. Yamada, Transmebrane Extracellular Matrix Cytoskeleton Crosstalk, Nature Reviews Molecular Cell Biology, vol.2, p.793, 2001.

A. D. Bershadsky, N. Q. Balaban, and B. Geiger, Adhesion-Dependent Cell Mechanosensitivity, Annual Review of Cell and Developmental Biology, vol.19, issue.1, p.67795, 200319.
DOI : 10.1146/annurev.cellbio.19.111301.153011

A. Buxboim, I. L. Ivanovska, and D. E. Discher, Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells 'feel' outside and in?, Journal of Cell Science, vol.123, issue.3, pp.297-308
DOI : 10.1242/jcs.041186

M. Versaevel1 and T. Grevesse1-ang-sylvain-gabriele, Spatial coordination between cell and nuclear shape within micropatterned endothelial cells; Nature Communication 2012 DOI: 10, 1038.

H. Wang, M. Dembo, and S. Hanks, Wang Y Focal adhesion kinase is involved in mechanosensing during fibroblast migration, Proc Natl Acad Sci, issue.20, p.981129511300, 2001.

J. Goetz, Bidirectional control of the inner dynamics of focal adhesions promotes cell migration; Cell Adhesion and Migration, pp.185-190, 2009.

C. Lo, H. Wang, M. Dembo, and Y. Wang, Cell Movement Is Guided by the Rigidity of the Substrate, Biophysical Journal, vol.79, issue.1, p.144152, 2000.
DOI : 10.1016/S0006-3495(00)76279-5

M. Thery, Micropatterning as a tool to decipher cell morphogenesis and functions, Journal of Cell Science, vol.123, issue.24, pp.4201-4213, 2010.
DOI : 10.1242/jcs.075150

URL : https://hal.archives-ouvertes.fr/hal-00593607

S. Huang and D. E. Ingber, Shape-Dependent Control of Cell Growth, Differentiation, and Apoptosis: Switching between Attractors in Cell Regulatory Networks, Experimental Cell Research, vol.261, issue.1, 91103.
DOI : 10.1006/excr.2000.5044

D. E. Jaalouk and J. Lammerding, Mechanotransduction gone awry, Nature Reviews Molecular Cell Biology, vol.2, issue.1, p.63, 2009.
DOI : 10.1038/nrm2597

D. Riveline, E. Zamir, N. Q. Balaban, U. S. Schwarz, B. Geiger et al., Focal Contacts as Mechanosensors, The Journal of Cell Biology, vol.11, issue.6, p.11751185, 2001.
DOI : 10.1083/jcb.141.2.539

E. Zamir, B. Geiger, and Z. Kam, Quantitative Multicolor Compositional Imaging Resolves Molecular Domains in Cell-Matrix Adhesions, PLoS ONE, vol.54, issue.11, 2008.
DOI : 10.1371/journal.pone.0001901.s009

D. Choquet, D. F. Felsenfeld, and M. P. Sheetz, Extracellular Matrix Rigidity Causes Strengthening of Integrin???Cytoskeleton Linkages, Cell, vol.88, issue.1, p.3948, 1997.
DOI : 10.1016/S0092-8674(00)81856-5

C. S. Chen, J. Tan, and J. Tien, Mechanotransduction at Cell-Matrix and Cell-Cell Contacts, Annual Review of Biomedical Engineering, vol.6, issue.1, pp.275-302, 2004.
DOI : 10.1146/annurev.bioeng.6.040803.140040

M. Margulies, D. Dembo, D. A. Boettiger, V. M. Hammer, and . Weaver, Tensional homeostasis and the malignant phenotype; Cancer Cell, 2005.

J. Dai and M. P. Sheetz, Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers, Biophysical Journal, vol.68, issue.3, pp.988996-989006, 1995.
DOI : 10.1016/S0006-3495(95)80274-2

N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur et al., Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates, Nature Cell Biology, 20013.

