E. L. Hult, M. Iotti, and M. Lenes, Efficient approach to high barrier packaging using microfibrillar cellulose and shellac, Cellulose, vol.25, issue.1, pp.575-586, 2010.
DOI : 10.1007/s10570-010-9408-8

I. Siró and D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, vol.14, issue.13, pp.459-494, 2010.
DOI : 10.1007/s10570-010-9405-y

A. Dufresne, Preparation of MFC In Nanocellulose : From nature to high performance tailored materials, 2012.

W. Nieh and C. Willis, Roadmap for the Development for International Standards for Nanocellulose Available from TAPPI at www, 2011.

A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential, Journal of Applied Polymer Science: Applied Polymer Symposia, vol.37, pp.815-827, 1983.

K. S. Miller and J. M. Krochta, Oxygen and aroma barrier properties of edible films: A review, Trends in Food Science & Technology, vol.8, issue.7, pp.228-237, 1997.
DOI : 10.1016/S0924-2244(97)01051-0

F. Girard, Transfert de matière à travers les matériaux d'emballage " , Formation Les matériaux barrière: Centre Technique du Papier, 2011.

C. H. Jacques, H. B. Hopfenberg, and V. T. Stannett, The permeability of plastic films and coatings to gas, vapors, and liquids, 1974.

J. Crank, The mathematics of diffusion, 1975.

J. H. Han and M. G. Scanlon, Mass transfer of gas and solute through packaging materials, Innovation in Food Packaging, 2005.

K. L. Spence, Processing and Properties of Microfibrillated cellulose, 2011.

G. P. Matthews and M. C. Spearing, Measurement and modelling of diffusion, porosity and other pore level characteristics of sandstones, Marine and Petroleum Geology, vol.9, issue.2, p.146, 1992.
DOI : 10.1016/0264-8172(92)90087-U

K. Cooksey, Important factors for selecting food packaging materials based on permeability, Flexible packaging conference, 2004.

J. Lange and Y. Wyser, Recent innovations in barrier technologies for plastic packaging?a review, Packaging Technology and Science, vol.3, issue.4, pp.149-158, 2003.
DOI : 10.1002/pts.621

S. Jenkins, The Future of Functionnal and Barrier Coatings for Paper and Board, Pira International Ltd, p.Leatherhed, 2009.

D. Twede and R. Goddard, Packaging Materials, Pira International Ltd, p.Leatherhed, 1998.

L. Lyannaz and P. Martinez, Formation Couchage des papiers ? cartons: Centre Technique du Papier, 2011.

P. Martinez, Etude expérimentale et simulation d'écoulements de fluids modèles et de dispersions pigmentaires dans une coucheuse rideau, 2011.

K. Petersen, P. V. Nielsen, G. Bertelsen, N. H. Nilsson, and G. Mortensen, Potential of biobased materials for food packaging, Trends in Food Science & Technology, vol.10, issue.2, pp.52-68, 1999.
DOI : 10.1016/S0924-2244(99)00019-9

G. Agoda-tandjawa, S. Durand, S. Berot, C. Blassel, C. Gaillard et al., Rheological characterization of microfibrillated cellulose suspensions after freezing, Carbohydrate Polymers, vol.80, issue.3, pp.677-686, 2010.
DOI : 10.1016/j.carbpol.2009.11.045

D. Da-silva-perez, S. Tapin-lingua, A. Janodet, M. Petit-conil, and A. Dufresne, Nanofibres: Production of cellulose micro and nano-fibres: state of the art and first results, th Intechfibres Research Forum: Centre technique du Papier, 2009.

C. L. Huang, H. Lindström, R. Nakada, and J. Ralston, Cell wall structure and wood properties determined by acoustics?a selective review, Holz als Roh- und Werkstoff, vol.61, issue.5, pp.321-335, 2003.
DOI : 10.1007/s00107-003-0398-1

C. Plomion, G. Leprovost, and A. Stokes, Wood Formation in Trees, PLANT PHYSIOLOGY, vol.127, issue.4, pp.1513-1523, 2001.
DOI : 10.1104/pp.010816

URL : https://hal.archives-ouvertes.fr/hal-01032436

P. Vallette and C. Coudhens, Le bois, la pâte, le papier", 3éme édition, Centre Technique de l'industrie des Papiers, Cartons et Cellulose, 1992.

