J. L. Balligand, O. Feron, and C. Dessy, eNOS Activation by Physical Forces: From Short-Term Regulation of Contraction to Chronic Remodeling of Cardiovascular Tissues, Physiological Reviews, vol.89, issue.2, pp.481-534, 2009.
DOI : 10.1152/physrev.00042.2007

V. A. Barbosa, T. F. Luciano, S. O. Marques, M. F. Vitto, D. R. Souza et al., Acute exercise induce endothelial nitric oxide synthase phosphorylation via Akt and AMP-activated protein kinase in aorta of rats: Role of reactive oxygen species, International Journal of Cardiology, vol.167, issue.6, 2012.
DOI : 10.1016/j.ijcard.2012.08.050

L. A. Barouch, R. W. Harrison, M. W. Skaf, G. O. Rosas, T. P. Cappola et al., Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms, Nature, vol.87, issue.6878, pp.337-346, 2002.
DOI : 10.1056/NEJM199312303292706

K. B. Beckman and B. N. Ames, The free radical theory of aging matures, Physiol Rev, vol.78, pp.547-81, 1998.

R. F. Beers, . Jr, and I. W. Sizer, A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase, J Biol Chem, vol.195, pp.133-173, 1952.

M. L. Bell, R. D. Peng, F. Dominici, and J. M. Samet, Emergency Hospital Admissions for Cardiovascular Diseases and Ambient Levels of Carbon Monoxide: Results for 126 United States Urban Counties, 1999-2005, Circulation, vol.120, issue.11, pp.949-55, 1999.
DOI : 10.1161/CIRCULATIONAHA.109.851113

J. K. Bendall, N. J. Alp, N. Warrick, S. Cai, D. Adlam et al., Stoichiometric Relationships Between Endothelial Tetrahydrobiopterin, Endothelial NO Synthase (eNOS) Activity, and eNOS Coupling in Vivo: Insights From Transgenic Mice With Endothelial-Targeted GTP Cyclohydrolase 1 and eNOS Overexpression, Circulation Research, vol.97, issue.9, pp.864-71, 2005.
DOI : 10.1161/01.RES.0000187447.03525.72

P. Bernardi, Mitochondrial transport of cations: channels, exchangers, and permeability transition, Physiol Rev, vol.79, pp.1127-55, 1999.

M. M. Bersohn and J. Scheuer, Effects of physical training on end-diastolic volume and myocardial performance of isolated rat hearts, Circulation Research, vol.40, issue.5, pp.510-516, 1977.
DOI : 10.1161/01.RES.40.5.510

S. Bertuglia, Intermittent hypoxia modulates nitric oxide-dependent vasodilation and capillary perfusion during ischemia-reperfusion-induced damage, AJP: Heart and Circulatory Physiology, vol.294, issue.4, pp.1914-1936, 2008.
DOI : 10.1152/ajpheart.01371.2007

R. Bolli and E. Marban, Molecular and cellular mechanisms of myocardial stunning, Physiol Rev, vol.79, pp.609-643, 1999.

R. Bolli, Cardioprotective Function of Inducible Nitric Oxide Synthase and Role of Nitric Oxide in Myocardial Ischemia and Preconditioning: an Overview of a Decade of Research, Journal of Molecular and Cellular Cardiology, vol.33, issue.11, pp.1897-918, 2001.
DOI : 10.1006/jmcc.2001.1462

Y. C. Boo, G. Sorescu, N. Boyd, I. Shiojima, K. Walsh et al., Shear Stress Stimulates Phosphorylation of Endothelial Nitric-oxide Synthase at Ser1179 by Akt-independent Mechanisms: ROLE OF PROTEIN KINASE A, Journal of Biological Chemistry, vol.277, issue.5, pp.3388-96, 2002.
DOI : 10.1074/jbc.M108789200

E. Cadenas and K. J. Davies, Mitochondrial free radical generation, oxidative stress, and aging, 2000.

Z. Cai and G. L. Semenza, PTEN Activity Is Modulated During Ischemia and Reperfusion: Involvement in the Induction and Decay of Preconditioning, Circulation Research, vol.97, issue.12, pp.1351-1360, 2005.
DOI : 10.1161/01.RES.0000195656.52760.30

J. W. Calvert, M. E. Condit, J. P. Aragon, C. K. Nicholson, B. F. Moody et al., Exercise Protects Against Myocardial Ischemia-Reperfusion Injury via Stimulation of ??3-Adrenergic Receptors and Increased Nitric Oxide Signaling: Role of Nitrite and Nitrosothiols, Circulation Research, vol.108, issue.12, pp.1448-58, 2011.
DOI : 10.1161/CIRCRESAHA.111.241117

R. Carnicer, M. J. Crabtree, V. Sivakumaran, B. Casadei, and D. A. Kass, Nitric Oxide Synthases in Heart Failure, Antioxidants & Redox Signaling, vol.18, issue.9, 2012.
DOI : 10.1089/ars.2012.4824

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567782

D. E. Chambers, D. A. Parks, G. Patterson, R. Roy, J. M. Mccord et al., Xanthine oxidase as a source of free radical damage in myocardial ischemia, Journal of Molecular and Cellular Cardiology, vol.17, issue.2, pp.145-52, 1985.
DOI : 10.1016/S0022-2828(85)80017-1

Y. Chen, J. H. Traverse, R. Du, M. Hou, and R. J. Bache, Nitric Oxide Modulates Myocardial Oxygen Consumption in the Failing Heart, Circulation, vol.106, issue.2, pp.273-282, 2002.
DOI : 10.1161/01.CIR.0000021120.90970.B9

Q. Chen, E. J. Vazquez, S. Moghaddas, C. L. Hoppel, and E. J. Lesnefsky, Production of Reactive Oxygen Species by Mitochondria: CENTRAL ROLE OF COMPLEX III, Journal of Biological Chemistry, vol.278, issue.38, pp.36027-36058, 2003.
DOI : 10.1074/jbc.M304854200

Q. Chen, A. K. Camara, D. F. Stowe, C. L. Hoppel, and E. J. Lesnefsky, Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion, AJP: Cell Physiology, vol.292, issue.1, pp.137-184, 2007.
DOI : 10.1152/ajpcell.00270.2006

C. A. Chen, L. J. Druhan, S. Varadharaj, Y. R. Chen, and J. L. Zweier, Phosphorylation of Endothelial Nitric-oxide Synthase Regulates Superoxide Generation from the Enzyme, Journal of Biological Chemistry, vol.283, issue.40, pp.27038-27085, 2008.
DOI : 10.1074/jbc.M802269200

