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Preface

Computing with mobile agents is rapidly becoming a topic of mainstream research in the
theory of distributed computing. The objective of most studies in the area is to provide
models of agent-based computation with solid mathematicaland algorithmic founda-
tions, and to improve our understanding of the capabilitiesof mobile agents, subject
to different constraints. Well-known concepts from parallel and distributed computing,
such as anonymity, locality, and synchronicity, can be naturally adapted to fit into mod-
els using mobile agents as their processing units. At the same time, solutions to many
fundamental problems of distributed computing, such as network discovery or process
rendezvous, take on a completely new meaning when computations are performed by
mobile agents and require the development of new approaches.

This HDR manuscript provides an overview of some of the work Ihave performed
in the period 2008-2013 in the area of mobile-agent computing, focusing on results in
variants of the anonymous network model. The main part of theHDR has been pub-
lished in the form of 8 research papers [T1–T8]. Questions which we ask and address
in these papers are usually of the following kind: What problems admit a solution on
an anonymous network? How quickly can an agent solve a given problem? Can an
agent solve a problem given only a limited amount of state memory? For the case of
a single mobile agent in a graph, we consider the complexity of the tasks of exploring
an unknown network, and of learning its topology. The formertask is studied due to its
immense practical and theoretical significance, while the latter is known to be a form of
a “universal problem” for a single agent in an anonymous network, to which all other
feasible tasks can be reduced. We then extend our attention to the case of more than one
agent, considering the most fundamental coordination routine, namely, the rendezvous
problem for a pair of agents.

I have decided to open this HDR with an introductory manuscript, organized into five
chapters. Its primary purpose is to set the research contribution of the papers [T1–T8],
which form the main part of this HDR, into a broader context. Whereas the literature of
mobile agent computing has recently gained at least two valuable monographs [88,130],
there is clearly still room for a separate survey work, devoted specifically to the topic
of agent-based computation in anonymous networks. So far, this topic has only been
covered in a brief survey article [63] and in several invitedconference talks [98, 153],
serving mainly as comprehensive literature references. I have written this text with
the hope that it may, in the future, be extended and revised into the form of a short
monograph on the topic of mobile agent computing in anonymous networks.



vi Preface

One of the difficulties which arise when surveying the literature of mobile agents in
anonymous networks is the clear lack of agreement among different authors as to the
precise formulation of the studied model. Apparent subtleties of definition, such as
deciding whether an agent should be modeled by a Mealy automaton or a Moore au-
tomaton, or how to count the size of the memory used by an agent, mean that different
results advertised in the literature are not comparable at face value. In some cases, re-
sults published in the context of centralized computation (e.g., in models of Jumping
Automata for Graphs) have direct corollaries in the anonymous model of mobile agent
computing. For the sake of clarity, I have made an attempt to “translate” all of the rele-
vant results from the literature into one consistent model,used for the better part of the
manuscript. As a side effect of this process, the reader may find that some of the cited
results are stated in this manuscript in a slightly different form than that which appears
in the referenced original work.

In terms of advancing research directions, I would considerthe general contributions
of the thesis to be twofold. Firstly, in the context of graph exploration, we have pro-
vided a new description and analysis for exploration strategies which may be seen as
viable alternatives to the random walk process. In particular, we have carried out inves-
tigations into variants of the rotor-router model and of theMetropolis-Hastings walk,
contributing significantly to our understanding of their behaviour in aspects such as:
tradeoffs between running time and memory space, regularity of exploration, resilience
to network faults [T1–T5]. Secondly, in the context of the theory of computability in
anonymous graph, we have provided general routines which can be used by the agent to
manipulate the so-called quotient graph, which is a form of a“map” of the anonymous
network. This has led us to new efficient approaches to several fundamental problems of
agent-based computing (such as synchronous rendezvous andleader election), including
the first known agent-based algorithms for solving these tasks which run in logarithmic
space, as well as to improved time-space tradeoffs for the rendezvous problem [T6–T8].
To allow the reader to more easily appreciate the original contribution of this HDR, the
specific technical contributions of the papers [T1–T8] are summarized in Section 1.4.

Whereas each of chapters of this text is largely stand-alone, the presentation is or-
ganized so as to develop one central theme. We start Chapter 2with a discussion of
variants of random walks in exploration problem. From random walks, we move on
to universal exploration sequences and other approaches which are built by derandom-
izing random walks. In Chapter 3, we then use the same universal sequences as the
key building-block for quotient graph construction algorithms. Next, in Chapter 4, such
quotient graph construction routines are applied to solve the rendezvous problem, mov-
ing to the domain of multiple agents in the graph. Other multi-agent problems are briefly
covered in Chapter 5, which outlines perspectives for future study. When working on
this manuscript in the future, I would like to add one or two full chapters on multi-agent
exploration and coordination, taking into account some of our most recent results on
these topics [55,67,118] and current work-in-progress.
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I am particularly grateful to the Referees, Professors Sébastien Tixeuil, Laurent Vien-
not, and Masafumi Yamashita, for agreeing to take on their commitment and for reading
this HDR manuscript. Some of their comments have already been taken into account
when preparing the current revision of the text. I would alsolike to thank Marek Kubale
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1 Introduction

The concept of “mobile agent computing” has appeared in theoretical studies and en-
gineering practice, in varied and often completely unrelated contexts. It has been used
with respect to designs of autonomous and migrating software units, in the theory of
robotics, and even in research into interacting economic agents. Comparing the mul-
tifarious definitions of mobile-agent-based designs, the reader may discover that the
common elements of these designs may only be expressed in theform of a number of
very general features or characteristics. These usually include (cf. e.g. [130]): providing
a decentralized description of the system from the perspective of individual agents oper-
ating within it, the existence of clearly set out rules governing the mobility of agents and
their interaction with other elements of the system, autonomy of actions taken by each
of the agents, and sometimes an expectation of protocol resilience after a fault arises in
the system.

Such a property-driven description of a mobile-agent system provides us with valu-
able hints on how to model an agent mathematically. From a theoretical perspective, the
agent behaves like an automaton, whose actions at a given moment of time depend on
its current state (which represents information known to the agent), metadata relating
the agent to the environment (unknown to the agent), and the state of the system in the
vicinity in which the agent is operating. The agent occupiesa fixed location in its envi-
ronment, such as a node of a network, and has the ability to move to an adjacent location
in the same environment. The model takes its precise shape when we take into account
the topology of the operating environment of the agent, and our expectations of the com-
putational capabilities of the agent’s processing unit. Sometimes a single mathematical
model may be used to describe agents with diverse physical characteristics but behaving
similarly at a high level of abstraction, for example, a migrant maintenance process on
a computer network, a physical robot exploring a maze, and a data token circulating
around a distributed network of processors. On the other hand, a team of robots work-
ing in an environment consisting of interconnected passageways, and a team of robots
operating in the open plane, will usually be described by completely different models,
with the model of the former taking into account the topologyof the environment, while
the model of the latter relying on its geometric properties.

This work focuses on agents operating in a network. It is set within the framework
of agent-based computation which has become prevalent in the literature of Distributed
Computing theory of the last decade (cf. e.g. survey papers [98,153]). The emergence of
this field is a direct consequence of the growth of computer networks at a global scale,
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which has given rise to new algorithmic challenges related to the search, processing,
and dissemination of information. In the studied context, agent-based computing may
be perceived as an alternative to local models of distributed computation with proces-
sors placed on nodes of a graph [154]. In our considerations,the burden of computation
is shifted away from processors located on nodes onto agentsequipped with computa-
tional capabilities, moving around the nodes of graph. At any given moment of time,
each agent is located at a network node, and has the ability totraverse network links,
carrying over its state memory to the new location. Such an agent-based description is
applicable for many maintenance processes operating in thebackground in a physical
computer network, in a distributed system. More indirectly, in a logical sense, agents
can be used to describe background processes which crawl, index, and organize webs
of information, such as the world wide web or a social network.

Within the framework of networked agent-based computing, different models take
into account various characteristics of the agent. By imposing constraints on some of
these parameters and allowing the agent more freedom in others, we can focus on dif-
ferent aspects of the agents’ behaviour in real-world scenarios. Such model-dependent
constraints may concern any of the following features:

• the computational capabilities of the agent, and in particular the size of the state
memory of the agent which persists when the agent moves from node to node
along a network link,

• the initial knowledge of the agent at the time of deployment, which may include a
full or partial map of the network environment, knowledge ofthe agent’s location,
knowledge of values of global parameters such as the size of the network, etc.

• the agent’s capabilities of perception of the environment, such as the ability to
distinguish nodes or edges, or the view of the environment available to the agent
which may include the entire graph or only the neighbourhoodof the agent’s
location

• the ability of the agent to interact with the network and withother agentsthrough
markers or tokens placed at nodes, information written on whiteboards at nodes,
etc.

• differences between agents operating in the network, manifested by the presence
or absence of unique identifiers of the agents, differences in the speed of traversal
of edges, or the potential asynchrony of the clocks governing the operation of
different agents.

The precise mathematical model of the system which we consider in this work is that
of anonymous port-labeled networks. Such networks were introduced in the more gen-
eral context of distributed computation by Yamashita and Kameda [172], and only later
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adapted to include agent-based computation [131]. The key characteristics of this net-
work model include: a lack ofa priori global knowledge of the network topology, per-
ception of the environment by the agent restricted to only a local view of the network
in the neighbourhood of the agent’s current location, andanonymity of nodes— a re-
quirement that computations performed by the agent cannot make use of any identifying
information specific to the node at which the agent is located. The latter assumption,
which is arguably the most restrictive, focuses our attention on mobile agent algorithms
which behave “uniformly” over all nodes of the network. One classical example of such
an algorithm is therandom walkon graphs, which owes much of its popularity to its effi-
ciency in many practical applications, simplicity of formulation, location-independence,
and resilience to minor network faults. Most other algorithmic approaches considered
in this work are, at least to some degree, inspired by the goalto alleviate some of the
known weaknesses of the random walk, while retaining its desirable properties. Before
proceeding to a formal definition of the studied model and providing an overview of
our contributions in Sections 1.3 and 1.4, we first give a slightly broader perspective of
mobile agent models in theory and practice.

1.1 Research context

The field of agent-based computing in networks takes its roots from several research
areas of theoretical computer science, distributed computing, network optimization, and
robotics.

The origins of exploration problems in mobile agent computing can be traced back at
least a century, to the problem of finding lost treasure in a maze (cf. [45] for a histori-
cal survey). The topic became particularly relevant to mainstream theoretical computer
science in the 1980s, which saw an intensification of study into solutions to reachability
problems. At the focus of attention was the seminal problem of st-Connectivity, which
consists in deciding whether two given nodes of a graph,s andt, belong to the same con-
nected component. This problem, which admits a simple solution by strategies such as
Depth First Search, becomes considerably more involved when a restriction is imposed
on the amount of memory available for computation. The work of Aleliunaset al. [7]
provided the first efficient logarithmic-space solution to the problem with bounded error,
establishing random walks as a viable method for graph exploration problems, as well
as introducing the notion of deterministic traversal sequences for graph exploration.
A quarter of a century later, Reingold [156] showed the first deterministic graph ex-
ploration strategy which works in logarithmic space, resolving in the affirmative the
equality of log-space and symmetric log-space complexity classes (L = SL). These
results, as well most of the literature on the topic, are set in the centralized setting of
computation in the RAM model. However, they can also be re-formulated in the JAG
model of computation (jumping automata on graphs), introduced by Cook and Rackoff
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in 1980 [50]. The main distinction between the RAM and JAG models is that in a JAG,
identifiers of nodes may not be used as operands of arbitrary arithmetic operations or
comparisons. The JAG model, initially designed as a convenient tool for proving lower
bounds and impossibility results, admits a natural interpretation of a JAG as a team of
stateful pebbles, placed on nodes of a graph, such that each pebble can be moved along
an edge incident to its current location, or teleported to the location of another pebble.
Consequently, it is easy to reformulate the JAG model in terms of a team of commu-
nicating mobile agents moving around a graph, located at itsnodes and traversing its
edges in successive time steps. As a matter of fact, many algorithmic results, including
the aforementioned works of Aleliunaset al. and Reingold, can also be shown to hold
when using a JAG with just one pebble moving along the edges ofa graph, which means
that these problems can be solved by deploying a single mobile agent in a graph.

Considerations of mobile agents from a distributed perspective have led to additional
concerns, resulting from the need to coordinate a team of agents. In this context, agents
admit properties analogous to those of processors in a distributed system. Agents can
either operate synchronously, moving among the network nodes in synchronous rounds
governed by a central clock, or asynchronously, with each agent setting its own pace.
The concept of faults in the system may be applied both to agents (leading to notions
such as “Byzantine agents” [101]), as well as to nodes or links, which may possibly
damage the agent they are hosting (so-called “black holes” [74, 120]). Likewise, the
lack of unique identifiers is a concern both in the context of agents (which may, but
need not have unique identifiers), and locations in the network. In particular, the model
of an anonymous network, formalized by Yamashita and Kameda[172] in the context
of distributed computing, provides a convenient setting for studying location-oblivious
algorithms for mobile agents, which is central to this study. The anonymous network
model restricts the agent’s capabilities by imposing constraints of anonymity and local-
ity of view, but at the same time it guarantees some form of persistence of information,
since the agent can carry its memory state over network links. The size of this memory
can be restricted, but even then, the agent is usually assumed to be capable of basic
navigation, e.g, of reverting the last move it has performed.

Some related models of mobile agents seek to capture the inherent possibility of loss
of state information by the agent as a result of system faults. This has led to an in-
teresting line of study of models in which agents are oblivious, and their knowledge
is restricted to a (possibly delayed) perception of the state of the system, known as a
snapshot. The typical life cycle of such an agent is described by an iterated sequence
of three phases: aLook phase when the agent performs a snapshot, aComputephase
when it considers its next action, and aMovephase during which it is transported to an
adjacent node. Such approaches are a natural extension of self-stabilizing algorithms
in distributed computing, since it is expected that an acceptable final configuration can
be reached from any initial starting configuration. Resultsin the area concerns such
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problems as gathering at a single point [112, 117, 119] or perpetual exploration of the
graph [70, 135], and have been obtained for both geometric and networked scenarios
and in models differing in synchronicity and atomicity of operations [62].

Many challenges faced by mobile agents in networks have their counterparts in ge-
ometric settings. Geometric agents, moving around a continuous terrain, are more fre-
quently referred to by the termrobots, and have been the object of study in robotics, au-
tonomous system design, operations research, and distributed computing. For a single
robot, tasks which have been studied include exploring an unknown environment (e.g.
with the goal of constructing a map or locating an unknown target) and patrolling the
interior or the perimeter of a known terrain. Exploration and patrolling tasks naturally
generalize to scenarios with a team of multiple cooperatingrobots; such multi-robot
coverage tasks are a promising and important direction of future research (cf. Chap-
ter 5). The application of multiple robots has also led to thedesign of algorithms for
performing numerous coordination routines, such as establishing visual contact among a
team of robots, as well as the task of gathering geometric robots at a single point [49,89],
or more generally, formation of a geometric pattern with a group of robots [90,163,174].
Some geometric scenarios can be related to a networked setting by discretizing the ter-
rain in which the robots operate, which usually takes the form of a polygon with holes
or obstacles, and modeling it as a grid-type graph, in a process known as skeletonisa-
tion. In this way, for example, some geometric patrolling problems can be modeled as
problems of vehicle routing in graphs or the graphic Traveling Salesman Problem [8],
and problems of approximate meeting of two robots on the Euclidean plane can some-
times be solved using rendezvous algorithms for networks [60]. Nevertheless, models
of geometric robots may include characteristics which cannot be easily captured in a
networked setting. The observation capabilities of robotson the plane may correspond
to the line of sight of the robot (and possibly a bounded angleor range of vision, de-
pending on its heading). A physical robot may have non-zero dimensions, potentially
influencing the rules of its own motion, and obscuring visionand obstructing move-
ments of other robots [59]. On the other hand, when the dimension of the robot are
treated as negligible, tasks such as exploration of a two-dimensional terrain or meeting
with another robot in the absence of orientation points can only be solved in an ap-
proximate manner [60]. Whereas computations in networked models involve problems
related to symmetries of the graph, the sense of direction ofa robot on the plane is usu-
ally controlled by robots’ compasses, which may potentially be faulty or uncoordinated
among different robots [162]. Geometric scenarios also call for a continuous description
of robot’s motion, requiring a different definition of asynchrony than network models,
allowing for robots with variable speeds. Some notions, such as limited battery power
(or tank capacity) of the robot, incurring the need for refuelling from a depot, have been
carried over from geometric scenarios to networked scenarios [3,78].

Techniques which appear in the analysis of mobile agents canalso be found in other
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areas of distributed computing and network theory. The mostclosely connected top-
ics include routing protocols in the presence of extremely limited routing data (e.g.,
compact routing, and routing with invalid information [103, 104]), as well as protocols
related to token circulation in a distributed system. Amongthe latter, one especially
interesting example is the randomized self-stabilizing solution to the mutual exclusion
problem proposed by Israeli and Jalfon [110] (cf. also laterimprovements [107]). In it,
tokens circulate in a network of processors following independent random walks, and
only nodes hosting a token perform non-empty operations. Such a protocol can effec-
tively be considered to be a deployment of a system of mobile agents over a network of
processors.

Finally, we remark on some game-theoretic aspects of mobileagent computing. When
more than one mobile agent is operating in the network, and all the agents have a com-
mon goal, the behavior of the agents may be viewed as a form of acollaborative game
played by the agents. On the other hand, it is easy to imagine contexts in which individ-
ual agents or sub-teams of agents have opposing goals. This includes different search
games, also known as games of pursuit-evasion or predator-and-prey [12]. The usual
form of a search game on a graph is one in which a team of white agents (known as
guards or cops) move around the graph in an attempt to find and capture a single black
agent (the robber or the intruder). This problem has been studied under various assump-
tions, concerning e.g. the relative speed and visibility ofthe agents or requirements on
some form of monotonicity of the search strategy. It displays beautiful connections to
both structural graph theory, relating to parameters such as pathwidth [116], and to com-
plexity theory in the analysis of games of graphs. In geometric models, it is possible to
design interesting game scenarios with only a single predator and a single prey, leading
to problems known under colorful names such as “the problem of the princess and the
monster”, or “the lion and man problem” posed by Rado in 1925 (cf. [138]).

1.2 Mobile agents in networking practice

Computational models which rely on mobile agents focus on describing the operation
of the system from the perspective of individual agents, rather than from the perspective
of network nodes. Protocols governed by this “mobile agent paradigm” are usually used
as subroutines of more complex tasks, related to network communication, navigation,
transportation, and security.

From a modeling perspective, a mobile agent is an entity located at any moment of
time at a network node, equipped with some state informationwhich remains intact
when the agent traverses network links, and with the abilityto modify its own state
while located at network nodes. The nodes of the network are treated merely as passive
carriers, whose role is limited to propagating the agent or the team of agents operating
in the network. As such, a node which does not contain an agentat a given moment
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is not permitted to perform any computations at that time. Such a constraint is neces-
sary when defining protocols for networks in which nodes are logical entities with no
computational capabilities, e.g., webs of knowledge or social networks, but it may also
prove technologically justified by efficiency concerns in physical computer networks.

When considering implementation of an agent-based protocol on a computer net-
work, the agent usually materializes in the form of a piece ofsoftware or a packet of
data. During deployment, the mobility of an agent among the hosts of the network may
be realised in one of two distinct forms. In one case, the agent is a process physically
running outside the network it is logically placed in, whichmerely operates on an ex-
ternal data structure, representing the structure of network. In this case, the agent’s
algorithm needs to “pull” from the network data structure the data corresponding to the
agent’s current location. This type of “pull” paradigm liesat the heart of the design of
crawling robots for indexing the world wide web [25, 52]. In such a process, a robot
running on an external server downloads a web page, parses it, proceeds along a link
to download a subsequent web page, etc. — thus realizing mobility through a web of
information without ever actually changing the server on which it is running. Webs of
interconnected data obviously cannot host an agent physically, hence only pull-type ap-
proaches are feasible. This includes, for example, robots for evaluating the relative im-
portance of nodes in a web using PageRank-type algorithms [25,150], robots proposing
new connections in a social network through so-called supervised random walks [24],
and robots for finding cuts and clusterings of the network [177]. For implementations
related to social networks, a model of operation of a robot called “crawl-and-jump” has
recently been introduced [40], where the “crawl” phase corresponds to an agent located
at a node of the social network moving along a friendship connection to a neighboring
node, while the “jump” phase represents a global move to a randomly chosen node of the
social network. Such an approach has been used e.g. to describe algorithms for choosing
a representative sample of nodes from among those active in the social network [38],
and in particular to evaluate how strongly a node of a social network can influence the
opinion of other nodes in the network when propagating a rumour between direct neigh-
bours. A related random-walk based approach is used in tasksof sampling in social
networks, in which the goal is to find the value of a metric of the network’s population
(such as average age, income, or number of friends), by only crawling and polling a
subset of the nodes [99, 134, 136]. The crawl-and-jump approach, from a theoretician’s
perspective, is very closely related to the classical JAG model in centralized computing,
or the anonymous network model studied in this manuscript (cf. Section 1.3). At the
level of modeling social networks and webs of data, the idea that pieces of information
seem to propagate along random walks or paths in the web has proved to be a useful
tool, improving our understanding of the flow of informationon the web [115,121].

The second type of mobility of the agent corresponds to situations in which the
agent’s environment is a network of physical hosts — serversor processors. Such hosts
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can “push” the agent from node to node, conveying the agent’smemory state (and per-
haps also the code of its algorithm) along the communicationlinks of the network. As
a rule, each node, having “processed” an agent, transmits itto precisely one other node,
and returns to the same state of operation in which it was before receiving the agent.
Nevertheless, situations in which the agent is a complete piece of software, passed on
from machine to machine, are relatively rare in practice. Such a paradigm of mobile
or migrant software was widely studied in the literature in the 1990’s, but never gained
widespread adoption, most notably due to security concernsconnected to running mu-
table software received from other hosts. It is much more common to find applications
in which all of the network hosts are pre-installed with the immutable logic of the agent,
while only the agent’s mutable memory state is transmitted among nodes. Such a pro-
cess resembles a routing process, and whether a retransmitted piece of data is treated
as a packet or as an agent is sometimes a question of convention. In general, an agent-
based approach seems more in place when all nodes treat the agent uniformly, which
means that, in particular, they do not apply routing tables specific to their location in
the network in order to decide the agent’s next move. Studiesof this type of simple
token or agent, usually following random walks among the host of the network, have
had a major impact on routing and information management protocols in peer-to-peer
networks [100]. When a node of a peer-to-peer network needs to discover some in-
formation, it may attempt to ask all its neighbours at a time,flooding the network, or
release a single request which moves through the network, following a kind of random
walk. The performance of latter approach is especially efficient under the assumption
of an undirected network with low diameter and good expansion properties, which is
usually the case in contemporary peer-to-peer designs for distributed data storage.

Regardless of whether a specific technological problem calls for a “pull” or “push”-
type approach to agent mobility, the use of a mobile agent protocol to describe the
solution at an abstract level has a number of advantages. Below, we briefly list some of
the most important:

• Economy of resources.The number of active agents in the system is easy to
control, allowing for easy bounding of the amount of communication and the
number of messages circulating in the network at any given time. Moreover,
nodes which do not host an agent at a given moment of time may remain in a
resource-saving “dormant state”.

• Operation in networks of unknown topology. The agents operating in the system
do not, in general, need to know or store the structure of the entire network. This
is an important property, in view of the large scale of the network, and the constant
changes in the topology of the network. Quite often, even theexact size of the
network is unknown.

• Operation in dynamic environments. Agents may be designed so as to success-
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fully adapt to a constantly evolving network topology, and to perform local re-
location whenever necessary. Such relocation may also at times be necessary if
any of the agents is subject to a fault which excludes it from further computations
within a team of agents.

• Independence of implementation details. Agents are autonomous and may work
in heterogenous environments. In many cases, they do not even rely on any in-
formation about the host nodes, such as node identifiers. This is the case in the
so calledanonymous graph model, which is the object of study throughout this
work.

• Provable properties of protocols.Designs based on mobile agents are in many
cases easier to analyze, showing provable resilience to network faults, unexpected
changes to the network topology, or Byzantine attacks on oneor more network
nodes.

1.3 Anonymous networks: the theoretical
framework

Throughout this manuscript, we will consider problems of mobile agent computing in
the following setting. The network in which the agent operates is modeled in the form
of a graphG = (V,E). The set of nodesV of the graph describes locations which
are capable of hosting a mobile agent, whereas the edges belonging to setE describe
communication links, which can be used for transporting theagent and the contents of
its local memory from one node to another.

The focus of this study is on network graphs which area priori unknown to the agent,
and moreover such that locations in the graph contain no identifying information which
would help the agent to tell them apart. This means, in particular, that nodes of the
network which have the same number of neighbors are indistinguishable from the per-
spective of the agents. Such a concept ofanonymous graphs(or anonymous networks)
provides the foundations for a model which has found applications in network com-
munication, graph exploration, and stabilization of distributed processes. The basic net-
work model under consideration was introduced by Yamashitaand Kameda [172]. It has
since been studied in different contexts in distributed computing, particularly in relation
to fundamental symmetry-breaking tasks, such as leader election [35, 86, 173]. Vari-
ous models of system communication have also been adopted, including asynchronous
message-passing models [47, 171], scenarios with faults [37], and self-stabilizing ap-
proaches [111], as well as agent-based models which are of primary interest to this
thesis.
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The study of anonymous networks has strong motivation, of both theoretical and prac-
tical nature. In principle, due to minimalist assumptions,any solution to a distributed
problem that is provided in the anonymous model also constitutes a valid solution in
any other model based on a communication graph. The fact thatsuch solution does
not depend on node identifiers means that it may be deployed even in environments in
which node identifiers may be unknown to the agent (or any other distributed process)
operating in the network. Agent-based solutions designed for anonymous networks are
likely to have properties of self-healing after changes to network topology, and may be
applicable in dynamic environments, as discussed in Section 1.2. Intuitively speaking,
an agent-based algorithm which is not allowed to store or distinguish a point of ref-
erence in the network, such as the identifier of a previously visited network location,
is unlikely to be affected by the future disappearance or corruption of such a point of
reference. Some authors also mention scenarios in which node identifiers are simply
unavailable, since nodes might potentially refuse to disclose them to agents operating
in the system, citing e.g., privacy concerns [T8]. Another important rationale for the
study of anonymous graphs is the goal of characterizing the limits of computability for
mobile agents in networked scenarios. In the context of agent-based computing, it has
to be emphasized that the model does not allow the agent to obtain any information of a
topological nature, such as auxiliary routing informationor a global sense of direction
in the graph.

The considered framework is well-suited for modeling networks of an abstract nature,
such as ontologies or webs of interlinked documents, with respect to which the agent
is an external process. As such, we will not consider occurrences such as faults of an
agent, malicious nodes, or loss of state memory by the agent in between time rounds
(obliviousness). In most cases, we will also make the assumption that network nodes
have no storage capacities writable by agents, and consequently, that all state informa-
tion is associated with the agent. Once again, such an assumption is justified when
considering logical networks in which a node may represent astatic web page or a pro-
file hosted on a remote server. In the absence of this type of helper information, one may
either assume that multiple agents can exchange information through a shared (global)
block of memory, or consider a more restricted scenario in which communication is
only possible among agents occupying the same network node.