S. Paralikar, Poly(vinyl alcohol)/Cellulose Nanocomposite Barrier Films, 2006.

M. F. Ashby, The CES EduPack Database of Natural and Man-made Materials, Granta Design: Cambridge, 2008.

A. Samir, A. S. Alloin, F. Sanchez, J. Y. Dufresne, and A. , Cellulose nanocrystals reinforced poly(oxyethylene), Polymer, vol.45, issue.12, pp.4149-4157, 2004.
DOI : 10.1016/j.polymer.2004.03.094

URL : https://hal.archives-ouvertes.fr/hal-00306793

Y. Chen, C. Liu, P. R. Chang, X. Cao, and D. P. Andersson, Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time, Carbohydrate Polymers, vol.76, issue.4, pp.607-615, 2009.
DOI : 10.1016/j.carbpol.2008.11.030

S. J. Eichhorn, Review: current international research into cellulose nanofibres and nanocomposites, Journal of Materials Science, vol.22, issue.5, pp.1-33, 2010.
DOI : 10.1007/s10853-009-3874-0

A. Dufresne, J. Y. Cavaillé, and M. R. Vignon, Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils, Journal of Applied Polymer Science, vol.64, issue.6, pp.1185-1194, 1997.
DOI : 10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-V

URL : https://hal.archives-ouvertes.fr/hal-00309886

M. Pääkkö, Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, Biomacromolecules, vol.8, issue.6, pp.1934-1941, 2007.
DOI : 10.1021/bm061215p

M. Henriksson, G. Henriksson, L. A. Berglund, and T. Lindstrom, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers, European Polymer Journal, vol.43, issue.8, pp.3434-3441, 2007.
DOI : 10.1016/j.eurpolymj.2007.05.038

T. Saito and Y. Nishiyama, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, issue.6, pp.1687-1691, 2006.
DOI : 10.1021/bm060154s

URL : https://hal.archives-ouvertes.fr/hal-00305809

S. K. Janardhnan and M. M. Sain, Isolation of cellulose microfibrils -An enzymatic approach, BioResources, vol.1, issue.2, pp.176-188, 2006.

A. Chakraborty, M. Sain, and M. Kortschot, Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing, Holzforschung, vol.59, issue.1, pp.102-107, 2005.
DOI : 10.1515/HF.2005.016

K. Abe, S. Iwamoto, and H. Yano, Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood, Biomacromolecules, vol.8, issue.10, pp.3276-3278, 2007.
DOI : 10.1021/bm700624p

K. Syverud, G. Chinga-carrasco, J. Toledo, and P. G. Toledo, A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils, Carbohydrate Polymers, vol.84, issue.3, pp.1033-1038, 2011.
DOI : 10.1016/j.carbpol.2010.12.066

K. L. Spence, R. A. Venditti, Y. Habibi, O. J. Rojas, and J. J. Pawlak, The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties, Bioresource Technology, vol.101, issue.15, pp.5961-5968, 2010.
DOI : 10.1016/j.biortech.2010.02.104

A. Dufresne, D. Dupeyre, and M. R. Vignon, Cellulose microfibrils from potato tuber cells: Processing and characterization of starch-cellulose microfibril composites, Journal of Applied Polymer Science, vol.70, issue.14, pp.2080-2092, 2000.
DOI : 10.1002/(SICI)1097-4628(20000628)76:14<2080::AID-APP12>3.0.CO;2-U

URL : https://hal.archives-ouvertes.fr/hal-00309656

E. Dinand, H. Chanzy, and M. R. Vignon, Parenchymal cell cellulose from sugar beet pulp: preparation and properties, Cellulose, vol.122, issue.1, pp.183-188, 1996.
DOI : 10.1007/BF02228800

URL : https://hal.archives-ouvertes.fr/hal-00310798

E. Dinand, H. Chanzy, and M. R. Vignon, Suspensions of cellulose microfibrils from sugar beet pulp, Food Hydrocolloids, vol.13, issue.3, pp.275-283, 1999.
DOI : 10.1016/S0268-005X(98)00084-8

URL : https://hal.archives-ouvertes.fr/hal-00309814

A. Samir, A. S. Alloin, F. Paillet, M. Dufresne, and A. , Tangling effect in fibrillated cellulose reinforced nanocomposites, Macromolecules, vol.37, issue.11, pp.4312-4316, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00417936

L. Leitner, B. Hinterstoisser, M. Wastyn, J. Keckes, and W. Gindl, Sugar beet cellulose nanofibril-reinforced composites, Cellulose, vol.6, issue.5, pp.419-425, 2007.
DOI : 10.1007/s10570-007-9131-2

D. M. Bruce, R. N. Hobson, J. W. Farrent, and D. G. Hepworth, High-performance composites from low-cost plant primary cell walls, Composites Part A: Applied Science and Manufacturing, vol.36, issue.11, pp.1486-1493, 2005.
DOI : 10.1016/j.compositesa.2005.03.008

M. E. Malainine, M. Mahrouz, and A. Dufresne, Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell, Composites Science and Technology, vol.65, issue.10, pp.1520-1526, 2005.
DOI : 10.1016/j.compscitech.2005.01.003

URL : https://hal.archives-ouvertes.fr/hal-00196904

T. Imai, J. L. Putaux, and J. Sugiyama, Geometric phase analysis of lattice images from algal cellulose microfibrils, Polymer, vol.44, issue.6, pp.1871-1879, 2003.
DOI : 10.1016/S0032-3861(02)00861-3

