B. L. Bischoff and M. A. Anderson, Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2), Chemistry of Materials, vol.7, issue.10, pp.1772-1778, 1995.
DOI : 10.1021/cm00058a004

A. W. Czanderna, C. N. Rao, and J. M. Honig, The anatase-rutile transition. Part 1.???Kinetics of the transformation of pure anatase, Trans. Faraday Soc., vol.54, issue.0, pp.1069-1073, 1958.
DOI : 10.1039/TF9585401069

K. P. Kumar, Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites, Scripta Metallurgica et Materialia, pp.873-877, 1995.
DOI : 10.1016/0956-716X(95)93217-R

H. Zhang and J. F. Banfield, Nanoparticles, Chemistry of Materials, vol.17, issue.13, pp.3421-3425, 2005.
DOI : 10.1021/cm0508423

URL : https://hal.archives-ouvertes.fr/hal-00874542

S. Mo and W. Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Physical Review B, vol.51, issue.19, pp.13023-13032, 1995.
DOI : 10.1103/PhysRevB.51.13023

H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, and E. F. Lévy, anatase thin films, Electrical and optical properties of TiO 2 anatase thin films, pp.2042-2047, 1994.
DOI : 10.1063/1.356306

A. J. Bard, R. Parsons, and E. J. Jordan, Standard Potentials in Aqueous Solution, 1st éd, 1985.

G. Riegel and J. R. Bolton, Photocatalytic Efficiency Variability in TiO2 Particles, Photocatalytic Efficiency Variability in TiO 2 Particles, pp.4215-4224, 1995.
DOI : 10.1021/j100012a050

T. E. Doll and F. H. , Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water, Catalysis Today, vol.101, issue.3-4, pp.195-202, 2005.
DOI : 10.1016/j.cattod.2005.03.005

S. Lu, D. Wu, Q. Wang, J. Yan, A. G. Buekens et al., Photocatalytic decomposition on nano-TiO2: Destruction of chloroaromatic compounds, Photocatalytic decomposition on nano-TiO 2 : Destruction of chloroaromatic compounds, pp.1215-1224, 2011.
DOI : 10.1016/j.chemosphere.2010.12.034

J. M. Robertson, P. K. Robertson, and L. A. Lawton, A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms, Journal of Photochemistry and Photobiology A: Chemistry, vol.175, issue.1, pp.51-56, 2005.
DOI : 10.1016/j.jphotochem.2005.04.033

M. Pena, X. Meng, and G. P. Korfiatis, Adsorption Mechanism of Arsenic on Nanocrystalline Titanium Dioxide, Environmental Science & Technology, vol.40, issue.4, pp.1257-1262, 2006.
DOI : 10.1021/es052040e

A. L. Foster, G. A. Brown, and . Parks, X-ray Absorption Fine-Structure Spectroscopy Study of Photocatalyzed, Heterogeneous As(III) Oxidation on Kaolin and Anatase, Environmental Science & Technology, vol.32, issue.10, pp.1444-1452, 1998.
DOI : 10.1021/es970846b

G. Jegadeesan, S. R. Al-abed, V. Sundaram, H. Choi, K. G. Scheckel et al., Arsenic sorption on TiO2 nanoparticles: Size and crystallinity effects, Arsenic sorption on TiO 2 nanoparticles: Size and crystallinity effects, pp.965-973, 2010.
DOI : 10.1016/j.watres.2009.10.047

L. B. Khalil, M. W. Rophael, and W. E. Mourad, The removal of the toxic Hg(II) salts from water by photocatalysis, Applied Catalysis B: Environmental, vol.36, issue.2, pp.125-130, 2002.
DOI : 10.1016/S0926-3373(01)00285-5

O. Horváth and J. Hegyi, Light-induced reduction of heavy-metal ions on titanium dioxide dispersions, Adsorption and Nanostructure, vol.117, pp.211-216, 2002.
DOI : 10.1007/3-540-45405-5_38

J. A. Nav-o, J. J. Testa, P. Djedjeian, J. R. Padr-n, and D. , Iron-doped titania powders prepared by a sol???gel method., Applied Catalysis A: General, vol.178, issue.2, pp.191-203, 1999.
DOI : 10.1016/S0926-860X(98)00286-5

M. Formenti, F. Juillet, P. Meriaudeau, and S. Teichner, Preparation in a hydrogen-oxygen flame of ultrafine metal oxide particles. Oxidative properties toward hydrocarbons in the presence of ultraviolet radiation, Journal of Colloid and Interface Science, vol.39, issue.1, pp.79-89, 1972.
DOI : 10.1016/0021-9797(72)90144-0