Within the anonymous graph model, the way agents operate andthe way they col-
laborate in a team is studied subject to various assumptions, corresponding to different
real-world applications. Limitations may be imposed on computational resources avail-
able to an agent, in particular, by bounding the amount of state memory carried over
edges by an agent). When multiple agents are considered,clock synchronizationamong
agents comes into play. We will, for the most part, deal with fully synchronous sce-
narios, occasionally comparing them to results from the literature concerning the asyn-
chronous setting. Communication between multiple agents will be restricted to the case
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when the communicating agents occupy the same node.
For a survey of other models, we refer the interested reader to the recent mono-

graph [130]. In [130], the specific problem of agent rendezvous in the ring topology
is used as a “benchmark” for comparing the power of agent-based computations under
different scenarios. Models considered therein are often more permissive, allowing the
agent to write and read a certain number of bits of information at a node, making use of
so-calledwhite boards. Alternatively, the agent may be allowed to mark a fixed number
of nodes of the network, dropping different types of markersknown astokensor peb-
bles. This type of helper information, which we do not allow in themodel considered
in this work, may prove useful both for orienting a single agent within the network, and
for allowing multiple agents to coordinate.

Definition of an anonymous network. We assume that the graphG in which the
agent operates is simple, undirected, connected, and anonymous, i.e., the vertices in the
graph are neither labeled nor colored. However, while visiting a vertex the robot can
distinguish between its adjacent edges. This is achieved byusing a predefined local
ordering of edges known as alocal orientation.

The first requirement concerning the local orientation is that it should, at the very
least, allow the agent to cyclically iterate through all theedges adjacent to the node. This
is realised by providing a unicyclic permutationNextPortv on the set of edges adjacent
to each nodev. For an edgee adjacent tov, we will then say that the incident edge
NextPortv(e) is its right-hand neighbor atv. The knowledge of the functionNextPortv
gives the agent the capability to implement some very simplestrategies for walking
around the graph. For example, we can conceive an agent whichenters nodev by
edgee and leaves it by edgeNextPortv(e). Such an agent is said to be performing a
walk following the right hand on the wall rule, also known as thebasic walk. More
advanced strategies are also feasible, since the agent may sometimes choose to exit a
node using some other edge, e.g.,NextPortv(NextPortv(e)). In fact, it turns out that
careful application of theNextPortv function is sufficient to define a strategy for the
agent which allows it to explore any graph deterministically using only very limited
resources regardless of the choice of theNextPortfunction (cf. Section 2.3 on universal
exploration sequences and universal tables).

In all further considerations we apply the slightly stronger (though in practice almost
equivalent)labeled port model. Namely, in addition to a givenNextPortv function, we
will assume that for each node there is exactly one distinguished “first” edge leaving
this vertex. Equivalently, we allow the agent to rely on an explicit local port labeling,
in which, for each vertexv ∈ V , there exist consecutive integer labels (starting from
1), calledport numbers, preassigned to all the edges adjacent tov, next to the endpoint
v of each edge. The labels at nodev are always distinct and form the discrete interval
[0, deg(v)− 1], wheredeg(v) is the degree ofv in G, see Fig. 1.1 for an illustration. (A
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FIGURE 1.1: Example of a port-labeled anonymous graph

discrete interval[a, b] is defined as the set of all integersk such thata ≤ k ≤ b ([a, b] = ∅
whena > b).) In this way, each edge of the graph is assigned two port numbers, one
for each endpoint, and the port numbering is local, i.e., there is no relation between
port numbers atu and atv. In such a setting, theNextPortfunction at vertexv can be
naturally induced for portl asNextPortv(l) := [l mod deg(v)].

In the sequel, the term “graph” will as a rule refer to a graph equipped with a port
labeling described by the above rules, unless otherwise stated. Bysucc(v, i) we denote
the node which is a neighbor ofv and linked to it by the edge with port numberi at v,
and byend(v, i) we denote the port number of the same edge atsucc(v, i). For each
edge{v, w} traversed by using porti at nodev (w = succ(v, i)), the pair of ports
(i, end(v, i)) is called theedge labelof {v, w} and denoted bylab(i, end(v, i)). We use
the natural lexicographic ordering of edge labels:(i1, i2) ≺ (j1, j2), if i1 < j1, or i1 = j1
andi2 < j2. We write(i1, i2) � (j1, j2), if (i1, i2) ≺ (j1, j2) or (i1, i2) = (j1, j2).

The graph in which the agent operates is denoted byG = (V,E), with |V | = n
and|E| = m. The diameter of the graph is denoted byD , its maximum vertex degree
by ∆, and its minimum vertex degree byδ. Following conventions from the literature,
the degree of a regular graph or an upper bound on the maximum degree of an arbitrary
graph which is known to the agent will sometimes be denoted byd. The set of neighbors
of a vertexv ∈ V is denoted byN(v), with deg(v) = |N(v)|. For anyv ∈ V , letEG(v)
denote the set of edges ofG that are incident to nodev.

Definition of a mobile agent. When an agent moves from one node to another,
it carries with its own local memory which encodes the state of the agent, based on
the information obtained by the agent in previous moves. Note that when the agent is
located at any node of the graph, it has access to a read-writememory which can be used
for local computation, but we are usually not concerned about the cost of performing
local computations at node. Moreover, the agent may never leave behind any marks on
the nodes it has visited.

We consider mobile agents traveling among the nodes of an anonymous graph of
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unknown topology. Formally, amobile agentis an abstract state machine in Mealy
form: A = (S, s0, π, λ), whereS is a set of states among which there is a specified
states0 called theinitial state,π : S × Z

2 → S is the state transition function, and
λ : S × Z

2 → Z is the output function. Here,Z denotes the set of all integers.
Initially, the agent is located at some nodeu0 ∈ V (unknown to the agent), called its

initial position or homebase, in the initial states0 ∈ S. The agent performs actions in
discrete time rounds, measured by its internal clock. Each action can either be a move
to an adjacent node or a null move resulting in the agent remaining in the currently
occupied node. Suppose that in time roundt, the agent entered a nodeu by portp in
memory states; we setp = −1 if the move performed in roundt was a null move, or if
t = 0. Then, in roundt+1 the agent will leave nodeu by some portp′ in some memory
states′, given by the output functionλ and state transition functionπ, respectively,
depending on the portp by which the agent enteredu and the degree ofu:

p′ = λ(s, p, deg(u)),

s′ = π(s, p, deg(u)).

A value ofp′ ∈ [0, deg(u) − 1] signifies that in roundt + 1 the agent will move from
nodeu along portp′ to nodesucc(u, p′); any other value ofp′ corresponds to a null
move of the agent. The agent continues moving in this way in successive time rounds,
possibly forever.

The above definition admits a natural extension to the case ofrandomized agents,
which are described simply as randomized state automata. The output pair(p′, s′) is
no longer described by a deterministic pair of functions(λ, π), but by a pair of not
necessarily independent random variable-valued functions (λ,π).

Problems, solutions, and complexity. The notion of a problem and a solution
in the context of mobile agent computing is rather informal.When talking about the
question ofcomputabilitywith a single mobile agent (subject to given constraints on
resources), we will apply terms derived from complexity theory. We consider languages
which are families of graphs with a single distinguished vertex. A problemL will then
be understood as a binary question of the form “Does the pair(G, v) belong to the
languageL?”. We will say that this problem can besolvedby a mobile agent under the
given constraints if there exists an agentA satisfying the said constraints such that agent
A, when released from nodev in graphG, terminates after a finite number of steps in an
accepting state if and only if(G, v) belongs toL, and terminates after a finite number
of steps in a rejecting state, otherwise.

We will sometimes say that we allow the agent solving problemL to have knowledge
of some global parameterf(G) of the graph. Formally, this means that instead of asking
about the existence of a single agentA which solvesL, we will ask if there exists a
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family of agents{Af}, such that agentAf(G) deployed in graphG correctly decides
problemL for the pair(G, v), v ∈ V .

In some cases, we will think of problems in a generalized sense, closer in spirit to
distributed computing. For each valid starting configuration with an agent or set of
agents placed in graphG, we will look at the countable sequence of global configu-
rations (snapshots) of the system composed of the graph and the agents located in it,
achieved in successive time roundst = 0, 1, 2, .... A (generalized) problemis defined
as a set of testable conditions on a sequence of snapshots, and is said to besolvedby
the agent if the sequence produced by the agent meets the constraints of the problem.
For example, in theexploration problemwe will require that all the nodes of the graph
are visited by the agent at some point in time, while in therendezvous problemfor two
agents in the graph — that at some moment in time the two agentsare located at the
same node. The smallestT such that for allT ′ ≥ T the prefix of the sequence of states
of the system in time roundst = 0, 1, . . . , T ′ satisfies the constraints of the problem is
referred to as the time required to solve the considered problem, e.g., the exploration
time for the exploration problem. For the case of randomizedagents, we again extend
this notion by taking a probability distribution over all possible execution paths of the
algorithm, and describing the expectation of the time untilthe problem is solved. We
will also sometimes impose the requirement of termination of an agent-based algorithm,
which means that there must exist a moment of time from which the configuration of
the system remains unchanged.

A subtler point concerns the definition of the memory size of the agent. Unless oth-
erwise stated, we will assume that the memory of the agent is defined as the logarithm
of the number of its states,M = log2 S. For this definition, it is important to note that
the agent is given as a Mealy machine. If agents were instead to be given as Moore
machines, and their memory defined likewise through the logarithm of the number of
states, then the memory complexity of some problems might increase by up toO(log∆)
if the agent makes use of its input port and the degree information of the current node,
which it would have to encode as part of its state. The distinction does not really matter
for problems with a memory complexity ofΩ(log n), hence in most cases the mod-
els can be seen as equivalent. In the sequel, whenever we consider computations in
sub-logarithmic space, we will be adhering strictly to the Mealy machine model. For
example, thebasic walkstrategy in which the agent enters a node by portp and exits it
using the right hand rule by port(p + 1) mod deg(v), will be considered herein to be
memoryless (stateless).

The agent’s memory size can also be understood and defined in aslightly different
manner. One may perceive the agent not as an automaton, but asa computer program
which sends itself (i.e., its machine code and its state) from node to node, lodges in
the memory of its new host, and performs computations to determine which host to visit
next. In this view, the space consumed by the agent is measured as the maximum number
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of bits of a host’s memory that the agent ever occupies, throughout execution. Since
this measure is relevant from a practical perspective and also has profound theoretical
implications, we will occasionally make references to it, using the termmemory of local
computationof the agent.

1.4 Overview of contributions

The main research questions undertaken in this study concern the feasibility of solving
fundamental tasks in an anonymous network, subject to limitations on the resources
available to the agent. Typical challenges include: exploring a graph by means of an
agent with limited memory, discovery of the network topology, attempting to meet with
another agent in another network (rendezvous), or dealing with changes to the network
topology in time. The constraints imposed on the agent may include the number of
moves which the agent is allowed to perform in the network, the amount of state memory
available to the agent, the ability of the agent to communicate with other agents, as well
as itsa priori knowledge of the network topology or of global parameters.

The material covered in this manuscript includes most of thecontributions of pa-
pers [T1–T8], and is organized as follows. This introductory chapter was devoted to
a general discussion of mobile agents and to a formal introduction to the anonymous
network model. In Chapter 2, we consider the problem of graphexploration, in which
a mobile agent is charged with the task of visiting all of the nodes of a the network it
is operating in. Since we are working in the anonymous network model, agents cannot
immediately recognize previously visited nodes, which renders many search methods
known from the centralized model, such as Breadth First Search (BFS) or Depth First
Search (DFS), infeasible. In anonymous networks, the basicrandomized strategy which
is applicable is the random walk, in which the mobile agent moves from the current
node to a neighbour picked with uniform probability. The random walk serves as a
point of reference for other exploration strategies, both randomized and deterministic,
in terms of parameters such as: the time required to visit allnodes of the graph, the
memory required by the agent, the regularity of visits to nodes or edges during con-
tinued exploration, resilience to faults, performance formultiple agents, etc. It is in
such a context that the results on several different exploration strategies, obtained in the
papers [T1–T5] are presented.

In [T1], we consider the Metropolis walk, which is a form of biased random walk on
graphs, and following [147] we assume that transition probabilities of the Metropolis
walk between a pair of neighbouring nodes depend only on their degrees. Our main
results in [T1] concern the properties of short Metropolis walks, and stem from the
observation that an agent following a Metropolis walk for a certain number oft steps
discoversΩ(

√
t) distinct nodes of the network in expectation, ford2 ≤ t ≤ n2, in

a graph of maximum degreed and at mostn nodes. In [T1], these results are used
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to design graph exploration strategies in the centralized RAM model of computation,
achieving a tradeoff between execution time and required memory space which is supe-
rior to that of previously known approaches, such as DFS, BFS, or the unbiased random
walk. In Chapter 2, the results from [T1] are translated to the distributed setting, into
the considered anonymous network model. We also point out that the Metropolis walk
can be implemented in the anonymous network model to exploreall graphs in an ex-
pected number ofO(n2 log n) steps, using an agent equipped with onlyO(log log n) bits
of memory. Next, for the sake of completeness, in Chapter 2 wepresent the state-of-
the-art in deterministic and randomized exploration strategies, and corresponding lower
bounds. We address the question of how to design deterministic exploration strategies
based on the random walks and Metropolis walks. We recall concepts of Universal
Traversal Sequences (UTS) and Universal Exploration Sequences (UXS), and describe
a generalization of such sequences for non-regular graphs,formalizing the notion of a
universal exploration table.

The results presented in [T2] address the question of exploration of anonymous net-
works in the case when the designer of the network has no control of its topology, but
may adjust the ordering of neighbors at each node (the so-called port labelings) to facili-
tate agent-based exploration. With this assumption, the problem of network exploration
can be solved by an agent which deterministically traversesa closed trajectory. Building
on a series of results in the area, in [T2] we show that the portlabeling can be chosen so
that even a memoryless agent, which follows a very simple strategy known as the basic
walk, can traverse in any graph ofn nodes a closed trajectory of length less than4n.
This type of result highlights the fact that the difficulty ofthe exploration problem in
anonymous networks lies in the inability of the agent to figure out a sense of direction
in the graph when the port labeling is not set specifically to help it in the task. The
results presented in [T2] rely on a proof of the existence of aspecific kind of tree-based
substructure in any graph, which may be of interest in its ownright.

Chapter 2 closes with a discussion of variants of the anonymous model in which the
agent is memoryless, but is guided by auxiliary counters on the edges of the graph.
These considerations cover the material of papers [T3–T5].We start by presenting the
so-called rotor-router model, in which each node maintainsa cyclic list of its neighbours
and the agent, during successive visits to a node, leaves it by proceeding to neighbours
chosen from the list in a round-robin fashion. The results obtained in [T3] include
an almost-complete characterization of worst-case exploration time for an agent in the
rotor-router system, subject to different models of the adversarial setting (e.g., the ad-
versary may be able to preselect the ordering of the neighbours for each node, or the first
neighbour to be visited from a given node). The main result ofthat paper is a tight lower
bound on the number of steps required by the agent to explore the graph. In combina-
tion with the result of Yanovski [175], our result from [T3] implies that for any graph of
m edges with diameterD , Θ(mD) steps are always sufficient and sometimes required
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for an agent following the rotor-router to visit all nodes ofthe graph, and subsequently
to stabilize to a periodic Eulerian traversal of its set of edges. In [T4], we study the
behaviour of the rotor-router after changes or faults occurin the system. We show that
it is possible to relate the behavior of the rotor router to the BEST theorem (due to de
Bruijn, van Aardenne-Ehrenfest, Smith and Tutte), providing a product formula for the
number of Eulerian circuits in an orientation of the undirected network graph. This type
of analysis allows us to show that, after a single edge addition or port modification, the
rotor-router stabilizes to its new limit behaviour withinO(m) steps, however, a single
edge deletion may result in the need for the process to start stabilizing from scratch, re-
quiringΘ(mD) steps. Finally, the paper [T5] introduces a slightly different exploration
model, in which the agent always follows the least often traversed edge adjacent to its
current node (breaking ties arbitrarily). We provide a complete analysis of the perfor-
mance of such a strategy, known as Least-Used-First, showing that it explores the graph
in Θ(mD) steps, just as the rotor-router. Interestingly, a related rule in which the agent
traverses the edge which has not been visited for the longesttime turns out to work in
an exponential number of steps in the worst case, even thoughit might at first glance
appear to be only a slight modification of the round-robin rule of the rotor-router. To put
all the considered methods into perspective, we provide an overview of the main results
discussed in Chapter 2, in the form of Tables 2.1 and 2.2.

Graph exploration can in some sense be seen as the most fundamental practical global
problem which can be solved by a single agent in an unknown network. If the agent does
not know how to explore the graph efficiently, then most likely it will not be able to e.g.
compute values of topology-dependent parameters, solve the problem of locating an
item placed on one of the nodes (“treasure hunt”), or to meet with another agent (ren-
dezvous). At the other end of the difficulty spectrum lies thequestion of deciding a
complete or universal problem for the agent, i.e., one to which a whole class of other
problems can be reduced. This definition of completeness is somewhat informal and
depends on what type of problems are considered. If the goal of the agent is to try
to compute some parameter which is a function of the network graph it is operating in,
then the basic complete problem consists in collecting all topological information stored
in the network which is possible to retrieve. This task, known as map construction, is
considered in Chapter 3. We discuss different possible representations of such a map of
all retrievable information about the network, recalling the concepts of an agent’s view
and a quotient graph. The latter representation proves to beefficiently computable by
an agent which knows some upper boundn on the number of nodes of the network. We
present some of the results from [T6], which imply that an agent can construct the quo-
tient graph of the network in a number of steps which is polynomial inn. Consequently,
if any parameter of the network can be computed by an agent, itcan be computed in
polynomial time. We also present a method introduced in [T7], which can be used by an
agent to decide the existence of a specific edge of the quotient graph not only in poly-
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nomial time, but also in logarithmic space. Properties which can in this way be tested
by an agent with knowledge of an upper bound on the number of nodes and logarith-
mic memory include, for example, testing if the network is a tree, and if not, finding
an edge whose removal does not disconnect the network. All ofthe discussed methods
for quotient graph construction rely in different ways on applications of universal explo-
ration sequences, traversal sequences, or exploration tables, with the log-space approach
from [T7] also introducing the new notion of a distinguishing sequence — a sequence
whose traversal allows an agent to tell two graphs apart, whenever such a distinction is
possible. A comparison of the time and memory requirements of the studied methods is
given in Table 3.1.

In Chapter 4, we extend our considerations to problems with more than one agent,
focusing on the rendezvous problem, which asks about the feasibility of achieving a sit-
uation in which two agents meet. We give most of our attentionto the scenario studied
in [T7, T8], in which the two agents deployed in the network are completely identical,
moving in synchronous time rounds at the same speed, and having exactly the same
starting state and no unique identifiers. We recall the characterization of starting sit-
uations for which rendezvous in the studied scenario is feasible. We then present the
main result of [T7], which states that for all feasible starting situations, there exists an
algorithm which achieves rendezvous, using agents with only logarithmic memory. The
applied method relies on an extension of the previously discussed approach for map con-
struction. A complementary lower bound from [T7] states that Ω(log n) bits of memory
are required for rendezvous even when the graph in which the agents operate is a ring.
Finally, we present the results of [T8], which characterizethe interplay between the time
and the space required to achieve rendezvous for the specialcase when the network is a
tree. We prove that for an agent withk ≥ c logn bits of memory, wherec is an absolute
constant,Θ(n2/k + n) steps are always sufficient and occasionally required to achieve
rendezvous. This complexity result for rendezvous in treesis a significant improvement
with respect previous approaches known from the literature, and is also an isolated ex-
ample of an important problem for which a tight time space-tradeoff is known for the
whole spectrum of memory sizes.

In Chapter 5 we discuss some of the perspectives of the field ofmobile agent com-
puting in networked scenarios. In particular, we present a broader perspective of the
challenges facing collaborative computations with multiple agents, and briefly outline
some of our most recent research results.
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In the task ofnetwork exploration, a mobile agent, initially located at some node of
the network, is required to visit all the nodes of the network. If we allow the network
to be disconnected, then the agent is expected to visit all the nodes of its connected
component of the network. Exploration routines lie at the heart of tasks related to the
search of information in the network by an agent, as well as oftasks related to finding or
detecting the presence of another agent in the network (see Chapter 4). The agent may
also be required to explore a graph periodically, e.g. with the goal of regular patrolling
and monitoring of network resources. For a historical overview of questions and results
related to network exploration, we refer the reader to [45,98].

In centralized computing, one of the simplest strategies for exploring a graph is that
of Depth First Search (DFS). When performing DFS, the agent traverses a spanning tree
of the graph rooted at its starting location, moving at each step to an unvisited neigh-
bouring node in the graph whenever such a node exists, and otherwise backtracking to
its parent node in the tree. This guarantees a traversal of all of then nodes of the graph
in optimalO(n) time (a complete traversal of the DFS tree takes2(n− 1) time rounds).
Unfortunately, DFS-type approaches do not fit into the considered framework of mobile
agents in anonymous networks. First of all, DFS relies on theability to recognize nodes
previously visited by the agent, which is not feasible in theanonymous graph model in
the absence of node identifiers or whiteboards writable by the agent. Even in models
where node identifiers are available, search strategies based on Depth First Search or
Breadth First Search often prove insufficient. To run such analgorithm, the process has
to maintain a memory stack or queue in its state memory, encoding the identifiers (or
at least port labels) along the path in the tree from its root to the current location of
the agent, which potentially requiresΩ(n) space, and causes problems if the topology
of the graph changes during the execution of the algorithm. Hence, the need arises to
design alternative exploration strategies. Most such strategies are inspired, at least to
some extent, by considerations of the random walk.

A comparison of the algorithms and approaches considered inthis chapter is provided
in Table 2.1, with the criteria of comparison being: the determinism of the approach,
the exploration time, and the required memory. We will also consider other parameters
of exploration strategies, and we start this chapter by introducing a number of addi-
tional characteristics useful for comparing exploration strategies in anonymous graphs
in Section 2.1. In Section 2.2, we look at randomized graph exploration strategies for
anonymous graphs, considering the simple random walk and its biased variants, in par-
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ticular, the Metropolis-type walk. The rest of the chapter is devoted to an overview
of deterministic exploration strategies for anonymous graphs. We recall known results
for deterministic exploration strategies, obtained by derandomizing (biased) random
walks in Section 2.3. We then discuss variants of the anonymous graph model, designed
with the goal of obtaining faster deterministic exploration algorithms. In Section 2.4
we address the question to what extent one can assist a deterministic exploration strat-
egy by appropriately configuring port numbers in the anonymous network. Finally, in
Section 2.5 we consider strategies in which the agent is guided by counters on ports
(corresponding to the so-calledrotor-router model), and present analogous results for
models in which the agent is guided by counters on edges.

2.1 Comparing exploration strategies

The agent-based algorithms we consider herein are meant to be light, memory-efficient,
and resilient to faults, and to operate in networks without visible node identifiers. To
this end, we consider several parameters measuring different aspects of the performance
of exploration strategies, the most important of which are discussed below.

Cover time. Thecover time(or exploration time) C(G) of an exploration strategy is
defined as the maximum expected length of the time interval during which the mobile
agent following the strategy visits all the nodes of the graph, where the maximum is
taken over all starting configurations of the system (in particular, over all starting nodes
for the agent). When considering algorithms different fromthe random walk, i.e., when
the agent is equipped with state memory, we defineCt(G) as the expected length of the
shortest time interval starting at time roundt during which all nodes ofG are visited at
least once. We then distinguish thefirst cover timeC0(G) describing the cover time of
the system just after initialization, and therefresh timeC∞(G) = lim supt→+∞Ct(G),
describing the eventual cover time of the system in the limit. The latter measure is
interesting from the point of view of scenarios with patrolling, in which we expect the
agent to periodically visit all nodes of the graph.

Regularity of exploration. From the perspective of the designer of an exploration
strategy, it is desirable to ensure that all of the vertices and/or edges of the graph are
visited regularly. Letcs,v(t) be the random variable describing the number of visits to a
vertexv within some number of stepst, for an exploration starting at vertexs. Thevisit
frequencyfv(G) of vertexv is defined as the frequency of visits to this vertex, given a
worst-case starting vertex:fv = mins∈V E lim inft→+∞

cs,v(t)
t

. An analogous measure,
known as thetraversal frequencyfe(G), is defined for visits to edges. We will say that
a strategy visits all nodes (edges)fairly or equitably, if its traversal frequency is roughly
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the same for all nodes (edges), i.e.fv(G) ∼ 1/n (fe(G) ∼ 1/m).

Discovery rate. The discovery rate of a strategy gives a lower bound on the number
of newly explored nodes or edges in the firstt steps of exploration, for smallt. A strat-
egy with a high discovery rate is preferable when performingonly partial exploration
tasks, for instance, when the agent is searching for a resource which is available at
some uniformly randomly spread subset of nodes of the network. Informally speaking,
for strategies with a high discovery rate we can also hope forsmaller cover time when
deploying multiple agents, which collaboratively complete the exploration process.

Required resources. Last but not least, the chosen exploration strategy may im-
pose requirements on the capabilities of the agent. Some of the strategies considered
in this chapter require the agent to be equipped with a certain amount of state memory,
and work differently depending on whether the agent has knowledge of some global
parameters, such as a bound on number of nodes of the network.Finally, some of the
exploration strategies considered here are randomized, while others are deterministic.
Whereas the question of determinism vs. randomization can be regarded in terms of
guarantees on performance, the desire to eliminate randomness and to construct de-
terministic strategies is also motivated by practical constraints. True randomness may
prove to be a scarce resource, unavailable to the agent.

2.2 Randomized strategies

2.2.1 A point of reference: the random walk

Classically, a random walk is defined as a Markovian process,starting with an initial
probability distribution over the set of nodes of a graph, and with transition probabilities
governed at each step by the normalized adjacency matrix of the graph (cf. e.g. [6]). For
the purposes of studies of mobile agents moving around the graph, we will choose to
use an equivalent frequentist view of probability. In this context, thesimple (unbiased)
random walkis an oblivious exploration strategy for a mobile agent located at a node of
the graph. The edge used by the agent to exit its current location is chosen with uniform
probability from among all the edges adjacent to the currentnode. In other works, for a
walk located at a nodeu, outporti is chosen with probabilitypi = 1

deg(u)
.

The random walk is arguably the simplest possible strategy which, in expectation,
allows even a memoryless randomized agent to explore any connected graph (in expec-
tation). Moreover, it admits the following desirable properties:

• In expectation, the random walk visits all of the vertices ofthe graph within poly-
nomial time.
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TABLE 2.1: Comparison of exploration algorithms in variants of the anonymous network model.

Agent’s algorithm Agent’s Cover time Refresh time Reference
memory (first cover) (limit behaviour)

Anonymous graph model

Random walk * none O(min{mn,mD log n}) * same as cover time [7]
Metropolis walk * O(log log n) O(n2 log n) * same as cover time [7,147,T1]
Deterministic algorithm O(logn) O(n4 log2 n) same as cover time [7,69,T1]
— lower bound on memory Ω(log n) – – [93,159]
— lower bound on time – Ω(n2) same as cover time [39]

Anonymous graph model with ports pre-configured for faster exploration

A dedicated rule O(1) < 3.5n same as cover time [56]
Right-hand rule none < 4n same as cover time [T2]

Exploration controlled by the environment

The rotor-router rule none ** Θ(mD) O(m) [175,T3,T4]
The least-used-first rule none ** O(mD) O(m) [T5]

* - for randomized algorithms, the provided values of cover time and refresh time represent expectations
** - in models controlled by the environment, there exist auxiliary counters associated with edges of the network
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• In expectation, the random walk stabilizes to the steady state within polynomial
time, and henceforth all edges are visited with the same frequency.

In these respects, the random walk will be treated as a point of reference for determin-
istic exploration models, for which we will attempt to achieve similar properties, but in
the sense of worst-case performance.

For the interested reader, we provide below a brief overviewof the most important
properties of the random walk, starting with bounds on the time necessary to explore an
anonymous network.

