L. Physiopathologie-des, K. Ras, and L. Les, 15 2.2.1 Evènements favorisant un blocage de différenciation 16 a. Exemple des LAM à Core Binfing Factor (CBF) 16 b. Autres anomalies responsables d'un blocage de différentiation 17 2.2.2 Evènements conférant aux cellules un avantage prolifératif 18 a, p.24

F. Substrats, 29 c. Substrats impliqués dans l'autophagie, 27 b. eIF4E Binding Proteins (4E-BPs) et rôle de mTOR dans la synthèse, p.37

.. Interactions-entre-les-différentes-voies-de-signalisation, 42 3.4.1 Rétrocontrôle négatif de mTORC1 sur la voie PI3K, ., p.43

. Effets-anti-leucémiques-de-l, AZD8055 : article Lien vers l'article : http

I. M. Appel, M. L. Den-boer, J. P. Meijerink, A. J. Veerman, N. C. Reniers et al., Up-regulation of asparagine synthetase expression is not linked to the clinical response L-asparaginase in pediatric acute lymphoblastic leukemia, Blood, vol.107, issue.11, pp.4244-4249, 2006.
DOI : 10.1182/blood-2005-06-2597

A. M. Aslanian and M. S. Kilberg, Multiple adaptive mechanisms affect asparagine synthetase substrate availability in asparaginase-resistant MOLT-4??human leukaemia cells, Biochemical Journal, vol.358, issue.1, pp.59-67, 2001.
DOI : 10.1042/bj3580059

V. I. Avramis, S. Martin-aragon, E. V. Avramis, and B. L. Asselin, Pharmacoanalytical assays of Erwinia asparaginase (erwinase) and pharmacokinetic results in high-risk acute lymphoblastic leukemia (HR ALL) patients: simulations of erwinase population PK-PD models, Anticancer Res, vol.27, pp.2561-2572, 2007.

V. I. Avramis, S. Sencer, A. P. Periclou, H. Sather, B. C. Bostrom et al., A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children's Cancer Group study, Blood, vol.99, issue.6, 1986.
DOI : 10.1182/blood.V99.6.1986

J. Avruch, X. Long, S. Ortiz-vega, J. Rapley, A. Papageorgiou et al., Amino acid regulation of TOR complex 1, AJP: Endocrinology and Metabolism, vol.296, issue.4, pp.592-602, 2009.
DOI : 10.1152/ajpendo.90645.2008

F. E. Baird, K. J. Bett, C. Maclean, A. R. Tee, H. S. Hundal et al., Tertiary active transport of amino acids reconstituted by coexpression of System A and L transporters in Xenopus oocytes, AJP: Endocrinology and Metabolism, vol.297, issue.3, pp.822-829, 2009.
DOI : 10.1152/ajpendo.00330.2009

U. Banerji, C. Aghajanian, and E. Raymond, First results from a phase I trial of AZD8055, a dual mTORC1 and mTORC2 inhibitor. -ASCO, J Clin Oncol, vol.29, issue.3096, p.2011, 2011.

V. Bardet, J. Tamburini, N. Ifrah, F. Dreyfus, P. Mayeux et al., Single cell analysis of phosphoinositide 3-kinase/Akt and ERK activation in acute myeloid leukemia by flow cytometry, Haematologica, vol.91, pp.757-764, 2006.

M. Bärlund, O. Monni, J. Kononen, R. Cornelison, J. Torhorst et al., Multiple genes at 17q23 undergo amplification and overexpression in breast cancer, Cancer Res, vol.60, pp.5340-5344, 2000.

B. Baumgartner, M. Weber, M. Quirling, C. Fischer, S. Page et al., Increased I??B kinase activity is associated with activated NF-??B in acute myeloid blasts, Leukemia, vol.16, issue.10, pp.2062-2071, 2002.
DOI : 10.1038/sj.leu.2402641

R. Bernardi, I. Guernah, D. Jin, S. Grisendi, A. Alimonti et al., PML inhibits HIF-1?? translation and neoangiogenesis through repression of mTOR, Nature, vol.9, issue.7104, pp.779-785, 2006.
DOI : 10.1038/nature03915

S. P. Blagden and A. E. Willis, The biological and therapeutic relevance of mRNA translation in cancer, Nature Reviews Clinical Oncology, vol.465, issue.5, pp.280-291, 2011.
DOI : 10.1038/nrclinonc.2011.16

B. P. Bode, Recent molecular advances in mammalian glutamine transport, J. Nutr, vol.131, pp.2475-85, 2001.

B. P. Bode, D. L. Kaminski, W. W. Souba, and A. P. Li, Glutamine transport in isolated human hepatocytes and transformed liver cells, Hepatology, vol.21, pp.511-520, 1995.

C. H. Brandts, B. Sargin, M. Rode, C. Biermann, B. Lindtner et al., Constitutive Activation of Akt by Flt3 Internal Tandem Duplications Is Necessary for Increased Survival, Proliferation, and Myeloid Transformation, Cancer Research, vol.65, issue.21, pp.9643-9650, 2005.
DOI : 10.1158/0008-5472.CAN-05-0422

C. I. Bungard and J. D. Mcgivan, Glutamine availability up-regulates expression of the amino acid transporter protein ASCT2 in HepG2 cells and stimulates the ASCT2 promoter, Biochemical Journal, vol.382, issue.1, pp.27-32, 2004.
DOI : 10.1042/BJ20040487

P. Bunpo, A. Dudley, J. K. Cundiff, D. R. Cavener, R. C. Wek et al., GCN2 Protein Kinase Is Required to Activate Amino Acid Deprivation Responses in Mice Treated with the Anti-cancer Agent L-Asparaginase, Journal of Biological Chemistry, vol.284, issue.47, pp.32742-32749, 2009.
DOI : 10.1074/jbc.M109.047910

A. Cadoret, C. Ovejero, B. Terris, E. Souil, L. Lévy et al., New targets of ??-catenin signaling in the liver are involved in the glutamine metabolism, Oncogene, vol.21, issue.54, pp.8293-8301, 2002.
DOI : 10.1038/sj.onc.1206118

R. L. Capizzi, R. Davis, B. Powell, J. Cuttner, R. R. Ellison et al., Synergy between high-dose cytarabine and asparaginase in the treatment of adults with refractory and relapsed acute myelogenous leukemia--a Cancer and Leukemia Group B Study., Journal of Clinical Oncology, vol.6, issue.3, pp.499-508, 1988.
DOI : 10.1200/JCO.1988.6.3.499

E. L. Carr, A. Kelman, G. S. Wu, R. Gopaul, E. Senkevitch et al., Glutamine Uptake and Metabolism Are Coordinately Regulated by ERK/MAPK during T Lymphocyte Activation, The Journal of Immunology, vol.185, issue.2, pp.1037-1044, 2010.
DOI : 10.4049/jimmunol.0903586

A. Carracedo, L. Ma, J. Teruya-feldstein, F. Rojo, L. Salmena et al., Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer, Journal of Clinical Investigation, vol.118, pp.3065-3074, 2008.
DOI : 10.1172/JCI34739DS1

A. Cassago, A. P. Ferreira, I. M. Ferreira, C. Fornezari, E. R. Gomes et al., Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism, Proc. Natl. Acad. Sci. U.S.A. 109, pp.1092-1097, 2012.
DOI : 10.1073/pnas.1112495109

L. H. Castilla, L. Garrett, N. Adya, D. Orlic, A. Dutra et al., The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia, Nat. Genet, vol.23, pp.144-146, 1999.

