V. K. Agarwal and D. C. Larson, Calculation of the top loss coefficient of a flat-plate collector, Solar Energy, vol.27, issue.1, pp.69-71, 1981.
DOI : 10.1016/0038-092X(81)90022-0

E. H. Amer and J. K. Nayak, A new dynamic method for testing solar flat-plate collectors under variable weather, Energy Conversion and Management, vol.40, issue.8, 1998.
DOI : 10.1016/S0196-8904(98)00145-9

A. and E. Guide, American Society of Heating, Refrigerating, and Air Conditioning Engineers, Atlanta, 1983.

F. Assilzadeh and S. A. Kalogirou, Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors, Renewable Energy, vol.30, issue.8, pp.1143-1159, 2005.
DOI : 10.1016/j.renene.2004.09.017

I. Atmaca and A. Yigit, Simulation of solar-powered absorption cooling system, Renewable Energy, vol.28, issue.8, pp.1277-1293, 2003.
DOI : 10.1016/S0960-1481(02)00252-5

V. Badescu, MODEL FOR A SOLAR-ASSISTED CLIMATIZATION SYSTEM, Energy, vol.23, issue.9, pp.753-766, 1998.
DOI : 10.1016/S0360-5442(98)00023-1

V. Badescu, Optimal operation of thermal energy storage units based on stratified and fully mixed water tanks, Applied Thermal Engineering, vol.24, issue.14-15, pp.2101-2116, 2004.
DOI : 10.1016/j.applthermaleng.2004.02.009

C. A. Balaras and G. Grossman, Solar air conditioning in Europe???an overview, Renewable and Sustainable Energy Reviews, vol.11, issue.2, pp.299-314, 2007.
DOI : 10.1016/j.rser.2005.02.003

A. Bastide and P. Lauret, Building energy efficiency and thermal comfort in tropical climates, Energy and Buildings, vol.38, issue.9, pp.1093-1103, 2006.
DOI : 10.1016/j.enbuild.2005.12.005

A. Bejan, Entropy Generation Minimization, 1996.
DOI : 10.1002/9781119245964.ch11

A. Bejan and G. Tsatsaronis, Thermal design and optimization, 1996.

B. Li and A. G. Alleyne, A dynamic model of a vapor compression cycle with shut-down and start-up operations, International Journal of Refrigeration, vol.33, issue.3, pp.538-552, 2010.
DOI : 10.1016/j.ijrefrig.2009.09.011

C. Bongs and A. Dalibard, Simulation Tools for Solar Cooling Systems ??? Comparison for a Virtual Chilled Water System, Proceedings of the EuroSun 2010 Conference, 2010.
DOI : 10.18086/eurosun.2010.10.05

URL : https://hal.archives-ouvertes.fr/hal-00918991

A. Boubakri and M. Arsalane, Experimental study of adsorptive solar-powered ice makers in Agadir (Morocco)???1. Performance in actual site, Renewable Energy, vol.2, issue.1, pp.7-13, 1992.
DOI : 10.1016/0960-1481(92)90054-7

A. Boubakri and M. Arsalane, Experimental study of adsorptive solar-powered ice makers in Agadir (Morocco)???2. Influences of meteorological parameters, Renewable Energy, vol.2, issue.1, pp.15-21, 1992.
DOI : 10.1016/0960-1481(92)90055-8

P. Bourdoukan, Etude numérique et expérimentale destinée à l'exploitation des techniques de rafraîchissement par dessiccation avec régénération solaire, 2008.