C. A. Chen, T. Y. Wang, S. Varadharaj, L. A. Reyes, C. Hemann et al., S-glutathionylation uncouples eNOS and regulates its cellular and vascular function, Nature, vol.120, issue.7327, pp.1115-1123, 2010.
DOI : 10.1038/nature09599

W. Chen, L. J. Druhan, C. A. Chen, C. Hemann, Y. R. Chen et al., Peroxynitrite Induces Destruction of the Tetrahydrobiopterin and Heme in Endothelial Nitric Oxide Synthase: Transition from Reversible to Irreversible Enzyme Inhibition, Biochemistry, vol.49, issue.14, pp.3129-3166
DOI : 10.1021/bi9016632

M. Chiong, Z. V. Wang, Z. Pedrozo, D. J. Cao, R. Troncoso et al., Cardiomyocyte death: mechanisms and translational implications, Cell Death and Disease, vol.304, issue.12, p.244, 2011.
DOI : 10.1038/cddis.2011.130

URL : http://doi.org/10.1038/cddis.2011.130

M. V. Cohen, X. M. Yang, and J. M. Downey, Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies, Cardiovascular Research, vol.70, issue.2, pp.231-240, 2006.
DOI : 10.1016/j.cardiores.2005.10.021

M. V. Cohen, X. M. Yang, Y. Liu, N. V. Solenkova, and J. M. Downey, Cardioprotective PKG-independent NO signaling at reperfusion, AJP: Heart and Circulatory Physiology, vol.299, issue.6, pp.2028-2064, 2010.
DOI : 10.1152/ajpheart.00527.2010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006290

P. B. Corr and F. X. Witkowski, Potential electrophysiologic mechanisms responsible for dysrhythmias associated with reperfusion of ischemic myocardium, Circulation, vol.68, pp.16-24, 1983.

M. J. Crabtree, C. L. Smith, G. Lam, M. S. Goligorsky, and S. S. Gross, Ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin in endothelial cells determines glucose-elicited changes in NO vs. superoxide production by eNOS, AJP: Heart and Circulatory Physiology, vol.294, issue.4, pp.1530-1570, 2008.
DOI : 10.1152/ajpheart.00823.2007

M. J. Crabtree, A. L. Tatham, Y. Al-wakeel, N. Warrick, A. B. Hale et al., Quantitative Regulation of Intracellular Endothelial Nitric-oxide Synthase (eNOS) Coupling by Both Tetrahydrobiopterin-eNOS Stoichiometry and Biopterin Redox Status: INSIGHTS FROM CELLS WITH TET-REGULATED GTP CYCLOHYDROLASE I EXPRESSION, Journal of Biological Chemistry, vol.284, issue.2, pp.1136-1180, 2009.
DOI : 10.1074/jbc.M805403200

M. J. Crabtree, A. B. Hale, and K. M. Channon, Dihydrofolate reductase protects endothelial nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency, Free Radical Biology and Medicine, vol.50, issue.11, pp.1639-1685, 2011.
DOI : 10.1016/j.freeradbiomed.2011.03.010

URL : http://doi.org/10.1016/j.freeradbiomed.2011.03.010

M. T. Crow, K. Mani, Y. J. Nam, and R. N. Kitsis, The Mitochondrial Death Pathway and Cardiac Myocyte Apoptosis, Circulation Research, vol.95, issue.10, pp.957-70, 2004.
DOI : 10.1161/01.RES.0000148632.35500.d9

C. Csonka, Z. Szilvassy, F. Fulop, T. Pali, I. E. Blasig et al., Classic Preconditioning Decreases the Harmful Accumulation of Nitric Oxide During Ischemia and Reperfusion in Rat Hearts, Circulation, vol.100, issue.22, pp.2260-2266, 1999.
DOI : 10.1161/01.CIR.100.22.2260

Y. Curin and R. Andriantsitohaina, Polyphenols as potential therapeutical agents against cardiovascular diseases, Pharmacol Rep, vol.57, pp.97-107, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00129837

S. M. Davidson and M. R. Duchen, Effects of NO on mitochondrial function in cardiomyocytes: Pathophysiological relevance, Cardiovascular Research, vol.71, issue.1, pp.10-21, 2006.
DOI : 10.1016/j.cardiores.2006.01.019

K. J. Davies, A. T. Quintanilha, G. A. Brooks, and L. Packer, Free radicals and tissue damage produced by exercise, Biochemical and Biophysical Research Communications, vol.107, issue.4, pp.1198-205, 1982.
DOI : 10.1016/S0006-291X(82)80124-1

M. E. Davis, H. Cai, G. R. Drummond, and D. G. Harrison, Shear Stress Regulates Endothelial Nitric Oxide Synthase Expression Through c-Src by Divergent Signaling Pathways, Circulation Research, vol.89, issue.11, pp.1073-80, 2001.
DOI : 10.1161/hh2301.100806

M. C. De-waard, J. Van-der-velden, N. M. Boontje, D. H. Dekkers, R. Van-haperen et al., Detrimental effect of combined exercise training and eNOS overexpression on cardiac function after myocardial infarction, AJP: Heart and Circulatory Physiology, vol.296, issue.5, pp.1513-1536, 2009.
DOI : 10.1152/ajpheart.00485.2008

M. C. De-waard, R. Van-haperen, T. Soullie, D. Tempel, R. De-crom et al., Beneficial effects of exercise training after myocardial infarction require full eNOS expression, Journal of Molecular and Cellular Cardiology, vol.48, issue.6, 2010.
DOI : 10.1016/j.yjmcc.2010.02.005

M. D. Delp, R. M. Mcallister, and M. H. Laughlin, Exercise training alters endotheliumdependent vasoreactivity of rat abdominal aorta, J Appl Physiol, vol.75, pp.1354-63, 1993.

H. A. Demirel, S. K. Powers, C. Caillaud, J. S. Coombes, H. Naito et al., Exercise training reduces myocardial lipid peroxidation following short-term ischemia-reperfusion, Medicine& Science in Sports & Exercise, vol.30, issue.8, pp.1211-1217, 1998.
DOI : 10.1097/00005768-199808000-00005

H. A. Demirel, S. K. Powers, M. A. Zergeroglu, R. A. Shanely, K. Hamilton et al., Short-term exercise improves myocardial tolerance to in vivo ischemiareperfusion in the rat, J Appl Physiol, vol.91, pp.2205-2217, 2001.

