T. Horimoto and Y. Kawaoka, Influenza: lessons from past pandemics, warnings from current incidents, Nature Reviews Microbiology, vol.4, issue.8, pp.591-600, 2005.
DOI : 10.1086/314713

P. Palese and M. Shaw, Orthomyxoviridae: The viruses and their replication, Fields Virology. Lippincott, Williams and Wilkins, pp.1647-1689, 2006.

L. J. Calder, S. Wasilewski, J. A. Berriman, and P. B. Rosenthal, Structural organization of a filamentous influenza A virus, Proc. Natl Acad. Sci. USA, pp.10685-10690, 2010.
DOI : 10.1073/pnas.1002123107

A. Harris, G. Cardone, D. C. Winkler, J. B. Heymann, M. Brecher et al., Influenza virus pleiomorphy characterized by cryoelectron tomography, Proc. Natl Acad. Sci. USA, pp.19123-19127, 2006.
DOI : 10.1073/pnas.0607614103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1748186

E. C. Hutchinson, M. D. Curran, E. K. Read, J. R. Gog, and P. Digard, Mutational Analysis of cis-Acting RNA Signals in Segment 7 of Influenza A Virus, Journal of Virology, vol.82, issue.23, pp.11869-11879, 2008.
DOI : 10.1128/JVI.01634-08

V. Moules, O. Ferraris, O. Terrier, E. Giudice, M. Yver et al., In vitro characterization of naturally occurring influenza H3NA??? viruses lacking the NA gene segment: Toward a new mechanism of viral resistance?, Virology, vol.404, issue.2, pp.215-224, 2010.
DOI : 10.1016/j.virol.2010.04.030

URL : https://hal.archives-ouvertes.fr/hal-00504751

T. Noda, H. Sagara, A. Yen, A. Takada, H. Kida et al., Architecture of ribonucleoprotein complexes in influenza A virus particles, Nature, vol.116, issue.7075, pp.490-492, 2006.
DOI : 10.1038/nature04378

R. Coloma, J. M. Valpuesta, R. Arranz, J. L. Carrascosa, J. Ortin et al., The Structure of a Biologically Active Influenza Virus Ribonucleoprotein Complex, PLoS Pathogens, vol.25, issue.6, p.1000491, 2009.
DOI : 10.1371/journal.ppat.1000491.s006

M. T. Hsu, J. D. Parvin, S. Gupta, M. Krystal, and P. Palese, Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle., Proc. Natl Acad.Sci. USA, pp.8140-8144, 1987.
DOI : 10.1073/pnas.84.22.8140

E. C. Hutchinson, J. C. Von-kirchbach, J. R. Gog, and P. Digard, Genome packaging in influenza A virus, Journal of General Virology, vol.91, issue.2, pp.313-328, 2010.
DOI : 10.1099/vir.0.017608-0

W. G. Laver and J. C. Downie, Influenza virus recombination, Virology, vol.70, issue.1, pp.105-117, 1976.
DOI : 10.1016/0042-6822(76)90240-3

M. Lubeck, P. Palese, and J. Schulman, Nonranom association of parental genes in influenza A virus recombinants, Virology, vol.95, issue.1, pp.269-274, 1979.
DOI : 10.1016/0042-6822(79)90430-6

K. Nakajima and A. Sugiura, Three-factor cross of influenza virus, Virology, vol.81, issue.2, pp.486-489, 1977.
DOI : 10.1016/0042-6822(77)90165-9

K. Fujii, M. Ozawa, K. Iwatsuki-horimoto, T. Horimoto, and Y. Kawaoka, Incorporation of influenza A virus genome segments does not absolutely require wild-type sequences, Journal of General Virology, vol.90, issue.7, 2009.
DOI : 10.1099/vir.0.010355-0

Y. Fujii, H. Goto, T. Watanabe, T. Yoshida, and Y. Kawaoka, Selective incorporation of influenza virus RNA segments into virions, Proc. Natl Acad. Sci. USA, 2002.
DOI : 10.1073/pnas.0437772100

Y. Liang, Y. Hong, and T. G. Parslow, cis-Acting Packaging Signals in the Influenza Virus PB1, PB2, and PA Genomic RNA Segments, Journal of Virology, vol.79, issue.16, pp.10348-10355, 2005.
DOI : 10.1128/JVI.79.16.10348-10355.2005

Y. Liang, T. Huang, H. Ly, T. G. Parslow, and Y. Liang, Mutational Analyses of Packaging Signals in Influenza Virus PA, PB1, and PB2 Genomic RNA Segments, Journal of Virology, vol.82, issue.1, pp.229-236, 2008.
DOI : 10.1128/JVI.01541-07

G. A. Marsh, R. Hatami, and P. Palese, Specific Residues of the Influenza A Virus Hemagglutinin Viral RNA Are Important for Efficient Packaging into Budding Virions, Journal of Virology, vol.81, issue.18, pp.9727-9736, 2007.
DOI : 10.1128/JVI.01144-07

Y. Muramoto, A. Takada, K. Fujii, T. Noda, K. Iwatsuki-horimoto et al., Hierarchy among Viral RNA (vRNA) Segments in Their Role in vRNA Incorporation into Influenza A Virions, Journal of Virology, vol.80, issue.5, pp.2318-2325, 2006.
DOI : 10.1128/JVI.80.5.2318-2325.2006