P. Bourdoukan and E. Wurtz, Experimental investigation of a solar desiccant cooling installation, Solar Energy, vol.83, issue.11, pp.2059-2073, 2009.
DOI : 10.1016/j.solener.2009.08.005

URL : https://hal.archives-ouvertes.fr/hal-00534024

P. Bourdoukan and E. Wurtz, Potential of solar heat pipe vacuum collectors in the desiccant cooling process: Modelling and experimental results, Solar Energy, vol.82, issue.12, pp.1209-1219, 2008.
DOI : 10.1016/j.solener.2008.06.003

URL : https://hal.archives-ouvertes.fr/hal-00533660

J. E. Braun, Methodologies for the Design and Control of Chilled Water Systems, 1988.

F. Buchter and P. Dind, An experimental solar-powered adsorptive refrigerator tested in Burkina-Faso, International Journal of Refrigeration, vol.26, issue.1, pp.79-86, 2003.
DOI : 10.1016/S0140-7007(02)00018-X

J. Cadafalch, A detailed numerical model for flat-plate solar thermal devices, Solar Energy, vol.83, issue.12, pp.2157-2164, 2009.
DOI : 10.1016/j.solener.2009.08.013

J. Castaing-lasvignottes, Aspects thermodynamiques et technico-économiques des sytèmes à absorption liquide, 2001.

J. Castaing-lasvignottes and O. Marc, Modélisation et simulation dynamique d'une machine frigorifique à absorption H2O/LiBr : Application Solaire, COFRET. Nantes, 2008.

J. Castaing-lasvignottes and P. Neveu, Equivalent Carnot cycle concept applied to a thermochemical solid/gas resorption system, Applied Thermal Engineering, vol.18, issue.9-10, pp.9-10, 1998.
DOI : 10.1016/S1359-4311(97)00103-8

J. Castro and A. Oliva, Modelling of the heat exchangers of a small capacity, hot water driven, air-cooled H2O???LiBr absorption cooling machine, International Journal of Refrigeration, vol.31, issue.1, 2008.
DOI : 10.1016/j.ijrefrig.2007.05.019

N. Chekir and K. Mejbri, Simulation d'une machine frigorifique ?? absorption fonctionnant avec des m??langes d'alcanes, International Journal of Refrigeration, vol.29, issue.3, pp.469-475, 2006.
DOI : 10.1016/j.ijrefrig.2005.09.016

B. Chen and H. J. Chen, The effect of Trombe wall on indoor humid climate in Dalian, China, Renewable Energy, vol.31, issue.3, pp.333-343, 2006.
DOI : 10.1016/j.renene.2005.04.013

A. Cherif and A. Dhouib, Dynamic modelling and simulation of a photovoltaic refrigeration plant, Renewable Energy, vol.26, issue.1, pp.143-153, 2002.
DOI : 10.1016/S0960-1481(01)00107-0

S. Deng, Experimental studies on the characteristics of an absorber using LiBr/H2O solution as working fluid, International Journal of Refrigeration, vol.22, issue.4, 1998.
DOI : 10.1016/S0140-7007(98)00067-X

R. M. Diguilio and R. J. Lee, Properties of Lithium Bromide-Water Solutions at High Temperatures and Concentrations -I Thermal Conductivity, ASHRAE Transactions Paper, vol.3380, issue.527, pp.702-708, 1990.

J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Process, Second Edition, 1991.

U. Eicker and D. Pietruschka, Design and performance of solar powered absorption cooling systems in office buildings, Energy and Buildings, vol.41, issue.1, pp.81-91, 2008.
DOI : 10.1016/j.enbuild.2008.07.015

S. O. Enibe, Solar refrigeration for rural applications, Renewable Energy, vol.12, issue.2, pp.157-167, 1997.
DOI : 10.1016/S0960-1481(97)00036-0

A. H. Fanney and B. P. Dougherty, Measured Performance of Building Integrated Photovoltaic Panels, Journal of Solar Energy Engineering, vol.123, issue.3, pp.187-193, 2001.
DOI : 10.1115/1.1385824

G. A. Florides and S. A. Kalogirou, Design and construction of a LiBr???water absorption machine, Energy Conversion and Management, vol.44, issue.15, pp.2483-2508, 2003.
DOI : 10.1016/S0196-8904(03)00006-2

