Skip to Main content Skip to Navigation

Nanoparticules à base d’oxyde de titane pour la photocatalyse

Abstract : Titanium based oxides nanoparticles were synthesized by laser pyrolysis and were tested as possible as photocatalysts. Using the laser pyrolysis method, this work shows that TiO2 and M-TiO2 (M = Pd, Fe, Cu, Si, N) can be easily synthesized in one step from titanium tetra isopropoxideprecursor mixed with organic salts of metals, SiH4 or NH3 to introduce atoms of Fe, Cu, Pd, Si and N in TiO2 nanoparticles. Nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller specific surface (SBET), X-photoelectron spectroscopy (XPS), and inductively coupled plasma spectroscopy (ICP/EOS). Their optical properties were measured by diffuse reflection spectroscopy (DRX). Photocatalytic activity of nanoparticles was evaluated using the degradation of methylene blue, formic acid and phenol tests under UV (360 nm) and/or UV-Visible(290-780nm) or pure visible radiation (455 nm). Results were compared to those of TiO2 Degussa P25 (from Evonik) obtained under same conditions.The nanoparticles are of spherical shape with a size distribution from 5 to 10 nanometers, there are mostly in anatase crystallographic phase. The specific surfaces area is always around 80 m2/g (170 m2/g for N-TiO2), indicating smaller size than TiO2 Degussa P25. Chemical analysis indicate that Fe, Cu, Pd, Si and N atoms are efficiently introduced into TiO2 powders. The mass ration MPowder/MPrecursor yield is always higher than 48%.Using the formic acid degradation test, TiO2, Pd-TiO2 and Cu-TiO2 were more active than TiO2 Degussa P25 test under UV-Vis radiation while Fe-TiO2, Si-TiO2 and N-TiO2 were less actives. Therefore, the influence of Pd amount/oxidation state upon the photocatalytic properties of Pd-TiO2 nanoparticles was studied in more details. Pd-TiO2 activity to degrade methylene blue, formic acid and phenol was improved in presence of metallic palladium. This activity is still important after 4 tests cycles.The activity of Titanium Oxynitride (exhibiting large shift of the optical gap towards the visible region) and N-doped TiO2 nanoparticles was also studied in formic acid and methylene blue degradation test under visible radiation. Oxynitrides exhibit low activity, which appears to be improved by the addition of palladium. This low activity could be related to the presence of an amorphous phase in the sample. N-TiO2 samples were active in formic acid degradation under visible radiation while keeping a very good efficiency in the UV.
Document type :
Complete list of metadata

Cited literature [127 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Tuesday, October 1, 2013 - 4:24:08 PM
Last modification on : Saturday, June 19, 2021 - 3:24:20 AM
Long-term archiving on: : Thursday, January 2, 2014 - 9:00:36 AM


Version validated by the jury (STAR)


  • HAL Id : tel-00868611, version 1


Alex Manuel Jimenez Romero. Nanoparticules à base d’oxyde de titane pour la photocatalyse. Autre. Université Paris Sud - Paris XI, 2013. Français. ⟨NNT : 2013PA112032⟩. ⟨tel-00868611⟩



Record views


Files downloads