L. H. Castilla, C. Wijmenga, Q. Wang, T. Stacy, N. A. Speck et al., Failure of Embryonic Hematopoiesis andLethal Hemorrhages in Mouse Embryos Heterozygousfor a Knocked-In Leukemia Gene CBFB???MYH11, Cell, vol.87, issue.4, pp.687-696, 1996.
DOI : 10.1016/S0092-8674(00)81388-4

N. Chapuis, J. Tamburini, P. Cornillet-lefebvre, L. Gillot, V. Bardet et al., Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody, Haematologica, vol.95, issue.3, pp.415-423, 2010.
DOI : 10.3324/haematol.2009.010785

N. Chapuis, J. Tamburini, A. S. Green, C. Vignon, V. Bardet et al., Dual Inhibition of PI3K and mTORC1/2 Signaling by NVP-BEZ235 as a New Therapeutic Strategy for Acute Myeloid Leukemia, Clinical Cancer Research, vol.16, issue.22, pp.5424-5435, 2010.
DOI : 10.1158/1078-0432.CCR-10-1102

C. Chen, Y. Liu, R. Liu, T. Ikenoue, K. Guan et al., TSC???mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species, The Journal of Experimental Medicine, vol.82, issue.10, pp.2397-2408, 2008.
DOI : 10.1038/nature01345

N. Cheung and C. W. So, Transcriptional and epigenetic networks in haematological malignancy, FEBS Letters, vol.468, issue.13, pp.2100-2111, 2011.
DOI : 10.1016/j.febslet.2011.03.068

A. Y. Choo and J. Blenis, Not all substrates are treated equally: Implications for mTOR, rapamycin-resistance, and cancer therapy, Cell Cycle, vol.8, issue.4, pp.567-572, 2009.
DOI : 10.4161/cc.8.4.7659

A. Y. Choo, S. Yoon, S. G. Kim, P. P. Roux, and J. Blenis, Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation, Proceedings of the National Academy of Sciences, vol.105, issue.45, pp.17414-17419, 2008.
DOI : 10.1073/pnas.0809136105

C. M. Chresta, B. R. Davies, I. Hickson, T. Harding, S. Cosulich et al., AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP-Competitive Mammalian Target of Rapamycin Kinase Inhibitor with In vitro and In vivo Antitumor Activity, AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity, pp.288-298, 2010.
DOI : 10.1158/0008-5472.CAN-09-1751

B. Cieply, G. Zeng, T. Proverbs-singh, D. A. Geller, and S. P. Monga, Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene, Hepatology, vol.100, issue.3, pp.821-831, 2009.
DOI : 10.1002/hep.22695

B. Clarkson, I. Krakoff, J. Burchenal, D. Karnofsky, R. Golbey et al., Clinical results of treatment with E. coli L-asparaginase in adults with leukemia, lymphoma, and solid tumors, Cancer, vol.25, issue.2, pp.279-305, 1970.
DOI : 10.1002/1097-0142(197002)25:2<279::AID-CNCR2820250205>3.0.CO;2-7

C. L. Collins, M. Wasa, W. W. Souba, and S. F. Abcouwer, Determinants of glutamine dependence and utilization by normal and tumor-derived breast cell lines, Journal of Cellular Physiology, vol.43, issue.1, pp.166-178, 1998.
DOI : 10.1002/(SICI)1097-4652(199807)176:1<166::AID-JCP18>3.0.CO;2-5

E. A. Corcelle, P. Puustinen, and M. Jäättelä, Apoptosis and autophagy: Targeting autophagy signalling in cancer cells -???trick or treats????, FEBS Journal, vol.5, issue.2 Pt 1, pp.6084-6096, 2009.
DOI : 10.1111/j.1742-4658.2009.07332.x

M. N. Corradetti, K. Inoki, N. Bardeesy, R. A. Depinho, and K. Guan, Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome, Genes & Development, vol.18, issue.13, pp.1533-1538, 2004.
DOI : 10.1101/gad.1199104

P. B. Crino, K. L. Nathanson, and E. P. Henske, The Tuberous Sclerosis Complex, New England Journal of Medicine, vol.355, issue.13, pp.1345-1356, 2006.
DOI : 10.1056/NEJMra055323

N. P. Curthoys and M. Watford, Regulation of Glutaminase Activity and Glutamine Metabolism, Annual Review of Nutrition, vol.15, issue.1, pp.133-159, 1995.
DOI : 10.1146/annurev.nu.15.070195.001025

C. V. Dang, MYC on the Path to Cancer, Cell, vol.149, issue.1, pp.22-35, 2012.
DOI : 10.1016/j.cell.2012.03.003

L. Dang, D. W. White, S. Gross, B. D. Bennett, M. A. Bittinger et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, vol.50, issue.7274, pp.739-744, 2009.
DOI : 10.1038/nature08617

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760

R. J. Deberardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff et al., Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis, Proceedings of the National Academy of Sciences, vol.104, issue.49, 2007.
DOI : 10.1073/pnas.0709747104

K. Deguchi and D. G. Gilliland, Cooperativity between mutations in tyrosine kinases and in hematopoietic transcription factors in AML, Leukemia, vol.16, issue.4, pp.740-744, 2002.
DOI : 10.1038/sj.leu.2402500

C. C. Dibble, J. M. Asara, and B. D. Manning, Characterization of Rictor Phosphorylation Sites Reveals Direct Regulation of mTOR Complex 2 by S6K1, Molecular and Cellular Biology, vol.29, issue.21, pp.5657-5670, 2009.
DOI : 10.1128/MCB.00735-09

D. Santos, C. Demur, C. Bardet, V. Prade-houdellier, N. Payrastre et al., A critical role for Lyn in acute myeloid leukemia, Blood, vol.111, issue.4, pp.2269-2279, 2008.
DOI : 10.1182/blood-2007-04-082099

R. J. Dowling, I. Topisirovic, T. Alain, M. Bidinosti, B. D. Fonseca et al., mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs, Science, vol.328, issue.5982, pp.1172-1176, 2010.
DOI : 10.1126/science.1187532

J. A. Engelman, Targeting PI3K signalling in cancer: opportunities, challenges and limitations, Nature Reviews Cancer, vol.16, issue.8, pp.550-562, 2009.
DOI : 10.1038/nrc2664

K. Evans, Z. Nasim, J. Brown, H. Butler, S. Kauser et al., Acidosis-Sensing Glutamine Pump SNAT2 Determines Amino Acid Levels and Mammalian Target of Rapamycin Signalling to Protein Synthesis in L6 Muscle Cells, Journal of the American Society of Nephrology, vol.18, issue.5, pp.1426-1436, 2007.
DOI : 10.1681/ASN.2006091014

J. Faber, A. V. Krivtsov, M. C. Stubbs, R. Wright, T. N. Davis et al., HOXA9 is required for survival in human MLL-rearranged acute leukemias, Blood, vol.113, issue.11, pp.2375-2385, 2009.
DOI : 10.1182/blood-2007-09-113597

M. E. Feldman, B. Apsel, A. Uotila, R. Loewith, Z. A. Knight et al., Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2, PLoS Biology, vol.314, issue.2, p.38, 2009.
DOI : 10.1371/journal.pbio.1000038.st001

H. F. Fernandez, Z. Sun, X. Yao, M. R. Litzow, S. M. Luger et al., Anthracycline Dose Intensification in Acute Myeloid Leukemia, New England Journal of Medicine, vol.361, issue.13, pp.1249-1259, 2009.
DOI : 10.1056/NEJMoa0904544

M. E. Figueroa, O. Abdel-wahab, C. Lu, P. S. Ward, J. Patel et al., Leukemic IDH1 and IDH2 Mutations Result in??a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation, Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation, pp.553-567, 2010.
DOI : 10.1016/j.ccr.2010.11.015

B. C. Fuchs and B. P. Bode, Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime?, Seminars in Cancer Biology, vol.15, issue.4, pp.254-266, 2005.
DOI : 10.1016/j.semcancer.2005.04.005

B. C. Fuchs, R. E. Finger, M. C. Onan, and B. P. Bode, ASCT2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells, AJP: Cell Physiology, vol.293, issue.1, pp.55-63, 2007.
DOI : 10.1152/ajpcell.00330.2006

B. C. Fuchs, J. C. Perez, J. E. Suetterlin, S. B. Chaudhry, and B. P. Bode, Inducible antisense RNA targeting amino acid transporter ATB0/ASCT2 elicits apoptosis in human hepatoma cells, AJP: Gastrointestinal and Liver Physiology, vol.286, issue.3, pp.467-478, 2004.
DOI : 10.1152/ajpgi.00344.2003