L. Elsellami, F. Vocanson, F. Dappozze, E. Puzenat, O. Païsse et al., Kinetic of adsorption and of photocatalytic degradation of phenylalanine effect of pH and light intensity, Applied Catalysis A: General, vol.380, issue.1-2, pp.142-148, 2010.
DOI : 10.1016/j.apcata.2010.03.054

URL : https://hal.archives-ouvertes.fr/hal-00512039

N. Serpone, G. Sauvé, R. Koch, H. Tahiri, P. Pichat et al., Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: relative photonic efficiencies ??r, Journal of Photochemistry and Photobiology A: Chemistry, vol.94, issue.2-3, pp.191-203, 1996.
DOI : 10.1016/1010-6030(95)04223-7

H. Gerischer and A. Heller, The role of oxygen in photooxidation of organic molecules on semiconductor particles, The Journal of Physical Chemistry, vol.95, issue.13, pp.5261-5267, 1991.
DOI : 10.1021/j100166a063

O. T. Alaoui, A. Herissan, C. L. Quoc, M. , M. Zekri et al., Elaboration, charge-carrier lifetimes and activity of Pd-TiO2 photocatalysts obtained by gamma radiolysis, Journal of Photochemistry and Photobiology A: Chemistry, vol.242, pp.34-43, 2012.
DOI : 10.1016/j.jphotochem.2012.05.030

N. Wehbe, M. Jaafar, C. Guillard, J. Herrmann, S. Miachon et al., Comparative study of photocatalytic and non-photocatalytic reduction of nitrates in water, Applied Catalysis A: General, vol.368, issue.1-2, 2009.
DOI : 10.1016/j.apcata.2009.07.038

URL : https://hal.archives-ouvertes.fr/hal-00445830

C. Guillard, J. Disdier, J. Herrmann, C. Lehaut, T. Chopin et al., Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol, Catalysis Today, vol.54, issue.2-3, pp.217-228, 1999.
DOI : 10.1016/S0920-5861(99)00184-4

L. Pereira, R. Pereira, C. S. Oliveira, L. Apostol, M. Gavrilescu et al., Photocatalytic Degradation of Xanthene Dyes, TiO2 Photocatalytic Degradation of Xanthene Dyes, pp.33-39, 2013.
DOI : 10.1111/j.1751-1097.2012.01208.x

URL : https://hal.archives-ouvertes.fr/hal-00808813

H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui et al., Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Applied Catalysis B: Environmental, vol.39, issue.1, pp.75-90, 2002.
DOI : 10.1016/S0926-3373(02)00078-4

D. M. Alrousan, M. I. Polo-lópez, P. S. Dunlop, P. Fernández-ibáñez, and E. J. Byrne, Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors, Applied Catalysis B: Environmental, vol.128, pp.126-134
DOI : 10.1016/j.apcatb.2012.07.038

K. Sahel, N. Perol, F. Dappozze, M. Bouhent, Z. Derriche et al., Photocatalytic degradation of a mixture of two anionic dyes: Procion Red MX-5B and Remazol Black 5 (RB5), Journal of Photochemistry and Photobiology A: Chemistry, vol.212, issue.2-3, pp.107-112, 2010.
DOI : 10.1016/j.jphotochem.2010.03.019

URL : https://hal.archives-ouvertes.fr/hal-00512050

M. Vautier, C. Guillard, and J. Herrmann, Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine, Journal of Catalysis, vol.201, issue.1, pp.46-59, 2001.
DOI : 10.1006/jcat.2001.3232

A. Furube, T. Asahi, H. Masuhara, and H. Yamashita, Anpo, « Charge Carrier Dynamics of Standard TiO 2 Catalysts Revealed by Femtosecond Diffuse Reflectance Spectroscopy, J. Phys

W. Choi, A. Termin, and E. M. Hoffmann, « The Role of Metal Ion Dopants in Quantum-Sized TiO 2 : Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, The Journal of Physical Chemistry, vol.98, pp.51-13669, 1994.

K. Asai, T. Umebayashi, T. Yamaki, and E. H. Itoh, Analysis of electronic structures of 3d transition metal-doped TiO 2 based on band calculations, Journal of Physics and Chemistry of Solids, vol.63, issue.10, 2002.

Y. Yalçin, M. Kiliç, and E. Z. Çinar, Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity, Applied Catalysis B: Environmental, vol.99, issue.3-4, pp.469-477, 2010.
DOI : 10.1016/j.apcatb.2010.05.013

C. M. Wang, A. Heller, and E. H. Gerischer, « Palladium catalysis of O 2 reduction by electrons accumulated on TiO 2 particles during photoassisted oxidation of organic compounds, J. Am. Chem. Soc, vol.114, pp.13-5230, 1992.

