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Preface

Computing with mobile agents is rapidly becoming a topic eimstream research in the
theory of distributed computing. The objective of most #gdn the area is to provide
models of agent-based computation with solid mathemadindlalgorithmic founda-
tions, and to improve our understanding of the capabiliemobile agents, subject
to different constraints. Well-known concepts from paatadind distributed computing,
such as anonymity, locality, and synchronicity, can be radiyuadapted to fit into mod-
els using mobile agents as their processing units. At theegame, solutions to many
fundamental problems of distributed computing, such awowt discovery or process
rendezvous, take on a completely new meaning when compusatire performed by
mobile agents and require the development of new approaches

This HDR manuscript provides an overview of some of the wonkave performed
in the period 2008-2013 in the area of mobile-agent comguficusing on results in
variants of the anonymous network model. The main part oHB& has been pub-
lished in the form of 8 research papers [T1-T8]. Questionshvtve ask and address
in these papers are usually of the following kind: What peofid admit a solution on
an anonymous network? How quickly can an agent solve a givellggn? Can an
agent solve a problem given only a limited amount of state orgfh For the case of
a single mobile agent in a graph, we consider the compleXitihetasks of exploring
an unknown network, and of learning its topology. The fortask is studied due to its
immense practical and theoretical significance, while #tiet is known to be a form of
a “universal problem” for a single agent in an anonymous netwto which all other
feasible tasks can be reduced. We then extend our attentiba tase of more than one
agent, considering the most fundamental coordinatiorimephamely, the rendezvous
problem for a pair of agents.

| have decided to open this HDR with an introductory manyscarganized into five
chapters. Its primary purpose is to set the research catitibof the papers [T1-T8],
which form the main part of this HDR, into a broader contexhéféas the literature of
mobile agent computing has recently gained at least twaddumonographs [88,130],
there is clearly still room for a separate survey work, degictpecifically to the topic
of agent-based computation in anonymous networks. Sohiaridpic has only been
covered in a brief survey article [63] and in several inviteahference talks [98, 153],
serving mainly as comprehensive literature referencesave written this text with
the hope that it may, in the future, be extended and revisedtire form of a short
monograph on the topic of mobile agent computing in anonygmaiworks.
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One of the difficulties which arise when surveying the litara of mobile agents in
anonymous networks is the clear lack of agreement amongrelift authors as to the
precise formulation of the studied model. Apparent suigtsedf definition, such as
deciding whether an agent should be modeled by a Mealy atitonoet a Moore au-
tomaton, or how to count the size of the memory used by an agexan that different
results advertised in the literature are not comparablaca ¥alue. In some cases, re-
sults published in the context of centralized computatmg.( in models of Jumping
Automata for Graphs) have direct corollaries in the anonysmaodel of mobile agent
computing. For the sake of clarity, | have made an attemptrémSlate” all of the rele-
vant results from the literature into one consistent maategd for the better part of the
manuscript. As a side effect of this process, the reader mayttiat some of the cited
results are stated in this manuscript in a slightly difféferm than that which appears
in the referenced original work.

In terms of advancing research directions, | would condigkegeneral contributions
of the thesis to be twofold. Firstly, in the context of graptpleration, we have pro-
vided a new description and analysis for exploration sgiagewhich may be seen as
viable alternatives to the random walk process. In pardicute have carried out inves-
tigations into variants of the rotor-router model and of Ketropolis-Hastings walk,
contributing significantly to our understanding of theithbeiour in aspects such as:
tradeoffs between running time and memory space, regulairgxploration, resilience
to network faults [T1-T5]. Secondly, in the context of thedhy of computability in
anonymous graph, we have provided general routines whitbeaised by the agent to
manipulate the so-called quotient graph, which is a form‘@hap” of the anonymous
network. This has led us to new efficient approaches to sue@amental problems of
agent-based computing (such as synchronous rendezvolesaled election), including
the first known agent-based algorithms for solving thedestadich run in logarithmic
space, as well as to improved time-space tradeoffs for tiem/ous problem [T6-T8].
To allow the reader to more easily appreciate the originatrdaution of this HDR, the
specific technical contributions of the papers [T1-T8] ammaarized in Section 1.4.

Whereas each of chapters of this text is largely stand-alibrgepresentation is or-
ganized so as to develop one central theme. We start Chaptéh 2 discussion of
variants of random walks in exploration problem. From randealks, we move on
to universal exploration sequences and other approachieb ate built by derandom-
izing random walks. In Chapter 3, we then use the same uiveesjuences as the
key building-block for quotient graph construction algbms. Next, in Chapter 4, such
guotient graph construction routines are applied to sdlee¢ndezvous problem, mov-
ing to the domain of multiple agents in the graph. Other madjnt problems are briefly
covered in Chapter 5, which outlines perspectives for augiudy. When working on
this manuscript in the future, |1 would like to add one or twt @lnapters on multi-agent
exploration and coordination, taking into account some wfmost recent results on
these topics [55,67,118] and current work-in-progress.
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1 Introduction

The concept of “mobile agent computing” has appeared inrdimal studies and en-
gineering practice, in varied and often completely uneslatontexts. It has been used
with respect to designs of autonomous and migrating sofwaits, in the theory of
robotics, and even in research into interacting economentsg Comparing the mul-
tifarious definitions of mobile-agent-based designs, #eder may discover that the
common elements of these designs may only be expressed fiortheof a number of
very general features or characteristics. These usualiyde (cf. e.g. [130]): providing
a decentralized description of the system from the perseatindividual agents oper-
ating within it, the existence of clearly set out rules goweg the mobility of agents and
their interaction with other elements of the system, autoynof actions taken by each
of the agents, and sometimes an expectation of protocdibrese after a fault arises in
the system.

Such a property-driven description of a mobile-agent sygteovides us with valu-
able hints on how to model an agent mathematically. Fromar#tieal perspective, the
agent behaves like an automaton, whose actions at a giveremarhtime depend on
its current state (which represents information known ®dgent), metadata relating
the agent to the environment (unknown to the agent), andtéte sf the system in the
vicinity in which the agent is operating. The agent occupiéged location in its envi-
ronment, such as a node of a network, and has the ability t@tooan adjacent location
in the same environment. The model takes its precise shape wé take into account
the topology of the operating environment of the agent, amaérpectations of the com-
putational capabilities of the agent’s processing unim8&times a single mathematical
model may be used to describe agents with diverse physiaehcteristics but behaving
similarly at a high level of abstraction, for example, a migrmaintenance process on
a computer network, a physical robot exploring a maze, andta tken circulating
around a distributed network of processors. On the othed,leateam of robots work-
ing in an environment consisting of interconnected passage, and a team of robots
operating in the open plane, will usually be described by @etely different models,
with the model of the former taking into account the topolofthe environment, while
the model of the latter relying on its geometric properties.

This work focuses on agents operating in a network. It is s#tinvthe framework
of agent-based computation which has become prevalengiiiténature of Distributed
Computing theory of the last decade (cf. e.g. survey pap&453]). The emergence of
this field is a direct consequence of the growth of computeworks at a global scale,
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which has given rise to new algorithmic challenges relatethé search, processing,
and dissemination of information. In the studied contegerd-based computing may
be perceived as an alternative to local models of distribatemputation with proces-
sors placed on nodes of a graph [154]. In our consideratibasyurden of computation
is shifted away from processors located on nodes onto aggutpped with computa-
tional capabilities, moving around the nodes of graph. At giwen moment of time,
each agent is located at a network node, and has the abilitaverse network links,
carrying over its state memory to the new location. Such amigased description is
applicable for many maintenance processes operating ibhatleground in a physical
computer network, in a distributed system. More indiredtlya logical sense, agents
can be used to describe background processes which cralek,iand organize webs
of information, such as the world wide web or a social network

Within the framework of networked agent-based computinfferent models take
into account various characteristics of the agent. By inmgpsonstraints on some of
these parameters and allowing the agent more freedom inspthie can focus on dif-
ferent aspects of the agents’ behaviour in real-world stenaSuch model-dependent
constraints may concern any of the following features:

e the computational capabilities of the ageand in particular the size of the state
memory of the agent which persists when the agent moves fiaae to node
along a network link,

¢ the initial knowledge of the agent at the time of deploym&htch may include a
full or partial map of the network environment, knowledgeled agent’s location,
knowledge of values of global parameters such as the sizeafdtwork, etc.

¢ the agent's capabilities of perception of the environmenth as the ability to
distinguish nodes or edges, or the view of the environmegitae to the agent
which may include the entire graph or only the neighbourhobthe agent’s
location

¢ the ability of the agent to interact with the network and vather agentshrough
markers or tokens placed at nodes, information written oneltbards at nodes,
etc.

o differences between agents operating in the netwodnifested by the presence
or absence of unique identifiers of the agents, differencédsa speed of traversal
of edges, or the potential asynchrony of the clocks goverttie operation of
different agents.

The precise mathematical model of the system which we censidthis work is that
of anonymous port-labeled networkS8uch networks were introduced in the more gen-
eral context of distributed computation by Yamashita anth&da [172], and only later
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adapted to include agent-based computation [131]. The lkayacteristics of this net-
work model include: a lack o4 priori global knowledge of the network topology, per-
ception of the environment by the agent restricted to onlycall view of the network
in the neighbourhood of the agent’s current location, andnymity of nodes— a re-
quirement that computations performed by the agent canakémse of any identifying
information specific to the node at which the agent is locafBue latter assumption,
which is arguably the most restrictive, focuses our attentin mobile agent algorithms
which behave “uniformly” over all nodes of the network. Oressical example of such
an algorithm is theandom walkon graphs, which owes much of its popularity to its effi-
ciency in many practical applications, simplicity of fortation, location-independence,
and resilience to minor network faults. Most other algamit approaches considered
in this work are, at least to some degree, inspired by the tgoalleviate some of the
known weaknesses of the random walk, while retaining it&rdlele properties. Before
proceeding to a formal definition of the studied model andsigling an overview of
our contributions in Sections 1.3 and 1.4, we first give ahslygbroader perspective of
mobile agent models in theory and practice.

1.1 Research context

The field of agent-based computing in networks takes itssréroim several research
areas of theoretical computer science, distributed comgutetwork optimization, and
robotics.

The origins of exploration problems in mobile agent compgitan be traced back at
least a century, to the problem of finding lost treasure in aenfaf. [45] for a histori-
cal survey). The topic became particularly relevant to si@@am theoretical computer
science in the 1980s, which saw an intensification of stuttysolutions to reachability
problems. At the focus of attention was the seminal problért-&€onnectivity, which
consists in deciding whether two given nodes of a grapimdt, belong to the same con-
nected component. This problem, which admits a simple isolily strategies such as
Depth First Search, becomes considerably more involvecdhalrestriction is imposed
on the amount of memory available for computation. The wdrRleliunaset al. [7]
provided the first efficient logarithmic-space solutionte problem with bounded error,
establishing random walks as a viable method for graph eaptm problems, as well
as introducing the notion of deterministic traversal seqes for graph exploration.
A quarter of a century later, Reingold [156] showed the fistedministic graph ex-
ploration strategy which works in logarithmic space, resa in the affirmative the
equality of log-space and symmetric log-space complexdagses [ = SL). These
results, as well most of the literature on the topic, arerse¢hé centralized setting of
computation in the RAM model. However, they can also be reifdated in the JAG
model of computation (jumping automata on graphs), inteediy Cook and Rackoff
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in 1980 [50]. The main distinction between the RAM and JAG mlsds that in a JAG,
identifiers of nodes may not be used as operands of arbitrahyreetic operations or
comparisons. The JAG model, initially designed as a comrernool for proving lower
bounds and impossibility results, admits a natural inetgiron of a JAG as a team of
stateful pebbles, placed on nodes of a graph, such that edtiepcan be moved along
an edge incident to its current location, or teleported &ltication of another pebble.
Consequently, it is easy to reformulate the JAG model in $eofna team of commu-
nicating mobile agents moving around a graph, located atates and traversing its
edges in successive time steps. As a matter of fact, manyithlignc results, including
the aforementioned works of Aleliunas al. and Reingold, can also be shown to hold
when using a JAG with just one pebble moving along the edgagcdph, which means
that these problems can be solved by deploying a single mag#nt in a graph.

Considerations of mobile agents from a distributed pertspgebave led to additional
concerns, resulting from the need to coordinate a team aitagkn this context, agents
admit properties analogous to those of processors in ahliistd system. Agents can
either operate synchronously, moving among the networkesaudsynchronous rounds
governed by a central clock, or asynchronously, with ea@nggetting its own pace.
The concept of faults in the system may be applied both totagérading to notions
such as “Byzantine agents” [101]), as well as to nodes osslimkhich may possibly
damage the agent they are hosting (so-called “black holes120]). Likewise, the
lack of unique identifiers is a concern both in the contextgérds (which may, but
need not have unique identifiers), and locations in the niétwo particular, the model
of an anonymous network, formalized by Yamashita and Kanj&d2] in the context
of distributed computing, provides a convenient settingstodying location-oblivious
algorithms for mobile agents, which is central to this studizte anonymous network
model restricts the agent’s capabilities by imposing aamsts of anonymity and local-
ity of view, but at the same time it guarantees some form dfipemce of information,
since the agent can carry its memory state over network.lifike size of this memory
can be restricted, but even then, the agent is usually asstonege capable of basic
navigation, e.g, of reverting the last move it has performed

Some related models of mobile agents seek to capture theeimt@ossibility of loss
of state information by the agent as a result of system fadltss has led to an in-
teresting line of study of models in which agents are obligioand their knowledge
is restricted to a (possibly delayed) perception of theesthtthe system, known as a
snapshat The typical life cycle of such an agent is described by araiezl sequence
of three phases: bBook phase when the agent performs a snapsh@pmaputephase
when it considers its next action, and/@vephase during which it is transported to an
adjacent node. Such approaches are a natural extensioli-efad®lizing algorithms
in distributed computing, since it is expected that an aiad®e final configuration can
be reached from any initial starting configuration. Resuidtthe area concerns such
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problems as gathering at a single point [112,117, 119] opoegtenl exploration of the
graph [70, 135], and have been obtained for both geometdmatworked scenarios
and in models differing in synchronicity and atomicity ofevations [62].

Many challenges faced by mobile agents in networks have toeinterparts in ge-
ometric settings. Geometric agents, moving around a cootig terrain, are more fre-
guently referred to by the termbots and have been the object of study in robotics, au-
tonomous system design, operations research, and disttibomputing. For a single
robot, tasks which have been studied include exploring &mawn environment (e.g.
with the goal of constructing a map or locating an unknowgegrand patrolling the
interior or the perimeter of a known terrain. Exploratiordgatrolling tasks naturally
generalize to scenarios with a team of multiple cooperatotpts; such multi-robot
coverage tasks are a promising and important direction toféuresearch (cf. Chap-
ter 5). The application of multiple robots has also led todesign of algorithms for
performing numerous coordination routines, such as eshaby visual contact among a
team of robots, as well as the task of gathering geometrimtsadt a single point [49,89],
or more generally, formation of a geometric pattern with@ugrof robots [90,163,174].
Some geometric scenarios can be related to a networkedgsbitidiscretizing the ter-
rain in which the robots operate, which usually takes thenfof a polygon with holes
or obstacles, and modeling it as a grid-type graph, in a pokaown as skeletonisa-
tion. In this way, for example, some geometric patrollinglgems can be modeled as
problems of vehicle routing in graphs or the graphic Trangglbalesman Problem [8],
and problems of approximate meeting of two robots on theile@h plane can some-
times be solved using rendezvous algorithms for networ@§ [Bevertheless, models
of geometric robots may include characteristics which oate easily captured in a
networked setting. The observation capabilities of rolootshe plane may correspond
to the line of sight of the robot (and possibly a bounded angleange of vision, de-
pending on its heading). A physical robot may have non-zéredsions, potentially
influencing the rules of its own motion, and obscuring visam obstructing move-
ments of other robots [59]. On the other hand, when the difoeraf the robot are
treated as negligible, tasks such as exploration of a tweedsional terrain or meeting
with another robot in the absence of orientation points caly be solved in an ap-
proximate manner [60]. Whereas computations in networkedats involve problems
related to symmetries of the graph, the sense of directi@arobot on the plane is usu-
ally controlled by robots’ compasses, which may potentila# faulty or uncoordinated
among different robots [162]. Geometric scenarios alddaaa continuous description
of robot’s motion, requiring a different definition of asymony than network models,
allowing for robots with variable speeds. Some notionshaslimited battery power
(or tank capacity) of the robot, incurring the need for réifog from a depot, have been
carried over from geometric scenarios to networked sces i 78].

Techniques which appear in the analysis of mobile agentsisanbe found in other
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areas of distributed computing and network theory. The mlmstely connected top-
ics include routing protocols in the presence of extremetytéd routing data (e.g.,
compact routing, and routing with invalid information [10®4]), as well as protocols
related to token circulation in a distributed system. Amdimg latter, one especially
interesting example is the randomized self-stabilizinigtson to the mutual exclusion
problem proposed by Israeli and Jalfon [110] (cf. also latggrovements [107]). In it,

tokens circulate in a network of processors following inglegient random walks, and
only nodes hosting a token perform non-empty operationsh @uprotocol can effec-
tively be considered to be a deployment of a system of mogga&s over a network of
processors.

Finally, we remark on some game-theoretic aspects of mabadat computing. When
more than one mobile agent is operating in the network, drtiehgents have a com-
mon goal, the behavior of the agents may be viewed as a forntollaborative game
played by the agents. On the other hand, it is easy to imagimexts in which individ-
ual agents or sub-teams of agents have opposing goals. nbtisies different search
games, also known as games of pursuit-evasion or predadepi@y [12]. The usual
form of a search game on a graph is one in which a team of whaatagknown as
guards or cops) move around the graph in an attempt to find @ptdre a single black
agent (the robber or the intruder). This problem has beeahestwnder various assump-
tions, concerning e.g. the relative speed and visibilitthef agents or requirements on
some form of monotonicity of the search strategy. It displagautiful connections to
both structural graph theory, relating to parameters sagathwidth [116], and to com-
plexity theory in the analysis of games of graphs. In geoimetodels, it is possible to
design interesting game scenarios with only a single poedaid a single prey, leading
to problems known under colorful names such as “the probletheoprincess and the
monster”, or “the lion and man problem” posed by Rado in 1925{38]).

1.2 Mobile agents in networking practice

Computational models which rely on mobile agents focus @tideing the operation
of the system from the perspective of individual agentfieathan from the perspective
of network nodes. Protocols governed by this “mobile agamagigm” are usually used
as subroutines of more complex tasks, related to networkyaamcation, navigation,
transportation, and security.

From a modeling perspective, a mobile agent is an entitytéocat any moment of
time at a network node, equipped with some state informatibith remains intact
when the agent traverses network links, and with the ahbititynodify its own state
while located at network nodes. The nodes of the networkraegéed merely as passive
carriers, whose role is limited to propagating the agenhertéam of agents operating
in the network. As such, a node which does not contain an agemtgiven moment
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is not permitted to perform any computations at that timechSaiconstraint is neces-
sary when defining protocols for networks in which nodes agichl entities with no
computational capabilities, e.g., webs of knowledge oradaetworks, but it may also
prove technologically justified by efficiency concerns irypical computer networks.

When considering implementation of an agent-based prbmt@ computer net-
work, the agent usually materializes in the form of a pieceajtware or a packet of
data. During deployment, the mobility of an agent among the&shof the network may
be realised in one of two distinct forms. In one case, the tigea process physically
running outside the network it is logically placed in, whicterely operates on an ex-
ternal data structure, representing the structure of nm&twin this case, the agent’s
algorithm needs to “pull” from the network data structure ttata corresponding to the
agent’s current location. This type of “pull” paradigm liassthe heart of the design of
crawling robots for indexing the world wide web [25,52]. lack a process, a robot
running on an external server downloads a web page, pargg®deeds along a link
to download a subsequent web page, etc. — thus realizinglitydhrough a web of
information without ever actually changing the server onclht is running. Webs of
interconnected data obviously cannot host an agent phlysicance only pull-type ap-
proaches are feasible. This includes, for example, rolmotsvialuating the relative im-
portance of nodes in a web using PageRank-type algorithi8$®], robots proposing
new connections in a social network through so-called siped random walks [24],
and robots for finding cuts and clusterings of the network’/[LFor implementations
related to social networks, a model of operation of a robli¢dédcrawl-and-jump” has
recently been introduced [40], where the “crawl” phasee&sponds to an agent located
at a node of the social network moving along a friendship ectian to a neighboring
node, while the “jump” phase represents a global move todamauty chosen node of the
social network. Such an approach has been used e.qg. tolmkealgorithms for choosing
a representative sample of nodes from among those activeiadcial network [38],
and in particular to evaluate how strongly a node of a so@élark can influence the
opinion of other nodes in the network when propagating a wrbetween direct neigh-
bours. A related random-walk based approach is used in tE#skampling in social
networks, in which the goal is to find the value of a metric & tretwork’s population
(such as average age, income, or number of friends), by oalyling and polling a
subset of the nodes [99, 134, 136]. The crawl-and-jump ambrdrom a theoretician’s
perspective, is very closely related to the classical JA@ehm centralized computing,
or the anonymous network model studied in this manuscriptSection 1.3). At the
level of modeling social networks and webs of data, the ilaapieces of information
seem to propagate along random walks or paths in the web basdto be a useful
tool, improving our understanding of the flow of information the web [115,121].

The second type of mobility of the agent corresponds to titng in which the
agent’s environment is a network of physical hosts — sereemocessors. Such hosts
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can “push” the agent from node to node, conveying the agemdimory state (and per-
haps also the code of its algorithm) along the communicdinis of the network. As
arule, each node, having “processed” an agent, transnatprecisely one other node,
and returns to the same state of operation in which it wasreefxeiving the agent.
Nevertheless, situations in which the agent is a completeepof software, passed on
from machine to machine, are relatively rare in practicechSa paradigm of mobile
or migrant software was widely studied in the literaturehia 1990'’s, but never gained
widespread adoption, most notably due to security cona@nsected to running mu-
table software received from other hosts. It is much moremomto find applications
in which all of the network hosts are pre-installed with themutable logic of the agent,
while only the agent’s mutable memory state is transmittadrag nodes. Such a pro-
cess resembles a routing process, and whether a retragpigice of data is treated
as a packet or as an agent is sometimes a question of convelmntigeneral, an agent-
based approach seems more in place when all nodes treatehewagformly, which
means that, in particular, they do not apply routing tabfeecHic to their location in
the network in order to decide the agent’s next move. Studlidhis type of simple
token or agent, usually following random walks among thet lmbshe network, have
had a major impact on routing and information managemertbpots in peer-to-peer
networks [100]. When a node of a peer-to-peer network needistover some in-
formation, it may attempt to ask all its neighbours at a tiffegding the network, or
release a single request which moves through the netwdlawiag a kind of random
walk. The performance of latter approach is especiallyiefficunder the assumption
of an undirected network with low diameter and good expanpi@perties, which is
usually the case in contemporary peer-to-peer designsdoitaited data storage.

Regardless of whether a specific technological problens éatla “pull” or “push”-
type approach to agent mobility, the use of a mobile agentopod to describe the
solution at an abstract level has a number of advantageswBet briefly list some of
the most important:

e Economy of resourcesThe number of active agents in the system is easy to
control, allowing for easy bounding of the amount of comncation and the
number of messages circulating in the network at any givere.ti Moreover,
nodes which do not host an agent at a given moment of time nraginein a
resource-saving “dormant state”.

e Operation in networks of unknown topologhhe agents operating in the system
do not, in general, need to know or store the structure of titieeenetwork. This
is an important property, in view of the large scale of thevoek, and the constant
changes in the topology of the network. Quite often, everettect size of the
network is unknown.

e Operation in dynamic environment&gents may be designed so as to success-
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fully adapt to a constantly evolving network topology, andoerform local re-
location whenever necessary. Such relocation may alsmastbe necessary if
any of the agents is subject to a fault which excludes it frarther computations
within a team of agents.

¢ Independence of implementation detakgyents are autonomous and may work
in heterogenous environments. In many cases, they do notrelxeon any in-
formation about the host nodes, such as node identifiers i$tthe case in the
so calledanonymous graph modeknhich is the object of study throughout this
work.

e Provable properties of protocolsDesigns based on mobile agents are in many
cases easier to analyze, showing provable resiliencewwnnefaults, unexpected
changes to the network topology, or Byzantine attacks onoormeore network
nodes.

1.3 Anonymous networks: the theoretical
framework

Throughout this manuscript, we will consider problems ofbifteagent computing in
the following setting. The network in which the agent opesas modeled in the form
of a graphG = (V, E). The set of node¥ of the graph describes locations which
are capable of hosting a mobile agent, whereas the edgeasgijoto setF describe
communication links, which can be used for transportingahent and the contents of
its local memory from one node to another.

The focus of this study is on network graphs whichag@iori unknown to the agent,
and moreover such that locations in the graph contain ndifgigry information which
would help the agent to tell them apart. This means, in padeicthat nodes of the
network which have the same number of neighbors are indisishable from the per-
spective of the agents. Such a concepammbnymous graph@r anonymous networks
provides the foundations for a model which has found apiiina in network com-
munication, graph exploration, and stabilization of distted processes. The basic net-
work model under consideration was introduced by YamasimtBKameda [172]. It has
since been studied in different contexts in distributed gotimg, particularly in relation
to fundamental symmetry-breaking tasks, such as leadetiaig35, 86, 173]. Vari-
ous models of system communication have also been adoptdading asynchronous
message-passing models [47, 171], scenarios with fauffs §d self-stabilizing ap-
proaches [111], as well as agent-based models which areimagy interest to this
thesis.
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The study of anonymous networks has strong motivation, tf th@oretical and prac-
tical nature. In principle, due to minimalist assumptioasy solution to a distributed
problem that is provided in the anonymous model also canssta valid solution in
any other model based on a communication graph. The facttigit solution does
not depend on node identifiers means that it may be deployadiewenvironments in
which node identifiers may be unknown to the agent (or anyrattstributed process)
operating in the network. Agent-based solutions desigaedrionymous networks are
likely to have properties of self-healing after changesdtwork topology, and may be
applicable in dynamic environments, as discussed in Sedt®. Intuitively speaking,
an agent-based algorithm which is not allowed to store dingjgish a point of ref-
erence in the network, such as the identifier of a previousliged network location,
is unlikely to be affected by the future disappearance orugdion of such a point of
reference. Some authors also mention scenarios in whicé mashtifiers are simply
unavailable, since nodes might potentially refuse to dselthem to agents operating
in the system, citing e.g., privacy concerns [T8]. Anothaportant rationale for the
study of anonymous graphs is the goal of characterizinginhiésl of computability for
mobile agents in networked scenarios. In the context of ialgased computing, it has
to be emphasized that the model does not allow the agentamnaoty information of a
topological nature, such as auxiliary routing informat@ma global sense of direction
in the graph.

The considered framework is well-suited for modeling neksmf an abstract nature,
such as ontologies or webs of interlinked documents, wispeet to which the agent
is an external process. As such, we will not consider ocagee such as faults of an
agent, malicious nodes, or loss of state memory by the agdmttiveen time rounds
(obliviousness). In most cases, we will also make the assamthat network nodes
have no storage capacities writable by agents, and consiyubat all state informa-
tion is associated with the agent. Once again, such an assumip justified when
considering logical networks in which a node may represestac web page or a pro-
file hosted on a remote server. In the absence of this typdpéhaformation, one may
either assume that multiple agents can exchange informttrough a shared (global)
block of memory, or consider a more restricted scenario irckviiommunication is
only possible among agents occupying the same network node.