H. A. Demirel, K. L. Hamilton, R. A. Shanely, N. Tumer, M. J. Koroly et al., Age and attenuation of exercise-induced myocardial HSP72 accumulation, American Journal of Physiology - Heart and Circulatory Physiology, vol.285, issue.4, pp.1609-1624, 2003.
DOI : 10.1152/ajpheart.00982.2002

D. Lisa, F. Canton, M. Menabo, R. Dodoni, G. Bernardi et al., Mitochondria and reperfusion injury. The role of permeability transition, Basic Res Cardiol, vol.98, pp.235-276, 2003.

D. Lisa, F. Bernardi, and P. , Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole, Cardiovasc Res, vol.70, pp.191-200, 2006.

D. Lisa, F. Canton, M. Menabo, R. Kaludercic, N. Bernardi et al., Mitochondria and cardioprotection, Heart Failure Reviews, vol.272, issue.Pt 1, pp.249-60, 2007.
DOI : 10.1007/s10741-007-9028-z

G. M. Diffee, E. A. Seversen, and M. M. Titus, Exercise training increases the Ca(2+) sensitivity of tension in rat cardiac myocytes, J Appl Physiol, vol.91, pp.309-324, 2001.

G. M. Diffee and D. F. Nagle, Exercise training alters length dependence of contractile properties in rat myocardium, Journal of Applied Physiology, vol.94, issue.3, pp.1137-1181, 2003.
DOI : 10.1152/japplphysiol.00565.2002

I. M. Dixon, M. Kaneko, T. Hata, V. Panagia, and N. S. Dhalla, Alterations in cardiac membrane Ca2+ transport during oxidative stress, Molecular and Cellular Biochemistry, vol.99, issue.2, pp.125-158, 1990.
DOI : 10.1007/BF00230342

W. Droge, Free Radicals in the Physiological Control of Cell Function, Physiological Reviews, vol.82, issue.1, pp.47-95, 2002.
DOI : 10.1152/physrev.00018.2001

G. R. Drummond, H. Cai, M. E. Davis, S. Ramasamy, and D. G. Harrison, Transcriptional and Posttranscriptional Regulation of Endothelial Nitric Oxide Synthase Expression by Hydrogen Peroxide, Circulation Research, vol.86, issue.3, pp.347-54, 2000.
DOI : 10.1161/01.RES.86.3.347

X. L. Du, D. Edelstein, S. Dimmeler, Q. Ju, C. Sui et al., Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site, Journal of Clinical Investigation, vol.108, issue.9, pp.1341-1349, 2001.
DOI : 10.1172/JCI11235

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC209429/pdf

R. F. Furchgott and J. V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, vol.265, issue.5789, pp.373-379, 1980.
DOI : 10.1038/288373a0

A. R. Gaby, Nutritional treatments for acute myocardial infarction, Altern Med Rev, vol.15, pp.113-136, 2010.

W. D. Gao, D. Atar, P. H. Backx, and E. Marban, Relationship Between Intracellular Calcium and Contractile Force in Stunned Myocardium : Direct Evidence for Decreased Myofilament Ca2+ Responsiveness and Altered Diastolic Function in Intact Ventricular Muscle, Circulation Research, vol.76, issue.6, pp.1036-1084, 1995.
DOI : 10.1161/01.RES.76.6.1036

G. Garcia-cardena, R. Fan, V. Shah, R. Sorrentino, G. Cirino et al., Dynamic activation of endothelial nitric oxide synthase by Hsp90, Nature, vol.392, pp.821-825, 1998.

P. B. Garlick, M. J. Davies, D. J. Hearse, and T. F. Slater, Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy, Circulation Research, vol.61, issue.5, pp.757-60, 1987.
DOI : 10.1161/01.RES.61.5.757

M. T. Gewaltig and G. Kojda, Vasoprotection by nitric oxide: mechanisms and therapeutic potential, Cardiovascular Research, vol.55, issue.2, pp.250-60, 2002.
DOI : 10.1016/S0008-6363(02)00327-9

M. C. Gomez-cabrera, E. Domenech, and J. Vina, Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training, Free Radical Biology and Medicine, vol.44, issue.2, pp.126-157, 2008.
DOI : 10.1016/j.freeradbiomed.2007.02.001

D. R. Gonzalez, F. Beigi, A. V. Treuer, and J. M. Hare, Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes, Proceedings of the National Academy of Sciences, vol.107, issue.3, pp.20612-20619, 2007.
DOI : 10.1016/j.pharmthera.2005.04.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2154479

R. A. Gottlieb, Cell Death Pathways in Acute Ischemia/Reperfusion Injury, Journal of Cardiovascular Pharmacology and Therapeutics, vol.6, issue.7, pp.233-241, 2011.
DOI : 10.1177/1074248411409581

D. J. Green, A. Maiorana, G. O-'driscoll, and R. Taylor, Effect of exercise training on endothelium-derived nitric oxide function in humans, The Journal of Physiology, vol.16, issue.1, pp.1-25, 2004.
DOI : 10.1113/jphysiol.2004.068197

K. K. Griendling, D. Sorescu, and M. Ushio-fukai, NAD(P)H Oxidase : Role in Cardiovascular Biology and Disease, Circulation Research, vol.86, issue.5, pp.494-501, 2000.
DOI : 10.1161/01.RES.86.5.494

K. L. Griffin, M. H. Laughlin, and J. L. Parker, Exercise training improves endothelium-mediated vasorelaxation after chronic coronary occlusion, J Appl Physiol, vol.87, pp.1948-56, 1999.
DOI : 10.1097/00024382-199906001-00195

J. Grijalva, S. Hicks, X. Zhao, S. Medikayala, P. M. Kaminski et al., Exercise training enhanced myocardial endothelial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats, Cardiovascular Diabetology, vol.7, issue.1, p.34, 2008.
DOI : 10.1186/1475-2840-7-34

URL : http://doi.org/10.1186/1475-2840-7-34

A. B. Gustafsson and R. A. Gottlieb, Autophagy in Ischemic Heart Disease, Circulation Research, vol.104, issue.2, pp.150-158, 2009.
DOI : 10.1161/CIRCRESAHA.108.187427

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765251

B. Halliwell, Antioxidant defence mechanisms: From the beginning to the end (of the beginning), Free Radical Research, vol.12, issue.9, 1999.
DOI : 10.1080/10715769800300531

A. Hamacher-brady, N. R. Brady, and R. A. Gottlieb, Enhancing Macroautophagy Protects against Ischemia/Reperfusion Injury in Cardiac Myocytes, Journal of Biological Chemistry, vol.281, issue.40, pp.29776-87, 2006.
DOI : 10.1074/jbc.M603783200

R. Hambrecht, V. Adams, S. Erbs, A. Linke, N. Krankel et al., Regular Physical Activity Improves Endothelial Function in Patients With Coronary Artery Disease by Increasing Phosphorylation of Endothelial Nitric Oxide Synthase, Circulation, vol.107, issue.25, pp.3152-3160, 2003.
DOI : 10.1161/01.CIR.0000074229.93804.5C

K. L. Hamilton, S. K. Powers, T. Sugiura, S. Kim, S. Lennon et al., Short-term exercise training can improve myocardial tolerance to I/R without elevation in heat shock proteins, Am J Physiol Heart Circ Physiol, vol.281, pp.1346-52, 2001.