A. K. Harris, P. Wild, and D. Stopak, Silicone rubber substrata: a new wrinkle in the study of cell locomotion, Science, vol.208, issue.4440, p.177179, 1980.
DOI : 10.1126/science.6987736

M. Dembo, . Oliver, K. Ishihara, and . Jacobson, Imaging the traction stresses exerted by locomoting cells with the elastic substratum method, Biophysical Journal, vol.70, issue.4, 1996.
DOI : 10.1016/S0006-3495(96)79767-9

M. Thery, V. Racine, M. Piel, A. Pepin, A. Dimitrov et al., Bornens M; Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity, Proc Natl Acad Sci, vol.103, 2006.

C. S. Chen, Mechanotransduction - a field pulling together?, Journal of Cell Science, vol.121, issue.20, pp.3285-3292, 2008.
DOI : 10.1242/jcs.023507

D. Chretien and S. D. Fuller, Microtubules switch occasionally into unfavorable configurations during elongation, Journal of Molecular Biology, vol.298, issue.4, pp.663-76, 2000.
DOI : 10.1006/jmbi.2000.3696

J. C. Jones, A. E. Goldman, P. M. Steinert, S. Yuspa, and R. D. Goldman, Dynamic aspects of the supramolecular organization of intermediate filament networks in cultured epidermal cells; Cell Motil, 19822.

R. D. Goldman, B. Grin, M. G. Mendez, and E. R. Kuczmarski, Intermediate filaments: versatile building blocks of cell structure, Current Opinion in Cell Biology, vol.20, issue.1, p.2834, 2008.
DOI : 10.1016/j.ceb.2007.11.003

A. S. Oriolo, F. A. Wald, V. P. Ramsauer, and P. J. Salas, Intermediate filaments: A role in epithelial polarity, Experimental Cell Research, vol.313, issue.10, p.22552264, 2007.
DOI : 10.1016/j.yexcr.2007.02.030

L. Buehler and . Kreplak, Plasticity of Intermediate Filament Subunits, PLoS ONE, vol.5, 2010.

R. Kirmse, S. Portet, N. Mcke, U. Aebi, H. Herrmann et al., A Quantitative Kinetic Model for the in Vitro Assembly of Intermediate Filaments from Tetrameric Vimentin, Journal of Biological Chemistry, vol.282, issue.25, pp.28218563-18572, 2007.
DOI : 10.1074/jbc.M701063200

H. Herrmann, M. Haner, M. Brettel, and N. Ku, Aebi U Characterization of distinct early b assembly units of different intermediate filament proteins, J Mol Biol, p.14031420, 1999286.

A. Mogilner and G. Oster, Cell motility driven by actin polymerization, Biophysical Journal, vol.71, issue.6
DOI : 10.1016/S0006-3495(96)79496-1

T. Shemesh, A. D. Bershadsky, and M. M. Kozlov, Physical Model for Self-Organization of Actin Cytoskeleton and Adhesion Complexes at the Cell Front, Biophysical Journal, vol.102, issue.8, 2012.
DOI : 10.1016/j.bpj.2012.03.006

M. Balland, A. Richert, and F. Gallet, The dissipative contribution of myosin II in the cytoskeleton dynamics of myoblasts References References, Eur Biophys J, vol.34, p.255261, 2005.

R. Hynes, Integrins, Cell, vol.110, issue.6, pp.673-87, 200220.
DOI : 10.1016/S0092-8674(02)00971-6

Y. Pang, X. Wang, D. Lee, and H. P. Greisler, Dynamic quantitative visualization of single cell alignment and migration and matrix remodeling in 3-D collagen hydrogels under mechanical force, Biomaterials, vol.32, issue.15, pp.32-3776, 2011.
DOI : 10.1016/j.biomaterials.2011.02.003

I. Je-rome-solon, K. Levental, P. C. Sengupta, P. A. Georges, and . Janmey, Fibroblast Adaptation and Stiffness Matching to Soft Elastic Substrates, Biophysical Journal, vol.93

M. Thery, A. Pepin, E. Dressaire, and Y. Chen, 2and Michel Bor- nens1; Cell distribution of stress fibres in response to the geometry of the adhesive environment, Cell Motility and the Cytoskeleton, 2006.