M. Ozawa, J. Maeda, K. Iwatsuki-horimoto, S. Watanabe, H. Goto et al., Nucleotide Sequence Requirements at the 5' End of the Influenza A Virus M RNA Segment for Efficient Virus Replication, Journal of Virology, vol.83, issue.7, pp.3384-3388, 2009.
DOI : 10.1128/JVI.02513-08

J. R. Gog, E. D. Afonso, R. M. Dalton, I. Leclercq, L. Tiley et al., Codon conservation in the influenza A virus genome defines RNA packaging signals, Nucleic Acids Research, vol.35, issue.6, pp.1897-1907, 2007.
DOI : 10.1093/nar/gkm087

´. Marsh, G. A. Rabadan, R. Levine, A. J. Palese, and P. , Highly Conserved Regions of Influenza A Virus Polymerase Gene Segments Are Critical for Efficient Viral RNA Packaging, Journal of Virology, vol.82, issue.5, pp.2295-2304, 2008.
DOI : 10.1128/JVI.02267-07

J. R. Kremer, D. N. Mastronarde, and J. R. Mcintosh, Computer Visualization of Three-Dimensional Image Data Using IMOD, Journal of Structural Biology, vol.116, issue.1, pp.71-76, 1996.
DOI : 10.1006/jsbi.1996.0013

P. Van-der-heide, X. P. Xu, B. J. Marsh, D. Hanein, and N. Volkmann, Efficient automatic noise reduction of electron tomographic reconstructions based on iterative median filtering, Journal of Structural Biology, vol.158, issue.2, pp.196-204, 2007.
DOI : 10.1016/j.jsb.2006.10.030

L. Sinck, D. Richer, J. Howard, M. Alexander, D. F. Purcell et al., In vitro dimerization of human immunodeficiency virus type 1 (HIV-1) spliced RNAs, RNA, vol.13, issue.12, pp.2141-2150, 2007.
DOI : 10.1261/rna.678307

URL : https://hal.archives-ouvertes.fr/hal-00200856

Q. Ye, R. M. Krug, and Y. J. Tao, The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA, Nature, vol.53, issue.7122, pp.1078-1082, 2006.
DOI : 10.1038/nature05379

E. Hoffmann, G. Neumann, Y. Kawaoka, G. Hobom, and R. G. Webster, A DNA transfection system for generation of influenza A virus from eight plasmids, Proc. Natl Acad. Sci. USA, pp.6108-6113, 2000.
DOI : 10.1073/pnas.100133697

E. C. Hutchinson, H. M. Wise, K. Kudryavtseva, M. D. Curran, and P. Digard, Characterisation of influenza A viruses with mutations in segment 5 packaging signals, Vaccine, vol.27, issue.45, pp.6270-6275, 2009.
DOI : 10.1016/j.vaccine.2009.05.053

J. Paillart, M. Shehu-xhilaga, R. Marquet, and J. Mak, Dimerization of retroviral RNA genomes: an inseparable pair, Nature Reviews Microbiology, vol.73, issue.6, pp.461-472, 2004.
DOI : 10.1006/viro.1994.1037

E. Skripkin, J. C. Paillart, R. Marquet, B. Ehresmann, and C. Ehresmann, Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro., Proceedings of the National Academy of Sciences, vol.91, issue.11, 1994.
DOI : 10.1073/pnas.91.11.4945

A. K. Ng, H. Zhang, K. Tan, Z. Li, J. Liu et al., Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design, The FASEB Journal, vol.22, issue.10, pp.3638-3647, 2008.
DOI : 10.1096/fj.08-112110

F. Baudin, C. Bach, S. Cusack, and R. W. Ruigrok, Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent, EMBO J, vol.13, pp.3158-3165, 1994.

K. Klumpp, R. W. Ruigrok, and F. Baudin, Roles of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure, The EMBO Journal, vol.16, issue.6, pp.1248-1257, 1997.
DOI : 10.1093/emboj/16.6.1248

K. Yamanaka, A. Ishihama, and K. Nagata, Reconstitution of influenza virus RNA-nucleoprotein complexes structurally resembling native viral ribonucleoprotein cores, J. Biol. Chem, vol.265, pp.11151-11155, 1990.

G. Neumann, T. Noda, and Y. Kawaoka, Emergence and pandemic potential of swine-origin H1N1 influenza virus, Nature, vol.367, issue.7249, pp.931-939, 2009.
DOI : 10.1038/nature08157

R. Welliver, Review of epidemiology and clinical risk factors for severe respiratory syncytialvirus (RSV) infection, J Pediatr, vol.143, issue.5, 2003.

