M. H. Tayebjee, G. Y. Lip, and R. J. Macfadyen, Matrix metalloproteinases in coronary artery disease: Clinical and therapeutic implications and pathological significance, Curr. Med, 2005.

G. Murphy and H. Nagase, Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair?, Nature Clinical Practice Rheumatology, vol.35, issue.3, pp.128-135, 2008.
DOI : 10.1038/ncprheum0727

V. W. Yong, Metalloproteinases: Mediators of Pathology and Regeneration in the CNS, Nature Reviews Neuroscience, vol.21, issue.12, pp.931-944, 2005.
DOI : 10.1038/nrn1807

S. Filippov, G. C. Koenig, T. H. Chun, K. B. Hotary, I. Ota et al., MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells, The Journal of Experimental Medicine, vol.19, issue.5, pp.663-671, 2005.
DOI : 10.1161/01.RES.75.1.181

W. C. Parks, C. L. Wilson, and Y. S. López-boado, Matrix metalloproteinases as modulators of inflammation and innate immunity, Nature Reviews Immunology, vol.158, issue.8, pp.617-629, 2004.
DOI : 10.1073/pnas.93.9.3942

S. R. Bramhall, A. Rosemurgy, P. D. Brown, C. Bowry, and J. A. Buckels, Marimastat as firstline therapy for patients with unresectable pancreatic cancer: A randomized trial, J. Clin, 2001.

L. M. Coussens, B. Fingleton, and L. M. Matrisian, Matrix Metalloproteinase Inhibitors and Cancer--Trials and Tribulations, Science, vol.295, issue.5564, pp.2387-2392, 2002.
DOI : 10.1126/science.1067100

C. M. Overall and C. Lopez-otin, Strategies for mmp inhibition in cancer: innovations for the post-trial era, Nature Reviews Cancer, vol.2, issue.9, pp.657-672, 2002.
DOI : 10.1038/nrc884

M. Balbin, A. Fueyo, A. M. Tester, A. M. Pendas, A. S. Pitiot et al., Loss of collagenase-2 confers increased skin tumor susceptibility to male mice, Nature Genetics, vol.35, issue.3, pp.252-257, 2003.
DOI : 10.1038/ng1249

C. M. Overall and O. Kleifeld, Tumour microenvironment ??? Opinion: Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy, Nature Reviews Cancer, vol.279, issue.3, pp.227-239, 2006.
DOI : 10.1038/nrc1821

C. Lopez-otin and L. M. Matrisian, Emerging roles of proteases in tumour suppression, Nature Reviews Cancer, vol.46, issue.10, 2007.
DOI : 10.1038/nrc2228

M. D. Martin and L. M. Matrisian, The other side of MMPs: Protective roles in tumor progression, Cancer and Metastasis Reviews, vol.295, issue.3-4, pp.717-724, 2007.
DOI : 10.1007/s10555-007-9089-4

K. Holmbeck, P. Bianco, J. Caterina, S. Yamada, M. Kromer et al., MT1-MMP-Deficient Mice Develop Dwarfism, Osteopenia, Arthritis, and Connective Tissue Disease due to Inadequate Collagen Turnover, Cell, vol.99, issue.1, pp.81-92
DOI : 10.1016/S0092-8674(00)80064-1

H. Lee, C. M. Overall, C. A. Mcculloch, and J. Sodek, A Critical Role for the Membrane-type 1 Matrix Metalloproteinase in Collagen Phagocytosis, Molecular Biology of the Cell, vol.17, issue.11, pp.4812-4826, 2006.
DOI : 10.1091/mbc.E06-06-0486

C. Lopez-otin and C. M. Overall, Protease degradomics: A new challenge for proteomics, Nature Reviews Molecular Cell Biology, vol.3, issue.7, 2002.
DOI : 10.1038/nrm858

S. J. Hultgren, L. M. Matrisin, and W. C. Parks, Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense, Science, vol.286, pp.113-117, 1999.

E. M. Tam, C. J. Morrison, Y. I. Wu, M. S. Stack, and C. M. Overall, Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates, Proceedings of the National Academy of Sciences, vol.101, issue.18, pp.6917-6922, 2004.
DOI : 10.1073/pnas.0305862101

R. A. Dean, G. S. Butler, Y. Hamma-kourbali, J. Delbe, D. R. Brigstock et al., Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis, Molecular and Cellular Biology, vol.27, issue.24, 2007.
DOI : 10.1128/MCB.00821-07

P. Nayee, K. Owen, S. Patel, W. Thomas, G. Wells et al., Processing of tumour necrosis factor-alpha precursor by metalloproteinases, Nature, vol.370, pp.555-557, 1994.

U. Schonbeck, F. Mach, and P. Libby, Generation of biologically active IL-1 beta by matrix metalloproteinases: A novel caspase-1-independent pathway of IL-1 beta processing, J, 1998.

X. S. Puente, L. M. Sanchez, C. M. Overall, and C. Lopez-otin, Human and mouse proteases: a comparative genomic approach, Nature Reviews Genetics, vol.4, issue.7, pp.544-558, 2003.
DOI : 10.1038/nrg1111

G. S. Butler, R. A. Dean, E. M. Tam, and C. M. Overall, Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: Dynamics of membrane type, 2008.