K. Mandal, M. Balland, and L. Bureau, Thermoresponsive Micropatterned Substrates for Single Cell Studies, PLoS ONE, vol.30, issue.5, p.37548, 2012.
DOI : 10.1371/journal.pone.0037548.g009

URL : https://hal.archives-ouvertes.fr/hal-00640115

W. Khaled, H. Ermert, S. Reichling, and O. T. Bruhns, The inverse problem of elasticity: a reconstruction procedure to determine the shear modulus of tissue, IEEE Ultrasonics Symposium, 2005., 2005.
DOI : 10.1109/ULTSYM.2005.1602956

C. Sun, B. Standish, and V. X. Yanga, Optical coherence elastography: current status and future applications, Journal of Biomedical Optics, vol.16, issue.4, p.43001, 2011.
DOI : 10.1117/1.3560294

D. Stopak and A. K. Harris, Connective tissue morphogenesis by fibroblast traction I. Tissue culture observations, Dev. Biol, vol.90, p.383398, 1982.

J. Daniel and . Leahy, Implications of atomic-resolution structures for cell adhesion

M. Abercrombie and G. Dunn, Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy, Experimental Cell Research, vol.92, issue.1, p.5762, 1975.
DOI : 10.1016/0014-4827(75)90636-9

C. Ballestrem, B. Hinz, B. Imhof, and B. Wehrle-haller, Marching at the front and dragging behind, The Journal of Cell Biology, vol.2, issue.7, pp.1319-1351, 2001.
DOI : 10.1083/jcb.200107107

E. A. Clark, W. G. King, J. S. Brugge, M. Symons, and R. O. Hynes, Integrin-mediated Signals Regulated by Members of the Rho Family of GTPases, The Journal of Cell Biology, vol.269, issue.2, pp.573-586, 1998.
DOI : 10.1083/jcb.138.2.363

K. Rottner, A. Hall, and J. Small, Interplay between Rac and Rho in the control of substrate contact dynamics, Current Biology, vol.9, issue.12, pp.640-648, 1999.
DOI : 10.1016/S0960-9822(99)80286-3

K. Beningo, C. Lo, and Y. Wang, Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell-substratum adhesions, Methods Cell Biol, vol.69, p.32539, 2002.
DOI : 10.1016/S0091-679X(02)69021-1

J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju et al., Cells lying on a bed of microneedles:an approach to isolate mechanical force

J. Goffin, P. Pittet, G. Csucs, J. Lussi, J. Meister et al., Focal adhesion size controls tension-dependent recruitment of ??-smooth muscle actin to stress fibers, The Journal of Cell Biology, vol.112, issue.2, pp.259-68, 2006.
DOI : 10.1038/35008607

J. Stricker, B. Sabass, U. Schwarz, and M. Gardel, Optimization of traction force microscopy for micron-sized focal adhesions, Journal of Physics: Condensed Matter, vol.22, issue.19, 2010.
DOI : 10.1088/0953-8984/22/19/194104

R. Zaidel-bar, M. Cohen, L. Addadi, and B. Geiger, Hierarchical assembly of cellmatrix adhesion complexes, Biochem. Soc. Trans, issue.Pt3, pp.32416-32436, 2004.

A. Katsumi, W. Orr, A. Tzima, E. Schwartz, and M. A. , Integrins in Mechanotransduction, Journal of Biological Chemistry, vol.279, issue.13, 2004.
DOI : 10.1074/jbc.R300038200

E. Zamir and B. Geiger, Components of cell-matrix adhesions, J Cell Sci, vol.114, pp.3583-3590, 2001.

C. G. Galbraith and M. P. Sheetz, A micromachined device provides a new bend on fibroblast traction forces, Proc. Natl Acad. Sci, 1997.
DOI : 10.1073/pnas.94.17.9114

D. Mitrossilis, J. Fouchard, A. Guiroy, N. Desprat, and N. Rodriguez, Ben Fabry,and Atef Asnacios; Single-cell response to stiffness exhibits muscle-like behavior, 1073.

C. Cunningham and J. K. , The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells, Biophysical Journal, vol.81, issue.2, pp.767-784, 2001.

L. James, A. Wilbur, . Kumar, A. Hans, E. Biebuyck et al., Microcontact printing of self-assembled monolayers:applications in microfabrication, Nanotechnology, vol.7, 1996452457.

M. Mrksich, L. E. Dike, J. Tien, D. E. Ingber, and G. M. Whitesides, Using Microcontact Printing to Pattern the Attachment of Mammalian Cells to Self-Assembled Monolayers of Alkanethiolates on Transparent Films of Gold and Silver Experimental cell research, 1997235.