URL : https://hal.archives-ouvertes.fr/hal-00306928

D. Bhattacharya, L. T. Germinario, and W. T. Winter, Isolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydrate Polymers, vol.73, issue.3, pp.371-377, 2008.
DOI : 10.1016/j.carbpol.2007.12.005

G. Siqueira, J. Bras, and A. Dufresne, Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites, Biomacromolecules, vol.10, issue.2, pp.425-432, 2009.
DOI : 10.1021/bm801193d

G. Siqueira, S. Tapin-lingua, J. Bras, D. Da-silva-perez, and A. Dufresne, Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers, Cellulose, vol.6, issue.6, pp.1147-1158, 2010.
DOI : 10.1007/s10570-010-9449-z

A. Bendahou, H. Kaddami, and A. Dufresne, Investigation on the effect of cellulosic nanoparticles??? morphology on the properties of natural rubber based nanocomposites, European Polymer Journal, vol.46, issue.4, pp.609-620, 2010.
DOI : 10.1016/j.eurpolymj.2009.12.025

R. Zuluaga, J. L. Putaux, J. Cruz, J. Vélez, I. Mondragón et al., Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features, Carbohydrate Polymers, vol.76, issue.1, pp.76-51, 2009.
DOI : 10.1016/j.carbpol.2008.09.024

URL : https://hal.archives-ouvertes.fr/hal-00357610

D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors et al., Nanocelluloses: A New Family of Nature-Based Materials, Angewandte Chemie International Edition, vol.21, issue.543, pp.5438-5466, 2011.
DOI : 10.1002/anie.201001273

F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, Journal of Applied Polymer Science: Applied Polymer Symposia, vol.37, pp.797-813, 1983.

A. N. Nakagaito and H. Yano, The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites, Applied Physics A: Materials Science & Processing, vol.78, issue.4, pp.547-552, 2004.
DOI : 10.1007/s00339-003-2453-5

T. Zimmermann, N. Bordeanu, and E. Strub, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential, Carbohydrate Polymers, vol.79, issue.4, pp.1086-1093, 2010.
DOI : 10.1016/j.carbpol.2009.10.045

A. Boldizar, C. Klason, J. Kubat, P. Naslund, and P. Saha, Prehydrolyzed Cellulose as Reinforcing Filler for Thermoplastics, International Journal of Polymeric Materials, vol.32, issue.4, pp.229-262, 1987.
DOI : 10.1002/pen.760261207

L. Wågberg, G. Decher, M. Norgren, T. Lindström, M. Ankerfors et al., The Build-Up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes, Langmuir, vol.24, issue.3, pp.784-795, 2008.
DOI : 10.1021/la702481v

L. Wågberg, L. Winter, L. Ödberg, and T. Lindström, On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials, Colloids and Surfaces, vol.27, pp.1-3, 1987.

A. Isogai and Y. Kato, Preparation of Polyuronic Acid from Cellulose by TEMPO-mediated Oxidation, Cellulose, vol.5, issue.3, pp.153-164, 1998.
DOI : 10.1023/A:1009208603673

T. Saito and A. Isogai, Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.289, issue.1-3, pp.1-3, 2006.
DOI : 10.1016/j.colsurfa.2006.04.038

H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.10, issue.1, pp.162-165, 2009.
DOI : 10.1021/bm801065u

S. Fujisawa, Y. Okita, H. Fukuzumi, T. Saito, and A. Isogai, Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups, Carbohydrate Polymers, vol.84, issue.1, pp.579-583, 2011.
DOI : 10.1016/j.carbpol.2010.12.029

G. Rodionova, T. Saito, M. Lenes, Ø. Eriksen, Ø. Gregersen et al., Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps, Cellulose, vol.84, issue.3, pp.705-711, 2012.
DOI : 10.1007/s10570-012-9664-x

H. Liu, S. Fu, J. Y. Zhu, H. Li, and H. Zhan, Visualization of enzymatic hydrolysis of cellulose using AFM phase imaging, Enzyme and Microbial Technology, vol.45, issue.4, pp.274-281, 2009.
DOI : 10.1016/j.enzmictec.2009.06.009

Y. H. Zhang, M. E. Himmel, and J. R. Mielenz, Outlook for cellulase improvement: Screening and selection strategies, Biotechnology Advances, vol.24, issue.5, pp.452-481, 2006.
DOI : 10.1016/j.biotechadv.2006.03.003

M. Henriksson, L. A. Berglund, P. Isaksson, T. Lindstrom, and T. Nishino, Cellulose Nanopaper Structures of High Toughness, Biomacromolecules, vol.9, issue.6, pp.1579-1585, 2008.
DOI : 10.1021/bm800038n

M. Ankerfors, T. Lindstrom, and G. Henriksson, Method for the manufacture of microfibrillated cellulose, US Patent, 2009.