Within the anonymous graph model, the way agents operaterendiay they col-
laborate in a team is studied subject to various assumptonsesponding to different
real-world applications. Limitations may be imposed on patational resources avail-
able to an agent, in particular, by bounding the amount désteemory carried over
edges by an agent). When multiple agents are consideladk synchronizatioamong
agents comes into play. We will, for the most part, deal wittlyfsynchronous sce-
narios, occasionally comparing them to results from tregdiiure concerning the asyn-
chronous setting. Communication between multiple ageitb&restricted to the case



1.3 Anonymous networks: the theoretical framework 11

when the communicating agents occupy the same node.

For a survey of other models, we refer the interested reaxénd recent mono-
graph [130]. In [130], the specific problem of agent rende®vim the ring topology
is used as a “benchmark” for comparing the power of ageredasmputations under
different scenarios. Models considered therein are oftererpermissive, allowing the
agent to write and read a certain number of bits of infornmeéiba node, making use of
so-calledwhite boards Alternatively, the agent may be allowed to mark a fixed numbe
of nodes of the network, dropping different types of markerswn astokensor peb-
bles This type of helper information, which we do not allow in tmedel considered
in this work, may prove useful both for orienting a single r@tgeithin the network, and
for allowing multiple agents to coordinate.

Definition of an anonymous network. We assume that the graphin which the
agent operates is simple, undirected, connected, and aroyy i.e., the vertices in the
graph are neither labeled nor colored. However, while imigit vertex the robot can
distinguish between its adjacent edges. This is achievedsing a predefined local
ordering of edges known ada@cal orientation

The first requirement concerning the local orientation &t ih should, at the very
least, allow the agent to cyclically iterate through all ¢ilges adjacent to the node. This
is realised by providing a unicyclic permutatidlextPort, on the set of edges adjacent
to each node. For an edge: adjacent tov, we will then say that the incident edge
NextPort (e) is its right-hand neighbor av. The knowledge of the functioNextPort,
gives the agent the capability to implement some very simspigtegies for walking
around the graph. For example, we can conceive an agent wehighns node by
edgee and leaves it by edgBextPort(¢). Such an agent is said to be performing a
walk following theright hand on the wall rulealso known as théasic walk More
advanced strategies are also feasible, since the agentomagtisies choose to exit a
node using some other edge, eNextPort (NextPort,(e)). In fact, it turns out that
careful application of thélextPort, function is sufficient to define a strategy for the
agent which allows it to explore any graph deterministicalbing only very limited
resources regardless of the choice offtextPortfunction (cf. Section 2.3 on universal
exploration sequences and universal tables).

In all further considerations we apply the slightly stronfjaough in practice almost
equivalent)abeled port modelNamely, in addition to a giveNextPort, function, we
will assume that for each node there is exactly one distsigpd “first” edge leaving
this vertex. Equivalently, we allow the agent to rely on apliext local port labeling
in which, for each vertex € V, there exist consecutive integer labels (starting from
1), calledport numberspreassigned to all the edges adjacent, toext to the endpoint
v of each edge. The labels at nodare always distinct and form the discrete interval
[0, deg(v) — 1], wheredeg(v) is the degree of in GG, see Fig. 1.1 for an illustration. (A
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FIGURE 1.1: Example of a port-labeled anonymous graph

discrete intervala, b] is defined as the set of all integérsuch thatt < k < b ([a,b] = ()
whena > b).) In this way, each edge of the graph is assigned two portoeus) one
for each endpoint, and the port numbering is local, i.e.rethg no relation between
port numbers at. and atv. In such a setting, thEextPortfunction at vertexy can be
naturally induced for portasNextPort (1) := [l mod deg(v)].

In the sequel, the term “graph” will as a rule refer to a graphipped with a port
labeling described by the above rules, unless otherwisedstBy succ(v, i) we denote
the node which is a neighbor ofand linked to it by the edge with port numbeat v,
and byend(v, i) we denote the port number of the same edgeuat(v,:). For each
edge{v,w} traversed by using pottat nodev (w = succ(v, 1)), the pair of ports
(7,end(v, 1)) is called theedge labebf {v, w} and denoted bjub(i, end(v,i)). We use
the natural lexicographic ordering of edge labéls; is) < (j1, j2), if i1 < j1,0ri; = jy
andiy < jo. We write (i, is) = (j1, jo), if (i1,12) < (j1,72) Or (i1, i2) = (j1, Jo)-

The graph in which the agent operates is denoted-by- (V, E), with |[V| = n
and|E| = m. The diameter of the graph is denoted Byits maximum vertex degree
by A, and its minimum vertex degree by Following conventions from the literature,
the degree of a regular graph or an upper bound on the maxiregneel of an arbitrary
graph which is known to the agent will sometimes be denoted Bhe set of neighbors
of a vertexv € V' is denoted byV (v), with deg(v) = |N(v)|. Foranyv € V, let Eg(v)
denote the set of edges Gfthat are incident to node

Definition of a mobile agent. When an agent moves from one node to another,
it carries with its own local memory which encodes the stdtthe agent, based on
the information obtained by the agent in previous moves.eNloat when the agent is
located at any node of the graph, it has access to a readmeiteory which can be used
for local computation, but we are usually not concerned abmeicost of performing
local computations at node. Moreover, the agent may neagelbehind any marks on
the nodes it has visited.

We consider mobile agents traveling among the nodes of anyamaus graph of
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unknown topology. Formally, anobile agentis an abstract state machine in Mealy
form: A = (S, s0, 7, \), whereS is a set of states among which there is a specified
states, called theinitial state,7 : S x Z> — S is the state transition function, and
\: S x Z* — Zis the output function. Heré&, denotes the set of all integers.

Initially, the agent is located at some nogdec V' (unknown to the agent), called its
initial position or homebasgin the initial states, € S. The agent performs actions in
discrete time rounds, measured by its internal clock. Eatbracan either be a move
to an adjacent node or a null move resulting in the agent m@ngin the currently
occupied node. Suppose that in time rounthe agent entered a nodeby portp in
memory state; we setp = —1 if the move performed in roundwas a null move, or if
t = 0. Then, in round + 1 the agent will leave node by some porp’ in some memory
states’, given by the output function and state transition function, respectively,
depending on the pogtby which the agent enteredand the degree af:

' = A(s,p, deg(u)),
s' = 7(s,p,deg(u)).

A value ofp’ € [0,deg(u) — 1] signifies that in round + 1 the agent will move from
nodew along portp’ to nodesucc(u, p'); any other value op’ corresponds to a null
move of the agent. The agent continues moving in this way tcessive time rounds,
possibly forever.

The above definition admits a natural extension to the casarmfomized agents,
which are described simply as randomized state automate.otitput pair(p’, s') is
no longer described by a deterministic pair of functignsr), but by a pair of not
necessarily independent random variable-valued funstianm).

Problems, solutions, and complexity. The notion of a problem and a solution
in the context of mobile agent computing is rather inform&lhen talking about the
guestion ofcomputabilitywith a single mobile agent (subject to given constraints on
resources), we will apply terms derived from complexityatye We consider languages
which are families of graphs with a single distinguishedeer A problemZ will then
be understood as a binary question of the form “Does the (gair) belong to the
languagel.?”. We will say that this problem can s®lvedby a mobile agent under the
given constraints if there exists an agdngatisfying the said constraints such that agent
A, when released from noden graphG, terminates after a finite number of steps in an
accepting state if and only {iG, v) belongs toL, and terminates after a finite number
of steps in a rejecting state, otherwise.

We will sometimes say that we allow the agent solving probleto have knowledge
of some global parametgk ) of the graph. Formally, this means that instead of asking
about the existence of a single agehwhich solvesL, we will ask if there exists a
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family of agents{A;}, such that agenti;; deployed in graplt: correctly decides
problemL for the pair(G,v),v € V.

In some cases, we will think of problems in a generalized esecl®ser in spirit to
distributed computing. For each valid starting configunativith an agent or set of
agents placed in grapfd, we will look at the countable sequence of global configu-
rations (snapshots) of the system composed of the graphhanalgents located in it,
achieved in successive time rounds- 0, 1,2, .... A (generalized) problens defined
as a set of testable conditions on a sequence of snapshdts said to besolvedby
the agent if the sequence produced by the agent meets thigasotssof the problem.
For example, in thexploration problenwe will require that all the nodes of the graph
are visited by the agent at some point in time, while intfredezvous probleror two
agents in the graph — that at some moment in time the two ageetkocated at the
same node. The smalléBtsuch that for alll” > T the prefix of the sequence of states
of the system in time rounds= 0, 1, ...,7" satisfies the constraints of the problem is
referred to as the time required to solve the consideredigmgbe.g., the exploration
time for the exploration problem. For the case of randomesgehts, we again extend
this notion by taking a probability distribution over all gmble execution paths of the
algorithm, and describing the expectation of the time uhgl problem is solved. We
will also sometimes impose the requirement of terminaticancagent-based algorithm,
which means that there must exist a moment of time from whehconfiguration of
the system remains unchanged.

A subtler point concerns the definition of the memory sizehefagent. Unless oth-
erwise stated, we will assume that the memory of the agergfiset as the logarithm
of the number of its stated/ = log, S. For this definition, it is important to note that
the agent is given as a Mealy machine. If agents were instedé given as Moore
machines, and their memory defined likewise through theritsga of the number of
states, then the memory complexity of some problems mighe¢ase by up t®(log A)
if the agent makes use of its input port and the degree infoomaf the current node,
which it would have to encode as part of its state. The distnaoes not really matter
for problems with a memory complexity ¢i(logn), hence in most cases the mod-
els can be seen as equivalent. In the sequel, whenever waleonsmputations in
sub-logarithmic space, we will be adhering strictly to thedyy machine model. For
example, théasic walkstrategy in which the agent enters a node by pamnd exits it
using the right hand rule by pofp + 1) mod deg(v), will be considered herein to be
memoryless (stateless).

The agent's memory size can also be understood and definedlighély different
manner. One may perceive the agent not as an automaton, awtcesputer program
which sends itself (i.e., its machine code and its statajfrmde to node, lodges in
the memory of its new host, and performs computations taaeéte which host to visit
next. In this view, the space consumed by the agent is mahasatbe maximum number
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of bits of a host’s memory that the agent ever occupies, tiirout execution. Since
this measure is relevant from a practical perspective asultzhs profound theoretical
implications, we will occasionally make references to sing the terrmemory of local
computatiorof the agent.

1.4 Overview of contributions

The main research questions undertaken in this study cotigerfeasibility of solving
fundamental tasks in an anonymous network, subject todiioits on the resources
available to the agent. Typical challenges include: exptpa graph by means of an
agent with limited memory, discovery of the network topolcattempting to meet with
another agent in another network (rendezvous), or dealitigalianges to the network
topology in time. The constraints imposed on the agent melpde the number of
moves which the agent is allowed to perform in the netwomkamount of state memory
available to the agent, the ability of the agent to commueieath other agents, as well
as itsa priori knowledge of the network topology or of global parameters.

The material covered in this manuscript includes most ofdbtributions of pa-
pers [T1-T8], and is organized as follows. This introdugtonapter was devoted to
a general discussion of mobile agents and to a formal inttholu to the anonymous
network model. In Chapter 2, we consider the problem of gegioration, in which
a mobile agent is charged with the task of visiting all of tleeles of a the network it
is operating in. Since we are working in the anonymous nétwardel, agents cannot
immediately recognize previously visited nodes, whichdexs many search methods
known from the centralized model, such as Breadth Firstche@FS) or Depth First
Search (DFS), infeasible. In anonymous networks, the basgiomized strategy which
is applicable is the random walk, in which the mobile agenvesofrom the current
node to a neighbour picked with uniform probability. Thedam walk serves as a
point of reference for other exploration strategies, batidomized and deterministic,
in terms of parameters such as: the time required to vishadles of the graph, the
memory required by the agent, the regularity of visits toe®dr edges during con-
tinued exploration, resilience to faults, performancerfarltiple agents, etc. It is in
such a context that the results on several different exjioratrategies, obtained in the
papers [T1-T5] are presented.

In [T1], we consider the Metropolis walk, which is a form ofbed random walk on
graphs, and following [147] we assume that transition pdliges of the Metropolis
walk between a pair of neighbouring nodes depend only om tegjrees. Our main
results in [T1] concern the properties of short Metropolalks, and stem from the
observation that an agent following a Metropolis walk forestain number of steps
discoversf)(+/t) distinct nodes of the network in expectation, fér < ¢ < n?, in
a graph of maximum degreé and at most: nodes. In [T1], these results are used
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to design graph exploration strategies in the centralizaMRnodel of computation,
achieving a tradeoff between execution time and requiretiong space which is supe-
rior to that of previously known approaches, such as DFS, BF&e unbiased random
walk. In Chapter 2, the results from [T1] are translated @ dfstributed setting, into
the considered anonymous network model. We also point atitile Metropolis walk
can be implemented in the anonymous network model to explbggaphs in an ex-
pected number aP (n? log n) steps, using an agent equipped with adlifog log n) bits
of memory. Next, for the sake of completeness, in Chapter pnesent the state-of-
the-art in deterministic and randomized exploration sefyegs, and corresponding lower
bounds. We address the question of how to design determiaigtloration strategies
based on the random walks and Metropolis walks. We recalkkeyais of Universal
Traversal Sequences (UTS) and Universal Exploration Sespse(UXS), and describe
a generalization of such sequences for non-regular grépimsalizing the notion of a
universal exploration table.

The results presented in [T2] address the question of exbor of anonymous net-
works in the case when the designer of the network has nodalaftits topology, but
may adjust the ordering of neighbors at each node (the $edgabrt labelings) to facili-
tate agent-based exploration. With this assumption, thielem of network exploration
can be solved by an agent which deterministically traveais#ssed trajectory. Building
on a series of results in the area, in [T2] we show that thelpbeling can be chosen so
that even a memoryless agent, which follows a very simpéesgly known as the basic
walk, can traverse in any graph ofnodes a closed trajectory of length less tdan
This type of result highlights the fact that the difficulty thle exploration problem in
anonymous networks lies in the inability of the agent to feggaut a sense of direction
in the graph when the port labeling is not set specifically éfpht in the task. The
results presented in [T2] rely on a proof of the existencesgexific kind of tree-based
substructure in any graph, which may be of interest in its agint.

Chapter 2 closes with a discussion of variants of the anomgmuodel in which the
agent is memoryless, but is guided by auxiliary countershenedges of the graph.
These considerations cover the material of papers [T3-Wg]start by presenting the
so-called rotor-router model, in which each node maintaioyclic list of its neighbours
and the agent, during successive visits to a node, leavg9itdzeeding to neighbours
chosen from the list in a round-robin fashion. The resultsaioied in [T3] include
an almost-complete characterization of worst-case eaptor time for an agent in the
rotor-router system, subject to different models of theemslarial setting (e.g., the ad-
versary may be able to preselect the ordering of the neiglslfoueach node, or the first
neighbour to be visited from a given node). The main resuhaf paper is a tight lower
bound on the number of steps required by the agent to exgiergraph. In combina-
tion with the result of Yanovski [175], our result from [T3hplies that for any graph of
m edges with diameteb, ©(m D) steps are always sufficient and sometimes required
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for an agent following the rotor-router to visit all nodestbé& graph, and subsequently
to stabilize to a periodic Eulerian traversal of its set ojesl In [T4], we study the
behaviour of the rotor-router after changes or faults oaetine system. We show that
it is possible to relate the behavior of the rotor router ® BEST theorem (due to de
Bruijn, van Aardenne-Ehrenfest, Smith and Tutte), prawyda product formula for the
number of Eulerian circuits in an orientation of the undiegkcnetwork graph. This type
of analysis allows us to show that, after a single edge adddr port modification, the
rotor-router stabilizes to its new limit behaviour withinm) steps, however, a single
edge deletion may result in the need for the process to s#dmitizing from scratch, re-
quiring©®(m D) steps. Finally, the paper [T5] introduces a slightly diierexploration
model, in which the agent always follows the least oftendragd edge adjacent to its
current node (breaking ties arbitrarily). We provide a ctatgpanalysis of the perfor-
mance of such a strategy, known as Least-Used-First, slyahat it explores the graph
in ©(m D) steps, just as the rotor-router. Interestingly, a relatéelin which the agent
traverses the edge which has not been visited for the lotigestturns out to work in
an exponential number of steps in the worst case, even thouglht at first glance
appear to be only a slight modification of the round-robir fl the rotor-router. To put
all the considered methods into perspective, we providevarvew of the main results
discussed in Chapter 2, in the form of Tables 2.1 and 2.2.

Graph exploration can in some sense be seen as the most fentidpractical global
problem which can be solved by a single agent in an unknowmankt If the agent does
not know how to explore the graph efficiently, then most fkelill not be able to e.g.
compute values of topology-dependent parameters, sob/@ribblem of locating an
item placed on one of the nodes (“treasure hunt”), or to meiét another agent (ren-
dezvous). At the other end of the difficulty spectrum lies guestion of deciding a
complete or universal problem for the agent, i.e., one tactvlai whole class of other
problems can be reduced. This definition of completenessnewhat informal and
depends on what type of problems are considered. If the dadlecagent is to try
to compute some parameter which is a function of the netwaklyit is operating in,
then the basic complete problem consists in collectingalblogical information stored
in the network which is possible to retrieve. This task, knag map construction, is
considered in Chapter 3. We discuss different possiblesgmtations of such a map of
all retrievable information about the network, recallihg toncepts of an agent’s view
and a quotient graph. The latter representation proves &fflogently computable by
an agent which knows some upper bounan the number of nodes of the network. We
present some of the results from [T6], which imply that anragan construct the quo-
tient graph of the network in a number of steps which is pomgi@in n. Consequently,
if any parameter of the network can be computed by an agecaénitoe computed in
polynomial time. We also present a method introduced in,[WHjch can be used by an
agent to decide the existence of a specific edge of the qugfiaph not only in poly-
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nomial time, but also in logarithmic space. Properties Witan in this way be tested
by an agent with knowledge of an upper bound on the number @ésand logarith-
mic memory include, for example, testing if the network igeet and if not, finding
an edge whose removal does not disconnect the network. Alleofliscussed methods
for quotient graph construction rely in different ways omplgations of universal explo-
ration sequences, traversal sequences, or explorati@siabth the log-space approach
from [T7] also introducing the new notion of a distinguishisequence — a sequence
whose traversal allows an agent to tell two graphs apartneser such a distinction is
possible. A comparison of the time and memory requiremertsecstudied methods is
given in Table 3.1.

In Chapter 4, we extend our considerations to problems withenthan one agent,
focusing on the rendezvous problem, which asks about tisghiégy of achieving a sit-
uation in which two agents meet. We give most of our attentiiaiiie scenario studied
in [T7,T8], in which the two agents deployed in the networ& eaompletely identical,
moving in synchronous time rounds at the same speed, anddghaxactly the same
starting state and no unique identifiers. We recall the dbaraation of starting sit-
uations for which rendezvous in the studied scenario isliEasWe then present the
main result of [T7], which states that for all feasible stagtsituations, there exists an
algorithm which achieves rendezvous, using agents withloglarithmic memory. The
applied method relies on an extension of the previouslyudised approach for map con-
struction. A complementary lower bound from [T7] stateg th@og n) bits of memory
are required for rendezvous even when the graph in whichgbeta operate is a ring.
Finally, we present the results of [T8], which charactetigeinterplay between the time
and the space required to achieve rendezvous for the spasmlwhen the network is a
tree. We prove that for an agent with> c¢log n bits of memory, where is an absolute
constantO(n?/k + n) steps are always sufficient and occasionally required t@eeh
rendezvous. This complexity result for rendezvous in tie@ssignificant improvement
with respect previous approaches known from the literatamd is also an isolated ex-
ample of an important problem for which a tight time spaeeloff is known for the
whole spectrum of memory sizes.

In Chapter 5 we discuss some of the perspectives of the fiellobile agent com-
puting in networked scenarios. In particular, we presentcadier perspective of the
challenges facing collaborative computations with midtipgents, and briefly outline
some of our most recent research results.
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In the task ofnetwork explorationa mobile agent, initially located at some node of
the network, is required to visit all the nodes of the netwdfkve allow the network
to be disconnected, then the agent is expected to visit @alhtdes of its connected
component of the network. Exploration routines lie at tharhef tasks related to the
search of information in the network by an agent, as well dasKs related to finding or
detecting the presence of another agent in the network (saptér 4). The agent may
also be required to explore a graph periodically, e.g. withgoal of regular patrolling
and monitoring of network resources. For a historical oemof questions and results
related to network exploration, we refer the reader to [8h, 9

In centralized computing, one of the simplest strategieg*ploring a graph is that
of Depth First Search (DFS). When performing DFS, the agawuétses a spanning tree
of the graph rooted at its starting location, moving at eaep $ an unvisited neigh-
bouring node in the graph whenever such a node exists, ardnosie backtracking to
its parent node in the tree. This guarantees a traversal off thle n nodes of the graph
in optimalO(n) time (a complete traversal of the DFS tree takes— 1) time rounds).
Unfortunately, DFS-type approaches do not fit into the abergid framework of mobile
agents in anonymous networks. First of all, DFS relies orathity to recognize nodes
previously visited by the agent, which is not feasible in@nenymous graph model in
the absence of node identifiers or whiteboards writable byatient. Even in models
where node identifiers are available, search strategiesdb@s Depth First Search or
Breadth First Search often prove insufficient. To run suchlgarithm, the process has
to maintain a memory stack or queue in its state memory, engdte identifiers (or
at least port labels) along the path in the tree from its roahe current location of
the agent, which potentially requir€sn) space, and causes problems if the topology
of the graph changes during the execution of the algorithendd, the need arises to
design alternative exploration strategies. Most suchiegres are inspired, at least to
some extent, by considerations of the random walk.

A comparison of the algorithms and approaches considerthisichapter is provided
in Table 2.1, with the criteria of comparison being: the deiaism of the approach,
the exploration time, and the required memory. We will alsosider other parameters
of exploration strategies, and we start this chapter byéhicing a number of addi-
tional characteristics useful for comparing exploratitntegies in anonymous graphs
in Section 2.1. In Section 2.2, we look at randomized grapgiceation strategies for
anonymous graphs, considering the simple random walk ardased variants, in par-
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ticular, the Metropolis-type walk. The rest of the chaptdevoted to an overview
of deterministic exploration strategies for anonymougppgsa We recall known results
for deterministic exploration strategies, obtained byaddomizing (biased) random
walks in Section 2.3. We then discuss variants of the anomgrgoaph model, designed
with the goal of obtaining faster deterministic explorat@igorithms. In Section 2.4
we address the question to what extent one can assist a desticrexploration strat-
egy by appropriately configuring port numbers in the anonysnoetwork. Finally, in
Section 2.5 we consider strategies in which the agent iseguiy counters on ports
(corresponding to the so-calledtor-router mode), and present analogous results for
models in which the agent is guided by counters on edges.

2.1 Comparing exploration strategies

The agent-based algorithms we consider herein are meaetligh, memory-efficient,
and resilient to faults, and to operate in networks withastble node identifiers. To
this end, we consider several parameters measuring diffaspects of the performance
of exploration strategies, the most important of which aseussed below.

Cover time. Thecover timeg(or exploration timg C'(G) of an exploration strategy is
defined as the maximum expected length of the time intervahgwvhich the mobile
agent following the strategy visits all the nodes of the graphere the maximum is
taken over all starting configurations of the system (inipalar, over all starting nodes
for the agent). When considering algorithms different fritv@ random walk, i.e., when
the agent is equipped with state memory, we defif(&-) as the expected length of the
shortest time interval starting at time rounhduring which all nodes ofr are visited at
least once. We then distinguish tfiest cover timeC,(G) describing the cover time of
the system just after initialization, and trefresh timeC.(G) = limsup,_, , . Ci(G),
describing the eventual cover time of the system in the linibe latter measure is
interesting from the point of view of scenarios with patiragl, in which we expect the
agent to periodically visit all nodes of the graph.

Regularity of exploration. From the perspective of the designer of an exploration
strategy, it is desirable to ensure that all of the verticge¥/@ edges of the graph are
visited regularly. Let, ,(t) be the random variable describing the number of visits to a
vertexv within some number of stegsfor an exploration starting at vertex Thevisit
frequencyf,(G) of vertexwv is defined as the frequency of visits to this vertex, given a
worst-case starting verteX; = mingcy E liminf, | o CT(“ An analogous measure,
known as theraversal frequency,(G), is defined for visits to edges. We will say that

a strategy visits all nodes (edgéairly or equitably if its traversal frequency is roughly



2.2 Randomized strategies 21

the same for all nodes (edges), ife(G) ~ 1/n (f.(G) ~ 1/m).

Discovery rate.  The discovery rate of a strategy gives a lower bound on thebeam
of newly explored nodes or edges in the firsteps of exploration, for small A strat-
egy with a high discovery rate is preferable when perfornunty partial exploration
tasks, for instance, when the agent is searching for a resomhich is available at
some uniformly randomly spread subset of nodes of the n&twoformally speaking,
for strategies with a high discovery rate we can also hoperfwaller cover time when
deploying multiple agents, which collaboratively compl#te exploration process.

Required resources.  Last but not least, the chosen exploration strategy may im-
pose requirements on the capabilities of the agent. Someeddttategies considered
in this chapter require the agent to be equipped with a ceaimount of state memory,
and work differently depending on whether the agent has keage of some global
parameters, such as a bound on number of nodes of the netiioly, some of the
exploration strategies considered here are randomizeitk wiers are deterministic.
Whereas the question of determinism vs. randomization earearded in terms of
guarantees on performance, the desire to eliminate ranessrend to construct de-
terministic strategies is also motivated by practical ¢é@usts. True randomness may
prove to be a scarce resource, unavailable to the agent.

2.2 Randomized strategies

2.2.1 A point of reference: the random walk

Classically, a random walk is defined as a Markovian procgssting with an initial
probability distribution over the set of nodes of a grapid aith transition probabilities
governed at each step by the normalized adjacency matrreajraph (cf. e.g. [6]). For
the purposes of studies of mobile agents moving around tghgmwe will choose to
use an equivalent frequentist view of probability. In thistext, thesimple (unbiased)
random walkis an oblivious exploration strategy for a mobile agent tedaat a node of
the graph. The edge used by the agent to exit its currenidocatchosen with uniform
probability from among all the edges adjacent to the cumede. In other works, for a
walk located at a node, outporti is chosen with probability;, = @.

The random walk is arguably the simplest possible stratelgizhy in expectation,
allows even a memoryless randomized agent to explore amected graph (in expec-
tation). Moreover, it admits the following desirable propes:

¢ In expectation, the random walk visits all of the verticesha& graph within poly-
nomial time.
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TABLE 2.1: Comparison of exploration algorithms in variants @& &monymous network model.

Agent’s algorithm Agent’s
memory

Cover time
(first cover)

Refresh time Referenc
(limit behaviour)

Anonymous graph model
Random walk * none

Metropolis walk * O(loglogn)
(logn)
— lower bound on memory Q(log n)

Deterministic algorithm @]

— lower bound on time -

O(min{mn, mDlogn})*
O(n*logn) *
O(n*log®n)

same as cover time [7]

same as cover time [7,147,T1]
same as cover time [7,69,T1]
— [93,159]
same as cover time [39]

Anonymous graph model with ports pre-configured for fastptaration

A dedicated rule O(1)
Right-hand rule none

same as cover time [56]
same as cover time [T2]

Exploration controlled by the environment

The rotor-router rule none **
The least-used-first rule none **

O(m) [175,T3,T4]
O(m) [T5]

* - for randomized algorithms, the provided values of coweretand refresh time represent expectations
** - in models controlled by the environment, there existidiary counters associated with edges of the network
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e In expectation, the random walk stabilizes to the steady stéhin polynomial
time, and henceforth all edges are visited with the samei&ecy.