C. Fumarola, L. Monica, S. Guidotti, and G. G. , Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: Role of glutamine and of cell shrinkage, Journal of Cellular Physiology, vol.50, issue.1, pp.155-165, 2005.
DOI : 10.1002/jcp.20272

N. Gallay, D. Santos, C. Cuzin, L. Bousquet, M. Simmonet-gouy et al., The level of AKT phosphorylation on threonine 308 but not on serine 473 is associated with high-risk cytogenetics and predicts poor overall survival in acute myeloid leukaemia, Leukemia, vol.110, issue.6, pp.1029-1038, 2009.
DOI : 10.1038/leu.2008.395

B. Gan, E. Sahin, S. Jiang, A. Sanchez-aguilera, K. L. Scott et al., mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization, Proc. Natl. Acad. Sci. U.S.A. 105, pp.19384-19389, 2008.
DOI : 10.1073/pnas.0810584105

X. Gan, J. Wang, B. Su, and D. Wu, Evidence for Direct Activation of mTORC2 Kinase Activity by Phosphatidylinositol 3,4,5-Trisphosphate, Journal of Biological Chemistry, vol.286, issue.13, pp.10998-11002, 2011.
DOI : 10.1074/jbc.M110.195016

P. Gao, I. Tchernyshyov, T. Chang, Y. Lee, K. Kita et al., c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism, Nature, vol.12, issue.7239, pp.762-765, 2009.
DOI : 10.1038/nature07823

J. M. García-martínez and D. R. Alessi, mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1), Biochemical Journal, vol.416, issue.3, 2008.
DOI : 10.1042/BJ20081668

J. M. García-martínez, J. Moran, R. G. Clarke, A. Gray, S. C. Cosulich et al., Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR), Biochemical Journal, vol.15, issue.1, pp.29-42, 2009.
DOI : 10.2174/156800908786733513

A. C. Gingras, B. Raught, S. P. Gygi, A. Niedzwiecka, M. Miron et al., Hierarchical phosphorylation of the translation inhibitor 4E-BP1, Genes Dev, vol.15, pp.2852-2864, 2001.

A. C. Gingras, B. Raught, and N. Sonenberg, eIF4 Initiation Factors: Effectors of mRNA Recruitment to Ribosomes and Regulators of Translation, Annual Review of Biochemistry, vol.68, issue.1, pp.913-963, 1999.
DOI : 10.1146/annurev.biochem.68.1.913

V. L. Grandage, R. E. Gale, D. C. Linch, and A. Khwaja, PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways, Leukemia, vol.19, pp.586-594, 2005.

S. Greenblatt, L. Li, C. Slape, B. Nguyen, R. Novak et al., Knock-in of a FLT3/ITD mutation cooperates with a NUP98-HOXD13 fusion to generate acute myeloid leukemia in a mouse model, Blood, vol.119, issue.12, pp.2883-2894
DOI : 10.1182/blood-2011-10-382283

R. Grundler, C. Miething, C. Thiede, C. Peschel, and J. Duyster, FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model, Blood, vol.105, issue.12, pp.4792-4799, 2005.
DOI : 10.1182/blood-2004-11-4430

D. A. Guertin and D. M. Sabatini, The Pharmacology of mTOR Inhibition, Science Signaling, vol.2, issue.67, p.24, 2009.
DOI : 10.1126/scisignal.267pe24

D. A. Guertin, D. M. Stevens, M. Saitoh, S. Kinkel, K. Crosby et al., mTOR Complex 2 Is Required for the Development of Prostate Cancer Induced by Pten Loss in Mice, Cancer Cell, vol.15, issue.2, pp.148-159, 2009.
DOI : 10.1016/j.ccr.2008.12.017

D. A. Guertin, D. M. Stevens, C. C. Thoreen, A. A. Burds, N. Y. Kalaany et al., Ablation in Mice of the mTORC Components raptor, rictor, or mLST8 Reveals??that mTORC2 Is Required for Signaling to Akt-FOXO and PKC??, but Not S6K1, Developmental Cell, vol.11, issue.6, pp.859-871, 2006.
DOI : 10.1016/j.devcel.2006.10.007

M. L. Guzman, S. J. Neering, D. Upchurch, B. Grimes, D. S. Howard et al., Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells, Blood, vol.98, issue.8, pp.2301-2307, 2001.
DOI : 10.1182/blood.V98.8.2301

D. M. Gwinn, D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery et al., AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint, Molecular Cell, vol.30, issue.2, pp.214-226, 2008.
DOI : 10.1016/j.molcel.2008.03.003

A. Haghighat, S. Mader, A. Pause, and N. Sonenberg, Repression of cap-dependent translation by 4E- binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E, EMBO J, vol.14, pp.5701-5709, 1995.

J. M. Han, S. J. Jeong, M. C. Park, G. Kim, N. H. Kwon et al., Leucyl-tRNA Synthetase Is an Intracellular Leucine Sensor for the mTORC1-Signaling Pathway, Cell, vol.149, issue.2, pp.410-424, 2012.
DOI : 10.1016/j.cell.2012.02.044

K. Hara, Y. Maruki, X. Long, K. Yoshino, N. Oshiro et al., Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action, Cell, vol.110, issue.2, pp.177-189, 2002.
DOI : 10.1016/S0092-8674(02)00833-4

K. Hara, K. Yonezawa, Q. P. Weng, M. T. Kozlowski, C. Belham et al., Amino Acid Sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism, Journal of Biological Chemistry, vol.273, issue.23, pp.14484-14494, 1998.
DOI : 10.1074/jbc.273.23.14484

I. Hermanova, M. Zaliova, J. Trka, and J. Starkova, Low expression of asparagine synthetase in lymphoid blasts precludes its role in sensitivity to L-asparaginase, Experimental Hematology, vol.40, issue.8, pp.657-665, 2012.
DOI : 10.1016/j.exphem.2012.04.005

V. Hietakangas and S. M. Cohen, TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells, BMC Cancer, vol.275, issue.13, p.282, 2008.
DOI : 10.1074/jbc.275.13.9303

K. Hoffmann, M. J. Firth, A. H. Beesley, J. R. Freitas, J. Ford et al., Prediction of relapse in paediatric pre-B acute lymphoblastic leukaemia using a three-gene risk index, British Journal of Haematology, vol.85, issue.6, pp.656-664, 2008.
DOI : 10.1073/pnas.111153698

K. Högstrand, E. Hejll, B. Sander, B. Rozell, L. Larsson et al., Inhibition of the intrinsic but not the extrinsic apoptosis pathway accelerates and drives MYC-driven tumorigenesis towards acute myeloid leukemia, PLoS ONE, vol.7, 2012.

M. K. Holz and J. Blenis, Identification of S6 Kinase 1 as a Novel Mammalian Target of Rapamycin (mTOR)-phosphorylating Kinase, Journal of Biological Chemistry, vol.280, issue.28, pp.26089-26093, 2005.
DOI : 10.1074/jbc.M504045200

T. Hoshii, Y. Tadokoro, K. Naka, T. Ooshio, T. Muraguchi et al., mTORC1 is essential for leukemia propagation but not stem cell self-renewal, Journal of Clinical Investigation, vol.122, issue.6, pp.2114-2129
DOI : 10.1172/JCI62279DS1

H. Hou, Y. Kuo, C. Liu, M. C. Lee, J. Tang et al., Distinct association between aberrant methylation of Wnt inhibitors and genetic alterations in acute myeloid leukaemia, British Journal of Cancer, vol.14, issue.12, pp.1927-1933, 2011.
DOI : 10.1038/sj.leu.2404239

A. C. Hsieh, M. Costa, O. Zollo, C. Davis, M. E. Feldman et al., Genetic Dissection of the Oncogenic mTOR Pathway Reveals Druggable Addiction to Translational Control via 4EBP-eIF4E, Cancer Cell, vol.17, issue.3, pp.249-261, 2010.
DOI : 10.1016/j.ccr.2010.01.021