K. Henrickson, Parainfluenza Viruses, Clinical Microbiology Reviews, vol.16, issue.2, pp.242-64, 2003.
DOI : 10.1128/CMR.16.2.242-264.2003

A. Durbin and R. Karron, Progress in the Development of Respiratory Syncytial Virus and Parainfluenza Virus Vaccines, Clinical Infectious Diseases, vol.37, issue.12, pp.1668-77, 2003.
DOI : 10.1086/379775

N. Cox and K. Subbarao, Global Epidemiology of Influenza: Past and Present, Annual Review of Medicine, vol.51, issue.1, pp.407-428, 2000.
DOI : 10.1146/annurev.med.51.1.407

D. Goldmann, Transmission of viral respiratory infections in the home, The Pediatric Infectious Disease Journal, vol.19, issue.Supplement, pp.97-102, 2000.
DOI : 10.1097/00006454-200010001-00002

S. Ansari, V. Springthorpe, S. Sattar, S. Rivard, and M. Rahman, Potential role of hands in the spread of respiratory viral infections: studies with human parainfluenza virus 3 and rhinovirus 14, J Clin Microbiol, vol.29, pp.2115-2124, 1991.

R. Liu and M. Huza, Filtration and indoor air quality: a practical approach, ASHRAE J, vol.37, p.18, 1995.

B. Mitchell and D. King, Effect of Negative Air Ionization on Airborne Transmission of Newcastle Disease Virus, Avian Diseases, vol.38, issue.4, pp.725-757, 1994.
DOI : 10.2307/1592107

P. Brickner, R. Vincent, M. First, E. Nardell, M. Murray et al., The application of ultraviolet germicidal irradiation to control transmission of airborne disease: bioterrorism countermeasure, Public Health Reports, vol.56, issue.1, pp.99-114, 2002.
DOI : 10.1016/S0033-3549(04)50225-X

C. Guillard, T. Bui, C. Felix, V. Moules, L. B. Lejeune et al., Microbiological disinfection of water and air by photocatalysis, Comptes Rendus Chimie, vol.11, issue.1-2, pp.107-120, 2007.
DOI : 10.1016/j.crci.2007.06.007

URL : https://hal.archives-ouvertes.fr/hal-00474598

M. Paschoalino and W. Jardim, photo-reactor, Indoor Air, vol.181, issue.6, pp.473-482, 2008.
DOI : 10.1111/j.1600-0668.2008.00548.x

T. Heindel, R. Streib, and K. Botzenhart, Effect of ozone on airborne microorganisms, Zentralbl Hyg Umweltmed, vol.194, pp.464-80, 1993.

M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian et al., Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms, International Journal of Pharmaceutics, vol.226, issue.1-2, pp.1-21, 2001.
DOI : 10.1016/S0378-5173(01)00752-9

C. Nelson and T. Berger, Inactivation of microorganisms by oxygen gas plasma, Current Microbiology, vol.18, issue.4, pp.275-281, 1989.
DOI : 10.1007/BF01570305

O. Terrier, G. Cartet, O. Ferraris, F. Morfin, D. Thouvenot et al., Characterization of naturally occurring parainfluenza virus type 2 (hPIV-2) variants, Journal of Clinical Virology, vol.43, issue.1, pp.86-92, 2001.
DOI : 10.1016/j.jcv.2008.05.007

L. Reed and H. Muench, A simple method of estimating fifty percent endpoints, Am J Hygiene, vol.27, pp.493-500, 1938.

S. Yang, G. Lee, C. Chen, C. Wu, and K. Yu, The Size and Concentration of Droplets Generated by Coughing in Human Subjects, Journal of Aerosol Medicine, vol.20, issue.4, pp.484-94, 2007.
DOI : 10.1089/jam.2007.0610

P. Fabian, J. Mcdevitt, W. Dehaan, R. Fung, B. Cowling et al., Influenza Virus in Human Exhaled Breath: An Observational Study, PLoS ONE, vol.45, issue.7, p.2691, 2007.
DOI : 10.1371/journal.pone.0002691.t002

D. Verreault, S. Moineau, and C. Duchaine, Methods for Sampling of Airborne Viruses, Microbiology and Molecular Biology Reviews, vol.72, issue.3, pp.413-457, 2003.
DOI : 10.1128/MMBR.00002-08

M. Jensen, Inactivation of airborne viruses by ultraviolet irradiation, Appl Microbiol, vol.12, pp.418-438, 1964.

J. Hoff, Inactivation of Microbial agents by Chemical Disinfectants. EPA 600 S2- 86 067. Office of Water, 1986.

B. Murray, S. Ohmine, D. Tomer, K. Jensen, F. Johnson et al., Virion disruption by ozone-mediated reactive oxygen species, Journal of Virological Methods, vol.153, issue.1, pp.74-81, 2008.
DOI : 10.1016/j.jviromet.2008.06.004

V. , B. 1. Calder, and L. J. , Structural organization of a filamentous influenza A virus, Proc Natl Acad Sci, vol.107, issue.23, pp.10685-90

S. Gonzalez, T. Zurcher, and J. Ortin, Identification of Two Separate Domains in the Influenza Virus PB1 Protein Involved in the Interaction with the PB2 and PA Subunits: A Model for the Viral RNA Polymerase Structure, Nucleic Acids Research, vol.24, issue.22, pp.24-4456, 1996.
DOI : 10.1093/nar/24.22.4456