J. Papp, H. S. Shen, R. Kershaw, K. Dwight, E. A. Wold et al., Titanium(IV) oxide photocatalysts with palladium, IV) oxide photocatalysts with palladium, pp.284-288, 1993.
DOI : 10.1021/cm00027a009

B. Xie, Y. Xiong, R. Chen, J. Chen, and E. P. Cai, Catalytic activities of Pd???TiO film towards the oxidation of formic acid, Catalysis Communications, vol.6, issue.11, pp.699-704, 2005.
DOI : 10.1016/j.catcom.2005.06.003

J. Zhang, M. Zhang, Y. Han, W. Li, and X. Meng, Zong, « Nucleation and Growth of Palladium Clusters on Anatase TiO 2 (101) Surface: A First Principle Study, J. Phys. Chem. C, vol.112, p.49, 2008.

J. C. Colmenares, A. Magdziarz, M. A. Aramendia, A. Marinas, J. M. Marinas et al., Influence of the strong metal support interaction effect (SMSI) of Pt/TiO2 and Pd/TiO2 systems in the photocatalytic biohydrogen production from glucose solution, Influence of the strong metal support interaction effect (SMSI) of Pt/TiO 2 and Pd/TiO 2 systems in the photocatalytic biohydrogen production from glucose solution, pp.1-6, 2011.
DOI : 10.1016/j.catcom.2011.09.003

O. Mekasuwandumrong, S. Phothakwanpracha, B. Jongsomjit, A. Shotipruk, and E. J. Panpranot, Influence of flame conditions on the dispersion of Pd on the flame spray-derived Pd/TiO2 nanoparticles, Powder Technology, vol.210, issue.3, pp.328-331, 2011.
DOI : 10.1016/j.powtec.2011.03.017

S. Sakthivel, M. Shankar, M. Palanichamy, B. Arabindoo, and D. , Bahnemann, et V. Murugesan, « Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Research, vol.38, pp.13-3001, 2004.

R. Su, R. Tiruvalam, Q. He, N. Dimitratos, L. Kesavan et al., Using Au, Pd, and Au???Pd Nanoparticles, Promotion of Phenol Photodecomposition over TiO 2 Using Au, Pd, and Au?Pd Nanoparticles, pp.6284-6292, 2012.
DOI : 10.1021/nn301718v

T. Sano, S. Kutsuna, N. Negishi, and E. K. Takeuchi, Effect of Pd-photodeposition over TiO2 on product selectivity in photocatalytic degradation of vinyl chloride monomer, Journal of Molecular Catalysis A: Chemical, vol.189, issue.2, pp.263-270, 2002.
DOI : 10.1016/S1381-1169(02)00353-9

O. Baghriche, S. Rtimi, C. Pulgarin, R. Sanjines, and E. J. Kiwi, /Cu Nanosurfaces Inactivating Bacteria in the Minute Range under Low-Intensity Actinic Light, Cu Nanosurfaces Inactivating Bacteria in the Minute Range under Low-Intensity Actinic Light, pp.5234-5240
DOI : 10.1021/am301153j

K. Hirano, K. Inoue, and E. T. Yatsu, Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder, Journal of Photochemistry and Photobiology A: Chemistry, vol.64, issue.2, pp.255-258, 1992.
DOI : 10.1016/1010-6030(92)85112-8

I. Tseng, W. Chang, and J. C. Wu, Photoreduction of CO2 using sol???gel derived titania and titania-supported copper catalysts, Applied Catalysis B: Environmental, vol.37, issue.1, pp.37-48, 2002.
DOI : 10.1016/S0926-3373(01)00322-8

H. J. Yun, H. Lee, J. B. Jool, N. D. Kim, and E. J. Yi, Effect of TiO<SUB>2</SUB> Nanoparticle Shape on Hydrogen Evolution via Water Splitting, Effect of TiO 2 nanoparticle shape on hydrogen evolution via water splitting, pp.1688-1691, 2011.
DOI : 10.1166/jnn.2011.3326

C. Lin, T. Wei, K. Lee, and S. Lu, Titania and Pt/titania aerogels as superior mesoporous structures for photocatalytic water splitting, Journal of Materials Chemistry, vol.20, issue.448, pp.34-12668, 2011.
DOI : 10.1039/c1jm11992c

T. Sreethawong and S. Yoshikawa, Impact of photochemically deposited monometallic Pt and bimetallic Pt???Au nanoparticles on photocatalytic dye-sensitized H2 production activity of mesoporous-assembled TiO2???SiO2 mixed oxide nanocrystal, Chemical Engineering Journal, vol.197, pp.272-282
DOI : 10.1016/j.cej.2012.05.024