M. Andresen, L. S. Johansson, B. S. Tanem, and P. Stenius, Properties and characterization of hydrophobized microfibrillated cellulose, Cellulose, vol.4, issue.145, pp.665-677, 2006.
DOI : 10.1007/s10570-006-9072-1

P. Dalle and F. Girard, Mechanical and barrier properties of films made of cellulose micro and nano fibrils, 2009.

T. Taniguchi and K. Okamura, New films produced from microfibrillated natural fibres, Polymer International, vol.47, issue.3, pp.291-294, 1998.
DOI : 10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1

M. Marx-figini, Significance of the Intrinsic Viscosity Ratio of Unsubstituted and Nitrated Cellulose in Different Solvents, Angewandte Makromolekulare Chemie, vol.72, issue.1, pp.161-171, 1978.
DOI : 10.1002/apmc.1978.050720114

W. Pasbst, Fundamental considerations on suspension rheology, Ceramics ? Silikaty, vol.48, issue.1, pp.6-13, 2004.

B. Clarke, Rheology of coarse settling suspensions, Transactions of the Institution of Chemical Engineers, vol.45, issue.6, pp.251-256, 1967.

M. P. Lowys, J. Desbrières, and M. Rinaudo, Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives, Food Hydrocolloids, vol.15, issue.1, pp.25-32, 2001.
DOI : 10.1016/S0268-005X(00)00046-1

URL : https://hal.archives-ouvertes.fr/hal-00307705

E. Lasseuglette, D. Roux, and Y. Nishiyama, Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp, Cellulose, vol.6, issue.9, pp.425-433, 2008.
DOI : 10.1007/s10570-007-9184-2

M. Iotti, Ø. W. Gregersen, S. Moe, and M. Lenes, Rheological Studies of Microfibrillar Cellulose Water Dispersions, Journal of Polymers and the Environment, vol.36, issue.4, pp.137-145, 2011.
DOI : 10.1007/s10924-010-0248-2

E. Saarikoski, T. Saarinen, J. Salmela, and J. Seppälä, Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour, Cellulose, vol.17, issue.148, pp.1-13, 2012.
DOI : 10.1007/s10570-012-9661-0

C. Aulin, M. Gällstedt, and T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose, vol.17, issue.3, pp.559-574, 2010.
DOI : 10.1007/s10570-009-9393-y

K. Syverud and P. Stenius, Strength and barrier properties of MFC films, Cellulose, vol.37, issue.1, pp.75-85, 2009.
DOI : 10.1007/s10570-008-9244-2

H. Sehaqui, A. Liu, Q. Zhou, and L. A. Berglund, Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures, Biomacromolecules, vol.11, issue.9, pp.2195-2198, 2010.
DOI : 10.1021/bm100490s

M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, Optically Transparent Nanofiber Paper, Advanced Materials, vol.122, issue.16, pp.1595-1598, 2009.
DOI : 10.1002/adma.200803174

A. Sullivan, Cellulose: the structure slowly unravels, Cellulose, vol.4, issue.3, pp.173-207, 1997.
DOI : 10.1023/A:1018431705579

A. J. Svagan, A. Samir, A. S. Berglund, and L. , Biomimetic Polysaccharide Nanocomposites of High Cellulose Content and High Toughness, Biomacromolecules, vol.8, issue.8, pp.2556-2563, 2007.
DOI : 10.1021/bm0703160

K. Missoum, M. N. Belgacem, and J. Bras, AKD nano-emulsions: Innovative to increase the solid content of NFC suspensions " , SUNPAP project ? Final conference, 2012.

H. Fukuzumi, T. Saito, S. Iwamoto, Y. Kumamoto, T. Ohdaira et al., Pore Size Determination of TEMPO-Oxidized Cellulose Nanofibril Films by Positron Annihilation Lifetime Spectroscopy, Biomacromolecules, vol.12, issue.11, pp.4057-4062, 2011.
DOI : 10.1021/bm201079n

H. Yano, J. Sugiyama, A. N. Nakagaito, M. Nogi, T. Matsuura et al., Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers, Advanced Materials, vol.24, issue.2, pp.153-155, 2005.
DOI : 10.1002/adma.200400597

S. J. Chun, S. Y. Lee, G. H. Doh, S. Lee, and J. H. Kim, Preparation of ultrastrength nanopapers using cellulose nanofibrils, Journal of Industrial and Engineering Chemistry, vol.17, issue.3, pp.521-526, 2011.
DOI : 10.1016/j.jiec.2010.10.022

J. Hartman, A. C. Albertsson, S. Lindblad, M. Sjöberg, and J. , Oxygen barrier materials from renewable sources: Material properties of softwood hemicellulose-based films, Journal of Applied Polymer Science, vol.5, issue.4, pp.2985-2991, 2006.
DOI : 10.1002/app.22958

J. Hartman, A. C. Albertsson, and J. Sjöberg, Surface- and Bulk-Modified Galactoglucomannan Hemicellulose Films and Film Laminates for Versatile Oxygen Barriers, Biomacromolecules, vol.7, issue.6, pp.1983-1989, 2006.
DOI : 10.1021/bm060129m