T. Toyoda, Molecular Assembly of the Influenza Virus RNA Polymerase: Determination of the Subunit-Subunit Contact Sites, Journal of General Virology, vol.77, issue.9, pp.77-2149, 1996.
DOI : 10.1099/0022-1317-77-9-2149

E. Poole, Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites, Virology, vol.321, issue.1, pp.120-153, 2004.
DOI : 10.1016/j.virol.2003.12.022

F. Tarendeau, Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit, Nature Structural & Molecular Biology, vol.13, issue.3, pp.229-262, 2007.
DOI : 10.1107/S0907444996012255

M. L. Li, P. Rao, and R. M. Krug, The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits, The EMBO Journal, vol.20, issue.8, pp.20-2078, 2001.
DOI : 10.1093/emboj/20.8.2078

N. Naffakh, Host Restriction of Avian Influenza Viruses at the Level of the Ribonucleoproteins, Annual Review of Microbiology, vol.62, issue.1, pp.403-427, 2008.
DOI : 10.1146/annurev.micro.62.081307.162746

R. W. Ruigrok, Towards an atomic resolution understanding of the influenza virus replication machinery, Current Opinion in Structural Biology, vol.20, issue.1, pp.104-117, 2010.
DOI : 10.1016/j.sbi.2009.12.007

S. K. Biswas, P. L. Boutz, and D. P. Nayak, Influenza virus nucleoprotein interacts with influenza virus polymerase proteins, J Virol, issue.7, pp.72-5493, 1998.

E. Obayashi, The structural basis for an essential subunit interaction in influenza virus RNA polymerase Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase, Nature EMBO J, vol.11, issue.720812, pp.454-1127, 2008.

J. J. Sanz-ezquerro, The PA influenza virus polymerase subunit is a phosphorylated protein., Journal of General Virology, vol.79, issue.3, pp.79-471, 1998.
DOI : 10.1099/0022-1317-79-3-471

A. Nieto, Complex structure of the nuclear translocation signal of influenza virus polymerase PA subunit, Journal of General Virology, vol.75, issue.1, pp.75-104, 1994.
DOI : 10.1099/0022-1317-75-1-29

M. Huarte, PA Subunit from Influenza Virus Polymerase Complex Interacts with a Cellular Protein with Homology to a Family of Transcriptional Activators, Journal of Virology, vol.75, issue.18, pp.75-8597, 2001.
DOI : 10.1128/JVI.75.18.8597-8604.2001

A. Dias, The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit, Nature, vol.13, issue.7240, pp.458-914, 2009.
DOI : 10.1038/nature07745

P. Yuan, Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site, Nature, issue.7240, pp.458-909, 2009.

Q. Ye, R. M. Krug, and Y. J. Tao, The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA, Nature, vol.53, issue.7122, pp.444-1078, 2006.
DOI : 10.1038/nature05379

J. Ortega, Ultrastructural and Functional Analyses of Recombinant Influenza Virus Ribonucleoproteins Suggest Dimerization of Nucleoprotein during Virus Amplification, Journal of Virology, vol.74, issue.1, pp.156-63, 2000.
DOI : 10.1128/JVI.74.1.156-163.2000

J. F. Cros, A. Garcia-sastre, and P. Palese, An Unconventional NLS is Critical for the Nuclear Import of the Influenza A Virus Nucleoprotein and Ribonucleoprotein, Traffic, vol.63, issue.1, pp.205-218, 2005.
DOI : 10.1111/j.1600-0854.2005.00263.x

F. Weber, A classical bipartite nuclear localization signal on Thogoto and influenza A virus nucleoproteins The influenza virus nucleoprotein: a multifunctional RNAbinding protein pivotal to virus replication, Virology J Gen Virol, vol.250, issue.21, pp.9-18, 1998.

M. T. Lee, Definition of the minimal viral components required for the initiation of unprimed RNA synthesis by influenza virus RNA polymerase, Nucleic Acids Research, vol.30, issue.2, pp.429-467, 2002.
DOI : 10.1093/nar/30.2.429

L. S. Tiley, Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5' ends of the viral RNAs, J Virol, issue.8, pp.68-5108, 1994.

M. T. Hsu, Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle Promoter elements in the influenza vRNA terminal structure Interaction of influenza virus polymerase with viral RNA in the 'corkscrew' conformation, Proc Natl Acad Sci U S A RNA J Gen Virol, vol.84, issue.26, pp.1046-57, 1987.

D. C. Wiley, J. J. Watowich, S. J. , J. J. Skehel, and D. C. Wiley, Crystallization and x-ray diffraction studies on the haemagglutinin glycoprotein from the membrane of influenza virus Crystal structures of influenza virus hemagglutinin in complex with high-affinity receptor analogs, J Mol Biol Structure, vol.112, issue.28 28, pp.343-350, 1977.

H. Kido, Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium Lina, Mutations of neuraminidase implicated in neuraminidase inhibitors resistance, J Biol Chem J Virol J Clin Virol, vol.267, issue.221, pp.78-119, 1992.

H. Akarsu, Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2), The EMBO Journal, vol.22, issue.18, pp.4646-55, 1992.
DOI : 10.1093/emboj/cdg449

P. Gomez-puertas, Influenza virus matrix protein is the major driving force in virus budding Influenza virus morphogenesis and budding, J Virol Virus Res, vol.74, issue.242, pp.11538-11585, 2000.