K. L. Hamilton, J. L. Staib, T. Phillips, A. Hess, S. L. Lennon et al., Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion, Free Radical Biology and Medicine, vol.34, issue.7, pp.800-809, 2003.
DOI : 10.1016/S0891-5849(02)01431-4

URL : http://ufdc.ufl.edu/LS00001075/00017

K. L. Hamilton, J. C. Quindry, J. P. French, J. Staib, J. Hughes et al., MnSOD antisense treatment and exercise-induced protection against arrhythmias, Free Radical Biology and Medicine, vol.37, issue.9, pp.1360-1368, 2004.
DOI : 10.1016/j.freeradbiomed.2004.07.025

URL : http://ufdc.ufl.edu/LS00001075/00021

H. Han, R. Kaiser, K. Hu, M. Laser, G. Ertl et al., Selective modulation of endogenous nitric oxide formation in ischemia/reperfusion injury in isolated rat hearts--effects on regional myocardial flow and enzyme release, Basic Res Cardiol, vol.98, pp.165-74, 2003.

J. M. Hare, Nitric oxide and excitation???contraction coupling, Journal of Molecular and Cellular Cardiology, vol.35, issue.7, pp.719-748, 2003.
DOI : 10.1016/S0022-2828(03)00143-3

M. B. Harris, H. Ju, V. J. Venema, H. Liang, R. Zou et al., Reciprocal Phosphorylation and Regulation of Endothelial Nitric-oxide Synthase in Response to Bradykinin Stimulation, Journal of Biological Chemistry, vol.276, issue.19, pp.16587-91, 2001.
DOI : 10.1074/jbc.M100229200

D. J. Hearse, S. M. Humphrey, and G. R. Bullock, The oxygen paradox and the calcium paradox: Two facets of the same problem?, Journal of Molecular and Cellular Cardiology, vol.10, issue.7, pp.641-68, 1978.
DOI : 10.1016/S0022-2828(78)80004-2

G. Heusch, K. Boengler, and R. Schulz, Cardioprotection: Nitric Oxide, Protein Kinases, and Mitochondria, Circulation, vol.118, issue.19, pp.1915-1924, 2008.
DOI : 10.1161/CIRCULATIONAHA.108.805242

G. R. Heyndrickx, R. W. Millard, R. J. Mcritchie, P. R. Maroko, and S. F. Vatner, Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs., Journal of Clinical Investigation, vol.56, issue.4, pp.978-85, 1975.
DOI : 10.1172/JCI108178

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC301954

H. Hu, N. Chiamvimonvat, T. Yamagishi, and E. Marban, Direct inhibition of expressed cardiac L-type Ca2+ channels by S-nitrosothiol nitric oxide donors, Circ Res, vol.81, pp.742-52, 1997.

C. E. Huggins, J. R. Bell, S. Pepe, and L. M. Delbridge, Benchmarking Ventricular Arrhythmias in the Mouse???Revisiting the ???Lambeth Conventions??? 20 Years On, Heart, Lung and Circulation, vol.17, issue.6, pp.445-50, 2008.
DOI : 10.1016/j.hlc.2008.08.006

L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns, and G. Chaudhuri, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide., Proceedings of the National Academy of Sciences, vol.84, issue.24, pp.9265-9274, 1987.
DOI : 10.1073/pnas.84.24.9265

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC299734

L. J. Ignarro, G. Cirino, A. Casini, and C. Napoli, Nitric Oxide as a Signaling Molecule in the Vascular System: An Overview, Journal of Cardiovascular Pharmacology, vol.34, issue.6, pp.879-86, 1999.
DOI : 10.1097/00005344-199912000-00016

W. F. Lubbe and L. H. Opie, Metabolic basis of increased vulnerability to fibrillation in myocardial ischaemia, Journal of Molecular and Cellular Cardiology, vol.19, issue.5, pp.1-3, 1987.
DOI : 10.1016/S0022-2828(87)80604-1

X. L. Ma, A. S. Weyrich, D. J. Lefer, and A. M. Lefer, Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium, Circulation Research, vol.72, issue.2, 1993.
DOI : 10.1161/01.RES.72.2.403

Y. Maejima, S. Adachi, K. Morikawa, H. Ito, and M. Isobe, Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation, Journal of Molecular and Cellular Cardiology, vol.38, issue.1, pp.163-74, 2005.
DOI : 10.1016/j.yjmcc.2004.10.012

J. K. Mann, I. B. Tager, F. Lurmann, M. Segal, C. P. Quesenberry et al., Air Pollution and Hospital Admissions for Ischemic Heart Disease in Persons with Congestive Heart Failure or Arrhythmia, Environmental Health Perspectives, vol.110, issue.12, pp.1247-52, 2002.
DOI : 10.1289/ehp.021101247

A. S. Manning, D. J. Coltart, and D. J. Hearse, Ischemia and reperfusion-induced arrhythmias in the rat. Effects of xanthine oxidase inhibition with allopurinol, Circulation Research, vol.55, issue.4, pp.545-553, 1984.
DOI : 10.1161/01.RES.55.4.545

A. S. Manning and D. J. Hearse, Reperfusion-induced arrhythmias: mechanisms and prevention, 1984.

S. Marklund, Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase, J Biol Chem, vol.251, pp.7504-7511, 1976.

B. A. Maron, S. S. Tang, and J. Loscalzo, S-Nitrosothiols and the S-Nitrosoproteome of the Cardiovascular System, Antioxid Redox Signal, 2012.