R. Sothornvit and J. M. Krochta, Plasticizer Effect on Oxygen Permeability of ??-Lactoglobulin Films, Journal of Agricultural and Food Chemistry, vol.48, issue.12, pp.6298-6302, 2000.
DOI : 10.1021/jf000836l

T. H. Mchugh and J. M. Krochta, Edible coatings films improve food quality, 1994.

T. H. Mchugh and J. M. Krochta, Sorbitol- vs Glycerol-Plasticized Whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation, Journal of Agricultural and Food Chemistry, vol.42, issue.4, pp.841-845, 1994.
DOI : 10.1021/jf00040a001

A. Rindlav-westling, M. Stading, A. M. Hermansson, and P. Gatenholm, Structure, mechanical and barrier properties of amylose and amylopectin films, Carbohydrate Polymers, vol.36, issue.2-3, pp.217-224, 1998.
DOI : 10.1016/S0144-8617(98)00025-3

J. Wu and Q. Yuan, Gas permeability of a novel cellulose membrane, Journal of Membrane Science, vol.204, issue.1-2, pp.185-194, 2002.
DOI : 10.1016/S0376-7388(02)00037-6

K. G. Newton and W. J. Rigg, The Effect of Film Permeability on the Storage Life and Microbiology of Vacuum-packed meat, Journal of Applied Bacteriology, vol.12, issue.3, pp.433-441, 1979.
DOI : 10.1111/j.1365-2672.1979.tb01204.x

B. I. Butler, P. J. Vergano, R. F. Testin, J. M. Bunn, and J. I. Wiles, Mechanical and Barrier Properties of Edible Chitosan Films as affected by Composition and Storage, Journal of Food Science, vol.40, issue.10, pp.953-956, 1996.
DOI : 10.1016/0022-2836(78)90063-3

M. Gröndahl, L. Eriksson, and P. Gatenholm, Material Properties of Plasticized Hardwood Xylans for Potential Application as Oxygen Barrier Films, Biomacromolecules, vol.5, issue.4, pp.1528-1535, 2004.
DOI : 10.1021/bm049925n

A. Höije, E. Sternemalm, S. Heikkinen, M. Tenkanen, and P. Gatenholm, Material Properties of Films from Enzymatically Tailored Arabinoxylans, Biomacromolecules, vol.9, issue.7, pp.2042-2047, 2008.
DOI : 10.1021/bm800290m

M. Minelli, M. G. Baschetti, F. Doghieri, M. Ankerfors, T. Lindström et al., Investigation of mass transport properties of microfibrillated cellulose (MFC) films, Journal of Membrane Science, vol.358, issue.1-2, pp.67-75, 2010.
DOI : 10.1016/j.memsci.2010.04.030

S. Belbekhouche, J. Bras, G. Siqueira, C. Chappey, L. Lebrun et al., Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films, Carbohydrate Polymers, vol.83, issue.4, pp.1740-1748, 2011.
DOI : 10.1016/j.carbpol.2010.10.036

I. Siró, D. Plackett, M. Hedenqvist, M. Ankerfors, and T. Lindström, Highly transparent films from carboxymethylated microfibrillated cellulose: The effect of multiple homogenization steps on key properties, Journal of Applied Polymer Science, vol.16, issue.5, pp.2652-2660, 2011.
DOI : 10.1002/app.32831

A. Jansson and L. Järnström, Barrier and mechanical properties of modified starches, Cellulose, vol.294, issue.21, pp.423-433, 2005.
DOI : 10.1007/s10570-004-6092-6

M. A. Bertuzzi, M. Armada, and J. C. Gottifredi, Physicochemical characterization of starch based films, Journal of Food Engineering, vol.82, issue.1, pp.17-25, 2007.
DOI : 10.1016/j.jfoodeng.2006.12.016

F. Chivrac, H. Angellier-coussy, V. Guillard, E. Pollet, and L. Averous, How does water diffuse in starch/montmorillonite nano-biocomposite materials?, Carbohydrate Polymers, vol.82, issue.1, pp.128-135, 2010.
DOI : 10.1016/j.carbpol.2010.04.036

M. Gáspár, . Benko-zs, G. Dogossy, K. Réczey, and T. Czigány, Reducing water absorption in compostable starch-based plastics, Polymer Degradation and Stability, vol.90, issue.3, pp.563-569, 2005.
DOI : 10.1016/j.polymdegradstab.2005.03.012

P. Dole, C. Joly, E. Espuche, I. Alric, and N. Gontard, Gas transport properties of starch based films, Carbohydrate Polymers, vol.58, issue.3, pp.335-343, 2004.
DOI : 10.1016/j.carbpol.2004.08.002

S. Ray, S. Masami, and O. , New Polylactide/Layered Silicate Nanocomposites, Macromolecular Materials and Engineering, vol.288, issue.12, pp.936-944, 2003.