A. C. Hsieh, Y. Liu, M. P. Edlind, N. T. Ingolia, M. R. Janes et al., The translational landscape of mTOR signalling steers cancer initiation and metastasis, Nature, vol.107, issue.7396, pp.55-61
DOI : 10.1038/nature10912

P. P. Hsu, S. A. Kang, J. Rameseder, Y. Zhang, K. A. Ottina et al., The mTOR-Regulated Phosphoproteome Reveals a Mechanism of mTORC1-Mediated Inhibition of Growth Factor Signaling, Science, vol.332, issue.6035, pp.1317-1322, 2011.
DOI : 10.1126/science.1199498

P. P. Hsu and D. M. Sabatini, Cancer Cell Metabolism: Warburg and Beyond, Cell, vol.134, issue.5, pp.703-707, 2008.
DOI : 10.1016/j.cell.2008.08.021

URL : http://doi.org/10.1016/j.cell.2008.08.021

W. Hu, C. Zhang, R. Wu, Y. Sun, A. Levine et al., Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function, Proceedings of the National Academy of Sciences, vol.107, issue.16, pp.7455-7460, 2010.
DOI : 10.1073/pnas.1001006107

H. , J. Manning, and B. D. , The TSC1?TSC2 complex: a molecular switchboard controlling cell growth, Biochem J, vol.412, pp.179-190, 2008.

S. Huang, Z. J. Yang, C. Yu, and F. A. Sinicrope, Inhibition of mTOR Kinase by AZD8055 Can Antagonize Chemotherapy-induced Cell Death through Autophagy Induction and Down-regulation of p62/Sequestosome 1, Journal of Biological Chemistry, vol.286, issue.46, pp.40002-40012, 2011.
DOI : 10.1074/jbc.M111.297432

H. S. Hundal and P. M. Taylor, Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling, AJP: Endocrinology and Metabolism, vol.296, issue.4, pp.603-613, 2009.
DOI : 10.1152/ajpendo.91002.2008

R. G. Hutson, T. Kitoh, M. Amador, D. A. Cosic, S. Schuster et al., Amino acid control of asparagine synthetase: relation to asparaginase resistance in human leukemia cells, Am. J. Physiol, vol.272, pp.1691-1699, 1997.

Y. Iiboshi, P. J. Papst, S. P. Hunger, and N. Terada, l-Asparaginase Inhibits the Rapamycin-Targeted Signaling Pathway, Biochemical and Biophysical Research Communications, vol.260, issue.2, pp.534-539, 1999.
DOI : 10.1006/bbrc.1999.0920

K. Inoki, Y. Li, T. Zhu, J. Wu, and K. Guan, TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling, Nature Cell Biology, vol.4, issue.9, pp.648-657, 2002.
DOI : 10.1038/ncb839

K. Inoki, H. Ouyang, T. Zhu, C. Lindvall, Y. Wang et al., TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth, Cell, vol.126, issue.5, pp.955-968, 2006.
DOI : 10.1016/j.cell.2006.06.055

K. Inoki, T. Zhu, and K. Guan, TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival, Cell, vol.115, issue.5, pp.577-590, 2003.
DOI : 10.1016/S0092-8674(03)00929-2

E. Jacinto, V. Facchinetti, D. Liu, N. Soto, S. Wei et al., SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity, Cell, vol.127, issue.1, pp.125-137, 2006.
DOI : 10.1016/j.cell.2006.08.033

URL : http://doi.org/10.1016/j.cell.2006.08.033

E. Jacinto, R. Loewith, A. Schmidt, S. Lin, M. A. Rüegg et al., Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive, Nature Cell Biology, vol.59, issue.11, pp.1122-1128, 2004.
DOI : 10.1006/jmbi.2000.4042

M. R. Janes, J. J. Limon, L. So, J. Chen, R. J. Lim et al., Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor, Nature Medicine, vol.4, issue.2, pp.205-213, 2010.
DOI : 10.1038/nm.2091

T. M. Kadia, H. Kantarjian, S. Kornblau, G. Borthakur, S. Faderl et al., Clinical and proteomic characterization of acute myeloid leukemia with mutated RAS, Cancer, 2012.

D. Kafkewitz and A. Bendich, Enzyme-induced asparagine and glutamine depletion and immune system function, Am. J. Clin. Nutr, vol.37, pp.1025-1030, 1983.

N. Kato, J. Kitaura, N. Doki, Y. Komeno, N. Watanabe-okochi et al., Two types of C/EBP?? mutations play distinct but collaborative roles in leukemogenesis: lessons from clinical data and BMT models, Blood, vol.117, issue.1, pp.221-233, 2011.
DOI : 10.1182/blood-2010-02-270181

R. Kekuda, P. D. Prasad, Y. J. Fei, V. Torres-zamorano, S. Sinha et al., Cloning of the Sodium-dependent, Broad-scope, Neutral Amino Acid Transporter Bo from a Human Placental Choriocarcinoma Cell Line, Journal of Biological Chemistry, vol.271, issue.31, pp.18657-18661, 1996.
DOI : 10.1074/jbc.271.31.18657

L. M. Kelly, Q. Liu, J. L. Kutok, I. R. Williams, C. L. Boulton et al., FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model, Blood, vol.99, issue.1, pp.310-318, 2002.
DOI : 10.1182/blood.V99.1.310

M. G. Kharas, R. Okabe, J. J. Ganis, M. Gozo, T. Khandan et al., Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice, Blood, vol.115, issue.7, pp.1406-1415, 2010.
DOI : 10.1182/blood-2009-06-229443

E. Kim, P. Goraksha-hicks, L. Li, T. P. Neufeld, and K. Guan, Regulation of TORC1 by Rag GTPases in nutrient response, Nature Cell Biology, vol.3, issue.8, pp.935-945, 2008.
DOI : 10.1083/jcb.200511140

S. Kim, S. F. Kim, D. Maag, M. J. Maxwell, A. C. Resnick et al., Amino Acid Signaling to mTOR Mediated by Inositol Polyphosphate Multikinase, Cell Metabolism, vol.13, issue.2, pp.215-221, 2011.
DOI : 10.1016/j.cmet.2011.01.007

S. M. Kornblau, M. Womble, Y. H. Qiu, C. E. Jackson, W. Chen et al., Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia, Blood, vol.108, issue.7, pp.2358-2365, 2006.
DOI : 10.1182/blood-2006-02-003475

Z. Kovacevi?, The pathway of glutamine and glutamate oxidation in isolated mitochondria from mammalian cells, Biochemical Journal, vol.125, issue.3, pp.757-763, 1971.
DOI : 10.1042/bj1250757

U. Krause, L. Bertrand, L. Maisin, M. Rosa, and L. Hue, Signalling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes, European Journal of Biochemistry, vol.276, issue.15, pp.3742-3750, 2002.
DOI : 10.1046/j.1432-1033.2002.03069.x

G. Kroemer and J. Pouyssegur, Tumor Cell Metabolism: Cancer's Achilles' Heel, Cancer Cell, vol.13, issue.6, pp.472-482, 2008.
DOI : 10.1016/j.ccr.2008.05.005

URL : http://doi.org/10.1016/j.ccr.2008.05.005

H. Kung, J. R. Marks, and J. Chi, Glutamine Synthetase Is a Genetic Determinant of Cell Type???Specific Glutamine Independence in Breast Epithelia, PLoS Genetics, vol.465, issue.8, 2011.
DOI : 10.1371/journal.pgen.1002229.s009

R. Kurayama, N. Ito, Y. Nishibori, D. Fukuhara, Y. Akimoto et al., Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis, Laboratory Investigation, vol.281, issue.7, pp.992-1006, 2011.
DOI : 10.1042/BJ20070490

B. I. Labow, W. W. Souba, and S. F. Abcouwer, Mechanisms governing the expression of the enzymes of glutamine metabolism--glutaminase and glutamine synthetase, J. Nutr, vol.131, pp.2467-74, 2001.