A. Azioune, N. Carpi, Q. Tseng, M. Thry, and M. Piel, Chapter 8Protein Micropatterns: A Direct Printing Protocol Using Deep Uvs, Methods in cell Biology, vol.97, 2010.

A. Azioune, M. Storch, M. Bornens, M. Thry, and M. Piel, Simple and rapid process for single cell micro-patterning, Lab on a Chip, vol.21, issue.26, pp.1640-1642, 2009.
DOI : 10.1039/b821581m

A. Harris, D. Stopak, and P. Wild, Fibroblast traction as a mechanism for collagen morphogenesis, Nature, vol.2, issue.5803, pp.249-251, 1981.
DOI : 10.1038/290249a0

W. Marganski, M. Dembo, and Y. Wang, [10] Measurements of cell-generated deformations on flexible substrata using correlation-based optical flow, Meth Enzymol, vol.361, 2003.
DOI : 10.1016/S0076-6879(03)61012-8

Z. Yang, J. Lin, J. Chen, and J. Wang, Determining substrate displacement and cell traction fields???a new approach, Journal of Theoretical Biology, vol.242, issue.3, pp.607-616, 2006.
DOI : 10.1016/j.jtbi.2006.05.005

. Safran, Calculation of Forces at Focal Adhesions from Elastic Substrate Data: The Effect of Localized Force and the Need for Regularization, Biophysical Journal, vol.83, issue.02, pp.1380-139410, 2002.

J. P. Butler, I. M. Toli-nrrelykke, B. Fabry, and J. J. Fredberg, Traction fields, moments, and strain energy that cells exert on their surroundings, AJP: Cell Physiology, vol.282, issue.3
DOI : 10.1152/ajpcell.00270.2001

O. Du-roure, A. Saez, A. Buguin, and R. Austin, Force mapping in epithelial cell migration, Proceedings of the National Academy of Sciences, vol.102, issue.7, pp.2390-2395, 2005.
DOI : 10.1073/pnas.0408482102

URL : https://hal.archives-ouvertes.fr/hal-00188271

R. Pelham, . Jr, and Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility, Proc. Natl. Acad. Sci. USA 94, p.1366165, 1997.
DOI : 10.1073/pnas.94.25.13661

H. James, Wang 1, and Bin Li; The principles and biological applications of cell traction force microscopy Microscopy: Science Technology Applications and Education, 2007.

V. Peschetola, V. M. Laurent, A. Duperray, L. Preziosi, and D. Ambrosi, Claude Verdier; Traction forces of cancer cells, Computer Methods in Biomechanics and Biomedical Engineering, vol.14, 2011.

K. Burton and D. L. Taylor, Traction forces of cytokinesis measured with optically modified elastic substrat.; Nature, pp.385-450454, 1997.

M. Dembo and Y. Wang, Stresses at the Cell-to-Substrate Interface during Locomotion of Fibroblasts, Biophysical Journal, vol.76, issue.4, pp.2307-2316, 1999.
DOI : 10.1016/S0006-3495(99)77386-8

M. Versaevel, T. Grevesse1, and S. Gabriele, Spatial coordination between cell and nuclear shape within micropatterned endothelial cells, Nature Communications, vol.18, pp.10-1038, 2012.
DOI : 10.1038/ncomms1668

J. R. Tse and A. J. Engler, Preparation of Hydrogel Substrates with Tunable Mechanical Properties, Current Protocols in Cell Biology, vol.19, 2010.
DOI : 10.1002/0471143030.cb1016s47

T. Byfield, I. Xu, E. Leventa, P. A. Hawthorne, R. K. Janmey et al., Cell-Cycle Control by Physiological Matrix Elasticity and In Vivo Tissue Stiffening, Current Biology, 200919.

E. A. Klein, L. Yin, D. Kothapalli, P. Castagnino, F. J. Byfield et al., Assoian1; Cell-Cycle Control by Physiological Matrix Elasticity and In Vivo Tissue Stiffening, Janmey and Richard K. Current Biology, 2009.

. Bershadsky1, Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing, Nature Cell Biology, p.10, 1038.