K. Watanabe, Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein Identification of a second protein (M2) encoded by RNA segment 7 of influenza virus The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR, J Virol Virology Biochemistry, vol.70, issue.3844, pp.241-248, 1981.

J. R. Schnell and J. J. Chou, Structure and mechanism of the M2 proton channel of influenza A virus, Nature, vol.45, issue.7178, pp.451-591, 2008.
DOI : 10.1038/nature06531

F. Ciampor, Evidence that the amantadine-induced, M2-mediated conversion of influenza A virus hemagglutinin to the low pH conformation occurs in an acidic trans golgi compartment, Virology, vol.188, issue.1, pp.14-24, 1992.
DOI : 10.1016/0042-6822(92)90730-D

B. J. Chen, The Influenza Virus M2 Protein Cytoplasmic Tail Interacts with the M1 Protein and Influences Virus Assembly at the Site of Virus Budding, Journal of Virology, vol.82, issue.20, pp.82-10059, 2008.
DOI : 10.1128/JVI.01184-08

A. L. Stouffer, Structural basis for the function and inhibition of an influenza virus proton channel Mutation analysis of a recombinant NS replicon shows that influenza virus NS1 protein blocks the splicing and nucleo-cytoplasmic transport of its own viral mRNA, Nature Garaigorta, U. and J. Ortin Nucleic Acids Res, vol.43, issue.717814, pp.451-596, 2007.

C. M. Newby, L. Sabin, and A. Pekosz, The RNA binding domain of influenza A virus NS1 protein affects secretion of tumor necrosis factor alpha, interleukin-6, and interferon in primary murine tracheal epithelial cells, J Virol, issue.17, pp.81-9469, 2007.

S. Ludwig, Phylogenetic relationship of the nonstructural (NS) genes of influenza A viruses, Virology, vol.183, issue.2, pp.566-77, 1991.
DOI : 10.1016/0042-6822(91)90985-K

R. E. Randall and S. Goodbourn, Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures, Journal of General Virology, vol.89, issue.1, pp.89-90, 2008.
DOI : 10.1099/vir.0.83391-0

Z. Chen, Y. Li, and R. M. Krug, Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3'-end processing machinery, The EMBO Journal, vol.18, issue.8, pp.2273-83, 1999.
DOI : 10.1093/emboj/18.8.2273

S. Li, Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA, Virology, vol.349, issue.1, pp.13-21, 2006.
DOI : 10.1016/j.virol.2006.01.005

J. Y. Min, R. M. Krug-bullido, and R. , The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo (A) synthetase/RNase L pathway, Proceedings of the National Academy of Sciences, vol.103, issue.18, pp.7100-7105, 2001.
DOI : 10.1073/pnas.0602184103

W. Chen, A novel influenza A virus mitochondrial protein that induces cell death, Nat Med, issue.712, pp.1306-1318, 2001.

D. Zamarin, Influenza Virus PB1-F2 Protein Induces Cell Death through Mitochondrial ANT3 and VDAC1, PLoS Pathogens, vol.14, issue.1, pp.4-53, 2003.
DOI : 0890-9369(2000)014[2060:TAMDLO]2.0.CO;2

J. R. Coleman, The PB1-F2 protein of Influenza A virus: increasing pathogenicity by disrupting alveolar macrophages, Virol J, issue.4, p.9, 2007.

S. Sethi, Bacterial pneumonia Managing a deadly complication of influenza in older adults with comorbid disease, Geriatrics, vol.57, issue.3, pp.56-61, 2002.

H. M. Wise, A Complicated Message: Identification of a Novel PB1-Related Protein Translated from Influenza A Virus Segment 2 mRNA, Journal of Virology, vol.83, issue.16, pp.83-8021, 2009.
DOI : 10.1128/JVI.00826-09

T. A. Gottlieb, Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells, The Journal of Cell Biology, vol.120, issue.3, pp.695-710, 1993.
DOI : 10.1083/jcb.120.3.695

R. Wagner, M. Matrosovich, and H. D. Klenk, Functional balance between haemagglutinin and neuraminidase in influenza virus infections, Reviews in Medical Virology, vol.146, issue.3, pp.159-66, 2002.
DOI : 10.1002/rmv.352

S. B. Sieczkarski and G. R. Whittaker, Influenza Virus Can Enter and Infect Cells in the Absence of Clathrin-Mediated Endocytosis, Journal of Virology, vol.76, issue.20, pp.76-10455, 2002.
DOI : 10.1128/JVI.76.20.10455-10464.2002

J. J. Skehel, D. C. Wiley-plotch, and S. J. , Receptor Binding and Membrane Fusion in Virus Entry: The Influenza Hemagglutinin, Annual Review of Biochemistry, vol.69, issue.1, pp.531-69, 1981.
DOI : 10.1146/annurev.biochem.69.1.531

O. G. Engelhardt, M. Smith, and E. Fodor, Association of the influenza A virus RNAdependent RNA polymerase with cellular RNA polymerase II, J Virol, issue.9, pp.79-5812, 2005.