Cover time. Different techniques are used to bound the cover time of random walks
in general graphs. Some of the most useful bounds either relyon the relation be-
tween cover time and the maximum time required to reach a fixedvertex of the graph
(Matthew’s bound [143]), or make use of the resistor networkanalogy, linking the so-
called commute times of the random walk with resistances of replacement between pairs
of nodes of the resistor network corresponding to the considered graph [48]. A com-
pendium of simple bounds which can be obtained using such techniques is given by the
theorem below.

Theorem 2.1. [7, 48, 143]For the simple random walk process in any graphG, the
following bounds on cover time hold:

• C(G) < 2mD(lnn + 1).

• C(G) < 2mn.

• C(G) < 4
27
n3.

• C(G) > n logn.

All of these bounds are asymptotically tight up to a constantfactor in some graph
classes. For the first bound, a value ofC(G) ∈ Θ(mD logn) is achieved in many
graphs with small values of diameter, for instance, for the class of stars and for the class
of complete binary trees. The boundC(G) ∈ Θ(mn) is tight for the class oflollipop
graphs, which consist of the union of a path and a clique, with one of the vertices of
the clique connected by an edge to an endpoint of the path. Fora given value ofn, an
asymptotically largest possible cover time ofC(G) = 4

27
n3 − o(n3) is achieved by a

lollipop graph which has roughlyn/3 nodes in the path and roughly2n/3 nodes in the
clique (cf. [41] for the details of the construction).

For many special network topologies, such as complete graphs, expanders, trees, or
grids, more precise bounds on the cover time can be obtained (cf. [6]). One property
worth noting is a small cover time of the random walk ofO(n logn) on graphs with
good expansion properties, and ofO(n2) on regular graphs, regardless of their degree.
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Fairness of traversal. The random walk in the limit visits all edges of the graph
equally often,fe(G) = 1/m. In fact, the random walk admits an even stronger property.
In any connected undirected non-bipartite graphG, the random variable describing the
location of the agent converges to a stationary probabilitydistribution, so that in any
step the probabilityπv that the walk is located in a given nodev is proportional to the
degree of the node, i.e.:

πv =
deg(v)

2m
.

For bipartite graphs, the same stationary distribution canbe reached by changing the
transition probability so that the walk has some small probability of remaining at its
current vertex at each step. More precisely, at a vertexu, the probability of choosing port
i is pi =

1
deg(u)+1

, and the probability of remaining at vertexu is p− = 1
deg(u)+1

. Such
a walk, known as thelazy random walk, has the same asymptotic values of parameters
such as cover time.

In expectation, the random walk stabilizes to a fair traversal of the edges very quickly.
Several notions for describing the rate of convergence of the random walk to its station-
ary distribution have been introduced. One of the most studied is that ofblanket time,
which (informally speaking) corresponds to the expected moment at which (for a reg-
ular graph) all vertices have been visited a similar number of times, cf. [170]. A very
recent result of Ding, Lee, and Peres [73] is that the blankettime is within a constant
factor of the cover time, for all graphs.

Irregular behaviour. The fact that the random walk visits the edges of the graph
fairly does not directly imply a worst-case bound on the length of the time interval
between two successive visits by the agent to a fixed edgee of the graph. Such an
interval is, in fact, potentially unbounded. For the randomwalk, which is a memoryless
strategy, the length of this interval may be described by a single random variableTe.
The expected value ofTe is the same for all edges and is given by:

ETe =
1

fe
= m.

The higher order moments ofTe depend on the chosen edge and the topology of the
graph. In general, the probability tail ofTe decays exponentially only for time intervals
exceeding the edge cover timeCe(G) of the graph. For any even integerk, by apply-
ing the Markov bound to a walk on a time interval of length2Ce(G), and considering
k/2 independent iterations of such a walk, we can bound the tail of distributionTe as
follows:

Pr[Te ≥ kCe(G)] ≤ 2−k/2.

The irregularity of exploration may still be high for graphswith a large cover time. For
example, in the so-called lollipop graph which consists of apath of lengthn/3 connected
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at one endpoint to a clique on2n/3 nodes, the distribution of visits to the edgee at the
end of the path which is not connected to the clique, has a heavy tail up to the order of
the cover time of the graph,Pr[Te ≥ 4

27
n3] ∈ Ω( 1

n
). This means, for example that, with

constant probability, any time interval ofn4 consecutive rounds includes a sub-interval
of Ω(n3) rounds in which the considered edge is unvisited. Alleviating this type of
weakness of the random walk is one of the goals in the design ofalternative randomized
and deterministic strategies for graph exploration.

Discovery rate and parallelization. The discovery rate for the random walk is far
from simple to analyze. Linial (cf. [113]) conjectured thata random walk of lengtht
visitsΩ( 3

√
t) nodes in expectation, and this conjecture was later proved by Barnes and

Feige [26]. They also showed that a walk of the same length visits Ω(
√
t) edges in

expectation, and more strongly, that the expected value of the product of the distinct
number of edges and vertices visited until timet is Ω(t). All of these results hold up
to m visited edges andn visited nodes, and the latter result can be seen as a powerful
generalization on theO(mn) bound on the cover time of the random walk.

The so-calledparallel random walkis achieved by deploying independent agents
performing random walks in a graph independently and without any form of coordi-
nation. Recent work on the area of parallel random walks [9, 80, 83, 160] contains a
characterization of the improvement of the cover time due tothe deployment ofk in-
dependent random walkers with respect to the case with a single walker. It is shown
in these works that the achieved speed-up depends on different parameters, such as the
mixing time [83] and edge expansion [160] of the graph. The speed-up may sometimes
be as low asΘ(log k) [9], and sometimes as high as exponential in terms ofk [80]. For
many classes of graphs the speed-up is linear in terms ofk (especially whenk is small,
k ∈ O(logn)).

2.2.2 Fast exploration using the Metropolis walk

It turns out that, with respect to the random walk, further improvement of the cover time
of the walk is possible by applying so-called “look-ahead” strategies, allowing the agent
to obtain some additional information, e.g., about the topology of the neighborhood
of the current vertex of the walk. The main difficulty lies in attempting to simulate
this type of additional knowledge in a graph exploration strategy without changing the
assumptions of the anonymous graph model, in which the mobile agent only has access
to information about the current node.

A biased random walkon a graphG governed by atransition matrixP : V × V →
[0, 1] over graphG is defined as a walk in which the probability that an agent located
at a nodev transits in the next step to a nodeu is equal toP (v, u). It is assumed in the
definition that matrixP is stochastic, i.e. for allv,

∑
u∈V P (v, u) = 1, and that it reflects
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the topology ofG in terms of permissable moves of the agent, i.e.,P (v, u) = 0 for all
v, u such thatv 6= u and{v, u} /∈ E. The matrixP does not have to be symmetric,
allowing the same edge to be chosen with different probability in different directions.
The parameters of the biased random walk are denoted here in the same way as for the
unbiased walk, but using the matrixP in place of the graphG.

Modifications of the transition matrix decrease the probability of using some edges
of the walk, favoring others. For example, one may consider atransition matrixPT

which restricts the agent to a random walk on some fixed spanning treeT of graphG,
i.e., puttingPT (v, u) = 1/ degT (v) for {v, u} ∈ E(T ), andPT (v, u) = 0 for all other
edges. Such a transition matrix guarantees a vertex cover time ofC(PT ) = O(n2),
regardless of the chosen spanning treeT . Such a cover time is in some sense the best
possible for a biased walk: it was shown in [108] that when graph G is a path, any
transition matrixP overG has cover timeC(P ) = Ω(n2). However, achievingO(n2)
cover time by means of a transition matrix based on a spanningtree requires global
knowledge of the topology of the graph, and is completely infeasible in the anonymous
graph model. As pointed out in [108], it is not known if a transition matrix withO(n2)
cover time can be constructed by the agent based on local information, only.

In the current state-of-the-art [108, 147] there do, however, exist two schemes with a
cover time ofO(n2 logn) in which the elementsP (v, u) of the transition matrix depend
only on the degrees of vertices from the neighborhood ofv. The first of these schemes,
proposed in [108], relies on a transition matrix in which thewalk chooses the next node
in the neighborhood ofv proportionally to the inverse of the square root of its degree.
Again, implementing transitions according to such a transition matrix using a constant
number of time steps of the mobile agent seems difficult to achieve. This problem can,
however, be alleviated for the latter scheme, proposed in [147], which relies on so-called
Metropolis walks.

The Metropolis-Hastings-type transition matrix can be defined so as to achieve any
given stationarity probability distributionπv of the walk on the nodes of the graph. In-
tuitively, the unbiased random walk has a stationary distribution ofπv =

deg(v)
2m

, whereas
the cover time of the walk can be improved by balancing the stationary distribution
towards the uniform distributionπv = 1/n.

Theorem 2.2([147]). For any normalized probability distributionπ = {πv : v ∈ V }
with minπ > 0, letPπ be the transition matrix on graphG given by:

Pπ(v, u) =






min
{

1
deg(v)

, 1
deg(u)

πu

πv

}
, for {v, u} ∈ E

1−∑
w∈N(v) Pπ(v, w), for v = u

0 otherwise.

Then,C(Pπ) = O(fn2 log n), wheref = max{πu/πv : u, v ∈ V }.
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We remark on two special cases of the above strategy.
When the probability distribution is given byπv = deg(v)/2m for all v ∈ V , we

obtainPπ(v, u) = 1
deg(v)

for {v, u} ∈ E, andPπ(v, u) = 0 otherwise. Thus, the
transition matrix describes the unbiased random walk, and the claim of the theorem
implies thatC(G) = O(∆

δ
n2 log n).

The second interesting case is given by the uniform probability distribution πv =
1/n for all v ∈ V , for which f = 1, and the claim of the theorem yields a bound of
O(n2 logn) on the cover time.

There exists a simple procedure, due to Metropoliset al. [144], for simulating a sin-
gle step of Metropolis-Hastings walk by sampling a neighbour of the current location
uniformly at random, and then deciding whether to accept thenew node or remain at the
current one. We observe in [T1] that this implies that the Metropolis walk can be used
as an efficient strategy for randomized graph exploration, using only logarithmic space.

In the setting of mobile agents in anonymous graph, this procedure is formally stated
as Algorithm 1 (assuming for simplicity a uniform distribution on nodes,πv = 1/n). In
this formulation, the agent is assumed to have the set of statesS = [0,∆]. The special
state0 represents an agent which is looking for a new node to move to.States from
the ranges ∈ [1,∆] signify that the agent is testing the current node as a potential new
location, having arrived from a node of degrees. With probability depending ons and
the degree of the new node, it may accepting it, or potentially revert to the original node.
(This type of formulation appears to have been first given in 2012, for the JAG model
of graph exploration in [T1], and at the same time for the crawl-and-jump model of
network sampling in [136]).

Algorithm 1: Metropolis walk strategy for fast randomized exploration with a log-
space agent [136,T1]

• When the agent is located at a nodev ∈ V of degreed in states = 0:

The agent chooses a porti ∈ {0, . . . , d− 1} uniformly at random and moves to
the vertexu = end(v, i), changing its state tos := deg(v). {“Test”}

• When the agent is located at a nodeu ∈ V in states > 0:

With probabilityp = min{ s
deg(u)

, 1} the agent remains atu, performing a null
move and changing its state tos := 0. {“Accept”}
Otherwise, the agent reverses the last move, moving along the port by which it
enteredu, and also changing its state tos := 0. {“Revert”}

Since the memory of the agent required in Algorithm 1 can be bounded aslog |S| ≤
log n, we obtain the following Corollary of Theorem 2.2 withf = 1.
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Corollary 2.3 ([T1]). There exists a randomized strategy for a mobile agent which ex-
plores any graph w.h.p. inO(n2 logn) rounds, requiringO(logn) state memory.

In fact, the memory requirement for the agent can be reduced by implementing a
Metropolis-type walk which takes into account only an approximation of the value of
the degree of the node, rounded up to the nearest power of2. This can otherwise be
seen as adding a certain number of self-loops to each node of the graph, so that its
degree becomes a power of2. The corresponding modification of Algorithm 1 consists
in settings′ ass := ⌈log deg(v)⌉ in the “test” step, and then accepting the new state
with probabilityp = min{ 2s

2⌈log deg(u)⌉ , 1}. By performing this modification, we obtain a
stationary distribution of the walk which only differs fromthe uniform distribution by a
constant factor, i.e., we can apply Theorem 2.2, knowing that f < 2.

Corollary 2.4. There exists a randomized strategy for a mobile agent which explores
any graph w.h.p. inO(n2 logn) rounds, requiringO(log logn) state memory.

We close the discussion of the cover time of randomized exploration strategies with
an overview of directions of current and future study. The results state above do not yet
fully close the question of minimizing the memory required by the agent to retaining
a fast cover time, such as̃O(n2) (where theÕ notation disregards polylogarithmic fac-
tors). In fact, in current work-in-progress [127], we have designed a strategy with̃O(n2)
cover time and a state memory requirement ofO(log log logn), which we conjecture to
be optimal.

Whereas none of the stated approaches require knowledge of global parameters, it is
plausible that under the even stricter restrictions of constant-size memory, knowledge
of n may affect the feasibility of achieving exploration with small cover time. For
example, by rounding the degrees of nodes up to the nearest power of

√
n (rather than

to the nearest power of2) and then merging the test/revert phases into one, one can
design a strategy for graph exploration iñO(n2.5) time, requiring precisely 1 bit of
state memory. This approach relies on the knowledge of a bound or estimate on

√
n.

No similar strategy is known for the case of algorithms without global knowledge. In
fact, we conjecture that any algorithm with a constant number of bits of memory must
have a cover time ofΩ(n3), i.e., cannot provide an improvement with respect to the
random walk. However, proving tight lower bounds on the performance of randomized
algorithms is often a challenging task.

We remark that the Metropolis walk is not faster than the random walk in all graph
classes. The Metropolis walk visits all the nodes of a graph within Õ(n2) steps, which
for all but sparse graphs is an improvement with respect to the bound ofO(nm) on the
cover time of the simple random walk. Nevertheless, applications in sampling tasks
show empirically that a simple random walk after erasing null moves is faster (by a con-
stant factor) than Metropolis for some real-world topologies of social networks [136].
Moreover, there exist graph classes for which the random walk has an asymptotically
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smaller cover time than the Metropolis walk. A generic example of such a graph, called
theglitter star, was defined by [147] as a tree onn = 2l+1 nodes, with one central node
of degreel connected tol nodes of degree2, which are in turn connected tol leaves.
On the glitter star, the cover time of the random walk isΘ(n logn), and the cover time
of the Metropolis-Hastings walk (with uniform stationary distribution) isΘ(n2). To
alleviate such undesirable behavior, we propose an approach which combines some of
the advantages of the random walk and the Metropolis walk. One way to achieve this
is to design an agent which iteratively performs a phase of the random walk, followed
by a phase of the uniform Metropolis walk of the same length, doubling the lengths of
both walks in each subsequent iteration. Such a walk visits all the nodes of the graph in
expected time asymptotically equal to the cover time of the faster of the two walks.

Theorem 2.5 ([T1]). There exists a mobile agent process withO(logn) state mem-
ory which covers any graphG in expected timeC(G) = O(min{CR(G), CM(G)}),
whereCR(G) is the cover time of the random walk, andCM(G) is the cover time of the
Metropolis walk in graphG.

A similar effect can also be achieved by an (almost) Markovian process, outlined
in [T1], which consists of a Metropolis-type transition rule between nodes, with tran-
sition probabilities being a weighted average of those of the random walk and the uni-
form Metropolis walk. This leads to an analogous bound on cover time, but requires the
knowledge of the average graph degree,d∗ = 2m/n, by the agent.

Other properties of the Metropolis walk. In our work [T1], we show some in-
teresting properties of the Metropolis walk. First of all, we prove that short Metropolis
walks quickly discover many nodes of the network. Metropolis walks of lengtht > ∆2

discover new nodes of the graph quickly, with the number of nodes visited being pro-
portional to the square root of the length of the walk. Formally, in [T1] we show that
within t steps (0 < t < 6n2), a Metropolis walk will return to its initial location at
most5

√
t+ 2∆ times in expectation. The proof techniques rely on the resistor network

analogy for commute times of the walk, and resemble the approach used to study short
random walks in regular graphs in [6]. It is then shown that the probability of reaching
a node picked uniformly at random withint steps is at least0.1

√
t/n, if ∆2 ≤ t < 6n2.

By taking the union over alln nodes, we have the following corollary.

Theorem 2.6([T1]). A Metropolis walk of length∆2 < t < 6n2 visitsΩ(
√
t) distinct

nodes of the graph, in expectation.

By applying the union bound, we describe the cover time of a group of Metropolis
walks deployed in the graph; the results from [T1] are rephrased here in mobile agent
terminology.



30 The exploration problem

Theorem 2.7([T1]). A team ofk mobile agents, initially placed at nodes of the network
chosen uniformly at random, with each agent performing a Metropolis walk, covers all
of the nodes of the graph w.h.p. withiñO(max{∆2, n2/k2}) steps (where thẽO-notation
disregards polylogarithmic factors).

The above theorem shows that exploration strategies based on Metropolis walks par-
allelize well, obtaining a speedup of̃Θ(k2) with respect to the known bounds for the
single-agent case, provided that the agents start from nodes which are spread out through
the network, and that the degree of the network is not too high.

This type of argument is further exploited in [T1] in combination with so-called land-
mark distribution schemes due to Broderet al. [42] to obtain the main result of [T1], set
in the centralized model of computation. We obtain that the classical ST-connectivity
problem, which consists in determining if a pair of nodess, t of a graph given at input
belong to the same connected component, can be solved in timeT and spaceS with a
time-space tradeoff:S · T = Õ(n2), with bounded probability of error. This improves
on a series of previous tradeoffs which relied on the application of random walks, with
the previously best trade-off being one ofÕ(nm), due to Feige [84].

A comparison of the most important exploration properties of the random walk and
the Metropolis walk is provided in Table 2.2.

2.3 Deterministic exploration strategies

Designing algorithms for agents which explore all graphs with certainty requires strictly
more resources than the design of algorithms working with bounded probability of error.
It is well known that in the absence of any device for marking nodes, no memoryless
robot can deterministically explore all anonymous graphs [45]. In [159], this impos-
sibility result was extended to a finite team of robots, showing that they cannot even
explore all environments belonging to the class of planar cubic graphs. The result was
further strengthened in [50], where the authors introduce apowerful tool, called the
Jumping Automaton for Graphs (JAG). A JAG is a finite team of finite automata that
permanently cooperate and that can useteleportationto move from their current loca-
tion to the location of any other automaton. However, it turns out that not even JAGs
(with constant state memory) can explore all graphs.

The precise requirement on the amount of state memory necessary for an agent to
explore all graphs on at mostn nodes isΘ(logn). The negative result, i.e. a proof that
a robot requires at leastn states (and thusΩ(log n) bits of state memory) to explore all
graphs of ordern, can be found in [93]. On the other hand, exploration usingO(logn)
bits of state memory can be achieved in polynomial time usingso-calleduniversal se-
quences.

Rather than treat such universal sequences as a special caseof deterministic explo-
ration strategies, we will use universal sequences as a starting point, and then show that
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TABLE 2.2: A comparison of exploration algorithms: the random walk, the Metropolis walk, and the rotor-router model.
Results which follow from papers [T1,T3,T4] are marked withbullets (•).

Property Random walk Metropolis walk Rotor-router

System model: Anonymous network Anonymous network Anonymous network
with a pointer at each node

Determinism: Randomized Randomized Deterministic

Stable state behaviour: Visits edges equitably Visits nodes equitably Visits edgesequitably
(Eulerian traversal)

Cover time w.r.t.n: O(n3) O(n2 log n)• O(n3)

Cover time w.r.t.m, D: O(mD logn) O(mD logn)• Θ(mD)•

Limit cover time: As above
(Markovian process)

As above
(almost-Markovian process)

Covers graph in2m steps
(Eulerian traversal)

Recovery after change in
network topology:

None required
(Markovian process)

None required
(almost-Markovian process)

Stabilizes in2mf steps (f new
edges or pointer changes)•;
slow for edge deletions•

Worst-case performance: Unbounded Unbounded As in average-case

Graph discovery int steps: Discovers∼
√
t edges Discovers∼

√
t nodes(t > ∆2)• Discovers∼

√
t edges•

Cover time usingk walks in
parallel:

O(k log n)-fold speed-up;
Ω(k)-fold speed-up in
many graphs (for smallk)

Speed-up unknown in general;
Õ(∆2 + n2/k2) cover time for
uniformly random initialization•

Speed-up unknown; no slow-
down possible
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an arbitrary deterministic strategy can be viewed as a so-called universal table, which
generalizes the notion of a universal sequence to take into account the state of the agent.

2.3.1 Universal sequences

Anonymous graphs can be explored using so calleduniversal traversal sequences(UTS-
s). A UTS describes a sequence of port numbers by which the agent should progress
along when leaving its location in successive steps. Formally, let (a1, a2, . . . , at) be
a sequence of integers. Anapplicationof this sequence to a graphG at nodeu is the
sequence of nodes(u0, . . . , ut+1) obtained as follows:u0 = u; for any0 ≤ i ≤ t, ui+1 =
succ(ui, ai) if ai < deg(ui), andui+1 = ui otherwise. A sequence(a1, a2, . . . , at)
whose application to a graphG at any nodeu contains all nodes of this graph is called
a traversal sequence for this graph, and a traversal sequence for all graphs in some class
G is called a UTS forG. An agent can traverse a fixed (known) UTSA using only
O(log |A|) state memory, since the agent’s move at timet depends only on the value of
t, which can be used to compute the current elementat of the sequence.

Aleliunas et al. [7] observed that there exists UTS-s of length polynomial inn for the
class of all graphs of at mostn nodes. The applied argument is based on the probabilistic
method and thus non-constructive. The length of the obtained UTS for the class of port-
labeled graphsG is given asO(maxG∈G CR(G) · log |G|), whereCR(G) represents the
cover time of the random walk inG. This may be bounded for graphs with at most
n nodes and degree at mostd asO(n3d2 log n), sincemaxG∈G CR(G) = O(n2d) and
|G| = O(2nd logn) [7]. A mobile agent, given fixedn andd, can always compute a
distinguished UTS (e.g., the lexicographically smallest among all shortest UTS-s for
the classG) and follow it in the graph.

Proposition 2.8([7]). For any positive integersn, d, d < n, there exists an algorithm
for a mobile agent withO(logn) state memory, which explores any anonymous graph
of at mostn nodes and maximum degree at mostd in O(n3d2 logn) steps.

We remark that although the state memory carried over edges by the agent need only
encode its position in the UTS, at every step, the agent has togenerate the complete
UTS from scratch to be able to perform its next move. No polynomial time routines for
finding a UTS of lengthO(n3d2 log n) are known to date.

At the cost of increasing the cover time, it is possible, however, to bound the time and
memory of local computations of the agent. The approach relies on the application of so-
calledUniversal Exploration Sequences (UXS-s)in place of UTS-s. A UXS describes,
for each step of the walk, the offset of port by which the agentleaves a node with
respect to the port by which it entered the node. Formally, for a given integerd, a
sequence of integers(a1, a2, . . . , at), 0 ≤ ai < d, is called a(n, d)-UXS if for any graph
G = (V,E) of maximum degree at mostd and at mostn nodes, all of the nodes ofG
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are visited by an agent which starts at an arbitrary nodeu0 ∈ V and visits the sequence
of nodes(u0, . . . , ut+1), obtained as follows:u1 = succ(u0, 0); for any 1 ≤ i ≤ t,
ui+1 = succ(ui, (pi+ai) mod deg(ui)), wherepi is the port by which the agent entered
ui in stepi.

In general, the probabilistic method of Aleliunaset al. [7] can be used to construct
UXS-s of the same length as UTS-s for arbitrary graphs. However, UXS-s have a num-
ber of advantages over UTS-s, e.g., an agent following a known UXS can always apply
a reversed sequence to return to its initial location [128].Certain properties of UXS-s
may also be exploited to discover the topology of an anonymous graph and help break
symmetries between multiple agent; we apply such techniques when considering the
rendezvous an mapping problems in Chapters 3 and 4.

A recent result by Reingold [156] implies that a UXS-type exploration procedure
can be constructed in logarithmic space of local computation for any graph∗, and that
this algorithm can even be operated by a single jumping automaton (or equivalently,
a single mobile agent moving around the ground). It follows that there exists a deter-
ministic strategy for a mobile agent which explores any graph in a polynomial number
of steps, using logarithmic-space (and consequently also polynomial-time) local oper-
ations, only. The number of steps of such a sequence is, however, somewhat too large
to be of practical significance — on the order of at leastn100 in Reingold’s original
implementation.

2.3.2 Universal tables

An extension of the concept of a UTS or UXS is captured by so-called exploration
tables. We introduce such tables by generalizing the formulation from [69], in which
similar tables were used to derandomize the random walk. Anexploration tableA
corresponding tot steps of exploration is an array of indexed pairs of cells of the form
[(ai,p,s,deg, s

′
i,p,s,deg)], with 1 ≤ i ≤ t, 0 ≤ p < deg ≤ d, s ∈ S. Then, an agent

following exploration tableA is defined so as to have set of statesS, and to behave in
thei-th step of execution as follows: if the agent entered the current nodev in stepi− 1
by portp in states, then it should leavev in stepi by port(p+ai,p,s,deg(v)) mod deg(v)
in states′i,p,s,deg(v) ∈ S. Here, we choose to define the port of exit as(p + ai,p,s,deg(v))

mod deg(v) rather thanai,p,s,deg(v)) so as to obtain the analogue of a UXS (and not a
UTS), giving certain desirable properties, such as the ability of the agent to backtrack
its steps knowing only the definition of the table.

We remark that an agent following a universal table is precisely as powerful as an
agent which is allowed to follow anarbitrary deterministic exploration strategy in an

∗While Corollary 5.5 from [156] concerns only regular graphs, the reduction mentioned before this
corollary reduces a UXS on arbitraryN -node graphs to a UXS onπ-consistently labeledN2-node
graphs of degree 3. Thus the more general result for arbitrary, not necessarily regular graphs, holds
as well.
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anonymous graph. The difference is purely notational: in a universal table, we empha-
size the role of the time step indexi, which would normally be concealed as a part of the
state of the agent carried over edges. The memory requirement for an agent following
an exploration tableA for |A| steps islog |S|+log |A|, where the lastlog |A| bits encode
the current value of the time step.

Construction. The explicit time dimension in the table proves conceptually helpful
when designing a universal table by means of derandomizing any chosen randomized
exploration algorithm, such as the random walk or the Metropolis walk, relying on the
probabilistic method. We assume that the considered randomized algorithm has a fixed
set of statesS (corresponding to those in the table), and that the table is designed for an
agent operating in an anonymous graph of maximum degree at most d. Intuitively, one
considers a set of exploration tablesT such that an algorithm which picks a tableT ∈ T
uniformly at random and then follows exploration accordingto T is indistinguishable
from the original randomized algorithm based on which the set T is designed (e.g.,
the random walk or the Metropolis walk). The setT is designed for an exploration
lengtht corresponding to the cover time of the considered randomized algorithm within
the chosen graph classG. Based on this, one obtains by the probabilistic method that
there exists a specific tableT ′ of length t · log |G|, obtained by the concatenation of
log |G| specifically chosen tables fromT , which is auniversal tablefor the classG,
i.e., an exploration followingT ′ starting from an arbitrary initial node of any graph
G ∈ G visits all of the nodes ofG. Specifically, such an application of the probabilistic
method is performed in [69] for the slightly simplified case of a random walk (which
is a stateless strategy, hence statess ands′ do not need to appear among the indices
and values stored in the table). They obtain that for the class of graphsG with at mostn
nodes and degree at mostd, there exists a universal table, which explores any graph from
G in O(maxG∈G CR(G) · log |G|) steps, whereCR(G) is the cover time of the random
walk. This corresponds precisely to known bounds on the length of a UTS. In fact,
one can use exactly the same approach to derandomize the Metropolis walk, obtaining
a table withO(maxG∈G CM(G) · log |G|) steps, whereCM(G) is the cover time of the
Metropolis walk. Recalling thatmaxG∈G CM(G) = O(n2 logn) by Corollary 2.3 and
|G| = O(2nd logn), we obtain the following theorem.