K. J. Greenlee, Z. Werb, and F. Kheradmand, Matrix Metalloproteinases in Lung: Multiple, Multifarious, and Multifaceted, Physiological Reviews, vol.87, issue.1, pp.69-98, 2007.
DOI : 10.1152/physrev.00022.2006

K. Kessenbrock, V. Plaks, and Z. Werb, Matrix Metalloproteinases: Regulators of the Tumor Microenvironment, Cell, vol.141, issue.1, pp.52-56, 2010.
DOI : 10.1016/j.cell.2010.03.015

Z. Werb and S. Gordon, Elastase secretion by stimulated macrophages. Characterization and regulation, Journal of Experimental Medicine, vol.142, issue.2, pp.361-377, 1975.
DOI : 10.1084/jem.142.2.361

M. J. Banda and Z. Werb, Mouse macrophage elastase. Purification and characterization as a metalloproteinase, Biochemical Journal, vol.193, issue.2, pp.589-605, 1981.
DOI : 10.1042/bj1930589

S. D. Shapiro, G. L. Griffin, D. J. Gilbert, N. A. Jenkins, N. G. Copeland et al., Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase, J. Biol. Chem, vol.26, pp.4664-4671, 1992.

T. J. Gronski, R. L. Martin, D. K. Kobayashi, B. C. Walsh, M. C. Holman et al., Hydrolysis of a Broad Spectrum of Extracellular Matrix Proteins by Human Macrophage Elastase, Journal of Biological Chemistry, vol.272, issue.18, pp.12189-12194, 1997.
DOI : 10.1074/jbc.272.18.12189

S. D. Shapiro, Human macrophage metalloelastase Genomic organization, chromosomal location, gene linkage, and tissue-specific expression, J. Biol. Chem, vol.270, pp.14568-14575, 1995.

J. M. Shipley, R. L. Wesselschmidt, D. K. Kobayashi, T. J. Ley, and S. D. Shapiro, Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice., Proceedings of the National Academy of Sciences, vol.93, issue.9, pp.3942-3946, 1996.
DOI : 10.1073/pnas.93.9.3942

J. Lafferty, M. Sproule, W. Macnee, M. Connell, J. T. Murchison et al., Sputum matrix metalloproteinase-12 in patients with chronic obstructive pulmonary disease and asthma: Relationship to disease severity, J, 2012.

D. G. Morris, X. Huang, N. Kaminski, Y. Wang, S. D. Shapiro et al., Loss of integrin ??v??6-mediated TGF-?? activation causes Mmp12-dependent emphysema, Nature, vol.17, issue.6928, pp.169-173, 2003.
DOI : 10.1101/GR.191301

P. Libby and M. Aikawa, Stabilization of atherosclerotic plaques: New mechanisms and clinical targets, Nature Medicine, vol.21, issue.11, pp.1257-1262, 2002.
DOI : 10.1038/15271

Z. S. Galis, G. K. Sukhova, M. W. Lark, and P. Libby, Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques., Journal of Clinical Investigation, vol.94, issue.6, pp.2493-2503, 1994.
DOI : 10.1172/JCI117619

Z. S. Galis and J. J. Khatri, Matrix metalloproteinases in vascular remodeling and atherogenesis -The good, the bad, and the ugly, Circ. Res, vol.90, pp.251-262, 2002.

S. J. George, Tissue inhibitors of metalloproteinases and metalloproteinases in atherosclerosis, Current Opinion in Lipidology, vol.9, issue.5, pp.413-423, 1998.
DOI : 10.1097/00041433-199810000-00005

A. C. Newby, Dual Role of Matrix Metalloproteinases (Matrixins) in Intimal Thickening and Atherosclerotic Plaque Rupture, Physiological Reviews, vol.85, issue.1, pp.1-31, 2005.
DOI : 10.1152/physrev.00048.2003

C. M. Dollery and P. Libby, Atherosclerosis and proteinase activation, Cardiovascular Research, vol.69, issue.3, pp.625-635, 2006.
DOI : 10.1016/j.cardiores.2005.11.003

J. L. Johnson, S. J. George, A. C. Newby, and C. L. Jackson, Divergent effects of matrix metalloproteinase-3, metalloproteinase-7, metalloproteinase-9, p.12, 2005.

T. Watanabe, Y. Sasaguri, S. Watanabe, and J. Fan, Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits, Circulation, vol.113, 2006.

S. A. Wickline and W. C. Parks, Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.9748-9753, 1996.

A. R. Morgan, K. Rerkasem, P. J. Gallagher, B. Zhang, G. E. Morris et al., Differences in Matrix Metalloproteinase-1 and Matrix Metalloproteinase-12 Transcript Levels Among Carotid Atherosclerotic Plaques With Different Histopathological Characteristics, Stroke, vol.35, issue.6, pp.1310-1315, 2004.
DOI : 10.1161/01.STR.0000126822.01756.99

P. Eriksson, Allele-specific regulation of matrix metalloproteinase-12 gene activity is associated with coronary artery luminal dimensions in diabetic patients with manifest coronary artery disease, Circ. Res, vol.86, pp.998-1003, 2000.

V. Fuster, Z. S. Galis, L. J. Feldman, and Z. A. Fayad, Monitoring of arterial wall remodelling in atherosclerotic rabbits with a magnetic resonance imaging contrast agent binding to matrix metalloproteinases, Eur. Heart J, vol.32, pp.1561-1571, 2011.