G. Casals and X. , Solar absorption cooling in Spain: Perspectives and outcomes from the simulation of recent installations, Renewable Energy, vol.31, issue.9, pp.1371-1389, 2006.
DOI : 10.1016/j.renene.2005.07.002

J. R. García-cascales, F. Vera, and . García, Modelling an absorption system assisted by solar energy, Applied Thermal Engineering, vol.31, issue.1, 2010.
DOI : 10.1016/j.applthermaleng.2010.08.025

F. Garde and A. Bastide, Improvment of the building design and indoor conditions in the mid-highlands of the French tropical island of La Réunion. Application to a a green building high school " Le Tampon Trois Mares, 2007.

F. Garde and H. Boyer, Elaboration of global quality standards for natural and low energy cooling in French tropical island buildings, Building and Environment, vol.34, issue.1, pp.71-84, 1999.
DOI : 10.1016/S0360-1323(97)00071-1

URL : https://hal.archives-ouvertes.fr/hal-00765772

S. Garimella and R. N. Christensen, Performance evaluation of a generator-absorber heatexchange heat pump, pp.591-604, 1996.

S. Gibout and J. Castaing-lasvignottes, Modélisation en régime variable d'une machine frigorifique à absorption pour une application solaire, 2005.

K. Gommed and G. Grossman, Experimental investigation of a liquid desiccant system for solar cooling and dehumidification, Solar Energy, vol.81, issue.1, pp.131-138, 2007.
DOI : 10.1016/j.solener.2006.05.006

G. Grossman, Solar-powered systems for cooling, dehumidification and air-conditioning, Solar Energy, vol.72, issue.1, 2002.

M. Hammad and S. Habali, Design and performance study of a solar energy powered vaccine cabinet, Applied Thermal Engineering, vol.20, issue.18, pp.1785-1798, 2000.
DOI : 10.1016/S1359-4311(99)00099-X

H. Henning, Task 38 -Solar Air-Conditioning and Refrigeration, 2006.

H. M. Henning, Solar assisted air conditioning of buildings ??? an overview, Applied Thermal Engineering, vol.27, issue.10, pp.1734-1749, 2007.
DOI : 10.1016/j.applthermaleng.2006.07.021

C. Hildbrand and P. Dind, A new solar powered adsorption refrigerator with high performance, Solar Energy, vol.77, issue.3, pp.311-318, 2004.
DOI : 10.1016/j.solener.2004.05.007

K. G. Hollands and M. F. Lightstone, A review of low-flow, stratified-tank solar water heating systems, Solar Energy, vol.43, issue.2, pp.97-105, 1989.
DOI : 10.1016/0038-092X(89)90151-5

W. Hyland, Formulations for the Thermodynamic Properties of the Saturated Phases of H2O from 173.15 K to 473.15 K, ASHRAE Trans. Part, vol.2, 1983.

D. Incropera and L. Bergman, Fundamentals of Heat and Mass Transfer, p.514, 2006.

S. Istria and J. Castaing-lasvignottes, Energetic analysis, application field and performance of a new thermochemical sorption cycle: The multisalt system, Applied Thermal Engineering, vol.16, issue.11, pp.875-889, 1996.
DOI : 10.1016/1359-4311(96)00007-5

S. Janjai and P. Tung, Performance of a solar dryer using hot air from roof-integrated solar collectors for drying herbs and spices, Renewable Energy, vol.30, issue.14, pp.2085-2095, 2005.
DOI : 10.1016/j.renene.2005.02.006

S. A. Kalogirou, Solar thermal collectors and applications, Progress in Energy and Combustion Science, vol.30, issue.3, pp.231-295, 2004.
DOI : 10.1016/j.pecs.2004.02.001

S. A. Kalogirou, Prediction of flat-plate collector performance parameters using artificial neural networks, Solar Energy, vol.80, issue.3, 2005.
DOI : 10.1016/j.solener.2005.03.003