S. Chavadej, P. Phuaphromyod, E. Gulari, and P. Rangsunvigit, Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique, Chemical Engineering Journal, vol.137, issue.3, pp.489-495, 2008.
DOI : 10.1016/j.cej.2007.05.001

G. R. Bamwenda, S. Tsubota, T. Nakamura, and E. M. Haruta, Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au???TiO2 and Pt???TiO2, Journal of Photochemistry and Photobiology A: Chemistry, vol.89, issue.2, pp.177-189, 1995.
DOI : 10.1016/1010-6030(95)04039-I

S. Jin and F. Shiraishi, Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide, Chemical Engineering Journal, vol.97, issue.2-3, pp.203-211, 2004.
DOI : 10.1016/j.cej.2003.04.001

O. Rosseler, M. V. Shankar, M. K. Du, L. Schmidlin, N. Keller et al., Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion, Journal of Catalysis, vol.269, issue.1, pp.179-190, 2010.
DOI : 10.1016/j.jcat.2009.11.006

D. Li, H. Haneda, S. Hishita, N. Ohashi, and N. K. Labhsetwar, Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde, Journal of Fluorine Chemistry, vol.126, issue.1, pp.69-77, 2005.
DOI : 10.1016/j.jfluchem.2004.10.044

X. Lin, F. Rong, X. Ji, D. Fu, and E. C. Yuan, Fabrication and Enhanced Visible Light Photocatalytic Activity of Fluorine Doped TiO<SUB>2</SUB> by Loaded with Ag, Journal of Nanoscience and Nanotechnology, vol.11, issue.11, pp.10063-10068
DOI : 10.1166/jnn.2011.5008

X. Wang, C. Wang, W. Jiang, W. Guo, and J. Wang, « Sonochemical synthesis and characterization of Cl-doped TiO 2 and its application in the photodegradation of phthalate ester under visible light irradiation, Chemical Engineering Journal, vol.189, issue.190 0, pp.288-294, 2012.

H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen et al., Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine, Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine, pp.846-849, 2004.
DOI : 10.1021/cm035090w

S. Lee, C. Y. Yun, M. S. Hahn, J. Lee, and E. J. Yi, Synthesis and characterization of carbon-doped titania as a visible-light-sensitive photocatalyst, Korean Journal of Chemical Engineering, vol.404, issue.4, pp.892-896, 2008.
DOI : 10.1007/s11814-008-0147-6

H. Irie, Y. Watanabe, and E. K. Hashimoto, Powders as a Visible-light Sensitive Photocatalyst, Chemistry Letters, vol.32, issue.8, pp.772-773, 2003.
DOI : 10.1246/cl.2003.772

S. Mozia, M. Tomaszewska, B. Kosowska, B. Grzmil, A. W. Morawski et al., Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation, Applied Catalysis B: Environmental, vol.55, issue.3, pp.195-200, 2005.
DOI : 10.1016/j.apcatb.2004.09.019

Y. Cong, J. Zhang, and F. Chen, Nanophotocatalyst with High Visible Light Activity, The Journal of Physical Chemistry C, vol.111, issue.19, pp.6976-6982, 2007.
DOI : 10.1021/jp0685030

R. Asahi, T. Morikawa, T. Ohwaki, and K. Aoki, Taga, « Visible-Light Photocatalysis in Nitrogen- Doped Titanium Oxides, Science, vol.293, pp.5528-269, 2001.

T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui et al., Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Preparation of Sdoped TiO 2 photocatalysts and their photocatalytic activities under visible light, pp.115-121, 2004.
DOI : 10.1016/j.apcata.2004.01.007

H. Tian, J. Ma, K. Li, and E. J. Li, Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange, Ceramics International, vol.35, issue.3, pp.1289-1292, 2009.
DOI : 10.1016/j.ceramint.2008.05.003

L. Xu, C. Tang, J. Qian, and Z. Huang, Theoretical and experimental study on the electronic structure and optical absorption properties of P-doped TiO2, Theoretical and experimental study on the electronic structure and optical absorption properties of P-doped TiO 2, pp.2668-2671, 2010.
DOI : 10.1016/j.apsusc.2009.11.046

A. Zaleska, J. W. Sobczak, and E. Grabowska, Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light, Applied Catalysis B: Environmental, vol.78, issue.1-2, pp.92-100, 2008.
DOI : 10.1016/j.apcatb.2007.09.005

F. Peng, L. Cai, H. Yu, H. Wang, and E. J. Yang, Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity, Journal of Solid State Chemistry, vol.181, issue.1, pp.130-136, 2008.
DOI : 10.1016/j.jssc.2007.11.012

