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Context

The general framework of the manuscript is the approximation of a real-valued functionz(x):

z : Q � Rd ! R

x 7! z(x)

from some of its valuesf z(x1); : : : ; z(xn )g, (x i ) i =1 ;:::;n 2 Q where Q is a nonempty open set
called the input parameter space. We suppose that we do not have any information about this
function. Such a function is generally called in the computer experiments literature a black-
box function and it represents the output of a computer code takingx as input parameters.
Computer codes are widely used in science and engineering to describe physical phenomena.
The term �Computer Experiments� refers to mathematical and statistical modeling using
experiments performed via computer simulations. This kind of experiments is often called
�experiments in silico�.

To approximate the relation between the input variable x and the response variablez(x),
the only available information is the so-called experimental design setD = f x1; : : : ; xng and
the known outputs zn = f z(x1); : : : ; z(xn )g of z(x) at points in D . Nevertheless, they are not
su�cient to build a surrogate model for z(x). Indeed, we also have to make some assumptions
about the space wherez(x) lies.

A legitimate question that we can point out is the necessity to control the numbern of
observations. Indeed, a natural way to know the output z(x) is to simulate the computer
code with the input variable x. Nonetheless, advances in physics and computer science lead
to increased complexity for the simulators. As a consequence, performing an uncertainty
propagation, a sensitivity analysis or an optimization based on a complex computer code is
extremely time-consuming since it requires a large number of computer simulations. Therefore,
to avoid prohibitive computational costs, a fast approximation of the computer code - also
called surrogate model or meta-model - is built with a restrictedn.

The statistical approach is widely used for the analysis of computer experiments since
there are many sources of uncertainty to consider. We summary them in the following graph.
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Statistical analyses generally deal with the measurement, the modeling and the meta-
modeling errors. The modeling error has two main sources of uncertainty. The �rst one
is the mathematical approximation of the phenomena including physical simpli�cations and
the second one is the uncertainty about the values of the physical parameters present in
the model. The measurement error represents the uncertainty between the real phenomena
and our observations of the phenomena. Finally, the meta-model error corresponds to the
uncertainty due to the approximation of the code output. Since the meta-models are also
implemented with computer codes, this part includes discretization, truncation and round-o�
errors.

We note that the discretization error is due to the transcription of the mathematical
model - generally considering continuous functions - into a discrete model. Furthermore, the
truncation error is due to the fact that computers can only deal with �nite approximations
and the round-o� error arises because we can only represent a �nite number of real numbers
on a machine. We highlight that nowadays, we cannot handle all sources of uncertainty and
thus the ones between the reality and the surrogate model remain unknown.

In this manuscript, we focus on the measurement and on the meta-modeling errors. In
particular, we consider the Gaussian process regression - also called kriging model - as surrogate
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model. It is a useful and very popular tool to approximate an objective function given some
of its observations (see e.g [Sacks et al., 1989b], [Sacks et al., 1989a], [Currin et al., 1991],
[Morris et al., 1993], [Laslett, 1994], [Koehler and Owen, 1996], [Schonlau, 1998], [Stein, 1999],
[Kennedy and O'Hagan, 2001], [Santner et al., 2003], [Fang et al., 2006], [O'Hagan, 2006],
[Conti and O'Hagan, 2010], [Bect et al., 2012] and [Gramacy and Lian, 2012]). It corresponds
to a particular class of surrogate models which makes the assumption that the response of
the complex code is a realization of a Gaussian process. A strength of this approach is that
it provides a basis for statistical inference through the Gaussian assumption. It has originally
been used in geostatistics by [Krige, 1951] to interpolate a random �eld at unobserved locations
(see [Matheron, 1963], [Matheron, 1969], [Chilès and Del�ner, 1999], [Wackernagel, 2003],
[Berger et al., 2001] and [Gneiting et al., 2010]) and it has been developed in many areas such
as environmental and atmospheric sciences. It was then proposed in the �eld of computer
experiments by [Sacks et al., 1989b]. During the last decades, this method has become widely
used and investigated.

We introduce the Gaussian process regression in PartI. This chapter is inspired by the
books of [Stein, 1999], [Santner et al., 2003] and [Rasmussen and Williams, 2006], the reader
is referred to them for more detail about kriging model. In this part, we introduce in Chapter
1 the univariate kriging model, i.e. when the output of the objective function is a scalar. In
this chapter, we present di�erent approaches for the kriging model: from the Bayesian one
in Section 1.2 to the original one introduced by [Krige, 1951] in Section 1.5. Furthermore,
throughout Chapter 1 we present some methods to implement and use in practical way the
kriging model. In particular, in Section 1.3 we present classical mathematical tools and recent
advances about model selection in a Gaussian process regression context. Moreover, in Section
1.4 we discuss about covariance kernels which are an important element of kriging model.
Finally, we give in Chapter 1 some theoretical insights about Gaussian process regression.
More speci�cally, we deal with spectral representation of a Gaussian process in Section1.4
and we propose a short introduction to reproducing kernel Hilbert spaces in Section1.5.

Then, in Chapter 2, we present kriging models in a multivariate framework. The corre-
sponding method is called co-kriging and is used when the output of the objective function
is a vector with correlated components. First in Section2.1, we extend the Bayesian kriging
equations presented in Section1.2 for the co-kriging models. Second, we present in Section
2.2 the original co-kriging model introduced in the geostatistical literature. We will see that
the Bayesian and the geostatistical approaches are equivalent. Then, in Section2.3 we discuss
about matrix-valued covariance kernels which are an important ingredient of the method with
a non-trivial de�nition. Finally, in Section 2.4, we give an example of a co-kriging model
widely used in computer experiments which allows for taking into account the derivatives into
the model building.

Sometimes low-�delity versions of the computer code are available. They may be less
accurate but they are computationally cheap. A question of interest is how to build a surrogate
model using data from simulations of multiple levels of �delity. The objective is hence to
build a multi-�delity surrogate model which is able to use the information obtained from the
fast versions of the code. Such models have been presented in the literature [Craig et al.,

15



1998], [Kennedy and O'Hagan, 2000], [Higdon et al., 2004], [Forrester et al., 2007], [Qian
and Wu, 2008] and [Cumming and Goldstein, 2009]. We propose in Part II some derivations
and extensions to the model proposed by [Kennedy and O'Hagan, 2000] and investigated by
[Higdon et al., 2004], [Forrester et al., 2007] and [Qian and Wu, 2008]. First of all, we present
this model in Chapter 3 and we deal with some key issues that make di�cult to use the
suggested model for practical applications. In particular we propose in sections3.3 and 3.6
an original approach for the parameter estimations which is e�ective even when the number
of code levels is large. Furthermore, we propose in Section3.4 a Bayesian formulation of the
model which allows to consider prior information in the parameter estimations and integrates
all the uncertainty due to the estimation of the parameters. We also proposed some tricks
to reduce the computational complexity of the model. Comparisons have been performed
between our model and the ones of [Kennedy and O'Hagan, 2000] and [Qian and Wu, 2008]
on a academic example in Section3.5and on an application in Section3.7. They show that our
approach improves the former ones both in terms of prediction accuracy and computational
costs.

Then, in Chapter 4, we suggest another approach to build multi-�delity co-kriging models
based on a recursive formulation. With this original formulation presented in Section4.2, we
obtain the same performance in terms of prediction accuracy and computational costs as the
model proposed in Chapter3 when we use the suggested improvements. However, it allows
for extending classical results of kriging to the considered co-kriging model. In particular,
we give Universal co-kriging equations in Section4.3 which integrate the uncertainty due to
the estimation of some parameters. Moreover, in Section4.4 we give computational shortcuts
to compute the cross-validation procedure for the suggested multi-�delity co-kriging model.
The e�ciency of the recursive formulation of the model is emphasized on an application in
Section 4.5. We also implement this model in a R CRAN package named �MuFiCokriging�
(http://cran.r-project.org/web/packages/MuFiCokriging ) and present it in Section4.6.
Another strength of the approach presented in Chapter4 is that it allows for obtaining the
contribution of each code level into the total model variance. We use this important property
in Chapter 5 to propose sequential design strategies in a multi-�delity framework.

In Chapter 5, we �rst propose original kriging-based sequential design strategies in Section
5.1. The novelty is that they take into account the model prediction capability into the
sequential procedure and not only the estimated model variance. Then, we give in Section
5.2 a method to extend the kriging-based sequential design strategies to the multi-�delity co-
kriging model. We note that, in a multi-�delity framework, the search for the best locations
where to run the code is not the only point of interest. Indeed, once the best locations are
determined, we also have to decide which code level is worth being run. In particular, the
presented extensions take into account the computational time ratios between code versions
and the part of each code into the model's variance. The performance of the given sequential
strategies for kriging and co-kriging models are illustrated on applications in Section5.3.

In many cases, computer codes have a large numberd of input parameters. Global sensi-
tivity analysis aims to identify those which have the most important impact on the output.
A popular tool to perform global sensitivity analysis is the variance-based method coming
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from the Hoe�ding-Sobol decomposition [Hoe�ding, 1948] and named as the Sobol method
[Sobol, 1993]. Nevertheless, this method requires an important number of simulations. The
codes being often extremely time-consuming, we use a surrogate model to handle with it. We
present in Chapter 6 an original kriging-based global sensitivity analysis. In particular, it
�xes important �aws present in the pioneering article of [Oakley and O'Hagan, 2004]. We
present the principle of their method in Section6.3 and give some improvements for it. Then,
in Section 6.4 we suggest our original approach to perform kriging-based sensitivity analysis.
Finally, the extensions of the two presented methods for the multi-�delity co-kriging models
are presented in Section6.5.

We emphasize that in Chapter6 Subsections6.4.3 and 6.5.2 we propose two methods to
generate samples with respect to the kriging and co-kriging predictive distributions on large
data sets. In particular, we avoid numerical issues such that ill-conditioned matrices and high
computational costs.

For many realistic cases, we do not have direct access to the function to be approximated
but only to noisy versions of it. For example, if the objective function is the result of an
experiment, the available responses can be tainted by measurement noise. Another example is
Monte-Carlo based simulators - also called stochastic simulators - which use Monte-Carlo or
Monte-Carlo Markov Chain methods to solve a system of partial di�erential equations through
its probabilistic interpretation. Gaussian process regression can be easily adapted to the case
of noisy observations. We deal with the framework of stochastic simulators in PartIII .

First, we introduce at the beginning of Part III , the context of stochastic simulators. The
important point is that in this framework the observation noise variance is inversely propor-
tional to the number of particles used to the Monte-Carlo schemes. Furthermore, the amount
of particles also controls the computational cost of the simulator. Therefore, in that frame-
work, we have an explicit relation between the accuracy of an output and its computational
cost. Another particularity is that an in�nite number of code levels of increasing accuracy
can be obtained. In particular, we consider the case of partially converged simulations, i.e.
an accurate code output corresponds to a coarse one after continuing the Monte-Carlo con-
vergence. We show in the introduction of PartIII that using a multi-�delity co-kriging model
in such a context is equivalent to use a noisy-kriging considering uniquely the most accurate
simulations.

Then, Chapter 7 deals with the learning curve describing the generalization error of the
Gaussian process regression as a function of the training size. The main result of this chapter
is the proof of a theorem giving the generalization error for a large class of correlation kernels
and for any dimension when the number of observations is large. The theorem is presented
in Section 7.3 and its proof is given in Section7.7. The presented proof generalizes previous
ones that were limited to special kernels or to small dimensions (one or two). From this
result, we deduce in Section7.4 the asymptotic behavior of the generalization error when
the observation error is small. This is of interest since it provides a powerful tool for decision
support. Indeed, from an initial experimental design set, it allows for predicting the additional
computational budget necessary to reach a given desired accuracy. This result is applied
successfully in Section7.6 to a nuclear safety problem. Moreover, in Section7.5 we deal with
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the optimal resource allocation. If we consider as �xed the number of particles for the Monte-
Carlo procedures and the number of simulations, then a question of interest is to �nd the
particle repartition on the simulations which minimizes the model uncertainty. We provide a
proposition giving an optimal allocation under restricted conditions. Furthermore, we observe
in Appendix D that this allocation remains e�cient in more general cases.