F. Chivrac, Nano-biocomposite: systèmes structures à base d'amidon et d'argiles, 2009.

H. M. Park, W. K. Lee, C. Y. Park, W. J. Cho, and C. S. Ha, Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites, Journal of Materials Science, vol.38, issue.5, pp.909-915, 2003.
DOI : 10.1023/A:1022308705231

A. Dufresne and M. R. Vignon, Improvement of Starch Film Performances Using Cellulose Microfibrils, Macromolecules, vol.31, issue.8, pp.2693-2696, 1998.
DOI : 10.1021/ma971532b

A. Lopez-rubio, J. M. Lagaron, M. Ankerfors, T. Lindstrom, D. Nordqvist et al., Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose, Carbohydrate Polymers, vol.68, issue.4, pp.718-727, 2007.
DOI : 10.1016/j.carbpol.2006.08.008

A. J. Svagan, M. S. Hedenqvist, and L. Berglund, Reduced water vapour sorption in cellulose nanocomposites with starch matrix, Composites Science and Technology, vol.69, issue.3-4
DOI : 10.1016/j.compscitech.2008.11.016

D. Plackett, H. Anturi, M. Hedenqvist, M. Ankerfors, M. Gällstedt et al., Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin, Journal of Applied Polymer Science, vol.36, issue.6, pp.3601-3609, 2010.
DOI : 10.1002/app.32254

B. Ramaraj, Crosslinked poly(vinyl alcohol) and starch composite films. II. Physicomechanical, thermal properties and swelling studies, Journal of Applied Polymer Science, vol.1, issue.2, pp.909-916, 2007.
DOI : 10.1002/app.25237

C. Stinga, Utilisation de la chimie chromatogenie pour la conception et la réalisation de matériaux cellulosiques barrières à 'eau, aux graisses et aux gaz, 2008.

M. Roohani, Y. Habibi, N. M. Belgacem, G. Ebrahim, A. N. Karimi et al., Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites, European Polymer Journal, vol.44, issue.8, pp.2489-2498, 2008.
DOI : 10.1016/j.eurpolymj.2008.05.024

URL : https://hal.archives-ouvertes.fr/hal-00449021

K. E. Strawhecker and E. Manias, Montmorillonite Nanocomposites, Chemistry of Materials, vol.12, issue.10, pp.2943-2949, 2000.
DOI : 10.1021/cm000506g

O. Probst, E. M. Moore, D. E. Resasco, and B. P. Grady, Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes, Polymer, vol.45, issue.13, pp.4437-4443, 2004.
DOI : 10.1016/j.polymer.2004.04.031

J. Lu, T. Wang, and L. T. Drzal, Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials, Composites Part A: Applied Science and Manufacturing, vol.39, issue.5, pp.738-746, 2008.
DOI : 10.1016/j.compositesa.2008.02.003

Q. Cheng, S. Wang, and T. G. Rials, Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication, Composites Part A: Applied Science and Manufacturing, vol.40, issue.2, pp.218-224, 2009.
DOI : 10.1016/j.compositesa.2008.11.009

S. A. Paralikar, J. Simonsen, and J. Lombardi, Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes, Journal of Membrane Science, vol.320, issue.1-2, pp.248-258, 2008.
DOI : 10.1016/j.memsci.2008.04.009

O. Eriksen, K. Syverud, and O. Gregersen, The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper, Nordic Pulp and Paper Research Journal, vol.23, issue.03, pp.299-304, 2008.
DOI : 10.3183/NPPRJ-2008-23-03-p299-304

S. Ahola, M. Osterberg, and J. Laine, Cellulose nanofibrils???adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive, Cellulose, vol.1, issue.6, pp.303-314, 2008.
DOI : 10.1007/s10570-007-9167-3

K. Mörseburg and G. Chinga-carrasco, Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets, Cellulose, vol.24, issue.3, pp.795-806, 2009.
DOI : 10.1007/s10570-009-9290-4

H. Hamada and D. W. Bousfield, Nano-fibrillated cellulose as a coating agent to improve print quality of synthetic fiber sheets, TAPPI 11 th Advanced Coating Fundamentals Symposium, 2010.

V. Meyer, S. Tapin-lingua, D. Da-silva-perez, T. Arndt, and J. Kautto, Technical opportunities and economic challenges to produce nanofibrillated cellulose in pilot scale: NFC delivery for applications in demonstration trials, 2012.

R. Weilbacher, Polyvinyl Alcohol:Structure and Applications, 2012.

A. Sneck, A. Tanaka, V. Meyer, and J. Kretzschmar, Advanced characterization techniques to evaluate the structure of nanofibrillated cellulose, SUNPAP project ? Final conference, 2012.

S. Goodyer, Rheological measurements for the coating industry, Surface coatings International 2, 2010.

S. Berlioz, Etude de l'estérification de la cellulose par une synthèse sans solvant. Application aux matériaux nanocomposites, 2007.