In these respects, the random walk will be treated as a pbmeference for determin-
istic exploration models, for which we will attempt to ackeesimilar properties, but in
the sense of worst-case performance.

For the interested reader, we provide below a brief ovengétihe most important
properties of the random walk, starting with bounds on timethecessary to explore an
anonymous network.

Cover time. Different techniques are used to bound the cover time ofoandalks
in general graphs. Some of the most useful bounds eitherorlthe relation be-
tween cover time and the maximum time required to reach a freex of the graph
(Matthew’s bound [143]), or make use of the resistor netwamilogy, linking the so-
called commute times of the random walk with resistancesgficement between pairs
of nodes of the resistor network corresponding to the cemsatigraph [48]. A com-
pendium of simple bounds which can be obtained using sutimigees is given by the
theorem below.

Theorem 2.1.[7, 48, 143]For the simple random walk process in any gragh the
following bounds on cover time hold:

All of these bounds are asymptotically tight up to a consfaator in some graph
classes. For the first bound, a value@fG) € ©(m D logn) is achieved in many
graphs with small values of diameter, for instance, for the<of stars and for the class
of complete binary trees. The bountG) € ©(mn) is tight for the class ofollipop
graphs which consist of the union of a path and a clique, with onehef\ertices of
the clique connected by an edge to an endpoint of the patha gien value of,, an
asymptotically largest possible cover time®©{G) = %n?’ — o(n?) is achieved by a
lollipop graph which has roughly/3 nodes in the path and roughly:/3 nodes in the
clique (cf. [41] for the details of the construction).

For many special network topologies, such as complete graptpanders, trees, or
grids, more precise bounds on the cover time can be obtaafief6]). One property
worth noting is a small cover time of the random walk@®@(n logn) on graphs with
good expansion properties, and®@fn?) on regular graphs, regardless of their degree.
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Fairness of traversal.  The random walk in the limit visits all edges of the graph
equally often f.(G) = 1/m. In fact, the random walk admits an even stronger property.
In any connected undirected non-bipartite gréghthe random variable describing the
location of the agent converges to a stationary probaldliggribution, so that in any
step the probabilityr, that the walk is located in a given nodas proportional to the
degree of the node, i.e.:
o deg(v)

2m
For bipartite graphs, the same stationary distributionlmameached by changing the
transition probability so that the walk has some small pbaiig of remaining at its
current vertex at each step. More precisely, at a veriéixe probability of choosing port
iisp; = m, and the probability of remaining at vertexis p_ = m. Such
a walk, known as thé&azy random walkhas the same asymptotic values of parameters
such as cover time.

In expectation, the random walk stabilizes to a fair traabo§the edges very quickly.
Several notions for describing the rate of convergenceefahdom walk to its station-
ary distribution have been introduced. One of the most stlid that ofblanket time
which (informally speaking) corresponds to the expectednerat at which (for a reg-
ular graph) all vertices have been visited a similar numlbeéinees, cf. [170]. A very
recent result of Ding, Lee, and Peres [73] is that the blahket is within a constant
factor of the cover time, for all graphs.

Irregular behaviour.  The fact that the random walk visits the edges of the graph
fairly does not directly imply a worst-case bound on the tangf the time interval
between two successive visits by the agent to a fixed edgethe graph. Such an
interval is, in fact, potentially unbounded. For the randeaik, which is a memoryless
strategy, the length of this interval may be described bynglsirandom variabl&..

The expected value df. is the same for all edges and is given by:

_ L
==

The higher order moments @f, depend on the chosen edge and the topology of the
graph. In general, the probability tail @ decays exponentially only for time intervals
exceeding the edge cover timi&(G) of the graph. For any even integer by apply-

ing the Markov bound to a walk on a time interval of lengtti.(G), and considering
k/2 independent iterations of such a walk, we can bound the taiistributionT. as
follows:

ET. m.

Pr[T, > kC.(G)] < 27F/2.

The irregularity of exploration may still be high for graph&h a large cover time. For
example, in the so-called lollipop graph which consistsyéitn of length /3 connected
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at one endpoint to a cligue am/3 nodes, the distribution of visits to the edgat the
end of the path which is not connected to the clique, has ayhtedwp to the order of
the cover time of the graptr[T. > ;:n®] € Q(2). This means, for example that, with
constant probability, any time interval of consecutive rounds includes a sub-interval
of Q(n?) rounds in which the considered edge is unvisited. Allenitihis type of
weakness of the random walk is one of the goals in the desigherhative randomized
and deterministic strategies for graph exploration.

Discovery rate and parallelization. The discovery rate for the random walk is far
from simple to analyze. Linial (cf. [113]) conjectured trelatandom walk of length
visits (+/t) nodes in expectation, and this conjecture was later proyegbibnes and
Feige [26]. They also showed that a walk of the same lengtits\iX+/¢) edges in
expectation, and more strongly, that the expected valubeptoduct of the distinct
number of edges and vertices visited until timis Q(¢). All of these results hold up
to m visited edges and visited nodes, and the latter result can be seen as a powerful
generalization on th@(mn) bound on the cover time of the random walk.

The so-calledparallel random walkis achieved by deploying independent agents
performing random walks in a graph independently and witlaay form of coordi-
nation. Recent work on the area of parallel random walks(Q988, 160] contains a
characterization of the improvement of the cover time duthédeployment of in-
dependent random walkers with respect to the case with &eswalker. It is shown
in these works that the achieved speed-up depends on diffgaeameters, such as the
mixing time [83] and edge expansion [160] of the graph. Theespup may sometimes
be as low a®(log k) [9], and sometimes as high as exponential in term’s[&0]. For
many classes of graphs the speed-up is linear in terrhgespecially whert is small,

k € O(logn)).

2.2.2 Fast exploration using the Metropolis walk

It turns out that, with respect to the random walk, furthepiovement of the cover time
of the walk is possible by applying so-called “look-aheaiategies, allowing the agent
to obtain some additional information, e.g., about the togy of the neighborhood
of the current vertex of the walk. The main difficulty lies itteampting to simulate
this type of additional knowledge in a graph exploratiomtggy without changing the
assumptions of the anonymous graph model, in which the malgiént only has access
to information about the current node.

A biased random walkn a graphZ governed by dransition matrixP : V. x V —
[0, 1] over graphG is defined as a walk in which the probability that an agenttedta
at a nodev transits in the next step to a nodés equal toP (v, u). It is assumed in the
definition that matrixP is stochastic, i.e. forall, > ° ., P(v,u) = 1, and that it reflects
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the topology ofG in terms of permissable moves of the agent, iy, u) = 0 for all
v,u such thatv # u and{v,u} ¢ E. The matrixP does not have to be symmetric,
allowing the same edge to be chosen with different prolagibili different directions.
The parameters of the biased random walk are denoted hdre satme way as for the
unbiased walk, but using the matixin place of the grapl.

Modifications of the transition matrix decrease the proligiof using some edges
of the walk, favoring others. For example, one may consideamsition matrixPr
which restricts the agent to a random walk on some fixed spgrtree7” of graphG,
i.e., puttingPr(v,u) = 1/ degy(v) for {v,u} € E(T), andPr(v,u) = 0 for all other
edges. Such a transition matrix guarantees a vertex cawerdaf C(Pr) = O(n?),
regardless of the chosen spanning tfeeSuch a cover time is in some sense the best
possible for a biased walk: it was shown in [108] that whempbr& is a path, any
transition matrixP over G has cover time”'(P) = Q(n?). However, achieving) (n?)
cover time by means of a transition matrix based on a spartnéegrequires global
knowledge of the topology of the graph, and is completelgasible in the anonymous
graph model. As pointed out in [108], it is not known if a trdiws matrix with O(n?)
cover time can be constructed by the agent based on locaiatmn, only.

In the current state-of-the-art [108, 147] there do, howesdst two schemes with a
cover time ofO(n? logn) in which the element® (v, u) of the transition matrix depend
only on the degrees of vertices from the neighborhood dthe first of these schemes,
proposed in [108], relies on a transition matrix in which wedk chooses the next node
in the neighborhood of proportionally to the inverse of the square root of its degre
Again, implementing transitions according to such a tmsimatrix using a constant
number of time steps of the mobile agent seems difficult taexeh This problem can,
however, be alleviated for the latter scheme, proposediifi|[Ivhich relies on so-called
Metropolis walks

The Metropolis-Hastings-type transition matrix can beradi so as to achieve any
given stationarity probability distribution, of the walk on the nodes of the graph. In-
tuitively, the unbiased random walk has a stationary distron ofr, = dzg—n(f), whereas
the cover time of the walk can be improved by balancing th&ostary distribution
towards the uniform distribution, = 1/n.

Theorem 2.2([147]). For any normalized probability distributiomr = {7, : v € V'}
with min 7w > 0, let P, be the transition matrix on grap&' given by:

. 1 1 T
min {—deg(v), O] W—v} , for{v,u}eFE
Pr(v,u)=q1- > wen() Pr(v,w),  forv=u

0 otherwise.

Then,C(P,) = O(fn*logn), wheref = max{r, /7, : u,v € V}.
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We remark on two special cases of the above strategy.

When the probability distribution is given by, = deg(v)/2m for all v € V, we
obtain Py (v,u) = @ for {v,u} € E, and P;(v,u) = 0 otherwise. Thus, the
transition matrix describes the unbiased random walk, aedctaim of the theorem
implies thatC(G) = O(§n?logn).

The second interesting case is given by the uniform proivalistribution 7, =
1/n for all v € V, for which f = 1, and the claim of the theorem yields a bound of
O(n*logn) on the cover time.

There exists a simple procedure, due to Metropatial. [144], for simulating a sin-
gle step of Metropolis-Hastings walk by sampling a neightamfuthe current location
uniformly at random, and then deciding whether to accephévenode or remain at the
current one. We observe in [T1] that this implies that theiglgdlis walk can be used
as an efficient strategy for randomized graph exploratiemgionly logarithmic space.

In the setting of mobile agents in anonymous graph, thisgaore is formally stated
as Algorithm 1 (assuming for simplicity a uniform distribut on nodesy, = 1/n). In
this formulation, the agent is assumed to have the set afsstat [0, A]. The special
state0 represents an agent which is looking for a new node to movétates from
the ranges € [1, A] signify that the agent is testing the current node as a patergw
location, having arrived from a node of degreéVith probability depending or and
the degree of the new node, it may accepting it, or poteptiallert to the original node.
(This type of formulation appears to have been first givenGbZZ, for the JAG model
of graph exploration in [T1], and at the same time for the ¢ramd-jump model of
network sampling in [136]).

Algorithm 1: Metropolis walk strategy for fast randomized exploratiathva log-
space agent [136, T1]

e When the agent is located at a nade V' of degreed in states = 0:

The agent chooses a port {0, ...,d — 1} uniformly at random and moves to
the vertexu = end(v, ), changing its state to := deg(v). {“Test"}

e When the agent is located at a nade V in states > 0:
With probabilityp = min{ﬁ(u), 1} the agent remains at performing a null
move and changing its state o= 0. {"Accept’}
Otherwise, the agent reverses the last move, moving ale@ngadtt by which it
enteredu, and also changing its state4o= 0. {*Revert"}

Since the memory of the agent required in Algorithm 1 can hended asog |S| <
log n, we obtain the following Corollary of Theorem 2.2 with= 1.
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Corollary 2.3 ([T1]). There exists a randomized strategy for a mobile agent whieh e
plores any graph w.h.p. i®(n?log n) rounds, requiringD (log n) state memory.

In fact, the memory requirement for the agent can be redugeidhplementing a
Metropolis-type walk which takes into account only an apgpration of the value of
the degree of the node, rounded up to the nearest powzr dhis can otherwise be
seen as adding a certain number of self-loops to each nodeedajraph, so that its
degree becomes a power2fThe corresponding modification of Algorithm 1 consists
in settings’ ass := [logdeg(v)] in the “test” step, and then accepting the new state
with probabilityp = min{ 5357, 1}. By performing this modification, we obtain a
stationary distribution of the walk which only differs frottne uniform distribution by a
constant factor, i.e., we can apply Theorem 2.2, knowing tha 2.

Corollary 2.4. There exists a randomized strategy for a mobile agent whiptoees
any graph w.h.p. ifO(n? log n) rounds, requiringD(log log n) state memory.

We close the discussion of the cover time of randomized eaptm strategies with
an overview of directions of current and future study. Theuhes state above do not yet
fully close the question of minimizing the memory requirgdthe agent to retaining
a fast cover time, such a3(n?) (where theO notation disregards polylogarithmic fac-
tors). In fact, in current work-in-progress [127], we haesidned a strategy Witﬁ(nQ)
cover time and a state memory requiremendglog log log n), which we conjecture to
be optimal.

Whereas none of the stated approaches require knowleddebai garameters, it is
plausible that under the even stricter restrictions of tamtssize memory, knowledge
of n may affect the feasibility of achieving exploration with alncover time. For
example, by rounding the degrees of nodes up to the nearest pd/n (rather than
to the nearest power &) and then merging the test/revert phases into one, one can
design a strategy for graph exploration@r(n>°) time, requiring precisely 1 bit of
state memory. This approach relies on the knowledge of adourstimate onr/n.
No similar strategy is known for the case of algorithms withglobal knowledge. In
fact, we conjecture that any algorithm with a constant nunalbéits of memory must
have a cover time of2(n?), i.e., cannot provide an improvement with respect to the
random walk. However, proving tight lower bounds on the geniance of randomized
algorithms is often a challenging task.

We remark that the Metropolis walk is not faster than the camdvalk in all graph
classes. The Metropolis walk visits all the nodes of a gra'uhiw@(oﬂ) steps, which
for all but sparse graphs is an improvement with respectadtund ofO(nm) on the
cover time of the simple random walk. Nevertheless, apfitina in sampling tasks
show empirically that a simple random walk after erasindg malves is faster (by a con-
stant factor) than Metropolis for some real-world topo&sgof social networks [136].
Moreover, there exist graph classes for which the randork ha$ an asymptotically
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smaller cover time than the Metropolis walk. A generic exbBngb such a graph, called
theglitter star, was defined by [147] as a tree o= 2/+ 1 nodes, with one central node
of degreel connected td nodes of degre@, which are in turn connected ideaves.
On the glitter star, the cover time of the random wallis: log ), and the cover time
of the Metropolis-Hastings walk (with uniform stationaristibution) is ©(n?). To
alleviate such undesirable behavior, we propose an appwhich combines some of
the advantages of the random walk and the Metropolis walle Way to achieve this
is to design an agent which iteratively performs a phaseefdndom walk, followed
by a phase of the uniform Metropolis walk of the same lengtiuhiing the lengths of
both walks in each subsequent iteration. Such a walk vilitse@nodes of the graph in
expected time asymptotically equal to the cover time of #stdr of the two walks.

Theorem 2.5([T1]). There exists a mobile agent process wit(log n) state mem-
ory which covers any graply¥ in expected time&'(G) = O(min{Cr(G), Cyu(G)}),
whereCg(G) is the cover time of the random walk, a6, (G) is the cover time of the
Metropolis walk in graplG.

A similar effect can also be achieved by an (almost) Markopaocess, outlined
in [T1], which consists of a Metropolis-type transitioneubetween nodes, with tran-
sition probabilities being a weighted average of those efrindom walk and the uni-
form Metropolis walk. This leads to an analogous bound orectime, but requires the
knowledge of the average graph degrée—= 2m /n, by the agent.

Other properties of the Metropolis walk. In our work [T1], we show some in-
teresting properties of the Metropolis walk. First of alk yrove that short Metropolis
walks quickly discover many nodes of the network. Metropulalks of lengtht > A?
discover new nodes of the graph quickly, with the number afesovisited being pro-
portional to the square root of the length of the walk. Folynah [T1] we show that
within ¢ steps ( < ¢ < 6n?), a Metropolis walk will return to its initial location at
most5+v/t + 2A times in expectation. The proof techniques rely on the tasisetwork
analogy for commute times of the walk, and resemble the @gprased to study short
random walks in regular graphs in [6]. It is then shown thatghobability of reaching
a node picked uniformly at random withirsteps is at least1v/¢/n, if A% <t < 6n?.
By taking the union over alk nodes, we have the following corollary.

Theorem 2.6([T1]). A Metropolis walk of lengthi\? < ¢ < 6n? visits (/) distinct
nodes of the graph, in expectation.

By applying the union bound, we describe the cover time ofaugrof Metropolis
walks deployed in the graph; the results from [T1] are repédahere in mobile agent
terminology.
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Theorem 2.7([T1]). Ateam ofc mobile agents, initially placed at nodes of the network
chosen uniformly at random, with each agent performing ardetlis walk, covers all

of the nodes of the graph w.h.p. withiifmax{ A2, n?/k?}) steps (where th@-notation
disregards polylogarithmic factors).

The above theorem shows that exploration strategies basktEtvopolis walks par-
allelize well, obtaining a speedup 6f(k?) with respect to the known bounds for the
single-agent case, provided that the agents start fromsneldieh are spread out through
the network, and that the degree of the network is not too.high

This type of argument is further exploited in [T1] in comhiioa with so-called land-
mark distribution schemes due to Bro@emal.[42] to obtain the main result of [T1], set
in the centralized model of computation. We obtain that thhesical ST-connectivity
problem, which consists in determining if a pair of nodes of a graph given at input
belong to the same connected component, can be solved itiamel spaceS with a
time-space tradeoffS - 7' = O(nQ), with bounded probability of error. This improves
on a series of previous tradeoffs which relied on the apptinaof random walks, with
the previously best trade-off being one@fnm), due to Feige [84].

A comparison of the most important exploration propertiethe random walk and
the Metropolis walk is provided in Table 2.2.

2.3 Deterministic exploration strategies

Designing algorithms for agents which explore all graphtfwertainty requires strictly
more resources than the design of algorithms working witimded probability of error.
It is well known that in the absence of any device for markigles, no memoryless
robot can deterministically explore all anonymous grapts.[ In [159], this impos-
sibility result was extended to a finite team of robots, simgathat they cannot even
explore all environments belonging to the class of planéiacgraphs. The result was
further strengthened in [50], where the authors introdugewerful tool, called the
Jumping Automaton for Graphs (JAG). A JAG is a finite team oitdimutomata that
permanently cooperate and that can tedeportationto move from their current loca-
tion to the location of any other automaton. However, it suoit that not even JAGs
(with constant state memory) can explore all graphs.

The precise requirement on the amount of state memory reegefes an agent to
explore all graphs on at mostnodes i9(logn). The negative result, i.e. a proof that
a robot requires at leaststates (and thuQ(log n) bits of state memory) to explore all
graphs of order, can be found in [93]. On the other hand, exploration usiipg n)
bits of state memory can be achieved in polynomial time usmgalleduniversal se-
guences

Rather than treat such universal sequences as a speciafadserministic explo-
ration strategies, we will use universal sequences astasgtaoint, and then show that



TABLE 2.2: A comparison of exploration algorithms: the randomkytie Metropolis walk, and the rotor-router model.
Results which follow from papers [T1, T3, T4] are marked witlllets ().

Property Random walk Metropolis walk Rotor-router

System model: Anonymous network Anonymous network Anonymous network
with a pointer at each node

Determinism: Randomized Randomized Deterministic

Stable state behaviour: Visits edges equitably Visits nodes equitably Visits edgmggitably
(Eulerian traversal)

Cover time w.r.tn: O(n?) O(n?logn)® O(n?)

Cover time w.r.tm, D: O(mD logn) O(mDlogn)® ©(mD)*

Limit cover time: As above As above Covers graph irm steps

(Markovian process) (almost-Markovian process) (Eulerian traversal)

Recovery after change inNone required None required Stabilizes ikm f steps ( new

network t0p0|ogy: (MarkOVIan prOCESS) (almOSt'Mark0V|an proceSS) edges or pointer Changes)
slow for edge deletionts

Worst-case performance: Unbounded Unbounded As in average-case

Graph discovery irt steps: Discovers~ +/t edges Discovers +/t nodes(t > A?)* Discovers~ /t edges

Cover time using walks in - O(k log n)-fold speed-up; Speed-up unknown in generalSpeed-up unknown; no slow-

parallel: Q(k)-fold  speed-up in O(A2 + n2/k?) cover time for down possible

many graphs (for small)  yniformly random initialization

salfaress uoneodxa onsiuiwIBdq £°Z
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an arbitrary deterministic strategy can be viewed as a Bedoaniversal table which
generalizes the notion of a universal sequence to take actmuat the state of the agent.

2.3.1 Universal sequences

Anonymous graphs can be explored using so caltedersal traversal sequenc@3TS-
s). A UTS describes a sequence of port numbers by which tha abeuld progress
along when leaving its location in successive steps. Fdymat (aq,as,...,a;) be

a sequence of integers. Aapplicationof this sequence to a gragh at nodeu is the
sequence of nod€s,, . . ., u,. 1) obtained as followsu, = u; forany0 < i < t,u;4; =
succ(u;, a;) if a; < deg(u;), andu,y; = wu; otherwise. A sequencgi,as, ..., a;)
whose application to a gragh at any node: contains all nodes of this graph is called
a traversal sequence for this graph, and a traversal seg|fmmall graphs in some class
G is called a UTS forg. An agent can traverse a fixed (known) URSusing only
O(log |A|) state memory, since the agent’s move at tindepends only on the value of
t, which can be used to compute the current elemeaft the sequence.

Aleliunas et al. [7] observed that there exists UTS-s of teiugplynomial inn for the
class of all graphs of at mostnodes. The applied argument is based on the probabilistic
method and thus non-constructive. The length of the obdidinES for the class of port-
labeled graphg¢ is given asO(maxgeg Cr(G) - log |G|), whereCr(G) represents the
cover time of the random walk i6". This may be bounded for graphs with at most
n nodes and degree at masts O (n3d*logn), sincemaxgeg Cr(G) = O(n*d) and
|G| = O(2m!°e™) [7]. A mobile agent, given fixed: andd, can always compute a
distinguished UTS (e.g., the lexicographically smallesbag all shortest UTS-s for
the clasgy) and follow it in the graph.

Proposition 2.8([7]). For any positive integers, d, d < n, there exists an algorithm
for a mobile agent withtO(logn) state memory, which explores any anonymous graph
of at most» nodes and maximum degree at mést O(n3d?logn) steps.

We remark that although the state memory carried over edgtselagent need only
encode its position in the UTS, at every step, the agent hgenerate the complete
UTS from scratch to be able to perform its next move. No potyiadtime routines for
finding a UTS of lengthD (n3d? log n) are known to date.

At the cost of increasing the cover time, it is possible, hasveto bound the time and
memory of local computations of the agent. The approaceseln the application of so-
calledUniversal Exploration Sequences (UXSfsplace of UTS-s. A UXS describes,
for each step of the walk, the offset of port by which the agdeaves a node with
respect to the port by which it entered the node. Formallyaf@iven integer, a
sequence of intege(s,, as, . .., a;), 0 < a; < d, is called &n, d)-UXS if for any graph
G = (V, E) of maximum degree at modgtand at most nodes, all of the nodes @&f
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are visited by an agent which starts at an arbitrary ngde V' and visits the sequence
of nodes(uy, ..., u;+1), obtained as followsu; = succ(ug,0); for any1l < i < ¢,
w1 = succ(u;, (pi+a;) mod deg(u;)), wherep; is the port by which the agent entered
u; In stepi.

In general, the probabilistic method of Aleliunaesal. [7] can be used to construct
UXS-s of the same length as UTS-s for arbitrary graphs. Hewé¥XS-s have a num-
ber of advantages over UTS-s, e.g., an agent following a krid¥S can always apply
a reversed sequence to return to its initial location [1Z33rtain properties of UXS-s
may also be exploited to discover the topology of an anonygoaph and help break
symmetries between multiple agent; we apply such techsigueen considering the
rendezvous an mapping problems in Chapters 3 and 4.

A recent result by Reingold [156] implies that a UXS-type lexation procedure
can be constructed in logarithmic space of local computdto any graph, and that
this algorithm can even be operated by a single jumping aatmm(or equivalently,
a single mobile agent moving around the ground). It follohat there exists a deter-
ministic strategy for a mobile agent which explores any griaya polynomial number
of steps, using logarithmic-space (and consequently aigmpmial-time) local oper-
ations, only. The number of steps of such a sequence is, leoysamewnhat too large
to be of practical significance — on the order of at lea$f in Reingold’s original
implementation.

2.3.2 Universal tables

An extension of the concept of a UTS or UXS is captured by dledaxploration
tables. We introduce such tables by generalizing the faatiar from [69], in which
similar tables were used to derandomize the random walk.exXploration tableA
corresponding to steps of exploration is an array of indexed pairs of celldhefform
(i p,s.degs Sipsacg))s With T < i < ¢, 0 < p < deg < d, s € S. Then, an agent
following exploration tableA is defined so as to have set of statesand to behave in
thei-th step of execution as follows: if the agent entered thestuimodev in stepi — 1
by portp in states, then it should leave in stepi by port(p+a; . s.deg(v)) mod deg(v)
in states; | ..y € 5. Here, we choose to define the port of exit(as+ a; p,s deg(v))
mod deg(v) rather tham, ;, ; 4e¢(v)) SO @s to obtain the analogue of a UXS (and not a
UTS), giving certain desirable properties, such as thetpluf the agent to backtrack
its steps knowing only the definition of the table.

We remark that an agent following a universal table is pedgias powerful as an
agent which is allowed to follow aarbitrary deterministic exploration strategy in an

*While Corollary 5.5 from [156] concerns only regular graptie reduction mentioned before this
corollary reduces a UXS on arbitrafy-node graphs to a UXS om-consistently labeledv2-node
graphs of degree 3. Thus the more general result for anpitnat necessarily regular graphs, holds
as well.
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anonymous graph. The difference is purely notational: imigarsal table, we empha-
size the role of the time step indéxwhich would normally be concealed as a part of the
state of the agent carried over edges. The memory requitdoresn agent following
an exploration tablel for | A| steps idog |S|+1log | A|, where the lasbg | A| bits encode
the current value of the time step.

Construction.  The explicit time dimension in the table proves concepyuadipful
when designing a universal table by means of derandomiziggchosen randomized
exploration algorithm, such as the random walk or the Meailigpwalk, relying on the
probabilistic method. We assume that the considered raizédnalgorithm has a fixed
set of states' (corresponding to those in the table), and that the tablesgded for an
agent operating in an anonymous graph of maximum degree sttdnmtuitively, one
considers a set of exploration tablEsuch that an algorithm which picks a tafile= T
uniformly at random and then follows exploration accordiad” is indistinguishable
from the original randomized algorithm based on which the7/Ses designed (e.qg.,
the random walk or the Metropolis walk). The SEtis designed for an exploration
lengtht corresponding to the cover time of the considered randaaiggorithm within
the chosen graph clags Based on this, one obtains by the probabilistic method that
there exists a specific table of lengtht - log |G|, obtained by the concatenation of
log |G| specifically chosen tables froffi, which is auniversal tablefor the classg,
i.e., an exploration followindg” starting from an arbitrary initial node of any graph
G € g visits all of the nodes of;. Specifically, such an application of the probabilistic
method is performed in [69] for the slightly simplified cadeaacrandom walk (which

is a stateless strategy, hence statesmd s’ do not need to appear among the indices
and values stored in the table). They obtain that for thesaddgraphg; with at mostn
nodes and degree at madsthere exists a universal table, which explores any graph fr
G in O(maxgeg Cr(G) - log|G|) steps, wher&'z(G) is the cover time of the random
walk. This corresponds precisely to known bounds on thetkenfa UTS. In fact,
one can use exactly the same approach to derandomize thegdketrwalk, obtaining

a table withO (maxgeg Cr (G) - log |G|) steps, wher&',,(G) is the cover time of the
Metropolis walk. Recalling thathaxgeg Ci(G) = O(n?logn) by Corollary 2.3 and
|G| = O(2mdlem) we obtain the following theorem.