M. Khoukhi and S. Maruyama, Theoretical approach of a flat plate solar collector with clear and low-iron glass covers taking into account the spectral absorption and emission within glass covers layer, Renewable Energy, vol.30, issue.8, pp.1177-1194, 2004.
DOI : 10.1016/j.renene.2004.09.014

M. Kilic and O. Kaynakli, Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system, Energy, vol.32, issue.8, pp.1505-1512, 2007.
DOI : 10.1016/j.energy.2006.09.003

D. S. Kim and C. A. Ferreira, Solar refrigeration options ??? a state-of-the-art review, International Journal of Refrigeration, vol.31, issue.1, pp.3-15, 2008.
DOI : 10.1016/j.ijrefrig.2007.07.011

S. A. Klein, E. M. Kleinbach, and W. A. Beckman, A Design Procedure for Solar Heating Systems University of Wisconsin- MadisonPerformance study of one-dimensional models for stratified thermal storage tanks, Ph.D. Solar Energy, vol.50, issue.2, pp.155-166, 1976.

P. Kohlenbach and F. Ziegler, A dynamic simulation model for transient absorption chiller performance. Part I: The model, International Journal of Refrigeration, vol.31, issue.2, pp.217-225, 2008.
DOI : 10.1016/j.ijrefrig.2007.06.009

P. Kohlenbach and F. Ziegler, A dynamic simulation model for transient absorption chiller performance. Part II: Numerical results and experimental verification, International Journal of Refrigeration, vol.31, issue.2, pp.226-233, 2008.
DOI : 10.1016/j.ijrefrig.2007.06.010

T. Kotas, The exergy method of thermal plant analysis, 1995.

T. Kreuzinger and M. Bitzera, State estimation of a stratified storage tank, Control Engineering Practice, vol.16, issue.3, pp.308-320, 2008.
DOI : 10.1016/j.conengprac.2007.04.013

Z. Lavan and J. Thompson, Experimental study of thermally stratified hot water storage tanks, Solar Energy, vol.19, issue.5, pp.519-524, 1977.
DOI : 10.1016/0038-092X(77)90108-6

A. Lecuona and R. Ventas, Optimum hot water temperature for absorption solar cooling, Solar Energy, vol.83, issue.10, pp.1806-1814, 2009.
DOI : 10.1016/j.solener.2009.06.016

F. Lemmini and J. Buret-bahraoui, Simulation des performances d'un r??frig??rateur solaire ?? adsorption: 1. comparaison des performances pour deux types de charbon actif, International Journal of Refrigeration, vol.15, issue.3, pp.159-167, 1992.
DOI : 10.1016/0140-7007(92)90006-G

F. Lemmini and J. Buret-bahraoui, Simulation des performances d'un r??frig??rateur solaire ?? adsorption: 2. Fonctionnement avec stockage de froid dans deux climats diff??rents, International Journal of Refrigeration, vol.15, issue.3, pp.168-176, 1992.
DOI : 10.1016/0140-7007(92)90007-H

Z. F. Li and K. Sumathy, Performance study of a partitioned thermally stratified storage tank in a solar powered absorption air conditioning system, Applied Thermal Engineering, vol.22, issue.11, pp.1207-1216, 2002.
DOI : 10.1016/S1359-4311(02)00048-0

F. Lucas, Développement et validation de modèles thermo-hydriques dans les bâtiments ; Influence de la condensation et des systèmes de traitement d'air couplés aux bâtiments, 2001.

F. Lucas, Contribution à l'étude de technologies et de méthodes durables pour la conception des bâtiments en climat tropical, 2009.

F. Lucas and F. Boudehenn, ORASOL: a French research program for solar cooling process optimization, 1st International Conference on Solar Heating, Cooling and Buildings, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00919731

W. B. Ma and S. M. Deng, Theoretical analysis of low-temperature hot source driven two-stage LiBr/H2O absorption refrigeration system, International Journal of Refrigeration, vol.19, issue.2, 1996.
DOI : 10.1016/0140-7007(95)00054-2

O. Marc and G. Danet, Modélisation et éléments de validation expérimentale d'une installation de rafraîchissement solaire couplée au bâtiment sous l'environnement EnergyPlus. IBPSA Moret-sur, 2010.