L. L. Poon, Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template, J Virol, vol.73, issue.4, pp.3473-3479, 1999.

L. L. Newcomb, Interaction of the Influenza A Virus Nucleocapsid Protein with the Viral RNA Polymerase Potentiates Unprimed Viral RNA Replication, Journal of Virology, vol.83, issue.1, pp.29-36, 2009.
DOI : 10.1128/JVI.02293-07

M. Huarte, Threonine 157 of Influenza Virus PA Polymerase Subunit Modulates RNA Replication in Infectious Viruses, Journal of Virology, vol.77, issue.10, pp.77-6007, 2003.
DOI : 10.1128/JVI.77.10.6007-6013.2003

I. Mazur, The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein, Cellular Microbiology, vol.12, issue.11, pp.1140-52, 2008.
DOI : 10.1128/JVI.76.4.1617-1625.2002

J. Y. Min, A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis, Virology, vol.363, issue.1, pp.236-279, 2007.
DOI : 10.1016/j.virol.2007.01.038

F. Momose, Cellular Splicing Factor RAF-2p48/NPI-5/BAT1/UAP56 Interacts with the Influenza Virus Nucleoprotein and Enhances Viral RNA Synthesis, Journal of Virology, vol.75, issue.4, pp.1899-908, 2001.
DOI : 10.1128/JVI.75.4.1899-1908.2001

O. G. Engelhardt and E. Fodor, Functional association between viral and cellular transcription during influenza virus infection, Reviews in Medical Virology, vol.80, issue.5, pp.329-374, 2006.
DOI : 10.1002/rmv.512

N. Kumar, NF-??B Signaling Differentially Regulates Influenza Virus RNA Synthesis, Journal of Virology, vol.82, issue.20, pp.9880-9889, 2008.
DOI : 10.1128/JVI.00909-08

M. Bui, G. Whittaker, and A. Helenius, Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins, J Virol, issue.12, pp.70-8391, 1996.

P. Digard, Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments, J Virol, vol.73, issue.3, pp.2222-2253, 1999.

D. Elton, Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway Analysis of the transmembrane domain of influenza virus neuraminidase, a type II transmembrane glycoprotein, for apical sorting and raft association Assembly and budding of influenza virus, J Virol J Virol Virus Res, vol.75, issue.1062, pp.408-427, 2000.

F. Baudin, In Vitro Dissection of the Membrane and RNP Binding Activities of Influenza Virus M1 Protein, Virology, vol.281, issue.1, pp.102-110, 2001.
DOI : 10.1006/viro.2000.0804

S. L. Noton, Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions, Journal of General Virology, vol.88, issue.8, pp.88-2280, 2007.
DOI : 10.1099/vir.0.82809-0

M. Carrasco, M. J. Amorim, and P. Digard, Lipid Raft-Dependent Targeting of the Influenza A Virus Nucleoprotein to the Apical Plasma Membrane, Traffic, vol.74, issue.8, pp.979-92, 2004.
DOI : 10.1111/j.1600-0854.2004.00237.x

B. J. Chen, Influenza Virus Hemagglutinin and Neuraminidase, but Not the Matrix Protein, Are Required for Assembly and Budding of Plasmid-Derived Virus-Like Particles, Journal of Virology, vol.81, issue.13, pp.81-7111, 2007.
DOI : 10.1128/JVI.00361-07

B. Schweiger, L. Bruns, and K. Meixenberger, Reassortment between human A(H3N2) viruses is an important evolutionary mechanism, Vaccine, vol.24, issue.44-46, pp.44-46, 2006.
DOI : 10.1016/j.vaccine.2006.05.105

N. N. Zhou, Genetic reassortment of avian, swine, and human influenza A viruses in American pigs, J Virol, issue.10, pp.73-8851, 1999.

C. P. Octaviani, Reassortment between seasonal and swine-origin H1N1 influenza viruses generates viruses with enhanced growth capability in cell culture Re-assorted pandemic (H1N1) 2009 influenza A virus discovered from pigs in Germany Emergence of novel reassortant H3N2 influenza viruses among ducks in China A single amino acid in the PB2 gene of influenza A virus is a determinant of host range, Virus Res J Gen Virol Arch Virol J Virol, vol.84, issue.674, pp.1761-1765, 1993.

M. Hatta, Molecular Basis for High Virulence of Hong Kong H5N1 Influenza A Viruses, Science, vol.293, issue.5536, pp.1840-1842, 2001.
DOI : 10.1126/science.1062882

P. Massin, S. Van-der-werf, and N. Naffakh, Residue 627 of PB2 Is a Determinant of Cold Sensitivity in RNA Replication of Avian Influenza Viruses, Journal of Virology, vol.75, issue.11, pp.75-5398, 2001.
DOI : 10.1128/JVI.75.11.5398-5404.2001

C. Li, Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence, Proceedings of the National Academy of Sciences, vol.107, issue.10, pp.4687-92
DOI : 10.1073/pnas.0912807107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842136

J. K. Taubenberger, Initial genetic characterization of theSpanish" influenza virus Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus, Science Nature, issue.53077125, pp.275-1793, 1918.