Theorem 2.9. For any positive integersn, d, d < n, there exists an algorithm for a
mobile agent withO(logn) state memory, which explores any anonymous graph of at
mostn nodes and maximum degree at mostd in O(n3d log2 n) steps.

The above algorithm can be designed to operate without knowledge ofd: the agent
can start with an assumed value ofd corresponding the degree of the initial location of
the agent, and after the specified number of steps (O(n3d log2 n)) the agent is guaranteed
either to have explored the whole graph, or to have found a node of degree higher than
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d. In the latter case, the process is restarted with a doubled assumed value ofd. The
process is guaranteed to terminate withinO(n3d log3 n) steps. Alternatively, one can
simply putd = n, and run the algorithm inO(n4 log2 n) steps (for simplicity, this is the
bound on the exploration time of deterministic algorithms stated in Table 2.1).

As in the case of randomized algorithms, knowledge of an upper bound onn is re-
quired to guarantee termination of the exploration process. We note that universal tables
based on the Metropolis walk lead to strictly shorter tablesthan UTS-s.

Lower bounds. The question of the existence of faster deterministic algorithms than
those requiring̃Θ(n3d) steps, or equivalently shorter universal tables, is not well under-
stood. The best currently known lower bound on the length of auniversal table follows
from a classical lower bound ofΩ(n2) on the length of a UTS in 3-regular graphs [39].
It is known that UTS-s of lengthΩ(n2) are required to explore all graphs belonging to a
special class of labeled 3-regular graphs, which can be chosen so that in each graph the
used labeling has the property that for every edge, the two port numbers at the endpoint
of each edge are the same. For such graphs, the models of a UTS,a UXS, and a univer-
sal table of fixed length have exactly the same “power”, i.e.,any table or sequence of
one type can be converted into another, preserving the behaviour of the agent. Hence,
the lower bound ofΩ(n2) holds for all three models, and so is also a lower bound on the
time of deterministic exploration in the anonymous networkmodel.

Most of the research on lower bounds in deterministic exploration has concerned
UTS-s, only, with the best currently known lower bound for UTS-s in graphs of max-
imum degreed beingΩ(n2.51d0.49) [61]. This result is the last in a long sequence of
incremental improvements based on a proof technique which makes use of construc-
tions of so-called reflecting sequences to design port labelings forcing the application
of long UTS-s on the ring, which are then generalized to arbitrary regular graph. As
pointed out by Koucky [128], lower bounds of this type do not carry over even to the
case of UXS-s, since a sequence of successive port increments of ‘1’ corresponds to
the well-known basic walk (right hand rule) strategy, and issufficient to explore graphs
such as rings and trees in linear time. Finding lower bounds for universal tables appears
to be even more complicated.

Randomization of universal tables. When designing efficient deterministic ex-
ploration algorithms, we obtained a universal table by derandomizing some form of
biased random walk. However, it is also possible to perform the process in the opposite
direction, adding elements of randomness into a universal table to obtain a randomized
exploration strategy. Assuming the agent knows a boundτ on the number of steps of
exploration it can perform and on the degree of the graph, we can consider a probability
distributionρ : T → [0, 1] whereT is the set of (not necessarily universal) exploration
tables of length at mostτ . Now, an agent can proceed with the following randomized
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exploration algorithm: in the first step, it picks a tableT ∈ T according to probability
distributionρ, and then deterministically follows tableT for τ steps. Such an approach
is extremely powerful. In fact, subject to some assumptionson known upper bounds of
parametersn, d, andτ , it can be seen as universal: it is well known that any randomized
exploration strategy, which relies on some coin tosses, canbe converted into one where
all the random decisions are decided before the first step of the agent, and the subse-
quent execution of the procedure is deterministic. Since any deterministic strategy is
equivalent to some exploration table, the universality of the adopted approach follows.

The problem of designing a randomized exploration table which is superior to the
Metropolis walk is a challenging research question. Intuitively, it might seem that in
regular graphs with a port labeling which provides the agentwith no additional infor-
mation about the topology of the graph, theΘ(n2) cover time achieved by both the
random walk and the Metropolis walk is the best possible. However, none of the known
lower bounds ofΩ(n2) on cover time for specific classes of algorithms extends to the
general case of randomized tables.

2.4 Exploration of anonymous networks with
preconfigured port numbers

In this section we consider a natural variant of the exploration problem in anonymous
networks, in which the designer of the agent’s exploration strategy initially sets up the
port labels and the ordering of the local port numbers in the network, so as to allow a
very simple agent to efficiently explore all nodes of the network. This line of study was
initiated in [75].

We will study the exploration problem with preset ports in the context ofperiodic
graph exploration. The task of visiting all the vertices of anetwork periodically is
particularly useful in network maintenance, where the status of every vertex has to be
checked regularly. It turns out that, due to the ability to preset the port numbers, it
is possible to design a memoryless agent which visits all nodes (i.e., an agent which
is not equipped with any state information which survives when traversing an edge).
It turns out that it is even possible to visit all nodes of the graph with a memoryless
robot periodically, once every a number of steps which is linear inn. This shows that
the ability to configure ports is extremely powerful in network exploration. We recall
that for arbitrary port settings, exploration was only feasible for an agent equipped with
Ω(log n) bits of state memory (cf. Section 2.3).

Formally, we consider a scenario in which the agent is initially located at some vertex
v, and starts the exploration ofG by traversing the edge having label0 at endpoint
v. Once it has reached the other endpoint of this edge, say somenodeu, it reads the
associated label, sayl, and enters nodeu. When the agent is memoryless, the port
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by which the agent leavesv is a function of the input port. In fact, we will restrict our
considerations to agents following the so-calledbasic walk(or theright-hand rule[56]),
in which vertexu is left by the port labeledNextPort(u), i.e., the next port after the port
of entry in some cyclic ordering of the ports atu. The basic walk strategy has been
shown to be the best possible among all memoryless exploration strategies, for any
graph [56]. After performing a certain number of steps according to the rule, the agent
will eventually re-enter port0 at vertexv, and the traversal will proceed periodically
from then on. We will say that the agentexploresthe graph if its route goes through
each vertex of the graph at least once; from now on, we will only consider port labelings
leading to valid explorations. It is known that all graphs admit a port labeling leading to
an exploration [75].

For a given port labeling, theexploration periodπ is defined as the total number of
steps made by the agent before returning to the initial port (or equivalently, as the total
number of arcs of the form(u, v), for {u, v} ∈ E, used during the exploration). Herein,
we focus on finding labelings which lead to valid explorations of minimum possible
period when using a memoryless agent. This immediately leads to the natural definition
of the graph parameterπ(G) known as theminimum exploration periodof the graph.

The first constructions of port labelings leading to short exploration periods for a
memoryless robot were provided in [75], showing that for anygraph onn nodes, we
haveπ(G) ≤ 10n. Recently, by applying a clever graph decomposition technique
in order to build an appropriate exploration cycle, [56] have improved this bound to
π(G) ≤ 13

3
n ≈ 4.33n. They have also shown a strong worst-case lower bound: for arbi-

trarily large values ofn, there existn-node graphsGn such thatπ(Gn) ≥ 2.8n− O(1).
Finally, the following improved bound on the minimum exploration period of any graph
was shown in [T2]:π(G) ≤ 4n − 2. The proof of this result is constructive, and in
the rest of this section we discuss in more detail how to algorithmically construct a port
labeling which guarantees an exploration period of at most4n− 2 for the basic walk.

We note that the value ofπ(G), expressed in relation to the number of nodesn,
exposes certain interesting structural properties of the graph. For example, we have that
π(G) = n if and only if G is Hamiltonian, and for a Hamiltonian graph an appropriate
labeling can be defined so as to direct ports 0 and 1 of all nodesalong the edges of the
Hamiltonian cycle (Fig. 2.1a). It is also known thatπ(G) < 2n for all graphs admitting
a spanning treeT such thatG \ T has no isolated vertices [56].

2.4.1 Construction of Port Labeling for the Basic Walk

The port labeling will be constructed in such a way that the agent will perform one
period of its traversal within4n − 2 steps, and hence will only visit a small number of
edges of the traversed graphG. The general approach is to construct a multigraphH on
the same set of nodesV asG, adding one copy of an edge between a pair of nodes each
time the agent traverses an edge between this pair of nodes inits walk onG. We apply
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FIGURE 2.1: Exploration cycles obtained for different labelings:(a) a labeling leading to a
Hamiltonian cycle, (b) another exemplary labeling.

a method introduced in [56], which consists in proving that there exists a multigraph
H on the set of nodes and edges ofG satisfying a certain set of properties, and next,
that given such a multigraphH, we can design a periodic walk spanning all nodes from
V , whose period is at most the number of edges ofH. In our case, we will expect the
multigraphH to have at most4n− 2 edges (counting all parallel edges).

For a multigraphH, we will denote byV (H) its vertex set, byE(H) its edge multiset,
and by|E(H)| the number of its edges (including multiple edges). The number of edges
adjacent inH to a vertexv ∈ V (H) is denoted bydegH(v). The notation2e denotes
2 copies of an edgee; the notation2H denotes a multigraph with vertex setV (H) and
each edgee ∈ E(H) replaced by2e. An edgee ∈ H is calleddoubleif 2e belongs to
H, andsingleotherwise. Throughout the section, we will never consider multigraphs
with more than two parallel edges.

Any labeling scheme for graphG uniquely determines an exploration cycle, under-
stood as a sequence of directed edges traversed in a single period of the exploration,
i.e., a sequence in which the directed edge(u, v) corresponds to a transition of the robot
from some nodeu to another nodev, where{u, v} ∈ E. The correspondingexploration
multigraphH is defined as the undirected submultigraph of2G given by the edges of
G traversed by the robot during one exploration cycle. Each edge is included as it is
traversed, possibly twice if it is traversed in both directions; note that no edge can be
traversed twice in the same direction, since then the memoryless agent would start the
next period of its traversal. LetH2 be the spanning subgraph ofH consisting of its
double edges only, and letH1 = H \H2. A vertexv ∈ V is calledsaturatedin H with
respect toG if degH(v) = deg2G(v). The following property of exploration multigraphs
is known to hold.

Proposition 2.10([56]). Any exploration multigraphH ⊆ 2G has the following prop-
erties:

A. For each vertexv ∈ V , degH(v) is even.

B. Each vertexv ∈ V havingdegH1
(v) = 0 is saturated inH with respect toG.
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The converse of the above proposition does not hold in general, but one more addi-
tional property can also be formulated.

C. H2 is connected.

Then, the following structural theorem has recently been shown.

Theorem 2.11([56]). Any multigraphH ⊆ 2G fulfilling properties A, B, and C is a
valid exploration multigraph, i.e. induces an explorationcycle onG of length at most
|E(H)|.

Consequently, for the rest of the section we will concentrate on defining a multigraph
H ⊆ 2G which satisfies properties A, B, and C. To achieve this, in graphG we select an
arbitrary spanning treeT0. LetG′ = G\T0. Then, in multigraph2G′ we find a spanning
(not necessarily connected) submultigraphH ′ satisfying properties analogous to A and
B:

A’. For each vertexv ∈ V , degH′(v) is even.

B’. Each vertexv ∈ V havingdegH′
1
(v) = 0 is saturated inH ′ with respect toG′.

The final multigraphH is given asH = H ′ ∪ 2T0, thus2T0 ⊆ H2. It is clear
that if H ′ satisfies properties A’ and B’, thenH satisfies properties A, B, C, and that
|E(H)| = |E(H ′)|+2(n−1). Hence, in order to obtain an exploration cycle with period
π(G) ≤ 4n − 2, we confine ourselves to constructing an appropriate submultigraph
H ′ ⊆ 2G′ with |E(H ′)| ≤ 2n.

Note that the construction ofH ′ can be performed independently for each connected
component ofG′; throughout the rest of the discussion, w.l.o.g. we assume thatG′ is
connected. The existence of an appropriate multigraphH ′ constitutes the main result
of [T2].

Theorem 2.12([T2]). For any connected graphG′ with vertex setV , |V | = n, there
exists a multigraphH ′ ⊆ 2G′ such that|E(H ′)| ≤ 2n, andH ′ satisfies propertiesA′

andB′.

Construction of multigraph H ′

In [T2], it is shown that the multigraphH ′ satisfying properties A’ and B’, such that
|E(H ′)| ≤ 2n, can be determined by Algorithm 2. In it, we use the followingnotation:
for a spanning tree rooted at noder in G′, we will call a vertexv ∈ V tree-saturated
in T if degT (v) = degG′(v). For treeT , let s(T ) denote the number of tree-saturated
vertices inT , and letsh(T ), for 0 ≤ h < n, be the number of tree-saturated vertices in
T at height (i.e. distance in treeT from root r to the vertex) not greater thanh. This
allows us to define a partial order on the set of rooted spanning trees ofG′. For a pair of
treesTa, Tb, we will say thatTa < Tb if one of the following conditions is fulfilled.
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1. s(Ta) < s(Tb),

2. s(Ta) = s(Tb), and for someh, 0 ≤ h < n, we have∀0≤l<h sl(Ta) = sl(Tb) and
sh(Ta) > sh(Tb).

Algorithm 2: Computing multigraphH ′

1. LetT be a minimal spanning tree inG′ with respect to order(<).

2. LetS be a subgraph inG′ \ T , whose connected components are stars, such
that for eachv ∈ V eitherv is tree-saturated inT or degS(v) > 0.

3. Find a submultigraphH ′ ⊆ S ∪ 2T fulfilling properties A’ and B’, such that
|E(H ′)| ≤ 2n, and return it as output.

It turns out that all of the steps of the above algorithm are well defined. Step(1)
requires no comment. For step(2), graphS is well defined because any graph admits a
subgraph which is a set of stars, touching all non-isolated vertices; for graphG′ \ T , the
only isolated vertices are those which were tree-saturatedin T . The correctness of step
(3) is the result of the appropriate choice of spanning treeT . The selection of the edges
which are included inH ′ can be implemented by applying several auxiliary procedures
which select edges incident to nodes of treeT , processing these nodes level by level,
starting from the leaves and moving towards the root of the tree [T2]. The correctness
of this construction ofH ′ implies the following theorem.

Theorem 2.13([T2]). For any graphG of sizen there exists a port labeling leading to
an exploration period of the basic walk:π ≤ 4n− 2.

It is natural to ask about the runtime of the procedure required to obtain a labeling
with such an exploration period, and about the tightness of the obtained bound; we
address these questions in the following subsections.

Whereas the construction of the appropriate cycle can always be performed using
Algorithm 2 (in finite time), this does not necessarily mean that a solution can be found
in polynomial time. The problem consists in computing an appropriate spanning tree,
minimal in the sense of order(<), in step (1). In general, finding a spanning tree
having a minimum number of saturated vertices is alreadyNP -hard. (The proof of this
observation proceeds by reduction from the problem of finding a Hamiltonian path in a
3-regular graph: a3-regular graph has a spanning tree without saturated vertices if and
only if it admits a Hamiltonian path.) However, this problemwas alleviated in [T2] by
selecting a different partial order on spanning trees, having a less intuitive definition,
but satisfying the same essential properties and allowing for faster processing.
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FIGURE 2.2: Example of a class of graphs in which the exploration period of the basic walk is
2.8n −O(1). [56]

Theorem 2.14([T2]). There exists a polynomial time algorithm which, given a graph
G, determines a port labeling leading to an exploration period π ≤ 4n− 2.

Tightness of the bound

The best known existential lower bound on the length of an exploration cycle is within
an additive factor of2.8n [56]. The class of graphs attaining such a bound is obtained
by connecting 4-vertex diamond graphs into a chain, as presented in Figure 2.2. This
leaves a gap between the lower bound, and the best known labeling with a period of
4n− 2, given by Theorem 2.13.

However, obtaining exploration periods significantly shorter than4n would require
some completely new insight. All of the approaches known to date, including those
from [56,T2], rely on constructions of exploration multigraphs in which the set of edges
traversed twice during the exploration period touches all of the nodes of the graph (for-
mally, for all v ∈ V , degH2

(v) > 0). This property would have to be discarded to allow
further improvement to the length of the exploration periodin view of the following
result.

Theorem 2.15.For all values ofn ≥ 3, there exists a graphG of ordern, such that any
exploration ofG whose exploration multigraph satisfies for allv ∈ V , degH2

(v) > 0)
has|E(H)| ≥ 4n− 8 edges.

We remark that in particular, the construction would need toavoid the condition im-
posed on the double-edge subgraph of multigraphH (property C in Theorem 2.10).

2.4.2 Agents with Small Memory

A variation of the considered problem was proposed in [109],where the robot is equipped
with few extra memory bits. We will denote the exploration periods in such a model by
πc. In [109] it is shown how to obtain an exploration periodπc(G) ≤ 4n− 2, regardless
of the starting vertex of the robot. The obtained bound has since been improved in [97]
to πc(G) < 3.75n − 2 by exploiting some particular graph properties, still allowing
only constant memory. The constant memory model was also addressed in [56] and the
bound was further improved toπc(G) < 3.5n−2 by using a combination of the proper-
ties from [97] and the new decomposition technique also usedin [97] for the oblivious
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case. Interestingly enough, apart from the relationπc(Gn) ≥ 2n−2 which clearly holds
wheneverGn is a tree onn nodes, there are to date no known non-trivial lower bounds
on the worst case value of parameterπc.

2.5 Exploration in network models augmented by
edge counters

The exploration of anonymous graphs can be accelerated by providing additional in-
formation to the agent at nodes of the environment. In the extreme case of graphs in
which nodes have unique identifiers available to the agent, but not known in advance,
one obtains an online graph exploration problem which has been studied in the con-
text of minimizing the time of first cover in terms of either the number of moves (edge
traversals) or the amount of memory used by the agent. Panaite and Pelc [151] gave
an algorithm for exploring labelled undirected graphs thatusesm + O(n) moves, im-
proving on the standard Depth-First Search algorithm that takes2m moves. Collabo-
rative versions of the same problem, employing multiple agents, have been considered
in [67, 92]. Deng and Papadimitrou [66] as well as Albers and Henzinger [2] studied
the exploration of strongly connected directed graphs under the same conditions. There
have also been some studies on the efficiency of exploration when some prior informa-
tion about the graph is available with the agent — for instance, when the agent possesses
an unlabelled isomorphic map of the graph [152]. For exploring arbitrary anonymous
graphs, various methods of marking nodes have been used by different authors. Bender
et al. [29] proposed the method of dropping a pebble on a node to markit and showed
that any strongly connected directed graph can be explored using just one pebble, if the
size of the graph is known and usingO(log logn) pebbles, otherwise. Dudeket al. [77]
used a set of distinct markers to explore unlabeled undirected graphs. Yet another ap-
proach, used by Bender and Slonim [30] was to employ two cooperating agents, one of
which would stand on a node, thus marking it, while the other explores new edges.

Herein, we focus on modifications to the anonymous graph model in which the agent
is guided at each node by a simple local rule, influenced by thehistory of the agent’s
exploration. Specifically, in alocal exploration strategythe next node to be visited
by the agent should depend only on the values of certain parameters associated with
the edges adjacent to the current node. Our main goal is to design local exploration
strategies which in some sense mimic the behavior of a randomwalk in a graph, in
an attempt to achieve the same properties of cover time and exploration fairness in the
deterministic sense of worst-case performance.

In Section 2.5.1 we consider the so-called rotor-router model, in which the agent
at each step exits the current node, using its outgoing portsin round-robin fashion.
Two other local strategies, known as Least-Used-First and Oldest-First are discussed in
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Section 2.5.2. These strategies make use of counters associated with edges, rather than
ports of the graph, and strive to preserve some form of fairness of use of edges during
exploration. The obtained results relating to the cover time of these strategies are briefly
summarized in Table 2.1.

2.5.1 The rotor-router model

The rotor-router mechanism was introduced as a deterministic alternative to the random
walk and studied in the context of a wide selection of networkproblems, including
work on load balancing problems in [53,76], graph exploration [1,91], and stabilisation
of distributed processes [32,155,175]. Therotor-router mechanismis represented by an
undirected anonymous graphG = (V,E). As in the previously considered anonymous
model, nodes inV bear no names, however, the endpoints of edges inE, calledports,
are arranged in acyclic orderat each node. For the purposes of the rotor router, no
explicit port numbers need to be defined; nevertheless, sucha port labeling. Instead,
each node is additionally equipped with apointer that indicates the current exit port to
be adopted by an agent on the conclusion of the next visit to this node. The rotor-router
mechanism guarantees that after each consecutive visit at anode its pointer is moved to
the next port in the cyclic order. The port labeling and the initial pointer assignment is
treated as part of the rotor-router mechanism, configured before the release of the agent.

In this section we consider the efficiency of graph exploration using the rotor-router
mechanism, hence, the most interesting questions for us arehow quickly the agent ex-
plores the whole graph, and then how evenly it keeps traversing the edges of the graph.
We then proceed to study the behavior of the rotor-router under modifications to the
topology of the graph. A comparative overview of the main properties of exploration
using the rotor-router and the random walk is provided in Table 2.2.

Definition of the rotor-router

We consider the rotor-router model (on graphG) with a single agent. The agent moves
in discrete steps from node to node along the arcs of graph~G = (V, ~E) which is the
directed symmetric version ofG, having the set of arcs~E = {(v, u), (u, v) : {v, u} ∈
E}.

A configurationat the current step is a triple

((ρv)v∈V , (πv)v∈V , r),

whereρv is a cyclic order of the arcs (in graph~G) outgoing from nodev, πv is an arc
outgoing from nodev, which is referred to asthe (current) port pointer at nodev, andr
is the current node– the node where the agent is at the current step.

For each nodev ∈ V , the cyclic orderρv of the arcs outgoing fromv is fixed at the
beginning of exploration and does not change in any way from step to step (unless an
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edge is dynamically added or deleted as discussed later on inthe Section). For the sake
of convenience, we will define the cyclic orderρv using the concept of an explicit port
assignment (labeling).

For an arc(v, u), let next(v, u) denote the arc next after arc(v, u) in the cyclic or-
derρv. During the current step, first the port pointerπr at the current noder is advanced
to the next arc outgoing fromr (that is,πr becomesnext(πr)), and then the agent moves
from noder traversing the arcπr.

The exploration starts from some initial configuration and then keeps running without
ever terminating. The initial configuration is uniquely defined through the port assign-
ment and an initial pointer assignment, defined as follows.

Definition 2.1. An initial pointer assignmentto the nodes of an undirected graphG =
(V,E) is a functionf : V → E, such that for allv ∈ V , f (v) ∈ EG(v).

Lock-in time of the rotor-router mechanism

Due to the limited number of configurations in a graphG of bounded size, it is intuitive
that a walk of the agent controlled by the rotor-router mechanism must be locked-in in
a loop eventually. Moreover, this loop must include all the vertices. We formulate this
in the form of the following lemma, attributed to folklore.

Lemma 2.16.The agent following the rotor-router visits each node infinitely many times
(thus traverses each arc infinitely many times).

Rather surprisingly, however, Priezzhevet al. [155] proved that an agent traversing
a finite graph gets locked-in to an Euler tour based on arcs obtained by replacing each
edge inG with two arcs having opposite directions. More precisely, after the initial
stabilisation (lock-in) period, the agent keeps repeating the same Eulerian cycle of the
directed graph~G. We will subsequently refer to the undirected links in graphG asedges
and to the directed links in graph~G asarcs. We will also keep using an arrow on the
top of a symbol, as in~G and ~E, to stress that we refer to directed graphs and arcs.

The result of Priezzhev at al. means that the rotor-router has a highly desirable prop-
erty of regularity of edge exploration: namely, after the lock-in period, each edge is
visited precisely once every2m steps. This is a much stronger property than the reg-
ularity achieved by the random walk, which visits every edgewith expected frequency
1/2m. Independently, Wagneret al. [167, 168] showed that, starting from an arbitrary
configuration (arbitrary cyclic orders of edges, arbitraryinitial values of the port point-
ers and an arbitrary starting node) the agent covers all edges of the graph withinO(nm)
steps, wheren andm are the number of nodes and the number of edges in the graph. In
other words, the cover time of the rotor-router is deterministically bounded byO(nm),
matching the (expected value of the) cover time achieved by the random walk (cf. The-
orem 2.1).
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Bhattet al. [32] strengthened and combined the earlier results of Priezzhevet al.and
Wagneret al., showing that withinO(nm) steps the agent not only covers all edges but
already locks in to the traversal of its eventual Eulerian tour. This result was improved
by Yanovskiet al. [175] who showed that the agent locks in to an Eulerian cycle within
2mD steps.

Theorem 2.17([175]). For any graphG, any cyclic orderρv of the arcs outgoing from
each nodev ∈ V , and any initial values of the port pointersπv, v ∈ V , there exists a
time stept0 ≤ 2mD such that from stept0 + 1, the agent keeps repeating the same
Eulerian cycle of graph~G.

ThisO(mD) bound on the lock-in time of the rotor router also corresponds asymp-
totically to the time required for the rotor-router to visitall nodes of the graph. Thus, it
can be seen as a counterpart of theO(mD) bound on the cover time of a random walk
(cf. Theorem 2.1).

A simple proof of the lock-in bound of Yanovskiet al.is achieved by studying the
saturation of subsequent nodes in the initial phases of the walk. We say that a node
becomessaturatedwhen all its incident edges are traversed in both directionsfor the
first time. Note that when a node becomes saturated, its pointer returns to the initial
position for the first time. A slightly stronger version of this claim is given below.

Lemma 2.18([175, T3]). If in the current stepi the agent leaves the current noder
along an arc(r, y), then the first arc traversed for the second time during the period
i, i+ 1, . . . , is this arc(r, y).

The following lemma provides a characterization of the behavior of the rotor-router
system during its first exploration of the graph, before its eventual lock-in into an Eule-
rian traversal.

Lemma 2.19 ([32]). Let G = (V,E) be a graph with a starting nodes ∈ V , an
assignment of ports and pointers. The Euler tour lock-in inG is performed in phases
{Pi}i≥1. Each phase starts when the mobile agent leavess via edgef (s) indicated
by the initial assignment of pointers and continues until the agent traverses all edges
incident tos in both directions. The following properties hold:

• While the agent is visiting nodes saturated in some earlier phase, it retraces the
route of phasePi−1.

• If the agent encounters a nodeu that has been visited but not saturated in an
earlier phase, it suspends the retracing of the tour of phasePi−1. A new tour
starts atu and ends there. Nodeu is now saturated. The tour of phasePi−1 is
resumed (via portf (s)).

• Every edge is traversed at most once in each direction duringeach phase.
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Eventually all nodes inG get saturated. In other words, there exists an integerj ≥ 1,
such that, starting from the phasePj the agent adopts the same (Euler) tour inG.

One can conclude from Lemma 2.19 that during each phasePi the agent gets locked
in a subgraphGi of G where:

1. G0 contains a single nodes;

2. eachGi is a subgraph ofGi+1;

3. all edges ofG that are incident to nodes ofGi belong to the edge set ofGi+1.

Since the number of edges in eachGi is bounded bym, theO(mD) bound on lock-in
time follows.

We also remark that Lemma 2.19 implies that, if in some phasei of its exploration
the agent has covered all of the nodes of the graph, thenGi = G. It follows that the
agent will lock in to its Eulerian traversal within2m steps from the moment when it has
covered all nodes.

Proposition 2.20. The difference between the cover time and the lock-in time ofthe
rotor-router system is at most2m.

Subsequently, we will consider an asymptotic analysis of the lock-in time of the rotor-
router, noting that this is equivalent (up to constants hidden in notation) to its cover time.

