A. [. Agmon, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Communications on Pure and Applied Mathematics, vol.29, issue.4, pp.623-727, 1959.
DOI : 10.1002/cpa.3160120405

T. [. Achdou, Deheuvels et N. Tchou ? « Comparison of different definitions of traces for a class of ramified domains with self-similar fractal boundaries

Y. Achdou and T. Deheuvels, JLip versus Sobolev spaces on a class of self-similar fractal foliages, Journal de Math??matiques Pures et Appliqu??es, vol.97, issue.2, pp.142-172, 2012.
DOI : 10.1016/j.matpur.2011.07.002

URL : https://hal.archives-ouvertes.fr/hal-00555205

C. J. Earle and J. , Manuscript prepared with the assistance of, Ahlfors ? Lectures on quasiconformal mappings, 1966.

Y. Achdou and C. Sabot, Diffusion and propagation problems in some ramified domains with a fractal boundary, ESAIM: Mathematical Modelling and Numerical Analysis, vol.40, issue.4, pp.623-652, 2006.
DOI : 10.1051/m2an:2006027

URL : https://hal.archives-ouvertes.fr/hal-00194810

C. [. Achdou and . Sabot, A Multiscale Numerical Method for Poisson Problems in Some Ramified Domains with a Fractal Boundary, Multiscale Modeling & Simulation, vol.5, issue.3, pp.828-860, 2006.
DOI : 10.1137/05064583X

URL : https://hal.archives-ouvertes.fr/hal-00446930

C. [. Achdou and . Sabot, Transparent boundary conditions for the Helmholtz equation in some ramified domains with a fractal boundary, Journal of Computational Physics, vol.220, issue.2, pp.712-739, 2007.
DOI : 10.1016/j.jcp.2006.05.033

URL : https://hal.archives-ouvertes.fr/hal-00194102

Y. Achdou, Tchou ? « Neumann conditions on fractal boundaries, Asymptotic Analysis, vol.53, issue.12, pp.61-82, 2007.

Y. Achdou, Trace results on domains with self-similar fractal boundaries, Journal de Math??matiques Pures et Appliqu??es, vol.89, issue.6, pp.596-623, 2008.
DOI : 10.1016/j.matpur.2008.02.008

URL : https://hal.archives-ouvertes.fr/hal-00202658

. [. Achdou, Tchou ? « Trace theorems for a class of ramified domains with self-similar fractal boundaries », SIAM j, Math. Anal, vol.42, issue.4, pp.828-860, 2010.

R. [. Barlow, Bass ? « The construction of Brownian motion on the Sierpi´nskipi´nski carpet, Ann. Inst. H. Poincaré Probab. Statist, vol.25, issue.3, pp.225-257, 1989.

D. [. Bliss, Geometric properties of three-dimensional fractal trees, Chaos, Solitons & Fractals, vol.42, issue.1, pp.119-124, 2009.
DOI : 10.1016/j.chaos.2008.11.001

P. Bagnerini and A. Buffa, Finite elements for a prefractal transmission problem, Comptes Rendus Mathematique, vol.342, issue.3, pp.211-214, 2006.
DOI : 10.1016/j.crma.2005.11.023

P. [. Buckley, ?. Koskela, and . John, Sobolev-Poincar?? implies John, Mathematical Research Letters, vol.2, issue.5, pp.577-593, 1995.
DOI : 10.4310/MRL.1995.v2.n5.a5

URL : http://eprints.maynoothuniversity.ie/1628/1/SBuckleySobolevPoincare42.pdf

B. Bojarski and ?. , Remarks on Sobolev imbedding inequalities, Lecture Notes in Math, vol.3, issue.5, pp.52-68, 1987.
DOI : 10.1090/S0273-0979-1980-14853-3

R. Capitanelli and ?. , Asymptotics for mixed Dirichlet???Robin problems in irregular domains, Journal of Mathematical Analysis and Applications, vol.362, issue.2, pp.450-459, 2010.
DOI : 10.1016/j.jmaa.2009.09.042

M. Costabel and M. , Singularities of Maxwell interface problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.3, pp.627-649, 1999.
DOI : 10.1051/m2an:1999155

[. Chua, S. Rodney, and R. L. , Wheeden ? « A compact embedding theorem for generalized Sobolev spaces

. [. Costabel, Stephan ? « Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation, Mathematical models and methods in mechanics, pp.175-251, 1985.

A. Damlamian, Which sequences of holes are admissible for periodic homogenization with Neumann boundary condition?, ESAIM: Control, Optimisation and Calculus of Variations, vol.8, pp.555-585, 2002.
DOI : 10.1051/cocv:2002046

URL : https://hal.archives-ouvertes.fr/hal-00693119

]. T. Deh, Deheuvels ? « Sobolev extension property for tree-shaped domains with selfcontacting fractal boundary

R. M. Frongillo, E. Lock, and D. A. , Symmetric fractal trees in three dimensions, Chaos, Solitons & Fractals, vol.32, issue.2, pp.284-295, 2007.
DOI : 10.1016/j.chaos.2006.04.036

. [. Filoche, Transfer Across Random versus Deterministic Fractal Interfaces, Physical Review Letters, vol.84, issue.25, pp.5776-5779, 2000.
DOI : 10.1103/PhysRevLett.84.5776

URL : http://arxiv.org/abs/cond-mat/0001273

E. Gagliardo and ?. , Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova, vol.27, pp.284-305, 1957.

]. S. Gol87 and ?. Goldstein, Random walks and diffusions on fractals », in Percolation theory and ergodic theory of infinite particle systems, Math. Appl, vol.8, pp.121-129, 1984.