X. Zhang, K. Udagawa, Z. Liu, S. Nishimoto, C. Xu et al., Photocatalytic and photoelectrochemical studies on N-doped TiO2 photocatalyst, Photocatalytic and photoelectrochemical studies on N-doped TiO 2 photocatalyst, pp.39-47, 2009.
DOI : 10.1016/j.jphotochem.2008.11.007

X. Qiu, Y. Zhao, and E. C. Burda, « Synthesis and Characterization of Nitrogen-Doped Group IVB Visible-Light-Photoactive Metal Oxide Nanoparticles, Advanced Materials, vol.19, pp.22-3995, 2007.

S. Sato, Photocatalytic activity of NOx-doped TiO2 in the visible light region, Chemical Physics Letters, vol.123, issue.1-2, pp.126-128, 1986.
DOI : 10.1016/0009-2614(86)87026-9

D. H. Kim, H. S. Park, S. Kim, and K. S. Lee, Synthesis of Novel TiO2 by Mechanical Alloying and Heat Treatment-derived Nanocomposite of TiO2 and NiTiO3, Synthesis of Novel TiO 2 by Mechanical Alloying and Heat Treatment-derived Nanocomposite of TiO 2 and NiTiO 3, pp.29-33, 2006.
DOI : 10.1007/s10562-005-9186-3

S. Begin-colin, T. Girot, and A. Mocellin, Le Caër, « Kinetics of formation of nanocrystalline TiO 2 II by high energy ball-milling of anatase TiO 2, Nanostructured Materials, pp.195-198, 1999.

T. V. Anuradha and S. Ranganathan, Nanocrystalline TiO2 by three different synthetic approaches: A comparison, Bulletin of Materials Science, vol.8, issue.3, pp.263-269, 2007.
DOI : 10.1007/s12034-007-0046-1

G. Mulas, M. Monagheddu, S. Doppiu, G. Cocco, and F. Maglia, Anselmi Tamburini, « Metal? metal oxides prepared by MSR and SHS techniques, Solid State Ionics, vol.141, issue.142 0, pp.649-656, 2001.
DOI : 10.1016/s0167-2738(01)00799-8

U. Manzoor and D. K. Kim, « Synthesis of nano-sized barium titanate powder by solid-state reaction between barium carbonate and titania, J. Mater. Sci. Technol, vol.23, issue.5, pp.655-658, 2007.

J. Jolivet, S. Cassaignon, C. Chanéac, D. Chiche, and O. Durupthy, Portehault, « Design of metal oxide nanoparticles: Control of size, shape, crystalline structure and functionalization by aqueous chemistry, Comptes Rendus Chimie, vol.13, 2010.

H. Cheng, J. Ma, Z. Zhao, and E. L. Qi, Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles, Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles, pp.663-671, 1995.
DOI : 10.1021/cm00052a010

R. Thapa, S. Maiti, T. H. Rana, U. N. Maiti, and K. K. Chattopadhyay, Anatase TiO 2 nanoparticles synthesis via simple hydrothermal route: Degradation of Orange II, Methyl Orange and Rhodamine B », Journal of Molecular Catalysis A: Chemical, vol.363, issue.364 0, pp.223-229, 2012.

A. Chemseddine and T. Moritz, Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization, Control over Nanocrystal Structure, Size, Shape, and Organization », pp.235-245, 1999.
DOI : 10.1002/(SICI)1099-0682(19990202)1999:2<235::AID-EJIC235>3.0.CO;2-N

M. R. Golobostanfard and H. Abdizadeh, Effect of mixed solvent on structural, morphological, and optoelectrical properties of spin-coated TiO2 thin films, Ceramics International, vol.38, issue.7, pp.5843-5851, 2012.
DOI : 10.1016/j.ceramint.2012.04.034

B. Koo, J. Park, Y. Kim, S. Choi, and Y. Sung, Hyeon, « Simultaneous Phase-and Size- Controlled Synthesis of TiO 2 Nanorods via Non-Hydrolytic Sol?Gel Reaction of Syringe Pump Delivered Precursors, J. Phys. Chem. B, vol.110, pp.48-24318, 2006.

Y. Lei, L. D. Zhang, and J. C. Fan, « Fabrication, characterization and Raman study of TiO 2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3, Chemical Physics Letters, vol.338, 2001.

