) = 0} is at infinite distance from any interior
point in As.

By the same method as the proof of Claim 1, we may show that d7 is complete on
{2[M=1 2W (g0, 91)(2) = 0}.

In the case, dT is complete on {z||z| = r}, we shall prove by reduction to absurdity.
Assume d7 is not complete on {z||z| = r}. There exists v : [0,1) — As, where (1) €
{z||z] = r} so that |y| < oco. Furthermore, we may also assume dist(y(0),{z||z] =
1/r}) > 2|y|. Consider a small disk A with center at +(0). Since dr is flat, A is
isometric to an ordinary disk in the plane. Let ® : {Jw| < n} — A be the isometry.
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Extend @ as a local isometry into As, to the largest disk {|w| < R} = Ag. Then
R < ||. The reason that ® cannot be extended to a larger disk is that the image goes
to the outside boundary {z||z| = r} of Ay. More precisely, there exists a point wg with
lwg| = R so that ®(0,wp) = Ty is a divergent curve on A.
The map ®(w) is locally biholomorphic, and the metric on Ay induced from ds? through
® is given by

@ ds® = |ho®*|]go @] || g2 @[] | | |dwl* (3.4.8).

On the other hand, ® is isometric, we have

__1

duw| = |dr] (Vu FLcH I <7 5m2)lgm|d|

w| = |dr| = z
|W(go,9%)|p1|W(g§,g%)\p2

[ I 31 (< N

|W<90791>’p1’W(90791>|p2

For each | = 1,2, we set f':= ¢'(®), f§ := gh(®), fi := ¢} (®) and F} := G’ (P). Since

= S =

dz
W(hh, £) = (Wlghoh)o®) 5 (1=1,2)
we obtain o
Y R (®) [y T IFlI O

By (3.4.8) and (3.4.9), we get
l
(I)*dSQZ Hl: Hf“(‘W(fO7f1)D |dw|2
|Fl| l] —8)p

lqz?Zglm, léW Loply |\ 2P
. (||f|| ),
1‘Fl| “

Using the Lemma 3.3.5, we obtain

2R

* 7.2 2(p1+p2) 2(p1+p2) 2
@d5<%12(§zmﬁ)mmuw.

Since 0 < p; + po < 1 by (3.4.7), it then follows that

d < / d / q)*d < Cp1+p2 /R( 2R )p1+p2‘d ‘ <+
< s = s < ) _ w 00,
S (xS ’ o R*—|wf?

where dp, denotes the distance of the divergent curve I'y in M, contradicting the as-

sumption of completeness of M. Claim 2 is proved.
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Define d7? = \?(z)|dz|? on A, where

-1 _ -1 _
o | GL(z) 7 e G2 (z) | 5>P2>1_p;_p2

(W (g5, 91)(2) [P [W (g5, 97) (2) [
1 (1= 7—0) (1--L—5) |
M2 [GH(1/2)[ s e G2 (1) 2) ™ P2)1p1,,2
(W (g5, 91)(1/2)[P1[W (g5, 97)(1/2) [P

By Claim 2, d7 is complete and flat on As,.

) = (1)

< (1nta/z)

We now use the same arguments as the latter part of the proof of Theorem 3.4.6.
This implies Theorem 3.4.7(i).
We finally consider the case where ¢? = constant and g' # constant. Suppose that

~v1 > 3. We can choose § with

-3 -3
Al >6>%
q1 g +1

and set p = 1/(y1 —2 — ¢19). Then

5
O<p<t, 2~ %

Il—p 1-p
Set

1—-L 5§ 2p

e, |G} -p
dr? = |h|13p( =1l ”1| . ) |dz|.
|W(907gl)|
By exactly the same arguments as in the proof of Theorem 3.4.6, we get Theorem

3.4.7(ii). u
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