M. Laplante and D. M. Sabatini, An Emerging Role of mTOR in Lipid Biosynthesis, Current Biology, vol.19, issue.22, pp.1046-1052, 2009.
DOI : 10.1016/j.cub.2009.09.058

A. Le, A. N. Lane, M. Hamaker, S. Bose, A. Gouw et al., Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells, Cell Metabolism, vol.15, issue.1, pp.110-121, 2012.
DOI : 10.1016/j.cmet.2011.12.009

A. J. Levine and A. M. Puzio-kuter, The Control of the Metabolic Switch in Cancers by Oncogenes and Tumor Suppressor Genes, Science, vol.330, issue.6009, pp.1340-1344, 2010.
DOI : 10.1126/science.1193494

X. Long, S. Ortiz-vega, Y. Lin, and J. Avruch, Rheb Binding to Mammalian Target of Rapamycin (mTOR) Is Regulated by Amino Acid Sufficiency, Journal of Biological Chemistry, vol.280, issue.25, pp.23433-23436, 2005.
DOI : 10.1074/jbc.C500169200

M. |ller, A. M. Duque, J. Shizuru, J. A. Lübbert, and M. , Complementing mutations in core binding factor leukemias: from mouse models to clinical applications, Oncogene, vol.27, pp.5759-5773, 2008.

L. Ma, Z. Chen, H. Erdjument-bromage, P. Tempst, and P. P. Pandolfi, Phosphorylation and Functional Inactivation of TSC2 by Erk, Cell, vol.121, issue.2, pp.179-193, 2005.
DOI : 10.1016/j.cell.2005.02.031

X. M. Ma and J. Blenis, Molecular mechanisms of mTOR-mediated translational control, Nature Reviews Molecular Cell Biology, vol.27, issue.5, pp.307-318, 2009.
DOI : 10.1038/nrm2672

B. Magnuson, B. Ekim, and D. C. Fingar, Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks, Biochemical Journal, vol.460, issue.1, pp.1-21, 2012.
DOI : 10.1016/j.febslet.2010.01.017

B. D. Manning and L. C. Cantley, AKT/PKB Signaling: Navigating Downstream, Cell, vol.129, issue.7, pp.1261-1274, 2007.
DOI : 10.1016/j.cell.2007.06.009

URL : http://doi.org/10.1016/j.cell.2007.06.009

M. Martín-rufián, M. Tosina, J. A. Campos-sandoval, E. Manzanares, C. Lobo et al., Mammalian Glutaminase Gls2 Gene Encodes Two Functional Alternative Transcripts by a Surrogate Promoter Usage Mechanism, PLoS ONE, vol.100, issue.6, p.38380, 2012.
DOI : 10.1371/journal.pone.0038380.s002

J. Masri, A. Bernath, J. Martin, O. D. Jo, R. Vartanian et al., mTORC2 Activity Is Elevated in Gliomas and Promotes Growth and Cell Motility via Overexpression of Rictor, Cancer Research, vol.67, issue.24, pp.11712-11720, 2007.
DOI : 10.1158/0008-5472.CAN-07-2223

K. Masson and L. Rönnstrand, Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3, Cellular Signalling, vol.21, issue.12, pp.1717-1726, 2009.
DOI : 10.1016/j.cellsig.2009.06.002

E. A. Mazzio, N. Boukli, N. Rivera, and K. F. Soliman, Pericellular pH homeostasis is a primary function of the Warburg effect: Inversion of metabolic systems to control lactate steady state in tumor cells, Cancer Science, vol.127, issue.3, pp.422-432, 2012.
DOI : 10.1111/j.1349-7006.2012.02206.x

J. D. Mcgivan and C. I. Bungard, The transport of glutamine into mammalian cells, Frontiers in Bioscience, vol.12, issue.1, pp.874-882, 2007.
DOI : 10.2741/2109

S. Menon, J. L. Yecies, H. H. Zhang, J. J. Howell, J. Nicholatos et al., Chronic Activation of mTOR Complex 1 Is Sufficient to Cause Hepatocellular Carcinoma in Mice, Science Signaling, vol.5, issue.217, p.24, 2012.
DOI : 10.1126/scisignal.2002739

C. M. Metallo, P. A. Gameiro, E. L. Bell, K. R. Mattaini, J. Yang et al., Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia, Nature, vol.25, pp.380-384, 2012.
DOI : 10.1038/nature10602

M. Milella, S. M. Kornblau, Z. Estrov, B. Z. Carter, H. Lapillonne et al., Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia, Journal of Clinical Investigation, vol.108, issue.6, pp.851-859, 2001.
DOI : 10.1172/JCI12807

H. K. Miller, J. S. Salser, and M. E. Balis, Amino acid levels following L-asparagine amidohydrolase (EC.3.5.1.1) therapy, Cancer Res, vol.29, pp.183-187, 1969.
DOI : 10.1016/0006-2952(69)90329-3

M. Mizuki, R. Fenski, H. Halfter, I. Matsumura, R. Schmidt et al., Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways, Blood, vol.96, pp.3907-3914, 2000.

J. Montagne, M. J. Stewart, H. Stocker, E. Hafen, S. C. Kozma et al., Drosophila S6 Kinase: A Regulator of Cell Size, Science, vol.285, issue.5436, pp.2126-2129, 1999.
DOI : 10.1126/science.285.5436.2126

A. R. Mullen, W. W. Wheaton, E. S. Jin, P. Chen, L. B. Sullivan et al., Reductive carboxylation supports growth in tumour cells with defective mitochondria, Nature, vol.2, pp.385-388, 2012.
DOI : 10.1038/nature10642

H. J. Müller and J. Boos, Use of ?-asparaginase in childhood ALL, Critical Reviews in Oncology/Hematology, vol.28, issue.2, pp.97-113, 1998.
DOI : 10.1016/S1040-8428(98)00015-8

C. Müller-tidow, B. Steffen, T. Cauvet, L. Tickenbrock, P. Ji et al., Translocation Products in Acute Myeloid Leukemia Activate the Wnt Signaling Pathway in Hematopoietic Cells, Molecular and Cellular Biology, vol.24, issue.7, pp.2890-2904, 2004.
DOI : 10.1128/MCB.24.7.2890-2904.2004

C. Nardella, Z. Chen, L. Salmena, A. Carracedo, A. Alimonti et al., Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events, Genes & Development, vol.22, issue.16, pp.2172-2177, 2008.
DOI : 10.1101/gad.1699608

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518820

P. Newsholme, J. Procopio, M. M. Lima, T. C. Pithon-curi, and R. Curi, Glutamine and glutamate?their central role in cell metabolism and function, Cell Biochemistry and Function, vol.131, issue.1, pp.1-9, 2003.
DOI : 10.1002/cbf.1003

H. J. Nick, H. Kim, C. Chang, K. W. Harris, V. Reddy et al., Distinct classes of c-Kit-activating mutations differ in their ability to promote RUNX1-ETO-associated acute myeloid leukemia, Blood, vol.119, issue.6, pp.1522-1531, 2012.
DOI : 10.1182/blood-2011-02-338228

P. Nicklin, P. Bergman, B. Zhang, E. Triantafellow, H. Wang et al., Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy, Cell, vol.136, issue.3, pp.521-534, 2009.
DOI : 10.1016/j.cell.2008.11.044

T. Nobukuni, M. Joaquin, M. Roccio, S. G. Dann, S. Y. Kim et al., Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase, Proc. Natl. Acad. Sci. U.S.A. 102, pp.14238-14243, 2005.
DOI : 10.1073/pnas.0506925102

O. Reilly, K. E. Rojo, F. She, Q. Solit, D. Mills et al., mTOR Inhibition Induces Upstream Receptor Tyrosine Kinase Signaling and Activates Akt, mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt, pp.1500-1508, 2006.
DOI : 10.1158/0008-5472.CAN-05-2925