M. Razavian, S. Tavakoli, J. Zhang, L. Nie, L. W. Dobrucki et al., Atherosclerosis Plaque Heterogeneity and Response to Therapy Detected by In Vivo Molecular Imaging of Matrix Metalloproteinase Activation, Journal of Nuclear Medicine, vol.52, issue.11, pp.1795-1802, 2011.
DOI : 10.2967/jnumed.111.092379

S. Tavakoli, M. Razavian, J. Zhang, L. Nie, R. Marfatia et al., Matrix Metalloproteinase Activation Predicts Amelioration of Remodeling After Dietary Modification in Injured Arteries, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.1, 2011.
DOI : 10.1161/ATVBAHA.110.216036

J. Zhang, L. Nie, M. Razavian, M. Ahmed, L. W. Dobrucki et al., Molecular Imaging of Activated Matrix Metalloproteinases in Vascular Remodeling, Circulation, vol.118, issue.19, 1953.
DOI : 10.1161/CIRCULATIONAHA.108.789743

E. B. Springman, E. L. Angleton, H. Birkedal-hansen, and H. E. Van-wart, Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a "cysteine switch" mechanism for activation., Proc. Natl. Acad, 1990.
DOI : 10.1073/pnas.87.1.364

H. E. Wart and H. Birkedal-hansen, The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family., Proceedings of the National Academy of Sciences, vol.87, issue.14, pp.5578-5582, 1990.
DOI : 10.1073/pnas.87.14.5578

C. Brinckerhoff and L. Matrisian, TIMELINEMatrix metalloproteinases: a tail of a frog that became a prince, Nature Reviews Molecular Cell Biology, vol.3, issue.3, pp.207-214, 2002.
DOI : 10.1038/nrm763

M. Whittaker, C. D. Floyd, P. Brown, and A. J. Gearing, Design and Therapeutic Application of Matrix Metalloproteinase Inhibitors, Chemical Reviews, vol.99, issue.9, pp.2735-76, 1999.
DOI : 10.1021/cr9804543

S. W. Manka, F. Carafoli, R. Visse, D. Bihan, N. Raynal et al., Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1, Proceedings of the National Academy of Sciences, vol.109, issue.31, pp.12461-12466, 2012.
DOI : 10.1073/pnas.1204991109

I. Bertini, V. Calderone, M. Fragai, R. Jaiswal, C. Luchinat et al., Evidence of Reciprocal Reorientation of the Catalytic and Hemopexin-Like Domains of Full-Length MMP-12, Journal of the American Chemical Society, vol.130, issue.22, pp.7011-7021, 2008.
DOI : 10.1021/ja710491y

A. B. Mcelroy, D. Drewry, M. H. Lambert, and S. R. Jordan, Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor, Science, vol.263, pp.375-377, 1994.

W. Stöcker and W. Bode, Structural features of a superfamily of zinc-endopeptidases: the metzincins, Current Opinion in Structural Biology, vol.5, issue.3, 1995.
DOI : 10.1016/0959-440X(95)80101-4

F. X. Gomis-rüth, Catalytic Domain Architecture of Metzincin Metalloproteases, Journal of Biological Chemistry, vol.284, issue.23, 2009.
DOI : 10.1074/jbc.R800069200

R. E. Babine and S. L. Bender, Molecular Recognition of Protein???Ligand Complexes:?? Applications to Drug Design, Chemical Reviews, vol.97, issue.5, pp.1359-1472, 1997.
DOI : 10.1021/cr960370z

F. J. Moy, P. K. Chanda, J. Chen, S. Cosmi, W. Edris et al., Impact of Mobility on Structure-Based Drug Design for the MMPs, Journal of the American Chemical Society, vol.124, issue.43, pp.12658-12659, 2002.
DOI : 10.1021/ja027391x

L. Devel, B. Czarny, F. Beau, D. Georgiadis, E. Stura et al., Third generation of matrix metalloprotease inhibitors: Gain, 2010.

A. Yiotakis and V. Dive, Synthetic active site-directed inhibitors of metzincins: Achievement and perspectives, Molecular Aspects of Medicine, vol.29, issue.5, pp.329-338, 2008.
DOI : 10.1016/j.mam.2008.06.001

P. Turano, Conformational variability of matrix metalloproteinases: Beyond a single 3D structure, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.5334-5339, 2005.

H. S. Shieh, A. G. Tomasselli, K. J. Mathis, M. E. Schnute, S. S. Woodard et al., Structure analysis reveals the flexibility of the ADAMTS-5 active site, Protein Science, vol.883, issue.4, pp.735-744, 2011.
DOI : 10.1002/pro.606

X. C. Cheng, H. Fang, and W. F. Xu, Advances in assays of matrix metalloproteinases (MMPs) and their inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, vol.26, issue.6, pp.154-167, 2008.
DOI : 10.1074/jbc.M004538200

S. Krizkova, O. Zitka, M. Masarik, V. Adam, M. Stiborova et al., Assays for determination of matrix metalloproteinases and their activity, TrAC Trends in Analytical Chemistry, vol.30, issue.11, pp.1819-1832, 2011.
DOI : 10.1016/j.trac.2011.06.016

P. A. Snoek-van-beurden and J. W. Von-den-hoff, Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors, BioTechniques, vol.38, issue.1, pp.73-83, 2005.
DOI : 10.2144/05381RV01

D. E. Kleiner and W. G. Stetler-stevenson, Quantitative Zymography: Detection of Picogram Quantities of Gelatinases, Analytical Biochemistry, vol.218, issue.2, pp.325-329, 1994.
DOI : 10.1006/abio.1994.1186

J. F. Woessner, Quantification of matrix metalloproteinases in tissue samples, Methods in enzymology, vol.31, pp.510-528, 1995.