W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, and R. A. Marra, Sinterable Ceramic Powders from Laser-Driven Reactions: I, Process Description and Modeling, Sinterable Ceramic Powders from Laser-Driven Reactions: I, Process Description and Modeling », pp.324-330, 1982.
DOI : 10.1016/0038-092X(79)90027-6

O. Sublemontier, F. Lacour, Y. Leconte, N. Herlin-boime, E. C. Reynaud et al., CO2 laser-driven pyrolysis synthesis of silicon nanocrystals and applications, Journal of Alloys and Compounds, vol.483, issue.1-2, pp.499-502, 2009.
DOI : 10.1016/j.jallcom.2008.07.233

URL : https://hal.archives-ouvertes.fr/hal-00420327

N. Herlin-boime, J. Vicens, C. Dufour, F. Ténégal, C. Reynaud et al., Flame Temperature Effect on the Structure of SiC Nanoparticles Grown by Laser Pyrolysis, Flame Temperature Effect on the Structure of SiC Nanoparticles Grown by Laser Pyrolysis, pp.63-70, 2004.
DOI : 10.1023/B:NANO.0000023225.81812.10

M. Cauchetier, X. Armand, N. Herlin, M. Mayne, S. Fusil et al., nanocomposite powders with Al (and Y) additives obtained by laser spray pyrolysis of organometallic compounds, Journal of Materials Science, vol.34, issue.21, pp.5257-5264, 1999.
DOI : 10.1023/A:1004776300121

Y. Leconte, H. Maskrot, L. Combemale, N. Herlin-boime, and E. C. Reynaud, Application of the laser pyrolysis to the synthesis of SiC, TiC and ZrC pre-ceramics nanopowders, Journal of Analytical and Applied Pyrolysis, vol.79, issue.1-2, pp.465-470, 2007.
DOI : 10.1016/j.jaap.2006.11.009

URL : https://hal.archives-ouvertes.fr/hal-00141259

B. Pignon, H. Maskrot, V. Guyot-ferreol, Y. Leconte, S. Coste et al., Versatility of Laser Pyrolysis Applied to the Synthesis of TiO2 Nanoparticles ??? Application to UV Attenuation, European Journal of Inorganic Chemistry, vol.77, issue.6, pp.883-889, 2008.
DOI : 10.1002/ejic.200700990

URL : https://hal.archives-ouvertes.fr/hal-00179674

M. Idrissi and M. Gobillon-gervais, (Tours), « Synthèse par pyrolyse LASER et caractérisation de nanoparticules à base d'oxyde de titane et application, 2006.

S. Giraud, G. Loupias, H. Maskrot, N. Herlin-boime, S. Valange et al., Dip-coating on TiO2 foams using a suspension of Pt???TiO2 nanopowder synthesized by laser pyrolysis???preliminary evaluation of the catalytic performances of the resulting composites in deVOC reactions, Journal of the European Ceramic Society, vol.27, issue.2-3, pp.931-936, 2007.
DOI : 10.1016/j.jeurceramsoc.2006.04.134

E. Figgemeier, W. Kylberg, E. Constable, M. Scarisoreanu, R. Alexandrescu et al., Titanium dioxide nanoparticles prepared by laser pyrolysis: Synthesis and photocatalytic properties, Applied Surface Science, vol.254, issue.4, pp.1037-1041, 2007.
DOI : 10.1016/j.apsusc.2007.08.036

Y. Leconte, S. Veintemillas-verdaguer, M. P. Morales, R. Costo, I. Rodríguez et al., Continuous production of water dispersible carbon???iron nanocomposites by laser pyrolysis: Application as MRI contrasts, Journal of Colloid and Interface Science, vol.313, issue.2, pp.511-518, 2007.
DOI : 10.1016/j.jcis.2007.05.010

URL : https://hal.archives-ouvertes.fr/hal-00178970

R. Alexandrescu, I. Morjan, F. Dumitrache, R. Birjega, C. Fleaca et al., Laser processing issues of nanosized intermetallic Fe???Sn and metallic Sn particles, Laser processing issues of nanosized intermetallic Fe?Sn and metallic Sn particles, pp.9421-9426, 2012.
DOI : 10.1016/j.apsusc.2012.01.159

V. De-castro, G. Benito, S. Hurst, C. J. Serna, and M. P. Morales, Veintemillas-Verdaguer, « One step production of magnetic nanoparticle films by laser pyrolysis inside a chemical vapour deposition reactor, Thin Solid Films, vol.519, pp.22-7677, 2011.