M. Ghibaudo, A. Saez, L. Trichet, A. Xayaphoummine, J. Browaeys et al., Ladoux; Traction forces and rigidity sensing regulate cell functions, A. Buguin, and B. Soft Matter, 2008.
DOI : 10.1039/b804103b

A. D. Bershadsky, N. Q. Balaban, and B. Geiger, Adhesion-Dependent Cell Mechanosensitivity, Annual Review of Cell and Developmental Biology, vol.19, issue.1, p.67795, 2003.
DOI : 10.1146/annurev.cellbio.19.111301.153011

A. Daniel and R. Fletcher, Dyche Mullins; Cell mechanics and the cytoskeleton, Nature, vol.08908, p.10, 1038.

K. Burridge and M. , Chrzanowska-Wodnicka; Focal adhesions,contractility, and signaling, Annu. Rev. Cell Dev. Biol, vol.12, p.463518, 1996.

C. G. Galbraith and M. Sheetz, Forces on adhesive contacts affect cell function, Current Opinion in Cell Biology, vol.10, issue.5, p.566571, 1998.
DOI : 10.1016/S0955-0674(98)80030-6

Q. Tseng, I. Wang, E. Duchemin-pelletier, A. Azioune, N. Carpi et al., Manuel Thery and Martial Balland; A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels, pp.11-21, 2011.

B. Geiger, A. Bershadsky, R. Pankov, and K. M. Yamada, Transmembrane crosstalk between the extracellular matrix and the cytoskeleton, Nat. Rev

A. D. Rape, W. Guo, and Y. Wang, The regulation of traction force in relation to cell shape and focal adhesions, Biomaterials, vol.32, issue.8, 201132.
DOI : 10.1016/j.biomaterials.2010.11.044

A. Saez, A. Buguin, P. Silberzan, and B. Ladoux, Is the Mechanical Activity of Epithelial Cells Controlled by Deformations or Forces?, L524. References References, 2005.
DOI : 10.1529/biophysj.105.071217

URL : https://hal.archives-ouvertes.fr/hal-00016455

K. Kimura and A. Kimura, A novel mechanism of microtubule length-dependent force to pull centrosomes toward the cell center, BioArchitecture, vol.16, issue.2, pp.74-79, 2011.
DOI : 10.1038/ncb1332

S. Deguchi, S. Tsubasa, K. Matsui, and . Iio, The position and size of individual focal adhesions are determined by intracellular stress-dependent positive regulation, Cytoskeleton, vol.141, issue.11, pp.68639-51, 2011.
DOI : 10.1002/cm.20541

S. G. Martin, C. , and F. , New end take off: Regulating cell polarity during the fission yeast cell cycle, Cell Cycle, issue.4, 2005.

C. R. Terenna, T. Makushok, G. Velve-casquillas, D. Baigl, Y. Chen et al., Matthieu Piel and Phong T. Tran1;Physical Mechanisms Redirecting Cell Polarity and Cell Shape in Fission Yeast, Current Biology, 2008.

A. Fardin, P. Avigan, R. Evan, A. Heller, S. Mathur et al., Force generated by actomyosin contraction builds bridges between adhesive contacts, 2010.

C. Chen, J. Alonso, E. Ostuni, G. Whitesides, and D. Ingber, Cell shape provides global control of focal adhesion assembly, Biochemical and Biophysical Research Communications, vol.307, issue.2, p.355361, 2003.
DOI : 10.1016/S0006-291X(03)01165-3

A. Christophore, L. H. Lemmon, and . Romer, A Predictive Model of Cell Traction Force Based on Cell Geometry, Biophysical Journal, vol.99, 2010.

J. Shang-you-tee, C. S. Fu, P. A. Chen, and . Janmey, Cell Shape and Substrate Rigidity Both Regulate Cell Stiffness, Biophysical Journal, vol.100, 2011.

R. Singhvi, A. Kumar, G. Lopez, G. Stephanopoulos, and D. Wang, Engineering cell shape and function, Science, vol.264, issue.5159, p.696698, 1994.
DOI : 10.1126/science.8171320

D. Falconnet, G. Csucs, and H. Grandin, Textor M Surface engineering approaches to micropattern surfaces for cell-based assays, Biomaterials, p.30443063, 200627.