F. Barbosa, R. F. Gerlach, and J. E. Tanus-santos, Matrix Metalloproteinase-9 Activity in Plasma Correlates with Plasma and Whole Blood Lead Concentrations, Basic <html_ent glyph="@amp;" ascii="&"/> Clinical Pharmacology <html_ent glyph="@amp;" ascii="&"/> Toxicology, vol.6, issue.6, 2006.
DOI : 10.1016/S0584-8547(02)00085-X

R. Sepper, Y. T. Konttinen, T. Sorsa, and H. Koski, Gelatinolytic and Type IV Collagenolytic Activity in Bronchiectasis, Chest, vol.106, issue.4, pp.1129-1133, 1994.
DOI : 10.1378/chest.106.4.1129

L. Troeberg and H. Nagase, Zymography of Metalloproteinases, Curr. Protoc. Protein Sci, vol.8, issue.15, pp.1-1512, 2003.
DOI : 10.1002/0471140864.ps2115s33

P. Fernandez-resa, E. Mira, and A. R. Quesada, Enhanced Detection of Casein Zymography of Matrix Metalloproteinases, Analytical Biochemistry, vol.224, issue.1, pp.434-435, 1995.
DOI : 10.1006/abio.1995.1063

Z. S. Zeng, W. P. Shu, and A. M. Cohen, Matrix metallopeptidase-7 expression in colorectal cancer liver metastases: Evidence for involvement of MMP-7 activation in human cancer metastases, Clin. Cancer Res, vol.8, pp.144-148, 2002.

K. J. Raser, A. Posner, and K. K. Wang, Casein Zymography: A Method to Study ??-Calpain, M-Calpain, and Their Inhibitory Agents, Archives of Biochemistry and Biophysics, vol.319, issue.1, pp.211-216, 1995.
DOI : 10.1006/abbi.1995.1284

B. Gogly, N. Groult, W. Hornebeck, G. Godeau, and B. Pellat, Collagen Zymography as a Sensitive and Specific Technique for the Determination of Subpicogram Levels of Interstitial Collagenase, Analytical Biochemistry, vol.255, issue.2, pp.211-216, 1998.
DOI : 10.1006/abio.1997.2318

R. D. Hautamaki, D. K. Kobayashi, R. M. Senior, and S. D. Shapiro, Requirement for Macrophage Elastase for Cigarette Smoke-Induced Emphysema in Mice, Science, vol.277, issue.5334, 1997.
DOI : 10.1126/science.277.5334.2002

L. Hao, M. Du, A. Lopez-campistrous, and C. Fernandez-patron, Agonist-Induced Activation of Matrix Metalloproteinase-7 Promotes Vasoconstriction Through the Epidermal Growth Factor-Receptor Pathway, Circulation Research, vol.94, issue.1, pp.68-76, 2004.
DOI : 10.1161/01.RES.0000109413.57726.91

W. Yu and J. F. Woessner, Heparin-Enhanced Zymographic Detection of Matrilysin and Collagenases, Analytical Biochemistry, vol.293, issue.1, pp.38-42, 2001.
DOI : 10.1006/abio.2001.5099

S. J. Yan and E. A. Blomme, In Situ Zymography: A Molecular Pathology Technique to Localize Endogenous Protease Activity in Tissue Sections, Veterinary Pathology, vol.40, issue.3, pp.227-236, 2003.
DOI : 10.1354/vp.40-3-227

S. J. George and J. L. Johnson, In Situ Zymography, Matrix Metalloproteinase Protocols, vol.151, pp.411-415, 2001.
DOI : 10.1385/1-59259-046-2:411

W. M. Frederiks and O. R. Mook, Metabolic Mapping of Proteinase Activity with Emphasis on In Situ Zymography of Gelatinases, Journal of Histochemistry & Cytochemistry, vol.148, issue.6, 2004.
DOI : 10.1161/01.RES.0000070112.80711.3D

S. Hattori, H. Fujisaki, T. Kiriyama, T. Yokoyama, and S. Irie, Real-Time Zymography and Reverse Zymography: A Method for Detecting Activities of Matrix Metalloproteinases and Their Inhibitors Using FITC-Labeled Collagen and Casein as Substrates, Analytical Biochemistry, vol.301, issue.1, p.27, 2002.
DOI : 10.1006/abio.2001.5479

K. Watanabe and S. Hattori, Real-time dual zymographic analysis of matrix metalloproteinases using fluorescein-isothiocyante-labeled gelatin and Texas-red-labeled casein, Analytical Biochemistry, vol.307, issue.2, pp.390-392, 2002.
DOI : 10.1016/S0003-2697(02)00054-4

T. Sorsa, T. Salo, E. Koivunen, J. Tyynelä, Y. T. Konttinen et al., Activation of Type IV Procollagenases by Human Tumor-associated Trypsin-2, Journal of Biological Chemistry, vol.272, issue.34, p.21067, 1997.
DOI : 10.1074/jbc.272.34.21067

H. Sunada and Y. Nagai, A Rapid Micro-Assay Method for Gelatinolytic Activity Using Tritium-Labeled Heat-Denatured Polymeric Collagen as a Substrate and Its Application to the Detection of Enzymes Involved in Collagen Metabolism1, The Journal of Biochemistry, vol.87, issue.6, pp.1765-1771, 1980.
DOI : 10.1093/oxfordjournals.jbchem.a132921

D. H. Manicourt and V. Lefebvre, An Assay for Matrix Metalloproteinases and Other Proteases Acting on Proteoglycans, Casein, or Gelatin, Analytical Biochemistry, vol.215, issue.2, pp.171-179, 1993.
DOI : 10.1006/abio.1993.1572

R. M. Senior, G. L. Griffin, C. J. Fliszar, S. D. Shapiro, G. I. Goldberg et al., Human 92-and 72-kilodalton type IV collagenases are elastases, J. Biol. Chem, vol.266, 1991.