Theorem 2.9. For any positive integers, d, d < n, there exists an algorithm for a
mobile agent wittO(log n) state memory, which explores any anonymous graph of at
mostn nodes and maximum degree at méat O(n’dlog® n) steps.

The above algorithm can be designed to operate without lediye ofd: the agent
can start with an assumed valuedoforresponding the degree of the initial location of
the agent, and after the specified number of stéaid log” n)) the agent is guaranteed
either to have explored the whole graph, or to have found & wédegree higher than
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d. In the latter case, the process is restarted with a doulsiednaed value of. The
process is guaranteed to terminate withitnd log® n) steps. Alternatively, one can
simply putd = n, and run the algorithm i® (n*log® n) steps (for simplicity, this is the
bound on the exploration time of deterministic algorithrtzged in Table 2.1).

As in the case of randomized algorithms, knowledge of an uppand onn is re-
quired to guarantee termination of the exploration prac@&snote that universal tables
based on the Metropolis walk lead to strictly shorter tabies UTS-s.

Lower bounds.  The question of the existence of faster deterministic dlgms than
those requirin@(n3d) steps, or equivalently shorter universal tables, is not weler-
stood. The best currently known lower bound on the lengthwfigersal table follows
from a classical lower bound 6%(n?) on the length of a UTS in 3-regular graphs [39].
It is known that UTS-s of lengtf(n?) are required to explore all graphs belonging to a
special class of labeled 3-regular graphs, which can beethes that in each graph the
used labeling has the property that for every edge, the twionpmnbers at the endpoint
of each edge are the same. For such graphs, the models of aWlXy, and a univer-
sal table of fixed length have exactly the same “power”, aay table or sequence of
one type can be converted into another, preserving the bmiranf the agent. Hence,
the lower bound of2(n?) holds for all three models, and so is also a lower bound on the
time of deterministic exploration in the anonymous netwmddel.

Most of the research on lower bounds in deterministic exgtion has concerned
UTS-s, only, with the best currently known lower bound for&% in graphs of max-
imum degreel being Q(n*°1d%49) [61]. This result is the last in a long sequence of
incremental improvements based on a proof technique whakesuse of construc-
tions of so-called reflecting sequences to design portilapeforcing the application
of long UTS-s on the ring, which are then generalized to eabjitregular graph. As
pointed out by Koucky [128], lower bounds of this type do natrg over even to the
case of UXS-s, since a sequence of successive port increroeftt’ corresponds to
the well-known basic walk (right hand rule) strategy, andufficient to explore graphs
such as rings and trees in linear time. Finding lower bouadatfiversal tables appears
to be even more complicated.

Randomization of universal tables. When designing efficient deterministic ex-
ploration algorithms, we obtained a universal table by deomizing some form of
biased random walk. However, it is also possible to perfdrengrocess in the opposite
direction, adding elements of randomness into a univeatde tto obtain a randomized
exploration strategy. Assuming the agent knows a bound the number of steps of
exploration it can perform and on the degree of the graph,ameconsider a probability
distributionp : 7 — [0, 1] whereT is the set of (not necessarily universal) exploration
tables of length at most. Now, an agent can proceed with the following randomized
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exploration algorithm: in the first step, it picks a tafilec 7 according to probability
distributionp, and then deterministically follows tab¥efor 7 steps. Such an approach
is extremely powerful. In fact, subject to some assumpta@nknown upper bounds of
parameters, d, andr, it can be seen as universal: it is well known that any randethi
exploration strategy, which relies on some coin tossesbeatonverted into one where
all the random decisions are decided before the first stepeoftient, and the subse-
guent execution of the procedure is deterministic. Singedaterministic strategy is
equivalent to some exploration table, the universalityhefé@dopted approach follows.

The problem of designing a randomized exploration tablectviis superior to the
Metropolis walk is a challenging research question. Intely, it might seem that in
regular graphs with a port labeling which provides the agétit no additional infor-
mation about the topology of the graph, tBén?) cover time achieved by both the
random walk and the Metropolis walk is the best possible. éi@x none of the known
lower bounds of2(n?) on cover time for specific classes of algorithms extendséo th
general case of randomized tables.

2.4 Exploration of anonymous networks with
preconfigured port numbers

In this section we consider a natural variant of the explongproblem in anonymous
networks, in which the designer of the agent’s exploratioategy initially sets up the
port labels and the ordering of the local port numbers in #igvark, so as to allow a
very simple agent to efficiently explore all nodes of the ratw This line of study was
initiated in [75].

We will study the exploration problem with preset ports ie ttontext ofperiodic
graph exploration. The task of visiting all the vertices ohetwork periodically is
particularly useful in network maintenance, where theustatf every vertex has to be
checked regularly. It turns out that, due to the ability tegat the port numbers, it
is possible to design a memoryless agent which visits aleadde., an agent which
is not equipped with any state information which survivesewltraversing an edge).
It turns out that it is even possible to visit all nodes of thiepl with a memoryless
robot periodically, once every a number of steps which isdiminn. This shows that
the ability to configure ports is extremely powerful in netwexploration. We recall
that for arbitrary port settings, exploration was only feesfor an agent equipped with
Q(logn) bits of state memory (cf. Section 2.3).

Formally, we consider a scenario in which the agent is ilhjtlacated at some vertex
v, and starts the exploration ¢ by traversing the edge having lab&lat endpoint
v. Once it has reached the other endpoint of this edge, say sod®, it reads the
associated label, sady and enters node. When the agent is memoryless, the port
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by which the agent leavesis a function of the input port. In fact, we will restrict our
considerations to agents following the so-calbegic walk(or theright-hand rule[56]),

in which vertexu is left by the port labeletNextPortw), i.e., the next port after the port
of entry in some cyclic ordering of the ports@t The basic walk strategy has been
shown to be the best possible among all memoryless exmaratrategies, for any
graph [56]. After performing a certain number of steps adowy to the rule, the agent
will eventually re-enter por at vertexv, and the traversal will proceed periodically
from then on. We will say that the ageexploresthe graph if its route goes through
each vertex of the graph at least once; from now on, we wil} cohsider port labelings
leading to valid explorations. It is known that all graphsngich port labeling leading to
an exploration [75].

For a given port labeling, thexploration periodr is defined as the total number of
steps made by the agent before returning to the initial moréquivalently, as the total
number of arcs of the forrfw, v), for {u, v} € E, used during the exploration). Herein,
we focus on finding labelings which lead to valid exploraia@f minimum possible
period when using a memoryless agent. This immediatelsleathe natural definition
of the graph parameter(G) known as theninimum exploration periodf the graph.

The first constructions of port labelings leading to shopplesation periods for a
memoryless robot were provided in [75], showing that for grgph onn nodes, we
haver(G) < 10n. Recently, by applying a clever graph decomposition temimi
in order to build an appropriate exploration cycle, [56] @damproved this bound to
m(G) < £n ~ 4.33n. They have also shown a strong worst-case lower bound: ior ar
trarily large values of., there exist:-node graphs-,, such thatr(G,,) > 2.8n — O(1).
Finally, the following improved bound on the minimum exg@ton period of any graph
was shown in [T2]:7(G) < 4n — 2. The proof of this result is constructive, and in
the rest of this section we discuss in more detail how to #@lgoically construct a port
labeling which guarantees an exploration period of at nhost 2 for the basic walk.

We note that the value of(G), expressed in relation to the number of nodes
exposes certain interesting structural properties of tapty For example, we have that
7m(G) = nif and only if G is Hamiltonian, and for a Hamiltonian graph an appropriate
labeling can be defined so as to direct ports 0 and 1 of all naldesg the edges of the
Hamiltonian cycle (Fig. 2.1a). It is also known th&i7) < 2n for all graphs admitting
a spanning tre& such thatz \ 7" has no isolated vertices [56].

2.4.1 Construction of Port Labeling for the Basic Walk

The port labeling will be constructed in such a way that theragvill perform one
period of its traversal withidn — 2 steps, and hence will only visit a small number of
edges of the traversed graph The general approach is to construct a multigrapbn

the same set of nodésas(, adding one copy of an edge between a pair of nodes each
time the agent traverses an edge between this pair of nodassyalk onG. We apply
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FIGURE 2.1: Exploration cycles obtained for different labelings) a labeling leading to a
Hamiltonian cycle, (b) another exemplary labeling.

a method introduced in [56], which consists in proving thedré exists a multigraph
H on the set of nodes and edges(ofatisfying a certain set of properties, and next,
that given such a multigrapH, we can design a periodic walk spanning all nodes from
V', whose period is at most the number of edgeg/ofin our case, we will expect the
multigraphH to have at mostn — 2 edges (counting all parallel edges).

For a multigraph/, we will denote by ( H) its vertex set, by¥( H) its edge multiset,
and by|E(H )| the number of its edges (including multiple edges). The rermobedges
adjacent inH to a vertexv € V(H) is denoted byleg,,(v). The notatior2e denotes
2 copies of an edge; the notatior2 H denotes a multigraph with vertex sét /) and
each edge € E(H) replaced by2e. An edgee € H is calleddoubleif 2¢ belongs to
H, andsingleotherwise. Throughout the section, we will never considattigraphs
with more than two parallel edges.

Any labeling scheme for grapfi uniquely determines an exploration cycle, under-
stood as a sequence of directed edges traversed in a singld péthe exploration,
i.e., a sequence in which the directed elgey) corresponds to a transition of the robot
from some node to another node, where{u, v} € E. The correspondingxploration
multigraph H is defined as the undirected submultigrapl2@fgiven by the edges of
G traversed by the robot during one exploration cycle. Eageeas included as it is
traversed, possibly twice if it is traversed in both direns; note that no edge can be
traversed twice in the same direction, since then the meessyagent would start the
next period of its traversal. Lefl, be the spanning subgraph &f consisting of its
double edges only, and |1éf; = H \ H,. A vertexv € V is calledsaturatedn H with
respect td~ if degy, (v) = degy(v). The following property of exploration multigraphs
is known to hold.

Proposition 2.10([56]). Any exploration multigraptH C 2G has the following prop-
erties:

A. For each vertex € V, degy(v) is even.

B. Each vertex € V havingdegy, (v) = 0 is saturated inf with respect ta’.
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The converse of the above proposition does not hold in germrone more addi-
tional property can also be formulated.

C. H, is connected.
Then, the following structural theorem has recently beenvsh

Theorem 2.11([56]). Any multigraphH C 2G fulfilling properties A, B, and C is a
valid exploration multigraph, i.e. induces an exploratioycle onG of length at most

|E(H)].

Consequently, for the rest of the section we will concerteeat defining a multigraph
H C 2G which satisfies properties A, B, and C. To achieve this, iplgra we select an
arbitrary spanning tre®,. LetG’ = G'\ Ty. Then, in multigrapl2G’ we find a spanning
(not necessarily connected) submultigrdphsatisfying properties analogous to A and
B:

A'. For each vertexw € V, deg;, (v) is even.

B’. Each vertex € V havingdeg;, (v) = 0 is saturated in/{" with respect ta=".

The final multigraphH is given asH = H' U 2Ty, thus2T, C H,. It is clear
that if H’' satisfies properties A" and B’, theH satisfies properties A, B, C, and that
|E(H)| = |E(H")|4+2(n—1). Hence, in order to obtain an exploration cycle with period
m(G) < 4n — 2, we confine ourselves to constructing an appropriate suigraph
H' C 2G" with |[E(H')| < 2n.

Note that the construction di’ can be performed independently for each connected
component ofZ’; throughout the rest of the discussion, w.l.o.g. we assumag®’ is
connected. The existence of an appropriate multigidpleonstitutes the main result
of [T2].

Theorem 2.12([T2]). For any connected grapty’ with vertex sel/, |V| = n, there
exists a multigraph?’ C 2G’ such that| E(H')| < 2n, and H’ satisfies properties!’
andB'.

Construction of multigraph  H’

In [T2], it is shown that the multigrapli/” satisfying properties A" and B’, such that
|E(H')| < 2n, can be determined by Algorithm 2. In it, we use the followirggation:

for a spanning tree rooted at nodén G’, we will call a vertexv € V tree-saturated

in 7 if deg,(v) = degq(v). For treeT, let s(7') denote the number of tree-saturated
vertices inT’, and lets,(T"), for 0 < h < n, be the number of tree-saturated vertices in
T at height (i.e. distance in tréé from rootr to the vertex) not greater than This
allows us to define a partial order on the set of rooted spgrtnees ofz’. For a pair of
treesT,, T,, we will say thatT,, < T, if one of the following conditions is fulfilled.
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1. s(T,) < s(Ty),

2. s(T,) = s(1Tp), and for somé, 0 < h < n, we havevy<,-, s,(1,) = s/(T}) and
Sh(Ta) > Sh(Tb).

Algorithm 2: Computing multigraph’

1. LetT be a minimal spanning tree @& with respect to ordef<).

2. LetS be a subgraph i’ \ T', whose connected components are stars, such
that for eachy € V eitherv is tree-saturated ifi or degg(v) > 0.

3. Find a submultigrap/’ C S U 27 fulfilling properties A and B’, such that
|E(H")| < 2n, and return it as output.

It turns out that all of the steps of the above algorithm ardl defined. Step(1)
requires no comment. For stép), graphs is well defined because any graph admits a
subgraph which is a set of stars, touching all non-isolagtices; for graplt:’ \ 7', the
only isolated vertices are those which were tree-satuiatéd The correctness of step
(3) is the result of the appropriate choice of spanning Tfe&he selection of the edges
which are included irf’ can be implemented by applying several auxiliary proceslure
which select edges incident to nodes of ti&éeprocessing these nodes level by level,
starting from the leaves and moving towards the root of tee [i2]. The correctness
of this construction off’ implies the following theorem.

Theorem 2.13([T2]). For any graphG of sizen there exists a port labeling leading to
an exploration period of the basic walk: < 4n — 2.

It is natural to ask about the runtime of the procedure reguio obtain a labeling
with such an exploration period, and about the tightnes$efdbtained bound; we
address these guestions in the following subsections.

Whereas the construction of the appropriate cycle can avieayperformed using
Algorithm 2 (in finite time), this does not necessarily melaaitta solution can be found
in polynomial time. The problem consists in computing anrapgate spanning tree,
minimal in the sense of orddk), in step (1). In general, finding a spanning tree
having a minimum number of saturated vertices is alreiélyhard. (The proof of this
observation proceeds by reduction from the problem of fig@itdamiltonian path in a
3-regular graph: &-regular graph has a spanning tree without saturated esriiand
only if it admits a Hamiltonian path.) However, this problevas alleviated in [T2] by
selecting a different partial order on spanning trees, ritaa less intuitive definition,
but satisfying the same essential properties and allovan{gakter processing.
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FIGURE 2.2: Example of a class of graphs in which the explorationogeof the basic walk is
2.8n — O(1). [56]

Theorem 2.14([T2]). There exists a polynomial time algorithm which, given a ¢grap
G, determines a port labeling leading to an exploration pdrio< 4n — 2.

Tightness of the bound

The best known existential lower bound on the length of adoggpon cycle is within
an additive factor o£.8n [56]. The class of graphs attaining such a bound is obtained
by connecting 4-vertex diamond graphs into a chain, as pteden Figure 2.2. This
leaves a gap between the lower bound, and the best knownnighveth a period of
4n — 2, given by Theorem 2.13.

However, obtaining exploration periods significantly seothan4n would require
some completely new insight. All of the approaches knownatedincluding those
from [56,T2], rely on constructions of exploration multigehs in which the set of edges
traversed twice during the exploration period touchesfathe nodes of the graph (for-
mally, for allv € V, degy, (v) > 0). This property would have to be discarded to allow
further improvement to the length of the exploration perimdriew of the following
result.

Theorem 2.15.For all values ofn > 3, there exists a grapty of ordern, such that any
exploration ofGG whose exploration multigraph satisfies for alle V', degy, (v) > 0)
has|E(H)| > 4n — 8 edges.

We remark that in particular, the construction would needvioid the condition im-
posed on the double-edge subgraph of multigrApiproperty C in Theorem 2.10).

2.4.2 Agents with Small Memory

A variation of the considered problem was proposed in [1@8Ere the robot is equipped
with few extra memory bits. We will denote the exploratiomipds in such a model by
7.. In [109] it is shown how to obtain an exploration periedG) < 4n — 2, regardless
of the starting vertex of the robot. The obtained bound hasesbeen improved in [97]
to 7.(G) < 3.75n — 2 by exploiting some particular graph properties, still afilog
only constant memory. The constant memory model was als@ssked in [56] and the
bound was further improved to.(G) < 3.5n — 2 by using a combination of the proper-
ties from [97] and the new decomposition technique also us§@l7] for the oblivious
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case. Interestingly enough, apart from the relatigid-,,) > 2n — 2 which clearly holds
whenevelG,, is a tree om nodes, there are to date no known non-trivial lower bounds
on the worst case value of parameter

2.5 Exploration in network models augmented by
edge counters

The exploration of anonymous graphs can be accelerateddwdprg additional in-
formation to the agent at nodes of the environment. In theeme case of graphs in
which nodes have unique identifiers available to the agentndt known in advance,
one obtains an online graph exploration problem which ha& studied in the con-
text of minimizing the time of first cover in terms of eitheethumber of moves (edge
traversals) or the amount of memory used by the agent. Raaait Pelc [151] gave
an algorithm for exploring labelled undirected graphs thesm + O(n) moves, im-
proving on the standard Depth-First Search algorithm tlet<2 moves. Collabo-
rative versions of the same problem, employing multiplenégiehave been considered
in [67,92]. Deng and Papadimitrou [66] as well as Albers amhtinger [2] studied
the exploration of strongly connected directed graphs utisesame conditions. There
have also been some studies on the efficiency of exploratimmwome prior informa-
tion about the graph is available with the agent — for instamden the agent possesses
an unlabelled isomorphic map of the graph [152]. For expparbitrary anonymous
graphs, various methods of marking nodes have been usedfénedt authors. Bender
et al.[29] proposed the method of dropping a pebble on a node to ihand showed
that any strongly connected directed graph can be expl@iad just one pebble, if the
size of the graph is known and usitlog log n) pebbles, otherwise. Dudek al.[77]
used a set of distinct markers to explore unlabeled undidegtaphs. Yet another ap-
proach, used by Bender and Slonim [30] was to employ two cabipg agents, one of
which would stand on a node, thus marking it, while the otlx@tees new edges.

Herein, we focus on modifications to the anonymous graph imodeéhich the agent
is guided at each node by a simple local rule, influenced bynistery of the agent’s
exploration. Specifically, in docal exploration strategyhe next node to be visited
by the agent should depend only on the values of certain paessmassociated with
the edges adjacent to the current node. Our main goal is igrdexcal exploration
strategies which in some sense mimic the behavior of a ransalk in a graph, in
an attempt to achieve the same properties of cover time guidraxion fairness in the
deterministic sense of worst-case performance.

In Section 2.5.1 we consider the so-called rotor-router ehoith which the agent
at each step exits the current node, using its outgoing pontsund-robin fashion.
Two other local strategies, known as Least-Used-First ddé<d-First are discussed in
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Section 2.5.2. These strategies make use of counters asbuaiith edges, rather than
ports of the graph, and strive to preserve some form of fagmé use of edges during
exploration. The obtained results relating to the coveetafithese strategies are briefly
summarized in Table 2.1.

2.5.1 The rotor-router model

The rotor-router mechanism was introduced as a deterntiaig¢rnative to the random
walk and studied in the context of a wide selection of networblems, including
work on load balancing problems in [53,76], graph explamfiL, 91], and stabilisation
of distributed processes [32,155,175]. Ta®r-router mechanisns represented by an
undirected anonymous gragh= (V, E). As in the previously considered anonymous
model, nodes i’ bear no names, however, the endpoints of edgéds, icalledports,
are arranged in ayclic orderat each node. For the purposes of the rotor router, no
explicit port numbers need to be defined; nevertheless, aymdrt labeling. Instead,
each node is additionally equipped witlpainterthat indicates the current exit port to
be adopted by an agent on the conclusion of the next visiisotide. The rotor-router
mechanism guarantees that after each consecutive visitateaits pointer is moved to
the next port in the cyclic order. The port labeling and thgahpointer assignment is
treated as part of the rotor-router mechanism, configuréatdéne release of the agent.

In this section we consider the efficiency of graph exploratising the rotor-router
mechanism, hence, the most interesting questions for uscaveyuickly the agent ex-
plores the whole graph, and then how evenly it keeps travgtbie edges of the graph.
We then proceed to study the behavior of the rotor-routeeumnabdifications to the
topology of the graph. A comparative overview of the mainpamies of exploration
using the rotor-router and the random walk is provided ind&2.

Definition of the rotor-router

We consider the rotor-router model (on gra@hwith a single agent. The agent moves
in discrete steps from node to node along the arcs of géaph (V, E') which is the
directed symmetric version @f, having the set of arce = {(v,u), (u,v) : {v,u} €
E}.

A configurationat the current step is a triple

((pv>v€V7 (ﬂ-v)UEV7 T)u

wherep, is a cyclic order of the arcs (in grapfﬁ) outgoing from node, «, is an arc
outgoing from node, which is referred to athe (current) port pointer at node, andr
is the current node- the node where the agent is at the current step.

For each node € V/, the cyclic order, of the arcs outgoing from is fixed at the
beginning of exploration and does not change in any way friap ®© step (unless an
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edge is dynamically added or deleted as discussed laterthe tBection). For the sake
of convenience, we will define the cyclic order using the concept of an explicit port
assignment (labeling).

For an arc(v, u), let nex{v, u) denote the arc next after afe, u) in the cyclic or-
derp,. During the current step, first the port pointerat the current nodeis advanced
to the next arc outgoing from(that is, . becomesex{,)), and then the agent moves
from noder traversing the ara,.

The exploration starts from some initial configuration amehtkeeps running without
ever terminating. The initial configuration is uniquely defi through the port assign-
ment and an initial pointer assignment, defined as follows.

Definition 2.1. An initial pointer assignmento the nodes of an undirected grapgh=
(V,E)isafunctionf : V — E, such thatforalb € V, f(v) € Eg(v).

Lock-in time of the rotor-router mechanism

Due to the limited number of configurations in a graglof bounded size, it is intuitive
that a walk of the agent controlled by the rotor-router madcra must be locked-in in
a loop eventually. Moreover, this loop must include all tlegtices. We formulate this
in the form of the following lemma, attributed to folklore.

Lemma 2.16.The agent following the rotor-router visits each node inélyi many times
(thus traverses each arc infinitely many times).

Rather surprisingly, however, Priezzhetwal. [155] proved that an agent traversing
a finite graph gets locked-in to an Euler tour based on arcaradd by replacing each
edge inG with two arcs having opposite directions. More precisefterathe initial
stabilisation (lock-in) periodthe agent keeps repeating the same Eulerian cycle of the
directed grapkﬁ. We will subsequently refer to the undirected links in grépasedges
and to the directed links in grapH asarcs We will also keep using an arrow on the
top of a symbol, as ity and £, to stress that we refer to directed graphs and arcs.

The result of Priezzhev at al. means that the rotor-routeah@ghly desirable prop-
erty of regularity of edge exploration: namely, after thekion period, each edge is
visited precisely once evem steps. This is a much stronger property than the reg-
ularity achieved by the random walk, which visits every edgh expected frequency
1/2m. Independently, Wagneat al.[167, 168] showed that, starting from an arbitrary
configuration (arbitrary cyclic orders of edges, arbitramiyial values of the port point-
ers and an arbitrary starting node) the agent covers allssofgbe graph withirO (nm)
steps, where andm are the number of nodes and the number of edges in the graph. In
other words, the cover time of the rotor-router is deterstioally bounded by) (nm),
matching the (expected value of the) cover time achievedhéyandom walk (cf. The-
orem 2.1).
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Bhattet al.[32] strengthened and combined the earlier results of Bimzet al. and
Wagneret al, showing that withirO(nm) steps the agent not only covers all edges but
already locks in to the traversal of its eventual Euleriaur.td his result was improved
by Yanovskiet al.[175] who showed that the agent locks in to an Eulerian cydRiw
2m D steps.

Theorem 2.17([175]). For any graph(, any cyclic orderp, of the arcs outgoing from
each nodev € V, and any initial values of the port pointers, v € V, there exists a
time stepty, < 2mD such that from step, + 1, the agent keeps repeating the same
Eulerian cycle of graphﬁ.

This O(m D) bound on the lock-in time of the rotor router also corresoasymp-
totically to the time required for the rotor-router to vialt nodes of the graph. Thus, it
can be seen as a counterpart of @en D) bound on the cover time of a random walk
(cf. Theorem 2.1).

A simple proof of the lock-in bound of Yanovski alis achieved by studying the
saturation of subsequent nodes in the initial phases of #ik.Ww\e say that a node
becomesaturatedwhen all its incident edges are traversed in both directfonshe
first time. Note that when a node becomes saturated, itsgyaieturns to the initial
position for the first time. A slightly stronger version ofgltlaim is given below.

Lemma 2.18([175, T3]). If in the current step the agent leaves the current node
along an arc(r,y), then the first arc traversed for the second time during theéope
i,i+1,...,isthisarc(r,y).

The following lemma provides a characterization of the bedreof the rotor-router
system during its first exploration of the graph, before vsrgual lock-in into an Eule-
rian traversal.

Lemma 2.19([32]). Let G = (V, E) be a graph with a starting node € V, an
assignment of ports and pointers. The Euler tour lock-idsits performed in phases
{P,}:;>1. Each phase starts when the mobile agent leavem edgef(s) indicated
by the initial assignment of pointers and continues unt #ygent traverses all edges
incident tos in both directions. The following properties hold:

e While the agent is visiting nodes saturated in some earlasg, it retraces the
route of phase’,_;.

¢ If the agent encounters a nodethat has been visited but not saturated in an
earlier phase, it suspends the retracing of the tour of ph&se. A new tour
starts atu and ends there. Node is now saturated. The tour of phasg ; is
resumed (via porf(s)).

e Every edge is traversed at most once in each direction dweaup phase.
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Eventually all nodes ird- get saturated. In other words, there exists an integer 1,
such that, starting from the phage the agent adopts the same (Euler) toutin

One can conclude from Lemma 2.19 that during each pFatee agent gets locked
in a subgrapltz; of G where:

1. GG, contains a single node
2. each(; is a subgraph of7;, ;
3. all edges of5 that are incident to nodes 6f; belong to the edge set 6f; ., ;.

Since the number of edges in eaghis bounded byn, theO(m D) bound on lock-in
time follows.

We also remark that Lemma 2.19 implies that, if in some phaxdts exploration
the agent has covered all of the nodes of the graph, thea G. It follows that the
agent will lock in to its Eulerian traversal withim steps from the moment when it has
covered all nodes.