X. Armand, N. Herlin, and I. Voicu, Fullerene synthesis by laser pyrolysis of hydrocarbons, Journal of Physics and Chemistry of Solids, vol.58, issue.11, pp.1853-1859, 1997.
DOI : 10.1016/S0022-3697(97)00092-9

L. Boulanger, B. Andriot, M. Cauchetier, and E. F. Willaime, Concentric shelled and plate-like graphitic boron nitride nanoparticles produced by CO2 laser pyrolysis, Chemical Physics Letters, vol.234, issue.1-3, pp.227-232, 1995.
DOI : 10.1016/0009-2614(95)00008-R

J. A. Kern, H. G. Schwahn, and E. B. Schramm, Synthesis of fine chromium(III) oxide powders by laser pyrolysis, Materials Chemistry and Physics, vol.21, issue.4, pp.391-408, 1989.
DOI : 10.1016/0254-0584(89)90140-5

M. Govender, L. Shikwambana, B. W. Mwakikunga, E. Sideras-haddad, and R. M. Erasmus, Formation of tungsten oxide nanostructures by laser pyrolysis: stars, fibres and spheres, Nanoscale Research Letters, vol.6, issue.1, p.166, 2011.
DOI : 10.1021/j150567a006

J. D. Casey and J. S. Haggerty, Laser-induced vapour-phase synthesis of titanium dioxide, Journal of Materials Science, vol.7, issue.7, pp.12-4307, 1987.
DOI : 10.1007/BF01132022

G. W. Rice, Laser-Driven Pyrolysis: Synthesis of TiO2 from Titanium Isopropoxide, Journal of the American Ceramic Society, vol.71, issue.12, pp.117-120, 1987.
DOI : 10.1111/j.1151-2916.1987.tb05020.x

H. Maskrot, Y. Leconte, N. Herlin-boime, C. Reynaud, E. Guelou et al., Synthesis of nanostructured catalysts by laser pyrolysis, Catalysis Today, vol.116, issue.1, pp.6-11, 2006.
DOI : 10.1016/j.cattod.2006.04.006

URL : https://hal.archives-ouvertes.fr/hal-00101229

M. Musci, M. Notaro, F. Curcio, and C. Casale, Laser synthesis of vanadium-titanium oxide catalysts, Journal of Materials Research, vol.22, issue.10, pp.2846-2852, 1992.
DOI : 10.1103/PhysRevB.20.1546

M. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli et al., Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring, Sensors and Actuators B: Chemical, vol.58, issue.1-3, pp.310-317, 1999.
DOI : 10.1016/S0925-4005(99)00148-3

L. E. Depero, L. Sangaletti, B. Allieri, F. Pioselli, C. Casale et al., « Microstructural properties of Ta-doped TiO2 powders obtained by laser pyrolysis, Epdic 5, Pts 1 and 2, pp.654-659, 1998.

F. Bregani, C. Casale, L. E. Depero, I. Natali-sora, D. Robba et al., Temperature effects on the size of anatase crystallites in Mo???TiO2 and W???TiO2 powders, Temperature effects on the size of anatase crystallites in Mo-TiO2 and W-TiO2 powders, pp.25-28, 1996.
DOI : 10.1016/0925-4005(96)80011-6

R. Alexandrescu, M. Scarisoreanu, I. Morjan, R. Birjega, C. Fleaca et al., Preparation and characterization of nitrogen-doped TiO2 nanoparticles by the laser pyrolysis of N2O-containing gas mixtures, Preparation and characterization of nitrogendoped TiO 2 nanoparticles by the laser pyrolysis of N 2 O-containing gas mixtures, pp.5373-5377, 2009.
DOI : 10.1016/j.apsusc.2008.08.046

H. Perron, J. Vandenborre, C. Domain, R. Drot, J. Roques et al., Combined investigation of water sorption on TiO2 rutile (110) single crystal face: XPS vs. periodic DFT, Surface Science, vol.601, issue.2, pp.518-527, 2007.
DOI : 10.1016/j.susc.2006.10.015

T. K. Sham and M. S. Lazarus, X-ray photoelectron spectroscopy (XPS) studies of clean and hydrated TiO2 (rutile) surfaces, Chemical Physics Letters, vol.68, issue.2-3, 1979.
DOI : 10.1016/0009-2614(79)87231-0

P. C. Graat and M. A. Somers, Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra, Applied Surface Science, vol.100, issue.101, pp.36-40, 1996.
DOI : 10.1016/0169-4332(96)00252-8

J. A. Nav-o, G. Col-n, M. Mac-as, and C. , Iron-doped titania semiconductor powders prepared by a sol???gel method. Part I: synthesis and characterization, Applied Catalysis A: General, vol.177, issue.1, pp.111-120, 1999.
DOI : 10.1016/S0926-860X(98)00255-5

N. S. Mcintyre and M. G. Cook, X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper, Analytical Chemistry, vol.47, issue.13, 1975.
DOI : 10.1021/ac60363a034

L. S. Kibis, A. I. Titkov, A. I. Stadnichenko, S. V. Koscheev, and A. I. Boronin, X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen, Applied Surface Science, vol.255, issue.22, pp.22-9248, 2009.
DOI : 10.1016/j.apsusc.2009.07.011

M. Kitano, K. Funatsu, M. Matsuoka, and M. Ueshima, Anpo, « Preparation of Nitrogen- Substituted TiO 2 Thin Film Photocatalysts by the Radio Frequency Magnetron Sputtering Deposition Method and Their Photocatalytic Reactivity under Visible Light Irradiation ?, J. Phys. Chem. B, vol.110, pp.50-25266, 2006.

