Détection et modélisation biomathématique d'évènements transitoires dans les signaux EEG intracérébraux : application au suivi de l'épileptogenèse dans un modèle murin

Résumé : Les épilepsies acquises se déclarent après un processus graduel appelé épileptogenèse. Bien que cliniquement silencieux, ce processus implique des modifications fonctionnelles observables notamment par électroencéphalographie. Cette thèse vise i) à identifier des marqueurs électrophysiologiques apparaissant au cours de l’épileptogenèse, et ii) à comprendre les modifications physiopathologiques sous-jacentes responsables de ces marqueurs et de leur évolution temporelle. Dans un premier temps, nous avons, dans un modèle d’épilepsie partielle chez la souris, monitoré des signaux électrophysiologiques intracérébraux pendant la mise en place de la maladie. Nous avons observé dans ces signaux expérimentaux, l’émergence d’événements transitoires pathologiques appelés pointes épileptiques. Nous avons développé des méthodes de traitement du signal pour détecter et caractériser automatiquement ces événements. Ainsi, nous avons pu mettre en évidence certains changements dans la forme des pointes épileptiques au cours de l’épileptogenèse ; en particulier l’apparition et l’augmentation d’une onde qui suit la pointe épileptique. Une hypothèse défendue dans ces travaux est que ces changements morphologiques peuvent constituer des marqueurs de l’épileptogenèse dans ce modèle animal. Dans un second temps, afin d’interpréter ces modifications électrophysiologiques en termes de processus neurophysiologiques sous-jacents, nous avons implémenté un modèle biomathématique, physiologiquement argumenté, capable de simuler des pointes épileptiques. Formellement, ce modèle est un système dynamique non linéaire qui reproduit les interactions synaptiques (excitatrices et inhibitrices) dans une population de neurones. Une analyse de sensibilité de ce modèle a permis de mettre en évidence le rôle critique de certains paramètres de connectivité dans la morphologie des pointes. Nos résultats montrent en effet, qu’une diminution de l’inhibition GABAergique entraîne un accroissement de l’onde dans les pointes épileptiques. À partir du modèle théorique, nous avons pu ainsi émettre des hypothèses sur les modifications opérant au cours du processus d’épileptogenèse. Ces hypothèses ont pu être en partie vérifiées expérimentalement en bloquant artificiellement l’inhibition GABAergique, dans le modèle in vivo chez la souris, et dans un modèle in vitro chez le rat. En conclusion, ce travail de thèse fournit, dans un modèle animal, un biomarqueur électrophysiologique de l’épileptogenèse et tente d’expliquer, grâce à une modélisation biomathématique, les processus neurophysiologiques sous-jacents qu’il reflète.
Type de document :
Thèse
Autre. Université Rennes 1, 2013. Français. <NNT : 2013REN1S043>
Liste complète des métadonnées


https://tel.archives-ouvertes.fr/tel-00869599
Contributeur : Abes Star <>
Soumis le : jeudi 3 octobre 2013 - 16:54:08
Dernière modification le : mardi 27 juin 2017 - 12:48:18
Document(s) archivé(s) le : samedi 4 janvier 2014 - 07:40:22

Fichier

HUNEAU_ClA_ment.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-00869599, version 1

Collections

Citation

Clément Huneau. Détection et modélisation biomathématique d'évènements transitoires dans les signaux EEG intracérébraux : application au suivi de l'épileptogenèse dans un modèle murin. Autre. Université Rennes 1, 2013. Français. <NNT : 2013REN1S043>. <tel-00869599>

Partager

Métriques

Consultations de
la notice

747

Téléchargements du document

691