O. Marc and F. Lucas, Modélisation simplifiée et éléments de validation expérimentale d'une installation de rafraîchissement solaire par absorption en climat tropical, 2008.

O. Marc and F. Lucas, Simplified modelling and experimental validation elements of a solar cooling system operating with a H2O/LiBr absorption chiller in tropical climate, Eurosun : 1st International Conference on Solar Heating, Cooling and Buildings, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00919733

O. Marc and F. Lucas, Experimental investigation of a solar cooling absorption system operating without any backup system under tropical climate, Energy and Buildings, vol.42, issue.6, pp.774-782, 2010.
DOI : 10.1016/j.enbuild.2009.12.006

URL : https://hal.archives-ouvertes.fr/hal-00918997

O. Marc and E. Monceyron, Monitoring, analysis and improvements of a solar cooling absorption system under a tropical climate, Clima : 10th REHVA World Congress "Sustainable Energy Use in Buildings, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00918998

O. Marc and J. Praene, Modeling and experimental validation of the solar loop for absorption solar cooling system using double-glazed collectors, Applied Thermal Engineering, vol.31, issue.2-3, 2010.
DOI : 10.1016/j.applthermaleng.2010.09.006

URL : https://hal.archives-ouvertes.fr/hal-00692335

M. Martins, Nouveau procédé thermo-hydraulique appliqué au rafraïchissement solaire de l'habit. Analyse et optimisation thermodynamiques, 2010.

T. Mateus and A. C. Oliveira, Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates, Applied Energy, vol.86, issue.6, pp.949-957, 2008.
DOI : 10.1016/j.apenergy.2008.09.005

S. Mauran and H. Lahmidia, Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60kWh by a solid/gas reaction, Solar Energy, vol.82, issue.7, pp.623-636, 2008.
DOI : 10.1016/j.solener.2008.01.002

F. Merkel, Verduftungskuhlung. VDI Forschungarbeiten, Berlin. No, vol.275, 1925.

F. Meunier and P. Neveu, Comparison of sorption systems based on equivalent carnot cycles, ASHRAE Transactions, vol.103, pp.375-383, 1997.

F. Meunier and P. Neveu, Equivalent Carnot cycles for sorption refrigeration, International Journal of Refrigeration, vol.21, issue.6, pp.472-489, 1998.
DOI : 10.1016/S0140-7007(97)00084-4

L. Mora, Prédiction des performances thermo-aérauliques des bâtiments par association de modèles de différents niveaux de finesse au sein d'un environnement orienté objet, 2003.

B. J. Newton, Modeling of solar storage tanks, 1995.

J. Pátek and J. Klomfar, A computationally effective formulation of the thermodynamic properties of LiBr???H2O solutions from 273 to 500K over full composition range, International Journal of Refrigeration, vol.29, issue.4, pp.566-578, 2006.
DOI : 10.1016/j.ijrefrig.2005.10.007

J. Pátek and J. Klomfar, A simple formulation for thermodynamic properties of steam from 273 to 523K, explicit in temperature and pressure, International Journal of Refrigeration, vol.32, issue.5, pp.1123-1125, 2009.
DOI : 10.1016/j.ijrefrig.2008.12.010

M. Pérez-de-vinaspre and M. Bourouis, Monitoring and analysis of an absorption air-conditioning system, Energy and Buildings, vol.36, issue.9, pp.933-943, 2004.
DOI : 10.1016/j.enbuild.2004.03.005

A. Pongtornkulpanich and S. Thepa, Experience with fully operational solar-driven 10-ton LiBr/H2O single-effect absorption cooling system in Thailand, Renewable Energy, vol.33, issue.5, pp.943-949, 2008.
DOI : 10.1016/j.renene.2007.09.022