The Euler tour lock-in problem against an adversary

In this section we examine the influence of the initial configuration of pointers and port
numbers on the time needed to lock-in the agent in an Euler tour. The case study is
performed in the form of a competition between aplayerP intending to lock-in the
agent in an Euler tour as quickly as possible and itsadversaryA having the counter
objective. We assume that both the playerP and its adversaryA have unlimited com-
putational power, i.e., we do not take into account the cost of computation of the initial
configuration of ports and pointers to be adopted byP andA. The results of our studies
are asymptotically tight in terms of the worst-case choice of the graph topology and the
initial location of the agent.

We start our analysis with border cases. In the caseP-all where the playerP is in
charge of the initial arrangement of port numbers and pointers we observe that the lock-
in in an Euler tour can be obtained in timeO(m).Also the caseA(�)P(f ), whereP sets
the pointers after the port numbers are assigned byA, reduces to the border case where
P is solely in charge of the initial configuration. On the otherhand, in the caseA-all
where the adversaryA solely decides about the initial configuration, we show in [T3]
that in any graph withm edges and diameterD the adversaryA is able to enforce the
lower boundΩ(m · D) for the lock-in matching the upper bound from [175].
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Theorem 2.21([T3]). For any graphG = (V,E) there exists a starting nodes, and a
port and pointer assignment inG, s.t., the lock-in requires time at least1

4
·mD .

The lock-in of the rotor-router occurs shortly after all of the nodes have been discov-
ered. In view of this, we obtain that for any graphG, the worst-case cover time of the
rotor-router isΘ(mD).

In view of the above result, it is natural to ask which capability of the adversary
contributes more to increasing the lock-in time of the rotor-router: that of setting ports
in the graph, or the initial locations of the pointers? In [T3], we establish that for worst-
case graphs, control over the initial pointers is more important. Indeed, in the case
A(f )P(�), whereP responds by appropriate port assignment to the initial setup of
pointers byA, we show that there exist graphs for which the lock-in still requires time
Ω(m ·D). For anym andD, D ≤ m, letGm,D denote the class of graphs with diameter
betweenD and4D and a number of edges betweenm and4m.

Theorem 2.22([T3]). For anym andD ≤ m, there is a graphG = (V,E) in Gm,D

with starting nodes, and a pointer assignment, s.t. for any port assignment the lock-in
time (and cover time) is at leastΩ(mD).

At the same time, we present a non-trivial class of graphs with an arbitrarily large
diameter in which an appropriate choice of port numbers leads to the lock-in in time
O(m).

In the caseP(�)A(f ) whereA sets the pointers after the assignment of ports is
revealed byP, the lower bound ofΩ(m · D) for the lock-in time follows directly from
the previous case. Also, here we propose a non-trivial classof graphs, this time with an
arbitrary diameterD ≤ √n, in which the lock-in is feasible in timeO(m).

On the other hand, we show that if the initial setup of pointers is performed byP, and
A provides its own port numbering for the graph afterwards (caseP(f )A(�)), then the
complexity of the lock-in problem is bounded byO(m ·min{logm,D}).

Theorem 2.23([T3]). For any graphG = (V,E) in Gm,D and any starting points there
exists a pointer assignment, s.t. for any port assignment the lock-in (and covering of the
graph) can be obtained in timeO(m ·min{logm,D}).

We also propose a respective class of graphs in which the lock-in requires timeΩ(m ·
min{logm,D}). At the same time we point out that, e.g., in Hamiltonian graphs the
lock-in is obtained in timeO(m).

Our results are summarised in Table 2.3.

Robustness of the rotor-router mechanism

A useful property of graph exploration based on the rotor-router mechanism is its ro-
bustness. In case of link failures or other dynamic changes in the graph, after some
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TABLE 2.3: Minimum and maximum values of the lock-in time (and cover time) of the rotor-
router for different adversarial scenarios.

Scenario Worst case Best case

CaseP-all Θ(m) Θ(m)
CaseA(�)P(f ) Θ(m) Θ(m)
CaseP(f )A(�) Θ(m ·min{logm,D}) Θ(m)
CaseA(f )P(�) Θ(m · D) Θ(m)
CaseP(�)A(f ) Θ(m · D) Θ(m) for all D ≤ √n

CaseA-all Θ(m · D) Θ(m · D)

additional stabilisation period the agent goes back into the regime of repeatedly travers-
ing the graph along a (new) Eulerian cycle. We know that whatever the changes in the
graph are, the length of that additional stabilisation period isO(mD) (by Theorem 2.17,
that much time is sufficient for establishing an Eulerian cycle from any initial configu-
ration) but no better bounds have been shown before.

In this section we establish bounds on the length of that additional stabilisation period
which depend on the extent of the failures or changes in the graph. The subsequent
analysis of the rotor-router mechanism is based on the relation between the Eulerian
cycles in the directed graph~G and the spanning trees in the undirected graphG which
underlies the following theorem. This theorem, sometimes referred to as the “BEST”
Theorem, was discovered by deBruijn and van Aardenne-Ehrenfest [65] on the basis of
earlier work bySmith andTutte [166].

Theorem 2.24(Bruijn, van Aardenne-Ehrenfest, Smith, Tutte).
The number of Eulerian cycles in the directed, symmetric version of an undirected con-
nected graphG = (V,E) is equal to

∏
v∈V (d(v) − 1)! times the number of spanning

trees ofG, whered(v) is the degree of nodev in G.

We now describe the connection between Eulerian cycles and spanning trees in the
context of the rotor-router mechanism.

If T is a tree in graphG (not necessarily spanning all nodes ofG), then ~T obtained
from T by directing all edges towards a selected nodev in T is called anin-bound tree
in ~G, and nodev is the root of~T . A subset of arcs~H in ~G is an in-bound tree with a
root cycle, if it is an in-bound tree with one additional arc outgoing from the root. That
additional arc creates a (directed) cycle, which we call a root cycle. We can view~H as
consisting of one cycle (the root cycle) and a number of in-bound node-disjoint trees
rooted at nodes of this cycle (no node of such a tree other thanthe root belongs to the
root cycle).

Let ~F = {πv : v ∈ V } be the set of the current port pointers. For the current noder,
we are interested in the structure of~Fr = ~F \{πr}, since, as we show later, the structure
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FIGURE 2.3: Left: the leading tree spanning all nodes of the graph (arcs in bold). Right: the
corresponding Eulerian cycle, assuming the anti-clockwise order of arcs outgoing from
a node (other cycles are obtained for other cyclic orders of arcs).

of ~Fr is a good indicator of how far the agent is from entering an Eulerian cycle. The
component of~Fr containing the current noder is anin-bound treerooted atr, which we
call the leading tree. Each component~H of ~Fr other than the leading tree is anin-bound
tree with a root cycle.

The following Lemma shows that the condition that the agent follows an Eulerian
cycle and the condition that the leading tree spans all nodesof the graph are equivalent.

Lemma 2.25 ([T4]). Assume that the current leading tree~T spans all nodes of the
graph. Then during the next2m steps the agent traverses an Eulerian cycle in~G.
Moreover, the leading tree after these2m steps is again the same tree~T .

Conversely, assume that at the current stepi the leading tree~T does not span all
nodes of the graph. Then the route~Γ traversed by the agent during the next2m steps is
not an Eulerian cycle.

Figure 2.3 illustrates Lemma 2.25. The diagram on the left shows a graph and the
current leading tree (arcs in bold) which spans all nodes. The current noder is the root
of this tree. The diagram on the right shows the Eulerian cycle followed by the agent.
We assume that the cyclic order of the arcs outgoing from a node is the anti-clockwise
order, and that arc(r, x) is the current value of the port pointerπr. Thus, the first arc
followed by the agent is arc(r, y) = next(r, x).

The above Lemma implies, in particular, that the Euler tour lock-in timeτ for a given
initialization of the rotor-router and the timet0 required to cover all the arcs of the graph
satisfyτ ≤ t0 ≤ τ + 2m.

As a side note, we remark that the operation of the rotor-router mechanism can be
used to prove Theorem 2.24. We fix a noder as the current node and an arc(r, x) as
the current value of the port pointerπr (the agent will follow in the current step arc
next(r, x)). Let ~T be an arbitrary in-bound spanning tree of~G rooted at noder, and let
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FIGURE 2.4: Left: the current step, when nodev is outside the leading tree. Right: the next
step, when the agent visits an ancestoru of v andv enters the leading tree.

ρv be an arbitrary cyclic order of the arcs in~G outgoing fromv. Lemma 2.25 assigns
to the pair(~T , (ρv)v∈V ) the Eulerian cycle of~G which is followed by the agent starting
from the configuration((ρv)v∈V , ~T ∪{πr}, r), that is, starting with~T as the leading tree.
It is easy to verify that the cycles~Γ′ and~Γ′′ assigned to two distinct pairs(~T ′, (ρ′v)v∈V )

and(~T ′′, (ρ′′v)v∈V ) are distinct. Conversely, one can also show that each Eulerian cycle
of graph ~G corresponds to some pair(~T , (ρv)v∈V ). This one-to-one correspondence
between the Eulerian cycles in~G and the pairs(~T , (ρv)v∈V ), where~T is an in-bound
spanning tree of~G rooted at noder andρv is a cyclic order of the arcs in~G outgoing
from v, gives a one-to-one correspondence between the Eulerian cycles in ~G and the
pairs(T, (ρv)v∈V ), whereT is a spanning tree inG: identify an in-bound spanning tree
of ~G rooted at noder with the spanning tree ofG obtained from~T by disregarding the
directions of arcs. For a nodev ∈ V , there are(d(v)− 1)! distinct cyclic ordersρv, so
the number of Eulerian cycles in~G is equal to

∏
v∈V (d(v) − 1)! times the number of

spanning trees ofG, showing that Theorem 2.24 holds.
We now give bounds on the length of the additional stabilisation period after some

failures or changes in the graph have occurred. To achieve this, we characterize the
change to the leading tree after the change of the topology ofthe graph.

With respect to the set of port pointers~Fr = ~F \ {πr}, wherer is the current node, a
nodev is anancestorof a nodeu if, and only if, the path in~Fr starting fromv passes
throughu. If a nodev belongs to the leading tree~T , then the ancestors ofv are all the
nodes on the path in~T from v to the rootr, including bothv andr.

One can observe [T4] that if a nodev belongs to the current leading tree, then it
remains in the leading tree in all subsequent steps. On the other hand, ifv is a node
which is not in the current leading tree, thenv enters the leading tree at the first step
when the agent visits an ancestor ofv, cf. Figure 2.4.

The above observations can be used to show the following theorem.
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Theorem 2.26([T4]). If the distance from a nodev to the current noder is equal tok,
then nodev enters the leading tree within2km steps.

We now consider several model of faults or changes in the graph for the rotor-router
system. First, a faulty change of the value of the port pointer πv at a nodev might occur
when something unexpected makes the node believe thatπv should be re-set to some
default value. Next, we assume that when a new edge{u, v} is added, it is inserted
in arbitrary places in the existing cyclic orders of edges adjacent to nodesu and v,
but otherwise those cyclic orders remain as they were before. Similarly, when an edge
{u, v} is deleted, the cyclic orders of the remaining edges adjacent to nodesu andv
remain as they were. On both addition and deletion of an edge{v, u}, we allow an
arbitrary change of the value of the port pointers at nodes{v, u}. A concrete system
would specify some default updates for the port pointers on insertion or deletion of an
edge, but we do not want to make any assumptions about those defaults.

The behavior of the rotor-router in all of the above events, involving pointer changes,
edge addition, or removal, can be easily characterized taking into account Theorem 2.26.

Theorem 2.27([T4]). Suppose that a rotor-router operating in the graph has already
locked-in into a traversal of an Eulerian cycle.

(i) Faults in port pointers. If at some step the values ofk pointersπv are changed to
arbitrary edges (that is, the value ofπv is changed to an arbitrary edge adjacent to
nodev), then a new Eulerian cycle is established withinO(mmin{k,D}) steps.

(ii) Addition of new edges. If at some stepk edges are added to the graph, then a
new Eulerian cycle is established withinO(mmin{k,D}) steps.

(iii) Deletion of an edge.If at some step an edge is deleted from the graph but the
graph remains connected, then a new Eulerian cycle is established withinO(γm)
steps, whereγ is the smallest number of edges in a cycle in graphG containing
the deleted edge.

Regarding theO(γm) bound for the case of deleting an edge, we remark that there are
non-trivial classes of graphs (e.g., random graphs) in which each edge belongs to a short
cycle. For such graphs parameterγ is small and our bound implies that the additional
stabilisation period is short.

The bounds which appear in Theorem 2.27 are all asymptotically tight in the worst
case. Indeed, for some values of parameterss andd, the considered bounds may be
obtained for the lollipop graphGs,d, obtained by merging a vertexr of the cliqueKs

with an end-vertex of the pathPd (cf. Fig. 2.5a). Let the agent be located at vertexr
after the stabilization of the rotor-router. Whenk port pointers are altered at internal
nodes of pathPd (k < d), the rotor-router will only stabilize once more to an Eulerian
cycle after visiting each of the edges of the clique at leastk times. Hence, for any
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FIGURE 2.5: Worst-case examples for the stabilization period of the rotor-router after changes
to the graph: (a) modification ofk port pointers, (b) addition ofk edges, (c) removal of
a single edgee.

feasible set of parametersn, m, k, D there exists a graph of orderΘ(n), havingΘ(m)
edges and diameterΘ(D), such that restoring the stable state of the rotor-router after
a modification tok port pointers requiresΩ(mmin{k,D}) steps. Thus, the bound in
Theorem 2.27 is asymptotically tight. Likewise, by the construction shown in Fig. 2.5b,
we obtain a lower bound ofΩ(mmin{k,D}) steps for the stabilization period after
addingk new edges to the graph, asymptotically matching the bound inTheorem 2.27.
(Note that the addition of edges to the graph may by assumption result in modifications
to pointer arrangements at the endpoints of added edges). Finally, Fig. 2.5c provides an
example of a scenario in which removing a single edge leads toa stabilization period of
Ω(γm), asymptotically matching the bound in Theorem 2.27.

Applicability of the rotor-router in network exploration

The properties of the rotor-router are highly dependent on the amount of control over
the mechanism, and especially the initial placement of the pointer. In all cases where
the network designer is responsible for pointer assignmentthe complexity of the lock-in
problem is either linear or close to linear. However, such aninitialization of the mecha-
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nism requires the application of an algorithm which is centralized, even if efficient.
A rotor-router with no centralized initialization also performs reasonably in compar-

ison to the random walk. Assuming a worst-case port and pointer arrangement (i.e., in
theA-all scenario), for any graph, the lock-in time and the edge covertime of the rotor
router are in the range[1

4
mD , 2mD ], as characterized by Theorems 2.21 and 2.17, re-

spectively. An edge cover time ofΘ(mD) for the rotor-router compares interestingly
to the expected edge cover time of a graph when using random walk, which can be
bounded asO(mD logm) (Theorem 2.1). Whereas our bound for the rotor-router is
tight for any graph, the bound for random walks is not. Indeed, a 2-dimensional grid
on
√
n × √n has a worst-case edge cover time ofΘ(n3/2) using the rotor router, and

an expected edge cover time ofΘ(n log2 n) using the random walk. At the other ex-
treme, the rotor-router may have a lower edge cover time thanthat of the random walk.
This is the case, for example, for the class of stars or the class of complete binary trees.
The deterministic nature of the cover by the rotor-router isan important advantage with
respect to the random walk.

We have also presented an asymptotically-tight evaluationof the robustness of the
graph exploration based on the rotor-router mechanism. Theanalysis in this section can
be applied to other possible models of faults and dynamic changes in the graph. For
example, one may observe as a simple corollary of the analysis that the rotor-router
mechanism tolerates spontaneous changes of the cyclic orders of the edges. More pre-
cisely, if at some step after the stabilisation period the cyclic orders of edges change
in any way but the port pointers remain the same (that is, theypoint to the same edges
as before), then the agent immediately enters a new Euleriancycle (no need for any
additional stabilisation period).

Further challenging questions arise with introduction of multiple agents to the rotor-
router model. If we have many agents, then there are still interesting open questions
left regarding the stabilisation and periodicity of exploration even in the static case (no
faults, no dynamic changes of the graph). This question is given more attention in the
last chapter of the monograph.

2.5.2 Equitable local exploration with edge counters

The exploration strategies studied in this section are designed so that the next edge in
the agent’s walk is chosen using only local information, andso that some local equity
(fairness) criterion is satisfied for the adjacent undirected edges. Such strategies can be
seen as an attempt to derandomize random walks, and are natural undirected counter-
parts of the rotor-router model, in which counters (or pointers) are associated with ports
rather than edges.

The goal of achieving a traversal which visits all edges of the graph regularly gives
rise tolocally equitable strategies, i.e. strategies, in which at each step the robot chooses
from among the adjacent edges the edge which is in some sense the “poorest”, in an
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effort to make the traversal fair. In this context, the following two natural notions of
equity may be defined:

• An exploration is said to follow theOldest-First(OF) strategy if it directs the
robot to an unexplored neighboring edge, if one exists, and otherwise to the neigh-
boring edge for which the most time has elapsed since its lasttraversal, i.e. the
edge which has waited the longest.

• An exploration is said to follow theLeast-Used-First(LUF) strategy if it directs
the robot to a neighboring edge which has so far been visited by the robot the
smallest number of times.

We remark that if the considered graph were to besymmetric and directed, and the
above definitions were to be applied to directed edges (or equivalently, to the ports
next to each node), then the Oldest-First notion of equity isprecisely equivalent to the
rotor-router model described in the previous chapter. Indeed, in the rotor-router, the
next port to be traversed is always the one which has not been used for the longest
time by the definition of the model. By a similar argument, onecan conclude [175]
that the directed Oldest-First strategy is strictly stronger than Least-Used-First, i.e. any
exploration which follows theOF strategy is a special case ofLUF strategy (note that
LUF does not specify a tie-breaking mechanism for the case when several adjacent
edges have been visited by the agent the same number of times). They also explore
the whole graph quickly and visit all edges with the same frequency in expectation.
The rotor-router stabilizes quickly to a Eulerian traversal, whereas the directed Least-
Used-First exploration need not in general stabilize to such a traversal, but it retains the
property that for any time moment, the number of visits to anytwo edges outgoing from
the same vertex can differ by at most1 [122, 123]. This property immediately implies
that for symmetric directed graphs, any execution of Least-Used-First has a cover time
of O(mD), and also visits all directed edges with the same frequency.

In this section, we look at the Oldest-First and Least-Used-First strategies when ap-
plied to theundirectededges of a graph. For this case, the results, and the used tech-
niques, turn out to be surprisingly different. We show that there exist graphs for which
the undirected Oldest-First strategyalwaysperforms badly, whereas any execution of
Least-Used-First achieves a cover time ofO(mD), and visits all edges with the same
frequency.

The Oldest-First strategy

Whereas the rotor-router model leads to explorations whichtraverse directed edges with
equal frequency, and have a cover time bounded byO(mD), this is not the case for
Oldest-First explorations in undirected graphs. Indeed, we show that in some classes
of undirected graphs, any exploration which follows the Oldest-First strategy is unfair,
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FIGURE 2.6: The graphGn.

with an exponentially large ratio of visits between the mostoften and least often visited
edges (Theorem 2.28).

Theorem 2.28([T5]). There exists a family of graphs(Gn)n≥1 of orderΘ(n), such that
for each graphGn in this family, some two of its edgese ande′ satisfy fe(Gn)

f
e′ (Gn)

= (3
2
)n

with fe′(Gn) 6= 0, for any exploration following theOF strategy.

A class of graphs for whichOF performs badly is presented in Figure 2.6. It is
composed of a sequence of7-node graphs connected into a chainv

(k)
j , for anyj ∈ [1, 7]

andk ∈ [1, n]. The proof relies on the observation that the edges of each subsequent
subgraph in the chain are eventually visited a factor of3

2
times less often than those of

its predecessor in the chain [T5].
From the above, it follows that there exist explorations following the Oldest-First

strategy which have exponential cover time of2Ω(n) in some graph classes.

Theorem 2.29([T5]). There exists a family of graphs(Gn)n≥1 of orderΘ(n), such that
for each graphGn in this family, some exploration following theOF strategy has a
cover time of2Ω(n).

The Least-Used-First strategy

In contrast to the case of directed graphs, in undirected graphs the Least-Used-First
(LUF) strategy turns out to be fundamentally better than the Oldest-First strategy. In
fact, we show that any exploration of an undirected graph which follows the Least-
Used-First strategy is fair, achieving uniform distribution of visits to all edges.

Lemma 2.30([T5]). For any moment of timet during the execution ofLUF and any
two edgese1, e2 which share a vertex, the number of times the agent traversededgese1
ande2 until timet differs by at most3.

The above lemma can be extended to any pair of not necessarilyadjacent edges of the
graph, showing that the difference in the number of traversals between any pair of edges
is at most3(D +1). We conclude that in the limit, all edges of the graph are explored
with the same frequency.

Theorem 2.31([T5]). For any graph, any exploration followingLUF achieves uniform
frequency on all edges,fe(G) = 1/m.
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FIGURE 2.7: Worst-case example forLUF: a clique connected to a chain of4-cycles.

Moreover, since there cannot exist an edge in the graph with atraversal count of more
than3(D +1) when some other edge has not been visited, it follows from Lemma 2.30
that any exploration of an undirected graph usingLUF achieves a cover time ofO(mD).
The bound given below follows from a slightly tighter analysis of the process.

Theorem 2.32([T5]). For any graph, the cover time achieved by anyLUF exploration
is at most2m(D +1).

Moreover, this result can be extended to the case where some of the traversal counts
initially take non-zero values, potentially due to faults of the system. Then, the cover
time is bounded byO((n+p)m), wherep is the maximal value of a counter in the initial
state [T5].

The cover time of theLUF strategy depends on how ties are broken when choosing
among edges which have been traversed the same number of times. Indeed, for any
undirected graph, there exists an exploration following the Least-Used-First strategy
which is essentially the best possible, i.e., periodic withan exploration period of exactly
2m [T5]. On the other hand, one can also find graph classes for which certain initializa-
tions require a cover time which asymptotically matches thebound from Theorem 2.32.

Theorem 2.33([T5]). For sufficiently largen, for anym ∈ [n − 1, n(n − 1)/2] and
D ≤ n, the worst-case cover time of theLUF strategy in the family of graphs of at most
n nodes, at mostm edges, and diameter at mostD , isΩ(mD).

A worst-case example forLUF-exploration is shown in Figure 2.7. It consists of
a chain of 4-node cycles, connected at one of the extremitiesof the chain a complete
graph. The structure of this example resembles examples of worst-case instances for the
cover time of the random walk in graphs.

Other measures of equity

We have shown that locally fair strategies in undirected graphs can mimic the properties
of random walks, allowing us to obtain an exploration which is fair with respect to all
edges, and efficient in terms of cover time. However, the fairness criterion for edges has
to be chosen much more carefully than fairness for pointers:undirected Least-Used-
First works well, but Oldest-First does not.
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Strategies with local equity criteria have also been studied in the token circulation
literature, in the context of strategies which are locally fair to vertices rather than edges.
Two such strategies, named LF and LR, were proposed and analyzed in [141]. In the
first of these, LF, the next vertex to be visited is always chosen as the least-often visited
neighbor of the current vertex. In the second, LR, the next vertex to be visited is the
neighbor which has not been visited for the longest time. Theauthors of [141] show
that both of these strategies eventually visit all vertices, but in general do not satisfy
any fairness criteria. Indeed, the time between successivevisits to a vertex may be
exponential in the order of the graph for LR, and unbounded for LF. In this sense, the
results of [141] may be contrasted with our results for theLUF strategy.

In future work it would be interesting to study modified notions of equity, which are
inspired by random walks which select the next edge to be traversed with non-uniform
probability. For example, after biasing the probability distribution of the random walk to
reflect the degrees of the nearest neighbors of the current node, Metropolis-type walks
achieve a cover time ofO(n2 logn) steps in expectation. It is an open problem to de-
fine a reasonable local exploration strategy which could achieve such cover time in a
deterministic sense.





3 Map construction in anonymous
networks

The task of identifying the topology of the network graph is one which is not easier than
graph exploration. Indeed, in order to be able to identify the structure of the network,
the agent needs (in general) to explore all or almost all of its nodes. On the other hand,
simply performing a sequence of moves which guarantees thatall the the nodes (or
edges) of the network are visited, need not provide the agentwith sufficient information
to identify the graph forming the network. When a bound on thenumber of nodesn
of the network is known, the exploration task may always be performed in polynomial
time by following a universal exploration table (Section 2.3). By contrast, it turns out
that there exists scenarios in which an agent moving around an anonymous network
canneveruniquely identify the network it is operating in, even with knowledge of the
number of nodesn and given unbounded time and unlimited computational resources.
There exist examples of distinct anonymous graphs with distinguished starting nodes
such that identical agents operating in these two graphs will always be located at indis-
tinguishable nodes, and hence will always find themselves inthe same memory state,
i.e., unable to tell between the two graphs. This general-case impossibility result, first
observed in [35, 172], is an indication of the difficulties observed in anonymous net-
works in comparison to scenarios in which all nodes have unique identifiers known to
the agents. More broadly, efficient symmetry breaking is oneof the fundamental areas
of study in distributed computing with anonymous nodes. Starting with the seminal pa-
per [19], various computational tasks for processors in anonymous networks have been
studied in the literature (cf. e.g. [21, 34, 133]), including leader election or computing
Boolean functions.

In this chapter we address the following question: How should an agent move around
an unknown anonymous network, so as to obtain as much information as possible about
its topology? Whereas we know that discovering the topologyof the network com-
pletely may be impossible, the set of all topological information which the agent can
discover in some sense defines the computational capabilities of the agent: a parameter
or property of the network can only be computed by the agent ifand only if it is a func-
tion of the “map” of the host network which the agent can construct.∗ The ability of the

∗Cf. Section 1.3 for a discussion of various aspects of computability with mobile agents in an anonymous
network, or [[46] Chapter 8] for a more formal characterization of the case of a single agent.
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agent to construct such a partial map also forms the basis of algorithms for coordination
problems, such as leader election or rendezvous, which we discuss in more details in
Chapter 4.

As in the previous Chapter, we will focus on the complexity ofmap construction in
terms of the required computational capabilities of the agent: its available state memory,
number of required rounds, etc. We start by introducing in Section 3.1 the necessary
concepts related to map construction in undirected anonymous graphs, namely those of
the view and the quotient graph. (For a more complete mathematical background on
the topic, including concepts of universal covers, port-preserving isomorphisms, and
fibrations of directed graphs, we refer the interested reader to [35,36].)

TABLE 3.1: Comparison of map construction algorithms inn-node anonymous networks of
maximum degreed. The log-space algorithm marked with (*) is only capable of storing
a single cell of the adjacency matrix of the quotient graph inthe agent’s memory, but
may write the entire adjacency matrix to an auxiliary outputtape.

Algorithm Memory Time (steps) Reference

Identification with UXS O(nd logn) O(n6d2 log n) Sec. 3.2, [T6,T7]
Equivalence class refinement O(n3 log n) O(n5d2 log2 n) Sec. 3.3, [T6]
Log-space UXS comparison * O(logn) polynomial Sec. 3.4, [T6,T7]

The complexity of map construction in anonymous graphs is studied for a mobile
agent that is not allowed to write on the nodes of the graph. Note that if the agent is
allowed to somehow mark the nodes that it visits (such that itcan recognize them on
future visits), then a simple depth-first search suffices to solve the problem. When the
agents do not have the capability to mark nodes it is sometimes difficult to solve the
map construction problem.

3.1 Network maps: The view and the quotient
graph

Consider a port-labeled anonymous networkG, in which the agent starts from a home-
base nodev. We introduce the notion of a map as follows: We will call a mathematical
objectM a mapfor (G, v) under decoding functionf , if there exists a functionf such
that for any deterministic agentA, f(M,A, t) describes the memory state ofA after t
steps onG, when starting from nodev. In other words, a map of(G, v) has to capture
all the information about the structure ofG which can be obtained during a traversal of
the graph by an agent starting at a given nodev. Whenever the decoding of the map
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is clear from the context, we will simply say that the considered objectM is a map,
without specifying the decoding. By virtue of the definition, the pair(G, v) is a map of
itself, but this trivial map is of little interest since it cannot be constructed by an agent
deployed in the networkG.