K. Terato, Y. Nagai, K. Kawanishi, and S. Yamamoto, A rapid assay method of collagenase activity using 14C-labeled soluble collagen as substrate, Biochimica et Biophysica Acta (BBA) - Enzymology, vol.445, issue.3, pp.753-762, 1976.
DOI : 10.1016/0005-2744(76)90125-X

P. J. Koshy, A. D. Rowan, P. F. Life, and T. E. Cawston, 96-Well Plate Assays for Measuring Collagenase Activity Using 3H-Acetylated Collagen, Analytical Biochemistry, vol.275, issue.2, pp.202-207, 1999.
DOI : 10.1006/abio.1999.4310

V. M. Koritsas and H. J. Atkinson, An Assay for Detecting Nanogram Levels of Proteolytic Enzymes, Analytical Biochemistry, vol.227, issue.1, pp.22-26, 1995.
DOI : 10.1006/abio.1995.1247

B. Ratnikov, E. Deryugina, J. Leng, G. Marchenko, D. Dembrow et al., Determination of Matrix Metalloproteinase Activity Using Biotinylated Gelatin, Analytical Biochemistry, vol.286, issue.1, pp.149-155, 2000.
DOI : 10.1006/abio.2000.4798

H. A. Bawadi, T. M. Antunes, F. Shih, and J. N. Losso, In Vitro Inhibition of the Activation of Pro-matrix Metalloproteinase 1 (Pro-MMP-1) and Pro-matrix Metalloproteinase 9 (Pro-MMP-9) by Rice and Soybean Bowman???Birk Inhibitors, Journal of Agricultural and Food Chemistry, vol.52, issue.15, pp.4730-4736, 2004.
DOI : 10.1021/jf034576u

S. K. Rao, M. Mathrubutham, A. Karteron, and J. R. Sorensen, A Versatile Microassay for Elastase Using Succinylated Elastin, Analytical Biochemistry, vol.250, issue.2, pp.222-227, 1997.
DOI : 10.1006/abio.1997.2223

T. Grimm, A. Schäfer, and P. Högger, Antioxidant activity and inhibition of matrix metalloproteinases by metabolites of maritime pine bark extract (pycnogenol) Free Radic, 2004.

D. A. Menges, D. L. Ternullo, A. L. Tan-wilson, and S. Gal, Continuous Assay of Proteases Using a Microtiter Plate Fluorescence Reader, Analytical Biochemistry, vol.254, issue.1, pp.144-147, 1997.
DOI : 10.1006/abio.1997.2408

L. Gao, N. Mbonu, L. Cao, and D. Gao, Label-Free Colorimetric Detection of Gelatinases on Nanoporous Silicon Photonic Films, Analytical Chemistry, vol.80, issue.5, pp.1468-1473, 2008.
DOI : 10.1021/ac701870y

S. H. Jung, D. H. Kong, J. H. Park, S. T. Lee, J. Hyun et al., Rapid analysis of matrix metalloproteinase-3 activity by gelatin arrays using a spectral surface plasmon resonance biosensor, The Analyst, vol.278, issue.158, pp.1050-1057, 2010.
DOI : 10.1039/b919857a

C. Lombard, J. Saulnier, and J. Wallach, Assays of matrix metalloproteinases (MMPs) activities: a review, Biochimie, vol.87, issue.3-4, pp.265-272, 2005.
DOI : 10.1016/j.biochi.2005.01.007

M. S. Stack and R. D. Gray, Comparison of vertebrate collagenase and gelatinase using a new fluorogenic substrate peptide, J. Biol. Chem, vol.264, pp.4277-4281, 1989.

C. G. Knight, F. Willenbrock, and G. Murphy, A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases, FEBS Letters, vol.266, issue.3, pp.263-266, 1992.
DOI : 10.1016/0014-5793(92)80300-6

B. Beekman, J. W. Drijfhout, W. Bloemhoff, H. K. Ronday, P. P. Tak et al., Convenient fluorometric assay for matrix metalloproteinase activity and its application in biological media, FEBS Letters, vol.22, issue.2, pp.221-225, 1996.
DOI : 10.1016/0014-5793(96)00665-5

B. Beekman, B. Van-el, J. W. Drijfhout, H. K. Rondaya, and J. M. Tekoppele, Highly increased levels of active stromelysin in rheumatoid synovial fluid determined by a selective fluorogenic assay, FEBS Letters, vol.254, issue.3, pp.305-309, 1997.
DOI : 10.1016/S0014-5793(97)01371-9

H. Nagase, C. G. Fields, and G. B. Fields, Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin-1 (matrix metalloproteinase-3), J. Biol. Chem, vol.269, pp.20952-20957, 1994.

V. Knäuper, C. López-otin, B. Smith, G. Knight, and G. Murphy, Biochemical Characterization of Human Collagenase-3, Journal of Biological Chemistry, vol.271, issue.3, pp.1544-1550, 1996.
DOI : 10.1074/jbc.271.3.1544

J. L. Lauer-fields, T. Sritharan, M. S. Stack, H. Nagase, and G. B. Fields, Selective Hydrolysis of Triple-helical Substrates by Matrix Metalloproteinase-2 and -9, Journal of Biological Chemistry, vol.278, issue.20, 2003.
DOI : 10.1074/jbc.M211330200

W. Cheng, Y. Chen, F. Yan, L. Ding, S. Ding et al., Ultrasensitive scanometric strategy for detection of matrix metalloproteinases using a histidine tagged peptide???Au nanoparticle probe, Chemical Communications, vol.80, issue.10, pp.2877-2879, 2011.
DOI : 10.1039/c0cc04441e

J. H. Verheijen, N. M. Nieuwenbroek, B. Beekman, R. Hanemaaijer, H. W. Verspaget et al., Modified proenzymes as artificial substrates for proteolytic enzymes: colorimetric assay of bacterial collagenase and matrix metalloproteinase activity using modified pro-urokinase, Biochemical Journal, vol.323, issue.3, pp.603-609, 1997.
DOI : 10.1042/bj3230603

R. Hanemaaijer, N. Van-lent, H. Visser, and J. Verheijen, Methods to increase the sensitivity of the MMP-9 activity assay, Life Science News, vol.3, pp.8-9, 1999.