T. Masano, S. Kawashima, R. Toh, S. Satomi-kobayashi, M. Shinohara et al., Beneficial Effects of Exogenous Tetrahydrobiopterin on Left Ventricular Remodeling After Myocardial Infarction in Rats, Circulation Journal, vol.72, issue.9, pp.1512-1521, 2008.
DOI : 10.1253/circj.CJ-08-0072

P. B. Massion and J. L. Balligand, Modulation of cardiac contraction, relaxation and rate by the endothelial nitric oxide synthase (eNOS): lessons from genetically modified mice, The Journal of Physiology, vol.109, issue.1, pp.63-75, 2003.
DOI : 10.1113/jphysiol.2002.025973

P. B. Massion, O. Feron, C. Dessy, and J. L. Balligand, Nitric Oxide and Cardiac Function: Ten Years After, and Continuing, Circulation Research, vol.93, issue.5, pp.388-98, 2003.
DOI : 10.1161/01.RES.0000088351.58510.21

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.517.4804

Y. Matsui, H. Takagi, X. Qu, M. Abdellatif, H. Sakoda et al., Distinct Roles of Autophagy in the Heart During Ischemia and Reperfusion: Roles of AMP-Activated Protein Kinase and Beclin 1 in Mediating Autophagy, Circulation Research, vol.100, issue.6, pp.914-936, 2007.
DOI : 10.1161/01.RES.0000261924.76669.36

L. Mauri, C. Rogers, and D. S. Baim, Devices for Distal Protection During Percutaneous Coronary Revascularization, Circulation, vol.113, issue.22, pp.2651-2657, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.551770

R. M. Mcallister, S. C. Newcomer, and M. H. Laughlin, Vascular nitric oxide: effects of exercise training in animals, Applied Physiology, Nutrition, and Metabolism, vol.33, issue.1, pp.173-181, 2008.
DOI : 10.1139/H07-146

J. M. Mccord, R. S. Roy, and S. W. Schaffer, Free radicals and myocardial ischemia. The role of xanthine oxidase, Adv Myocardiol, vol.5, pp.183-192, 1985.

P. Pagliaro, F. Moro, F. Tullio, M. G. Perrelli, and C. Penna, Cardioprotective Pathways During Reperfusion: Focus on Redox Signaling and Other Modalities of Cell Signaling, Antioxidants & Redox Signaling, vol.14, issue.5, pp.833-50, 2011.
DOI : 10.1089/ars.2010.3245

R. M. Palmer, A. G. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, vol.327, issue.6122, pp.524-530, 1987.
DOI : 10.1038/327524a0

B. M. Palmer, A. M. Thayer, S. M. Snyder, and R. L. Moore, Shortening and [Ca2+] dynamics of left ventricular myocytes isolated from exercise-trained rats, J Appl Physiol, vol.85, pp.2159-68, 1998.

B. S. Palmer, M. Hadziahmetovic, T. Veci, and M. G. Angelos, Global ischemic duration and reperfusion function in the isolated perfused rat heart, Resuscitation, vol.62, issue.1, pp.97-106, 2004.
DOI : 10.1016/j.resuscitation.2003.12.027

S. Penpargkul and J. Scheuer, The effect of physical training upon the mechanical and metabolic performance of the rat heart, Journal of Clinical Investigation, vol.49, issue.10, pp.1859-68, 1970.
DOI : 10.1172/JCI106404

M. G. Petroff, S. H. Kim, S. Pepe, C. Dessy, E. Marban et al., Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes, Nature Cell Biology, vol.3, issue.10, pp.867-73, 2001.
DOI : 10.1038/ncb1001-867

M. M. Pike, C. S. Luo, M. D. Clark, K. A. Kirk, M. Kitakaze et al., NMR measurements of Na+ and cellular energy in ischemic rat heart: role of Na(+)-H+ exchange, Am J Physiol, vol.265, pp.2017-2043, 1993.

B. M. Pluim, A. H. Zwinderman, A. Van-der-laarse, and E. E. Van-der-wall, The Athlete??s Heart : A Meta-Analysis of Cardiac Structure and Function, Circulation, vol.101, issue.3, pp.336-380, 2000.
DOI : 10.1161/01.CIR.101.3.336

S. K. Powers, H. A. Demirel, H. K. Vincent, J. S. Coombes, H. Naito et al., Exercise training improves myocardial tolerance to in vivo ischemiareperfusion in the rat, Am J Physiol, vol.275, pp.1468-77, 1998.

S. K. Powers and M. J. Jackson, Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production, Physiological Reviews, vol.88, issue.4, pp.1243-76, 2008.
DOI : 10.1152/physrev.00031.2007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909187

S. K. Powers, J. C. Quindry, and A. N. Kavazis, Exercise-induced cardioprotection against myocardial ischemia???reperfusion injury, Free Radical Biology and Medicine, vol.44, issue.2, pp.193-201, 2008.
DOI : 10.1016/j.freeradbiomed.2007.02.006

URL : http://ufdc.ufl.edu/LS00001075/00027

K. Przyklenk, Y. Dong, V. V. Undyala, and P. Whittaker, Autophagy as a therapeutic target for ischaemia /reperfusion injury? Concepts, controversies, and challenges, Cardiovascular Research, vol.94, issue.2, pp.197-205, 2012.
DOI : 10.1093/cvr/cvr358

E. Puymirat, T. Simon, P. G. Steg, F. Schiele, P. Gueret et al., Association of Changes in Clinical Characteristics and Management With Improvement in Survival Among Patients With ST-Elevation Myocardial Infarction, JAMA, vol.308, issue.10, pp.998-1006, 2012.
DOI : 10.1001/2012.jama.11348

J. C. Quindry, K. L. Hamilton, J. P. French, Y. Lee, Z. Murlasits et al., Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis, Journal of Applied Physiology, vol.103, issue.3, 2007.
DOI : 10.1152/japplphysiol.00263.2007

J. C. Quindry, L. Schreiber, P. Hosick, J. Wrieden, J. M. Irwin et al., Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts, AJP: Heart and Circulatory Physiology, vol.299, issue.1, 2010.
DOI : 10.1152/ajpheart.01211.2009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904130

M. G. Ryou, J. Sun, K. N. Oguayo, E. B. Manukhina, H. F. Downey et al., Hypoxic Conditioning Suppresses Nitric Oxide Production upon Myocardial Reperfusion, Experimental Biology and Medicine, vol.233, issue.6, pp.766-74, 2008.
DOI : 10.3181/0710-RM-282

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462123

E. Samoli, G. Touloumi, J. Schwartz, H. R. Anderson, C. Schindler et al., Short-Term Effects of Carbon Monoxide on Mortality: An Analysis within the APHEA Project, Environmental Health Perspectives, vol.115, issue.11, pp.1578-83, 2007.
DOI : 10.1289/ehp.10375

N. Sasaki, T. Sato, A. Ohler, B. O-'rourke, and E. Marban, Activation of Mitochondrial ATP-Dependent Potassium Channels by Nitric Oxide, Circulation, vol.101, issue.4, pp.439-484, 2000.
DOI : 10.1161/01.CIR.101.4.439

T. S. Schmidt and N. J. Alp, Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease, Clinical Science, vol.113, issue.2, pp.47-63, 2007.
DOI : 10.1042/CS20070108