Finally, we address in Chapter8 the problem of global sensitivity analysis for stochastic
simulators. As seen previously, variance-based sensitivity methods require a large number of
simulations. As the computer codes are time-consuming they are generally substituted by a
surrogate model. Therefore, there are two sources of uncertainty in such analysis. The �rst one
corresponds to the meta-model error (approximation error) and the second one corresponds to
the error on the sensitivity index estimates of the meta-model (estimation error). To perform
such analysis, we suggest a particular surrogate model in Section8.2 which corresponds to a
Gaussian process regression build from lot of simulations but with a large uncertainty. The
main result of this chapter is a theorem presented in Section8.3 which gives su�cient condi-
tions to obtain the asymptotic normality for the suggested index estimators. The proof of this
theorem is given in Subsection8.4. From the theorem, we can derived asymptotic con�dence
intervals taking into account the uncertainty of both the meta-model approximation error and
the index estimation error. We illustrate on an example the e�ciency of our approach.
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Notations

a.c. absolutely continuous,
a.s. almost surely,
a.e. almost every,
BLUP Best Linear Unbiased Predictor,
CV Cross-Validation,
IMSE Integrated Mean Squared Error,
LOO Leave-One-Out,
MCMC Monte-Carlo Markov Chain,
MLE Maximum Likelihood Estimate,
MSE Mean Squared Error,
RKHS Reproducing Kernel Hilbert Space,
z(x) Objective function to be approximated,
x input parameter in a subsetQ of Rd,
Q nonempty open subset ofRd representing the input parameter space,
d number of dimensions of the input parameter space,
n number of observations,
zn the vector of the observed values ofz(x) in D .
D the n � d experimental design set, then lines represent the observation

points in Q,
GP Gaussian process,
N Multivariate or univariate Gaussian distribution,
Z (x) Gaussian process of meanm(x) and covariance structurek(x; ~x),
Zn the Gaussian vectorZ (D ),
k(x; ~x) covariance function or continuous positive de�nite kernel,
k(x) covariance vector betweenx and D with respect to k(x; ~x),
K covariance matrix of D with respect to k(x; ~x),
V (x; ~x) matrix valued covariance kernel,
r (x; ~x) correlation kernel,
r (x) correlation vector betweenx and D with respect to r (x; ~x),
R correlation matrix of D with respect to r (x; ~x),
� hyper-parameters of the covariance or correlation structure,
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� 2 variance parameter,
f (x) vector of regressors of sizep,
� regression parameter,
F design matrix corresponding to the values off 0(D ),

 sample space,
F a � -algebra on
 ,
B the Borelian � -algebra,
P a probability on F ,
� a probability measure onQ,
p(x) probability density function,
E expectation,
cov covariance,
L= equality in distribution,
:= an equality which acts as a de�nition,
1 indicator function,
I the identity matrix,
0 matrix or vector transpose,
tr trace of a matrix,
h:i scalar product,
jj :jj euclidean norm,
� x=~x Kronecker symbol,
diag (x) diagonal matrix with diagonal vector x,
� convolution operator,
H a Hilbert space of real functions,
L 2

� space of square-integrable functions with respect to the measure� .
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Chapter 1
An introduction to Gaussian process
regression

Let us consider that we are interested in approximating an objective functionz(x) 2 R with
x 2 Q � Rd from few of its observations and whereQ is a nonempty open set. In our
framework, z(x) represents the output of a code andx represents its input. Furthermore,
we denote by D = f x1; : : : ; xng with x i 2 Q the experimental design set andzn = z(D )
the values ofz(x) at points in D - zn is called the vector of observations. Gaussian process
regression - also called kriging model - is a very popular tool to perform such approximation.
Throughout, the manuscript, we will equivalently use the term kriging model or Gaussian
process regression.

We present in this chapter the Gaussian process regression principle through di�erent
approaches. First, we introduce it with a Bayesian paradigm in Section1.2. Then, we give
two other approaches: the geostatistical one with the Best Linear Unbiased Predictor (BLUP)
(Subsection1.5.1) and the regularization one with the representer theorem in a Reproducing
Kernel Hilbert Space (RKHS) (Subsection1.5.2).

We also deal with two important points controlling the e�ciency of the Gaussian process
regression. The �rst one is about the model selection (Section1.3) in which we present di�erent
ways to estimate the model parameters. The second one is the choice of the covariance kernel
of the Gaussian process used in the model (Section1.4). Over all, let us introduce in the next
Section 1.1 the so-called Gaussian processes.

1.1 Gaussian processes: a short introduction

Let us consider a probability space(
 Z ; FZ ; PZ ), a measurable space(S;B(S)) and T an
arbitrary set. A stochastic processZ (x), x 2 T, is a collection of random variables de�ned
on (
 Z ; FZ ; PZ ), indexed by T and with values in S. Z (x) is Gaussian if and only if for
any �nite collection C � T, Z (C) has a joint Gaussian distribution. In our work, we always
have S = R and T = Q � Rd with d an integer representing the dimension of the input
parameter space andQ a nonempty open set. A Gaussian process is completely speci�ed by
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its mean function m(x) = EZ [Z (x)] and its covariance functionk(x; ~x) = cov Z (Z (x); Z (~x)) =
EZ [(Z (x) � EZ [Z (x)])( Z (~x) � EZ [Z (~x)])] .

The mean function m(x) of a Gaussian process represents its trend. In a Gaussian process
regression framework, we usually choose a mean function of the formm(x) = f 0(x)� , with
f 0(x) = ( f 1(x); : : : ; f p(x)) a vector of regressors generally including a constant function and�
a p � 1 vector of regression parameters.

The covariance function k(x; ~x) is a positive de�nite kernel, i.e. for all (ai ) i =1 ;:::;N 2 R,
N 2 N� and distinct (x i ) i =1 ;:::;N 2 T, it satis�es the following property:

NX

i;j =1

ai aj k(x i ; x j ) � 0

and
P N

i;j =1 ai aj k(x i ; x j ) = 0 if and only if ai = 0 for all i = 1 ; : : : ; N . Furthermore, we always
consider in the manuscript that k(x; ~x) is continuous andsupx2 T k(x; x ) < 1 . The covariance
kernel describes the dependence structure of the Gaussian processZ (x). In our framework,
we often consider kernels of the formk(x; ~x) = � 2r (x; ~x; � ) where r (x; ~x; � ) is a correlation
kernel parametrized with the vector � and � 2 is the variance parameter. Furthermore, we
generally consider a stationary kernel, i.e.k(x; ~x) is a function of x � ~x. Nonetheless, for some
derivations - like in Chapter 7 - we consider any continuous positive de�nite kernelk(x; ~x) such
that supx2 T k(x; x ) < 1 . The covariance kernel is certainly the most important ingredient
of a Gaussian process regression. Indeed, it controls the smoothness of the Gaussian process
(see Section1.5) and thus the regularity of the approximation of the objective function z(x).

A �rst example of covariance kernel. A popular covariance kernel is the isotropic
squared exponential one de�ned as

k(x; ~x) = � 2 exp
�

�
1

2� 2 jj x � ~xjj2
�

; (1.1)

wherejj :jj stands for the euclidean norm. It is parametrized by the hyper-parameter� which is
called the characteristic length-scale or correlation length. Roughly speaking,� represents the
distance for which the observations are strongly dependent. In general, the parameters of the
covariance function are referred to hyper-parameters to highlight that they are parameters of
a non-parametric model. We illustrate in Figure 1.1 some realizations of Gaussian processes
with a squared exponential covariance kernel. We vary the formula of the mean and the
value of the variance parameter� 2 and the hyper-parameter � . We observe in Figure1.1
that the variance parameter � 2 controls the range of variation of the Gaussian process, the
hyper-parameter � controls the oscillation frequencies and the mean controls the trend of the
Gaussian process.

1.2 Kriging models : a Bayesian approach

In a kriging framework, we consider that the codez(x) is a realization of a Gaussian process
Z (x). Usually, we consider a Gaussian process with mean of the formm(x) = f 0(x)� , with
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Figure 1.1: Realizations of Gaussian processes with squared exponential kernel with di�erent
parameter values and trend formulas. The shade area represents the point-wise mean plus
and minus twice the standard deviation. It corresponds to 95% con�dence intervals.

f 0(x) = ( f 1(x); : : : ; f p(x)) and with covariance function k(x; ~x) = � 2r (x; ~x; � ). The mean of
the Gaussian process models the trend of the observations with respect to the input parame-
ters and the covariance structure models the dependence between the di�erent values of the
objective function.

1.2.1 Kriging equations

We develop in this subsection the so-called kriging equations. The kriging mean provides
the surrogate model that we use to approximate the objective functionz(x) and the kriging
variance represents the uncertainty of the model. We derive two types of kriging models. In
the �rst one, we consider that the observations are noisy-free. In the second one, we consider
that the observations are tainted by a white noise.
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The noisy-free case

We consider the random vectorZn := Z (D ) which is Gaussian sinceZ (x) is a Gaussian
process. We consider the problem of predicting the random variableZ (x) for any x 2 Q.
Intuitively, we want to use the information contains in Zn to predict Z (x) and thus we consider
the joint distribution of Z (x) and Zn given by:

 
Z (x)
Zn

!

� N

  
f 0(x)�

F �

!

; � 2

 
1 r 0(x)

r (x) R

!!

; (1.2)

where 0 stands for transpose,F := f 0(D ) is the design matrix, r 0(x) = [ r (x; x i ; � )] i =1 ;:::;n

is the correlation vector betweenZ (x) and the observations at points(x i ) i =1 ;:::;n in D and
R = [ r (x i ; x j ; � )] i;j =1 ;:::;n is the correlation matrix between the observations at points inD .

Then, the predictive distribution is de�ned by [Z (x)jZn = zn ; � ; � 2; � ]. The notation
[AjB ] stands for the distribution of A conditionally to B . Conditionally to � ; � 2; � the random
vector (Z (x); Zn ) is Gaussian. Therefore, conditionally to these parameters, the conditional
distribution [Z (x)jZn = zn ; � ; � 2; � ] is a GaussianN

�
ẑ(x); s2(x)

�
with :

ẑ(x) = f 0(x)� + r 0(x)R � 1 (zn � F � ) (1.3)

and
s2(x) = � 2 �

1 � r 0(x)R � 1r (x)
�

: (1.4)

Equations (1.3) and (1.4) correspond to the Simple Kriging equations, i.e. when all
parameters are considered as known. The kriging mean̂z(x) is the surrogate model
that we use to approximate the objective functionz(x) and the kriging variances2(x)
represents the model mean squared error.

We illustrate in Figure 1.2 some realizations of a conditional Gaussian process distribution.
We see in Figure1.2 that the kriging mean interpolates the observations. This is an important
property of kriging equations. Furthermore, we see that the kriging variance equals zero at
points of the experimental design set. It means that we consider that the model error is null
at these points. It is natural since the model is interpolating.

Then, we see in Equation (1.3) that the kriging mean does not depend on the variance
parameter� 2. In fact, this parameter - representing the range of variation of the functionz(x) -
has just an impact on the kriging variance (1.4). Furthermore, we see that the kriging variance
does not depend on the observationszn . This property can be useful to elaborate strategies
to reduce the model uncertainty. Indeed, we can evaluate the reduction of uncertainty after
adding some points into the experimental design set without simulating new observations.
Nevertheless, this point is also a big �aw of the method. Since the Gaussian assumption
cannot be veri�ed, the kriging variance can poorly represent the model error. In fact, kriging
variance is more a measure of the distance between the pointx and the points in D than a
measure of the prediction error at point x. Therefore, conception based uniquely on kriging
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Figure 1.2: Realizations of a conditional Gaussian process distribution with squared expo-
nential kernel, variance parameter � 2 = 1 , hyper-parameter � = 0 :1, regressors function
f 0(x) = (1 ; x) and trend parameter � = ( � 1; 1). The thin purple lines represent the realiza-
tions, the crosses represent the observations, the thick blue line represents the kriging mean
ẑ(x) and the shade area represents the mean̂z(x) plus and minus twice the standard deviation
s(x). It corresponds to 95% con�dence intervals.

variance could be inappropriate. We present in Chapter5 an example of method which uses
the model prediction capability to adjust the kriging variance.

Furthermore, if we denote byY(x) = Z (x)� f 0(x)� , y n = y n � F � and ŷ(x) = ẑ(x)� f 0(x)� ,
then Y(x) is a Gaussian process with mean zero and the same covariance structure asZ (x).
Then we can rewrite Equation (1.3) with the two following forms:

ŷ(x) =
nX

i =1

� i y n
i ; (1.5)

with � i = [ r 0(x)R � 1]i , i = 1 ; : : : ; n and

ŷ(x) =
nX

i =1


 i k(x; x i ); (1.6)

with 
 i =
�
R � 1 (zn � F � )

�
i , i = 1 ; : : : ; n. These two equations introduce the two other

approaches of the Gaussian process regression. In Equation (1.5) we notice that the predictor
ŷ(x) can be viewed as a linear predictor with respect to the observed valuesy n . This approach
which refers to the Best Linear Unbiased Predictor (BLUP) is presented in Subsection1.5.1.
Then, in Equation (1.6), we see that the predictor can be written as a linear combination
of the kernel k(x; ~x) centered onto the points of the experimental design set. This form -
corresponding to the solution of a speci�c regularization problem in a Reproducing Kernel
Hilbert Space (RKHS) - is presented in Subsection1.5.2.