D. M. Morens, J. K. Taubenberger, and A. S. Fauci, Predominant Role of Bacterial Pneumonia as a Cause of Death in Pandemic Influenza: Implications for Pandemic Influenza Preparedness, The Journal of Infectious Diseases, vol.198, issue.7, pp.198-962, 2008.
DOI : 10.1086/591708

P. J. Collins, Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants, Nature, vol.60, issue.7199, pp.1258-61, 2008.
DOI : 10.1038/nature06956

M. Enami, An influenza virus containing nine different RNA segments, Virology, vol.185, issue.1, pp.291-299, 1991.
DOI : 10.1016/0042-6822(91)90776-8

C. T. Bancroft and T. G. Parslow, Evidence for Segment-Nonspecific Packaging of the Influenza A Virus Genome, Journal of Virology, vol.76, issue.14, pp.76-7133, 2002.
DOI : 10.1128/JVI.76.14.7133-7139.2002

E. C. Hutchinson, Mutational analysis of cis-acting RNA signals in segment 7 of influenza A virus Influenza virus genome consists of eight distinct RNA species Architecture of ribonucleoprotein complexes in influenza A virus particles, J Virol Proc Natl Acad Sci U S A Nature, vol.82, issue.7397075, pp.11869-79, 1976.

V. Moules, In vitro characterization of naturally occurring influenza H3NA??? viruses lacking the NA gene segment: Toward a new mechanism of viral resistance?, Virology, vol.404, issue.2, pp.215-239, 2010.
DOI : 10.1016/j.virol.2010.04.030

URL : https://hal.archives-ouvertes.fr/hal-00504751

Y. Fujii, Selective incorporation of influenza virus RNA segments into virions, Proceedings of the National Academy of Sciences, vol.100, issue.4, pp.2002-2009, 2003.
DOI : 10.1073/pnas.0437772100

T. Watanabe, Exploitation of Nucleic Acid Packaging Signals To Generate a Novel Influenza Virus-Based Vector Stably Expressing Two Foreign Genes, Journal of Virology, vol.77, issue.19, pp.77-10575, 2003.
DOI : 10.1128/JVI.77.19.10575-10583.2003

Y. Liang, Y. Hong, and T. G. Parslow, cis-Acting Packaging Signals in the Influenza Virus PB1, PB2, and PA Genomic RNA Segments, Journal of Virology, vol.79, issue.16, pp.79-10348, 2005.
DOI : 10.1128/JVI.79.16.10348-10355.2005

K. Fujii, Importance of both the Coding and the Segment-Specific Noncoding Regions of the Influenza A Virus NS Segment for Its Efficient Incorporation into Virions, Journal of Virology, vol.79, issue.6, pp.79-3766, 2005.
DOI : 10.1128/JVI.79.6.3766-3774.2005

Y. Muramoto, T. Noda, and Y. Kawaoka, [Selective packaging mechanism for influenza A virus], Tanpakushitsu Kakusan Koso, issue.11, pp.51-1596, 2006.

G. A. Marsh, R. Hatami, and P. Palese, Specific Residues of the Influenza A Virus Hemagglutinin Viral RNA Are Important for Efficient Packaging into Budding Virions, Journal of Virology, vol.81, issue.18, pp.81-9727, 2007.
DOI : 10.1128/JVI.01144-07

M. Ozawa, Contributions of Two Nuclear Localization Signals of Influenza A Virus Nucleoprotein to Viral Replication, Journal of Virology, vol.81, issue.1, pp.30-41, 2007.
DOI : 10.1128/JVI.01434-06

M. Ozawa, Nucleotide Sequence Requirements at the 5' End of the Influenza A Virus M RNA Segment for Efficient Virus Replication, Journal of Virology, vol.83, issue.7, pp.83-3384, 2009.
DOI : 10.1128/JVI.02513-08

J. R. Gog, Codon conservation in the influenza A virus genome defines RNA packaging signals, Nucleic Acids Research, vol.35, issue.6, pp.1897-907, 2007.
DOI : 10.1093/nar/gkm087

Y. Liang, Mutational Analyses of Packaging Signals in Influenza Virus PA, PB1, and PB2 Genomic RNA Segments, Journal of Virology, vol.82, issue.1, pp.229-265, 2008.
DOI : 10.1128/JVI.01541-07

G. A. Marsh, Highly Conserved Regions of Influenza A Virus Polymerase Gene Segments Are Critical for Efficient Viral RNA Packaging, Journal of Virology, vol.82, issue.5, pp.2295-304, 2008.
DOI : 10.1128/JVI.02267-07

Y. Fujii, [The enigma of influenza virus genome packaging revealed], Tanpakushitsu Kakusan Koso, issue.10, pp.48-1357, 2003.