J. Schofer, R. Montz, and D. G. Mathey, Scintigraphic evidence of the ???No reflow??? phenomenon in human beings after coronary thrombolysis, Journal of the American College of Cardiology, vol.5, issue.3, pp.593-601, 1985.
DOI : 10.1016/S0735-1097(85)80381-8

R. Schulz, M. Kelm, and G. Heusch, Nitric oxide in myocardial ischemia/reperfusion injury, Cardiovascular Research, vol.61, issue.3, pp.402-415, 2004.
DOI : 10.1016/j.cardiores.2003.09.019

B. G. Schwartz and R. A. Kloner, Coronary no reflow, Journal of Molecular and Cellular Cardiology, vol.52, issue.4, pp.873-82, 2012.
DOI : 10.1016/j.yjmcc.2011.06.009

S. Yamashiro, K. Noguchi, T. Matsuzaki, K. Miyagi, J. Nakasone et al., Beneficial effect of tetrahydrobiopterin on ischemia-reperfusion injury in isolated perfused rat hearts, The Journal of Thoracic and Cardiovascular Surgery, vol.124, issue.4, pp.775-84, 2002.
DOI : 10.1067/mtc.2002.124393

N. Yamashita, S. Hoshida, K. Otsu, M. Asahi, T. Kuzuya et al., Exercise Provides Direct Biphasic Cardioprotection via Manganese Superoxide Dismutase Activation, The Journal of Experimental Medicine, vol.265, issue.11, pp.1699-706, 1999.
DOI : 10.1084/jem.173.5.1177

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193084

L. Yan, D. E. Vatner, S. J. Kim, H. Ge, M. Masurekar et al., Autophagy in chronically ischemic myocardium, Proceedings of the National Academy of Sciences, vol.40, issue.1, pp.13807-13819, 2005.
DOI : 10.1006/bbrc.2001.4801

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224362

C. Yang, M. A. Talukder, S. Varadharaj, M. Velayutham, and J. L. Zweier, Early Ischemic Preconditioning Requires Akt-and PKA-mediated Activation of eNOS via Serine1176 Phosphorylation, Cardiovasc Res, 2012.

W. Yasmin, K. D. Strynadka, and R. Schulz, Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts, Cardiovascular Research, vol.33, issue.2, pp.422-454, 1997.
DOI : 10.1016/S0008-6363(96)00254-4

J. Yu, S. Bergaya, T. Murata, I. F. Alp, M. P. Bauer et al., Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels, Journal of Clinical Investigation, vol.116, issue.5, pp.1284-91, 2006.
DOI : 10.1172/JCI27100

T. Zaobornyj and P. Ghafourifar, Strategic localization of heart mitochondrial NOS: a review of the evidence, AJP: Heart and Circulatory Physiology, vol.303, issue.11, 2012.
DOI : 10.1152/ajpheart.00674.2011

J. Zhang, B. Jin, L. Li, E. R. Block, and J. M. Patel, Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells, AJP: Cell Physiology, vol.288, issue.4, pp.840-849, 2005.
DOI : 10.1152/ajpcell.00325.2004

Q. J. Zhang, S. L. Mcmillin, J. M. Tanner, M. Palionyte, E. D. Abel et al., Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signalling kinases, The Journal of Physiology, vol.26, issue.15, pp.3911-3931, 2009.
DOI : 10.1113/jphysiol.2009.172916

M. Zhou, R. J. Widmer, W. Xie, J. Widmer, A. Miller et al., Effects of exercise training on cellular mechanisms of endothelial nitric oxide synthase regulation in coronary arteries after chronic occlusion, AJP: Heart and Circulatory Physiology, vol.298, issue.6, pp.1857-69, 2010.
DOI : 10.1152/ajpheart.00754.2009

A. V. Zima and L. A. Blatter, Redox regulation of cardiac calcium channels and transporters, Cardiovascular Research, vol.71, issue.2, pp.310-331, 2006.
DOI : 10.1016/j.cardiores.2006.02.019

M. H. Zou, C. Shi, and R. A. Cohen, Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite, Journal of Clinical Investigation, vol.109, issue.6, pp.817-843, 2002.
DOI : 10.1172/JCI0214442

J. L. Zweier, J. T. Flaherty, and M. L. Weisfeldt, Direct measurement of free radical generation following reperfusion of ischemic myocardium., Proceedings of the National Academy of Sciences, vol.84, issue.5, pp.1404-1411, 1987.
DOI : 10.1073/pnas.84.5.1404

J. L. Zweier, A. Samouilov, and P. Kuppusamy, Non-enzymatic nitric oxide synthesis in biological systems, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1411, issue.2-3, pp.250-62, 1999.
DOI : 10.1016/S0005-2728(99)00018-3

URL : http://doi.org/10.1016/s0005-2728(99)00018-3

J. L. Zweier, J. Fertmann, and G. Wei, Nitric Oxide and Peroxynitrite in Postischemic Myocardium, Antioxidants & Redox Signaling, vol.3, issue.1, pp.11-22, 2001.
DOI : 10.1089/152308601750100443

4. At, Myocardial total antioxidant power was determined with a TAP kit

O. Biomedical and R. , The total antioxidant capacity of the heart was expressed in mM of Trolox Quantification of anion superoxide by EPR ROS production was measured by electron paramagnetic resonance (EPR) in LV homogenates. Briefly, homogenates were treated with 1 mM 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine (CMH) solution (1:1 v/v), put in the EPR glass capillary tube (Noxygen Science Transfer & Diagnostics, Germany), and were placed inside the e-scan spectrometer (Bruker, Germany) for data acquisition. The procedure was then repeated on the same samples but in presence of L-NAME (3.10 -4 M) The difference between the two conditions gave the NOS-dependent ROS production. The acquisition EPR parameters were: microwave frequency = 9, p.652

. Ghz, modulation frequency= 86 kHz; modulation amplitude= 0,01 G; center field= 3494.9 G, sweep width, p.300

G. and M. Power, number of scans: 10; receiver gain: 2.10 -1 . Sample temperature was kept at 37°C by the Temperature & Gas Controller " Bio III " unit, interfaced to the spectrometer. The radicals generated by the reaction of the probe with the tissue radicals were acquired and the spectra sequentially recorded for about 5 min in order to calculate the ROS production rate. ROS production was normalized to the protein content of each sample and then expressed in (µmol

L. André, F. Gouzi, J. Thireau, G. Meyer, J. Boissiere et al., Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress, Basic Research in Cardiology, vol.104, issue.Pt 1, pp.1235-1246, 2011.
DOI : 10.1007/s00395-011-0211-y