R. Hanemaaijer, H. Visser, Y. Kontiiner, P. Koolwijk, and J. H. Verheijen, A novel and simple immunocapture assay for determination of gelatinase-b (MMP-9) activities in biological fluids: Saliva from patients with Sj??gren's Syndrome contain increased latent and active gelatinase-b levels, Matrix Biology, vol.17, issue.8-9, pp.657-665, 1998.
DOI : 10.1016/S0945-053X(98)90116-0

R. Hanemaaijer, C. F. Sier, H. Visser, L. Scholte, N. Van-lent et al., MMP-9 Activity in Urine from Patients with Various Tumors, as Measured by a Novel MMP Activity Assay Using Modified Urokinase as a Substrate, Annals of the New York Academy of Sciences, vol.17, issue.1 INHIBITION OF, pp.141-149, 1999.
DOI : 10.1016/0092-8674(94)90200-3

S. J. Capper, J. Verheijen, L. Smith, M. Sully, H. Visser et al., Determination of Gelatinase-A (MMP-2) Activity Using a Novel Immunocapture Assay, Annals of the New York Academy of Sciences, vol.323, issue.1 INHIBITION OF, 1999.
DOI : 10.1016/S0945-053X(98)90116-0

J. H. Vernooy, J. H. Lindeman, J. A. Jacobs, R. Hanemaaijer, and E. F. Wouters, Increased Activity of Matrix Metalloproteinase-8 and Matrix Metalloproteinase-9 in Induced Sputum From Patients With COPD, Chest, vol.126, issue.6, pp.1802-1810, 2004.
DOI : 10.1378/chest.126.6.1802

J. L. Lauer-fields, H. Nagase, and G. B. Fields, Development of a solid-phase assay for analysis of matrix metalloproteinase activity, J. Biomol. Tech, vol.15, pp.305-316, 2004.

P. Lapan, J. Brady, C. Grierson, M. Fleming, D. Miller et al., Optimization of total protein and activity assays for the detection of MMP-12 in induced human sputum, BMC Pulmonary Medicine, vol.19, issue.19, 2010.
DOI : 10.1016/j.bmcl.2009.07.155

U. Pieper-furst, U. Kleuser, W. F. Stocklein, A. Warsinke, and F. W. Scheller, Detection of subpicomolar concentrations of human matrix metalloproteinase-2 by an optical biosensor, Analytical Biochemistry, vol.332, issue.1, pp.160-167, 2004.
DOI : 10.1016/j.ab.2004.05.047

S. Brown, M. Bernardo, Z. H. Li, L. P. Kotra, Y. Tanaka et al., Potent and Selective Mechanism-Based Inhibition of Gelatinases, Journal of the American Chemical Society, vol.122, issue.28, pp.6799-6800, 2000.
DOI : 10.1021/ja001461n

R. Fridman, Antimetastatic activity of a novel mechanism-based gelatinase inhibitor, 2005.

D. Hesek, M. Toth, V. Krchnak, R. Fridman, and S. Mobashery, Synthesis of an inhibitortethered resin for detection of active matrix metalloproteinases involved in disease, J. Org, 2006.

D. C. Gervasi, A. Raz, M. Dehem, M. Yang, M. Kurkinen et al., Carbohydrate-Mediated Regulation of Matrix Metalloproteinase-2 Activation in Normal Human Fibroblasts and Fibrosarcoma Cells, Biochemical and Biophysical Research Communications, vol.228, issue.2, pp.530-538, 1996.
DOI : 10.1006/bbrc.1996.1694

J. R. Freije and R. Bischoff, Activity-based enrichment of matrix metalloproteinases using reversible inhibitors as affinity ligands, Journal of Chromatography A, vol.1009, issue.1-2, pp.155-169, 2003.
DOI : 10.1016/S0021-9673(03)00920-8

R. Freije, T. Klein, B. Ooms, H. Kauffman, and R. Bischoff, An integrated high-performance liquid chromatography???mass spectrometry system for the activity-dependent analysis of matrix metalloproteases, Journal of Chromatography A, vol.1189, issue.1-2, pp.417-425, 2008.
DOI : 10.1016/j.chroma.2007.10.059

E. Dragoni, V. Calderone, M. Fragai, R. Jaiswal, R. Luchinat et al., Biotin-Tagged Probes for MMP Expression and Activation: Design, Synthesis, and Binding Properties, Bioconjugate Chemistry, vol.20, issue.4, 2009.
DOI : 10.1021/bc8003827

S. Bregant, C. Huillet, L. Devel, A. S. Dabert-gay, F. Beau et al., Detection of Matrix Metalloproteinase Active Forms in Complex Proteomes: Evaluation of Affinity versus Photoaffinity Capture, Journal of Proteome Research, vol.8, issue.5, pp.2484-2494, 2009.
DOI : 10.1021/pr801069c

M. J. Evans and B. F. Cravatt, Mechanism-Based Profiling of Enzyme Families, Chemical Reviews, vol.106, issue.8, pp.3279-3301, 2006.
DOI : 10.1021/cr050288g

Y. Liu, M. P. Patricelli, and B. F. Cravatt, Activity-based protein profiling: The serine hydrolases, Proceedings of the National Academy of Sciences, vol.96, issue.26, pp.14694-14699, 1999.
DOI : 10.1073/pnas.96.26.14694

M. P. Patricelli, D. K. Giang, L. M. Stamp, and J. J. Brubaum, Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes, PROTEOMICS, vol.1, issue.8, 2001.
DOI : 10.1002/1615-9861(200109)1:9<1067::AID-PROT1067>3.0.CO;2-4

D. S. Jonhson, E. Weerapana, and B. F. Cravatt, Strategies for discovering and derisking covalent, irreversible enzyme inhibitors, Future Medicinal Chemistry, vol.2, issue.6, pp.949-964, 2010.
DOI : 10.4155/fmc.10.21

N. A. Thornberry, E. P. Peterson, J. J. Zhao, A. D. Howard, P. R. Griffin et al., Inactivation of interleukin-1? converting enzyme by peptide (acyloxy)methyl ketones, 1994.