28 CHAPTER 1. GAUSSIAN PROCESS REGRESSION

The noisy case

For many cases, we do not have direct access to the function to be approximated but only
to a noisy version of it. For example, if the objective function is the result of an experiment,
the observations are typically tainted by measurement noise. Let us suppose that we want
to approximate an objective function x 2 Q ! f (x) 2 R from noisy observations at points
(x i ) i =1 ;:::;n in D . Throughout the manuscript f (x) designs a function for which we have noisy
observations (see PartIII ). We assume an independent Gaussian observation noise with zero
mean and variance� 2

" (x). In the computer experiments literature, it is referred as the �nugget
e�ect�. Therefore, we haven observations of the formzi = f (x i ) + � " (x i )" i where (" i ) i =1 ;:::;n

are independent and identically distributed with respect to a Gaussian distribution with zero
mean and variance one. As in the noisy-free case, we assume thatf (x) is a realization of a
Gaussian processZ (x) of meanm(x) = f 0(x)� and covariance structurek(x; ~x) = � 2r (x; ~x; � ).
Denoting by Zn = Z (D ) + " n , with " n := [ � " (x i )" i ]i =1 ;:::;n , we have the following covariances:

cov (Z (x); Zn ) = k0(x);

with k0(x) = [ k(x; x i )] i =1 ;:::;n and

cov (Zn ; Zn ) = K + � ;

whereK = [ k(x i ; x j )] i;j =1 ;:::;n , � = [ � 2
" (x i )� ij ]i;j =1 ;:::;n and � ij is the Kronecker delta which is

one if i = j and zero otherwise. Therefore, we have the following joint distribution:

 
Z (x)
Zn

!

� N

  
f 0(x)�

F �

!

;

 
k(x; x ) k0(x)
k(x) K + �

!!

: (1.7)

Then, the predictive distribution [Z (x)jZn = zn ; � ; � 2; � ; � ] is still a Gaussian distribution
N

�
ẑ(x); s2(x)

�
with :

ẑ(x) = f 0(x)� + k0(x)(K + � ) � 1 (zn � F � ) (1.8)

and

s2(x) = k(x; x ) � k0(x)(K + � ) � 1k(x): (1.9)

We note that in the noisy case, the predictor (1.8) can also be viewed as a linear predictor with
respect to the observations or as a regularization problem solution in a RKHS. Furthermore,
the meanẑ(x) of the predictive distribution no longer interpolates the observationszn and the
variances2(x) is not zero at points in the experimental design set. This properties are natural
since there is no sense to interpolate the observations if they are tainted by noise. Moreover,
at a point x i 2 D , the predictive variance cannot equal zero since it takes into account the
observation noise variance. We present in Figure1.3 an example of kriging model in a noisy
framework.
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Figure 1.3: Realizations of a conditional Gaussian process distribution with noisy observations
and a squared exponential kernel. The variance parameter equals� 2 = 2 , the hyper-parameter
equals� = 0 :1 and the meanm(x) is null. The thin purple lines represent the realizations, the
crosses represent the observations, the thick blue line represents the kriging meanẑ(x) and
the shade area represents the mean̂z(x) plus and minus twice the standard deviations(x).
Furthermore, the observation noise variance is� 2

" (x) = (2 + sin(4 �x ))=4.

1.2.2 Bayesian kriging equations

We discuss in this section about the Bayesian approach in Gaussian process regression. In
a Bayesian paradigm the parameters and hyper-parameters of the model are considered as
unknown and are modeled by random variables. The �rst objective is to infer from the
observations about the parameters and hyper-parameters. Then the aim is to provide a
predictive distribution integrating the posterior distributions of the parameters and hence
taking into account their uncertainty.

The Bayesian approach has two important strengths. First, it allows for taking into ac-
count all the sources of uncertainty coming from the parameter estimations into the predictive
distribution. Second, it allows for taking into account expert knowledges - through a prior
distribution - into the parameter estimations. For more detail about the Bayesian methods,
the reader is referred to the book of [Robert, 2007].

In counterpart, they are two important �aws in a Bayesian modeling. The �rst one -
perhaps the most important - is that the posterior distributions are sensitive to the prior
distributions given by experts. This �aw is even more important that we often restrict the
choice of the prior distributions in order to obtain closed form formulas for the posterior
predictive distributions. Such prior distributions are called conjugate distributions. The
second one is that for general prior distributions, there is no closed form expressions for
the predictive distribution. It is then necessary to perform various numerical integrations
which are usually done with Monte-Carlo Markov Chain (MCMC). These methods could be
computationally expensive and not be suitable for practical applications - this explains the
use of conjugate priors. For more detail about MCMC schemes, the reader is referred to the
book of [Robert and Casella, 2004].
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The Je�reys law

A question of interest in a Bayesian approach is to describe prior distributions which re�ect the
fact that there is no prior knowledge about the parameters. These distributions are called non-
informative. For the non-informative case, we use the improper distributions corresponding to
the �Je�reys priors� [ Je�reys, 1961]. These laws are based on the Fisher information matrix
[Fisher, 1956] which is de�ned as the expected value of the observed information.

Let us denote by zn a sample of a random variableZ and f (zn j ) the likelihood of a
parameter  = (  i ) i =1 ;:::;d with respect to zn . The observed information matrix is de�ned as:

I ( ; zn ) =
�
�

@2

@ i @ j
log(f (zn j ))

�

i;j =1 ;:::;d

:

Then, the Fisher information matrix is given by:

I ( ) =
�
� E

�
@2

@ i @ j
log(f (zn j ))

��

i;j =1 ;:::;d

:

where the expectation is taken with respect to the distribution of zn with the parameter  
The �Je�reys prior� distribution is given by the density function:

p( ) / [det (I ( ))]1=2 : (1.10)

The �Je�reys prior� distribution is a widely used non-informative prior distribution which is
justi�ed because the Fisher information is considered as a measure of the information about
 contained in the observations. It has the desirable property to be invariant under re-
parameterization of the parameter vector [Je�reys, 1946]. Furthermore, the Cramér-Rao
bound states that the inverse of the Fisher information is a lower bound on the variance of
any unbiased estimator of  ([Cramer, 1999] and [Rao, 1945]). Using a �Je�reys prior� is
equivalent to minimize the impact of the prior distribution.

Let us consider that zn is sampled from a multivariate Gaussian distribution with mean
F� and covariance matrix � 2R , we have:

I (� 2; zn ) = �
n

2� 4 +
(zn � F � )0R � 1 (zn � F � )

� 6 :

From which we deduce that:
I (� 2) =

n
2� 4 :

The non-informative Je�reys distribution is then given by:

p(� 2) /
1
� 2 : (1.11)

Following the same guideline, we �nd that:

p(� j� 2) / 1: (1.12)

We note that an improper prior distribution is not bad if the provided posterior distribution is
proper. Indeed, according to the Bayesian version of the likelihood principle, only the posterior
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[� 2] � IG (�; 
 ) p(� 2) / 1
� 2

[� j� 2] � N p(b0; � 2V 0) (1) (2)
p(� j� 2) / 1 (3) (4)

Table 1.1: Four di�erent cases corresponding to four combinations of prior distributions for
the model parameters.

distributions are of importance (see [Robert, 2007] Sections 1.3 and 1.5). Furthermore, from a
practical point of view, Bayesian methods can be applied as soon as the posterior distributions
are proper. We note that some arguments about the advantage of improper prior distributions
are given in [Robert, 2007] Section 1.5.

Bayesian parameter estimation

We describe here the Bayesian estimation of the parameters(� ; � 2) in equations (1.3) and
(1.4). We use a hierarchical speci�cation for the model parameters. At the lowest level, we
consider the parameter� . At the second level we have the parameter� 2 which controls the
distribution of � . At the top level we have the parameter� which controls the distribution of � 2

and � . In the Bayesian literature, we call hierarchical models those coming from this procedure
[Robert, 2007]. Throughout the manuscript, we do not consider the hyper-parameter� as a
random variable except in Subsection1.3.1 where we present how to perform a Bayesian
estimation of � . Other estimation methods for � are described in Subsection1.3.

Parameter prior distributions. We consider the following informative prior distribu-
tions:

[� j� 2] := N
�
b0; � 2V 0

�
(1.13)

and
[� 2] := IG (�; 
 ); (1.14)

where IG (�; 
 ) stands for the inverse gamma distribution with density function

p(x) =

 �

�( � )
e� 
=x

x � +1 1x> 0:

Those prior distributions are commonly used in Bayesian kriging. They allow for obtaining
closed form expression for the predictive distribution. Such priors are called conjugate priors in
the Bayesian literature. In the forthcoming developments, we consider the four cases presented
in Table 1.1.

Parameter posterior distributions. We gave in Table 1.1 the prior distributions of
the parameters. The purpose of this paragraph is to provide their posterior distributions, i.e.
the one conditioned by the observed valueszn . The equations derived below can be found in
the book of [Santner et al., 2003]. First, let us explain the likelihood of � and � 2:

f (zn j� ; � 2) =
1

(2�� 2)n=2
p

det R
exp

�
�

1
2

(zn � F � )0R � 1 (zn � F � )
� 2

�
: (1.15)
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The Bayes rules1 give us the following equation

p(� jzn ; � 2) / f (zn j� ; � 2)p(� j� 2); (1.16)

from which we can deduce that the posterior distribution [� jzn ; � 2] for parameter � is the
following one:

[� jzn ; � 2] = N (A � ; A ) ; (1.17)

where:

A � 1 =

(
[F0R � 1F + V � 1

0 ]=� 2 (1)&(2)
[F0R � 1F]=� 2 (3)&(4)

and

� =

(
[F0R � 1zn + V � 1

0 b0]=� 2 (1)&(2)
[F0R � 1zn ]=� 2 (3)&(4)

Then, the following equality

p(� 2jzn ) = f (zn j� ; � 2)p(� j� 2)p(� 2)=p(� j� 2; zn )=f (zn ) (1.18)

leads to the following posterior distribution [� 2jzn ] for parameter � 2:

[� 2jzn ] = IG (� � ; Q� ); (1.19)

where

Q� /

8
>>><

>>>:

2
 + ( b0 � �̂ )(V 0 + [ F0R � 1F]� 1) � 1(b0 � �̂ ) + ~Q� (1)
(b0 � �̂ )0(V 0 + [ F0R � 1F]� 1) � 1(b0 � �̂ ) + ~Q� (2)
2
 + ~Q� (3)
~Q� (4)

;

with �̂ = ( F0R � 1F) � 1(F0R � 1zn ), ~Q� = ( zn )0[R � 1 � R � 1F(F0R � 1F) � 1F0R � 1]zn and

� � /

8
>>><

>>>:

n=2 + � (1)
n=2 (2)
n � p=2 + � (3)
n � p=2 (4)

:

Posterior predictive distribution

We have explained in equations (1.17) and (1.19) the posterior distribution of parameters
(� ; � 2). The purpose of this paragraph is to provide the posterior predictive distribution
[Z (x)jZn = zn ] integrating the parameter posterior distributions.

First, let us integrate the posterior distribution of � :

p(z(x)jzn ; � 2) =
Z

p(z(x)jzn ; � ; � 2)p(� jzn ; � 2)d� :

1 If A and B are events such that P(B ) 6= 0 , we haveP(AjB ) = P(B jA) P(A) =P(B ). The continuous version
of this result is the following one: given two random variables x and y with conditional distribution f (xjy) and
marginal distribution g(y), the conditional distribution of y given x is g(yjx) = f (xjy)g(y)=

R
f (xjy)g(y) dy.
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Straightforward calculations give us that the predictive distribution [Z (x)jZn = zn ; � 2] is the
following Gaussian one:

N
�
ẑ� (x); s2

� (x)
�

;

where
ẑ� (x) = f 0(x)A � + k0(x)K � 1 (zn � FA � ) ; (1.20)

s2
� (x) = � 2

0

@1 �
�

f 0(x) k0(x)
�

 
Vi F0

F K

! � 1  
f (x)
k(x)

! 1

A (1.21)

and

Vi =

(
� V � 1

0 (1)&(2)
0 (2)&(3)

:

Equations (1.20) and (1.21) are the Universal Kriging equations. It corresponds to
the Simple kriging ones after integrating the posterior distribution of the regression
parameter � .