A fundamental construction of a map which encodes only information which is ac-
cessible to the agent was introduced in [172] under the name of the viewfrom the node
at which the agent is currently located. LetG be a graph andv a node ofG, of degree
k. The view from v is then the infinite directed rooted treeV (v) with labeled ports,
defined recursively as follows.V (G, v) has the rootx0 corresponding tov. For every
nodevi, i = 1, . . . , k, adjacent tov, there is an out-neighborxi in V (G, v) such that
the port number atv corresponding to edge{v, vi} is the same as the port number at
x0 corresponding to the arc(x0, xi), and the port number atvi corresponding to edge
{v, vi} is the same as the port number atxi corresponding to arc(x0, xi). Each node
xi, for i = 1, . . . , k, is now the root of the view fromvi. For any sequence of moves of
the agent in graphG starting atv, there exists a directed path in the treeV (G, v), start-
ing from its root and having a corresponding port labeling. The intuition that the view
precisely encodes all the useful information that an agent may discover in the graph is
captured by the following proposition.

Proposition 3.1. The viewV (G, v) is a map of(G, v). Conversely, given any mapM
under a known decoding function, the corresponding viewV (G, v) is uniquely deter-
mined.

From the perspective of computations, the view is a purely theoretical object, since
it has infinite size. A more computationally-friendly map isobtained as follows. By
V

t(G, v) we denote the viewV (G, v) truncated to deptht from its root. One can ask,
what is the minimum value oft such that for any pair of nodesv1, v2 in n-node graphs
G1, G2, V (G1, v1) = V (G2, v2), if and only if V t(G1, v1) = V

t(G2, v2)? This value
of t was first bounded ast ≤ n2 in [172], and then the precise worst-case bound of
t = n − 1 was established by Norris [148].∗ More recently, another bound of the
form t ≤ (D +1)(log2 n + 1) has been established by Hendrickx [105] for the case of
graphs of diameter at mostD .† Combining the state-of-the-art, we obtain the following
theorem.

Theorem 3.2. The truncated viewV t(G, v) is a map of(G, v), for any integert ≥
min{n− 1, (D +1)(log2 n+ 1)}.

The truncated viewV t(G, v) is a computationally tangible resource and it can be
constructed by an agent operating in the graphG, starting from nodev. The agent simply

∗The cited results on the equality of views are shown for the case of distinct starting nodesv1 6= v2 in a
single networkG = G1 = G2, but their proofs hold without change for distinct graphsG1, G2.

†In current work in progress [68], we show this result to be asymptotically tight.
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traverses all possible routes in the graph of length at mostt, described by sequences of
port numbers of length at mostt, each time recording the corresponding arcs of the view
and returning to the starting node by retracing its steps. Toobtain a map of the graph in
this way, the agent may need to traverse all routes of lengtht = n − 1, building a tree
with O(dn) nodes inO(dn) steps, for a graph of maximum degree∆ and given a bound
n on the order of the graph. It is natural to look for more compact and more efficiently
constructible representations of the view.

As mentioned before, the view is not unique to a specific node of a specific anony-
mous graph: there can exist different anonymous graphs withvertices having the same
view, and even multiple vertices in the same anonymous graph, having the same view.
However, it turns out that for any pair(G, v), there exists a unique smallest graphH
with a distinguished vertexv′ which is indistinguishable fromG in terms of the agent’s
views, i.e.,V (G, v) = V (H, v′). Such a graphH is known as the quotient graph of
G [172] and is defined by the following construction.

For a given connected graphG with a fixed port-labeling, we introduce the following
equivalence relation: if two nodes have identical views, then these nodes are said to
be equivalent to each other. In this way, we partitionV (G) into a set of equivalence
classesVH = {V1, . . . , Vl}. We define thequotient graphH of G as the port-labelled
multigraph having node setVH , with porti at nodeVi leading to nodeVj inH if and only
if for some nodesvi ∈ Vi, vj ∈ Vj port i at nodevi leads to nodevj in G. The mapping
between graphsG andH is a port-preserving graph homomorphism. An illustration of
the definition of views and quotient graphs is provided in Figure 3.1. It is interesting
to observe that all the equivalence classes of nodes ofG with respect to view have the
same cardinality, i.e.,|Vi| = n/l [172].

Since for a vertexvi belong to equivalence classVi we haveV (G, vi) = V (H, Vi), it
follows that the quotient graph encodes all the informationabout the view.

Theorem 3.3.The quotient graph ofG, with a distinguished node corresponding to the
equivalence class ofv, is a map for(G, v).

The quotient graph can be seen as the most compact form of a mapof an anonymous
network that the agent may construct. As we will see in the next section, the quotient
graph of any anonymous network of known size can be computed in polynomial time,
and the existence of particular edges of the quotient graph can even be tested for in
logarithmic space.

3.2 Constructing a map using universal
sequences

We recall that Universal Exploration Sequences (UXS-s), discussed in Section 2.3, al-
lowed us to visit all the nodes of any anonymous network, up toa given boundn on
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FIGURE 3.1: (a) An exemplary graph containing two agents initiallylocated at the marked
nodes. The view of each agent is shown in (b) while the quotient graph is shown in
(c).

the number of nodes. Such universal sequences also allowed back-tracking, meaning
that it was possible to come back to the starting location. Inthe course of traversing a
(n, d)-UXS, the agent visited a sequence of nodes, observing the degrees of the visited
nodes and the port numbers at the endpoints of the visited edges. It is tempting to ask
whether the information collected by the agent, when traversing a UXS, is sufficient for
it to compute the viewV (G, v) from its homebasev?

Formally, let Y = (a1, . . . , aM) be a UXS, and let(u0, . . . , uM) be its applica-
tion starting from a nodev = u0 in G. The signatureS of nodev is defined as
the sequence of edge labels which are traversed by an application of the UXS atv:
S(G, v) = (lab(u0, u1), . . . , lab(uM , uM+1)).

The results in [T6, T7] provide a constructive criterion fordistinguishing the views
of two vertices of a graphG based on the signatures of vertices. It turns out that we
can show that the viewV (G, v) is completely encoded in the signatureS(G, v) if the
traversed sequence is a UXS, but for graphs of larger order thanG, having up ton2 + n
nodes.

Theorem 3.4([T6,T7]). Letn be a known upper bound on the number of nodes of graph
G, let d be an upper bound on its degree, and letY be a fixed(n2 + n, d)-UXS. Then,
the signatureS(G, v) obtained by applying sequenceY using a mobile agent starting
from nodev in G, is a map of(G, v).

For the sake of intuition, we provide a sketch of the argumentused in the proof of
the above theorem. The proof proceeds by contradiction. Suppose that there exist two
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pairs of graphs with distinguished starting nodes,(G1, v1) and(G2, v2), such that mobile
agents applying the UXSY to the respective graphsGi starting from nodevi, i = 1, 2,
obtain the same signatures:S(G1, v1) = S(G2, v2), whereasV (G1, v1) 6= V (G2, v2).

Let graphK be defined as follows: The set of nodes ofK is (V1 × V2) ∪ S, where
V1 is the node set ofG1, V2 is the node set ofG2, and the setS consists ofn nodes
S = {s0, s1, . . . , sn−1} outside ofV1 × V2. The set of edges ofK is defined as follows.

1. For every pair of couples(u1, u2), (v1, v2) fromV1×V2, such that there exist edges
{u1, v1} in G1 and{u2, v2} in G2 having the same edge labels,labG1(u1, v1) =
labG2(u2, v2) = (i, j), there is an edge joining node(u1, u2) with (v1, v2) in K,
with the same edge labels, i.e.labK((u1, u2), (v1, v2)) = (i, j).

2. For every couple(u1, u2) ∈ V1 × V2 and for every portp < max{degG1
(u1),

degG2
(u2)}, if either portp exists at exactly one of the nodesu1, u2, or if edge

labels(p, endG1(u1, p)) and (p, endG2(u2, p)) are different, then there exists an
edge{(u1, u2), sp} in K. For this edge we set port labelsp at node(u1, u2) and
k at nodesp, wherek is the smallest integer not yet used for a port atsp. Edges
joining a node fromV1 × V2 with a node fromS are calledspecial. Observe that
a special edge incident to nodesp is added in one of two cases:

(a) when portp exists at exactly one of the nodesu1 in graphG1 or u2 in graph
G2;

(b) when portp exists at both nodesu1 in graphG1 andu2 in graphG2, but
endG1(u1, p) 6= endG2(u2, p).

An example of the construction is shown in Fig. 3.2. The proofis completed by
observing that ifV (G1, v1) 6= V (G2, v2), then in graphK, node(v1, v2) must belong to
the same connected component as somesi ∈ S. Indeed, since the viewsV (G1, v1) and
V (G2, v2) are different, then there must exist some sequence of ports whose application
to (G1, v1) and(G2, v2) leads to different signatures; by applying this sequence tothe
graphK starting from node(v1, v2) we necessarily pass through some nodesi ∈ S. It
follows that by applying the(n2+n, d)-UXSY toK starting from node(v1, v2) one also
passes through nodesi, since graphK has at mostn2+n vertices and maximum degree
at mostd. However, this directly implies that an edge leading tosi was traversed in the
process, and so by the definition of graphK, the signaturesS(G1, v1) andS(G2, v2)
have to differ at the corresponding position, leading to a contradiction.

We now analyze the complexity of the proposed approach. Since the length of a
(n2 + n, d)-UXS is O(n6d2 logn) (Section 2.3), and traversing each step of the UXS
requires a single round, the time needed to compute the quotient graph isO(n6d2 logn).
Bounding the space requirement of the agent is a bit more subtle. A straightforward
approach consists in traversing the UXS of lengthO(n6d2 log n) and remembering each
of the observed port numbers along the way; since each port number requiresO(logn)



3.2 Constructing a map using universal sequences 65

FIGURE 3.2: An example of a labeled graphG (left) and the corresponding graphK (right) for
G1 = G2 = G. Port labels within setS have been left out.

space, we then obtain a total space complexity ofO(n6d2 log2 n). However, this is some-
what wasteful: the number of graphs of maximum degree at mostd and at mostn nodes
with a distinguished starting vertex can be bounded byndn; hence, onlyO(dn logn)
bits of memory are required to identify the quotient graph and its starting node uniquely.
Knowing a bound onn, the agent can at each step of its walk, construct a data struc-
ture in the form of a rooted search tree, having at mostndn leaves representing unique
quotient graphs. The distance from the root to each leaf is precisely equal to the length
of the UXS traversed by the agent, and thei-th edge on the path leading from the root
to a leafH is labeled by the port number encountered by the agent in thei-th step of
the UXS, given that the network it is operating in has a quotient graph isomorphic to
H. The tree hasO(ndn · n6d2 log n) nodes, which can be lexicographically ordered and
assigned identifiers in the form of consecutive integers with a binary representation of
lengthO(dn logn). In this way, in stead of storing the whole sequence of port numbers
encountered in its traversal, the agent only needs to memorize the identifier of the node
of the tree at which it is currently located, usingO(dn logn) space. In this way, we
obtain the following theorem.

Theorem 3.5([T6]). A mobile agent, starting at a nodev of graphG on at mostn nodes,
equipped withO(nd logn) bits of state memory and knowledge ofn, can determine a
map of(G, v) in O(n6d2 log n) time steps.

We remark that the obtained map is encoded in the form of the signatureS(G, v), but
this can then be used to compute e.g. the quotient graph ofG. Such a computation can
be performed locally in the final time round of the algorithm,through exhaustive search



66 Map construction in anonymous networks

over all multigraphs of order at mostn for the quotient graph corresponding toG.
For some graphs of ordern, the algorithm implied by Theorem 3.5 requiresΩ(n8) bits

of memory. In this chapter we will provide two alternative approaches, which reduce
the space of the requirement of the algorithm, while retaining polynomial running time.

3.3 Map construction by class refinement

In this section we now present an algorithm which allows the agent to solve the map
construction more efficiently in terms of space, usingO(n3 logn) bits of memory. Our
algorithm combines an application of a universal exploration table (Section 2.3) with
ideas that are usually used to minimize a deterministic automaton. As before, we assume
that the agent has prior knowledge of an upper bound onn, the number of nodes of the
graph.

Theorem 3.2 implies that for any pair of nodes of the graph having distinct views, their
views must differ at some depths < n. If two trees differ at a certain depths, there must
exist a path of lengths in the trees which starts at their roots and “distinguishes”the two
trees. In order to characterise the views of all the nodes in the graph, we only need to find
distinguishing paths for each pair of distinct views. Formally, given a graphG and node
u of G and a sequence of edge-labelsY = ((p1, q1), (p2, q2), . . . , (pj , qj)), we will say
thatY is acceptedfrom u if there exists a pathP = (u = u0, u1, . . . , uj) in G such that
Λ(P ) = Y , i.e. for eachi, 1 ≤ i ≤ j, (pi, qi) = λ(ui−1, ui). For anyk > 0, two vertices
u, v that have the same view up to depthk are said to bek-equivalent; we denote it by
u ∼k v. Thek-class ofu is the set of all vertices that arek-equivalent tou and this set
is denoted by[u]k, with [u] = [u]∞. Given any two distinctk-classesC,C ′, a (C,C ′)-
distinguishing pathis a sequence of edge-labelsYC,C′ = ((p1, q1), (p2, q2), . . . , (pj, qj))
of length at mostk such thatYC,C′ is accepted from each nodeu ∈ C and it is not
accepted from any nodev ∈ C ′. For any two distinctk-classes, there always exists
either a(C,C ′)-distinguishing path or a(C ′, C)-distinguishing path.

To compute the quotient graph ofG, it suffices to visit every nodev of G and identify
thes-class ofv and each of its neighbors (recall thats < n). Once these equivalence
classes are known, one can construct the quotient graphH as follows. The vertices of
H are the equivalence classes, and there is an edge labelled by(p, q) from [u] to [v] in
H if and only if,u has a neighborv′ ∈ [v] such thatλu(u, v

′) = p andλv(v
′, u) = q.

An outline of the pseudocode of the map construction procedure is given in Algo-
rithm 3. Algorithm 3 iterates overk, and for eachk, explores the graph and identifies
thek-classes of the visited nodes and their neighborhoods. For traversing all nodes of
the graph, we use a universal exploration tableT (n, d) for graphs of up ton nodes and
maximum degreed; recall that|T (n, d)| = O(n3d log2 n) by Theorem 2.9. We choose
the tableT to be defined as an analogue of a UXS, i.e., to allow the agent tobacktrack
to its initial location after followingT .
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For k = 1, it is easy to determine thek-class of any nodev by traversing each edge
incident tov and noting the labels. From this information, one can find thedistinguish-
ing paths for any pair of1-classes. Fork ≥ 2, it is possible to identify thek-classes and
the corresponding distinguishing paths (from knowledge ofthek − 1 classes) using the
following property.

Lemma 3.6([T6]). For k ≥ 2, two nodesu andv belong to the samek-class, if and only
if (i) u andv belong to the same1-class and (ii) for eachi, 0 ≤ i ≤ degG(u) = degG(v),
the ith neighborui of u and theith neighborvi of v belong to the same(k − 1)-class
andλ(u, ui) = λ(v, vi) = (i, j), for somej ≥ 0.

Algorithm 3: Class-Refinement(n)
Let v1, v2, . . . vt be the sequence of nodes visited byT (n, d), possibly containing
duplicate nodes ;
Apply T (n, d) andfor each nodevi visited during the traversaldo

Store the labels of each edge incident tovi;

Compute the number of1-classes and store a distinguishing path for each pair of
distinct classes ;
Backtrack alongT (n, d) to the starting vertex ;
k := 2;
repeat

Apply T (n, d) andfor each nodevi visited during the traversaldo
for each edge(vi, w) incident tovi do

Compute the(k − 1)-class ofw (by testing the distinguishing paths);
Store the label of(vi, w) and the index of the (k − 1)-class ofw ;

Discard the computedk-class information aboutvi if duplicate of a
previously visited vertex ;

Backtrack alongT (n, d) to the starting vertex ;
Compute the number ofk-classes and store a distinguishing path for each pair
of distinctk-classes ;
Increment k;

until the number ofk-classes is equal to the number of(k − 1)-classes;
Compute the quotient graph ;

Letnk be the number ofk-classes. Observe that during thekth iteration, on each node
v reached inT (n, d), for each neighborw of v, the agent computes thek − 1 class of
w. To do so, it needs to check at mostnk different paths of lengthk − 1. Consequently,
for each nodev, it needsO(deg(v) · nk · k) moves to compute thek-class ofv. Thus,
during thekth iteration of the algorithm, the agent performsO(d · nk · k · |T (n, d)|)
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moves, whered is the maximum degree of the graph. Due to Theorem 3.2 there are at
mosts < n iterations, andnk ≤ n; so the total number of moves made by the agent is
O(dn|T (n, d)| ·min{n,D logn}), where|T (n, d)| = O(n3d log2 n).

At the end of thekth iteration, the agent needs to remember the numbernk of k-
classes andnk(nk − 1)/2 distinguishing paths, each of length at mostk ≤ s. This can
be stored usingO(n2min{n,D log n} logn) bits. During thekth iteration, the agent
needs to remember for eachv and for each neighborw of v, the label of the edge(v, w)
and the index of the(k − 1)-class ofw. For eachv, it needsO(deg(v) · log n) bits.
However, the agent does not need to remember thek-class of eachvi, but it is sufficient
to identify the distinctk-classes that exist in the graph. Thus, since there are at most
n different k-classes, the agent needsO(n · d · log n) bits of memory to compute the
number ofk-classes, and to compute the corresponding distinguishingpaths using the
distinguishing paths for the(k − 1)-classes. We obtain the following Theorem.

Theorem 3.7([T6]). Algorithm 3 solves map construction for any graph of at mostn
nodes, wheren is known to the agent inO(n5d2 log2 n) moves usingO(n3 log n) bits of
memory.

We remark that by Theorem 3.2 it is also possible to bound the depths required to
distinguish views ass = O(D logn). Consequently, we obtain that Algorithm 3 solves
map construction inO(n4d2D log3 n) moves usingO(n2D log2 n) bits of memory.

3.4 Computations on the Quotient Graph
with a Log-Space Agent

A natural question concerns the feasibility of performing computations when the mem-
ory size of the agent is constrained. We showed in the previous sections that a map
of the graph can be constructed using an agent equipped with apolynomial number of
bits of state memory. In other words, it turns out that any computation which can be
performed deterministically by a mobile agent can also be performed by a mobile agent
capable of transmitting a polynomial number of state bits along edges. Surprisingly, it
turns out that even an agent equipped with a logarithmic number of bits of state memory
is sufficient to recognize and navigate a quotient graph. When designing such an agent,
we need to overcome the obvious obstacle, namely, that logarithmic space is in gen-
eral insufficient for the agent to “memorize” the topology ofthe quotient graph. So, our
goal will instead be to allow for the agent to be able to answerin logarithmic space basic
queries concerning, in particular, the existence and port numbers of edges connecting
particular nodes of the quotient graph. To allow for easier formulation of such queries,
we will assume that the agent makes use of some canonical labeling of the nodes of
the quotient graph, i.e., for a graphG with equivalence classes{V1, . . . , Vl}, we will
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consider an isomorphic copy of its quotient graphH in which the vertices are labeled
with consecutive integers asVH = {1, . . . , l}. The assignment of integer labels to the
vertices of graphH can be chosen by the agent.

We will say that a mobile agentresolves a queryif it runs a subroutine at the end of
which it returns to the node at which the query was initiated,with a correct reply to the
query encoded in a predefined area of its state memory. The results of [T7] imply the
following theorem.

Theorem 3.8. [T7] For any givenn, there exist agents withO(logn) state memory
which, when deployed in an anonymous graphG of at mostn nodes, resolve the follow-
ing queries:

• What is the numberl of nodes of the quotient graphH ofG?

• What is the identifier (in the range{1, . . . , l}) of the node of the quotient graph
H which corresponds to the equivalence class of the node ofG at which the agent
is currently located?

• Given two nodes of the quotient graphH with identifiersi, j ∈ {1, . . . , l}, are
they connected by an edge, and if so, what are the port numbersat its endpoints?

The algorithmic approach which lies at the heart of Theorem 3.8 follows from an
adaptation of the UXS-based method proposed in Section 3.2.However, before we
provide an intuition of the arguments used in the proof, we remark that the capabilities
of a log-space agent described in Theorem 3.8 effectively allow the agent to perform
any computation on the quotient graph which could be performed in log-space in a
centralized model with Random Access Memory, i.e., for any problem which belongs
to the complexity class known as L (or LSPACE) [20].

Corollary 3.9. For any problem P∈ L which takes a graph as input, there exists an
agent withO(logn) state memory, such that for any (connected) anonymous graphG
on at mostn nodes, wheren is known to the agent, the agent resolves the query: “What
is the answer to problem P for the quotient graph of the network?”.

Many log-space testable properties of the quotient graph provide useful information
about the anonymous networkG. For example, one may attempt to design a mobile
agent in networkG to solve the problem: “Determine if graphG is a tree and, if not,
find an edge which can be removed without disconnecting the graph”. This question is
equivalent to finding an edge belongs to some cycle inG, or determining if one does
not exist. GraphG is a tree if and only if its quotient graph is either a tree without self-
loops or a tree with a single self-loop, depending on whetherthe tree is symmetric with
respect to its central edge. Moreover, by the properties of graph homomorphisms, if for
some edge{u, v} of G, its counterpart in the quotient graphH belongs to some cycle
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in H (or is a self-loop inH), then{u, v} belongs to a cycle inG. Both the problem of
determining if a graph is a tree, and the problem of determining if a given edge belongs
to a cycle, are known to belong to the complexity class L [13, 156]. It follows from the
Corollary that the posed question about the existence of a non-disconnecting edge can
be resolved by a log-space mobile agent, given that the agentis given an upper bound
on the number of nodesn of the network.

In all of the above considerations, knowledge of an upper bound n by the agent is
in general indispensable, since otherwise the agent is unable to construct the quotient
graph. Without knowledge ofn, the agent would require some additional advice about
the environment it is operating in. For example, when the agent knows that the network
G in which it is operating is a tree, it is possible for the agentto compute the precise
number of nodes of the tree. This can even be achieved inO(logn) space using an ap-
proach proposed by [15]. The same goal can be achieved by testing increasing bounds
on n in Theorem 3.8 and traversing the resulting candidate for the quotient graph, re-
peating the process until a candidate is found which is consistent with the explored tree
network.

We return to the sketch of proof of Theorem 3.8 from [T7]. Consider an application
of the same identifying UXS at two different nodesu, v of the anonymous networkG,
giving sequences of port labelsS(u) = (lab(u0, u1), . . . , lab(uM , uM+1)) andS(v) =
(lab(v0, v1), . . . , lab(vM , vM+1)). (By contrast to Section 3.2, here we only consider
a single networkG, so for compactness we use the notationS(v) ≡ S(G, v).) By
Theorem 3.4, two nodes have distinct viewsV (v) 6= V (w), if and only ifS(v) 6= S(w).
Thus, the sequenceS(u) can be treated as a compact representation of the viewV (u).
We can now consider a linear order on sequencesS: we say thatS(u) ≺ S(v), if there
existst ≤ M , such that for eachj < t we havelab(uj , uj+1) = lab(vj , vj+1) and
lab(ut, ut+1) ≺ lab(vt, vt+1). In the partition of the set of nodesV = V1 ∪ . . . ∪ Vl into
equivalence classes such that all nodes inVi have the same view, we will consider an
indexing of the classes for whichVi is the set of nodesvi, such thatS(vi) is the i-th
smallest (distinct) element in the set{S(v) : v ∈ V } in the defined linear order. It
remains to be shown how, given a nodevi at which the agent is currently located, the
corresponding labeli can be computed by a logarithmic-space agent.

LetY = (a1, . . . , aN ) be the UXSY (n2+n) of lengthN for the classGn2+n of graphs
with at mostn2 + n nodes. Fix integer parametersi andj. The aim of the auxiliary
functionCompareSignature(i, j) is to lexicographically compare the signaturesS
of the i-th and thej-th nodes of the application ofY at the starting node of the agent.
This comparison is done term by term, fork = 1, . . . , N until a difference is found.
The functionCompareSignature uses two procedures:TravFwd andTravBack.
ProcedureTravFwd(k) traversesk consecutive nodes of the application ofY at the
nodeu0 at which it is called in the graphG. Nodeu1 is found assucc(u0, 0). In
order to find nodeui+1 for i ≥ 1, of this application, the termai is first computed
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and then the formulaui+1 = succ(ui, (p + ai) mod d(ui)) is used, wherep is the
port at nodeui used to enter this node. It is supposed that the edge label of the last
traversed edge is always kept in memory. Hence the second component of the edge
label — the port identified while the current nodeu was being entered — is available
until it is used to enter the successor ofu. Port 0 is used to start the walk at the node
at whichY is applied. ProcedureTravBack(k) performs the backward walk along an
application ofY , starting at some nodev of it and using the formulasucc(u, (p − ai)
mod d(u)) to determine where to backtrack fromu. To start the walk back fromv, the
port by which nodev was entered is used first. In the case ofTravBack, elements
ak, ak−1, . . . , a1 of Y are used in the order of decreasing indices. In each iteration k of
the loop within functionCompareSignature, the agent is guided through the graph
G until the corresponding edge labels of both signatures are retrieved with the aid of
functionEdgeLabel, and the initial position of the agent is regained. By analysing
the pseudocode, we obtain the following lemma.

int function CompareSignature(int i, int j) { 0 ≤ i, j ≤ N }
1. for k ← 1 until N do
2. el1 ← EdgeLabel(i, k) ; el2 ← EdgeLabel(j, k) ;
3. if el1 < el2 then return smaller ;
4. if el1 > el2 and return greater ;
5. return equal ;

edge label functionEdgeLabel(int i, int k)
1. TravFwd(i) ;
2. TravFwd(k) ;
3. EdgeLab← the edge label of the last traversed edge ;
4. TravBack(k) ;
5. TravBack(i) ;
6. return EdgeLab ;

Lemma 3.10.Letui anduj be thei-th and thej-th node of the application ofY at the
starting node of the agent. FunctionCompareSignature(i, j) compares signatures
S(ui) andS(uj) according to the� ordering and returns the value “smaller” ifS(ui) ≺
S(uj), “equal” if S(ui) = S(uj), and “greater” otherwise. An agent withO(logn) bits
of memory is sufficient to execute the function.

Using the above subroutine, we design the functionQuotientNodeLabelwhich
computes a canonical label of the node of the quotient graph corresponding to the
agent’s current location. The idea of the labeling is to use the function comparing two
signatures in order to compute the number of different signatures that are not greater
than the signature of the initial position of the agent. Thisnumber, belonging to the
range[1, n], is output by the function.
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int function QuotientNodeLabel
{ returns the label of the node of the quotient graph corresponding to the agent’s position }
1. CurId← 0 ;
2. for i← 0 until N do
3. if CompareSignature(i, CurId) = smallerthenCurId← i;
4. for j ← 1 until n do
5. if CompareSignature(CurId, 0) = equalthen return j ;
6. NextId← 0 ;
7. for i← 0 until N do
8. if CompareSignature(i,NextId) = smallerand

CompareSignature(i, CurId) = greater
thenNextId← i ;

9. CurId← NextId ;

Lemma 3.11.An agent located at any nodeu of a graph with at mostn nodes, computes
the integer value of the functionQuotientNodeLabelu, belonging to the interval
[1, n], such that for any two nodesu, v ∈ V , the following equivalence holds:

QuotientNodeLabelu = QuotientNodeLabelv ⇐⇒ V (u) = V (v).