D. Riendeau, S. Rodan, P. Tawa, G. Wesolowski, K. E. Bass et al., An activity-based probe for the determination of cysteine cathepsin protease activities in whole cells, Anal. Biochem, vol.335, pp.218-227, 2004.

D. Greenbaum, K. F. Medzihradszky, A. Burlingame, and M. Bogyo, Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools, Chemistry & Biology, vol.7, issue.8, pp.569-581, 2000.
DOI : 10.1016/S1074-5521(00)00014-4

A. E. Speers and B. F. Cravatt, Chemical Strategies for Activity-Based Proteomics, ChemBioChem, vol.17, issue.1, 2004.
DOI : 10.1002/cbic.200300721

G. C. Adams, E. J. Sorensen, and B. F. Cravatt, Chemical Strategies for Functional Proteomics, Molecular & Cellular Proteomics, vol.1, issue.10, pp.781-790, 2002.
DOI : 10.1074/mcp.R200006-MCP200

M. Fonovi? and M. Bogyo, Activity-based probes as a tool for functional proteomic analysis of proteases, Expert Review of Proteomics, vol.5, issue.5, pp.721-730, 2008.
DOI : 10.1586/14789450.5.5.721

L. Jiyoun and M. Bogyo, Development of Near-Infrared Fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain, Chem. Biol, vol.5, pp.233-243, 2009.

G. W. Fleet, R. R. Porter, and J. R. Knowles, Affinity Labelling of Antibodies with Aryl Nitrene as Reactive Group, Nature, vol.97, issue.5218, pp.511-512, 1969.
DOI : 10.1021/bi00865a034

R. A. Smith and J. R. Knowles, Aryldiazirines. Potential reagents for photolabeling of biological receptor sites, Journal of the American Chemical Society, vol.95, issue.15, pp.5072-5073, 1973.
DOI : 10.1021/ja00796a062

Y. Hatanaka and Y. Sadakane, Photoaffinity Labeling in Drug Discovery and Developments: Chemical Gateway for Entering Proteomic Frontier, Current Topics in Medicinal Chemistry, vol.2, issue.3, pp.271-288, 2002.
DOI : 10.2174/1568026023394182

S. A. Fleming, Chemical reagents in photoaffinity labeling, Tetrahedron, vol.51, issue.46, 1995.
DOI : 10.1016/0040-4020(95)00598-3

G. Dormán and G. D. Prestwich, Using photolabile ligands in drug discovery and development, Trends in Biotechnology, vol.18, issue.2, pp.64-77, 2000.
DOI : 10.1016/S0167-7799(99)01402-X

P. P. Geurink, L. M. Prely, G. A. Van-der-marel, R. Bischoff, and H. S. Overkleeft, Photoaffinity Labeling in Activity-Based Protein Profiling, Top. Curr. Chem, vol.324, pp.85-113, 2012.
DOI : 10.1007/128_2011_286

A. Wittelsberger, B. E. Thomas, D. F. Mierker, and M. Rosenblatt, Methionine acts as a ???magnet??? in photoaffinity crosslinking experiments, FEBS Letters, vol.37, issue.7, pp.1872-1876, 2006.
DOI : 10.1016/j.febslet.2006.02.050

A. Saghatelian, N. Jessani, A. Joseph, M. Humphrey, and B. F. Cravatt, Activity-based probes for the proteomic profiling of metalloproteases, Proceedings of the National Academy of Sciences, vol.101, issue.27, pp.10000-10005, 2004.
DOI : 10.1073/pnas.0402784101

J. Wang, M. Uttamchandani, J. Li, M. Hu, and S. Q. Yao, Click'' synthesis of small molecule probes for activity-based fingerprinting of matrix metalloproteases Chem, Comm, vol.28, pp.3783-3785, 2006.

M. P. Blanton and J. B. Cohen, Identifying the Lipid-Protein Interface of the Torpedo Nicotinic Acetylcholine Receptor: Secondary Structure Implications, Biochemistry, vol.33, issue.10, pp.2859-3738, 1994.
DOI : 10.1021/bi00176a016

E. W. Chan, S. Chattopadhaya, R. C. Panicker, X. Huang, and S. Q. Yao, Developing Photoactive Affinity Probes for Proteomic Profiling:?? Hydroxamate-based Probes for Metalloproteases, Journal of the American Chemical Society, vol.126, issue.44, pp.14435-14446, 2004.
DOI : 10.1021/ja047044i

M. A. Leeuwenburgh, P. P. Geurink, T. Klein, H. F. Kauffman, G. A. Van-der-marel et al., Solid-Phase Synthesis of Succinylhydroxamate Peptides:??? Functionalized Matrix Metalloproteinase Inhibitors, Organic Letters, vol.8, issue.8, pp.1705-1708, 2006.
DOI : 10.1021/ol060409e

P. P. Geurink, T. Klein, L. Prely, K. Paal, M. A. Leeuwenburgh et al., Design of Peptide Hydroxamate-Based Photoreactive Activity-Based Probes of Zinc-Dependent Metalloproteases, European Journal of Organic Chemistry, vol.271, issue.11, pp.2100-2112, 2010.
DOI : 10.1002/ejoc.200901385