Now, let us consider the predictive distribution [Z (x)jZn = zn ] after integrating the posterior
distribution of the variance parameter � 2. The corresponding probability density function is:

p(z(x)jzn ) =
Z

p(z(x)jzn ; � 2)p(� 2jzn )d� 2:

The calculations are tractable and we �nd that [Z (x)jZn = zn ] is the following Student-t
distribution 2:

T1 (� � ; ẑ� (x); Q� ;� (x)) ; (1.22)

where ẑ� (x) is de�ned in (1.20),

Q� ;� (x) =
Q�

� �

0

@1 +
�

f 0(x) k0(x)
�

 
Vi F0

F K � 1

! � 1  
f (x)
k(x)

! 1

A (1.23)

and Q� and � � are introduced in Equation (1.19).

The Student-t predictive distribution corresponds to the Universal kriging predictive
distribution after integrating the posterior distribution of the parameter � 2. Despite
the fact that we do not have a Gaussian distribution anymore, the surrogate model is
still the mean ẑ� (x) and the variance� � Q� ;� (x)=(� � � 2) of the predictive distribution
informs us about the model mean squared error.

2Let us consider a random vector W = ( W1 ; : : : ; Wd ) distributed according to
the Student- t distribution Td (�; � ; � ), its probability density function is p(w ) =
�(( � + d)=2)

�
1 + 1

� (w � � )0� � 1(w � � )
� � ( � + d) =2

=(det( � )) 1=2(�� )d= 2 �( �= 2). The parameter � represents
the degrees of freedom,� is the location parameter and � is the scale matrix.



34 CHAPTER 1. GAUSSIAN PROCESS REGRESSION

1.3 Model Selection

We have presented in Subsection1.2.2 some predictive distributions integrating di�erent pa-
rameter posterior distributions. For all cases, we always considered the hyper-parameter� as
known. We present in this section di�erent methods to estimate it.

1.3.1 Bayesian estimate

Like presented previously (1.15) and according to the methodology in [Rasmussen and Williams,
2006] p.108, the hyper-parameter� controls the prior distributions of � and � 2. Therefore,
following the same guideline than in Subsection1.2.2, we can give a prior distribution p(� )
for � and estimate its posterior distribution from the observations. We present below the
complete Bayesian scheme. We note that we consider the same prior distributions for the
parameters � and � 2 than the ones presented in Subsection1.2.2 (see Table1.1). First, as
presented in Subsection1.2.2, at the bottom level we have:

p(� jzn ; � 2; � ) =
f (zn j� ; � 2; � )p(� j� 2; � )

p(zn j� 2; � )
; (1.24)

where f (zn j� ; � 2; � ) is the likelihood (1.15) and p(� j� 2; � ) is the prior distribution of � rep-
resenting our knowledge about the parameter before having observations (see Table1.1). The
resulting posterior distribution p(� jzn ; � 2; � ) is given by (1.17). Furthermore, p(zn j� 2; � ) is
given by the following equation:

p(zn j� 2; � ) =
f (zn j� ; � 2; � )p(� j� 2; � )

p(� jzn ; � 2; � )
:

Second, we can obtain the posterior distribution of� 2 with the following equality

p(� 2jzn ; � ) =
p(zn j� 2; � )p(� 2j� )

p(zn j� )
; (1.25)

where p(� 2j� ) is the prior distribution about � 2 (see Table 1.1). The resulting posterior
distribution p(� 2jzn ; � ) is given by (1.19) and p(zn j� ) is given by

p(zn j� ) =
p(zn j� 2; � )p(� 2j� )

p(� 2jzn ; � )
:

Finally, we can express the posterior distribution of� with the following formula

p(� jzn ) =
p(zn j� )p(� )

p(zn )
:

In practice, Monte-Carlo Markov Chain (MCMC) methods are used to estimate p(� jzn )
[Robert and Casella, 2004]. We highlight that MCMC schemes only require knowledge of
p(� jzn ) up to a multiplicative constant and thus it is not necessary to evaluatep(zn ). Then,
we can integrate the posterior distributions into the predictive distribution. First we integrate
the posterior distribution of � with the following formula

p(z(x)jzn ; � 2; � ) =
Z

p(z(x)jzn ; � ; � 2; � )p(� jzn ; � 2; � )d� :
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We obtain a Gaussian distribution with mean (1.20) and variance (1.21). Then we can inte-
grate with respect to � 2

p(z(x)jzn ; � ) =
Z

p(z(x)jzn ; � 2; � )p(� 2jzn ; � )d� 2:

We obtain the Student-t distribution in Equation ( 1.22). Finally, we can integrate the posterior
distribution of � :

p(z(x)jzn ) =
Z

p(z(x)jzn ; � )p(� jzn )d� :

Nevertheless, the calculations are not anymore tractable and the predictive distribution needs
to be numerically estimated. In general, MCMC schemes are used. These numerical integra-
tions may be di�cult and as noted in [ Santner et al., 2003] the choice of the prior distribution
is non-trivial. The reader is referred to the article of [Diggle and Ribeiro Jr, 2002] for examples
of prior distributions for � .

As example, let us consider a 2-dimensional Gaussian processZ (x) with zero mean and a
Gaussian covariance kernelk(x; ~x) = � 2 exp

�
�jj x � ~xjj2=(2� 2)

�
where� 2 = 4 and � = 0 :1. We

sample a realizationZ (x) on 40 points. Then, we consider the parameter� as unknown and
we estimate it from the 40 observations with a Bayesian method. We consider the following
improper prior distribution for � :

p(� ) /
1
�

:

Figure 1.4 illustrates the prior and the posterior distributions of � . We see that the prior
distribution is far from the real value of � (the real value being 0.1). Then, the mode of the
posterior distribution approaches the real value but with a non-negligible uncertainty.

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

q

de
ns

ity

prior distribution
posterior distribution

Figure 1.4: Example of prior and posterior distribution for the hyper-parameter � for an
isotropic Gaussian covariance kernel in dimension 2.

Figure 1.5 represents the predictive mean and variance in the Bayesian and non-Bayesian
cases. For the non-Bayesian case, we �x� = 0 :1. Since, the mode of the posterior distribution
of � is close to the real value, the means of the predictive distributions are close. Nevertheless,
the signi�cant di�erences between the predictive variances re�ect that we take into account
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the uncertainty due to the parameter estimation in the Bayesian case. Indeed, we see that in
this case the variance is more important.
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Figure 1.5: Posterior predictive distribution for the Bayesian and the non-Bayesian cases in a
2 dimensional example with a Gaussian kernel. The �gures on (a) & ( c) represent the posterior
means, the �gures (b) & ( d) represent the predictive variances, the �gures (a) & ( b) represent
the non-Bayesian cases and the �gures (c) & ( d) represent the Bayesian cases. We see that the
predictive means are equivalent. This is due to an e�cient estimation of the hyper-parameter
� . Furthermore, the predictive variance is more important in the Bayesian case since we take
into account the uncertainty due to the estimation of � .

1.3.2 Maximum likelihood estimates

The maximum likelihood estimation is a very popular method to estimate parameters. The
drawback of the maximum likelihood estimation is that, contrarily to Bayesian estimation, we
do not have any information about the variance of the estimator (see [Lehmann and Casella,
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1998]). Nevertheless, in a kriging framework, it is signi�cantly less time-consuming than a
Bayesian approach. The multivariate normal assumption forZn lead to the following likelihood
for parameters � , � 2 and � :

f (zn j� ; � 2; � ) =
1

(2�� 2)n=2
p

det R �
exp

 

�
1
2

(zn � F � )0R � 1
� (zn � F � )

� 2

!

: (1.26)

The correlation matrix R is denoted byR � to emphasize its dependence on� . Conditionally
to � 2 and � , the maximum likelihood estimate (MLE) of � is given by:

�̂ = ( F0R � 1
� F) � 1F0R � 1

� zn : (1.27)

It corresponds to its generalized least squares estimate. Then we can substitute the value of�̂
in the likelihood (1.26) and maximize it with respect to � 2. Given � we obtain the following
MLE for � 2:

�̂ 2 =
(zn � F �̂ )0R � 1

� (zn � F �̂ )
n

: (1.28)

Substituting �̂ and ^� 2 for � and � 2 in Equation (1.26), we obtain that the maximum of the
likelihood over � and � 2 is

f (zn j� ) = (2 � �̂ 2) � n=2(det R � )1=2 exp
�

�
n
2

�
;

which depends only on� . Therefore, the MLE of � can be found by minimizing the opposite
of the log-likelihood given by (up to a constant):

L rest(� ; zn ) = n log(�̂ 2) + log(det( R � )) : (1.29)

The opposite of this equation is called the concentrated log-likelihood or the marginal
likelihood. We illustrate in Figure 1.6 an example of L rest(� ; zn ) (1.29) calculated from
the realization of a 2-dimensional Gaussian process of mean zero and covariancek(x; ~x) =

� 2 exp
�

� 1
2

P 2
i =1 (x i � ~x i )2=� 2

i

�
- where x = ( x1; x2) 2 R2, ~x = (~x1; ~x2) 2 R2, � 1 = 0 :1,

� 2 = 0 :04 and � 2 = 2 - on 150 design points in[0; 1]2. The marginal likelihood has to be nu-
merically minimized with global optimization methods. To have a more e�ective optimization,
one can used the derivative of the marginal likelihood3:

@
@� i

L rest(� ; zn ) = � n
�
(y n )0R � 1

� y n � � 1
(y n )0R � 1

�
@R �

@� i
R � 1

� y n

+tr
�

R � 1
�

@R �

� i

�
;

with y n = zn � F �̂ .
Restricted Maximum Likelihood estimate. The restricted maximum likelihood method

was introduced by [Patterson and Thompson, 1971] in order to reduce the bias of the maxi-
mum likelihood estimator. The restricted maximum likelihood estimates of the parameters� 2

3The proof is straightforward using the derivative of an inverse matrix @
@� K

� 1
� = � K � 1

�
@K�
@� K � 1

� and the

one of the log determinant of a positive de�nite symmetric matrix @
@� log det K � = tr

�
K � 1

�
@K�
@�

�
where @K�

@�

is a matrix of element-wise derivatives (see [Harville, 1997]).
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Figure 1.6: An example of the opposite of a log-likelihood calculated with 150 obser-
vations sampled from a Gaussian process of zero mean and covariance kernelk(x; ~x) =

� 2 exp
�

� 1
2

P 2
i =1 (x i � ~x i )2=� 2

i

�
with � 1 = 0 :1, � 2 = 0 :04 and � 2 = 2 .

and � consist in maximizing the likelihood of those parameters for a maximum of independent
linear combinations of the observationszn and such that all these combinations are orthogonal
to F� , i.e. the mean ofZn . For more detail, the reader could refer to the two reference articles
[Harville, 1974] and [Harville, 1977].

Now, let us consider a matrix C of size (n � p) � n of rank (n � p) such that CF = 0 .
The restricted maximum likelihood estimate of � 2 and � are given by the classical maximum
likelihood estimate but with the transformed data ~zn = Czn . We note that the restricted
MLE is independent of the choice ofC (see [Harville, 1977]). The likelihood of ~Zn = CZ n is
given by:

f (~zn j� ; � 2; � ) =
1

(2�� 2)(n� p)=2
p

det(CR � C0)
exp

�
�

1
2

(~zn )0(CR � C0) � 1~zn

� 2

�
: (1.30)

Maximizing (1.30) with respect to � 2 and considering that the estimator is independent to the
choice ofC, we have the following restricted maximum likelihood estimate for the variance
parameter:

�̂ 2
REML =

(zn � F �̂ )0R � 1
� (zn � F �̂ )

n � p
: (1.31)

Furthermore, substituting � 2 with �̂ 2
REML in the likelihood (1.30), we �nd that the restricted

maximum likelihood of � can be found by minimizing:

(n � p) log(�̂ 2
REML ) + log(det( R � )) : (1.32)

Marginal likelihood in a noisy case. In a noisy case, we cannot derive a closed form
expression for the estimate of� 2. Indeed, in that case the likelihood for� , � 2, � and � - see
Equation (1.7) in Subsection1.2.1 - is given by

f (zn j� ; � 2; � ; � ) =
exp

�
� (zn � F � )0�

K � 2 ;� + �
� � 1 (zn � F � )=2

�

(2�� 2)n=2
q

det
�
K � 2 ;� + �

� : (1.33)
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We use the notation K � 2 ;� to emphasize the dependence ofK = [ k(x i ; x j )] i;j =1 ;:::;n to the
parameters� 2 and � . Thus, we have the following estimate for� :

�̂ = ( F0�
K � 2 ;� + �

� � 1 F) � 1F0�
K � 2 ;� + �

� � 1 zn : (1.34)

The opposite of the marginal likelihood becomes up to a constant

L rest(� ; � 2; � ; zn ) = ( zn � F � )0�
K � 2 ;� + �

� � 1 (zn � F � )

+ log det
�
K � 2 ;� + �

�
:

We illustrate in Figure 1.7 an example ofL rest(�; � 2; � = � 2
" I ; zn ) calculated from the realiza-

tion of a 1-dimensional Gaussian process of mean zero and covariancek(x; ~x) = � 2 exp
�

� 1
2

(x� ~x)2

� 2

�
+

� 2
" � x=~x - where x; ~x 2 R, � = 0 :1, � 2

" = 0 :25 and � 2 = 2 - on 150 design points in[0; 1]. We
note that � 2 is supposed to be known.
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Figure 1.7: An example of the opposite of a log-likelihood calculated with 150 obser-
vations sampled from a Gaussian process of zero mean and covariance kernelk(x; ~x) =

� 2 exp
�

� 1
2

(x� ~x)2

� 2

�
+ � 2

" � x=~x with � = 0 :1, � 2
" = 0 :25 and � 2 = 2 . The variance parame-

ter � 2 is supposed to be known.