Proposition 2.20. The difference between the cover time and the lock-in tintbeof
rotor-router system is at mogin.

Subsequently, we will consider an asymptotic analysis@fdhbk-in time of the rotor-
router, noting that this is equivalent (up to constants éidith notation) to its cover time.

The Euler tour lock-in problem against an adversary

In this section we examine the influence of the initial confagin of pointers and port
numbers on the time needed to lock-in the agent in an Euler fboe case study is
performed in the form of a competition betweemlayer P intending to lock-in the
agent in an Euler tour as quickly as possible ancdsersary.A having the counter
objective. We assume that both the plajgeand its adversaryl have unlimited com-
putational power, i.e., we do not take into account the cbsbmputation of the initial
configuration of ports and pointers to be adoptedgnd.A. The results of our studies
are asymptotically tight in terms of the worst-case choidde graph topology and the
initial location of the agent.

We start our analysis with border cases. In the dasdl where the playe is in
charge of the initial arrangement of port numbers and pmme observe that the lock-
inin an Euler tour can be obtained in tirG&m). Also the cased(O)P(f), whereP sets
the pointers after the port numbers are assigned jagduces to the border case where
P is solely in charge of the initial configuration. On the othand, in the casgl-all
where the adversaryl solely decides about the initial configuration, we show iB8][T
that in any graph withn edges and diametd? the adversaryd is able to enforce the
lower bound2(m - D) for the lock-in matching the upper bound from [175].
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Theorem 2.21([T3]). For any graphG = (V, E) there exists a starting node and a
port and pointer assignment ifi, s.t., the lock-in requires time at least m D .

The lock-in of the rotor-router occurs shortly after all bétnodes have been discov-
ered. In view of this, we obtain that for any gragh the worst-case cover time of the
rotor-router iSO (m D).

In view of the above result, it is natural to ask which capggbibf the adversary
contributes more to increasing the lock-in time of the ratarter: that of setting ports
in the graph, or the initial locations of the pointers? In],Me establish that for worst-
case graphs, control over the initial pointers is more irtgodr Indeed, in the case
A(f)P(O), whereP responds by appropriate port assignment to the initialpsefu
pointers byA, we show that there exist graphs for which the lock-in stijuires time
Q(m- D). Foranym andD, D < m, letG,, p denote the class of graphs with diameter
betweenD and4D and a number of edges betweerand4m.

Theorem 2.22([T3]). For anym and D < m, there is a graphZ = (V, E) in G, p
with starting nodes, and a pointer assignment, s.t. for any port assignmentdble-in
time (and cover time) is at lea§i(mD).

At the same time, we present a non-trivial class of graphbk aiit arbitrarily large
diameter in which an appropriate choice of port numbersdaadhe lock-in in time
O(m).

In the caseP(0).A(f) where A sets the pointers after the assignment of ports is
revealed byP, the lower bound of2(m - D) for the lock-in time follows directly from
the previous case. Also, here we propose a non-trivial dbgsaphs, this time with an
arbitrary diameteiD < \/n, in which the lock-in is feasible in timé&(m).

On the other hand, we show that if the initial setup of positeperformed by, and
A provides its own port numbering for the graph afterwardsé@f).A(0)), then the
complexity of the lock-in problem is bounded BY{m - min{logm, D}).

Theorem 2.23([T3]). Forany graphG = (V, E) in G,, p and any starting point there
exists a pointer assignment, s.t. for any port assignmenoitk-in (and covering of the
graph) can be obtained in tim@(m - min{logm, D}).

We also propose a respective class of graphs in which theitoequires time (1 -
min{logm, D}). At the same time we point out that, e.g., in Hamiltonian gsafite
lock-in is obtained in time)(m).

Our results are summarised in Table 2.3.

Robustness of the rotor-router mechanism

A useful property of graph exploration based on the rototeépmechanism is its ro-
bustness. In case of link failures or other dynamic changeke graph, after some
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TABLE 2.3: Minimum and maximum values of the lock-in time (and goweme) of the rotor-
router for different adversarial scenarios.

Scenario Worst case Best case

CaseP-all O(m) O(m)
CaseA(O)P(f) ©(m) ©(m)
CaseP(f)A(D) ©(m - min{logm, D}) ©(m)
CaseA(f)P(0) O(m- D) O(m)
CaseP(0)A(f) ©(m- D) ©(m) forall D < \/n

CaseA-all ©(m- D) ©O(m- D)

additional stabilisation period the agent goes back inta¢gime of repeatedly travers-
ing the graph along a (new) Eulerian cycle. We know that wreatéhe changes in the
graph are, the length of that additional stabilisationgetis O (m D) (by Theorem 2.17,
that much time is sufficient for establishing an Eulerianleyrom any initial configu-
ration) but no better bounds have been shown before.

In this section we establish bounds on the length of thatmaail stabilisation period
which depend on the extent of the failures or changes in thphgr The subsequent
analysis of the rotor-router mechanism is based on theioeléietween the Eulerian
cycles in the directed grapﬁ and the spanning trees in the undirected gr@phthich
underlies the following theorem. This theorem, sometineésrred to as the “BEST”
Theorem, was discovered by Beuijn and van Aardenn&hrenfest [65] on the basis of
earlier work bySmith andT utte [166].

Theorem 2.24(Bruijn, van Aardenne-Ehrenfest, Smith, Tutte)

The number of Eulerian cycles in the directed, symmetrisigarof an undirected con-
nected graph = (V. £) is equal to] ], ., (d(v) — 1)! times the number of spanning
trees ofGz, whered(v) is the degree of nodein G.

We now describe the connection between Eulerian cycles awhing trees in the
context of the rotor-router mechanism.

If T is a tree in grapliz (not necessarily spanning all nodes(ey, thenT' obtained
from T by directing all edges towards a selected node 7" is called ann-bound tree
in G, and nodev is the root ofT. A subset of arcsf in G is anin-bound tree with a
root cycle if it is an in-bound tree with one additional arc outgoingrfr the root. That
additional arc creates a (directed) cycle, which we calla cycle. We can viewd as
consisting of one cycle (the root cycle) and a number of inAgbnode-disjoint trees
rooted at nodes of this cycle (no node of such a tree otherttie@root belongs to the
root cycle).

Let F = {r, : v € V} be the set of the current port pointers. For the current mpde
we are interested in the structurefof= F \ {r,}, since, as we show later, the structure



2.5 Exploration in network models augmented by edge cosnter 49

FIGURE 2.3: Left: the leading tree spanning all nodes of the grapts(an bold). Right: the
corresponding Eulerian cycle, assuming the anti-clockwigler of arcs outgoing from
a node (other cycles are obtained for other cyclic ordersas)a

of F. is a good indicator of how far the agent is from entering arekah cycle. The
component of+. containing the current nodeis anin-bound treeooted at-, which we
callthe leading treeEach componen‘r? of F.. other than the leading tree is ambound
tree with a root cycle

The following Lemma shows that the condition that the agefiois an Eulerian
cycle and the condition that the leading tree spans all notig® graph are equivalent.

Lemma 2.25([T4]). Assume that the current leading trééspans all nodes of the
graph. Then during the nextm steps the agent traverses an Eulerian cycleGin
Moreover, the leading tree after the2e: steps is again the same trée

Conversely, assume that at the current stepe leading treel’ does not span all
nodes of the graph. Then the rodtéraversed by the agent during the néxt steps is
not an Eulerian cycle.

Figure 2.3 illustrates Lemma 2.25. The diagram on the leftixsha graph and the
current leading tree (arcs in bold) which spans all nodes. cthlirent node is the root
of this tree. The diagram on the right shows the Eulerianecjmlowed by the agent.
We assume that the cyclic order of the arcs outgoing from & m®the anti-clockwise
order, and that ar¢r, x) is the current value of the port pointey. Thus, the first arc
followed by the agent is ar@-, y) = nex{r, x).

The above Lemma implies, in particular, that the Euler toakiin timer for a given
initialization of the rotor-router and the timgrequired to cover all the arcs of the graph
satisfyr < tqg <71+ 2m.

As a side note, we remark that the operation of the rotorerontechanism can be
used to prove Theorem 2.24. We fix a nadas the current node and an drcz) as
the current value of the port pointet. (the agent will follow in the current step arc
nex{r, x)). Let7 be an arbitrary in-bound spanning tree(dfooted at node, and let
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the next leading tree

the current leading tree

FIGURE 2.4: Left: the current step, when nodds outside the leading tree. Right: the next
step, when the agent visits an ancestaf v andv enters the leading tree.

p» be an arbitrary cyclic order of the arcsd?loutgoing fromv. Lemma 2.25 assigns
to the pair(f, (pv)vev) the Eulerian cycle of which is followed by the agent starting
from the configuratiot(p, ),ev, T U{m, }, ), thatis, starting with" as the leading tree.
Itis easy to verify that the cyclé® andI™ assigned to two distinct paitd”, (p/,)ver)
and (7", (pv)vev) are distinct. Conversely one can also show that each Buleyicle
of graphG corresponds to some paif’, (pv)vev) This one-to-one correspondence
between the Eulerian cycles @& and the pairg7’, (p,).cv ), WhereT is an in-bound
spanning tree ofi rooted at node andp, is a cyclic order of the arcs i6 outgoing
from v, gives a one-to-one correspondence between the Eulertdmsdylé and the
palrs(T (pv)vev ), WhereT is a spanning tree i6': identify an in-bound spanning tree
of G rooted at node with the spanning tree af obtained fromil’ by disregarding the
directions of arcs. For a nodec V/, there argd(v) — 1)! distinct cyclic orders,, so
the number of Eulerian cycles i is equal to] [,y (d(v) — 1)! times the number of
spanning trees af’, showing that Theorem 2.24 holds.

We now give bounds on the length of the additional stabitisaperiod after some
failures or changes in the graph have occurred. To achigsewle characterize the
change to the leading tree after the change of the topolotyeafraph.

With respect to the set of port pointefs = F'\ {r,}, wherer is the current node, a
nodev is anancestorof a nodeu if, and only if, the path inF. starting fromv passes
throughu. If a nodev belongs to the leading tréB, then the ancestors ofare all the
nodes on the path iy from v to the rootr, including bothv andr.

One can observe [T4] that if a nodebelongs to the current leading tree, then it
remains in the leading tree in all subsequent steps. On tier band, ifv is a node
which is not in the current leading tree, therenters the leading tree at the first step
when the agent visits an ancestonotf. Figure 2.4.

The above observations can be used to show the followingeheo
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Theorem 2.26([T4]). If the distance from a nodeto the current node is equal tok,
then nodey enters the leading tree with2km steps.

We now consider several model of faults or changes in thehgi@pthe rotor-router
system. First, a faulty change of the value of the port poimntet a nodes might occur
when something unexpected makes the node believerthsttiould be re-set to some
default value. Next, we assume that when a new €dge} is added, it is inserted
in arbitrary places in the existing cyclic orders of edgemeeht to nodes. and v,
but otherwise those cyclic orders remain as they were befimilarly, when an edge
{u,v} is deleted, the cyclic orders of the remaining edges adjacenodesu andv
remain as they were. On both addition and deletion of an ddge}, we allow an
arbitrary change of the value of the port pointers at nodes}. A concrete system
would specify some default updates for the port pointersngerition or deletion of an
edge, but we do not want to make any assumptions about thtmdtde

The behavior of the rotor-router in all of the above evemgplving pointer changes,
edge addition, or removal, can be easily characterizeddgakio account Theorem 2.26.

Theorem 2.27([T4]). Suppose that a rotor-router operating in the graph has alea
locked-in into a traversal of an Eulerian cycle.

(i) Faultsin port pointers. If at some step the values/opointersr, are changed to
arbitrary edges (that is, the value of is changed to an arbitrary edge adjacent to
nodew), then a new Eulerian cycle is established withityn min{k, D}) steps.

(i) Addition of new edges. If at some steft: edges are added to the graph, then a
new Eulerian cycle is established within(m min{k, D}) steps.

(i) Deletion of an edge.If at some step an edge is deleted from the graph but the
graph remains connected, then a new Eulerian cycle is estadl withinO(ym)
steps, where is the smallest number of edges in a cycle in grépbontaining
the deleted edge.

Regarding thé (vm) bound for the case of deleting an edge, we remark that there ar
non-trivial classes of graphs (e.g., random graphs) in wbach edge belongs to a short
cycle. For such graphs parameteis small and our bound implies that the additional
stabilisation period is short.

The bounds which appear in Theorem 2.27 are all asymptlyticght in the worst
case. Indeed, for some values of parameteasdd, the considered bounds may be
obtained for the lollipop graply; 4, obtained by merging a vertexof the clique K,
with an end-vertex of the patR, (cf. Fig. 2.5a). Let the agent be located at verntex
after the stabilization of the rotor-router. Whérport pointers are altered at internal
nodes of pathP; (k < d), the rotor-router will only stabilize once more to an Eider
cycle after visiting each of the edges of the clique at léaitnes. Hence, for any
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FIGURE 2.5: Worst-case examples for the stabilization period efrtitor-router after changes
to the graph: (a) modification @f port pointers, (b) addition of edges, (c) removal of
a single edge.

feasible set of parameters m, k, D there exists a graph of ordéx(n), having©(m)
edges and diamet&(D), such that restoring the stable state of the rotor-router af
a modification tok port pointers require®(m min{k, D}) steps. Thus, the bound in
Theorem 2.27 is asymptotically tight. Likewise, by the domstion shown in Fig. 2.5b,
we obtain a lower bound oR2(m min{k, D}) steps for the stabilization period after
addingk new edges to the graph, asymptotically matching the bouith@orem 2.27.
(Note that the addition of edges to the graph may by assumpgult in modifications
to pointer arrangements at the endpoints of added edges)lyiFig. 2.5¢ provides an
example of a scenario in which removing a single edge leadstabilization period of
Q(ym), asymptotically matching the bound in Theorem 2.27.

Applicability of the rotor-router in network exploration

The properties of the rotor-router are highly dependenthenaimount of control over
the mechanism, and especially the initial placement of thater. In all cases where
the network designer is responsible for pointer assignthentomplexity of the lock-in
problem is either linear or close to linear. However, sucinéralization of the mecha-
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nism requires the application of an algorithm which is caliged, even if efficient.

A rotor-router with no centralized initialization also f@ms reasonably in compar-
ison to the random walk. Assuming a worst-case port and @oartangement (i.e., in
the 4-all scenario), for any graph, the lock-in time and the edge cower of the rotor
router are in the ranggm D, 2m D], as characterized by Theorems 2.21 and 2.17, re-
spectively. An edge cover time 6f(m D) for the rotor-router compares interestingly
to the expected edge cover time of a graph when using randdk) which can be
bounded a®)(m D logm) (Theorem 2.1). Whereas our bound for the rotor-router is
tight for any graph, the bound for random walks is not. Indee@-dimensional grid
on+/n x y/n has a worst-case edge cover timeQif»*/?) using the rotor router, and
an expected edge cover time ®n log” n) using the random walk. At the other ex-
treme, the rotor-router may have a lower edge cover timettiatrof the random walk.
This is the case, for example, for the class of stars or thesdbcomplete binary trees.
The deterministic nature of the cover by the rotor-rout@mnsmportant advantage with
respect to the random walk.

We have also presented an asymptotically-tight evaluaifaie robustness of the
graph exploration based on the rotor-router mechanismamhbgsis in this section can
be applied to other possible models of faults and dynamiogésiin the graph. For
example, one may observe as a simple corollary of the asallgat the rotor-router
mechanism tolerates spontaneous changes of the cyclicsartlthe edges. More pre-
cisely, if at some step after the stabilisation period theicyorders of edges change
in any way but the port pointers remain the same (that is, ploéyt to the same edges
as before), then the agent immediately enters a new Euleyiele (no need for any
additional stabilisation period).

Further challenging questions arise with introduction afitiple agents to the rotor-
router model. If we have many agents, then there are stdl@sting open questions
left regarding the stabilisation and periodicity of exjaition even in the static case (no
faults, no dynamic changes of the graph). This questiorvisrgimore attention in the
last chapter of the monograph.

2.5.2 Equitable local exploration with edge counters

The exploration strategies studied in this section aregdesi so that the next edge in
the agent’s walk is chosen using only local information, andhat some local equity
(fairness) criterion is satisfied for the adjacent unded&dges. Such strategies can be
seen as an attempt to derandomize random walks, and aralnatdirected counter-
parts of the rotor-router model, in which counters (or peig} are associated with ports
rather than edges.

The goal of achieving a traversal which visits all edges efdghaph regularly gives
rise tolocally equitable strategies.e. strategies, in which at each step the robot chooses
from among the adjacent edges the edge which is in some dem$pdorest”, in an
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effort to make the traversal fair. In this context, the fallng two natural notions of
equity may be defined:

e An exploration is said to follow th®©ldest-First(OF) strategy if it directs the
robot to an unexplored neighboring edge, if one exists, dmerwise to the neigh-
boring edge for which the most time has elapsed since itdriagtrsal, i.e. the
edge which has waited the longest.

e An exploration is said to follow theeast-Used-Firs{LUF) strategy if it directs
the robot to a neighboring edge which has so far been visietthd robot the
smallest number of times.

We remark that if the considered graph were tosgenmetric and directecand the
above definitions were to be applied to directed edges (owvaigatly, to the ports
next to each node), then the Oldest-First notion of equifyrézisely equivalent to the
rotor-router model described in the previous chapter. @ddén the rotor-router, the
next port to be traversed is always the one which has not bsed for the longest
time by the definition of the model. By a similar argument, @a& conclude [175]
that the directed Oldest-First strategy is strictly stremitnan Least-Used-First, i.e. any
exploration which follows th@®F strategy is a special case I0f)F strategy (note that
LUF does not specify a tie-breaking mechanism for the case weeera adjacent
edges have been visited by the agent the same number of tifhiksy also explore
the whole graph quickly and visit all edges with the sameuesgry in expectation.
The rotor-router stabilizes quickly to a Eulerian travérsanereas the directed Least-
Used-First exploration need not in general stabilize ttvsutraversal, but it retains the
property that for any time moment, the number of visits to @mnyedges outgoing from
the same vertex can differ by at mdsf122, 123]. This property immediately implies
that for symmetric directed graphs, any execution of Lé&sstd-First has a cover time
of O(m D), and also visits all directed edges with the same frequency.

In this section, we look at the Oldest-First and Least-Usiest strategies when ap-
plied to theundirectededges of a graph. For this case, the results, and the used tech
niques, turn out to be surprisingly different. We show tihatré exist graphs for which
the undirected Oldest-First strategiwaysperforms badly, whereas any execution of
Least-Used-First achieves a cover timetfim D), and visits all edges with the same
frequency.

The Oldest-First strategy

Whereas the rotor-router model leads to explorations win&sterse directed edges with
equal frequency, and have a cover time boundedby. D), this is not the case for
Oldest-First explorations in undirected graphs. Indeesl shvow that in some classes
of undirected graphs, any exploration which follows the €3ldFirst strategy is unfair,
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FIGURE 2.6: The graplG,,.

with an exponentially large ratio of visits between the naft#n and least often visited
edges (Theorem 2.28).

Theorem 2.28([T5]). There exists a family of graph&:,,),,>1 of order®©(n), such that
for each graphGG,, in this family, some two of its edgesand e’ satisfy fj((g’;)) = (%)"
with f..(G,) # 0, for any exploration following th©F strategy.

A class of graphs for whiclOF performs badly is presented in Figure 2.6. It is
composed of a sequence®hode graphs connected into a cheﬁ’f‘?, forany; € [1,7]
andk € [1,n]. The proof relies on the observation that the edges of edubesuent
subgraph in the chain are eventually visited a factog tmes less often than those of
its predecessor in the chain [T5].

From the above, it follows that there exist explorationddfeing the Oldest-First
strategy which have exponential cover time28f» in some graph classes.

Theorem 2.29([T5]). There exists a family of graph&,,),,>1 of order®©(n), such that
for each graphG,, in this family, some exploration following tH@F strategy has a
cover time oR%(™,

The Least-Used-First strategy

In contrast to the case of directed graphs, in undirecteghgrahe Least-Used-First
(LUF) strategy turns out to be fundamentally better than the €dB@st strategy. In
fact, we show that any exploration of an undirected graphcviollows the Least-
Used-First strategy is fair, achieving uniform distrilauttiof visits to all edges.

Lemma 2.30([T5]). For any moment of timeé during the execution dfUF and any
two edges, e; which share a vertex, the number of times the agent traverdgds:;
ande, until timet differs by at moss.

The above lemma can be extended to any pair of not necesadjagent edges of the
graph, showing that the difference in the number of travsisastween any pair of edges
is at most3(D +1). We conclude that in the limit, all edges of the graph are exqul
with the same frequency.

Theorem 2.31([T5]). For any graph, any exploration followingUF achieves uniform
frequency on all edgeg,(G) = 1/m.
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FIGURE 2.7: Worst-case example fatJF: a clique connected to a chain $tycles.

Moreover, since there cannot exist an edge in the graph viittvarsal count of more
than3(D +1) when some other edge has not been visited, it follows fromrhar2.30
that any exploration of an undirected graph uditlf- achieves a cover time 6i(m D).
The bound given below follows from a slightly tighter anadysf the process.

Theorem 2.32([T5]). For any graph, the cover time achieved by daiyF exploration
is at mosm(D +1).

Moreover, this result can be extended to the case where sbthe vaversal counts
initially take non-zero values, potentially due to faulfsttoe system. Then, the cover
time is bounded by ((n+p)m), wherep is the maximal value of a counter in the initial
state [T5].

The cover time of th& UF strategy depends on how ties are broken when choosing
among edges which have been traversed the same number of timdeed, for any
undirected graph, there exists an exploration following ltleast-Used-First strategy
which is essentially the best possible, i.e., periodic aittexploration period of exactly
2m [T5]. On the other hand, one can also find graph classes farthadartain initializa-
tions require a cover time which asymptotically matchesiitend from Theorem 2.32.

Theorem 2.33([T5]). For sufficiently largen, for anym € [n — 1,n(n — 1)/2] and
D < n, the worst-case cover time of th&JF strategy in the family of graphs of at most
n nodes, at most: edges, and diameter at mast is2(m D).

A worst-case example fdtUF-exploration is shown in Figure 2.7. It consists of
a chain of 4-node cycles, connected at one of the extrenafifse chain a complete
graph. The structure of this example resembles examplesistwase instances for the
cover time of the random walk in graphs.

Other measures of equity

We have shown that locally fair strategies in undirecteglgsacan mimic the properties
of random walks, allowing us to obtain an exploration whishair with respect to all
edges, and efficient in terms of cover time. However, theé&ss criterion for edges has
to be chosen much more carefully than fairness for pointenstirected Least-Used-
First works well, but Oldest-First does not.
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Strategies with local equity criteria have also been stlichethe token circulation
literature, in the context of strategies which are locadly fo vertices rather than edges.
Two such strategies, named LF and LR, were proposed andzackiy [141]. In the
first of these, LF, the next vertex to be visited is always enass the least-often visited
neighbor of the current vertex. In the second, LR, the neriexeto be visited is the
neighbor which has not been visited for the longest time. dimkors of [141] show
that both of these strategies eventually visit all vertidag in general do not satisfy
any fairness criteria. Indeed, the time between successts to a vertex may be
exponential in the order of the graph for LR, and unbounded.Fo In this sense, the
results of [141] may be contrasted with our results forlthi- strategy.

In future work it would be interesting to study modified notsoof equity, which are
inspired by random walks which select the next edge to betsad with non-uniform
probability. For example, after biasing the probabilitgtdbution of the random walk to
reflect the degrees of the nearest neighbors of the currela, Metropolis-type walks
achieve a cover time aP(n?logn) steps in expectation. It is an open problem to de-
fine a reasonable local exploration strategy which couldezehsuch cover time in a

deterministic sense.






3 Map construction in anonymous
networks

The task of identifying the topology of the network graphmavhich is not easier than
graph exploration. Indeed, in order to be able to identify skructure of the network,
the agent needs (in general) to explore all or almost allsafiddes. On the other hand,
simply performing a sequence of moves which guaranteesathéte the nodes (or
edges) of the network are visited, need not provide the agigmsufficient information
to identify the graph forming the network. When a bound onribmber of nodes
of the network is known, the exploration task may always béopmed in polynomial
time by following a universal exploration table (SectioB)2.By contrast, it turns out
that there exists scenarios in which an agent moving aroanananymous network
canneveruniguely identify the network it is operating in, even withdwledge of the
number of nodes and given unbounded time and unlimited computational nessu
There exist examples of distinct anonymous graphs withngjgtshed starting nodes
such that identical agents operating in these two graphsbwiys be located at indis-
tinguishable nodes, and hence will always find themselvésdrsame memory state,
i.e., unable to tell between the two graphs. This genersé-aapossibility result, first
observed in [35,172], is an indication of the difficultiessebved in anonymous net-
works in comparison to scenarios in which all nodes haveueidentifiers known to
the agents. More broadly, efficient symmetry breaking isaf@e fundamental areas
of study in distributed computing with anonymous nodesrtBigwith the seminal pa-
per [19], various computational tasks for processors imgnmmus networks have been
studied in the literature (cf. e.g. [21, 34, 133]), incluglilerader election or computing
Boolean functions.

In this chapter we address the following question: How sthenl agent move around
an unknown anonymous network, so as to obtain as much infamas possible about
its topology? Whereas we know that discovering the topolofythe network com-
pletely may be impossible, the set of all topological infatran which the agent can
discover in some sense defines the computational capedbitifithe agent: a parameter
or property of the network can only be computed by the agaartdfonly if it is a func-
tion of the “map” of the host network which the agent can cart: The ability of the

*Cf. Section 1.3 for a discussion of various aspects of coatplitly with mobile agents in an anonymous
network, or [[46] Chapter 8] for a more formal characteriza®of the case of a single agent.
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agent to construct such a partial map also forms the baslgafitams for coordination
problems, such as leader election or rendezvous, which sk in more details in
Chapter 4.

As in the previous Chapter, we will focus on the complexitynadp construction in
terms of the required computational capabilities of then&igés available state memory,
number of required rounds, etc. We start by introducing ictie 3.1 the necessary
concepts related to map construction in undirected anongrgoaphs, namely those of
the view and the quotient graph. (For a more complete mattiemh&®ackground on
the topic, including concepts of universal covers, podsgrving isomorphisms, and
fibrations of directed graphs, we refer the interested ne@ad@5, 36].)

TABLE 3.1: Comparison of map construction algorithmsniimode anonymous networks of
maximum degred. The log-space algorithm marked with (*) is only capabletofiag
a single cell of the adjacency matrix of the quotient grapithim agent's memory, but
may write the entire adjacency matrix to an auxiliary outjaye.

Algorithm Memory Time (steps) Reference

Identification with UXS O(ndlogn) O(n®d*logn) Sec.3.2,[T6,T7]
Equivalence class refinement O(n®logn) O(n°d?log®n) Sec. 3.3, [T6]
Log-space UXS comparison* O(logn) polynomial  Sec. 3.4, [T6,T7]

The complexity of map construction in anonymous graphsusdist for a mobile
agent that is not allowed to write on the nodes of the graphte Nmat if the agent is
allowed to somehow mark the nodes that it visits (such thearnt recognize them on
future visits), then a simple depth-first search sufficeteesthe problem. When the
agents do not have the capability to mark nodes it is somstufifécult to solve the
map construction problem.