H. Ochiai, K. Higa, N. Hishiyama, S. Hisamatsu, and H. Fujise, Characterization of several amino acid transports and glutamine metabolism in MOLT4 human T4 leukemia cells, Clinical and Laboratory Haematology, vol.373, issue.6, pp.399-404, 2006.
DOI : 10.1016/j.leukres.2004.11.022

W. J. Oh and E. Jacinto, mTOR complex 2 signaling and functions, Cell Cycle, vol.2, issue.14, pp.2305-2316, 2011.
DOI : 10.1016/j.tibs.2011.03.006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322468

W. J. Oh, C. Wu, S. J. Kim, V. Facchinetti, L. Julien et al., mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide, The EMBO Journal, vol.15, issue.23, pp.3939-3951, 2010.
DOI : 10.1158/0008-5472.CAN-09-0299

Y. Ohne, T. Takahara, R. Hatakeyama, T. Matsuzaki, M. Noda et al., Isolation of Hyperactive Mutants of Mammalian Target of Rapamycin, Journal of Biological Chemistry, vol.283, issue.46, pp.31861-31870, 2008.
DOI : 10.1074/jbc.M801546200

T. Ohnuma, J. F. Holland, A. Freeman, and L. F. Sinks, Biochemical and pharmacological studies with asparaginase in man, Cancer Res, vol.30, pp.2297-2305, 1970.

S. Okada, T. Hongo, S. Yamada, C. Watanabe, Y. Fujii et al., In vitro efficacy of l-asparaginase in childhood acute myeloid leukaemia, British Journal of Haematology, vol.96, issue.1, pp.802-809, 2003.
DOI : 10.1182/blood.V100.9.3352

T. Okuda, J. Van-deursen, S. W. Hiebert, G. Grosveld, and J. R. Downing, AML1, the Target of Multiple Chromosomal Translocations in Human Leukemia, Is Essential for Normal Fetal Liver Hematopoiesis, Cell, vol.84, issue.2, pp.321-330, 1996.
DOI : 10.1016/S0092-8674(00)80986-1

S. Ollila and T. P. Mäkelä, The tumor suppressor kinase LKB1: lessons from mouse models, Journal of Molecular Cell Biology, vol.3, issue.6, pp.330-340, 2011.
DOI : 10.1093/jmcb/mjr016

M. S. Orloff and C. Eng, Genetic and phenotypic heterogeneity in the PTEN hamartoma tumour syndrome, Oncogene, vol.73, issue.41, pp.5387-5397, 2008.
DOI : 10.1038/onc.2008.237

N. Oshiro, K. Yoshino, S. Hidayat, C. Tokunaga, K. Hara et al., Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function, Genes to Cells, vol.15, issue.4, pp.359-366, 2004.
DOI : 10.1074/jbc.273.26.16621

M. Palmada, A. Speil, S. Jeyaraj, C. Böhmer, and F. Lang, The serine/threonine kinases SGK1, 3 and PKB stimulate the amino acid transporter ASCT2, Biochemical and Biophysical Research Communications, vol.331, issue.1, pp.272-277, 2005.
DOI : 10.1016/j.bbrc.2005.03.159

E. H. Panosyan, R. S. Grigoryan, I. A. Avramis, N. L. Seibel, P. S. Gaynon et al., Deamination of glutamine is a prerequisite for optimal asparagine deamination by asparaginases in vivo (CCG-1961), Anticancer Res, vol.24, pp.1121-1125, 2004.

E. H. Panosyan, N. L. Seibel, S. Martin-aragon, P. S. Gaynon, I. A. Avramis et al., Asparaginase Antibody and Asparaginase Activity in Children With Higher-Risk Acute Lymphoblastic Leukemia, Journal of Pediatric Hematology/Oncology, vol.26, issue.4, pp.217-226, 2004.
DOI : 10.1097/00043426-200404000-00002

C. Parikh, R. Subrahmanyam, and R. Ren, Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice, Blood, vol.108, issue.7, pp.2349-2357, 2006.
DOI : 10.1182/blood-2004-08-009498

S. Park, N. Chapuis, V. Bardet, J. Tamburini, N. Gallay et al., PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML, Leukemia, vol.4, issue.9, pp.1698-1706, 2008.
DOI : 10.1042/BJ20070003

S. Park, N. Chapuis, J. Tamburini, V. Bardet, P. Cornillet-lefebvre et al., Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia, Haematologica, vol.95, issue.5, pp.819-828, 2010.
DOI : 10.3324/haematol.2009.013797

J. P. Patel, M. Gönen, M. E. Figueroa, H. Fernandez, Z. Sun et al., Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia, New England Journal of Medicine, vol.366, issue.12, pp.1079-1089
DOI : 10.1056/NEJMoa1112304

I. Patursky-polischuk, M. Stolovich-rain, M. Hausner-hanochi, J. Kasir, N. Cybulski et al., The TSC-mTOR Pathway Mediates Translational Activation of TOP mRNAs by Insulin Largely in a Raptor- or Rictor-Independent Manner, Molecular and Cellular Biology, vol.29, issue.3, pp.640-649, 2009.
DOI : 10.1128/MCB.00980-08

Y. Perel, A. Auvrignon, T. Leblanc, G. Michel, Y. Reguerre et al., Treatment of childhood acute myeloblastic leukemia: dose intensification improves outcome and maintenance therapy is of no benefit ??? multicenter studies of the French LAME (Leuc??mie Aigu?? My??loblastique Enfant) Cooperative Group, Leukemia, vol.6, issue.12, pp.2082-2089, 2005.
DOI : 10.1038/sj.leu.2402326

C. Pérez-gómez, J. A. Campos-sandoval, F. J. Alonso, J. A. Segura, E. Manzanares et al., Co-expression of glutaminase K and L isoenzymes in human tumour cells, Biochemical Journal, vol.386, issue.3, pp.535-542, 2005.
DOI : 10.1042/BJ20040996

T. R. Peterson, M. Laplante, C. C. Thoreen, Y. Sancak, S. A. Kang et al., DEPTOR Is an mTOR Inhibitor Frequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival, Cell, vol.137, issue.5, pp.873-886, 2009.
DOI : 10.1016/j.cell.2009.03.046

T. R. Peterson, S. S. Sengupta, T. E. Harris, A. E. Carmack, S. A. Kang et al., mTOR Complex 1 Regulates Lipin 1 Localization to Control the SREBP Pathway, Cell, vol.146, issue.3, pp.408-420, 2011.
DOI : 10.1016/j.cell.2011.06.034

J. Pinilla, J. C. Aledo, E. Cwiklinski, R. Hyde, P. M. Taylor et al., SNAT2 transceptor signalling via mTOR: A role in cell growth and proliferation?, Frontiers in Bioscience, vol.3, issue.1, pp.1289-1299, 2011.
DOI : 10.2741/332

C. Pui and W. E. Evans, Treatment of Acute Lymphoblastic Leukemia, New England Journal of Medicine, vol.354, issue.2, pp.166-178, 2006.
DOI : 10.1056/NEJMra052603

M. Ramirez, R. C. Wek, C. R. Vazquez-de-aldana, B. M. Jackson, B. Freeman et al., Mutations activating the yeast eIF-2 alpha kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases., Molecular and Cellular Biology, vol.12, issue.12, pp.5801-5815, 1992.
DOI : 10.1128/MCB.12.12.5801

M. G. Rathore, A. Saumet, J. Rossi, C. De-bettignies, D. Tempe et al., The NF-??B member p65 controls glutamine metabolism through miR-23a, The International Journal of Biochemistry & Cell Biology, vol.44, issue.9, pp.1448-56, 2012.
DOI : 10.1016/j.biocel.2012.05.011

C. Récher, O. Beyne-rauzy, C. Demur, G. Chicanne, D. Santos et al., Antileukemic activity of rapamycin in acute myeloid leukemia, Blood, vol.105, issue.6, pp.2527-2534, 2005.
DOI : 10.1182/blood-2004-06-2494

M. R. Ricciardi, T. Mcqueen, D. Chism, M. Milella, E. Estey et al., Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia, Leukemia, vol.99, issue.9, pp.1543-1549, 2005.
DOI : 10.1038/sj.leu.2403859