1.3.3 Cross-validation estimate

The principle of a cross-validation (CV) procedure is to split the experimental design set into
two disjoint sets, one is used for training and the other one is used to monitor the performance
of the surrogate model. The idea of a CV estimation is then to �nd the parameter� leading
to the best performance on the test set. A particular case of CV is the Leave-One-Out (LOO)
one wheren test sets are obtained by removing one observation at-a-time. The CV procedure
can be time-consuming for a kriging model - e.g. for the LOO scheme it requires the inversion
of n sub-matrices of sizen � 1 - but it is shown by [Rasmussen and Williams, 2006], [Dubrule,
1983] and [Zhang and Wang, 2009] that there are computational shortcuts. We present them
in the remainder of this paragraph.
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Notations: If � is a subset of indices inf 1; : : : ; ng, then A [�;� ] is the sub-matrix of
elements� � � of A , a[� ] is the sub-vector of elements� of a, A [� � ] represents the matrix A
in which we remove the rows of index� , a[� � ] represents the vectora in which we remove the
elements of index� , A [� �; � � ] is the sub-matrix of A in which we remove the rows and columns
of index � and A [� �;� ] is the sub-matrix of A in which we remove the rows of index� and keep
only the columns of index� .

CV for Universal kriging

Let us consider a set of index� � f 1; : : : ; ng of length k. We denote by " CV ;� the errors (i.e.
the real values minus the predicted values) of the cross-validation procedure on the test setD [� ]

when we learn the kriging model on the training setD [� � ]. Furthermore, we denote by� 2
CV ;�

the predictive CV variances at points in D [� ]. For the proof, we sort the observationszn such
that � is the index of the k last elements ofzn . Nevertheless, the presented equations remain
true whatever the order of the observations. First, we consider the variance parameter� 2,
the hyper-parameter � and the regression parameter� as known. We are hence in the simple
kriging case. Thanks to the block-wise inversion formula4, we have the following equality:

R � 1 =

 
A B
B 0 Q � 1

!

;

with A = [ R ]� 1
[� �; � � ] + [ R ]� 1

[� �; � � ] [R ][� �;� ] Q � 1 [R ][�; � � ] [R ]� 1
[� �; � � ],

B 0 = � Q � 1 [R ][�; � � ] [R ]� 1
[� �;� ] and:

Q = [ R ][�;� ] � [R ][�; � � ] [R ]� 1
[� �; � � ] [R ][� �;� ] :

We note that Q =
� �

R � 1
�

[�;� ]

� � 1
represents the correlation matrix at points in D [� ] with

respect to the correlation kernel obtained from the distribution of a Gaussian process of kernel
r (x; x 0) conditioned by zn

[� � ] at D [� � ]. Therefore, we can deduce that in a Simple kriging case,
the predictive CV variances � 2

CV ;�; SK are

� 2
CV ;�; SK = � 2

� �
R � 1�

[�;� ]

� � 1
: (1.35)

4Let us consider T a m � m matrix, U a m � n matrix, V a n � m matrix and W a n � n matrix. Let us

consider that T is non-singular, then

 
T U
V W

!

, or equivalently,

 
W V
U T

!

is non-singular if and only if the

matrix n � n Q = W � VT � 1U is non-singular. In this case, we have:

 
T U
V W

! � 1

=

 
T � 1 + T � 1UQ � 1VT � 1 � T � 1UQ � 1

� Q � 1VT � 1 Q � 1

!

and  
W V
U T

! � 1

=

 
Q � 1 � Q � 1VT � 1

� T � 1UQ � 1 T � 1 + T � 1UQ � 1VT � 1

!
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Furthermore, from the block decomposition ofR � 1, we have the following equality:
� �

R � 1
�

[�;� ]

� � 1 �
R � 1 (zn � F � )

�
[� ] = zn

[� ] � F [� ]�

� [R ][�; � � ] [R ]� 1
[� �; � � ]

�
zn

[� � ] � F [� � ]�
� :

We highlight that the term F [� ]� + [ R ][�; � � ] [R ]� 1
[� �; � � ]

�
zn

[� � ] � F [� � ]�
�

represents the kriging

mean predictions onD [� ] of a Gaussian process of meanf (x)0� and correlation kernel r (x; ~x)
conditioned with the observations zn

[� � ]. Thus we can deduce that in a Simple kriging case,
the CV errors " CV ;�; SK are

" CV ;�; SK =
� �

R � 1�
[�;� ]

� � 1 �
R � 1 (zn � F � )

�
[� ] : (1.36)

Second, we suppose the trend parameter� as unknown and we have to re-estimate it when
we remove the observations. We emphasize that we are here in a Universal kriging framework.
In a Bayesian case, the posterior mean�� � � of � when we remove the observations of index�
is given by

�� � �

�
[F [� � ]]

0[R ]� 1
[� �; � � ] F [� � ]

�
= [ F [� � ]]

0[R ]� 1
[� �; � � ] zn

[� � ]: (1.37)

From the block-wise inverse ofR we can deduce that[R ]� 1
[� �; � � ] = A � BQB 0. To obtain the

cross-validation equations in the Universal kriging case, we just have to estimate the following
quantity:

� � =
�

F [� ] � [R ][�; � � ] [R ]� 1
[� �; � � ] F [� � ]

�
�

�
F [� ] � [R ][�; � � ] [R ]� 1

[� �; � � ] F [� � ]

� 0
;

with � =
�

[F [� � ]]0[R ]� 1
[� �; � � ] F [� � ]

� � 1
. Indeed, from equations (1.4) and (1.21), we can deduce

that � 2
CV ;� = � 2

CV ;�; SK + � � . We have the following equality:
�

F [� ] � [R ][�; � � ] [R ]� 1
[� �; � � ] F [� � ]

�
=

�
[R � 1][�;� ]

� � 1 �
R � 1F

�
[� ] :

Therefore, the CV predictive errors and variances in a Universal kriging framework are given
by

" CV ;� =
� �

R � 1�
[�;� ]

� � 1 �
R � 1 �

zn � F �� � �
��

[� ]
(1.38)

and

� 2
CV ;� = � 2

� � �
R � 1

�
[�;� ]

� � 1
+

�
[R � 1][�;� ]

� � 1 �
R � 1F

�
[� ]

�
�

[F [� � ]]0[R ]� 1
[� �; � � ] F [� � ]

� � 1 � �
[R � 1][�;� ]

� � 1 �
R � 1F

�
[� ]

� 0
� (1.39)

The term [R ]� 1
[� �; � � ] is evaluated with the equality:

[R ]� 1
[� �; � � ] = [ R � 1][� �; � � ] � [R � 1][� �;� ]

�
[R � 1][�;� ]

� � 1
[R � 1][�; � � ]:

To obtain the CV predictive errors and variances in a Universal kriging framework, we just
have to invert the matrix R once and then invert the sub-matrix [R � 1][�;� ]. We note that in
a LOO framework, � is reduced to an integer and the computational cost for the inversion of
[R � 1][�;� ] is negligible. In the presented equations, the variance parameter is supposed to be
known. We present in Chapter 4 a method to re-estimate it for each removed observations
when we consider its maximum likelihood estimate.



42 CHAPTER 1. GAUSSIAN PROCESS REGRESSION

Leave-One-Out based estimation

In the previous paragraph, we present the predictive errors and variances resulting from a CV
procedure when� 2 and � are �xed. We present here a way to estimate them thanks to a LOO
CV technique, i.e. � = i with i = 1 ; : : : ; n. The opposite of the predictive log probability
at observation zn

[i ] when the model is learned with the observationszn
[� i ] is given by (up to a

constant):

L (� 2; � ; zn
[i ]) = log � 2

CV ;i +
" 2

CV ;i

� 2
CV ;i

: (1.40)

where

" CV ;i =
� �

R � 1�
[i;i ]

� � 1 �
R � 1 �

zn � F �� � i
��

[i ]

and

� 2
CV ;i = � 2

� � �
R � 1

�
[i;i ]

� � 1
+

�
[R � 1][i;i ]

� � 1 �
R � 1F

�
[i ]

�
�

[F [� i ]]0[R ]� 1
[� i; � i ] F [� i ]

� � 1 � �
[R � 1][i;i ]

� � 1 �
R � 1F

�
[i ]

� 0
� :

From Equation (1.40) we can obtained the opposite of the LOO log-predictive probability

L LOO (� 2; � ; zn ) =
nX

i =1

L(� 2; � ; zn
[i ]): (1.41)

The reader is referred to the books of [Rasmussen and Williams, 2006] p122 for an illustration
of this criterion in a robotic application and the article of [Geisser and Eddy, 1979] for a
discussion about it. We note that thanks to the equations (1.38) and (1.39), this approach is
as computationally expensive as the classical maximum likelihood one.

We illustrate in Figure 1.6 an example of a LOO log predictive probabilityL LOO (� 2; � ; zn )
(1.41) calculated from the realization of a 2-dimensional Gaussian process of mean zero and

covariance k(x; ~x) = � 2 exp
�

� 1
2

P 2
i =1 (x i � ~x i )2=� 2

i

�
- where x = ( x1; x2) 2 [0; 1]2, ~x =

(~x1; ~x2) 2 [0; 1]2, � 1 = 0 :1, � 2 = 0 :04 and � 2 = 2 - on 150 design points in[0; 1]2.
Another approach to estimate the parameters� and � 2 has been suggested by [Bachoc,

2013]. Its principle is the following one. First, noticing that the CV predictive errors ( 1.38)
do not depend on� 2, we can estimate� by minimizing the following sum - also called the
squared error loss:

�̂ = arg min
�

nX

i =1

" 2
CV ;i; � : (1.42)

The LOO CV predictive error ( 1.38) is denoted by " CV ;i; � to emphasize its dependence on� .
Nonetheless, this procedure does not provide an estimate for� 2 and can lead to bad predictive
variances since it does not take care about the LOO-CV predictive variances. To tackle this
issue, [Bachoc, 2013] suggests the following estimator for� 2:

�̂ 2 =
1
n

nX

i =1

" 2
CV ;i; �̂

~� 2
CV ;i; �̂

; (1.43)
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Figure 1.8: An example of LOO log-predictive probability calculated with 150 observa-
tions sampled from a Gaussian process of zero mean and covariance kernelk(x; ~x) =

� 2 exp
�

� 1
2

P 2
i =1 (x i � ~x i )2=� 2

i

�
with � 1 = 0 :1, � 2 = 0 :04 and � 2 = 2 .

where ~� 2
CV ;�; �̂

is obtained from Equation (1.39):

~� 2
CV ;�; �̂

=
� h

R � 1
�̂

i

[�;� ]

� � 1

+
�

[R � 1
�̂

][�;� ]

� � 1 h
R � 1

�̂
F

i

[� ]

�
[F [� � ]]0

�
R �̂

� � 1
[� �; � � ] F [� � ]

� � 1
� �

[R � 1
�̂

][�;� ]

� � 1 h
R � 1

�̂
F

i

[� ]

� 0

:

This estimator of � 2 leads to the following desirable property:

1
n

nX

i =1

" 2
CV ;i; �̂ �̂ 2 =� 2

CV ;i; �̂ ;�̂ 2 = 1 :

An asymptotic normality and e�ciency study of this estimator is proposed by [ Bachoc, 2013].
For the numerical optimization of equations (1.41) or (1.42), it could be worthwhile to consider
their partial derivatives. In a Simple kriging framework (see equations (1.36) and (1.35)), they
can be deduced from the two following derivatives:

�
@

@�
� 2

CV ;i; SK

�

i =1 ;:::;n
= � 2 diag(R � 1

�
@R �
@� R � 1

� )

diag(R � 1
� )2

;

�
@

@�
" CV ;i; SK

�

i =1 ;:::;n
=

� R � 1
�

@R �
@� R � 1

� (zn � F � )

diag(R � 1
� )

+
diag(R � 1

�
@R �
@� R � 1

� )R � 1
� (zn � F � )

diag(R � 1
� )2

:

1.4 Covariance kernels

Certainly one of the most important points of a Gaussian process regression is the choice of
the covariance function k(x; ~x), x; ~x 2 Q � Rd of the Gaussian processZ (x) modeling the
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objective function z(x). We note that Q is a nonempty open set. We have seen in Section1.1
that a covariance kernelk(x; ~x) has to be positive de�nite5. This ensures that the covariance
matrix K = [ k(x i ; x j )] i;j =1 ;:::;n - also called the Gram matrix - is positive de�nite for any
distinct (x i ) i =1 ;:::;n 2 Q.