W. Y. Teoh, L. Mädler, R. Amal, and S. E. , Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid, Catalysis Today, vol.120, issue.2, pp.203-213, 2007.
DOI : 10.1016/j.cattod.2006.07.049

J. Araña, C. Garriga-i-cabo, J. M. Doña-rodr-guez, O. Gonz-lez-d-az, and J. A. Herrera-melián, FTIR study of formic acid interaction with TiO2 and TiO2 doped with Pd and Cu in photocatalytic processes, Applied Surface Science, vol.239, issue.1, pp.60-71, 2004.
DOI : 10.1016/S0169-4332(04)00755-X

M. Anpo, Photocatalysis on titanium oxide catalysts: Approaches in achieving highly efficient reactions and realizing the use of visible light, Catalysis Surveys from Japan, pp.169-179, 1997.

M. Maicu, M. C. Hidalgo, G. Colón, and J. A. Navío, Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol, Journal of Photochemistry and Photobiology A: Chemistry, vol.217, issue.2-3, pp.275-283, 2011.
DOI : 10.1016/j.jphotochem.2010.10.020

C. Belver, M. J. López-muñoz, J. M. Coronado, and E. J. Soria, Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors, Applied Catalysis B: Environmental, vol.46, issue.3, pp.497-509, 2003.
DOI : 10.1016/S0926-3373(03)00291-1

M. F. Dijkstra, H. J. Panneman, J. G. Winkelman, J. J. Kelly, and A. A. Beenackers, Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst, Chemical Engineering Science, vol.57, issue.22-23, pp.4895-4907, 2002.
DOI : 10.1016/S0009-2509(02)00290-7

C. Hu, S. Ting, K. Chan, and E. W. Huang, Reaction pathways derived from DFT for understanding catalytic decomposition of formic acid into hydrogen on noble metals, International Journal of Hydrogen Energy, vol.37, issue.21, pp.15956-15965
DOI : 10.1016/j.ijhydene.2012.08.035

S. Roy, M. S. Hegde, N. Ravishankar, and E. G. Madras, for High Photocatalytic Activity of CO Oxidation, NO Reduction, and NO Decomposition, The Journal of Physical Chemistry C, vol.111, issue.23, pp.8153-8160, 2007.
DOI : 10.1021/jp066145v

P. Simon, « Synthèse de nanoparticules d'oxydes de titane par pyrolyse laser -Etude des propriétés optiques et de la structure électronique, Thèse de doctorat, 2011.

S. Andersson, B. Collén, U. Kuylenstierna, A. Magnéli, A. Magnéli et al., Phase Analysis Studies on the Titanium-Oxygen System., Phase Analysis Studies on the Titanium-Oxygen System. », pp.1641-1652, 1957.
DOI : 10.3891/acta.chem.scand.11-1641

S. Matsuo, N. Sakaguchi, K. Yamada, T. Matsuo, and E. H. Wakita, Role in photocatalysis and coordination structure of metal ions adsorbed on titanium dioxide particles: a comparison between lanthanide and iron ions, Applied Surface Science, vol.228, issue.1-4, 2004.
DOI : 10.1016/j.apsusc.2004.01.015

B. H. Hameed, A. T. Din, and A. L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies, Journal of Hazardous Materials, vol.141, issue.3, pp.819-825, 2007.
DOI : 10.1016/j.jhazmat.2006.07.049

A. T. Kuvarega, R. W. Krause, B. B. Mamba, and . Nitrogen, Palladium-Codoped TiO 2 for Efficient Visible Light Photocatalytic Dye Degradation, J. Phys. Chem. C, vol.115, pp.45-22110, 2011.

R. A. Spurr and H. Myers, Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Analytical Chemistry, vol.29, issue.5, pp.760-762, 1957.
DOI : 10.1021/ac60125a006

A. F. Gualtieri, Accuracy of XRPD QPA using the combined Rietveld???RIR method, Journal of Applied Crystallography, vol.33, issue.2, pp.267-278, 2000.
DOI : 10.1107/S002188989901643X