Moreover, an agent withO(logn) bits of memory is capable of executing the function
QuotientNodeLabel.

Note that when calling functionQuotientNodeLabel, the agent is returned to
the node at which the function was called. The function can therefore be used as a
transparent subroutine to learn the label of the current node in the quotient graph. The
agent can move to a node corresponding to labeli in the quotient graph by applying
a UXS from an arbitrary starting location, and testing the value of the label for suc-
cessive nodes until the conditionQuotientNodeLabel = i is satisfied. It can also
test the existence of an edge{i, j} in the quotient graph by finding a node satisfying
QuotientNodeLabel = i, and checking whether any of the neighbors of this node
in G satisfiesQuotientNodeLabel = j. If such an edge exists, the port labels at
its endpoints are also immediately recovered. In this way, one can implement all of the
basic operations on the quotient graph with a logarithmic-space agent, as required in the
claim of Theorem 3.8.

The time complexity of the designed log-space procedures operating on the quotient
graph is necessarily polynomial, but with a high exponent, which can be roughly esti-
mated asO(n20). It is also possible to impose the requirement that not only the persistent
state memory of the agent is of logarithmic size, but the samealso holds for the memory
used by the agent in local computations. Then, the UXS-s applied by the agent needs to
be log-space constructible (following a variant of the approach from [156]), resulting in
an even higher time complexity, on the order ofn to he power of several hundred.
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3.5 Remarks on other models

The algorithms considered in this chapter can be applied by mobile agents operating in
an anonymous network, without the need for leaving any marker information at nodes of
the network. The only assumption we make is that the agent knows some upper bound
on the number of nodesn of the network. Withouta priori knowledge of such an upper
bound, the agent can attempt to apply a doubling technique, assuming increasing upper
bounds on the number of nodes of the graph. Such an algorithm,however, can never
terminate, since the agent may never decide if the map it has computed corresponds
precisely to the real quotient graph of the host network.

Interestingly, it is possible to solve the mapping problem deterministically and with
termination without knowledge of any global parameters, such as an upper bound onn,
provided that the homebase of the agent is specially marked,and uniquely distinguish-
able from all other nodes of the anonymous network. Such an assumption changes the
nature of the problem, since the abstraction class of the homebase in the quotient graph
consists of precisely one element, and so the quotient graphis isomorphic to the host
networkG. In this scenario, even without knowledge ofn, it is possible to solve the
mapping problem using a log-space agent, or more quickly, inO(n3d) time steps using
O(nd logn) bits of memory [T6].

The task of map construction becomes simpler and admits faster solutions as we in-
crease the capabilities of the agent, allowing it to leave pebbles at nodes or write to
whiteboards. An interesting twist of the mapping problem isconsidered in [64], where
multiple identical agents operating in the same network attempt to solve the problem si-
multaneously, and cannot distinguish between marks left inthe graph by themselves and
by other agents. This type of study fits more closely into the framework of simultaneous
symmetry-breaking problems for multiple agents, which we consider in the following
chapter.
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In the previous Chapters, we have considered questions of computability in an anony-
mous network, given a single mobile agent with limited resources. The introduction of
multiple agents into the same network opens completely new research questions. The
agents may be required to perform specific tasks with respectto the graph, such as explo-
ration or computation of topological properties, but also to solve coordination problems
for which the initial configuration of the agents can be seen as part of the input.

Whereas in Chapter 3 we consider the limits of computabilitywith a single agent, the
case of multiple agents turns out to be much more complicated. The answer depends, in
particular, on whether agents move in synchronous rounds, or whether each traversal of
an edge may take an arbitrary period of time. Another question concerns the ability of
agents to interact with each other in a graph. Given that the agents are unaware of each
others’ presence, the computational power of each agent is no different from that in the
single-agent case. Still, even then certain tasks may be performed more efficiently: if
the goal of the agents is to minimize the expected time beforeeach node is explored
by some agent, then it makes sense to deploy multiple agents following a random walk,
and not just one. In this chapter, we will assume that the agents have the ability to
exchange information only when they are located at the same node at the same time.
Arguably, this can be considered the most powerful model of communication which
does not require non-local interaction or information storage in the environment. More
powerful models, in which the agents may either communicateat a distance, or leave
information at for another agent arriving later by writing on a whiteboard [87, 132] or
placing a marker at a node [176], are beyond the scope of this thesis.

Since meeting is the only way for agents to coordinate their actions, in the context of
this work, the most fundamental problem for multiple agentsis that of rendezvous: two
identical mobile agents, initially located in two nodes of the network, move along links
from node to node, and their goal is to get to the same node at the same time. The ren-
dezvous problem has been thoroughly studied in the literature in different contexts (see
the monograph [12] for an extensive bibliography of the subject), both under the ran-
domized and the deterministic scenarios. In a general setting, the rendezvous problem
was first mentioned in [161]. Authors investigating rendezvous (cf.[12] for an extensive
survey) considered either the geometric scenario (rendezvous in an interval of the real
line, see, e.g., [27,28,96], or in the plane, see, e.g., [16,17]) or the graph scenario (see,
e.g., [69,94,129]). Many papers, e.g., [10,11,18,27,110]study the probabilistic setting:
inputs and/or rendezvous strategies are random. A natural extension of the rendezvous
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problem is that of gathering [89, 110, 137, 165], when more than 2 agents have to meet
in one location.

In the anonymous graph model, a fundamental problem when studying feasibility and
efficiency of deterministic rendezvous is that of breaking symmetry. Without resorting
to marking nodes, this can be achieved by taking advantage ofthe different labels of
agents [69, 129, 142]. Labeled agents allowed to mark nodes using whiteboards were
considered in [176]. Recently, rendezvous of labeled agents using variants of Universal
Exploration Sequences, was also investigated in [164].

We start this chapter by providing criteria for describing the feasibility of determinis-
tic rendezvous for two agents (labeled or unlabeled), operating in a synchronous setting.
In Section 4.1 we show that if rendezvous is feasible, then itcan be achieved even when
using logarithmic-space agents. We also consider the tradeoff between the amount of
memory available to the agent, and the time required for rendezvous. Whereas estab-
lishing a tight time-space tradeoff for the task of exploration is a challenging open ques-
tion, such an interdependence turns out to be much more apparent for the rendezvous
problem. In Section 4.2, we establish the precise form of thetime-space tradeoff for
rendezvous of anonymous agents in trees. We close our considerations by discussing
extensions of feasibility criteria for rendezvous to the case of asynchronous agents, and
to teams of more than two agents.

4.1 Synchronous rendezvous in log-space

When two agents placed in a graph are initially assigned distinct labels, encoded in
their starting state, this information is sufficient for theagents to achieve rendezvous. In
fact, Dessmarket al. [69] provided a deterministic algorithm which relies on repeated
traversal of Universal Exploration Sequences, in a way modulated by the label of the
agent, to achieve rendezvous in polynomial time. It is assumed that the system operates
in synchronous rounds, but that one of the agents may be delayed and may only appear
in the graph after some period of timeτ , and that the time required for rendezvous is
only counted from the moment of appearance of the later agent. The runtime of their
algorithm is given as̃O(n5

√
τl + n10l), wherel represents the bit length of the shorter

of the agents’ labels. Subsequently, Kowalski and Malinowski [129] and Ta-Shma and
Zwick [164] designed algorithms with runtime which is independent of the delayτ ,
namely,Õ(n15 + l3) and Õ(n3d2l), respectively, whered is the maximum degree of
the graph. Interestingly, all of these algorithms operate without knowledge of an upper
bound onn. By contrast to the exploration problem, in which an agent can never detect
if it has successfully explored a graph of unknown size, in the rendezvous problem, the
termination condition is achieved very simply by observingthe meeting with the other
agent operating in the graph. The approach of Ta-Shma and Zwick also works for log-
space agents, or more formally, with agents capable of storing their label andO(logn)
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bits of auxiliary state.
The situation becomes more complex when the agents are not guaranteed to have

unique identifiers. Then, rendezvous is not always feasible. Indeed, supposing that two
agents occupy nodes having the same view (i.e., nodes corresponding to the same node
of the quotient graph), any sequence of moves by the two agents will always leave the
agents at a pair of nodes having the same view.

Proposition 4.1([T7]). Suppose that a pair of anonymous agents are placed originally
at distinct nodesu1, u2 ∈ V and start walking simultaneously inG. If rendezvous is
feasible thenV (u1) 6= V (u2).

It turns out that the converse of the above lemma is true, i.e., given thatV (u1) 6=
V (u2), it is always possible to achieve rendezvous. Moreover, such rendezvous can be
achieved in polynomial time, and even using agents equippedwith logarithmic space.
The idea of the approach is the following. First, the two agents follow the procedure
from Section 3.4 to compute the identifier in the quotient graph of the node representing
their starting position. SinceV (u1) 6= V (u2), this procedure will compute distinct
identifiers from the range{1, . . . , n} for nodesu1 andu2, which we will denote byL1

andL2, respectively. Now, the identifiersL1 andL2 can be used as distinct labels by the
agents, with the representation of the shorter label havinglengthl = logmin{L1, L2} =
O(logn). After that, to allow the agents to meet it suffices to executea rendezvous
procedure for labeled agents with arbitrary delayτ , using the rendezvous algorithm of
Ta-Shma and Zwick [164]. The details of this process are alsolaid out in [T7]. The
procedure can be adapted so as to operate without explicit knowledge of the value ofn.

Theorem 4.2 ([T7]). There exists a pair of anonymous agents withO(logn) bits of
memory which solves the rendezvous problem, with arbitrarydelay, for any pair of
starting nodesu1, u2 ∈ V with distinct views (V (u1) 6= V (u2)).

Proposition 4.1 combined with Theorem 4.2 can be seen as a characterization of the
feasibility of solving the rendezvous problem, and of the computational capabilities of
an agent required to achieve such a solution.

It turns out that logarithmic space is necessary to achieve rendezvous even in rela-
tively restricted graph classes. This is the case, for instance, when the considered graph
is a ring, i.e., there is a lower bound ofΩ(log n) on the number of memory bits required
for rendezvous in the class of rings with at mostn nodes.

The idea of the proof of the lower bound presented in [T7] is the following. We
suppose that agents have memory of sizem ≤ 1

5
log n bits, hence they are modeled as

an automaton with2m ≤ n
1
5 states. We show that there exists a ring of at mostn nodes

and non symmetric initial positions of the agents, such thatthe agents cannot meet.
Hence agents with such a small memory cannot solve the rendezvous problem for the
class of rings with at mostn nodes. We will construct a ring formed by the concatenation
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of port-labeled segments ofn
2
5 nodes each. We take into account the states of the agent

at the moment when it is entering and exiting such segments through their endpoints.
We observe by a counting argument that it is possible to choose two different segments
T1, T2, each one havingn

2
5 nodes, such that the agent entering a segment in any state

si will exit it in some statesj independently of whether the visited segment isT1 or
T2. The sequence of the agent’s states considered during visits to the endpoints of the
segments must form a cycle of some sizedc ≤ n

1
5 , called itsstate cycle.

We first construct a ring, which prevents rendezvous, unlessthe agent advances by a
constant distance around the ring at each iteration of its state cycle. Such a ring can be
constructed because the agent’s movement must then be localized to a bounded portion
of the ring and both agents may be directed to operate in disjoint portions. Then another
ring is constructed to prevent rendezvous also for such positively-advancing agents.
This ring is formed ofdcn

2
5 segments of sizen

2
5 each (hence of total size at mostn)

containing exactly one copy ofT2 anddcn
2
5 − 1 copies ofT1. We place the agents at

antipodal positions of the ring and prove that each agent must indefinitely, cyclically
return to some position of the ring in the same state and time which are the same for
both agents. Finally, it is proven that the variations of thedistance between the agents
during such tours around the ring are too small to allow theirmeeting.

Theorem 4.3([T7]). For anyn ≥ 95, any pair of anonymous agents solving rendezvous
in rings with at mostn nodes requires at least(1

5
logn − 1) bits of memory (even as-

suming simultaneous start).

The above result shows the intrinsic difference in space complexity between the ren-
dezvous and exploration problems, since perpetual exploration of rings can be achieved
even by a memoryless agent which always exits a node by a port different from its port
of entry.

4.2 Time-space trade-off for rendezvous in trees

In this section we focus attention on deterministic rendezvous in trees and our goal is
to establish trade-offs between the optimal time of completing rendezvous and the size
of memory of the agents. We recall from the previous section that rendezvous with
simultaneous start is impossible if the initial positions of the two agents have identical
views. Hence, all algorithmic considerations are performed under the assumption that
the initial positions of agents are not symmetric.

Rendezvous time (both deterministic and randomized) of anonymous agents in trees
without marking nodes has been studied in [82]. It was shown that deterministic ren-
dezvous inn-node trees can be always achieved in timeO(n). Memory required by
the agents to achieve deterministic rendezvous in trees hasalso been studied in [94,95],
though the model adopted in the latter paper assumes restrictions on the topology of the
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considered trees. In [23] the authors study the memory size needed to solve a variant of
the rendezvous problem in trees in optimal time in the asynchronous model. They do
not allow rendezvous inside an edge, but for symmetric treesthey allow that agents ter-
minate not in one node but in two adjacent nodes. They show that the minimum number
of memory bits to achieve rendezvous in linear time isΘ(n).

The main result of this section is a tight trade-off between optimal time of completing
rendezvous and the size of memory of the agents [T8]. For agents withk memory bits,
we show that optimal rendezvous time isΘ(n+n2/k) in n-node trees. More precisely, if
k ≥ c logn, for some constantc, we show agents accomplishing rendezvous in arbitrary
trees of unknown sizen in timeO(n+ n2/k), starting with arbitrary delay.

We will describe only a sketch of the approach from [T8], for the case of trees of
maximum degree bounded by 3 and under the assumption that agents know a boundN
on the number of nodes of the tree, such thatN ≥ n ≥ N/16. The overview of the
algorithm is the following. In the first phase, whose time isO(n + n2/k), each agent
computes an integer valuel ∈ {0, 1, . . . , n−1} called itssignature, such that agents with
non-symmetric initial positions have different signatures. These signatures are used in
the second phase to break symmetry and achieve rendezvous. The way in which this
is done depends on the amount of memory available to the agents. If the agents have
large memory (at leastΩ(n/ log n) memory bits), then they can quickly locate either
the central node or the central edge of a specifically chosen subtree of the tree in which
they operate. In the first case they meet at its central node, in the second case they use
the signatures to meet at one of the endpoints of its central edge. In the case of small
memory (o(n/ logn) memory bits), each agent uses a sequence of active and passive
periods, each of length4(N − 1), determined by the successive bits of its signature: in
an active period (bit 1 of the signature) an agent visits all nodes of the tree, in a passive
period (bit 0 of the signature) it waits. This guarantees rendezvous in additional time at
mostO(n logn) which is dominated byO(n2/k), for small memory.

To compute its signature, the agent performs a traversal of the tree using the basic
walk procedure considered in Section 2.4. We recall that abasic walkin a n-node
treeT , starting from nodev, is a traversal of all edges of the tree ending at the start-
ing nodev and defined as follows. Nodev is left by port 0; whenever the walk en-
ters a node by porti, it leaves it by port(i + 1) mod d, whered is the degree of the
node. We sometimes consider more than2(n − 1) steps of a basic walk, noting that
this traversal is periodic with a period of length2(n − 1). The basic walk starting
at a nodev may be uniquely coded by the sequence (string of symbols)BW (v) =
(p1(v), q1(v), p2(v), q2(v), . . . , p2(n−1)(v), q2(n−1)(v)), wherep1(v) = 0, pi(v) is the
port number by which the node is left in thei-th step of the walk, andqi(v) is the
port number by which the node is entered in thei-th step of the walk. A pair of nodes
v1 andv2 of a treeT is not symmetric if and only ifBW (v1) 6= BW (v2). Thus an agent
starting at nodev can be uniquely identified in the tree using the stringBW (v), or using
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any string describing a longer traversal which hasBW (v) as its prefix. The definition
of the stringBW (v) is independent on the upper boundN onn which is known to the
agent.

We also need to introduce some auxiliary notation. Areverse basic walkstarting from
nodew with port p is a traversal of all edges of the tree ending at the starting nodew
and defined as follows. Nodev is left by portp; when the walk enters a node by porti,
it leaves it by port(i− 1) modd, whered is the degree of the node.

For a stringσ of lengthm, the rotationrotl(σ) is the stringσ′, such thatσ′[i] =
σ[(i+l) modm], for all indices0 ≤ i ≤ m−1. Any stringσ can be uniquely encoded by
its lexicographically minimal rotationLMR(σ) and the smallest non-negative integerl
such thatLMR(σ) = rotl(σ).

Due to the periodic nature of tree traversal using the basic walk, all the strings
BW (v), for v ∈ V , are identical up to rotation, and hence have the same stringde-
scribing their lexicographically minimal rotation. We define the signaturesig(v) of
an agent with initial starting positionv as the minimuml such thatLMR(BW (v)) =
rotl(BW (v)). Hence, agents with non-symmetric initial positions have different signa-
tures. Observe that0 ≤ sig(v) < 2(n− 1).

To compute the value ofsig(v), we apply the following procedure, called FINDSIG-
NATURE, which allows an agent starting at nodev to detect the starting position of
LMR(BW (v)) as a rotation ofBW (v). To do this, we apply a variant of Duval’s effi-
cient maximum suffix algorithm [79] (cf. also [158] for an external I/O memory imple-
mentation), adapting it for the mobile agent computationalmodel with limited memory.
Intuitively, the agent makes use of two pointers to symbols of BW (v), represented by
positionsleft andright, which it sweeps from left to right. Indexleft represents the
starting position of the lexicographically minimal rotation which has been detected so
far, while indexright represents the currently considered candidate for such a starting
position.

Our implementation of FINDSIGNATURE has two important features. Firstly, the
comparison of characters within the stringBW (v) is encapsulated in subroutine COM-
PARESTRING (left, right,maxLength), which lexicographically compares the two sub-
strings ofBW (v) having lengthmaxLength and starting at offsetsleft and right,
respectively. Secondly, the agent is not assumed to know theexact length4(n − 1)
of sequenceBW (v); instead, the known upper bound of4(N − 1) is used, without
affecting the correctness of the algorithm.
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procedure FINDSIGNATURE ()
left← 1; right← 2;
repeat
maxLength← right− left;
COMPARESTRING (left, right,maxLength);
if ‘ left’ string is greater { at some index }then
left← right; right← right+ 1;

else
if ‘ left’ string is smaller at indexi then
right← right+ i;

else{strings are equal}
right← right+maxLength;

until right > 4(N − 1);
return left;

When describing procedure COMPARESTRING, we will assume that the agent is
equipped with four memory blocks, calledviews, each of which can store a substring
of µ successive symbols from the stringBW (v), whereµ is some integer smaller than
k/4. In this way, by carefully implementing procedure COMPARESTRING as described
in [T8], we obtain the following lemma.

Lemma 4.4 ([T8]). For any upper boundN , such thatN ≥ n ≥ N/16, and k ≥
c logN , wherec is a constant, an agent starting at nodev and equipped withk bits of
memory can compute its signaturesig(v) in O(n2/k) rounds by following procedure
FINDSIGNATURE for the valueµ = k/8.

The rendezvous procedure for an agent with an already computed signaturesig(v)
depends on the relation between the numberk of memory bits and the known upper
boundN on the order of the tree. The first procedure, called SMALL MEMORYRV,
guarantees rendezvous of agents with known signatures inO(N logN) rounds and using
Θ(logN) bits of memory. Consequently, the procedure will be appliedin the case when
k < N/ logN , since thenN logN ∈ O(N2/k) and the bound ofO(N2/k) on execution
time is achieved. A faster procedure for agents with larger memory will be presented
further on.

Procedure SMALL MEMORYRV assigns to each agent a unique label defined as the
string of ⌈2 logN + 3⌉ bits encoding the binary representation of2sig(v) + 1. The
procedure is composed of phases such that in thei-th phase, depending on the value of
thei-th bit of this label, the agent either visits all the nodes ofthe tree at least twice, or
waits at its initial location for a number of rounds corresponding to such an exploration.
This is iterated for alli, 1 ≤ i ≤ ⌈2 logN + 3⌉, and then the whole process is repeated
until rendezvous is achieved. The traversal of the tree, which needs to be performed as
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a subroutine, is implemented by2(N − 1) steps of the basic walk, and then returning to
the starting node in2(N − 1) steps of the reverse basic walk.

procedure SMALL MEMORYRV ()
sig ← FINDSIGNATURE ();
repeat

OSCILLATE (sig, 2(N − 1), 0);
until rendezvous;

procedure OSCILLATE (sig, distance, firstPort)
for i← 1 .. ⌈2 logN + 3⌉ do

for j ← 1, 2 do
if i-th bit of (2sig + 1) is ‘1’ then

performdistance steps of the basic walk;
performdistance steps of the reverse basic walk, starting from the
last port of entry;

else
remain idle for2 · distance steps;

Lemma 4.5 ([T8]). For any upper boundN , such thatN ≥ n ≥ N/16, and k ≥
c logN , wherec is a constant, a pair of agents equipped withk bits of memory, starting
at non-symmetric initial positions with arbitrary delay, can achieve rendezvous in time
O(n2/k + n logn) using procedureSMALL MEMORYRV.

For the case whenk > N/ logN , we make use of Procedure LARGEMEMORYRV,
which applies a more time-efficient approach to rendezvous by restricting the meeting
location of the agents either to a specific node of the tree, orto one of the endpoints of
a specific edge. Since the memory of the agent may be sublinearcompared to the order
of the treeT , we do not perform a structural (e.g., DFS-based) analysis of the entire tree
to determine such a location. Instead, the agent attempts todetermine a meeting point
in the so calledtrimmed treeT ′, which is the port-labeled tree given by the following
construction (provided for purposes of definition, only):

1. Initially, let T ′ = T .

2. Trimming. Let z = ⌈32N/k⌉ < n/2. Remove fromT ′ all edgese such that one
of the connected components of treeT \ {e} has less thanz nodes. Remove from
T ′ all isolated nodes.

3. Path contraction. Remove fromT ′ all nodes of degree2 by contracting each path
passing through such nodes into a single edge of the tree, preserving the port
labeling at all the remaining nodes (of degree1 or 3).
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We remark thatT ′ is a non-empty tree with at mostk/16 nodes [T8], which are by
definition also nodes of treeT . The meeting node of the agents in procedure LARGE-
MEMORYRV is selected as follows. If the trimmed tree has a central nodev, then the
agents will meet atv. Otherwise, the trimmed tree must have a central edgee which
corresponds to some path(v0, v1, . . . , vl) of lengthl in T . If l is even, then the agents
meet at the nodevl/2. Otherwise, the agents meet at one of the endpoints of the edge
{v⌊l/2⌋, v⌈l/2⌉} of T . Observe that sinceT ′ is uniquely defined, the node or pair of nodes
which will be selected for rendezvous is independent of the starting positions of the
agents.

Procedure LARGEMEMORYRV relies on two key subroutines which allow the agent
to navigate in the treeT ′.

• Procedure TRIMMEDTREENEIGHBORHOOD, when called at a nodeu, computes
the set of port numbers at nodeu which correspond to edges remaining after the
trimming phase in the definition of treeT ′, i.e., edges ofT leading fromu to a
subtree of at leastz nodes. Testing if a portp at u leads to a sufficiently large
subtree is implemented by performing2z steps of the basic walk onT starting
with port p at nodeu, memorizing the current tree-distance of the agent fromu
throughout this traversal. If the agent returns tou before completion of the last
step of the walk, then the subtree has less thanz nodes, and portp is not included
in the output of the procedure.

• Procedure TRAVERSECOMPRESSEDPATH, when called at a nodeu ∈ T ′ with a
single argumentnextPort (describing a port number atu in T ′) moves the agent
using port numbernextPort, to its neighborw in T ′, following a contracted path
in T . The values returned by the procedure are the port number by whichw was
entered when coming fromu, and the length of the path inT connectingu and
w. An optional second argument passed to TRAVERSECOMPRESSEDPATH allows
the agent to move a specified number of steps along the path betweenu andw in
T , e.g., in order to reach its center.

Procedure LARGEMEMORYRV consists of the following phases. First, the agent
follows the basic walk onT , starting from its initial position, until it encounters the
first node which is identified as a leaf of treeT ′, by using procedure TRIMMEDTREE-
NEIGHBORHOOD. Next, the agent performs a basic walk in treeT ′, using procedures
TRIMMEDTREENEIGHBORHOODand TRAVERSECOMPRESSEDPATH to discover node
neighborhoods and to navigate along edges ofT ′, respectively. A basic walk inT ′ is
defined as in treeT , with the additional condition that an agent leaving a leaf follows
the only available port, regardless of its port number. The agent memorizes the entire
port number sequenceBW ′ used during this basic walk inT ′ and, by keeping track
of theT ′ tree-distance from the starting node, detects the completion of the tour of the
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entire treeT ′. Using local computations on the sequenceBW ′, the agent now iden-
tifies the location of the central node or the central edge of treeT ′, expressed by the
number of steps of the basic walk onT ′ required to reach this location from its initial
position. IfT ′ has a central node, then the agent reaches it, and stops, waiting for the
other agent to arrive there. Otherwise, ifT ′ has a central edgee, the agent proceeds to it
and identifies the lengthl of the corresponding path(v0, v1, . . . , vl) in T using procedure
TRAVERSECOMPRESSEDPATH. If l is even, the agent moves to nodevl/2 by applying
once more procedure TRAVERSECOMPRESSEDPATH, and stops. Otherwise, the agent
reaches nodev⌊l/2⌋ and applies procedure OSCILLATE. This is equivalent to performing
SMALL MEMORYRV, but restricted to the two-node subtree (edge){v⌊l/2⌋, v⌈l/2⌉} of T .

procedure LARGEMEMORYRV () { starting atv }
sig ← FINDSIGNATURE ();

while |TRIMMEDTREENEIGHBORHOOD()| 6= 1 do
traverse one step of the basic walk onT ;

{ perform the complete basic walk on the reduced treeT ′, using procedure
TRIMMEDTREENEIGHBORHOOD to discover ports leading to neighbors inT ′ and
TRAVERSECOMPRESSEDPATH to traverse edges ofT ′ }
BW ′ ← basic walk string for reduced treeT ′ starting from the current location of the
agent;
{ using stringBW ′, locally compute whetherT ′ has a central node or a central edge,
and determine its location }
i← distance along basic walk onT ′ to central node/edge ofT ′;
move fori steps of the basic walk onT ′;
if T ′ has a central nodethen

stop {at central node ofT ′ }
else{T ′ has a central edge, which has just been reached}

(returnPort, l)← traverse central edge ofT ′ using TRAVERSECOMPRESSEDPATH;

{ move to the center of the path inT corresponding to central edge ofT ′ }

(port, ·)← TRAVERSECOMPRESSEDPATH (returnPort, ⌈l/2⌉);
if l is eventhen

stop {in the middle of the central path ofT ′ }
else

repeat
OSCILLATE (sig, 1,port)

until rendezvous;

A bound of the performance of Procedure LARGEMEMORYRV is given by the fol-
lowing lemma.
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Lemma 4.6 ([T8]). For any upper boundN , such thatN ≥ n ≥ N/16, and k ≥
cN/ logN , wherec is a constant, a pair of agents equipped withk bits of memory,
starting at non-symmetric initial positions with arbitrary delay, achieves rendezvous in
timeO(n2/k), using procedureLARGEMEMORYRV.