Moreover, the covariance kernel can also describe particular relations betweenZ (x) and
Z (~x). As example,k(x; ~x) is said to be stationary if it is a function of (x � ~x). This means
that it is invariant under any translation in the input space and that the relation between
Z (x) and Z (~x) is uniquely determined by the distance betweenx and ~x. We describe these
kernels in Subsection1.4.2. Then, in Subsection1.4.3we present some non-stationary kernels.
In particular, we present the fractional Brownian one that we use in Chapter7. Finally, we
deal with the eigenfunction analysis ofk(x; ~x) in Subsection1.4.4.

We highlight that it is easy to build new kernels from other ones thanks to the following
properties ([Rasmussen and Williams, 2006]):

1. If k1(x; ~x) and k2(x; ~x) are covariance kernels then

k(x; ~x) = k1(x; ~x) + k2(x; ~x)

or
k(x; ~x) = k1(x; ~x)k2(x; ~x)

is a covariance kernel.

2. If f (x) is a deterministic function and ~k(x; ~x) a covariance kernel, then

k(x; ~x) = f (x)~k(x; ~x)f (~x)

is a covariance kernel.

3. If k1(x; ~x) and k2(x; ~x) are covariance kernels such that
R

k1(x; z)k2(z; ~z)k1(~z; ~x) dz d~z <
1 , then

k(x; ~x) =
Z

k1(x; z)k2(z; ~z)k1(~z; ~x) dz d~z

is a covariance kernel. In particular, if k2(z; ~z) = � (z � ~z) - � (x) stands for the Dirac
delta function - and the function kx : ~x 7! k(x; ~x) is in L 2(Q) for all x 2 Q � Rd, then
we havek(x; ~x) =

R
k1(x; u)k1(u; ~x) du which is the covariance kernel of the following

Gaussian process

Z (x) =
Z

k1(x; u) dW(u);

where W (u) is a d-dimensional Wiener process (which is equivalently to say formally
that dW(u)=du is a Gaussian white noise).

4. If k1(x1; ~x1) and k2(x2; ~x2) are covariance kernels de�ned on di�erent spacesX 1 and X 2,
then

k(x; ~x) = k1(x1; ~x1) + k2(x2; ~x2)

5We recall that a kernel k(x; ~x) is positive de�nite if and only if for all (ai ) i =1 ;:::;N 2 R, N 2 N� and distinct
(x i ) i =1 ;:::;N 2 Q, we have

P N
i;j =1 ai aj k(x i ; x j ) � 0 and

P N
i;j =1 ai aj k(x i ; x j ) = 0 if and only if ai = 0 for all

i = 1 ; : : : ; N .
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or

k(x; ~x) = k1(x1; ~x1)k2(x2; ~x2)

is a covariance kernel de�ned on the product spaceX 1 � X 2. We named as a tensorised
kernel, a kernel of the formk(x; ~x) = k1(x1; ~x1)k2(x2; ~x2).

1.4.1 Relations between Gaussian process regularities and covariance ker-
nels

To emphasize the importance of the choice ofk(x; ~x), let us introduce the concept of mean
square di�erentiability (see [Cramer and Leadbetter, 1967]). First, for a �xed point x � 2 Q a
covariance kernelZ (x) is said to be mean square continuous - or continuous in mean square -
at x � if:

E
h
(Z (x � ) � Z (x))2

i
x! x �

�! 0:

Moreover, we have the following equalityE
h
(Z (x � ) � Z (x))2

i
= k(x � ; x � ) � k(x � ; x)+ k(x; x ) �

k(x � ; x). Thus, Z (x) is mean square continuous if and only ifk(x; ~x) is continuous at (x; ~x) =
(x � ; x � ). Then, we consider at pointx = ( x1; : : : ; xd) the Gaussian process:

Z (i )
h (x) =

Z (x + hei ) � Z (x)
h

;

with h 2 R n f 0g. The mean square derivative ofZ (x) in the i th direction is the Gaussian
process@Z(x)=@xi such that

E

" �
@Z(x)

@xi
� Z (i )

h (x)
� 2

#
h! 0�! 0:

Furthermore, @Z(x)=@xi exists if and only if k(x; ~x) is twice di�erentiable at point x = ~x and
its covariance kernel is@2k(x; ~x)=@xi @~x i . We so have a tight relation between the regularity
of the considered Gaussian process and the regularity of the covariance kernelk(x; ~x).

In fact, with more assumptions onk(x; ~x), we can have stronger results about the continuity
of Z (x). Let us consider the following de�nition (see [Cramer and Leadbetter, 1967]).

De�nition 1.1 (continuous almost surely random processes). Let us consider a random pro-
cessZ (x), x 2 Q � Rd, de�ned on (
 Z ; F ; PZ ) with values in (R; B(R)) . Z is continuous
almost surely onQ if for almost every ! 2 
 Z ; x 7! Z t (x; ! ) is continuous onQ.

This de�nition is of interest since it means that almost all paths of such random processes
are continuous. Nonetheless, the de�nition of continuous almost surely random processes are
not easy for general cases. The following theorem provides a useful criterion for establishing
the existence of versions of stochastic processes with continuous sample paths (see [Oksendal,
1998]).
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Theorem 1.1 (Kolmogorov-Chentsov). Let Z (x), x 2 Q � Rd, be a random process
de�ned on (
 Z ; F ; PZ ) with values in (R; B(R)) . Let us suppose that there are three
positive constants(
; "; c ) 2 (R�

+ )3 such that 8(x; ~x) 2 Q2,

E [jZ (x) � Z (~x)j 
 ] � cjjx � ~xjjd+ " :

Then, there is ~Z (x) a version of Z (x) (i.e. for all x 2 Q, PZ

�
Z (x) = ~Z (x)

�
= 1 ) such

that

8� 2 [0; "=
 ); E

2

6
4

0

B
@ sup

(x; ~x)2 Q2

x6=~x

 
j ~Z (x) � ~Z (~x)j

jjx � ~xjj �

!
1

C
A


 3

7
5 < 1 :

This means that the sample of~Z (x) are almost surely Hölder continuous with Hölder
exponent� .

Theorem 1.1 can easily be used in a Gaussian framework. This is highlighted in the
following example.

Example 1.1. Let us consider a stationary Gaussian processZ (x) with mean zero and co-
variance kernel given by� 2r (h) where h = x � ~x, x; ~x 2 Rd. We have the following equality:

E
�
(Z (x) � Z (~x))2�

= 2 � 2(1 � r (h)) :

Furthermore, from the following equality

E
�
(Z (x) � Z (~x))2n �

=
(2n)!
2nn!

� 2n (1 � r (h))n

and the condition r (h) 2 C" , we can deduce that9n > d=" such that

E
�
(Z (x) � Z (~x))2n �

�
(2n)!
2nn!

� 2n � n
" jjhjjn" :

Therefore, there is a version~Z (x) of Z (x) which is � -Hölder continuous almost surely with
� 2 [0; "=2).

Then, for the unidimensional casex; ~x 2 Q � R, a �ner result is given by [Fernique, 1964]
on k(x; ~x) so that Z (x) is continuous a.s.. As stated in the theorem below, this condition is
given in terms of the incremental varianceE

�
(Z (x) � Z (~x))2

�
.

Theorem 1.2 (Fernique's theorem). If for jx � ~xj � " , x; ~x 2 Q � R, there is a function
 for which

p
E [(Z (x) � Z (~x))2] �  (x � ~x), where  is nondecreasing on[0; " ] and

Z "

0

 (u)

u
p

log(1=u)
du < 1 ;

then Z (x) has an almost sure continuous version.

The �rst proof of this theorem has been presented by [Dudley, 1967]. Then, several proofs
have been suggested (see [Garsia, 1972] and [Marcus and Shepp, 1970]). In particular, [ Marcus
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and Shepp, 1970] present a proof for stationary covariance kernelsk(x; ~x) = k(x � ~x), x; ~x 2 R.
In that case, the condition simply becomes:

Z "

0

p
k(0) � k(u)

u
p

log(1=u)
du < 1 :

1.4.2 Stationary covariance functions

In this subsection we consider the caseQ = Rd and we are interested in stationary covariance
kernels. As presented previously, it corresponds to a covariance kernelk(x; ~x), x; ~x 2 Rd,
function of h = x � ~x. We will use the notation k(x; ~x) = k(h). These kernels are widely used
in the framework of computer experiments.

One of their interesting properties is that the regularity of k(h) at h = 0 determines the
smoothness property ofZ (x) in mean square sense. Indeed a Gaussian processZ (x) with
covariance k(h) is mean square continuous ifk is continuous at h = 0 . Furthermore, the
Gaussian process@kZ (x)=@xi 1 : : : @xi k corresponding to the kth order partial mean square
derivative of Z (x) exists if and only if @2kk(h)=@2x i 1 : : : @2x i k exists and is �nite at h = 0 .

Another interesting property of stationary covariance kernels is that they can be repre-
sented as the Fourier transform of a positive measure as stated in the following theorem (see
[Stein, 1999] p.24).

Theorem 1.3 (Bochner's theorem). For any continuous positive de�nite function k(h)
from Rd into R, there exists a unique probability measure� on Rd such that

k(h) =
Z

Rd
e2�i hw;h i d� (w):

We note that h:i stands for the scalar product. A proof of this theorem is given by
[Gikhman and Skorokhod, 1974]. In the case where� (dw) has a densityS(w), we call it the
spectral density or power spectrum ofk(h) and we have

k(h) =
Z

Rd
e2�i hw;h i S(w) dw

and
S(w) =

Z

Rd
e� 2�i hw;h i k(h) dh:

From the spectral density S(w), we can de�ne the following complex representation of the
Gaussian processZ (x) (see [Stein, 1999]):

Z (x) =
Z p

S(w)e2�i hw;x i n̂w dw; (1.44)

where n̂w is the Fourier transform of a Gaussian white noise. Moreover, we can estimate the
integral (1.44) with the following sum:

Z (x) �
JX

j =1

q
S(wj )e2�i hwj ;x i n̂wj �( j ); (1.45)
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where (wj ) j =1 ;:::;J , J 2 N, is a tensorised grid covering the support ofS(w) and �( j ) is the
volume of the elementary hypercube of the grid associated withwj . This representation can be
used to compute samples ofZ (x) at points in X = f x1; : : : ; x l g using the following equation:

(Z (x l )) l=1 ;:::;n =
JX

j =1

h
ei hwj ;x l i

i

l=1 ;:::;n

� q
S(wj )n̂wj

�
�( j ): (1.46)

The main advantage of this method is that it does not require the Cholesky's decomposition
of the covariance matrix K X of Z (x) at points in X with respect to the kernel k(h). In-
deed, a commonly used method to sampleZ (x) at points in X is to consider the Cholesky
decomposition of the covariance matrixK X = [ k(x i ; x j )] i =1 ;:::;l , (x i ) i =1 ;:::;l 2 X :

K X = L X L 0
X :

Then, a realization of Z (x) at X can be obtained by sampling a noise" l = [ " i ]i =1 ;:::;l where
(" i ) i =1 ;:::;l are independent and identically distributed with respect to the Gaussian distribution
N (0; 1) and by considering the following equation:

Z (X ) = L X " l :

Note that Z (x) is considered to be zero-mean. Otherwise, we just have to add the term
M = [ m(x i )] i =1 ;:::;l where m(x) is the mean ofZ (x).

We emphasize that we can use a Fast Fourier transform to compute (1.46) and to sample
Z (x) by considering a tensorised regular grid. This allows for reducing the complexity of the
method.

We present below some examples of stationary covariance kernels. For a more complete
list, the reader is referred to [Stein, 1999] and [Rasmussen and Williams, 2006].