J. Aragon, M. Condit, S. Bhushan, B. Predmore, S. Patel et al., Beta3-Adrenoreceptor Stimulation Ameliorates Myocardial Ischemia-Reperfusion Injury Via Endothelial Nitric Oxide Synthase and Neuronal Nitric Oxide Synthase Activation, Journal of the American College of Cardiology, vol.58, issue.25, pp.2683-2691, 2011.
DOI : 10.1016/j.jacc.2011.09.033

J. Bouitbir, A. Charles, A. Echaniz-laguna, M. Kindo, F. Daussin et al., Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a ???mitohormesis??? mechanism involving reactive oxygen species and PGC-1, European Heart Journal, vol.33, issue.11, pp.1397-1407, 2012.
DOI : 10.1093/eurheartj/ehr224

F. Brunner, R. Maier, P. Andrew, G. Wolkart, R. Zechner et al., Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase, Cardiovascular Research, vol.57, issue.1, pp.55-62, 2003.
DOI : 10.1016/S0008-6363(02)00649-1

J. Calvert, M. Condit, J. Aragon, C. Nicholson, B. Moody et al., Exercise Protects Against Myocardial Ischemia-Reperfusion Injury via Stimulation of ??3-Adrenergic Receptors and Increased Nitric Oxide Signaling: Role of Nitrite and Nitrosothiols, Circulation Research, vol.108, issue.12, pp.1448-1458, 2011.
DOI : 10.1161/CIRCRESAHA.111.241117

C. Chen, L. Druhan, S. Varadharaj, Y. Chen, and J. Zweier, Phosphorylation of Endothelial Nitric-oxide Synthase Regulates Superoxide Generation from the Enzyme, Journal of Biological Chemistry, vol.283, issue.40, pp.27038-27047, 2008.
DOI : 10.1074/jbc.M802269200

M. Crabtree, A. Tatham, Y. Warrick, N. Hale, A. Cai et al., Quantitative Regulation of Intracellular Endothelial Nitric-oxide Synthase (eNOS) Coupling by Both Tetrahydrobiopterin-eNOS Stoichiometry and Biopterin Redox Status: INSIGHTS FROM CELLS WITH TET-REGULATED GTP CYCLOHYDROLASE I EXPRESSION, Journal of Biological Chemistry, vol.284, issue.2, pp.1136-1144, 2009.
DOI : 10.1074/jbc.M805403200

M. De-waard, R. Van-haperen, T. Soullie, D. Tempel, R. De-crom et al., Beneficial effects of exercise training after myocardial infarction require full eNOS expression, Journal of Molecular and Cellular Cardiology, vol.48, issue.6, pp.1041-1049, 2010.
DOI : 10.1016/j.yjmcc.2010.02.005

H. Demirel, S. Powers, M. Zergeroglu, R. Shanely, K. Hamilton et al., Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat, 2001.

C. Dumitrescu, R. Biondi, Y. Xia, A. Cardounel, L. Druhan et al., Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4, Proceedings of the National Academy of Sciences, vol.271, issue.46, pp.15081-15086, 2007.
DOI : 10.1074/jbc.271.46.29223

J. Elrod, J. Greer, N. Bryan, W. Langston, J. Szot et al., Cardiomyocyte-Specific Overexpression of NO Synthase-3 Protects Against Myocardial Ischemia-Reperfusion Injury, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.7, pp.1517-1523, 2006.
DOI : 10.1161/01.ATV.0000224324.52466.e6

C. Farah, G. Meyer, L. Andre, J. Boissiere, S. Gayrard et al., Moderate exercise prevents impaired Ca2+ handling in heart of CO-exposed rat: implication for sensitivity to ischemia-reperfusion, AJP: Heart and Circulatory Physiology, vol.299, issue.6, pp.2076-2081, 2010.
DOI : 10.1152/ajpheart.00835.2010

S. Frantz, A. Adamek, D. Fraccarollo, J. Tillmanns, J. Widder et al., The eNOS enhancer AVE 9488: a novel cardioprotectant against ischemia reperfusion injury, Basic Research in Cardiology, vol.104, issue.6, pp.773-779, 2009.
DOI : 10.1007/s00395-009-0041-3

J. French, K. Hamilton, J. Quindry, Y. Lee, P. Upchurch et al., Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain, The FASEB Journal, vol.22, issue.8, pp.2862-2871, 2008.
DOI : 10.1096/fj.07-102541

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493460

J. French, J. Quindry, D. Falk, J. Staib, Y. Lee et al., Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition, AJP: Heart and Circulatory Physiology, vol.290, issue.1, pp.128-136, 2006.
DOI : 10.1152/ajpheart.00739.2005

R. Hambrecht, V. Adams, S. Erbs, A. Linke, N. Krankel et al., Regular Physical Activity Improves Endothelial Function in Patients With Coronary Artery Disease by Increasing Phosphorylation of Endothelial Nitric Oxide Synthase, Circulation, vol.107, issue.25, pp.3152-3158, 2003.
DOI : 10.1161/01.CIR.0000074229.93804.5C

K. Hamilton, J. Staib, T. Phillips, A. Hess, S. Lennon et al., Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion, Free Radical Biology and Medicine, vol.34, issue.7, pp.800-809, 2003.
DOI : 10.1016/S0891-5849(02)01431-4

URL : http://ufdc.ufl.edu/LS00001075/00017

S. Jones, J. Greer, A. Kakkar, P. Ware, R. Turnage et al., Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury, AJP: Heart and Circulatory Physiology, vol.286, issue.1, pp.276-282, 2004.
DOI : 10.1152/ajpheart.00129.2003

U. Landmesser, S. Dikalov, S. Price, L. Mccann, T. Fukai et al., Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension, Journal of Clinical Investigation, vol.111, issue.8, pp.1201-1209, 2003.
DOI : 10.1172/JCI200314172

N. Lauer, T. Suvorava, U. Ruther, R. Jacob, W. Meyer et al., Critical involvement of hydrogen peroxide in exercise-induced up-regulation of endothelial NO synthase, Cardiovascular Research, vol.65, issue.1, pp.254-262, 2005.
DOI : 10.1016/j.cardiores.2004.09.010

T. Masano, S. Kawashima, R. Toh, S. Satomi-kobayashi, M. Shinohara et al., Beneficial Effects of Exogenous Tetrahydrobiopterin on Left Ventricular Remodeling After Myocardial Infarction in Rats, Circulation Journal, vol.72, issue.9, pp.1512-1519, 2008.
DOI : 10.1253/circj.CJ-08-0072