G. J. Roboz, Novel Approaches to the Treatment of Acute Myeloid Leukemia, Hematology, vol.2011, issue.1, pp.43-50, 2011.
DOI : 10.1182/asheducation-2011.1.43

B. M. Rotoli, J. Uggeri, V. Dall-'asta, R. Visigalli, A. Barilli et al., Inhibition of Glutamine Synthetase Triggers Apoptosis in Asparaginase-Resistant Cells, Cellular Physiology and Biochemistry, vol.15, issue.6, pp.281-292, 2005.
DOI : 10.1159/000087238

P. P. Roux, B. A. Ballif, R. Anjum, S. P. Gygi, and J. Blenis, Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase, Proceedings of the National Academy of Sciences, vol.101, issue.37, pp.13489-13494, 2004.
DOI : 10.1073/pnas.0405659101

Y. Sancak, L. Bar-peled, R. Zoncu, A. L. Markhard, S. Nada et al., Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids, Cell, vol.141, issue.2, pp.290-303, 2010.
DOI : 10.1016/j.cell.2010.02.024

Y. Sancak, T. R. Peterson, Y. D. Shaul, R. A. Lindquist, C. C. Thoreen et al., The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1, Science, vol.320, issue.5882, pp.1496-1501, 2008.
DOI : 10.1126/science.1157535

D. D. Sarbassov, S. M. Ali, S. Sengupta, J. Sheen, P. P. Hsu et al., Prolonged Rapamycin Treatment Inhibits mTORC2 Assembly and Akt/PKB, Molecular Cell, vol.22, issue.2, pp.159-168, 2006.
DOI : 10.1016/j.molcel.2006.03.029

URL : http://doi.org/10.1016/j.molcel.2006.03.029

D. D. Sarbassov, D. A. Guertin, S. M. Ali, and D. M. Sabatini, Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex, Science, vol.307, issue.5712, pp.1098-1101, 2005.
DOI : 10.1126/science.1106148

J. J. Schuringa, A. T. Wierenga, W. Kruijer, and E. Vellenga, Constitutive Stat3, Tyr705, and Ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6, Blood, vol.95, pp.3765-3770, 2000.

M. J. Seltzer, B. D. Bennett, A. D. Joshi, P. Gao, A. G. Thomas et al., Inhibition of Glutaminase Preferentially Slows Growth of Glioma Cells with Mutant IDH1, Cancer Research, vol.70, issue.22, pp.8981-8987, 2010.
DOI : 10.1158/0008-5472.CAN-10-1666

V. Serra, M. Scaltriti, L. Prudkin, P. J. Eichhorn, Y. H. Ibrahim et al., PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer, Oncogene, vol.2, issue.22, pp.2547-2557, 2011.
DOI : 10.1038/onc.2010.626

C. Settembre, R. Zoncu, D. L. Medina, F. Vetrini, S. Erdin et al., A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB, The EMBO Journal, vol.12, issue.5, pp.1095-1108, 2012.
DOI : 10.1038/emboj.2012.32

M. Sidoryk, E. Matyja, A. Dybel, M. Zielinska, J. Bogucki et al., Increased expression of a glutamine transporter SNAT3 is a marker of malignant gliomas, NeuroReport, vol.15, issue.4, pp.575-578, 2004.
DOI : 10.1097/00001756-200403220-00001

M. Sidoryk-wegrzynowicz, E. Lee, N. Mingwei, and M. Aschner, Disruption of astrocytic glutamine turnover by manganese is mediated by the protein kinase C pathway, Glia, vol.53, issue.11, pp.1732-1743, 2011.
DOI : 10.1002/glia.21219

E. M. Smith, S. G. Finn, A. R. Tee, G. J. Browne, and C. G. Proud, The Tuberous Sclerosis Protein TSC2 Is Not Required for the Regulation of the Mammalian Target of Rapamycin by Amino Acids and Certain Cellular Stresses, Journal of Biological Chemistry, vol.280, issue.19, pp.18717-18727, 2005.
DOI : 10.1074/jbc.M414499200

G. A. Soliman, H. A. Acosta-jaquez, E. A. Dunlop, B. Ekim, N. E. Maj et al., mTOR Ser-2481 Autophosphorylation Monitors mTORC-specific Catalytic Activity and Clarifies Rapamycin Mechanism of Action, Journal of Biological Chemistry, vol.285, issue.11, pp.7866-7879, 2010.
DOI : 10.1074/jbc.M109.096222

A. S. Spiers and H. E. Wade, Bacterial glutaminase in treatment of acute leukaemia., BMJ, vol.1, issue.6021, pp.1317-1319, 1976.
DOI : 10.1136/bmj.1.6021.1317

D. P. Steensma, R. F. Mcclure, J. E. Karp, A. Tefferi, T. L. Lasho et al., JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained, Leukemia, vol.112, issue.6, pp.971-978, 2006.
DOI : 10.1038/sj.leu.2404206

P. Sujobert, V. Bardet, P. Cornillet-lefebvre, J. S. Hayflick, N. Prie et al., Essential role for the p110?? isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia, Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia, pp.1063-1066, 2005.
DOI : 10.1182/blood-2004-08-3225

J. Tamburini, N. Chapuis, V. Bardet, S. Park, P. Sujobert et al., Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways, Blood, vol.111, issue.1, pp.379-382, 2008.
DOI : 10.1182/blood-2007-03-080796

J. Tamburini, C. Elie, V. Bardet, N. Chapuis, S. Park et al., Constitutive phosphoinositide 3-kinase/Akt activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients, Blood, vol.110, issue.3, pp.1025-1028, 2007.
DOI : 10.1182/blood-2006-12-061283

J. Tamburini, A. S. Green, V. Bardet, N. Chapuis, S. Park et al., Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia, Blood, vol.114, issue.8, pp.1618-1627, 2009.
DOI : 10.1182/blood-2008-10-184515

S. Tardito, M. Chiu, J. Uggeri, A. Zerbini, F. Da-ros et al., L-Asparaginase and Inhibitors of Glutamine Synthetase Disclose Glutamine Addiction of &#946;-Catenin-Mutated Human Hepatocellular Carcinoma Cells, Current Cancer Drug Targets, vol.11, issue.8, pp.929-943, 2011.
DOI : 10.2174/156800911797264725

I. Tato, R. Bartrons, F. Ventura, and J. L. Rosa, Amino Acids Activate Mammalian Target of Rapamycin Complex 2 (mTORC2) via PI3K/Akt Signaling, Journal of Biological Chemistry, vol.286, issue.8, pp.6128-6142, 2011.
DOI : 10.1074/jbc.M110.166991

K. Thangavelu, C. Q. Pan, T. Karlberg, G. Balaji, M. Uttamchandani et al., Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism, Proc. Natl, 2012.
DOI : 10.1073/pnas.1116573109

C. C. Thoreen, L. Chantranupong, H. R. Keys, T. Wang, N. S. Gray et al., A unifying model for mTORC1-mediated regulation of mRNA translation, Nature, vol.37, issue.7396, pp.109-113, 2012.
DOI : 10.1038/nature11083

K. F. Tse, G. Mukherjee, and D. Small, Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation, Leukemia, vol.14, issue.10, pp.1766-1776, 2000.
DOI : 10.1038/sj.leu.2401905

S. H. Um, F. Frigerio, M. Watanabe, F. Picard, M. Joaquin et al., Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity, Nature, vol.15, issue.7005, pp.200-205, 2004.
DOI : 10.1038/nature01137

G. S. Vassiliou, J. L. Cooper, R. Rad, J. Li, S. Rice et al., Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice, Nature Genetics, vol.57, issue.5, pp.470-475, 2011.
DOI : 10.1016/j.cell.2008.03.021

J. Wang, J. W. Erickson, R. Fuji, S. Ramachandran, P. Gao et al., Targeting Mitochondrial Glutaminase Activity Inhibits Oncogenic Transformation, Cancer Cell, vol.18, issue.3, pp.207-219, 2010.
DOI : 10.1016/j.ccr.2010.08.009