The Gaussian or Squared Exponential Covariance Function

The isotropic form of this kernel has already be presented in Section1.1. It is de�ned as

k(h) = exp
�

�
1
2

jjhjj2

� 2

�
; (1.47)

where the parameter� is the correlation length or characteristic length-scale. Furthermore, it
has the following power spectrum:

S(w) =
�
2�� 2� d=2

exp
�
� 2� 2� 2jjwjj2�

:

This covariance function is smooth at h = 0 and thus corresponds to Gaussian processes
which are in�nitely mean square di�erentiable. Moreover, Theorem 1.1 implies that the cor-
responding Gaussian processes are in�nitely di�erentiable almost surely. Thanks to the point
4. presented in the introduction of Section1.4, we can easily de�ne the anisotropic Gaussian
covariance function as follows withx = ( x1; : : : ; xd) and ~x = ( x1; : : : ; xd)

k(h) = exp

 

�
1
2

dX

i =1

(x i � ~x i )2

� 2
i

!

: (1.48)
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This kernel is widely used in kriging models but can be unrealistic as mentioned in [Stein,
1999] due to the strong regularity of the underlying Gaussian processes. A covariance function
as the� -Matérn one is in general more appropriate (see below). We illustrate in Figure1.9 the
shape of the 1-dimensional Gaussian kernel with di�erent correlation lengths and examples of
resulting Gaussian process realizations.
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Figure 1.9: Figure (a): the Gaussian kernelk(h) in function of h = x � ~x with di�erent
correlation lengths � . Figure (b): examples of corresponding Gaussian process realizations.

The � -Matérn covariance function

The isotropic � -Matérn covariance function is de�ned as follow (see [Matérn, 1986])

k� (h) =
21� �

�( � )

 p
2� jjhjj

�

! �

K �

 p
2� jjhjj

�

!

; (1.49)

where the parameter� is the correlation length, the parameter� is the regularity parameter,
K � is the modi�ed Bessel function ([Abramowitz and Stegun, 1965] sec 9.6), and� is the
Euler-Gamma function. It has the following power spectrum:

S(w) =
2d� d=2� ( � + d=2) (2� ) �

�( � )� 2�

�
2�
� 2 + 4 � 2jjwjj2

� � (� + d=2)

:

A Gaussian processZ (x) with a � -Matérn covariance kernel is� -Hölder continuous in mean
square and� 0-Hölder continuous almost surely8� 0 < � . Furthermore, for � = p + 1=2 with
p 2 N, the � -Matérn kernel has the following form

k� = p+1 =2(h) = exp

 

�

p
2� jjhjj

�

!
�( p + 1)
�(2 p + 1)

pX

i =0

(p + i )!
i !(p � i )!

 p
8� jjhjj

�

! p� i

:
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In a Gaussian process framework, two popular� -Matérn covariance kernels are the ones for
� = 3=2 and � = 5=2:

k� =3 =2(h) =

 

1 +

p
3jjhjj
�

!

exp

 

�

p
3jjhjj
�

!

;

k� =5 =2(h) =

 

1 +

p
5jjhjj
�

+
5
3

jjhjj2

� 2

!

exp

 

�

p
5jjhjj
�

!

:

Another special case is the one with� = 1=2 which leads to the so-called exponential covariance
function

k� =1 =2(h) = exp
�

�
jjhjj

�

�
:

This corresponds to the covariance of an Ornstein-Uhlenbeck process ([Uhlenbeck and Orn-
stein, 1930]). We can also consider anisotropic Matérn covariance kernels as follows with
x = ( x1; : : : ; xd) and ~x = (~x1; : : : ; ~xd)

k(x; ~x) =
dY

i =1

k� i ;� i (x i � ~x i );

where

k� i ;� i (x i � ~x i ) =
21� � i

�( � i )

 p
2� i jx i � ~x i j

� i

! � i

K � i

 p
2� i jx i � ~x i j

� i

!

:

We illustrate in Figure 1.10 the shape of the 1-dimensional� -Matérn kernel with di�erent
regularity parameters and a correlation length �xed to � = 0 :2. Examples of resulting Gaussian
process realizations are given.
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Figure 1.10: Figure (a): the � -Matérn kernel k(h) in function of h = x � ~x with a �xed
correlation length � = 0 :2 and di�erent regularity parameters � . Figure (b): examples of
corresponding Gaussian process realizations.
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The 
 -exponential covariance function

The isotropic 
 -exponential covariance function is de�ned as follow

k(h) = exp
�

�
�

jjhjj
�

� 
 �
; 0 < 
 � 2:

The positive de�niteness of this kernel is proved in [Schoeneberg, 1938]. Furthermore, for 
 < 2
the corresponding Gaussian processes are not di�erentiable in mean square sense whereas for

 = 2 they are in�nitely di�erentiable. Thus, the use of this kernel for practical applications
can be di�cult to justify. We illustrate in Figure 1.11 the shape of the 1-dimensional
 -
exponential kernel with di�erent parameters 
 and a correlation length �xed to � = 0 :2.
Examples of resulting Gaussian process realizations are given.
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Figure 1.11: Figure (a): the 
 -exponential kernel k(h) in function of h = x � ~x with a �xed
correlation length � = 0 :2 and di�erent parameters � . Figure (b): examples of corresponding
Gaussian process realizations.

1.4.3 Non-stationary covariance kernels

There are many ways to construct non-stationary covariance kernels. As an example, as pre-
sented in [Rasmussen and Williams, 2006] p89 Sec.4.4.2 we can cite the dot product covariance
functions which are invariant to a rotation on the inputs about the origin. These kernels are
commonly used in the �eld of Geostatistics. Another interesting example is the covariance
function presented in [Gibbs, 1997] which allows for varying the length-scale parameter� (x)
in function of x. It is de�ned as follows

k(x; ~x) =
dY

i =1

�
2� i (x)� i (~x)

� 2
i (x) + � 2

i (~x)

� 1=2

exp

 

�
dX

i =1

(x i � ~x i )2

� 2
i (x) + � 2

i (~x)

!

;

where � i (x) are positive functions on x = ( x1; : : : ; xd). In Chapter 7 we use the following
kernel:

k(x; ~x) = x2H + ~x2H � j x � ~xj2H ;
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with H 2 (0; 1). It corresponds the the kernel of a fractional Brownian motion with Hurst
parameter H . This Gaussian process is mean square continuous and nowhere mean square
di�erentiable. Nevertheless, it is Hölder continuous with exponentH � " , 8" > 0. Furthermore,
for H = 1=2 it corresponds to the Brownian motion. We illustrate in Figure 1.12 some
realizations of fractional Brownian motions with di�erent Hurst parameters.
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Figure 1.12: Realization of fractional Brownian motions with di�erent Hurst parameters H .

1.4.4 Eigenfunction analysis

We saw in Theorem1.3 that stationary covariance kernels can have a spectral representation
through the Fourier transform of a probability measure. We discuss in this subsection about
an interesting theorem which allows for having a spectral decomposition of covariance ker-
nels k(x; ~x) thanks to its eigenvalues and eigenfunctions decomposition. Let us consider this
theorem below. It is an extension of the Mercer's theorem [Mercer, 1909] with a probability
measure� and a continuous positive kernelk(x; ~x) satisfying the property supx2 Q k(x; x ) < 1
with Q an nonempty open subset ofRd (see [König, 1986] and [Ferreira and Menegatto, 2009]).

Theorem 1.4 (Mercer's theorem). Let us consider a continuous positive kernelk(x; ~x),
x; ~x 2 Q � Rd - such that supx2 Q k(x; x ) < 1 and Q is an nonempty open set - and a
probability measure� on Q. The kernel k(x; ~x) can be written as follows

k(x; ~x) =
X

p� 0

� p� p(x)� p(~x);

where � p(x) 2 L 2
� (Q) are the eigenfunctions of the trace class integral operator

(Tk f )(x) =
Z

k(x; u)f (u) d� (u);

and (� p)p� 0 the corresponding nonnegative sequence of eigenvalues sorted in decreas-
ing order. Furthermore, (� p(x))p� 0 is an orthonormal basis ofL 2

� (Q) and � p(x) are
continuous for all p such that � p 6= 0 .
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We intensively use this theorem in Chapter7 and Chapter 8. In particular, we will see
that the regularity of a Gaussian process is related to the rate of convergence of its eigenvalues
(� p)p� 0. Furthermore, we always consider in the manuscript that� is a probability measure
such that � (U) > 0 for any nonempty open subsetU of Q � Rd.

We will talk in these chapters about degenerate and non-degenerate kernels. To be clear
in the remainder of the manuscript, we de�ne this notion below

De�nition 1.2. Let us consider a covariance kernelk(x; ~x) and its Mercer's decomposition

k(x; ~x) =
X

p� 0

� p� p(x)� p(~x):

If k(x; ~x) has a in�nite sequence(� p)p� 0 of non-zero eigenvalues, then it is called a non-
degenerate kernel. Otherwise, if it has a �nite number of non-zero eigenvalues, it is called a
degenerate kernel.

We see in Chapter7 that the degenerate or non-degenerate property of a covariance kernel
has a strong impact on the rate of convergence of the generalization error of a Gaussian process
regression.

Right now, let us present some particular results about this decomposition.

1. By de�nition, the function � p(x) satis�es the following equality

� p� p(x) =
Z

k(x; u)� p(u) d� (u):

2. The orthonormal property of (� p(x))p� 0 implies that
Z

� q(x)� p(x) d� (x) = � p= q;

where � stands for the Kronecker symbol.

3. We have the following equality:
Z

k(x; x )d� (x) =
X

p� 0

� p < + 1 ;

This shows that the operator Tk is trace class with

tr( Tk ) =
X

p� 0

� p:

4. For covariance kernels such thatk(x; x ) = � 2 8x, we have8x:

� 2 =
X

p� 0

� p� p(x)2 =
X

p� 0

� p;

since
R

� 2 d� (u) = � 2.
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Furthermore, with the Mercer's decomposition, we have the analogous of the complex
representation of a Gaussian process as stated below.

Theorem 1.5 (Karhunen-Loeve decomposition). Let us consider a Gaussian process
Z (x) with covariance kernelk(x; ~x) and the following Mercer's decomposition

k(x; ~x) =
X

p� 0

� p� p(x)� p(~x):

Then, Z (x) can be represented through the following form

Z (x) =
X

p� 0

p
� p� p(x)Zp;

where (Zp)p� 0 are independent and identically distributed random variables with distri-
bution N (0; 1) de�ned as

p
� pZp =

Z
Z (u)� p(u) d� (u);

An important property of the Karhunen-Loeve decomposition is that it provides the best
spectral decomposition of a Gaussian process in the sense that it minimizes the total mean
squared error resulting of its truncation as stated in the following proposition.

Proposition 1.1. Let us consider any orthonormal basis( p(x))p� 0 of L 2
� (Q) and the

following decomposition ofZ (x)

Z (x) =
X

p� 0

� Z
Z (u) p(u) d� (u)

�
 p(x):

Then, for a given �p > 0, the basis minimizing

Z
E

2

4

0

@
X

p� �p

� Z
Z (u) p(u) d� (u)

�
 p(x)

1

A

23

5 d� (x)

is given by(� p(x))p� 0, i.e. the one of the Karhunen-Loeve decomposition. We note that
the functions � p(x) for p � 0 are unique if and only if the values of� p for p � 0 are
positive and distinct.

Proof. Let us consider( p(x))p� 0 an orthonormal basis ofL 2
� (Q) and let us denote by

"2(x) = E

2

4

0

@
X

p� �p

� Z
Z (u) p(u) d� (u)

�
 p(x)

1

A

23

5 :

A direct calculation gives that

"2(x) =
X

p;q� �p

 p(x) q(x)
Z Z

k(u; v) p(u) q(v) d� (u) d� (v):
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Then, by integrating we �nd that �"2 =
R

"2(x) d� (x) equals:

�"2 =
X

p� �p

Z Z
k(u; v) p(u) p(v) d� (u) d� (v):

Thus, we want to minimize �"2 with the constraint of normalized  p(x). Let us consider the
Lagrangien formulation of this problem

X

p� �p

Z Z
k(u; v) p(u) p(v) d� (u) d� (v) � 
 p

� Z
 p(u) p(u) d� (u) � 1

�
;

where 
 p are the Lagrangian multipliers. By di�erentiation with respect to  p(u) and setting
the derivatives equal to 0, we �nd that for p � �p

Z
k(u; v) p(v) d� (v) � 
 p p(u) = 0 ;

i.e.  p(x) = � p(x) and 
 p = � p for all p � �p.

However, contrary to the complex representation, closed form expressions for such a spec-
tral decomposition is rarely available. The Nyström procedure can be used to numerically
approximate the Karhunen-Loeve spectral decomposition of a Gaussian process. This proce-
dure being based on a quadrature numerical integration, it could be an issue to perform it in
high dimension except for tensorised kernels. Indeed, in that case, the approximation can be
performed by consideringd 1-dimensional numerical integrations.