3.1 Network maps: The view and the quotient
graph

Consider a port-labeled anonymous netw@tkn which the agent starts from a home-
base node. We introduce the notion of a map as follows: We will call a heabatical
objectM amapfor (G, v) under decoding functioff, if there exists a functiorf such
that for any deterministic agent, f (M, A,t) describes the memory state afaftert
steps o5, when starting from node. In other words, a map afz, v) has to capture
all the information about the structure @fwhich can be obtained during a traversal of
the graph by an agent starting at a given noddVhenever the decoding of the map
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is clear from the context, we will simply say that the conssdeobject)M is a map,
without specifying the decoding. By virtue of the definitiaghe pair(G, v) is a map of
itself, but this trivial map is of little interest since itmmaot be constructed by an agent
deployed in the network.

A fundamental construction of a map which encodes only médron which is ac-
cessible to the agent was introduced in [172] under the ndriee@iewfrom the node
at which the agent is currently located. l@tbe a graph and a node of(z, of degree
k. Theviewfrom v is then the infinite directed rooted treé(v) with labeled ports,
defined recursively as followst' (G, v) has the root, corresponding t@. For every
nodev;, i = 1,...,k, adjacent to, there is an out-neighbar; in ¥ (G, v) such that
the port number at corresponding to edggv, v;} is the same as the port number at
x corresponding to the aray, x;), and the port number at corresponding to edge
{v,v;} is the same as the port numberzatcorresponding to ar¢r,, ;). Each node
x;, forte =1,... k,is now the root of the view from;. For any sequence of moves of
the agent in graply starting at, there exists a directed path in the tr&éG, v), start-
ing from its root and having a corresponding port labelinge Thtuition that the view
precisely encodes all the useful information that an ageayt discover in the graph is
captured by the following proposition.

Proposition 3.1. The view? (G, v) is a map of(G, v). Conversely, given any mag
under a known decoding function, the corresponding viéw, v) is uniquely deter-
mined.

From the perspective of computations, the view is a puredptétical object, since
it has infinite size. A more computationally-friendly mapoistained as follows. By
7'(G,v) we denote the view (G, v) truncated to depth from its root. One can ask,
what is the minimum value af such that for any pair of nodes, v, in n-node graphs
G1, Ga, V(G1,v1) = ¥V (G, v9), if and only if 7' (G, v1) = ¥*(Gy,v2)? This value
of + was first bounded as < n? in [172], and then the precise worst-case bound of
t = n — 1 was established by Norris [148].More recently, another bound of the
formt < (D +1)(log,n + 1) has been established by Hendrickx [105] for the case of
graphs of diameter at most." Combining the state-of-the-art, we obtain the following
theorem.

Theorem 3.2. The truncated view* (G, v) is a map of(G, v), for any integert >
min{n — 1, (D +1)(log,n + 1)}.

The truncated view/*(G,v) is a computationally tangible resource and it can be
constructed by an agent operating in the gréphktarting from node. The agent simply

*The cited results on the equality of views are shown for ttse @d distinct starting nodesg # v in a
single networkd = G = G5, but their proofs hold without change for distinct graghs G-.
fIn current work in progress [68], we show this result to benastotically tight.
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traverses all possible routes in the graph of length at makscribed by sequences of
port numbers of length at mosteach time recording the corresponding arcs of the view
and returning to the starting node by retracing its stepsblain a map of the graph in
this way, the agent may need to traverse all routes of lengtm — 1, building a tree
with O(d") nodes inO(d™) steps, for a graph of maximum degréeand given a bound

n on the order of the graph. It is natural to look for more contgad more efficiently
constructible representations of the view.

As mentioned before, the view is not unique to a specific nddespecific anony-
mous graph: there can exist different anonymous graphsweitices having the same
view, and even multiple vertices in the same anonymous gtaglhng the same view.
However, it turns out that for any pajts, v), there exists a unique smallest grafh
with a distinguished vertex’ which is indistinguishable fror’ in terms of the agent’s
views, i.e.,¥(G,v) = ¥ (H,v'). Such a graptH is known as the quotient graph of
G [172] and is defined by the following construction.

For a given connected graghwith a fixed port-labeling, we introduce the following
equivalence relation: if two nodes have identical viewgntthese nodes are said to
be equivalent to each other. In this way, we partitiofG) into a set of equivalence
classed’y = {Vi,...,V;}. We define thequotient graphH of G as the port-labelled
multigraph having node sé&f;, with port: at nodel’; leading to nodé’; in H if and only
if for some nodes; € V;, v; € V; port: at nodey; leads to node; in G. The mapping
between graph& and H is a port-preserving graph homomorphism. An illustratiébn o
the definition of views and quotient graphs is provided inufgy3.1. It is interesting
to observe that all the equivalence classes of nodés with respect to view have the
same cardinality, i.e|V;| = n/l [172].

Since for a vertex; belong to equivalence cla$swe have? (G, v;) = ¥ (H,V;), it
follows that the quotient graph encodes all the informagéibout the view.

Theorem 3.3. The quotient graph af, with a distinguished node corresponding to the
equivalence class of, is a map for(G, v).

The quotient graph can be seen as the most compact form of afraaganonymous
network that the agent may construct. As we will see in the segtion, the quotient
graph of any anonymous network of known size can be compuatgedlynomial time,
and the existence of particular edges of the quotient grapheven be tested for in
logarithmic space.

3.2 Constructing a map using universal
sequences

We recall that Universal Exploration Sequences (UXS-sculksed in Section 2.3, al-
lowed us to visit all the nodes of any anonymous network, ua given bound: on



3.2 Constructing a map using universal sequences

(©

FIGURE 3.1: (a) An exemplary graph containing two agents initidgated at the marked
nodes. The view of each agent is shown in (b) while the qubtiesph is shown in

(c).

the number of nodes. Such universal sequences also allosdtiacking, meaning

that it was possible to come back to the starting locatiorthéncourse of traversing a
(n,d)-UXS, the agent visited a sequence of nodes, observing tireeke of the visited

nodes and the port numbers at the endpoints of the visiteglsedgis tempting to ask
whether the information collected by the agent, when tiiagra UXS, is sufficient for

it to compute the view” (G, v) from its homebase?

Formally, letY = (ay,...,ay) be a UXS, and le{uy, ..., uy;) be its applica-
tion starting from a node = wug in G. The signatureS of nodewv is defined as
the sequence of edge labels which are traversed by an appiics the UXS atw:
S(G,v) = (lab(ug, u1), ..., lab(upr, upri1))-

The results in [T6, T7] provide a constructive criterion thstinguishing the views
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of two vertices of a grapli based on the signatures of vertices. It turns out that we

can show that the view'(G, v) is completely encoded in the signatwéG, v) if the
traversed sequence is a UXS, but for graphs of larger orderihhaving up ton? +n
nodes.

Theorem 3.4([T6,T7]). Letn be a known upper bound on the number of nodes of graph

G, letd be an upper bound on its degree, and¥ebe a fixed n? + n, d)-UXS. Then,
the signatureS(G, v) obtained by applying sequengeusing a mobile agent starting
from nodev in G, is a map of G, v).

For the sake of intuition, we provide a sketch of the argunused in the proof of
the above theorem. The proof proceeds by contradictionp&spthat there exist two
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pairs of graphs with distinguished starting nodés,, v;) and(Gs, v), such that mobile
agents applying the UXS8 to the respective graplts; starting from nodey;, i = 1, 2,
obtain the same signatures(G1, v1) = S(Ga, v2), Whereast' (G, v1) # ¥ (G, v).
Let graphK be defined as follows: The set of nodes/ofis (V; x V,) U S, where
V1 is the node set ofy;, V5 is the node set of/5, and the sefS' consists ofn nodes
S ={so, s1, ..., 5,1} outside ofl; x V,. The set of edges df is defined as follows.

1. For every pair of couplgs:;, us), (v1, v2) fromV; x V4, such that there exist edges
{uy,v1} in Gy and{uq, v2} in G having the same edge labelgbq, (u1,v1) =
labg, (us,v9) = (1,7), there is an edge joining node;, us) with (vy,vs) in K,
with the same edge labels, ileby ((u1, us), (v1,v2)) = (i, 7).

2. For every coupléu,,us) € Vi x V, and for every porp < max{degq, (u1),
degg, (u2)}, if either portp exists at exactly one of the nodes, u,, or if edge
labels (p, endg, (u1, p)) and (p, endg, (uq, p)) are different, then there exists an
edge{(u1,us), s, } in K. For this edge we set port labelsat node(u,, u,) and
k at nodes,, wherek is the smallest integer not yet used for a port,atEdges
joining a node froml; x V5 with a node fromS are calledspecial Observe that
a special edge incident to nodgis added in one of two cases:

(a) when porp exists at exactly one of the nodesin graphG, or us in graph
G,

(b) when portp exists at both nodes; in graphG; andu, in graphGs, but
endg, (u1,p) # endg, (uz, p).

An example of the construction is shown in Fig. 3.2. The prgofompleted by
observing that if/ (G, v1) # ¥ (Ga, v2), then in graph’, node(v; , v2) must belong to
the same connected component as sene.S. Indeed, since the viewg (G, v;) and
¥ (Gs,v9) are different, then there must exist some sequence of pbdsenvapplication
to (G, v1) and (G, v9) leads to different signatures; by applying this sequendbédo
graphK starting from nodéuv,, v5) we necessarily pass through some nede S. It
follows that by applying thén?+n, d)-UXSY to K starting from nodév,, v») one also
passes through nodg since graphk has at most? +n vertices and maximum degree
at mostd. However, this directly implies that an edge leadingtavas traversed in the
process, and so by the definition of grafih the signatures(G,,v;) and S(Gs, vs)
have to differ at the corresponding position, leading torrealiction.

We now analyze the complexity of the proposed approach. eSine length of a
(n? + n,d)-UXS is O(n®d?logn) (Section 2.3), and traversing each step of the UXS
requires a single round, the time needed to compute theeqiatiaph i) (n°d? log n).
Bounding the space requirement of the agent is a bit mordesuBt straightforward
approach consists in traversing the UXS of len@tm5d? log n) and remembering each
of the observed port numbers along the way; since each porbeurequire$)(logn)
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FIGURE 3.2: An example of a labeled gragh(left) and the corresponding grapt (right) for
G, = G5 = G. Port labels within sef have been left out.

space, we then obtain a total space complexity 0f®d? log” n). However, this is some-
what wasteful: the number of graphs of maximum degree at chaxstl at most: nodes
with a distinguished starting vertex can be boundedisy hence, onlyO(dn logn)

bits of memory are required to identify the quotient grapti ésstarting node uniquely.
Knowing a bound om, the agent can at each step of its walk, construct a data- struc
ture in the form of a rooted search tree, having at mdstleaves representing unique
guotient graphs. The distance from the root to each leafsigely equal to the length
of the UXS traversed by the agent, and tii@ edge on the path leading from the root
to a leaf H is labeled by the port number encountered by the agent in-thestep of
the UXS, given that the network it is operating in has a quutgaph isomorphic to
H. The tree ha®) (n® - n%d?log n) nodes, which can be lexicographically ordered and
assigned identifiers in the form of consecutive integers wibinary representation of
lengthO(dn logn). In this way, in stead of storing the whole sequence of pamtimers
encountered in its traversal, the agent only needs to memtire identifier of the node
of the tree at which it is currently located, usingdn logn) space. In this way, we
obtain the following theorem.

Theorem 3.5([T6]). A mobile agent, starting at a nodef graphG on at most: nodes,
equipped withD(ndlogn) bits of state memory and knowledgengfcan determine a
map of(G,v) in O(n®d?logn) time steps.

We remark that the obtained map is encoded in the form of greasireS (G, v), but
this can then be used to compute e.g. the quotient graph &uch a computation can
be performed locally in the final time round of the algoriththrpugh exhaustive search



66 Map construction in anonymous networks

over all multigraphs of order at mostfor the quotient graph corresponding@o

For some graphs of order the algorithm implied by Theorem 3.5 requite&:®) bits
of memory. In this chapter we will provide two alternativepapaches, which reduce
the space of the requirement of the algorithm, while retajquolynomial running time.

3.3 Map construction by class refinement

In this section we now present an algorithm which allows thend to solve the map
construction more efficiently in terms of space, usih@? logn) bits of memory. Our
algorithm combines an application of a universal exploratable (Section 2.3) with
ideas that are usually used to minimize a deterministicaaton. As before, we assume
that the agent has prior knowledge of an upper bound,dhe number of nodes of the
graph.

Theorem 3.2 implies that for any pair of nodes of the graplirftadistinct views, their
views must differ at some depth< n. If two trees differ at a certain depththere must
exist a path of lengthk in the trees which starts at their roots and “distinguishiestwo
trees. In order to characterise the views of all the noddsigtaph, we only need to find
distinguishing paths for each pair of distinct views. Foltyngiven a graphz and node
u of G and a sequence of edge-lab¥®ls= ((p1, ¢1), (2, ¢2), - -, (pj,q;)), we will say
that}” is acceptedrom w if there exists a patl® = (v = uo, u1, ..., u;) in G such that
A(P)=Y,ie.foreach,1 <i<j, (piq) = Mu;_1,u;). Foranyk > 0, two vertices
u, v that have the same view up to deptlare said to bé-equivalent; we denote it by
u ~y, v. Thek-class ofu is the set of all vertices that akeequivalent tou and this set
is denoted byulx, with [u] = [u].. Given any two distinct-classes”, C’, a(C, C’)-
distinguishing paths a sequence of edge-labéls = ((p1, ¢1), (P2, @2), - - -, (P4, ¢5))
of length at mos& such thatY.  is accepted from each nodec C and it is not
accepted from any node € C’. For any two distinct:-classes, there always exists
either a(C, C")-distinguishing path or &, C')-distinguishing path.

To compute the quotient graph @f, it suffices to visit every node of G and identify
the s-class ofv and each of its neighbors (recall thatc n). Once these equivalence
classes are known, one can construct the quotient giaph follows. The vertices of
H are the equivalence classes, and there is an edge labellgd@yfrom [u] to [v] in
H if and only if, u has a neighboy’ € [v] such that\,(u,v") = p and\, (v, u) = q.

An outline of the pseudocode of the map construction proeedugiven in Algo-
rithm 3. Algorithm 3 iterates ovek, and for eachk, explores the graph and identifies
the k-classes of the visited nodes and their neighborhoods.r&eersing all nodes of
the graph, we use a universal exploration tébe, d) for graphs of up to: nodes and
maximum degred; recall that|T'(n, d)| = O(n3dlog®n) by Theorem 2.9. We choose
the tablel” to be defined as an analogue of a UXS, i.e., to allow the agdrddktrack
to its initial location after followingl".
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Fork = 1, it is easy to determine thieclass of any node by traversing each edge
incident tov and noting the labels. From this information, one can finddik&nguish-
ing paths for any pair of-classes. Fok > 2, it is possible to identify thé-classes and
the corresponding distinguishing paths (from knowledgief: — 1 classes) using the
following property.

Lemma 3.6([T6]). For £ > 2, two nodes: andv belong to the samke-class, if and only
if (i) « andv belong to the same-class and (i) for each, 0 < i < degg(u) = degg(v),
theith neighboru,; of v and theith neighborv; of v belong to the samé: — 1)-class
and A(u, w;) = A(v,v;) = (4,7), for somej > 0.

Algorithm 3: Class-Refinement(n)
Letvy, vs, ... v, be the sequence of nodes visitedby, d), possibly containing
duplicate nodes ;
Apply T'(n, d) andfor each node; visited during the traversalo
L Store the labels of each edge incident{o

Compute the number dfclasses and store a distinguishing path for each pair of
distinct classes ;

Backtrack alond’(n, d) to the starting vertex ;

k:=2;

repeat

Apply T'(n, d) andfor each node); visited during the traversalo

for each edgév;, w) incident tov; do

L Compute thék — 1)-class ofw (by testing the distinguishing paths);

Store the label ofv;, w) and the index of thei(— 1)-class ofw ;

Discard the computekl-class information about; if duplicate of a
| previously visited vertex ;

Backtrack alond’(n, d) to the starting vertex ;

Compute the number d@f-classes and store a distinguishing path for each pair
of distinctk-classes ;

Increment k;

until the number of-classes is equal to the number(éf— 1)-classes

Compute the quotient graph ;

Letn, be the number of-classes. Observe that during ttth iteration, on each node
v reached irfl’(n, d), for each neighbow of v, the agent computes the— 1 class of
w. To do so, it needs to check at magtdifferent paths of length — 1. Consequently,
for each node, it needsO(deg(v) - ny - k) moves to compute the-class ofv. Thus,
during thekth iteration of the algorithm, the agent perfor@$d - ny, - k - |T'(n,d)|)
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moves, wherel is the maximum degree of the graph. Due to Theorem 3.2 theratar
mosts < n iterations, andy, < n; so the total number of moves made by the agent is
O(dn|T(n,d)| - min{n, Dlogn}), where|T'(n,d)| = O(n’dlog®n).

At the end of thekth iteration, the agent needs to remember the numpesf k-
classes and(n, — 1)/2 distinguishing paths, each of length at mbst s. This can
be stored using)(n? min{n, Dlogn}logn) bits. During thekth iteration, the agent
needs to remember for eacland for each neighbar of v, the label of the edgey, w)
and the index of th¢k — 1)-class ofw. For eachw, it needsO(deg(v) - logn) bits.
However, the agent does not need to remembek-itiass of each;, but it is sufficient
to identify the distincti-classes that exist in the graph. Thus, since there are dt mos
n different k-classes, the agent nee@¢én - d - logn) bits of memory to compute the
number ofk-classes, and to compute the corresponding distinguigatits using the
distinguishing paths for thg — 1)-classes. We obtain the following Theorem.

Theorem 3.7([T6]). Algorithm 3 solves map construction for any graph of at most
nodes, where is known to the agent i®(n°d? log” n) moves using(n®log n) bits of
memory.

We remark that by Theorem 3.2 it is also possible to bound émhd required to
distinguish views as = O(D logn). Consequently, we obtain that Algorithm 3 solves
map construction i (n*d> D log® n) moves using)(n? D log® n) bits of memory.

3.4 Computations on the Quotient Graph
with a Log-Space Agent

A natural question concerns the feasibility of performingnputations when the mem-
ory size of the agent is constrained. We showed in the prevsegtions that a map
of the graph can be constructed using an agent equipped \pibhyaomial number of
bits of state memory. In other words, it turns out that any potation which can be
performed deterministically by a mobile agent can also topmed by a mobile agent
capable of transmitting a polynomial number of state bitsigledges. Surprisingly, it
turns out that even an agent equipped with a logarithmic rumobbits of state memory
is sufficient to recognize and navigate a quotient graph. Wdlesigning such an agent,
we need to overcome the obvious obstacle, namely, thatitbgac space is in gen-
eral insufficient for the agent to “memorize” the topologytloé quotient graph. So, our
goal will instead be to allow for the agent to be able to answkrgarithmic space basic
queries concerning, in particular, the existence and paribers of edges connecting
particular nodes of the quotient graph. To allow for eassemiulation of such queries,
we will assume that the agent makes use of some canonicdiniglwé the nodes of
the quotient graph, i.e., for a gragh with equivalence classed/, ..., V;}, we will
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consider an isomorphic copy of its quotient grafghn which the vertices are labeled
with consecutive integers 85; = {1,...,(}. The assignment of integer labels to the
vertices of grapt{ can be chosen by the agent.

We will say that a mobile agemésolves a querif it runs a subroutine at the end of
which it returns to the node at which the query was initiateith a correct reply to the
query encoded in a predefined area of its state memory. Thésed [T7] imply the
following theorem.

Theorem 3.8.[T7] For any givenn, there exist agents witth(logn) state memory
which, when deployed in an anonymous grapbf at most, nodes, resolve the follow-
ing queries:

e What is the numbdrof nodes of the quotient grapth of G?

e What is the identifier (in the ranggl, ..., [}) of the node of the quotient graph
H which corresponds to the equivalence class of the nodéadfwhich the agent
is currently located?

e Given two nodes of the quotient graph with identifiersi, j € {1,...,l}, are
they connected by an edge, and if so, what are the port nunabéssendpoints?

The algorithmic approach which lies at the heart of Theoregnf@lows from an
adaptation of the UXS-based method proposed in Section B®vever, before we
provide an intuition of the arguments used in the proof, weak that the capabilities
of a log-space agent described in Theorem 3.8 effectivétyvahe agent to perform
any computation on the quotient graph which could be peréarnim log-space in a
centralized model with Random Access Memory, i.e., for arppfem which belongs
to the complexity class known as L (or LSPACE) [20].

Corollary 3.9. For any problem P< L which takes a graph as input, there exists an
agent withO(log n) state memory, such that for any (connected) anonymous dgraph
on at most: nodes, where is known to the agent, the agent resolves the query: “What
is the answer to problem P for the quotient graph of the nek®br

Many log-space testable properties of the quotient graphige useful information
about the anonymous netwoék. For example, one may attempt to design a mobile
agent in networkG to solve the problem: “Determine if gragh is a tree and, if not,
find an edge which can be removed without disconnecting thghjr This question is
equivalent to finding an edge belongs to some cyclé'jror determining if one does
not exist. Graplt- is a tree if and only if its quotient graph is either a tree withself-
loops or a tree with a single self-loop, depending on whetietree is symmetric with
respect to its central edge. Moreover, by the propertiesagflghomomorphisms, if for
some edgdu, v} of G, its counterpart in the quotient grapgh belongs to some cycle
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in H (or is a self-loop inH), then{u, v} belongs to a cycle id:. Both the problem of
determining if a graph is a tree, and the problem of detemgiifia given edge belongs
to a cycle, are known to belong to the complexity class L [58]11t follows from the
Corollary that the posed question about the existence ohadisconnecting edge can
be resolved by a log-space mobile agent, given that the agegnten an upper bound
on the number of nodes of the network.

In all of the above considerations, knowledge of an uppemnbouby the agent is
in general indispensable, since otherwise the agent islemalzonstruct the quotient
graph. Without knowledge of, the agent would require some additional advice about
the environment it is operating in. For example, when thenageows that the network
G in which it is operating is a tree, it is possible for the agentompute the precise
number of nodes of the tree. This can even be achievél[lisg n) space using an ap-
proach proposed by [15]. The same goal can be achieved lyg@streasing bounds
onn in Theorem 3.8 and traversing the resulting candidate fergtiotient graph, re-
peating the process until a candidate is found which is stersi with the explored tree
network.

We return to the sketch of proof of Theorem 3.8 from [T7]. ddasan application
of the same identifying UXS at two different nodesv of the anonymous network,
giving sequences of port labef§u) = (lab(ug, u1), ..., lab(un, upr41)) @ndS(v) =
(lab(vg,v1), ..., lab(vyr, vpry1)). (By contrast to Section 3.2, here we only consider
a single network’s, so for compactness we use the notatitip) = S(G,v).) By
Theorem 3.4, two nodes have distinct viessv) # ¥ (w), if and only if S(v) # S(w).
Thus, the sequenc®(u) can be treated as a compact representation of the ¥iew.
We can now consider a linear order on sequetitese say thatS(u) < S(v), if there
existst < M, such that for each < ¢ we havelab(u;,u;j1) = lab(vj,v;41) and
lab(ug, ugr1) < lab(vg, veqq). In the partition of the set of nodés =1V, U ... U V] into
equivalence classes such that all nodegjihave the same view, we will consider an
indexing of the classes for whicl is the set of nodes;, such thatS(v;) is the:-th
smallest (distinct) element in the sgf(v) : v € V} in the defined linear order. It
remains to be shown how, given a nogeat which the agent is currently located, the
corresponding labelcan be computed by a logarithmic-space agent.

LetY = (ay,...,ay)bethe UXSY (n?+n) of lengthN for the clasgj,- ., of graphs
with at mostn? + n nodes. Fix integer parametersind;j. The aim of the auxiliary
functionConpar eSi gnat ur e(s, j) is to lexicographically compare the signatufes
of the i-th and thej-th nodes of the application 6f at the starting node of the agent.
This comparison is done term by term, for= 1,..., N until a difference is found.
The functionConpar eSi gnat ur e uses two procedure3r avFwd andTr avBack.
ProcedureTr avFwd (k) traverses: consecutive nodes of the applicationYofat the
nodewu, at which it is called in the grapli. Nodew; is found assucc(ug,0). In
order to find nodey;,, for i > 1, of this application, the term, is first computed
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and then the formula,;,; = succ(u;, (p + a;) mod d(u;)) is used, where is the
port at nodeu; used to enter this node. It is supposed that the edge labbedast
traversed edge is always kept in memory. Hence the secongamnt of the edge
label — the port identified while the current nodevas being entered — is available
until it is used to enter the successorwfPort 0 is used to start the walk at the node
at whichY is applied. Procedurér avBack (k) performs the backward walk along an
application ofY’, starting at some nodeof it and using the formulaucc(u, (p — a;)
mod d(u)) to determine where to backtrack fram To start the walk back from, the
port by which nodev was entered is used first. In the caselofavBack, elements
ag,ax_1,-...,a; Of Y are used in the order of decreasing indices. In each iterataf
the loop within functionConpar eSi gnat ur e, the agent is guided through the graph
G until the corresponding edge labels of both signaturesetreeved with the aid of
function EdgelLabel , and the initial position of the agent is regained. By analys
the pseudocode, we obtain the following lemma.

int function Conpar eSi gnat ur e(int ¢, int j) {0<4i,j < N}
1.for k < 1 until N do

2.  el; «+ Edgelabel (i, k) ; el, «+ EdgelLabel (5, k) ;

3. if el; < ely then return smaller ;

4, if el > ely and return greater ;

5. return equal ;

edge label functionEdgelLabel (int 7, int k)

TraviFwd(i) ;

TravFwd(k) ;

EdgeLab < the edge label of the last traversed edge ;
TravBack(k) ;

TravBack(i) ;

return EdgeLab ;

©0hswNE

Lemma 3.10. Letu; andu; be thei-th and thej-th node of the application df at the
starting node of the agent. Functi@onpar eSi gnat ur e(i, j) compares signatures
S(u;) andS(u;) according to the< ordering and returns the value “smaller” i (u;) <
S(uj), “equal”if S(u;) = S(u;), and “greater” otherwise. An agent wit®(log n) bits
of memory is sufficient to execute the function.

Using the above subroutine, we design the func@oiot i ent NodeLabel which
computes a canonical label of the node of the quotient grapresponding to the
agent’s current location. The idea of the labeling is to iseftinction comparing two
signatures in order to compute the number of different digea that are not greater
than the signature of the initial position of the agent. Tiusnber, belonging to the
range[1, n], is output by the function.
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int function Quot i ent NodeLabel
{ returns the label of the node of the quotient graph corredpa to the agent’s position }
1. Curld <+ 0;

2.for i «+ O until N do

3. if Conpar eSi gnat ur e(i, Curld) = smallerthen Curld <« i;
4. for j < 1 until ndo

5. if Corrpar eSi gnat ur e(Curld,0) = equalthen return j;
6. Nextld < 0 ;

7. for i < O until N do

8. if Conpar eSi gnat ur e(i, NextId) = smallerand

Conmpar eSi gnat ur e(i, Curld) = greater
then Nextld < 1 ;
9. Curld < Nextld ;

Lemma 3.11.An agent located at any nodeof a graph with at most nodes, computes
the integer value of the functioQuot i ent NodeLabel ,, belonging to the interval
[1,n], such that for any two nodes v € V/, the following equivalence holds:

Quot i ent NodeLabel , = Quot i ent NodeLabel , <= 7' (u) = ¥ (v).

Moreover, an agent witld) (logn) bits of memory is capable of executing the function
Quot i ent NodeLabel .