W. Qiu, J. Xu, X. Li, L. Zhong, J. Li et al., Design and Synthesis of Matrix Metalloprotease Photoaffinity Trimodular Probes, Chinese Journal of Chemistry, vol.27, issue.4, pp.825-833, 2009.
DOI : 10.1002/cjoc.200990138

J. Lenger, F. Kaschani, T. Lenz, C. Dalhoff, J. G. Villamor et al., Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe, Bioorganic & Medicinal Chemistry, vol.20, issue.2, pp.592-596, 2012.
DOI : 10.1016/j.bmc.2011.06.068

J. L. Johnson, L. Devel, B. Czarny, S. J. George, C. L. Jackson et al., A Selective Matrix Metalloproteinase-12 Inhibitor Retards Atherosclerotic Plaque Development in Apolipoprotein E-Knockout Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.3, 2011.
DOI : 10.1161/ATVBAHA.110.219147

A. David, D. Steer, S. Bregant, L. Devel, A. Makaritis et al., Cross-Linking Yield Variation of a Potent Matrix Metalloproteinase Photoaffinity Probe and Consequences for Functional Proteomics, Angewandte Chemie International Edition, vol.102, issue.18, pp.3275-3277, 2007.
DOI : 10.1002/anie.200604408

A. S. Dabert-gay, B. Czarny, L. Devel, F. Beau, E. Lajeunesse et al., Molecular Determinants of Matrix Metalloproteinase-12 Covalent Modification by a Photoaffinity Probe: INSIGHTS INTO ACTIVITY-BASED PROBE DEVELOPMENT AND CONFORMATIONAL VARIABILITY OF MATRIX METALLOPROTEINASES, Journal of Biological Chemistry, vol.283, issue.45, pp.31058-31067, 2008.
DOI : 10.1074/jbc.M805795200

A. S. Dabert-gay, B. Czarny, E. Lajeunesse, R. Thai, H. Nagase et al., Covalent Modification of Matrix Metalloproteinases by a Photoaffinity Probe: Influence of Nucleophilicity and Flexibility of the Residue in Position 241, Bioconjugate Chemistry, vol.20, issue.2, pp.367-375, 2009.
DOI : 10.1021/bc800478b

N. Jullien, A. Makritis, D. Georgiadis, F. Beau, A. Yiotakis et al., Phosphinic Tripeptides as Dual Angiotensin-Converting Enzyme C-Domain and Endothelin-Converting Enzyme-1 Inhibitors, Journal of Medicinal Chemistry, vol.53, issue.1, pp.208-220, 2010.
DOI : 10.1021/jm9010803

A. Makaritis, D. Georgiadis, V. Dive, and A. Yiotakis, Diastereoselective Solution and Multipin-Based Combinatorial Array Synthesis of a Novel Class of Potent Phosphinic Metalloprotease Inhibitors, Chemistry - A European Journal, vol.9, issue.9, pp.2079-2094, 2003.
DOI : 10.1002/chem.200204456

A. Horovitz and A. Levitzki, An accurate method for determination of receptor-ligand and enzyme-inhibitor dissociation constants from displacement curves., Proc. Natl. Acad. Sci, 1987.
DOI : 10.1073/pnas.84.19.6654

C. C. Chang, C. Y. Chen, H. F. Chiu, S. X. Dai, M. Y. Liu et al., Elastases from inflammatory and dendritic cells mediate ultrafine carbon black induced acute lung destruction in mice, Inhalation Toxicology, vol.276, issue.10, pp.616-626, 2011.
DOI : 10.1164/rccm.200410-1384SO

A. Didangelos, X. Yin, K. Mandal, A. Saje, A. Smith et al., Extracellular Matrix Composition and Remodeling in Human Abdominal Aortic Aneurysms: A Proteomics Approach, Molecular & Cellular Proteomics, vol.10, issue.8, 2011.
DOI : 10.1074/mcp.M111.008128

A. 194-didangelos, X. Yin, K. Mandal, M. Baumert, M. Jahangiri et al., Proteomics Characterization of Extracellular Space Components in the Human Aorta, Molecular & Cellular Proteomics, vol.9, issue.9, 2010.
DOI : 10.1074/mcp.M110.001693

A. 195-cobos-correa, J. B. Trojanek, S. Diemer, M. A. Mall, and C. Schultz, Membrane-bound FRET probe visualizes MMP12 activity in pulmonary inflammation, Nature Chemical Biology, vol.27, issue.9, pp.628-630, 2009.
DOI : 10.1038/nchembio.196

R. E. Moellering and B. F. Cravatt, How Chemoproteomics Can Enable Drug Discovery and Development, Chemistry & Biology, vol.19, issue.1, pp.11-22, 2012.
DOI : 10.1016/j.chembiol.2012.01.001

C. Ran, Z. Zhang, J. Hooker, and A. Moore, In Vivo Photoactivation Without ???Light???: Use of Cherenkov Radiation to Overcome the Penetration Limit of Light, Molecular Imaging and Biology, vol.52, issue.2, pp.156-162, 2012.
DOI : 10.1007/s11307-011-0489-z

N. Barthe, L???imagerie b??ta haute r??solution, M??decine Nucl??aire, vol.31, issue.4, pp.193-201, 2007.
DOI : 10.1016/j.mednuc.2007.03.004

D. W. Horo, A. F. Hubbs, R. R. Mercer, N. Wu, M. G. Wolfarth et al., Mouse pulmonary dose-and time course-responses induced by exposure to multiwalled carbon nanotubes, Toxicology, vol.269, pp.136-147, 2010.