A. Samir, A. S. , F. Alloin, and A. Dufresne, Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field, Biomacromolecules, vol.6, issue.2, pp.612-626, 2005.
DOI : 10.1021/bm0493685

URL : https://hal.archives-ouvertes.fr/hal-00305961

D. Tatsumi, S. Ishioka, and T. Matsumoto, Effect of Fiber Concentration and Axial Ratio on the Rheological Properties of Cellulose Fiber Suspensions., Nihon Reoroji Gakkaishi, vol.30, issue.1, pp.27-32, 2002.
DOI : 10.1678/rheology.30.27

R. J. Hill, Elastic Modulus of Microfibrillar Cellulose Gels, Biomacromolecules, vol.9, issue.10, pp.2963-2966, 2008.
DOI : 10.1021/bm800490x

M. Henriksson and L. Berglund, Structure and properties of cellulose nanocomposite films containing melamine formaldehyde, Journal of Applied Polymer Science, vol.35, issue.4, pp.2817-2824, 2007.
DOI : 10.1002/app.26946

A. Alemdar and M. Sain, Isolation and characterization of nanofibers from agricultural residues ??? Wheat straw and soy hulls, Bioresource Technology, vol.99, issue.6, pp.1664-1671, 2008.
DOI : 10.1016/j.biortech.2007.04.029

J. M. Lagaron, R. Catal, and R. Gavara, Structural characteristics defining high barrier properties in polymeric materials, Materials Science and Technology, vol.4, issue.1, pp.1-7, 2004.
DOI : 10.1021/cm000506g

L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer, Textile Research Journal, vol.20, issue.10, pp.786-794, 1959.
DOI : 10.1177/004051755902901003

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Et-youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews, vol.10, issue.250, pp.3941-3994, 2011.
DOI : 10.1039/c0cs00108b

A. Thygesen, J. Oddershede, H. Lilholt, A. B. Thomsen, and K. Ståhl, On the determination of crystallinity and cellulose content in plant fibres, Cellulose, vol.13, issue.5, pp.563-576, 2005.
DOI : 10.1007/s10570-005-9001-8

A. Brancato, F. L. Walsh, R. Sabo, and S. Banerjee, Effect of Recycling on the Properties of Paper Surfaces, Effect of Recycling on the Properties of Paper Surfaces, pp.9103-9106, 2007.
DOI : 10.1021/ie070826a

G. Pettersson, J. Sjöberg, L. Wågberg, and H. Höglund, Increased joint-forming ability of ductile kraft pulp fibres by polyelectrolyte multilayer treatment ???????? Influence of refining and drying strategies, Nordic Pulp and Paper Research Journal, vol.22, issue.02, 2007.
DOI : 10.3183/NPPRJ-2007-22-02-p228-235

H. Kjellgren, M. Gällstedt, G. Engström, and L. Järnström, Barrier and surface properties of chitosan-coated greaseproof paper, Carbohydrate Polymers, vol.65, issue.4, pp.453-460, 2006.
DOI : 10.1016/j.carbpol.2006.02.005

S. Okubayashi, U. J. Griesser, and T. Bechtold, A kinetic study of moisture sorption and desorption on lyocell fibers, Carbohydrate Polymers, vol.58, issue.3, pp.293-299, 2004.
DOI : 10.1016/j.carbpol.2004.07.004

G. Rodionova, S. Roudot, Ø. Eriksen, F. Männle, and Ø. Gregersen, The formation and characterization of sustainable layered films incorporating microfibrillated cellulose (MFC), BioResources, vol.7, issue.3, pp.3690-3700, 2012.

T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose, Biomacromolecules, vol.8, issue.8, pp.2485-2491, 2007.
DOI : 10.1021/bm0703970

URL : https://hal.archives-ouvertes.fr/hal-00305562

G. Schmidt and M. M. Malwitz, Properties of polymer???nanoparticle composites, Current Opinion in Colloid & Interface Science, vol.8, issue.1, pp.103-108, 2003.
DOI : 10.1016/S1359-0294(03)00008-6

M. Hedayati, M. Salehi, R. Bagheri, M. Panjepour, and A. Maghzian, Ball milling preparation and characterization of poly (ether ether ketone)/surface modified silica nanocomposite, Powder Technology, vol.207, issue.1-3, pp.1-3, 2011.
DOI : 10.1016/j.powtec.2010.11.011

N. Vigneshwaran, L. Ammayappan, and Q. Huang, Effect of Gum arabic on distribution behavior of nanocellulose fillers in starch film, Applied Nanoscience, vol.71, issue.2, pp.1-6, 2011.
DOI : 10.1007/s13204-011-0020-5

D. Guérin and F. Bébien, Starch based barrier coating, example of a new European project "FlexpackRenew" " , 8 th Pagora days: Future of fibre based biomaterials for packaging ?, 2009.