Note that when calling functio@uot i ent NodeLabel , the agent is returned to
the node at which the function was called. The function canetfore be used as a
transparent subroutine to learn the label of the currenemodhe quotient graph. The
agent can move to a node corresponding to labelthe quotient graph by applying
a UXS from an arbitrary starting location, and testing thiieaof the label for suc-
cessive nodes until the conditi@uot i ent NodeLabel = i is satisfied. It can also
test the existence of an edge ;j} in the quotient graph by finding a node satisfying
Quot i ent NodeLabel = i, and checking whether any of the neighbors of this node
in G satisfiesQuot i ent NodeLabel = j. If such an edge exists, the port labels at
its endpoints are also immediately recovered. In this wag, @an implement all of the
basic operations on the quotient graph with a logarithrpeee agent, as required in the
claim of Theorem 3.8.

The time complexity of the designed log-space proceduresatipg on the quotient
graph is necessarily polynomial, but with a high exponeihictv can be roughly esti-
mated a®)(n?°). Itis also possible to impose the requirement that not dréypersistent
state memory of the agent is of logarithmic size, but the saseeholds for the memory
used by the agent in local computations. Then, the UXS-sexgppl the agent needs to
be log-space constructible (following a variant of the &agh from [156]), resulting in
an even higher time complexity, on the ordemab he power of several hundred.
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3.5 Remarks on other models

The algorithms considered in this chapter can be applieddlyil;agents operating in
an anonymous network, without the need for leaving any nankermation at nodes of
the network. The only assumption we make is that the agem&isome upper bound
on the number of nodesof the network. Without priori knowledge of such an upper
bound, the agent can attempt to apply a doubling technigsenaing increasing upper
bounds on the number of nodes of the graph. Such an algoritbwever, can never
terminate, since the agent may never decide if the map it bagpoted corresponds
precisely to the real quotient graph of the host network.

Interestingly, it is possible to solve the mapping probleztedministically and with
termination without knowledge of any global parametershsas an upper bound on
provided that the homebase of the agent is specially madgetiuniquely distinguish-
able from all other nodes of the anonymous network. Such sumagtion changes the
nature of the problem, since the abstraction class of theebase in the quotient graph
consists of precisely one element, and so the quotient geagglomorphic to the host
networkG. In this scenario, even without knowledgengfit is possible to solve the
mapping problem using a log-space agent, or more quickly,(in’d) time steps using
O(ndlogn) bits of memory [T6].

The task of map construction becomes simpler and admitsrfastutions as we in-
crease the capabilities of the agent, allowing it to leaviebpes at nodes or write to
whiteboards. An interesting twist of the mapping probleroassidered in [64], where
multiple identical agents operating in the same netwosknayit to solve the problem si-
multaneously, and cannot distinguish between marks |éifiargraph by themselves and
by other agents. This type of study fits more closely into taeework of simultaneous
symmetry-breaking problems for multiple agents, which wasider in the following
chapter.






4 The rendezvous problem

In the previous Chapters, we have considered questionsngpuatability in an anony-
mous network, given a single mobile agent with limited reses. The introduction of
multiple agents into the same network opens completely ms@arch questions. The
agents may be required to perform specific tasks with re$péue graph, such as explo-
ration or computation of topological properties, but alssdlve coordination problems
for which the initial configuration of the agents can be seepat of the input.

Whereas in Chapter 3 we consider the limits of computabaitia a single agent, the
case of multiple agents turns out to be much more complicdteel answer depends, in
particular, on whether agents move in synchronous roumaghether each traversal of
an edge may take an arbitrary period of time. Another questimcerns the ability of
agents to interact with each other in a graph. Given thatgleats are unaware of each
others’ presence, the computational power of each agentdsffierent from that in the
single-agent case. Still, even then certain tasks may Herped more efficiently: if
the goal of the agents is to minimize the expected time bedash node is explored
by some agent, then it makes sense to deploy multiple agaiawing a random walk,
and not just one. In this chapter, we will assume that the tagesve the ability to
exchange information only when they are located at the sayde at the same time.
Arguably, this can be considered the most powerful modeloohrmunication which
does not require non-local interaction or information a¢@r in the environment. More
powerful models, in which the agents may either communiatie distance, or leave
information at for another agent arriving later by writing a whiteboard [87, 132] or
placing a marker at a node [176], are beyond the scope oftbsss.

Since meeting is the only way for agents to coordinate thetioas, in the context of
this work, the most fundamental problem for multiple agesithat of rendezvous: two
identical mobile agents, initially located in two nodes loé hetwork, move along links
from node to node, and their goal is to get to the same node &aime time. The ren-
dezvous problem has been thoroughly studied in the litezatudifferent contexts (see
the monograph [12] for an extensive bibliography of the sat)] both under the ran-
domized and the deterministic scenarios. In a generahgettie rendezvous problem
was first mentioned in [161]. Authors investigating rendrmy(cf.[12] for an extensive
survey) considered either the geometric scenario (remaesziv an interval of the real
line, see, e.qg., [27,28,96], or in the plane, see, e.g. 1[4 or the graph scenario (see,
e.g., [69,94,129]). Many papers, e.g., [10,11,18,27, $1@y the probabilistic setting:
inputs and/or rendezvous strategies are random. A natbeigon of the rendezvous
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problem is that of gathering [89, 110, 137, 165], when moeaanth agents have to meet
in one location.

In the anonymous graph model, a fundamental problem whelyisity feasibility and
efficiency of deterministic rendezvous is that of breakipgmetry. Without resorting
to marking nodes, this can be achieved by taking advantagjeeadifferent labels of
agents [69, 129, 142]. Labeled agents allowed to mark nosieg whiteboards were
considered in [176]. Recently, rendezvous of labeled agesing variants of Universal
Exploration Sequences, was also investigated in [164].

We start this chapter by providing criteria for describing feasibility of determinis-
tic rendezvous for two agents (labeled or unlabeled), dipgran a synchronous setting.
In Section 4.1 we show that if rendezvous is feasible, thearitbe achieved even when
using logarithmic-space agents. We also consider thedfdetween the amount of
memory available to the agent, and the time required foreewolus. Whereas estab-
lishing a tight time-space tradeoff for the task of explmmais a challenging open ques-
tion, such an interdependence turns out to be much more epfar the rendezvous
problem. In Section 4.2, we establish the precise form oftithe-space tradeoff for
rendezvous of anonymous agents in trees. We close our esasahs by discussing
extensions of feasibility criteria for rendezvous to theecaf asynchronous agents, and
to teams of more than two agents.

4.1 Synchronous rendezvous in log-space

When two agents placed in a graph are initially assignedndistabels, encoded in
their starting state, this information is sufficient for digents to achieve rendezvous. In
fact, Dessmarlet al. [69] provided a deterministic algorithm which relies oneeped
traversal of Universal Exploration Sequences, in a way raidd by the label of the
agent, to achieve rendezvous in polynomial time. It is agglthat the system operates
in synchronous rounds, but that one of the agents may beeatkkyd may only appear
in the graph after some period of time and that the time required for rendezvous is
only counted from the moment of appearance of the later agére runtime of their
algorithm is given a®(n°v/7l + n'°l), wherel represents the bit length of the shorter
of the agents’ labels. Subsequently, Kowalski and Malinoyi29] and Ta-Shma and
Zwick [164] designed algorithms with runtime which is in@égplent of the delay,
namely,O(n'® + 1) and O(nd?l), respectively, wherd is the maximum degree of
the graph. Interestingly, all of these algorithms operatbout knowledge of an upper
bound onn. By contrast to the exploration problem, in which an agentroaver detect

if it has successfully explored a graph of unknown size, enrdndezvous problem, the
termination condition is achieved very simply by observihg meeting with the other
agent operating in the graph. The approach of Ta-Shma anckzso works for log-
space agents, or more formally, with agents capable ofngtahieir label and)(logn)



4.1 Synchronous rendezvous in log-space 77

bits of auxiliary state.

The situation becomes more complex when the agents are acargeed to have
unique identifiers. Then, rendezvous is not always feasibtieed, supposing that two
agents occupy nodes having the same view (i.e., nodes porrésg to the same node
of the quotient graph), any sequence of moves by the two agéhtalways leave the
agents at a pair of nodes having the same view.

Proposition 4.1([T7]). Suppose that a pair of anonymous agents are placed originall
at distinct nodes:;, u, € V and start walking simultaneously i@. If rendezvous is
feasible ther? (u;) # 7 (u2).

It turns out that the converse of the above lemma is true, gieen that? (u;) #
¥ (uq), it is always possible to achieve rendezvous. Moreovet seledezvous can be
achieved in polynomial time, and even using agents equipptdiogarithmic space.
The idea of the approach is the following. First, the two agdallow the procedure
from Section 3.4 to compute the identifier in the quotienpgraf the node representing
their starting position. Sinc& (u;) # ¥ (us), this procedure will compute distinct
identifiers from the rangé¢l, ..., n} for nodesu; andus, which we will denote byl
andL,, respectively. Now, the identifieds; and L, can be used as distinct labels by the
agents, with the representation of the shorter label hdeimgth! = log min{L,, L,} =
O(logn). After that, to allow the agents to meet it suffices to exeeutendezvous
procedure for labeled agents with arbitrary detayising the rendezvous algorithm of
Ta-Shma and Zwick [164]. The details of this process are lalisbout in [T7]. The
procedure can be adapted so as to operate without explmilkdge of the value of.

Theorem 4.2([T7]). There exists a pair of anonymous agents witflogn) bits of
memory which solves the rendezvous problem, with arbitdetay, for any pair of
starting nodes;, us € V with distinct views ¥ (u;) # 7 (u2)).

Proposition 4.1 combined with Theorem 4.2 can be seen asraatBazation of the
feasibility of solving the rendezvous problem, and of thenpatational capabilities of
an agent required to achieve such a solution.

It turns out that logarithmic space is necessary to achiemdazvous even in rela-
tively restricted graph classes. This is the case, for mt&awhen the considered graph
isaring, i.e., there is a lower bound @flog n) on the number of memory bits required
for rendezvous in the class of rings with at mastodes.

The idea of the proof of the lower bound presented in [T7] & fibllowing. We
suppose that agents have memory of sizec %bgn bits, hence they are modeled as

an automaton witB™ < ns states. We show that there exists a ring of at masbdes
and non symmetric initial positions of the agents, such thatagents cannot meet.
Hence agents with such a small memory cannot solve the reodeproblem for the
class of rings with at most nodes. We will construct a ring formed by the concatenation



78 The rendezvous problem

of port-labeled segments of nodes each. We take into account the states of the agent
at the moment when it is entering and exiting such segmentsigh their endpoints.
We observe by a counting argument that it is possible to dtws different segments
T,,T5, each one having% nodes, such that the agent entering a segment in any state
s; will exit it in some states; independently of whether the visited segment’jsor
T,. The sequence of the agent’s states considered during tasihe endpoints of the
segments must form a cycle of some size< ns, called itsstate cycle

We first construct a ring, which prevents rendezvous, urlesagent advances by a
constant distance around the ring at each iteration ofate stycle. Such a ring can be
constructed because the agent’s movement must then bezésttd a bounded portion
of the ring and both agents may be directed to operate inidigjortions. Then another
ring is constructed to prevent rendezvous also for suchtipelsi-advancing agents.
This ring is formed ofd.n3 segments of sizes each (hence of total size at most
containing exactly one copy & andd.ns — 1 copies ofT;. We place the agents at
antipodal positions of the ring and prove that each agent mdsfinitely, cyclically
return to some position of the ring in the same state and titmeware the same for
both agents. Finally, it is proven that the variations of distance between the agents
during such tours around the ring are too small to allow thmegeting.

Theorem 4.3([T7]). Foranyn > 9°, any pair of anonymous agents solving rendezvous
in rings with at most: nodes requires at Iea$% logn — 1) bits of memory (even as-
suming simultaneous start).

The above result shows the intrinsic difference in spaceptexity between the ren-
dezvous and exploration problems, since perpetual exparaf rings can be achieved
even by a memoryless agent which always exits a node by a ifferett from its port
of entry.

4.2 Time-space trade-off for rendezvous in trees

In this section we focus attention on deterministic rendesvin trees and our goal is
to establish trade-offs between the optimal time of conmpdetendezvous and the size
of memory of the agents. We recall from the previous secti@t tendezvous with
simultaneous start is impossible if the initial positiorigiee two agents have identical
views. Hence, all algorithmic considerations are perfataeder the assumption that
the initial positions of agents are not symmetric.

Rendezvous time (both deterministic and randomized) ohamous agents in trees
without marking nodes has been studied in [82]. It was shdvwaih deterministic ren-
dezvous inn-node trees can be always achieved in tifhe:). Memory required by
the agents to achieve deterministic rendezvous in treealbadeen studied in [94, 95],
though the model adopted in the latter paper assumes testson the topology of the
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considered trees. In [23] the authors study the memory seded to solve a variant of
the rendezvous problem in trees in optimal time in the asyoradus model. They do
not allow rendezvous inside an edge, but for symmetric tite®gallow that agents ter-
minate not in one node but in two adjacent nodes. They shavttteaninimum number

of memory bits to achieve rendezvous in linear tim®{s).

The main result of this section is a tight trade-off betweptinoal time of completing
rendezvous and the size of memory of the agents [T8]. Fortagath £ memory bits,
we show that optimal rendezvous timeéd$n+n?/k) in n-node trees. More precisely, if
k > clogn, for some constant we show agents accomplishing rendezvous in arbitrary
trees of unknown size in time O(n + n?/k), starting with arbitrary delay.

We will describe only a sketch of the approach from [T8], foe tcase of trees of
maximum degree bounded by 3 and under the assumption thasdgew a bounadv
on the number of nodes of the tree, such tNat> n > N/16. The overview of the
algorithm is the following. In the first phase, whose time&ig: + n?/k), each agent
computes an integer valdes {0,1,...,n—1} called itssignature such that agents with
non-symmetric initial positions have different signatur@hese signatures are used in
the second phase to break symmetry and achieve rendezvbesway in which this
is done depends on the amount of memory available to the aigHrthe agents have
large memory (at leas®(n/logn) memory bits), then they can quickly locate either
the central node or the central edge of a specifically chagletnee of the tree in which
they operate. In the first case they meet at its central nadbgisecond case they use
the signatures to meet at one of the endpoints of its cerdgd.eln the case of small
memory 6(n/logn) memory bits), each agent uses a sequence of active and @assiv
periods, each of length( N — 1), determined by the successive bits of its signature: in
an active period (bit 1 of the signature) an agent visits adles of the tree, in a passive
period (bit O of the signature) it waits. This guaranteeslezwous in additional time at
mostO(n logn) which is dominated by (n?/k), for small memory.

To compute its signature, the agent performs a traversdieofree using the basic
walk procedure considered in Section 2.4. We recall theasic walkin a n-node
treeT’, starting from node, is a traversal of all edges of the tree ending at the start-
ing nodewv and defined as follows. Nodeis left by port 0; whenever the walk en-
ters a node by port, it leaves it by port(i + 1) mod d, whered is the degree of the
node. We sometimes consider more ti2én — 1) steps of a basic walk, noting that
this traversal is periodic with a period of lengn — 1). The basic walk starting
at a nodev may be uniquely coded by the sequence (string of symhBI$)(v) =
(P1(v), @1 (v), P2(v), @2(V); - - -, Pa(n—1)(V), Gon—1)(v)), Wherep,(v) = 0, p;(v) is the
port number by which the node is left in theh step of the walk, and;(v) is the
port number by which the node is entered in tkta step of the walk. A pair of nodes
v; andv, of a treeT’ is not symmetric if and only iBW (v1) # BW (vy). Thus an agent
starting at node can be uniquely identified in the tree using the st (v), or using
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any string describing a longer traversal which 8§ (v) as its prefix. The definition
of the stringBW (v) is independent on the upper bouNdon n which is known to the
agent.

We also need to introduce some auxiliary notatiomeyerse basic walktarting from
nodew with portp is a traversal of all edges of the tree ending at the startoug
and defined as follows. Nodeis left by portp; when the walk enters a node by part
it leaves it by por{i — 1) modd, whered is the degree of the node.

For a stringo of lengthm, the rotationrot,(o) is the stringo’, such that'[:] =
o[(i+1) modm], for allindices) < ¢ < m—1. Any stringo can be uniquely encoded by
its lexicographically minimal rotatioh M R(o) and the smallest non-negative integer
such thatL M R(o) = rot;(o).

Due to the periodic nature of tree traversal using the basilk,wall the strings
BW (v), for v € V, are identical up to rotation, and hence have the same signg
scribing their lexicographically minimal rotation. We dwedithe signatureig(v) of
an agent with initial starting position as the minimuni such that. M R(BW (v)) =
rot;(BW (v)). Hence, agents with non-symmetric initial positions hawkeent signa-
tures. Observe thét< sig(v) < 2(n — 1).

To compute the value ofig(v), we apply the following procedure, calledN® SIG-
NATURE, which allows an agent starting at nodeo detect the starting position of
LMR(BW (v)) as a rotation oBW (v). To do this, we apply a variant of Duval’s effi-
cient maximum suffix algorithm [79] (cf. also [158] for an exbal I/O memory imple-
mentation), adapting it for the mobile agent computationadiel with limited memory.
Intuitively, the agent makes use of two pointers to symbbdIB@/ (v), represented by
positionsle ft andright, which it sweeps from left to right. Inde ft represents the
starting position of the lexicographically minimal rotatiwhich has been detected so
far, while indexright represents the currently considered candidate for suchrtnst
position.

Our implementation of NDSIGNATURE has two important features. Firstly, the
comparison of characters within the striB§l (v) is encapsulated in subroutineo@-
PARESTRING (left, right, max Length), which lexicographically compares the two sub-
strings of BW (v) having lengthmax Length and starting at offset& f¢ and right,
respectively. Secondly, the agent is not assumed to knovexhet lengthi(n — 1)
of sequenceBW (v); instead, the known upper bound ¢fN — 1) is used, without
affecting the correctness of the algorithm.
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procedure FIND SIGNATURE ()
left < 1; right < 2;
repeat
maxLength < right — left;
COMPARESTRING (left, right, max Length);
if ‘left’ string is greater { at some indexthen
left < right; right < right + 1;
else
if ‘left” string is smaller at index then
right <— right + 1,
else{strings are equal}
right <— right + maxLength;
until right > 4(N — 1);
return left;

When describing proceduredMPARESTRING, we will assume that the agent is
equipped with four memory blocks, calletkws each of which can store a substring
of 1 successive symbols from the striddV (v), wherep is some integer smaller than
k/4. In this way, by carefully implementing procedur®@PARESTRING as described
in [T8], we obtain the following lemma.

Lemma 4.4 ([T8]). For any upper boundV, such thatV > n > N/16, andk >
clog N, wherec is a constant, an agent starting at nodend equipped witlk bits of
memory can compute its signatwgy(v) in O(n?/k) rounds by following procedure
FIND SIGNATURE for the valueu = k/8.

The rendezvous procedure for an agent with an already cadmignaturesig(v)
depends on the relation between the numbef memory bits and the known upper
bound N on the order of the tree. The first procedure, calledaS. MEMORYRV,
guarantees rendezvous of agents with known signature§ihlog N) rounds and using
©(log N) bits of memory. Consequently, the procedure will be apphdtie case when
k < N/log N, since thenVlog N € O(N?/k) and the bound ab (N?/k) on execution
time is achieved. A faster procedure for agents with largemory will be presented
further on.

Procedure 8ALL MEMORYRV assigns to each agent a unique label defined as the
string of [21log N + 3] bits encoding the binary representation2sig(v) + 1. The
procedure is composed of phases such that in-thgohase, depending on the value of
the-th bit of this label, the agent either visits all the nodeshaf tree at least twice, or
waits at its initial location for a number of rounds corresgimg to such an exploration.
This is iterated for alt, 1 < i < [2log N + 3], and then the whole process is repeated
until rendezvous is achieved. The traversal of the treechvheeds to be performed as
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a subroutine, is implemented ByN — 1) steps of the basic walk, and then returning to
the starting node ig(N — 1) steps of the reverse basic walk.

procedure SMALL MEMORYRYV ()
sig < FINDSIGNATURE ();
repeat
OSCILLATE (sig, 2(N — 1), 0);
until rendezvous;

procedure OSCILLATE (sig, distance, firstPort)
for i< 1. [2log N + 3] do
for j « 1,2do

if i-th bit of (2sig + 1) is ‘1’ then
performdistance steps of the basic walk;
performdistance steps of the reverse basic walk, starting from the
last port of entry;

else
remain idle for2 - distance steps;

Lemma 4.5([T8]). For any upper boundV, such thatN" > n > N/16, andk >
clog N, wherec is a constant, a pair of agents equipped witbits of memory, starting
at non-symmetric initial positions with arbitrary delayarc achieve rendezvous in time
O(n?/k + nlogn) using proceduréSMALL MEMORYRV.

For the case wheh > N/log N, we make use of ProceduraRGEMEMORYRYV,
which applies a more time-efficient approach to rendezvquestricting the meeting
location of the agents either to a specific node of the trety one of the endpoints of
a specific edge. Since the memory of the agent may be subtioegrared to the order
of the treel’, we do not perform a structural (e.g., DFS-based) analysisecentire tree
to determine such a location. Instead, the agent attempkstésmine a meeting point
in the so calledrimmed tre€l”, which is the port-labeled tree given by the following
construction (provided for purposes of definition, only):

1. Initially, letT" = T.

2. Trimming Letz = [32N/k] < n/2. Remove froml” all edges: such that one
of the connected components of tfE& {e} has less than nodes. Remove from
T" all isolated nodes.

3. Path contraction Remove froni” all nodes of degre2 by contracting each path
passing through such nodes into a single edge of the tresempirg the port
labeling at all the remaining nodes (of degieer 3).
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We remark thafl” is a non-empty tree with at most/16 nodes [T8], which are by
definition also nodes of treE. The meeting node of the agents in procedur& GE-
MEMORYRYV is selected as follows. If the trimmed tree has a centrdeng then the
agents will meet at. Otherwise, the trimmed tree must have a central edghich
corresponds to some pathy, vy, ..., v;) of lengthl in 7. If [ is even, then the agents
meet at the node;,. Otherwise, the agents meet at one of the endpoints of the edg
{vyy2), vy } of T'. Observe that sinc®’ is uniquely defined, the node or pair of nodes
which will be selected for rendezvous is independent of theting positions of the
agents.

Procedure RRGEMEMORYRYV relies on two key subroutines which allow the agent
to navigate in the tre@”.

e Procedure RIMMEDTREENEIGHBORHOOD when called at a node, computes
the set of port numbers at nodewvhich correspond to edges remaining after the
trimming phase in the definition of tréF, i.e., edges of leading fromu to a
subtree of at least nodes. Testing if a pont at v leads to a sufficiently large
subtree is implemented by performig steps of the basic walk of starting
with port p at nodeu, memorizing the current tree-distance of the agent from
throughout this traversal. If the agent returnsitbefore completion of the last
step of the walk, then the subtree has less thaades, and poyi is not included
in the output of the procedure.

e Procedure RAVERSECOMPRESSENPATH, when called at a node € T’ with a
single argumentext Port (describing a port number atin 7”) moves the agent
using port numbenrext Port, to its neighborw in T”, following a contracted path
in T'. The values returned by the procedure are the port numbehighw was
entered when coming from, and the length of the path ifi connectingu and
w. An optional second argument passed RAVERSECOMPRESSEIPATH allows
the agent to move a specified number of steps along the patledet andw in
T, e.g., in order to reach its center.

Procedure LRGEMEMORYRV consists of the following phases. First, the agent
follows the basic walk orY’, starting from its initial position, until it encounterseth
first node which is identified as a leaf of tré& by using procedure RIMMED TREE-
NEIGHBORHOOD. Next, the agent performs a basic walk in tfEe using procedures
TRIMMED TREENEIGHBORHOODand TRAVERSECOMPRESSEDPATH to discover node
neighborhoods and to navigate along edge%’ofrespectively. A basic walk ifi” is
defined as in tre&’, with the additional condition that an agent leaving a ledlofvs
the only available port, regardless of its port number. Tégen&memorizes the entire
port number sequencBIV’ used during this basic walk " and, by keeping track
of theT” tree-distance from the starting node, detects the coropleti the tour of the
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entire treel”. Using local computations on the sequerigd’’, the agent now iden-
tifies the location of the central node or the central edgeesT’, expressed by the
number of steps of the basic walk @i required to reach this location from its initial
position. If7” has a central node, then the agent reaches it, and stops)gifait the
other agent to arrive there. Otherwise]Tfhas a central edge the agent proceeds to it
and identifies the lengthof the corresponding pathi, vy, . . ., v;) in T"using procedure
TRAVERSECOMPRESSEIPATH. If [ is even, the agent moves to nogg by applying
once more procedureRRVERSECOMPRESSEDPATH, and stops. Otherwise, the agent
reaches nodey;/»; and applies proceduresQILLATE. This is equivalent to performing
SMALL MEMORYRYV, but restricted to the two-node subtree (edge),s), v 21 } of 7.

procedure LARGEMEMORYRYV () { starting atv }
sig < FINDSIGNATURE ();

while | TRIMMED TREENEIGHBORHOOD()| # 1 do
traverse one step of the basic walk’Bn
{ perform the complete basic walk on the reduced tfEe using procedure
TRIMMED TREENEIGHBORHOOD to discover ports leading to neighbors 11 and
TRAVERSECOMPRESSEMNPATH to traverse edges @t }
BW’ « basic walk string for reduced tré&€ starting from the current location of th
agent;
{ using string BW’, locally compute whethef” has a central node or a central ed
and determine its location }
i + distance along basic walk dif to central node/edge af’;
move for: steps of the basic walk df;
if 7" has a central nodden
stop{at central node of” }
else{T” has a central edge, which has just been reached}
(returnPort, ) + traverse central edge 6f using TRAVERSECOMPRESSEMPATH;

{ move to the center of the path ifi corresponding to central edgeBf}

(port, -) <~ TRAVERSECOMPRESSEIPATH (returnPort, [1/2]);
if [ is eventhen
stop{in the middle of the central path af’ }
else
repeat
OSCILLATE (sig, 1, port)
until rendezvous;

e

A bound of the performance of ProcedureRGEMEMORYRYV is given by the fol-
lowing lemma.



4.2 Time-space trade-off for rendezvous in trees 85

Lemma 4.6 ([T8]). For any upper boundV, such thatV > n > N/16, andk >
c¢N/log N, wherec is a constant, a pair of agents equipped wittbits of memory,
starting at non-symmetric initial positions with arbitnadelay, achieves rendezvous in
timeO(n?/k), using proceduré. ARGEMEMORYRV.