R. Mcallister, S. Newcomer, and M. Laughlin, Vascular nitric oxide: effects of exercise training in animals, Applied Physiology, Nutrition, and Metabolism, vol.33, issue.1, pp.173-178, 2008.
DOI : 10.1139/H07-146

A. Moens and D. Kass, Tetrahydrobiopterin and Cardiovascular Disease, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.11, pp.2439-2444, 2006.
DOI : 10.1161/01.ATV.0000243924.00970.cb

P. Pacher, J. Beckman, and L. Liaudet, Nitric Oxide and Peroxynitrite in Health and Disease, Physiological Reviews, vol.87, issue.1, pp.315-424, 2007.
DOI : 10.1152/physrev.00029.2006

P. Pagliaro, F. Moro, F. Tullio, M. Perrelli, and C. Penna, Cardioprotective Pathways During Reperfusion: Focus on Redox Signaling and Other Modalities of Cell Signaling, Antioxidants & Redox Signaling, vol.14, issue.5, pp.833-850, 2011.
DOI : 10.1089/ars.2010.3245

S. Powers, H. Demirel, H. Vincent, J. Coombes, H. Naito et al., Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat, Am J Physiol, vol.275, pp.1468-1477, 1998.

S. Powers, J. Quindry, and A. Kavazis, Exercise-induced cardioprotection against myocardial ischemia???reperfusion injury, Free Radical Biology and Medicine, vol.44, issue.2, pp.193-201, 2008.
DOI : 10.1016/j.freeradbiomed.2007.02.006

URL : http://ufdc.ufl.edu/LS00001075/00027

P. Ramires and L. Ji, Glutathione supplementation and training increases myocardial resistance to ischemia-reperfusion in vivo, Am J Physiol Heart Circ Physiol, vol.281, pp.679-688, 2001.

W. Sessa, K. Pritchard, N. Seyedi, J. Wang, and T. Hintze, Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression, Circulation Research, vol.74, issue.2, pp.349-353, 1994.
DOI : 10.1161/01.RES.74.2.349

Z. Szelid, P. Pokreisz, X. Liu, P. Vermeersch, G. Marsboom et al., Cardioselective nitric oxide synthase 3 gene transfer protects against myocardial ischemia-reperfusion injury in pigs, Journal of the American College of Cardiology, vol.41, issue.6, pp.169-179, 2010.
DOI : 10.1016/S0735-1097(03)82178-2

H. Takano, X. Tang, Y. Qiu, Y. Guo, B. French et al., Nitric Oxide Donors Induce Late Preconditioning Against Myocardial Stunning and Infarction in Conscious Rabbits via an Antioxidant-Sensitive Mechanism, Circulation Research, vol.83, issue.1, pp.73-84, 1998.
DOI : 10.1161/01.RES.83.1.73

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701311/pdf

C. Tiefenbacher, T. Bleeke, C. Vahl, K. Amann, A. Vogt et al., Endothelial Dysfunction of Coronary Resistance Arteries Is Improved by Tetrahydrobiopterin in Atherosclerosis, Circulation, vol.102, issue.18, pp.2172-2179, 2000.
DOI : 10.1161/01.CIR.102.18.2172

S. Verma, A. Maitland, R. Weisel, P. Fedak, N. Pomroy et al., Novel cardioprotective effects of tetrahydrobiopterin after anoxia and reoxygenation: Identifying cellular targets for pharmacologic manipulation, The Journal of Thoracic and Cardiovascular Surgery, vol.123, issue.6, pp.1074-1083, 2002.
DOI : 10.1067/mtc.2002.121687

P. Wang and J. Zweier, Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury, J Biol Chem, vol.271, pp.29223-29230, 1996.

U. Wisloff, J. Loennechen, S. Currie, G. Smith, and O. Ellingsen, Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction, Cardiovascular Research, vol.54, issue.1, pp.162-174, 2002.
DOI : 10.1016/S0008-6363(01)00565-X

Y. Xia, Superoxide Generation from Nitric Oxide Synthases, Antioxidants & Redox Signaling, vol.9, issue.10, pp.1773-1778, 2007.
DOI : 10.1089/ars.2007.1733

S. Yamashiro, K. Noguchi, T. Matsuzaki, K. Miyagi, J. Nakasone et al., Beneficial effect of tetrahydrobiopterin on ischemia-reperfusion injury in isolated perfused rat hearts, The Journal of Thoracic and Cardiovascular Surgery, vol.124, issue.4, pp.775-784, 2002.
DOI : 10.1067/mtc.2002.124393

Q. Zhang, S. Mcmillin, J. Tanner, M. Palionyte, E. Abel et al., Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signalling kinases, The Journal of Physiology, vol.26, issue.15, pp.3911-3920, 2009.
DOI : 10.1113/jphysiol.2009.172916

M. Zhou, R. Widmer, W. Xie, J. Widmer, A. Miller et al., Effects of exercise training on cellular mechanisms of endothelial nitric oxide synthase regulation in coronary arteries after chronic occlusion, AJP: Heart and Circulatory Physiology, vol.298, issue.6, pp.1857-1869, 2010.
DOI : 10.1152/ajpheart.00754.2009

J. Zweier, J. Fertmann, and G. Wei, Nitric Oxide and Peroxynitrite in Postischemic Myocardium, Antioxidants & Redox Signaling, vol.3, issue.1, pp.11-22, 2001.
DOI : 10.1089/152308601750100443

C. Reboul, PhD Laboratory of Cardiovascular Pharm-Ecology University of Avignon Faculty of Sciences 33 rue Louis Pasteur 84000, pp.334-90

L. Andre, F. Gouzi, J. Thireau, G. Meyer, J. Boissiere et al., Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress, Basic Research in Cardiology, vol.104, issue.Pt 1, pp.1235-1246, 2011.
DOI : 10.1007/s00395-011-0211-y

URL : https://hal.archives-ouvertes.fr/hal-01304243

J. Bouitbir, A. Charles, A. Echaniz-laguna, M. Kindo, F. Daussin et al., Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a ???mitohormesis??? mechanism involving reactive oxygen species and PGC-1, European Heart Journal, vol.33, issue.11, pp.1397-1407, 2012.
DOI : 10.1093/eurheartj/ehr224

J. Calvert, M. Condit, J. Aragon, C. Nicholson, B. Moody et al., Exercise Protects Against Myocardial Ischemia-Reperfusion Injury via Stimulation of ??3-Adrenergic Receptors and Increased Nitric Oxide Signaling: Role of Nitrite and Nitrosothiols, Circulation Research, vol.108, issue.12, pp.1448-1458, 2011.
DOI : 10.1161/CIRCRESAHA.111.241117