Combining Lemmas 4.5 and 4.6, we obtain an algorithm which solves the rendezvous
problem in timeO(n2/k) for a known linear upper boundN on n and for trees of
maximum degree3: if k > N/ logN , then procedure LARGEMEMORYRV is called;
otherwise, procedure SMALL MEMORYRV is called. A generalization of the approach to
trees of arbitrary degree is possible by considering exploration of a virtual tree of degree
3, which in fact also explores the real underlying treeT which may contain nodes of
higher degree. Independence of the value ofn is achieved by a doubling argument,
iterating geometrically increasing bounds on the value of abound onn. Interestingly,
by introducing artificial phases during which the agents wait, it is possible to design the
procedure so that the agents meet quickly even if they assumedifferent bounds onn,
due to the fact that one of the agents is delayed. The completeprocedure is presented
below.

procedure RENDEZVOUSINTREES ()
N ← k;

repeat { Phase 1: attempt rendezvous with large memory }
try LARGEMEMORYRV (), aborting if treeT ′ has more thank/16 nodes;
{ the further steps are executed only if the assumed bound is too small(N < n) }
return to the starting position;
N ← 4N ;

until k < N/ logN ;

repeat { Phase 2: achieve rendezvous with small memory }
t← current round number;
wait for 2(N − 1) rounds; { (a) }
perform2(N − 1) steps of the basic walk; { (b) }
wait for 2(N − 1) rounds; { (c) }
perform2(N − 1) steps of the reverse basic walk; { (d) }
τ ← 8(N − 1) + duration of the slowest possible execution of FINDSIGNATURE for
currentN ;
sig ← FINDSIGNATURE ();
wait until round numbert+ τ ;
repeat

OSCILLATE (sig, 2(N − 1), 0);
until round number is larger thant + 2τ ;
N ← 4N ;

until rendezvous;
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By applying the above procedure, one can show that rendezvous is guaranteed to occur
while the second (delayed) agent is still assuming a bound onn which is linear with
respect ton. By bounding the number of steps this agent performs before rendezvous,
we obtain the following theorem.

Theorem 4.7([T8]). For anyk ≥ c logn, wherec is some constant, there exists a pair
of agents equipped withk bits of memory which achieves rendezvous in timeO(n2/k)
when starting at non-symmetric initial positions with arbitrary delay.

It turns out, however, that no pair of agents can accomplish rendezvous in timeo(n+
n2/k), even in the class of lines and even with simultaneous start.

Theorem 4.8([T8]). Consider a pair of agents equipped withk bits of memory and
achieving rendezvous in anyn-node line starting from arbitrary non-symmetric initial
positions. Then:

1. For some constantc1 and arbitrarily largen, we havek ≥ c1 log n.

2. For some constantc2 and arbitrarily largen, there exists an-node line for which
these agents use time at leastc2(n + n2/k) to accomplish rendezvous from some
non-symmetric initial positions, even for simultaneous start.

For an agent knowing an upper bound on the number of nodesn of a tree, we can
compare the hardness of the rendezvous and exploration problems. Exploration with
termination can be performed by following2(n− 1) steps of the basic walk, given that
the agent is equipped with at leastO(logn) bits of memory to be able to count the
number of completed steps. On the other hand, the rendezvousproblem can only be
solved in linear time when given linear memory, and requiresΩ(n2/ logn) time for a
log-space agent.

4.3 Other models of rendezvous

The results from [164,T7] discussed in Section 4.1 provide an almost complete answer
to the question of when the rendezvous of a pair of synchronous agents in a graph is
feasible. Agents can meet if they have distinct labels, or ifthey have the same labels
but distinct initial views. In any other case, rendezvous will not be feasible, as long
as the agents start simultaneously. Considerations of larger groups of agents have led
Dieudonné and Pelc [71] to a similar criterion for gatheringa larger group of agents at a
single node. They introduce the notion of anenhanced viewof the agent, defined as its
view of the anonymous network with additional labels assigned to nodes, equal to0 for
all nodes which do not contain an agent, and toL for any node initially containing an
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agent with labelL.∗ Then, [71] show that a starting configuration with multiple agents
is gatherable, if and only if there exist agents with different views, and each agent has
a unique enhanced view. Moreover, they provide a universal algorithm for gathering all
gatherable configurations.

The situation becomes more complex for the case of asynchronous agents. An asyn-
chronous system can be thought of as controlled by an adversary, which decides for
each agent the duration of its traversal of an edge of the network. If agents are only
allowed to meet at nodes, then the adversary controlling thespeeds of the agents can
always guarantee that the agents never meet while they are both in motion. In fact,
rendezvous can only be achieved when one of the agents comes to a definite stop and
decides to wait for the other agent at some node, while the other either engages in per-
petual exploration of the graph along a trajectory which includes the node at which the
other agent is waiting, or simply stops at the same node. Thisrestricts the feasibility
of asynchronous rendezvous of anonymous agents to a narrow class of networks, in-
cluding those in which an agent can elect a unique leader node(i.e., networks equal to
their own quotient graph, in the case when the agents know a bound on the number of
nodes of the network). For this reason, most of the literature assumes a different defini-
tion of asynchronous rendezvous, in which agents can meet not only at nodes, but also
while “traversing an edge”. Alternatively, one can view themoves of the agent along
an edge as instantaneous, and allow the adversary to introduce arbitrary delays in the
time spent by the agent at nodes. In such an asynchronous scenario, it has recently been
shown that agents can always meet within a polynomial numberof moves if they have
unique labels [72]. For the case of anonymous agents, the class of instances for which
asynchronous rendezvous is feasible is quite similar to that in the synchronous case,
though due to the ability of the agents to meet on edges, certain configurations with a
mirror-type symmetry also turn out to be gatherable [102].

Finally, we remark on the complexity and feasibility of randomized rendezvous. For
rendezvous of a pair of agents, a reasonable approach consists in allowing both agents
to perform a random walk until they meet. As time tends to infinity, the probability of
successful completion of rendezvous tends to1; thus, such an approach may be con-
sidered to be randomized in the Las Vegas sense. When gathering a larger group of
agents, agents which have met stick together following the same walk, and the process
continues until all groups of agents have merged into one. Such processes, known under
the name of coalescing walks, have been extensively studiedin the literature [5,43,51].
Aldous [5] established that the expected time until two identical, synchronous Marko-
vian processes meet is bounded by a constant times the maximum hitting time of the
walk, over the nodes of the graph. Thus, if both of the agents were for example to fol-

∗The scenario defined in [71] is in fact restricted to anonymous agents, i.e., the assumption that the
agent’s label satisfiesL = 1 is made for all agents. A similar generalization of the concept of view
was previously introduced by Yamashita and Kameda in [173].
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low a Metropolis walk, their expected meeting time would beO(n2). By considering a
network consisting of two identical copies of some graph, containing one agent each at
some two corresponding nodes, and joined by connecting withan edge the nodes with
the highest hitting time, it follows that such a bound is asymptotically tight. Achiev-
ing improved bounds on the time of randomized rendezvous would only be possible
given the existence of substantially faster randomized exploration algorithms than those
currently known, which appears very unlikely.

It is worth noting that the technique of achieving randomized rendezvous of agents (or
tokens) in a network by means of coalescing walks proves useful in different contexts. In
the study of self-stabilizing algorithms, the algorithm ofIsraeli and Jalfon [110] solves
the mutual exclusion problem by providing a method of eliminating superfluous tokens
in a distributed network through coalescence, until the system eventually only contains
a single token, circulating among the nodes. The role of the token is to select the unique
active processor in the system. Concepts related to randomized rendezvous also appear
in techniques for bounding the mixing time of random processes, which rely on the
analysis of the time needed by a specifically contrived pair of Markovian processes to
coalesce to an identical state for both processes of the pair. This approach, known as
coupling [4,44], has proved to be a powerful tool, used amongothers to design parallel
algorithms for rapid shuffling of a permutation [54].



5 Challenges in agent-based
distributed computing

The results presented in this manuscript cover a range of topics related to agent-based
computing in anonymous graphs. The central theme question which we have ask through-
out the text can be posed as follows: “What are the computational capabilities of a single
agent in an anonymous network?”, and one can safely say that the state-of-the-art of the
literature, including the results discussed in this thesis, provide us with a reasonable
understanding of the answer. What is less well understood isthe optimal time com-
plexity of solutions to problems using one or more mobile agents under different model
restrictions, and the precise interplay between the time and memory complexity of the
agent.

5.1 Directions of study for anonymous networks

Time-space tradeoffs. A fundamental and current research problem concerns the
interplay between solution time and the memory space required by the agent, for both
randomized and deterministic approaches. In Chapter 2 we have pointed out that a de-
terministic agent equipped with a logarithmic number of bits of memory can explore
a graph inO(n4 log n) steps, a similar randomized agent only needsO(n2 log n) steps,
while the best known lower bound on exploration time for bothtypes of agents is only
n1+Ω(1/ log logn). This allows us to formulate intuitive working hypotheses,for exam-
ple, that an agent can solve many exploration-based problems significantly faster by
applying randomization, but an important complexity gap isstill left to be resolved. For
the moment, there is still no known framework which could combine known results in
the area. It would be of particular interest to combine theΩ(n2) lower bound on the
cover time of matrix-based random walks [149] and a similar lower bound ofΩ(n2) on
the length of universal tables for deterministic exploration (Section 2.3) into a general
lower bound which could apply to randomized algorithms for mobile agents.

Interestingly, for the exploration problem, we have no indication that agents equipped
with large memory (say, polynomial inn) are able to explore an anonymous graph in
asymptotically less time than algorithms with onlyΘ(logn) memory. This comes in
contrast to non-anonymous models, such as JAG-based approaches [T1], where adding
more memory to the agent allows us to design faster exploration algorithms. Of course,
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this does not mean that the memory size of the agent has no impact on the time of com-
putation. For example, in Chapter 4 we have shown that providing a mobile agent with
larger memory provably reduces the completion time for the fundamental problem of
anonymous synchronous rendezvous, in the class of trees. For the rendezvous problem
in general graphs, the impact of determinism and memory restriction on the time re-
quired for finding the solution seems to be even more noticeable, though in this case
optimal time bounds on the complexity of the problem are not known and we can only
try to draw conclusions based on the performance of the best currently known algorithm
for the rendezvous problem.

Another design characteristic of the agent, which influences its computational capa-
bilities, is knowledge of the value of global parameters. Wehave observed in Chapters 2
and 3 that single-agent problems, such as exploration and map construction, cannot as
a rule be solved with termination when no upper bound on the number of nodes of
the network is known by the agent. A more subtle question concerns the impact of
knowledge of global parameters on the time needed to complete certain tasks without
termination, such as covering all the nodes of the network during perpetual exploration.
In Section 2.2.2, we have noted that the running time of variants of the Metropolis walk
with small memory size are sensitive to knowledge of global parameters. At present,
the fastest known randomized exploration algorithms making use ofo(log log logn) bits
of memory rely on knowledge of an upper bound onn, whereas the fastest known ex-
ploration algorithms for agents with more memory (i.e.,Ω(log log log n) bits) do not
make use of the value ofn. One of our goals in future research will be to obtain a better
understanding of the three-way tradeoff between time, space, and knowledge in mobile
agent computing, complementing similar studies in “classical” models of distributed
computing with processors on nodes [124].

Model variants. Agent-based computing on anonymous networks is, above all,a
theoretical model of computation. Different refinements ofthe model are possible, al-
lowing us to draw general conclusions about the types of resources critical for solving
fundamental problems on graphs. Here, we briefly highlight three promising research
directions, which have been hinted at in the previous chapters of the manuscript.

First of all, the anonymous network model provides an excellent description for
agents whose memory is simply too small to accommodate a single node identifier.
By describing the agent as a Mealey automaton, and not as e.g.as a RAM machine
operating on memory addresses of sizeO(logn), we have a natural setting for studying
algorithms with sub-logarithmic memory complexity in the context of classical prob-
lems on graphs. The computational power of agents with sublogarithmic memory is not
yet well understood. It is a well-established result [159] that an agent requiresΩ(log n)
memory to explore all graphs of at mostn nodes, but it is not known if there exists an
agent witho(logn) memory which can explore any tree of at mostn nodes and termi-
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nate in a finite number of steps. The impact of memory size in the sub-logarithmic range
is visible also for randomized algorithms. As noted in Chapter 2, the number of memory
bits required by an agent to perform exploration in expectedÕ(n2) steps is bounded by
O(log log n). Decreasing the memory size to0 increases the exploration time toΘ(n3),
whereas increasing the memory size aboveO(log logn) does not appear to speed up the
process asymptotically. In current work-in-progress, we are undertaking an attempt to
understand time-space tradeoffs for small memory more fully, and also to find out if any
non-trivial topological properties of the anonymous network (related to the structure of
its quotient graph) can be decided with high probability by means of randomized agents
with sublogarithmic memory.

Another important question concerns the availability of local information to an agent
upon entering a node. Whereas the anonymous network model does away with all forms
of identifiers, we assume that the agent still knows the degree of the node it is located at,
and the port by which this node was entered. Whereas the degree information appears
to be indispensable to be able to design any reasonable algorithm, the information about
the port of entry has a more pragmatic rationale: without it,we are unable to reverse the
last move made by the agent. In the scenario without port-of-entry information, we are
still able to perform randomized graph exploration by usingthe random walk, as well as
deterministic graph exploration in polynomial time by following a Universal Traversal
Sequence based on the random walk. The question of the existence of faster exploration
strategies witho(n3) expected cover time remains open; in particular, it does notap-
pear to be possible to adapt the Metropolis walk to work without the ability to revert to
the last visited node. Whereas it is still possible to perform deterministic exploration
with O(logn) memory carried over links, the construction of Universal Exploration Se-
quences with local log-space computation [156] is not applicable, and log-space deter-
ministic exploration strategies are only known for the casewhen certain assumptions are
made abut the port labeling in the graph [157]. The quotient graph of the network can
still be reconstructed in polynomial time using an adaptation of the method described
in Section 3.2, but we do not know how to adapt any of the other methods, in particular,
if it is possible to construct the quotient graph carryingO(logn) memory over links.
Likewise, the question of deterministic rendezvous inO(logn) space remains open.

The idea of removing the ability to backtrack along previously traversed links leads
to further generalizations of the anonymous network model to the case of directed
graphs. When the digraph in which the agents operate is regular, or at least (almost)
Eulerian, then the cover time of the random walk is still polynomial [145]. The com-
plexity of solving deterministic exploration problems, quotient graph construction, and
rendezvous remains the same as in the previously discussed case of undirected graphs
without knowledge of port-of-entry. For Eulerian digraphs, the question of whether
an exploration strategy exists which requires log-space computations in the centralized
RAM model has profound theoretical implications; Reingoldet al. [157] have shown
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that the existence of such a strategy would imply that deterministic log-space machines
have the same power as randomized log-space machines, proving the equivalence of
complexity classes L=RL. The ability to prove the existenceof similar deterministic
exploration strategies for arbitrary (strongly connected) directed graphs would imply
the even stronger relation L=NL. Any collapse or separationof the known hierarchy L
⊆ RL ⊆ NL will certainly be a breakthrough in log-space computability at least com-
parable to Reingold’s [156] proof that L=SL. Most partial attempts to address these
problems rely on developments in derandomization techniques starting with the semi-
nal work of Nisan [146], asking if a deterministic log-spacealgorithm can achieve the
same behaviour as a randomized log-space algorithm which itsimulates for some small
pseudorandom seed. Results in this area have a direct bearing on agent-based explo-
ration algorithms, sometimes requiring only a change of language to transfer from the
centralized model to the distributed model.

5.2 Computing in a team

An important line of research in distributed computing theory of the last decade deals
with the problem of achieving a given goal using the coordinated effort of a team of
agents. Studies have been performed in different models of agent communication and
synchronization, and attempted tasks include fundamentalproblems of distributed com-
puting, such as rendezvous at specific locations, or stabilization on subsets of the net-
work satisfying certain properties. In Chapter 4 we have provided a brief overview
of the state-of-the-art for the rendezvous problem in anonymous graphs, also mention-
ing its applications to problems such as leader election. A completely separate line
of study deals with the problem of using a coordinated team ofagents to detect a
hazardous network fault or a rogue agent, most notably in theso called “black-hole
search” [74,85,126] and “distributed cops-and-robber search” problems [116,125].

Apart from the above mentioned tasks whose very definition relies on the existence
of multiple agents in the network, an extremely relevant research direction concerns
investigations into collaborative solutions to problems such as graph exploration, for
which a single agent suffices to obtain a valid solution, but computations in a team can
lead to a solution more quickly. Here, the main object of focus is thespeed-upof the
approach, i.e., informally speaking, the decrease in the running time of an algorithm
when deploying multiple agents in the network instead of one.

The speed-up depends on many factors, including the initiallocation of the agents
and the possible interactions between them. We illustrate this question with a simple
real-world example, which is indicative of the need for agent coordination. Consider
a document repository forming an e-book, divided into HTML documents consisting
of one page of the book each, with each page containing a hyperlink to the next and
previous pages, only. Suppose that an agent is a process which reads a page, and then
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follows a random hyperlink on this page. The task of the team of agents is to verify the
integrity of the repository, i.e., to check if the book contains all of its pages in order. If
not, any one of the agents is expected to signal an error. The goal is to complete the task
in the shortest possible time (in expectation). It turns out, that depending on the way
the agents coordinate with each other, we may benefit to a varying degree by deploying
a larger number of agents to solve the task. Consider, e.g., three different strategies for
solving the studied exemplary problem:

A. The agents explore the book in parallel, starting from page 1. This strategy
achieves little gain: the speedup of execution is very small(logarithmic) com-
pared to the number of deployed agents [9].

B. The agents process the book in parallel, starting from evenly spread out pages of
the book.In this strategy, the execution speeds up by more than a linear factor in
terms of the number of deployed agents (more precisely, the expected speed-up is
Θ(k2/ log2 k) [118] for k agents), leading to a highly desirable synergy effect.

C. The agents process the book in parallel, starting from evenly spread out pages of
the book, with the added stipulation that each agent is confined to its own section
of the book (“block” of pages).This strategy achieves even stronger synergy: ex-
ecution speeds up by a factor ofΘ(k2/ log k) (the argument follows directly from
the probability distributions of hitting times of one-dimensional random walks,
cf. [139]).

When performing “uncoordinated” random walks, with agentsdeployed in a graph
independently of each other, the achieved speed-up of exploration has been character-
ized in [9,80,83] (cf. Section 2.2). The value of this speed-up may sometimes be as low
as logarithmic, and sometimes as high as exponential, in terms ofk. For many classes
of graphs which often appear in networking practice the speed-up is linear in terms of
k, but only for small values ofk (k ∈ O(logn)).

Many open questions still remain regarding the parallelization of graph exploration.
To begin with, the random walk is not the only exploration strategy for which speed-up
in collaborative computations with a team of agents can be measured. For example,
our work [T1] indicates that multiple agents following independent Metropolis walks
starting from uniformly random network nodes cover a graph much faster than a single
Metropolis walk. Currently, there is still no general theory of parallel walks. The ques-
tion of finding the exploration algorithm which allowsk agents acting independently
and in parallel to explore a network as quickly as possible isalso wide open.

In our current work-in-progress, we have considered the rotor-router mechanism
(Section 2.5.1) in the context of multiple agents. Here, theagents moving in the rotor-
router system interact with the same set of pointers at nodes, meaning that they cannot
be treated as independent walkers in the graph. Still, the obtained values of speed-up
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are surprisingly similar to those for the case of multiple random walks. For the case
of the ring, we have established [118] that the worst-case cover time of the rotor-router
with k agents is preciselyΘ(log k) times smaller than the corresponding worst case
cover time for a single agent. In work currently in preparation, we show thatk agents
in fact achieve a speed-up ofΩ(log k) in arbitrary networks. At a very informal level
of description, the speed-up of the multi-agent rotor-router on the ring stems from the
fact that each agent is associated with a so-calleddomain, i.e., a part of the graph it
has already explored, close to its current location and not recently visited by any other
agent.

Other techniques may be applied for agents in the anonymous network model which
are allowed to communicate with each other. The first theoretical results in the area are
due to [92], who show that there exists a strategy which explores a tree with a team of
k agents starting from the same node with a speed-up ofΘ(log k) with respect to the
best possible strategy for a single agent. This result holdsfor smallk (k <

√
n) and

a communication model which either allows agents to write onwhiteboards or to com-
municate at a distance. The question of the optimality of such an approach stands wide
open, with the best known upper bound on speed-up in such a model beingO(k/ log k).
Very recently, we have also studied the same question of collaborative exploration with
much larger team sizes. In [67], we show that in an arbitrary anonymous network with
m edges and diameterD , a team ofk > m1+ǫD agents starting from the same node
explores the network in asymptotically optimal timeO(D).∗ This result holds for an
even more restrictive model in which two agents can only communicate when located
at the same node. For smaller team sizes than the result proposed in [67], establishing
the exact tradeoff between the team sizek and the exploration time is a highly relevant
and challenging open problem. This question can be considered both in the context of
anonymous networks, and networks with unique node identifiers known to the agent.

5.3 Some new models and inspirations

The future of mobile agent computing is intrinsically tied to new, emerging areas of
application. The last decade has seen intensive research into random walks tuned for
applications on the web and in social networks. Approaches based on random walks
have been elaborated which shift (bias) the agent towards spending more time at hubs
or nodes of high importance, often applying machine learning algorithms to compute
according edge weights to guide the agent in its walk [134]. Theoretical foundations
have been laid out for network exploration using parallel random walks [9, 80, 83], and
several variants of the random walk achieving improved cover time have been put for-
ward [31, 147, 149]. It appears likely that future research will bring answers to more

∗Strictly speaking, our results from [67] are not set in the anonymous network model. We thank Jérémie
Chalopin for bringing to our attention that they also hold inanonymous networks.
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complex questions, combining the elements of theory developed so far. For example,
we may ask about the optimal collaborative exploration strategy in order to periodi-
cally explore the nodes of a web-type graph with uniform probability, given a set ofk
agents crawling it in parallel while the network topology isconstantly undergoing evo-
lution according to some model of link formation. In addition to the problems of multi-
agent protocol design discussed in Section 5.2, the aspect of dynamism is particularly
challenging, since our understanding of the behavior of random walks agent-based algo-
rithms in evolving networks is relatively limited for both adversarial and non-adversarial
scenarios (cf. [22] for one of the few papers on the topic).

The problem of coping with network evolution is closely linked to challenges re-
lated to detecting and evaluating the importance of information appearing in real time
in social networks and webs of knowledge. New algorithms forindexing the web need
to pick up on hot news items and other resources which are quickly gaining new in-
bound links in the network, while skillfully eliminating useless background noise and
remaining immune to intentional manipulation of the topology of the web (e.g., through
so-called “link farms”). In social networks, the patterns of propagation of information
are particularly complex [115, 121]. Agent-based protocols may prove to be a viable
approach to simulating such processes of rumour spreading,detecting which nodes of
the network are capable of starting a cascade of informationwhich will reach a large
subset of network nodes, etc.

Another important area where the theory of mobile agent computing has been lagging
a little behind real-world designs is that of collaborativemulti-robot designs in robotics.
When undertaking such challenges, we immediately run into the theoretical challenges
of coordinating a team of robots, highlighted in Section 5.2. These problems are addi-
tionally aggravated by difficulties of real-world implementation. One pressing aspect is
to develop models and algorithms for heterogeneous robots which are cooperating with
each other. In the simplest case, some robots may move fasterthan others. Under the
assumption that robots have different maximum speeds, mostknown theoretical results
for problems of search and exploration no longer hold. Even classical problems, such
as locating a distinguished point in a one-dimensional terrain (the so-called “cow-path
problem”), admit algorithmic solutions with a more involved structure, depending on
the relative speeds of the robots [57]. Another example is the problem of patrolling a
segment or a circular terrain so as to minimize the maximum time when a point of the
circumference is left unguarded. The task admits a simple solution with regular robot
trajectories when all the robots have the same speed, but this is no longer the case for
robots with different speeds [58,114]. In fact, the optimaldesign of trajectories for such
robots remains an open problem, even for the simple cases of asegment or a ring. For
a set ofk robots with known maximum speeds, the solution to the patrolling problem
on a circular terrain is closely related to the lonely runnerconjecture [33] — an open
question in number theory first posed in 1967 (related to the Littlewood, Goldbach,
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FIGURE 5.1: The Elitzur-Vaidman bomb-testing problem (image source: [169])

and Polignac conjectures), which has recently been partially addressed using methods
from dynamical systems theory [106]. Whereas this type of heterogeneous multi-agent
problem appears to be very hard in a centralized setting, i.e., when all the robots can
coordinate their actions, the distributed setting in whichall agents decide on their own
actions is not at all understood and definitely deserves further study.

Finally, it is extremely tempting to try to extend of the mobile-agent computing frame-
work to unconventional models of computation, and in particular to quantum comput-
ing. This direction appears natural, since in the design of many quantum algorithms, the
so-calledquantum walkserves as a key building block. The quantum walk approach can
be regarded as a quantum analogue of the classical random walk, in which the walker’s
current state is no longer a probability distribution over locations in the graph, but in-
stead a quantum superposition of locations in the graph. Such an approach can be used
to obtain quantum algorithms for problems such as element distinctness in a list or de-
tecting if the graph is triangle-free, which are faster by a polynomial factor than the
fastest possible classical algorithms for the same problems [14, 140]. By treating the
walker as a mobile agent, we could perhaps try to consider quantum analogues of the
problems studied in this work: quantum exploration, quantum rendezvous, etc. The first
hurdle when undertaking this approach lies in obtaining a precise formulation of, e.g.,
what it means that two agents meet, given a model of computation in which the loca-
tion of the agent only becomes well-defined in the measurement phase at the end of the
quantum process, and not during its intermediate steps. Since we have yet to provide a
way to cope completely with this problem, we close this manuscript with some intuition
and a word of caution related to a famous “paradox” in an experiment known as the
Elitzur-Vaidman bomb-testing problem [81], which arises in the quantum setting. The
experimental set-up is illustrated in Figure 5.1. In the experiment, the light source A
emits a single photon (particle), which we can think of as ourwalker or “agent” in the
system. Immediately after leaving the source, the photon passes through a half-plated
mirror, and is reflected from the mirror along the upper path with probability1/2, or
continues through the mirror and along the lower path with probability1/2. A box B is
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placed on the lower path in the way of the photon. The box may either be a dud (which
does nothing and does not affect the path taken by the photon), or a light-triggered bomb
which explodes immediately after the photon passes throughit. Finally, after passing
through another half-plated mirror placed in the way of boththe lower and the upper
path, the potentially surviving photon is captured and measured by exactly one of the
light detectors C or D.

A classical view of the above scenario would tell us that the “agent” chooses either
the upper path, or the lower path, each with probability1/2. Consequently, it either
passes through box B, or does not pass through it, with each ofthese events occurring
with probability 1/2. This means that in order to be able to identify the box B as a
real bomb with certainty, we would need to know that the “agent” has passed through
point B, implying that the bomb would always have to explode during such positive
identification. Somewhat surprisingly, this analysis no longer holds under the laws of
physics, as can be shown in a real-world experiment. Applying quantum mechanics, a
more accurate view of the route taken by our agent is not that of a deterministic choice of
the upper or lower path, each with probability1/2, but instead a quantum superposition
of these two paths, which may, somewhat informally, be thought of as a probability
wave going through both of these paths at once. As such, the photon never fully goes
through point B, even if it interacts with it. By performing aformal analysis, Elitzur and
Vaidman [81] obtained that by reading the measurements of the detectors C and D, the
box at B may in some runs of the experiment (i.e., with a strictly positive probability,
equal to1/4) be identified as a real bomb for certain, without actually exploding.

This simple example indicates at least one possible approach which could be used
to define the quantum mobile agent framework. Rather than saying that the agent has
gone through point B, we can say (and check) that the agent hasinteracted with point
B. Likewise, rather than requiring that two agents achieve quantum rendezvous in some
time round, we can require that by the end of the algorithm, the agents will have ex-
changed some information, thus proving that at some point intime they interacted with
each other at the same location. As mentioned before, developing this type of intuition
into a consistent theory, and more importantly — one which will yield useful theoretical
results — appears to be a challenging, but potentially rewarding research task.
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