Combining Lemmas 4.5 and 4.6, we obtain an algorithm whitlesadhe rendezvous
problem in timeO(n?/k) for a known linear upper bound on n and for trees of
maximum degre&: if k& > N/log N, then procedure ARGEMEMORYRV is called,;
otherwise, procedureN&\LL MEMORYRYV is called. A generalization of the approach to
trees of arbitrary degree is possible by considering egpilam of a virtual tree of degree
3, which in fact also explores the real underlying tfBavhich may contain nodes of
higher degree. Independence of the value:a$ achieved by a doubling argument,
iterating geometrically increasing bounds on the value bband om. Interestingly,
by introducing artificial phases during which the agentswais possible to design the
procedure so that the agents meet quickly even if they assiffeeent bounds om,
due to the fact that one of the agents is delayed. The completedure is presented
below.

procedure RENDEZVOUSINTREES()
N « k;

repeat{ Phase 1: attempt rendezvous with large memory }
try LARGEMEMORYRYV (), aborting if tre€l” has more thak /16 nodes;
{ the further steps are executed only if the assumed bour@bismall(N < n) }
return to the starting position;
N < 4N,
until £ < N/log N;
repeat{ Phase 2: achieve rendezvous with small memory }
t < current round number;
wait for 2(N — 1) rounds; { (a) }
perform2(N — 1) steps of the basic walk; { (b) }
wait for 2(N — 1) rounds; { (c) }
perform2(N — 1) steps of the reverse basic walk; { (d) }
T < 8(N — 1) + duration of the slowest possible execution afiFSIGNATURE for
currentNV;
sig < FINDSIGNATURE ();
wait until round numbet + 7;
repeat
OSCILLATE (sig, 2(N — 1), 0);
until round number is larger thant 27;
N < 4N;
until rendezvous;
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By applying the above procedure, one can show that rendezs@uaranteed to occur
while the second (delayed) agent is still assuming a bound atich is linear with
respect tan. By bounding the number of steps this agent performs betardazvous,
we obtain the following theorem.

Theorem 4.7([T8]). For anyk > clogn, wherec is some constant, there exists a pair
of agents equipped with bits of memory which achieves rendezvous in tinge?/k)
when starting at non-symmetric initial positions with drhry delay.

It turns out, however, that no pair of agents can accompéiatezvous in time(n +
n?/k), even in the class of lines and even with simultaneous start.

Theorem 4.8([T8]). Consider a pair of agents equipped withbits of memory and
achieving rendezvous in amynode line starting from arbitrary non-symmetric initial
positions. Then:

1. For some constant and arbitrarily largen, we havek > ¢; logn.

2. For some constant, and arbitrarily largen, there exists a-node line for which
these agents use time at leastn + n?/k) to accomplish rendezvous from some
non-symmetric initial positions, even for simultaneoastst

For an agent knowing an upper bound on the number of nad#sa tree, we can
compare the hardness of the rendezvous and exploratiolepreb Exploration with
termination can be performed by followir2grn. — 1) steps of the basic walk, given that
the agent is equipped with at leaStlogn) bits of memory to be able to count the
number of completed steps. On the other hand, the rendeprobem can only be
solved in linear time when given linear memory, and requi2és?/ logn) time for a
log-space agent.

4.3 Other models of rendezvous

The results from [164, T7] discussed in Section 4.1 providalenost complete answer
to the question of when the rendezvous of a pair of synchregents in a graph is
feasible. Agents can meet if they have distinct labels, ¢nely have the same labels
but distinct initial views. In any other case, rendezvoull mot be feasible, as long

as the agents start simultaneously. Considerations aélangpups of agents have led
Dieudonné and Pelc [71] to a similar criterion for gatherrigrger group of agents at a
single node. They introduce the notion of @mhanced viewf the agent, defined as its
view of the anonymous network with additional labels assijto nodes, equal {ofor

all nodes which do not contain an agent, and.ttor any node initially containing an
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agent with labelL.* Then, [71] show that a starting configuration with multipteats

is gatherable, if and only if there exist agents with differeiews, and each agent has
a unigue enhanced view. Moreover, they provide a univefgatithm for gathering all
gatherable configurations.

The situation becomes more complex for the case of asynochsomgents. An asyn-
chronous system can be thought of as controlled by an adyemshich decides for
each agent the duration of its traversal of an edge of thearkiwif agents are only
allowed to meet at nodes, then the adversary controllingpleeds of the agents can
always guarantee that the agents never meet while they #neirbonotion. In fact,
rendezvous can only be achieved when one of the agents conaedeffinite stop and
decides to wait for the other agent at some node, while ther @ither engages in per-
petual exploration of the graph along a trajectory whichudes the node at which the
other agent is waiting, or simply stops at the same node. rEsisicts the feasibility
of asynchronous rendezvous of anonymous agents to a nalass af networks, in-
cluding those in which an agent can elect a unique leader f@&lenetworks equal to
their own quotient graph, in the case when the agents knowadon the number of
nodes of the network). For this reason, most of the liteeaaassumes a different defini-
tion of asynchronous rendezvous, in which agents can me@npat nodes, but also
while “traversing an edge”. Alternatively, one can view theves of the agent along
an edge as instantaneous, and allow the adversary to icgabitrary delays in the
time spent by the agent at nodes. In such an asynchronousg;enhas recently been
shown that agents can always meet within a polynomial nuroaberoves if they have
unique labels [72]. For the case of anonymous agents, tlss ofanstances for which
asynchronous rendezvous is feasible is quite similar tbithéhe synchronous case,
though due to the ability of the agents to meet on edges,icatafigurations with a
mirror-type symmetry also turn out to be gatherable [102].

Finally, we remark on the complexity and feasibility of ramngized rendezvous. For
rendezvous of a pair of agents, a reasonable approach insédlowing both agents
to perform a random walk until they meet. As time tends to itffjrihe probability of
successful completion of rendezvous tendg;tehus, such an approach may be con-
sidered to be randomized in the Las Vegas sense. When gagletarger group of
agents, agents which have met stick together following #meswalk, and the process
continues until all groups of agents have merged into oneh rocesses, known under
the name of coalescing walks, have been extensively studibeé literature [5,43,51].
Aldous [5] established that the expected time until two taeh, synchronous Marko-
vian processes meet is bounded by a constant times the maximtiing time of the
walk, over the nodes of the graph. Thus, if both of the agert®vor example to fol-

*The scenario defined in [71] is in fact restricted to anonysnagents, i.e., the assumption that the
agent’s label satisfies = 1 is made for all agents. A similar generalization of the cqriad view
was previously introduced by Yamashita and Kameda in [173].
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low a Metropolis walk, their expected meeting time would®@?). By considering a
network consisting of two identical copies of some grapimtaming one agent each at
some two corresponding nodes, and joined by connectingamthdge the nodes with
the highest hitting time, it follows that such a bound is apyotically tight. Achiev-
ing improved bounds on the time of randomized rendezvouddvonly be possible
given the existence of substantially faster randomizedbeapon algorithms than those
currently known, which appears very unlikely.

It is worth noting that the technique of achieving randordimndezvous of agents (or
tokens) in a network by means of coalescing walks provesitisedifferent contexts. In
the study of self-stabilizing algorithms, the algorithmisfaeli and Jalfon [110] solves
the mutual exclusion problem by providing a method of eliatiimg superfluous tokens
in a distributed network through coalescence, until théesgseventually only contains
a single token, circulating among the nodes. The role ofdkert is to select the unique
active processor in the system. Concepts related to rara@oiméndezvous also appear
in techniques for bounding the mixing time of random proesssvhich rely on the
analysis of the time needed by a specifically contrived paarkovian processes to
coalesce to an identical state for both processes of the phis approach, known as
coupling [4, 44], has proved to be a powerful tool, used anathgrs to design parallel
algorithms for rapid shuffling of a permutation [54].



5 Challenges in agent-based
distributed computing

The results presented in this manuscript cover a range afsoelated to agent-based
computing in anonymous graphs. The central theme quesharhwve have ask through-
out the text can be posed as follows: “What are the compunaltapabilities of a single
agent in an anonymous network?”, and one can safely sayrehatate-of-the-art of the
literature, including the results discussed in this thegsisvide us with a reasonable
understanding of the answer. What is less well understodigei®ptimal time com-
plexity of solutions to problems using one or more mobilerag@nder different model
restrictions, and the precise interplay between the tinteraemory complexity of the
agent.

5.1 Directions of study for anonymous networks

Time-space tradeoffs. A fundamental and current research problem concerns the
interplay between solution time and the memory space reduay the agent, for both
randomized and deterministic approaches. In Chapter 2 we fainted out that a de-
terministic agent equipped with a logarithmic number o lmf memory can explore
a graph inO(n*logn) steps, a similar randomized agent only ne@ds? log n) steps,
while the best known lower bound on exploration time for biyies of agents is only
plt9(/lglogn) -~ This allows us to formulate intuitive working hypothesés, exam-
ple, that an agent can solve many exploration-based prabsegmificantly faster by
applying randomization, but an important complexity gastis left to be resolved. For
the moment, there is still no known framework which could bome known results in
the area. It would be of particular interest to combine ¢H{e?) lower bound on the
cover time of matrix-based random walks [149] and a simdardr bound of2(n?) on
the length of universal tables for deterministic explarat{Section 2.3) into a general
lower bound which could apply to randomized algorithms fatife agents.
Interestingly, for the exploration problem, we have no @adiion that agents equipped
with large memory (say, polynomial im) are able to explore an anonymous graph in
asymptotically less time than algorithms with orhflogn) memory. This comes in
contrast to non-anonymous models, such as JAG-based appsof 1], where adding
more memory to the agent allows us to design faster exptoraigorithms. Of course,
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this does not mean that the memory size of the agent has neimpghe time of com-
putation. For example, in Chapter 4 we have shown that prayia mobile agent with
larger memory provably reduces the completion time for tiredmental problem of
anonymous synchronous rendezvous, in the class of treeshd-cendezvous problem
in general graphs, the impact of determinism and memoryicgsh on the time re-
quired for finding the solution seems to be even more notiegedlbough in this case
optimal time bounds on the complexity of the problem are mavin and we can only
try to draw conclusions based on the performance of the besrdly known algorithm
for the rendezvous problem.

Another design characteristic of the agent, which influsnteecomputational capa-
bilities, is knowledge of the value of global parameters.hafee observed in Chapters 2
and 3 that single-agent problems, such as exploration apdcorastruction, cannot as
a rule be solved with termination when no upper bound on theb®ur of nodes of
the network is known by the agent. A more subtle question emsthe impact of
knowledge of global parameters on the time needed to compéetain tasks without
termination, such as covering all the nodes of the networindyperpetual exploration.
In Section 2.2.2, we have noted that the running time of wsiaf the Metropolis walk
with small memory size are sensitive to knowledge of glolzabmeters. At present,
the fastest known randomized exploration algorithms nkse ofo(log log log n) bits
of memory rely on knowledge of an upper boundrgrwhereas the fastest known ex-
ploration algorithms for agents with more memory (i€(Jogloglogn) bits) do not
make use of the value af. One of our goals in future research will be to obtain a better
understanding of the three-way tradeoff between time,espatd knowledge in mobile
agent computing, complementing similar studies in “cleaSimodels of distributed
computing with processors on nodes [124].

Model variants.  Agent-based computing on anonymous networks is, above all,
theoretical model of computation. Different refinementsh&f model are possible, al-
lowing us to draw general conclusions about the types ofuregs critical for solving
fundamental problems on graphs. Here, we briefly highlighgée promising research
directions, which have been hinted at in the previous chatethe manuscript.

First of all, the anonymous network model provides an ero¢ldescription for
agents whose memory is simply too small to accommodate desimagle identifier.
By describing the agent as a Mealey automaton, and not ag®d@.RAM machine
operating on memory addresses of siéog n), we have a natural setting for studying
algorithms with sub-logarithmic memory complexity in thentext of classical prob-
lems on graphs. The computational power of agents with giaithmic memory is not
yet well understood. It is a well-established result [15@ittan agent requirég(log n)
memory to explore all graphs of at moshodes, but it is not known if there exists an
agent witho(log n) memory which can explore any tree of at mastodes and termi-
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nate in a finite number of steps. The impact of memory sizedrstib-logarithmic range
is visible also for randomized algorithms. As noted in Cleagt the number of memory
bits required by an agent to perform exploration in expecéef) steps is bounded by
O(loglog n). Decreasing the memory size@ancreases the exploration time@i{n?),
whereas increasing the memory size abOVykg log n) does not appear to speed up the
process asymptotically. In current work-in-progress, weundertaking an attempt to
understand time-space tradeoffs for small memory morg, fatid also to find out if any
non-trivial topological properties of the anonymous netw@elated to the structure of
its quotient graph) can be decided with high probability lsams of randomized agents
with sublogarithmic memory.

Another important question concerns the availability edlanformation to an agent
upon entering a node. Whereas the anonymous network moeebaeay with all forms
of identifiers, we assume that the agent still knows the degféhe node itis located at,
and the port by which this node was entered. Whereas the@legoFmation appears
to be indispensable to be able to design any reasonablathlgothe information about
the port of entry has a more pragmatic rationale: withowtéare unable to reverse the
last move made by the agent. In the scenario without poertdy information, we are
still able to perform randomized graph exploration by ugsheyrandom walk, as well as
deterministic graph exploration in polynomial time by fmlling a Universal Traversal
Sequence based on the random walk. The question of thereaesté faster exploration
strategies witho(n?) expected cover time remains open; in particular, it doesapet
pear to be possible to adapt the Metropolis walk to work witrtbe ability to revert to
the last visited node. Whereas it is still possible to penfateterministic exploration
with O(logn) memory carried over links, the construction of Universapexation Se-
guences with local log-space computation [156] is not &aplie, and log-space deter-
ministic exploration strategies are only known for the aaken certain assumptions are
made abut the port labeling in the graph [157]. The quotieaply of the network can
still be reconstructed in polynomial time using an adaptatf the method described
in Section 3.2, but we do not know how to adapt any of the othethods, in particular,
if it is possible to construct the quotient graph carryiiogn) memory over links.
Likewise, the question of deterministic rendezvou®iflog n) space remains open.

The idea of removing the ability to backtrack along previgusaversed links leads
to further generalizations of the anonymous network modehe case of directed
graphs. When the digraph in which the agents operate isaggul at least (almost)
Eulerian, then the cover time of the random walk is still paignial [145]. The com-
plexity of solving deterministic exploration problems,agient graph construction, and
rendezvous remains the same as in the previously discuasedt undirected graphs
without knowledge of port-of-entry. For Eulerian digrapliise question of whether
an exploration strategy exists which requires log-spacepedations in the centralized
RAM model has profound theoretical implications; Reingetdl. [157] have shown
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that the existence of such a strategy would imply that detestic log-space machines
have the same power as randomized log-space machinesngitbse equivalence of
complexity classes L=RL. The ability to prove the existentaimilar deterministic
exploration strategies for arbitrary (strongly conneltéidected graphs would imply
the even stronger relation L=NL. Any collapse or separatibthe known hierarchy L
C RL C NL will certainly be a breakthrough in log-space comput&pit least com-
parable to Reingold’s [156] proof that L=SL. Most partiatempts to address these
problems rely on developments in derandomization tectesicatarting with the semi-
nal work of Nisan [146], asking if a deterministic log-spadgorithm can achieve the
same behaviour as a randomized log-space algorithm whsotmitlates for some small
pseudorandom seed. Results in this area have a direct peariagent-based explo-
ration algorithms, sometimes requiring only a change oflege to transfer from the
centralized model to the distributed model.

5.2 Computing in a team

An important line of research in distributed computing ttyeof the last decade deals
with the problem of achieving a given goal using the coortdidaeffort of a team of
agents. Studies have been performed in different modelgaitacommunication and
synchronization, and attempted tasks include fundampra@lems of distributed com-
puting, such as rendezvous at specific locations, or stabdin on subsets of the net-
work satisfying certain properties. In Chapter 4 we havevigiexd a brief overview
of the state-of-the-art for the rendezvous problem in ananys graphs, also mention-
ing its applications to problems such as leader election.ompetely separate line
of study deals with the problem of using a coordinated teanagents to detect a
hazardous network fault or a rogue agent, most notably irsthealled “black-hole
search” [74, 85, 126] and “distributed cops-and-robberct€groblems [116, 125].

Apart from the above mentioned tasks whose very definititas®n the existence
of multiple agents in the network, an extremely relevaneagsh direction concerns
investigations into collaborative solutions to problerasts as graph exploration, for
which a single agent suffices to obtain a valid solution, limputations in a team can
lead to a solution more quickly. Here, the main object of ®@ithespeed-umf the
approach, i.e., informally speaking, the decrease in thaing time of an algorithm
when deploying multiple agents in the network instead of one

The speed-up depends on many factors, including the imdcation of the agents
and the possible interactions between them. We illustrasequestion with a simple
real-world example, which is indicative of the need for agawordination. Consider
a document repository forming an e-book, divided into HTMhcdments consisting
of one page of the book each, with each page containing a linkoéo the next and
previous pages, only. Suppose that an agent is a procesk rads a page, and then
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follows a random hyperlink on this page. The task of the tedagents is to verify the

integrity of the repository, i.e., to check if the book cangaall of its pages in order. If

not, any one of the agents is expected to signal an error. d&leégto complete the task
in the shortest possible time (in expectation). It turns theat depending on the way
the agents coordinate with each other, we may benefit to angadggree by deploying
a larger number of agents to solve the task. Consider, brge tifferent strategies for
solving the studied exemplary problem:

A. The agents explore the book in parallel, starting from pageThis strategy
achieves little gain: the speedup of execution is very sit@djarithmic) com-
pared to the number of deployed agents [9].

B. The agents process the book in parallel, starting from gveptead out pages of
the book.In this strategy, the execution speeds up by more than ar lfaetr in
terms of the number of deployed agents (more preciselyXpeated speed-up is
O(k?/log® k) [118] for k agents), leading to a highly desirable synergy effect.

C. The agents process the book in parallel, starting from gveptead out pages of
the book, with the added stipulation that each agent is cedfto its own section
of the book (“block” of pages)This strategy achieves even stronger synergy: ex-
ecution speeds up by a factor®fi?/ log k) (the argument follows directly from
the probability distributions of hitting times of one-dingonal random walks,
cf. [139]).

When performing “uncoordinated” random walks, with ageéployed in a graph
independently of each other, the achieved speed-up of etja has been character-
ized in [9,80,83] (cf. Section 2.2). The value of this spegdnay sometimes be as low
as logarithmic, and sometimes as high as exponential, mmstef . For many classes
of graphs which often appear in networking practice the dpgeis linear in terms of
k, but only for small values of (k € O(logn)).

Many open questions still remain regarding the parallébraof graph exploration.
To begin with, the random walk is not the only exploratiorattgy for which speed-up
in collaborative computations with a team of agents can basored. For example,
our work [T1] indicates that multiple agents following inmEndent Metropolis walks
starting from uniformly random network nodes cover a grapitimfaster than a single
Metropolis walk. Currently, there is still no general theof parallel walks. The ques-
tion of finding the exploration algorithm which allowsagents acting independently
and in parallel to explore a network as quickly as possibédss wide open.

In our current work-in-progress, we have considered thernatuter mechanism
(Section 2.5.1) in the context of multiple agents. Here,aents moving in the rotor-
router system interact with the same set of pointers at nedeaning that they cannot
be treated as independent walkers in the graph. Still, theirdd values of speed-up
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are surprisingly similar to those for the case of multipledam walks. For the case
of the ring, we have established [118] that the worst-cagerdime of the rotor-router
with & agents is precisel(log k) times smaller than the corresponding worst case
cover time for a single agent. In work currently in prepamatiwe show that agents

in fact achieve a speed-up Oflog k) in arbitrary networks. At a very informal level
of description, the speed-up of the multi-agent rotorowain the ring stems from the
fact that each agent is associated with a so-caleuhain i.e., a part of the graph it
has already explored, close to its current location andexsntly visited by any other
agent.

Other techniques may be applied for agents in the anonynmetwsork model which
are allowed to communicate with each other. The first thesalatesults in the area are
due to [92], who show that there exists a strategy which egpla tree with a team of
k agents starting from the same node with a speed-up(bfg k) with respect to the
best possible strategy for a single agent. This result Holdsmall £ (¢ < /n) and
a communication model which either allows agents to writevbiteboards or to com-
municate at a distance. The question of the optimality ohsuctapproach stands wide
open, with the best known upper bound on speed-up in such alrbehgO (k/ log k).
Very recently, we have also studied the same question dilmoiative exploration with
much larger team sizes. In [67], we show that in an arbitragngmous network with
m edges and diametdp, a team ofk > m!*c D agents starting from the same node
explores the network in asymptotically optimal tirdg D).* This result holds for an
even more restrictive model in which two agents can only comicate when located
at the same node. For smaller team sizes than the resultggopo [67], establishing
the exact tradeoff between the team dizend the exploration time is a highly relevant
and challenging open problem. This question can be coreidasth in the context of
anonymous networks, and networks with unique node idergtikiBown to the agent.

5.3 Some new models and inspirations

The future of mobile agent computing is intrinsically tiemriew, emerging areas of
application. The last decade has seen intensive reseacchaimdom walks tuned for
applications on the web and in social networks. Approaclasgd on random walks
have been elaborated which shift (bias) the agent towaresdspg more time at hubs
or nodes of high importance, often applying machine legr@ilgorithms to compute
according edge weights to guide the agent in its walk [134jedFetical foundations
have been laid out for network exploration using paralladam walks [9, 80, 83], and
several variants of the random walk achieving improved ctivee have been put for-
ward [31, 147, 149]. It appears likely that future researdh lwing answers to more

*Strictly speaking, our results from [67] are not set in thergmous network model. We thank Jérémie
Chalopin for bringing to our attention that they also holé&itonymous networks.
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complex questions, combining the elements of theory deeelso far. For example,
we may ask about the optimal collaborative explorationtegyain order to periodi-
cally explore the nodes of a web-type graph with uniform piality, given a set ok
agents crawling it in parallel while the network topologycanstantly undergoing evo-
lution according to some model of link formation. In addititm the problems of multi-
agent protocol design discussed in Section 5.2, the aspéeghamism is particularly
challenging, since our understanding of the behavior aleamwalks agent-based algo-
rithms in evolving networks is relatively limited for botdersarial and non-adversarial
scenarios (cf. [22] for one of the few papers on the topic).

The problem of coping with network evolution is closely letkto challenges re-
lated to detecting and evaluating the importance of infeionaappearing in real time
in social networks and webs of knowledge. New algorithmsridexing the web need
to pick up on hot news items and other resources which areigui@ining new in-
bound links in the network, while skillfully eliminating ekess background noise and
remaining immune to intentional manipulation of the togpylof the web (e.g., through
so-called “link farms”). In social networks, the patterrigopoopagation of information
are particularly complex [115, 121]. Agent-based protscohy prove to be a viable
approach to simulating such processes of rumour spreadiétgeting which nodes of
the network are capable of starting a cascade of informatioich will reach a large
subset of network nodes, etc.

Another important area where the theory of mobile agent agmg has been lagging
a little behind real-world designs is that of collaboratmelti-robot designs in robotics.
When undertaking such challenges, we immediately run mdheoretical challenges
of coordinating a team of robots, highlighted in Section FBese problems are addi-
tionally aggravated by difficulties of real-world implentation. One pressing aspect is
to develop models and algorithms for heterogeneous robatswvare cooperating with
each other. In the simplest case, some robots may move thateothers. Under the
assumption that robots have different maximum speeds, knastn theoretical results
for problems of search and exploration no longer hold. Evassical problems, such
as locating a distinguished point in a one-dimensionaaterfthe so-called “cow-path
problem”), admit algorithmic solutions with a more invoti/etructure, depending on
the relative speeds of the robots [57]. Another exampleespttoblem of patrolling a
segment or a circular terrain so as to minimize the maximume tivhen a point of the
circumference is left unguarded. The task admits a simpglgisa with regular robot
trajectories when all the robots have the same speed, listho longer the case for
robots with different speeds [58,114]. In fact, the optichesign of trajectories for such
robots remains an open problem, even for the simple casesegfraent or a ring. For
a set ofk robots with known maximum speeds, the solution to the patgpproblem
on a circular terrain is closely related to the lonely runcenjecture [33] — an open
guestion in number theory first posed in 1967 (related to titibelvood, Goldbach,
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FIGURE 5.1: The Elitzur-Vaidman bomb-testing problem (image seuf169])

and Polignac conjectures), which has recently been pgraddressed using methods
from dynamical systems theory [106]. Whereas this type télogeneous multi-agent
problem appears to be very hard in a centralized setting,wieen all the robots can

coordinate their actions, the distributed setting in whattragents decide on their own
actions is not at all understood and definitely deservebdudtudy.

Finally, itis extremely tempting to try to extend of the miebagent computing frame-
work to unconventional models of computation, and in patéicto quantum comput-
ing. This direction appears natural, since in the designariynguantum algorithms, the
so-calledquantum wallserves as a key building block. The quantum walk approach can
be regarded as a quantum analogue of the classical randdmimvalhich the walker’s
current state is no longer a probability distribution ovazdtions in the graph, but in-
stead a quantum superposition of locations in the graphh S8a@pproach can be used
to obtain quantum algorithms for problems such as elemeatindiness in a list or de-
tecting if the graph is triangle-free, which are faster byadypomial factor than the
fastest possible classical algorithms for the same praoblddh, 140]. By treating the
walker as a mobile agent, we could perhaps try to considentgoaanalogues of the
problems studied in this work: quantum exploration, quantendezvous, etc. The first
hurdle when undertaking this approach lies in obtainingexige formulation of, e.g.,
what it means that two agents meet, given a model of computati which the loca-
tion of the agent only becomes well-defined in the measuréptese at the end of the
guantum process, and not during its intermediate stepseSwe have yet to provide a
way to cope completely with this problem, we close this maripswith some intuition
and a word of caution related to a famous “paradox” in an erpant known as the
Elitzur-Vaidman bomb-testing problem [81], which ariseghe quantum setting. The
experimental set-up is illustrated in Figure 5.1. In theeskpent, the light source A
emits a single photon (particle), which we can think of aswalker or “agent” in the
system. Immediately after leaving the source, the photesgsmthrough a half-plated
mirror, and is reflected from the mirror along the upper paitin wrobability 1/2, or
continues through the mirror and along the lower path witbpbility 1/2. A box B is
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placed on the lower path in the way of the photon. The box migaeebe a dud (which
does nothing and does not affect the path taken by the phatoa)ight-triggered bomb
which explodes immediately after the photon passes thraudfnally, after passing
through another half-plated mirror placed in the way of bibitn lower and the upper
path, the potentially surviving photon is captured and mesgs by exactly one of the
light detectors C or D.

A classical view of the above scenario would tell us that thgeht” chooses either
the upper path, or the lower path, each with probabilitg. Consequently, it either
passes through box B, or does not pass through it, with eatitesé events occurring
with probability 1/2. This means that in order to be able to identify the box B as a
real bomb with certainty, we would need to know that the “dgbas passed through
point B, implying that the bomb would always have to explodeing such positive
identification. Somewhat surprisingly, this analysis noder holds under the laws of
physics, as can be shown in a real-world experiment. Apglgmantum mechanics, a
more accurate view of the route taken by our agent is not fteatleterministic choice of
the upper or lower path, each with probabillty2, but instead a quantum superposition
of these two paths, which may, somewhat informally, be tihbug as a probability
wave going through both of these paths at once. As such, th@pmever fully goes
through point B, even if it interacts with it. By performing@amal analysis, Elitzur and
Vaidman [81] obtained that by reading the measurementseodi¢ectors C and D, the
box at B may in some runs of the experiment (i.e., with a $yrigbsitive probability,
equal tol /4) be identified as a real bomb for certain, without actuallgleging.

This simple example indicates at least one possible appra&ech could be used
to define the quantum mobile agent framework. Rather thaimgdlat the agent has
gone through point B, we can say (and check) that the agennhtexacted with point
B. Likewise, rather than requiring that two agents achiav@dum rendezvous in some
time round, we can require that by the end of the algorithm,atents will have ex-
changed some information, thus proving that at some poititnia they interacted with
each other at the same location. As mentioned before, dewnelthis type of intuition
into a consistent theory, and more importantly — one whidhyield useful theoretical
results — appears to be a challenging, but potentially réingrresearch task.
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