J. Viguié, S. Molina-boisseau, and A. Dufresne, Processing and Characterization of Waxy Maize Starch Films Plasticized by Sorbitol and Reinforced with Starch Nanocrystals, Macromolecular Bioscience, vol.61, issue.11, pp.1206-1216, 2007.
DOI : 10.1002/mabi.200700136

S. Gaudin, D. Lourdin, L. Botlan, D. Ilari, J. Colonna et al., Plasticisation and Mobility in Starch-Sorbitol Films, Journal of Cereal Science, vol.29, issue.3, pp.273-284, 1999.
DOI : 10.1006/jcrs.1999.0236

K. Krogars, Aqueous-based amylose-rich maize starch solution and dispersion: a study on free films and coatings, 2003.

D. F. Parra, C. C. Tadini, P. Ponce, and A. B. Lugão, Mechanical properties and water vapor transmission in some blends of cassava starch edible films, Carbohydrate Polymers, vol.58, issue.4, pp.475-481, 2004.
DOI : 10.1016/j.carbpol.2004.08.021

D. Lourdin, H. Bizot, and P. Colonna, ?Antiplasticization? in starch-glycerol films?, Journal of Applied Polymer Science, vol.63, issue.8, pp.1047-1053, 1997.
DOI : 10.1002/(SICI)1097-4628(19970222)63:8<1047::AID-APP11>3.0.CO;2-3

M. Hrabalova, M. Schwanninger, R. Wimmer, A. Gregorova, T. Zimmermann et al., Fibrillation of flax and wheat straw cellulose effects on thermal, morphological and viscoselastic properties of poly(vinylalcohol)/fibre composites, BioResources, vol.6, issue.2, 2011.

A. Hasimi, A. Stavropoulou, K. G. Papadokostaki, and M. Sanopoulou, Transport of water in polyvinyl alcohol films: Effect of thermal treatment and chemical crosslinking, European Polymer Journal, vol.44, issue.12, pp.4098-4107, 2008.
DOI : 10.1016/j.eurpolymj.2008.09.011

C. E. Rogers, Permeation of Gases and Vapours in Polymers, Polymer Permeability, Comyn J, vol.173, pp.11-73, 1985.
DOI : 10.1007/978-94-009-4858-7_2

J. Pesonen, G. Bellmann, and M. Toivakka, The influence of coating color characteristics on board coating with a soft-tip blade, p.22, 2005.

B. Briscoe, P. Luckham, and S. Zhu, The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions, Polymer, vol.41, issue.10, pp.3851-3860, 2000.
DOI : 10.1016/S0032-3861(99)00550-9

A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential, Journal of Applied Polymer Science: Applied Polymer Symposia, vol.37, pp.815-827, 1983.

D. Da-silva-perez, S. Tapin-lingua, A. Janodet, M. Petit-conil, and A. Dufresne, Nanofibres: Production of cellulose micro and nano-fibres: state of the art and first results

F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, Journal of Applied Polymer Science: Applied Polymer Symposia, vol.37, pp.797-813, 1983.

P. Dalle and F. Girard, Mechanical and barrier properties of films made of cellulose micro and nano fibrils, 2009.

. Ultra-fine-friction-grinder, Supermasscolloider, 2012.

S. J. Eichhorn, Review: current international research into cellulose nanofibres and nanocomposites, Journal of Materials Science, vol.22, issue.5, pp.1-33, 2010.
DOI : 10.1007/s10853-009-3874-0

A. Dufresne, Preparation of microfibrillated cellulose In Nanocellulose : From nature to high performance tailored materials, 2012.

C. Aulin, M. Gällstedt, and T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose, vol.17, issue.3, pp.559-574, 2010.
DOI : 10.1007/s10570-009-9393-y

. L. Leitner, B. Hinterstoisser, M. Wastyn, J. Keckes, and W. Gindl, Sugar beet cellulose nanofibrilreinforced composites, pp.419-425, 2007.

K. Syverud and P. Stenius, Strength and barrier properties of MFC films, Cellulose, vol.37, issue.1, pp.75-85, 2009.
DOI : 10.1007/s10570-008-9244-2

A. J. Svagan, A. Samir, A. S. Berglund, and L. , Biomimetic Polysaccharide Nanocomposites of High Cellulose Content and High Toughness, Biomacromolecules, vol.8, issue.8, pp.2556-2563, 2007.
DOI : 10.1021/bm0703160

S. J. Chun, S. Y. Lee, G. H. Doh, S. Lee, and J. H. Kim, Preparation of ultrastrength nanopapers using cellulose nanofibrils, Journal of Industrial and Engineering Chemistry, vol.17, issue.3, pp.521-526, 2011.
DOI : 10.1016/j.jiec.2010.10.022

M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, Optically Transparent Nanofiber Paper, Advanced Materials, vol.122, issue.16, pp.1595-1598, 2009.
DOI : 10.1002/adma.200803174

H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.10, issue.1, pp.162-165, 2009.
DOI : 10.1021/bm801065u