M. Pons, Analysis of the adsorption cycles with thermal regeneration based on the entropic mean temperatures, Applied Thermal Engineering, vol.17, issue.7, pp.615-627, 1997.
DOI : 10.1016/S1359-4311(96)00091-9

M. Pons, Irreversibility in energy processes: Non-dimensional quantification and balance, Journal of Non-Equilibrium Thermodynamics, vol.29, issue.2, 2004.
DOI : 10.1515/JNETDY.2004.010

M. Pons, Bases for second law analyses of solar-powered systems, Part 1: the exergy of solar radiation, 21st Int. Conf. on Efficiency, Cost, Optimization, pp.139-146, 2008.

M. Pons, Bases for second law analyses of solar-powered systems, Part 2: the external temperature, 21st Int. Conf. on Efficiency, pp.147-154, 2008.

M. Pons, On the refererence state for exergy when ambient temperature fluctuates, Int. J. of Thermodynamics, vol.12, issue.3, pp.113-121, 2009.

M. Pons and N. L. Pierrès, Critères de comparaison des performances des systèmes de rafraîchissement solaire, 2010.

M. Pons and F. Meunier, Thermodynamic based comparison of sorption systems for cooling and heat pumping, International Journal of Refrigeration, vol.22, issue.1, pp.5-17, 1999.
DOI : 10.1016/S0140-7007(98)00048-6

J. Praene, Intégration et modélisation dynamique de composants d'un système de rafraîchissement solaire à absorption couplé au bâtiment, 2007.

J. P. Praene and F. Lucas, Steady State Model of a Solar Evacuated Tube Collector Based on Sensitivity Analysis, Energy Conversion and Resources, 2005.
DOI : 10.1115/IMECE2005-82188

L. Richard and F. Carrasco, Review of photovoltaic-powered refrigeration for medicines in developing countries, Solar Cells, vol.6, issue.3, pp.309-316, 1982.

R. Yang and P. Wang, A Simulation Study of Performance Evaluation of Single-Glazed and Double-Glazed Collectors/Regenerators for an Open-Cycle Absorption Solar Cooling System, Solar Energy, vol.71, issue.4, pp.263-268, 2001.
DOI : 10.1016/S0038-092X(01)00047-0

I. Schüco, LB 30 absorption chiller instructions, 2007.

A. Sencan and K. A. Yakut, Exergy analysis of lithium bromide/water absorption systems, Renewable Energy, vol.30, issue.5, pp.645-657, 2005.
DOI : 10.1016/j.renene.2004.07.006

W. M. Simpson and T. K. Sherwood, Performance of Small Mechanical Draft Cooling Towers, Refrigerating Engineering, 1946.

M. Sorin and B. Spinner, Thermodynamic techniques for the conceptual design of thermochemical refrigerators using two salt materials, Chemical Engineering Science, vol.57, issue.19, pp.4243-4251, 2002.
DOI : 10.1016/S0009-2509(02)00261-0

W. Sparber and A. Thuer, Unified Monitoring Procedure and Performance Assessment for Solar Assisted Heating and Cooling Systems, 1st International Conference on Solar Heating, Cooling and Buildings, 2008.

P. Stabat, Modélisation de composants de systèmes de climatisation mettant en oeuvre l'adsorption et l'évaporation d'eau, 2003.

D. Stitou and N. Mazet, Performance of a high temperature hydrate solid/gas sorption heat pump used as topping cycle for cascaded sorption chillers, Energy, vol.29, issue.2, pp.267-285, 2004.
DOI : 10.1016/j.energy.2003.08.011

D. Stitou and B. Spinner, Development and comparison of advanced cascading cycles coupling a solid/gas thermochemical process and a liquid/gas absorption process, Applied Thermal Engineering, vol.20, issue.14, pp.1237-1269, 2000.
DOI : 10.1016/S1359-4311(99)00053-8

P. Tittelein, Environnements de simulation adaptés à l'étude du comportement énergétique des bâtiments basse consommation, 2008.