K. Fujii, Incorporation of influenza A virus genome segments does not absolutely require wild-type sequences, Journal of General Virology, vol.90, issue.7, pp.90-1734, 2009.
DOI : 10.1099/vir.0.010355-0

M. I. Nelson, Multiple Reassortment Events in the Evolutionary History of H1N1 Influenza A Virus Since 1918, PLoS Pathogens, vol.14, issue.2, p.1000012, 2008.
DOI : 10.1371/journal.ppat.1000012.s001

V. Deyde, Genomic events underlying the changes in adamantane resistance among influenza A(H3N2) viruses during 2006-2008, Influenza and Other Respiratory Viruses, vol.77, issue.Suppl B, pp.297-314, 2009.
DOI : 10.1111/j.1750-2659.2009.00103.x

Y. Furuse, Reversion of Influenza A (H3N2) Virus from Amantadine Resistant to Amantadine Sensitive by Further Reassortment in Japan during the 2006-to-2007 Influenza Season, Journal of Clinical Microbiology, vol.47, issue.3, pp.47-841, 2009.
DOI : 10.1128/JCM.01622-08

T. Ito, Molecular basis for the generation in pigs of influenza A viruses with pandemic potential, J Virol, vol.72, issue.9, pp.7367-73, 1998.

A. Moreno, Novel swine influenza virus subtype H3N1 in Italy, Veterinary Microbiology, vol.138, issue.3-4, pp.3-4, 2009.
DOI : 10.1016/j.vetmic.2009.04.007

URL : https://hal.archives-ouvertes.fr/hal-00514608

H. Yu, Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China, Biochemical and Biophysical Research Communications, vol.386, issue.2, pp.278-83, 2009.
DOI : 10.1016/j.bbrc.2009.05.056

H. M. Yassine, Characterization of triple reassortant H1N1 influenza A viruses from swine in Ohio, Veterinary Microbiology, vol.139, issue.1-2, pp.132-141, 2009.
DOI : 10.1016/j.vetmic.2009.04.028

N. Naffakh and S. Van-der-werf, an outbreak of swine-origin influenza A(H1N1) virus with evidence for human-to-human transmission, Microbes Infect, pp.11-19, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00457557

N. N. Zhou, Emergence of H3N2 reassortant influenza A viruses in North American pigs, Veterinary Microbiology, vol.74, issue.1-2, pp.47-58, 2000.
DOI : 10.1016/S0378-1135(00)00165-6

R. B. Belshe, The Origins of Pandemic Influenza ??? Lessons from the 1918 Virus, New England Journal of Medicine, vol.353, issue.21, pp.2209-2220, 2005.
DOI : 10.1056/NEJMp058281

C. Pappas, Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus, Proceedings of the National Academy of Sciences, vol.105, issue.8, pp.105-3064, 2008.
DOI : 10.1073/pnas.0711815105

Y. Itoh, In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses, Nature, vol.79, issue.7258, pp.460-1021, 2009.
DOI : 10.1038/nature08260

S. Munier, Transmission inter-esp??ces, adaptation ?? l???homme et pathog??nicit?? des virus influenza d???origine animale, Pathologie Biologie, vol.58, issue.2, pp.59-68, 2010.
DOI : 10.1016/j.patbio.2010.01.012

S. Jackson, Reassortment between Avian H5N1 and Human H3N2 Influenza Viruses in Ferrets: a Public Health Risk Assessment, Journal of Virology, vol.83, issue.16, pp.83-8131, 2009.
DOI : 10.1128/JVI.00534-09

M. Ottmann, Novel influenza A(H1N1) 2009 in vitro reassortant viruses with oseltamivir resistance, Antiviral Therapy, vol.15, issue.5, pp.721-727, 2010.
DOI : 10.3851/IMP1576

C. P. Octaviani, High Level of Genetic Compatibility between Swine-Origin H1N1 and Highly Pathogenic Avian H5N1 Influenza Viruses, Journal of Virology, vol.84, issue.20, pp.84-10918, 2010.
DOI : 10.1128/JVI.01140-10

Q. Gao and P. Palese, Rewiring the RNAs of influenza virus to prevent reassortment, Proceedings of the National Academy of Sciences, vol.106, issue.37, pp.15891-15897, 2009.
DOI : 10.1073/pnas.0908897106

C. Li, Compatibility among Polymerase Subunit Proteins Is a Restricting Factor in Reassortment between Equine H7N7 and Human H3N2 Influenza Viruses, Journal of Virology, vol.82, issue.23, pp.82-11880, 2008.
DOI : 10.1128/JVI.01445-08

L. M. Chen, Genetic Compatibility and Virulence of Reassortants Derived from Contemporary Avian H5N1 and Human H3N2 Influenza A Viruses, PLoS Pathogens, vol.80, issue.5, p.1000072, 2008.
DOI : 10.1371/journal.ppat.1000072.g005

T. Noda and Y. Kawaoka, Structure of influenza virus ribonucleoprotein complexes and their packaging into virions, Reviews in Medical Virology, vol.196, issue.6, pp.380-91, 2010.
DOI : 10.1002/rmv.666

F. Baudin, Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent, EMBO J, issue.13, pp.13-3158, 1994.

J. F. Regan, Y. Liang, and T. G. Parslow, Defective Assembly of Influenza A Virus due to a Mutation in the Polymerase Subunit PA, Journal of Virology, vol.80, issue.1, pp.252-61, 2006.
DOI : 10.1128/JVI.80.1.252-261.2006

E. Hoffmann, A DNA transfection system for generation of influenza A virus from eight plasmids, Proceedings of the National Academy of Sciences, vol.97, issue.11, pp.97-6108, 2000.
DOI : 10.1073/pnas.100133697