URL : http://doi.org/10.1016/j.ccr.2010.10.011

X. Wang, A. Beugnet, M. Murakami, S. Yamanaka, and C. G. Proud, Distinct Signaling Events Downstream of mTOR Cooperate To Mediate the Effects of Amino Acids and Insulin on Initiation Factor 4E-Binding Proteins, Molecular and Cellular Biology, vol.25, issue.7, pp.2558-2572, 2005.
DOI : 10.1128/MCB.25.7.2558-2572.2005

Y. Wang, A. V. Krivtsov, A. U. Sinha, T. E. North, W. Goessling et al., The Wnt/??-Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML, Science, vol.327, issue.5973, pp.1650-1653, 2010.
DOI : 10.1126/science.1186624

P. S. Ward and C. B. Thompson, Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate, Cancer Cell, vol.21, issue.3, pp.297-308, 2012.
DOI : 10.1016/j.ccr.2012.02.014

R. P. Warrell, . Jr, Z. A. Arlin, T. S. Gee, T. C. Chou et al., Clinical evaluation of succinylated Acinetobacter glutaminase-asparaginase in adult leukemia, Cancer Treat Rep, vol.66, pp.1479-1485, 1982.

R. P. Warrell, . Jr, T. C. Chou, C. Gordon, C. Tan et al., Phase I evaluation of succinylated Acinetobacter glutaminase-asparaginase in adults, Cancer Res, vol.40, pp.4546-4551, 1980.

A. Willer, J. Gerss, T. König, D. Franke, H. Kühnel et al., Anti-Escherichia coli asparaginase antibody levels determine the activity of second-line treatment with pegylated E coli asparaginase: a retrospective analysis within the ALL-BFM trials, Blood, vol.118, issue.22, pp.5774-5782, 2011.
DOI : 10.1182/blood-2011-07-367904

D. R. Wise, R. J. Deberardinis, A. Mancuso, N. Sayed, X. Zhang et al., Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction, Proc. Natl. Acad. Sci. U.S.A. 105, pp.18782-18787, 2008.
DOI : 10.1073/pnas.0810199105

D. R. Wise and C. B. Thompson, Glutamine addiction: a new therapeutic target in cancer, Trends in Biochemical Sciences, vol.35, issue.8, pp.427-433, 2010.
DOI : 10.1016/j.tibs.2010.05.003

D. R. Wise, P. S. Ward, J. E. Shay, J. R. Cross, J. J. Gruber et al., Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of ??-ketoglutarate to citrate to support cell growth and viability, Proc. Natl. Acad. Sci. U.S.A, pp.19611-19616, 2011.
DOI : 10.1073/pnas.1117773108

D. Witte, N. Ali, N. Carlson, and M. Younes, Overexpression of the neutral amino acid transporter ASCT2 in human colorectal adenocarcinoma, Anticancer Res, vol.22, pp.2555-2557, 2002.

C. Wiza, E. B. Nascimento, and D. M. Ouwens, Role of PRAS40 in Akt and mTOR signaling in health and disease, AJP: Endocrinology and Metabolism, vol.302, issue.12, pp.1453-60, 2012.
DOI : 10.1152/ajpendo.00660.2011

Q. Xu, S. Simpson, T. J. Scialla, A. Bagg, and M. Carroll, Survival of acute myeloid leukemia cells requires PI3 kinase activation, Blood, vol.102, issue.3, pp.972-980, 2003.
DOI : 10.1182/blood-2002-11-3429

Q. Xu, J. E. Thompson, and M. Carroll, mTOR regulates cell survival after etoposide treatment in primary AML cells, Blood, vol.106, issue.13, pp.4261-4268, 2005.
DOI : 10.1182/blood-2004-11-4468

Z. Xu, M. Wang, L. Wang, Y. Wang, X. Zhao et al., Aberrant expression of TSC2 gene in the newly diagnosed acute leukemia, Leukemia Research, vol.33, issue.7, pp.891-897, 2009.
DOI : 10.1016/j.leukres.2009.01.041

S. Yamada, T. Hongo, S. Okada, C. Watanabe, Y. Fujii et al., Clinical relevance of in vitro chemoresistance in childhood acute myeloid leukemia, Leukemia, vol.15, issue.12, pp.1892-1897, 2001.
DOI : 10.1038/sj.leu.2402305

L. Yan, V. Mieulet, D. Burgess, G. M. Findlay, K. Sully et al., PP2AT61?? Is an Inhibitor of MAP4K3 in Nutrient Signaling to mTOR, Molecular Cell, vol.37, issue.5, pp.633-642, 2010.
DOI : 10.1016/j.molcel.2010.01.031

H. Yao, E. Ashihara, and T. Maekawa, Targeting the Wnt/??-catenin signaling pathway in human cancers, Expert Opinion on Therapeutic Targets, vol.59, issue.11, pp.873-887, 2011.
DOI : 10.1038/79859

J. Ye, M. Kumanova, L. S. Hart, K. Sloane, H. Zhang et al., The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation, The EMBO Journal, vol.15, issue.12, pp.2082-2096, 2010.
DOI : 10.1002/jcb.21888

O. H. Yilmaz, R. Valdez, B. K. Theisen, W. Guo, D. O. Ferguson et al., Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells, Nature, vol.421, issue.7092, pp.475-482, 2006.
DOI : 10.1038/nature04703

Y. Yu, S. Yoon, G. Poulogiannis, Q. Yang, X. M. Ma et al., Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling, Science, vol.332, issue.6035, pp.1322-1326, 2011.
DOI : 10.1126/science.1199484

M. Yuneva, N. Zamboni, P. Oefner, R. Sachidanandam, and Y. Lazebnik, Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells, The Journal of Cell Biology, vol.43, issue.1, pp.93-105, 2007.
DOI : 10.1016/j.bbrc.2003.11.136

M. O. Yuneva, T. W. Fan, T. D. Allen, R. M. Higashi, D. V. Ferraris et al., The Metabolic Profile of Tumors Depends on Both the Responsible Genetic Lesion and Tissue Type, Cell Metabolism, vol.15, issue.2, pp.157-170, 2012.
DOI : 10.1016/j.cmet.2011.12.015

P. Zhang, E. Nelson, H. S. Radomska, J. Iwasaki-arai, K. Akashi et al., Induction of granulocytic differentiation by 2 pathways, Blood, vol.99, issue.12, pp.4406-4412, 2002.
DOI : 10.1182/blood.V99.12.4406

Y. Zhao, X. Xiong, and Y. Sun, DEPTOR, an mTOR Inhibitor, Is a Physiological Substrate of SCF??TrCP E3??Ubiquitin Ligase and Regulates Survival and Autophagy, Molecular Cell, vol.44, issue.2, pp.304-316, 2011.
DOI : 10.1016/j.molcel.2011.08.029

X. Zheng, C. Oancea, R. Henschler, and M. Ruthardt, Cooperation between constitutively activated c-Kit signaling and leukemogenic transcription factors in the determination of the leukemic phenotype in murine hematopoietic stem cells, Int. J. Oncol, vol.34, pp.1521-1531, 2009.

V. Zinzalla, D. Stracka, W. Oppliger, and M. N. Hall, Activation of mTORC2 by Association with the Ribosome, Cell, vol.144, issue.5, pp.757-768, 2011.
DOI : 10.1016/j.cell.2011.02.014

R. Zoncu, L. Bar-peled, A. Efeyan, S. Wang, Y. Sancak et al., mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase, Science, vol.334, issue.6056, pp.678-683, 2011.
DOI : 10.1126/science.1207056

C. M. Zwaan, G. J. Kaspers, R. Pieters, N. L. Ramakers-van-woerden, M. L. Den-boer et al., Cellular drug resistance profiles in childhood acute myeloid leukemia: differences between FAB types and comparison with acute lymphoblastic leukemia, Blood, vol.96, pp.2879-2886, 2000.