P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol.24, 1985.
DOI : 10.1137/1.9781611972030

D. A. Herron, P. Koskela, and ?. Uniform, Uniform, Sobolev extension and quasiconformal circle domains, Journal d???Analyse Math??matique, vol.40, issue.1, pp.172-202, 1991.
DOI : 10.1007/BF03041069

D. A. Herron and P. , Koskela ? « Uniform and Sobolev extension domains, Proc. Amer, pp.483-489, 1992.
DOI : 10.1090/s0002-9939-1992-1075947-1

P. Haj?asz and P. Koskela, Tuominen ? « Measure density and extendability of Sobolev functions, Rev. Mat. Iberoam, vol.24, issue.2, pp.645-669, 2008.

P. Haj?asz and P. Koskela, Sobolev embeddings, extensions and measure density condition, Journal of Functional Analysis, vol.254, issue.5, pp.1217-1234, 2008.
DOI : 10.1016/j.jfa.2007.11.020

F. John, ?. Rotation, ». Strain, and C. , Rotation and strain, Communications on Pure and Applied Mathematics, vol.51, issue.3, pp.391-413, 1961.
DOI : 10.1002/cpa.3160140316

. [. Joly, Semin ? « Mathematical and numerical modeling of wave propagation in fractal trees, C. R. Math. Acad. Sci. Paris, vol.349, pp.19-20, 2011.

A. Jonsson, A Whitney extension theorem in $L^p$ and Besov spaces, Annales de l???institut Fourier, vol.28, issue.1, pp.139-192, 1978.
DOI : 10.5802/aif.684

A. Jonsson, Wallin ? « Function spaces on subsets of R n, Math. Rep, vol.2, issue.1, p.221, 1984.

A. Jonsson, Wallin ? « The dual of Besov spaces on fractals, Studia Math, vol.112, issue.3, pp.285-300, 1995.

J. Kigami and ?. , Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc, vol.335, issue.2, pp.721-755, 1993.

]. P. Kos99, Koskela ? « Removable sets for Sobolev spaces, Ark. Mat, vol.37, issue.2, pp.291-304, 1999.

M. Lancia and ?. , Second order transmission problems across a fractal surface, Accad. Naz. Sci. XL Mem. Mat. Appl, vol.27, issue.5, pp.191-213, 2003.

K. [. Lehto, Virtanen ? Quasiconformal mappings in the plane, second éd, 1973.

M. [. Lancia, Vivaldi ? « Lipschitz spaces and Besov traces on self-similar fractals », Rend, Accad. Naz. Sci. XL Mem. Mat. Appl, vol.23, issue.5, pp.101-116, 1999.

M. [. Lancia, Vivaldi ? « Asymptotic convergence of transmission energy forms, Adv. Math. Sci. Appl, vol.13, issue.1, pp.315-341, 2003.

. [. Lancia, Irregular Heat Flow Problems, SIAM Journal on Mathematical Analysis, vol.42, issue.4, pp.1539-1567, 2010.
DOI : 10.1137/090761173

. [. Lancia, Vernole ? « Semilinear evolution transmission problems across fractal layers », Nonlinear Anal, pp.4222-4240, 2012.
DOI : 10.1016/j.na.2012.03.011

B. B. , W. H. Freeman, and C. , Mandelbrot ? The fractal geometry of nature, 1982.

N. Meyers and ?. , Continuity properties of potentials », Duke Math, J, vol.42, pp.157-166, 1975.

B. Mandelbrot, The Canopy and Shortest Path in a Self-Contacting Fractal Tree, The Mathematical Intelligencer, vol.30, issue.2, pp.18-27, 1999.
DOI : 10.1007/BF03024842

P. Moran and ?. , Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos, pp.15-23, 1946.
DOI : 10.2307/1989852

O. Martio, Injectivity theorems in plane and space, Annales Academiae Scientiarum Fennicae Series A I Mathematica, vol.4, issue.2, pp.383-401, 1979.
DOI : 10.5186/aasfm.1978-79.0413

B. Maury, D. Salort, and C. , Vannier ? « Trace theorems for trees and application to the human lungs, Netw. Heterog. Media, vol.4, issue.3, pp.469-500, 2009.

U. Mosco, Vivaldi ? « Variational problems with fractal layers, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl, vol.27, issue.5, pp.237-251, 2003.

U. Mosco and M. A. , Fractal Reinforcement of Elastic Membranes, Archive for Rational Mechanics and Analysis, vol.47, issue.1, pp.49-74, 2009.
DOI : 10.1007/s00205-008-0145-1

H. [. Schmidt, The convergence of a direct BEM for the plane mixed boundary value problem of the Laplacian, Numerische Mathematik, vol.1, issue.2, pp.145-165, 1988.
DOI : 10.1007/BF01396971

E. Stephan and W. L. , An augmented Galerkin procedure for the boundary integral method applied to mixed boundary value problems, Applied Numerical Mathematics, vol.1, issue.2, pp.121-143, 1985.
DOI : 10.1016/0168-9274(85)90021-2

?. [. Vodop, V. M. Janov, ?. Gol, and T. G. D?te?-in, Latfullin ? « A criterion for the extension of

S. Yang and ?. , A Sobolev Extension Domain That is Not Uniform, manuscripta mathematica, vol.44, issue.2, pp.241-251, 2006.
DOI : 10.1007/s00229-006-0007-9