H. Torio and A. Angelotti, Exergy analysis of renewable energy-based climatisation systems for buildings: A critical view, Energy and Buildings, vol.41, issue.3, pp.248-271, 2009.
DOI : 10.1016/j.enbuild.2008.10.006

T. Tsoutsos and E. Aloumpi, Design of a solar absorption cooling system in a Greek hospital, Energy and Buildings, vol.42, issue.2, pp.265-272, 2010.
DOI : 10.1016/j.enbuild.2009.09.002

W. Wagner and A. Pruß, The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, Journal of Physical and Chemical Reference Data, vol.31, issue.2, pp.387-535, 2002.
DOI : 10.1063/1.1461829

G. Xie, Absorber performance of a water/lithium???bromide absorption chiller, Applied Thermal Engineering, vol.28, issue.13, 2008.
DOI : 10.1016/j.applthermaleng.2007.09.014

X. Q. Zhai and R. Z. Wang, Experimental investigation and performance analysis on a solar adsorption cooling system with/without heat storage, Applied Energy, vol.87, issue.3, pp.824-835, 2010.
DOI : 10.1016/j.apenergy.2009.10.002

I. Tableau, Comparaison des puissances estimées et mesurées pour le mois d'Avril, p.40, 2010.

I. Tableau, Récapitulatif d'incertitudes de mesures par composant, p.41

I. Tableau, Comparaison du temps de fonctionnement et des consommations électriques principaux composants lors des deux journées étudiées et calcul des écarts, p.51

I. Tableau, Comparaison des énergies thermiques produites et consommées ainsi que des indices de performances de l'installation lors des deux journées étudiées, p.52

I. Tableau, Récapitulatif des résidus maximum et minimum, et de l'erreur absolue moyenne lors des deux journées étudiées pour le banc d'essais (modèle simplifié), p.101

I. Tableau, Récapitulatif des résidus maximum et minimum, et de l'erreur absolue moyenne lors des deux journées étudiées pour l'installation RAFSOL (modèle simplifié), p.102

I. Tableau, Récapitulatif des résidus maximum et minimum, et de l'erreur absolue moyenne lors des deux journées étudiées pour le banc d'essais (modèle détaillé), p.104

I. Tableau, Récapitulatif des résidus maximum et minimum, et de l'erreur absolue moyenne lors des deux journées étudiées pour le banc d'essais, p.105

I. Tableau, Récapitulatif des résidus maximum et minimum, et de l'erreur absolue moyenne des températures de sorties et des puissances aux bornes de la machine (modèle simplifié), p.111

I. Tableau, Récapitulatif des résidus maximum et minimum, et de l'erreur absolue moyenne des températures de sorties et des puissances aux bornes de la machine (modèle détaillé), p.112

I. Tableau, Récapitulatif des résidus maximum et minimum, et de l'erreur absolue moyenne de la température de sortie et de la puissance aux bornes de la tour, p.114

I. Tableau, Récapitulatif des résidus maximum et minimum, et de l'erreur absolue moyenne des températures et des puissances aux bornes des composants de l'installation (modèle simplifié), p.117

I. Tableau, Récapitulatif des résidus maximum et minimum, et de l'erreur absolue moyenne des températures et des puissances aux bornes des composants de l'installation (modèle détaillé), p.121

I. Tableau, Récapitulatif des résidus maximum et minimum, et de l'erreur absolue moyenne des températures et des puissances aux bornes des composants de l'installation (modèle détaillé), p.126

I. Tableau, Principaux avantages et inconvénients des trois modèles développés, p.128

V. Tableau, Récapitulatif des critères d'optimisation en fonction des combinaisons T11 / T13 / T17 déterminées pour une puissance frigorifique fixe de 10 kW, p.144

V. Tableau, Récapitulatif des critères d'optimisation en fonction des combinaisons T17, T11 déterminées et des puissances frigorifiques choisies, p.145