Z. Pan, C. Yan, R. Peng, Y. Zhao, and Y. He, Control of cell nucleus shapes via micropillar patterns, Biomaterials, vol.33, issue.6, pp.33-17301735
DOI : 10.1016/j.biomaterials.2011.11.023

H. Ma, H. J. Stiller, and P. , Chilkoti A non-fouling oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization, Adv Mater, vol.16, p.338341, 2004.

A. Azioune, M. Storch, M. Bornens, M. Thery, and M. Piel, Simple and rapid process for single cell micro-patterning References References, Lab Chip, vol.9, p.16401642, 2009.

J. Gautrot, B. Trappmann, F. Oceguera-yanez, J. Connely, and X. He, Exploiting the superior protein resistance of polymer brushes to control single cell adhesion and polarization at the micron scale, Biomaterials, pp.31-50305041, 2010.

T. Okano, N. Yamada, M. Okuhara, and H. Sakai, Sakurai Y Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces, Biomaterials, pp.16-297303, 1995.

K. Nagase, J. Kobayashi, and T. Okano, Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering, Journal of The Royal Society Interface, vol.75, issue.8, pp.293-309, 2009.
DOI : 10.1073/pnas.101112898

D. Schmaljohann, J. Oswald, B. Jorgensen, M. Nitschke, and D. Beyerlein, -PEG Films for Controlled Cell Detachment, Biomacromolecules, vol.4, issue.6, 20034.
DOI : 10.1021/bm034160p

URL : https://hal.archives-ouvertes.fr/hal-00479146

A. Mizutani, A. Kikuchi, M. Yamatao, and H. Kanazawa, Okano T Preparation of thermoresponsive polymer brush surfaces and their interaction with cells, Biomaterials, 200829.

K. Nagase, M. Watanabe, A. Kikuchi, M. Yamato, and T. Okano, Thermoresponsive polymer brushes as intelligent biointerfaces: Preparation via atrp and characterization, Macromol Biosci, pp.11-400409, 2011.
DOI : 10.1002/mabi.201000312

N. Ishida and S. Biggs, Direct observation of the phase transition for a poly(nisopropylacryamide) layer grafted onto a solid surface by afm and qcmd, Langmuir, p.1108311088, 201123.

K. Plunkett, X. Zhu, and J. Moore, Leckband DE Pnipam chain collapse depends on the molecular weight and grafting density, Langmuir, p.42594266, 200622.

I. Malham and L. Bureau, Density Effects on Collapse, Compression, and Adhesion of Thermoresponsive Polymer Brushes, Langmuir, vol.26, issue.7, p.47624768, 201026.
DOI : 10.1021/la9035387

URL : https://hal.archives-ouvertes.fr/hal-01239417

A. Halperin and M. Kroger, Collapse of thermoresponsive brushes and the tuning of protein adsorption References References, Macromolecules, p.69867005, 201144.

R. Peng and X. Yao, Ding J Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion, Biomaterials, pp.32-80488057, 2011.

H. Liu and Y. Ito, Cell attachment and detachment on icropatternimmobilized poly(nisopropylacrylamide) with gelatin, Lab Chip, 20022.

H. Takahashi, M. Nakayama, K. Itoga, M. Yamato, and T. Okano, Micropatterned thermoresponsive polymer brush surfaces for fabricating cell sheets with wellcontrolled orientational structures, Biomacromolecules, pp.12-14141418, 2011.

M. Yamato, C. Konno, M. Utsumi, and T. Okano, Thermally responsive polymergrafted surfaces facilitate patterned cell seeding and co-culture, Biomaterials, vol.23, p.561567, 2002.

C. Williams, Y. Tsuda, B. Isenberg, M. Yamato, and T. Shimizu, Aligned Cell Sheets Grown on Thermo-Responsive Substrates with Microcontact Printed Protein Patterns, Advanced Materials, vol.1, issue.21, p.21612164, 200921.
DOI : 10.1002/adma.200801027

I. ?tubulin and . Gfp, Bright spot in the middle is the centrosome . Distribution of the centrosomes(blue) plotted on a pattern(red ).60X oil objective, p.75

L. Lcst, Schematic diagram of cell adhesiveness dependence on the brush density, p.94