First, let us consider the Karhunen-Loeve decomposition of the 1-dimensional Gaussian
processZ (x), x 2 [0; 1]:

Z (x) =
X

p� 0

p
� p� p(x)Zp: (1.50)

To evaluate the Karhunen-Loeve spectral decomposition ofZ (x) we have to solve the following
eigenproblem8p 2 N:

� p� p(x) =
Z

[0;1]
k(x; u)� p(u) d� (u): (1.51)

Let us consider that the measure� has a densityf (x). We can consider the following numerical
integration:

� p� p(x) =
Z

[0;1]
k(x; u)� p(u)f (u) du �

1
N

NX

i =1

k(x; x i )� p(x i )f (x i ); (1.52)

where (x i ) i =1 ;:::;N is a regular grid on [0; 1] (the extension to any intervals [a; b] is straight-
forward). Then, by considering the eigenfunctions� p(x) at points (x i ) i =1 ;:::;N , we obtain the
following eigenproblem:

� R
p � p = K N � p; (1.53)

where � 0
p = ( � (x1); : : : ; � (xN )) , � R

p = � pN and [K N ]i;j = k(x j ; x i )f (x i ). Therefore, � R
p =N

is an estimator for � p for i = 1 ; : : : ; N . It can be shown that � R
p =N converges to� p when

N ! 1 [Baker, 1977].
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Then, the Nyström method for approximating the pth eigenfunction [Baker, 1977] is given
by:

� p(x) �
1

� R
p

k0(x)� p; (1.54)

where k0(x) = ( k(x; x i ); : : : ; k(x; x N )) . Thus, given a point x, we can sampleZ (x) by consid-
ering the following truncated series:

Z (x) �
X

p� Np

k0(x)� pq
� R

p N
Zp: (1.55)

Second, let us consider the followingd-dimensional Gaussian process,x 2 [0; 1]d:

Z (x) � GP(0;
dY

i =1

ki (x i ; ~x i )) : (1.56)

We note that Z (x) has ad-dimensional tensorised kernel. We have the following Karhunen-
Loeve representation ofZ (x):

Z (x) =
X

p1 ;:::;pd � 0

dY

i =1

p
� pi � pi (x)Zp1 ;:::;pd ; (1.57)

where� pi and � pi (x) are respectively the eigenvalues and eigenfunctions of the kernelki (x; ~x).
Thus, to compute a realization ofZ (x) we just have to consider the Nyström approximation
of each kernelki (x; ~x) for i = 1 ; : : : ; d (i.e. it corresponds to d 1-dimensional numerical
integrations).

1.5 Kriging models: two other approaches

The kriging equations were presented in Section1.2through a Bayesian approach. Nonetheless,
it was not the original approach suggested by [Krige, 1951]. In Subsection 1.5.1 we present
this approach based on a linear formulation as presented in Equation (1.5). In particular,
we will see that it leads to the same model as the simple and universal kriging one. We
use this result in Chapter 7 to show asymptotic results on the predictive variance in a noisy
kriging framework. Then, in Subsection1.5.2 we present a closely related tool coming from
the regularization theory in a reproducing kernel Hilbert space.

1.5.1 The Best Linear Unbiased Predictor

We present in this subsection the concept of the Best Linear Unbiased Predictor (BLUP). We
still consider the problem of predicting a random variableZ (x), x 2 Q � Rd from a vector of
observationszn at points D . We recall that Z (x) is a Gaussian process of meanf 0(x)� and
covariance structurek(x; ~x) modeling the objective functionz(x). First of all, we consider the
parameter � known and equal to zero. Let us consider the linear predictor:

Ẑ (x) = a0 + a0Zn : (1.58)
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We are looking for an unbiased predictor, i.e.E
h
Ẑ (x)

i
= E [Z (x)]. The unbiased property

leads to a0 = 0 . Then, we want to determine the best linear unbiased predictor with respect
to the mean squared errors loss function. Thus, the problem consists in �nding the coe�cient
a solving

min
a

E
h�

a0Zn � Z (x)
� 2

i
: (1.59)

We have
E

h�
a0Zn � Z (x)

� 2
i

= k(x; x ) + a0Ka � 2a0k(x);

which is minimal for a = k0(x)K � 1. Thus, the BLUP is given by:

Ẑ (x) = k0(x)K � 1Zn (1.60)

and its mean squared error (MSE) is given by

MSEẐ (x) = k(x; x ) � k0(x)K � 1k(x): (1.61)

Considering the observed values zn , equations (1.60) and (1.61) with
k(x; ~x) = � 2r (x; ~x) are identical to the ones of the Simple kriging (1.3) and (1.4).
Furthermore, the Gaussian property of the underlying stochastic processZ (x) im-
plies that the predictive distributions of the two approaches are identical.

Now, let us assume that� is unknown and consider an unbiased linear predictor of the form

Ẑ (x) = a0Zn : (1.62)

The unbiased property imposes the constrainta0F� = f 0(x)� , 8� , i.e. F0a = f (x). Thus, the
goal is to solve the following constraint optimization problem

(
mina E

h
(a0Zn � Z (x))2

i

F0a = f (x)

or equivalently (
mina k(x; x ) + a0Ka � 2a0k(x)
F0a = f (x)

: (1.63)

We can use the method of Lagrange multipliers to minimize the quadratic form in (1.63)
subject to F0a = f (x). We aim to �nd (a; � ) 2 Rn+ p minimizing the Lagrangian formulation

k(x; x ) + a0Ka � 2a0k(x) + 2 � 0(F0a � f (x)) :

We can calculate the gradients with respect to(a; � ) and set it equal to zero. We �nd the
following system of equations

(
F0a � f (x) = 0
Ka � k(x) + F� = 0

;
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which leads to
 

�
a

!

=

 
0 F0

F K

! � 1  
f (x)
k(x)

!

=

 
� Q QF 0K � 1

K � 1FQ K � 1 � K � 1FQF 0K � 1

!  
f (x)
k(x)

!

;

with Q = ( F0K � 1F) � 1. Therefore, we �nd that

a = K � 1FQf (x) +
�
K � 1 � K � 1FQF 0K � 1�

k (x)

and the resulting predictor is

Ẑ (x) = f 0(x)�̂ + k0(x)K � 1
�

Zn � F �̂
�

; (1.64)

with �̂ = ( F0K � 1F) � 1F0K � 1Zn . The MSE of the predictor Ẑ (x) in (1.64) is then given by

MSEẐ (x) = k(x; ~x) � k0(x)K � 1k(x)
+( f 0(x) � k0(x)K � 1F)(F0K � 1F) � 1(f 0(x) � k0(x)K � 1F)0 : (1.65)

Equations (1.64) and (1.65) with k(x; ~x) = � 2r (x; ~x) are identical to the ones of
the Universal kriging (1.20) and (1.21). Considering the Gaussian property of the
underlying stochastic processZ (x), it gives that the two approaches are equivalent.

1.5.2 Regularization in a Reproducing Kernel Hilbert Space

In this subsection, we present how the Gaussian process regression theory can be related to
the regularization problem in a Reproducing Kernel Hilbert Space (RKHS). First of all, we
introduce some concepts about RKHS and then we present the famous representer theorem
given a general form for the solution of a regularization problem in a RKHS. The forthcoming
developments were inspired by the book of [Wahba, 1990] and [Rasmussen and Williams,
2006]. We present here a brief introduction to RKHS, for more detail about them, the reader
could refer to the article of [Aronszajn, 1950] or the book of [Wahba, 1990]. Furthermore,
for a deep presentation of regularization in a RKHS and the correspondence with Gaussian
process regression, we refer to the thesis of [Vazquez, 2005] Chapter 3.

Covariance functions and reproducing kernels in Hilbert spaces

Foremost, we de�ne a general index setX . Examples ofX can be various (e.g.X = f 1; : : : ; N g,
X = [0 ; 1], X = S with S the unit sphere,. . . ). For our purpose, we always consider that
X � Rd but the results presented in this paragraph remain true for more generalX . We saw
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in Section 1.1 that a kernel k(x; ~x) with x; ~x 2 X is positive de�nite if for any a1; : : : ; an 2 R,
and distinct x1; : : : ; xn 2 X , n 2 N� , we have

nX

i;j =1

ai aj k(x i ; x j ) � 0:

and
P n

i;j =1 ai aj k(x i ; x j ) = 0 if and only if ai = 0 for all i = 1 ; : : : ; n. Furthermore, we
can de�ne a Gaussian processZ (x) with covariance structure k(x; ~x) if it ful�lls the positive
de�niteness property. We will see in the forthcoming developments that we can associate the
kernel k(x; ~x) to a RKHS. Let us consider the following de�nition:

De�nition 1.3 (Reproducing Kernel Hilbert Space). Let H be a Hilbert space of real functions
f de�ned on an index setX . Then H is called a reproducing kernel Hilbert space endowed with
an inner product h:; :i H and norm jj f jjH =

p
hf; f i H if there exists a function k : X � X ! R

with the following properties:

1. For every x 2 X , the function kx : ~x 7! k(x; ~x) belongs toH .

2. k(x; ~x) has the reproducing propertyhkx ; f i H = f (x), 8f 2 H .

3. 8x 2 X the evaluation functional kx (~x) is a bounded linear functional, i.e. 9M x such
that 8f 2 H , jf (x)j � M x jj f jjH .

The form kx (:) for the evaluation functional comes from the Riesz representation theorem.
We note that we have also the propertyhkx ; k~x i H = k(x; ~x). For a given RKHS, the representer
kx (:) of evaluation at x is unique. The converse is true as presented in the following theorem
[Aronszajn, 1950]:

Theorem 1.6 (Moore-Aronszajn theorem). To every RKHS there corresponds a unique
positive de�nite function k(x; ~x) called the reproducing kernel and conversely, given a
positive de�nite function k(x; ~x) we can construct a unique RKHS of real-valued functions
on X with k(x; ~x) as its reproducing kernel.

Proof. If H is a RKHS, then the reproducing kernel isk(x; ~x) = hkx ; k~x i H , where for eachx,
~x, kx and k~x are the representers of evaluation atx and ~x. Furthermore, k(x; ~x) is positive
de�nite since, for any distinct x1; : : : ; xn 2 X , a1; : : : ; an 2 R, n 2 N� , we have:

nX

i;j =1

ai aj k(x i ; x j ) =
nX

i;j =1

ai aj hkx i ; kx j i H

= jj
nX

i =1

ai kx i jj
2
H � 0:

and jj
P n

i =1 ai kx i jj
2
H = 0 if and only if ai = 0 for all i = 1 ; : : : ; n. Conversely, givenk(x; ~x)

we construct H � H k as follows. For each �xedx 2 X , denote by kx the real-valued function
such that

kx (:) = k(x; :):
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Then, construct a manifold by taking all �nite linear combinations of the form

nX

i =1

ai kx i ;

for all choices ofn, a1; : : : ; an 2 R, x1; : : : ; xn 2 X with the inner product

h
nX

i =1

ai kx i ;
nX

i =1

~ai k~x i i H =
nX

i;j =1

ai ~aj hkx i ; kx j i H =
nX

i;j =1

k(x i ; x j )ai ~aj :

The inner-product is well-de�ned since k(x; ~x) is positive de�nite. Furthermore, for any f
such that f (x) =

P n
i =1 ai kx i (x) we havehkx ; f i H = f (x). In this linear manifold we have

jf n (x) � f (x)j = jhf n � f; k x i H j � jj f n � f jjH jj kx jjH :

Thus, the norm convergence implies the point wise convergence and we can adjoin to this
manifold all the limits of Cauchy sequences of functions in the manifold. The resulting Hilbert
space is the RKHSH with the reproducing kernel k(x; ~x).

In the Hilbert space L 2 with the inner product hf; g i L 2 =
R

f (x)g(x) dx, the dirac delta
function is the representer of evaluation. Indeed,f (x) =

R
f (u)� (x � u) du. Nevertheless,

the diract delta function does not belong to L 2 and thus L 2 is not a RKHS. As noted in
[Rasmussen and Williams, 2006], kernels are the analogues of dirac delta functions within the
smoother RKHS.

Now let us consider the eigenfunction decomposition of the kernelk(x; ~x) (see Mercer's
Theorem 1.4 in Section 1.4) with � a probability measure, supx2X k(x; x ) < 1 and k(x; ~x) is
continuous on X 2 Rd - X is a nonempty open set. There exists an orthonormal sequence of
eigenfunctions, (� p(x))p� 0 2 L 2

� (X ) with the corresponding eigenvalues(� p)p� 0 � 0 sorting
in decreasing order, such that

Z

X
k(x; ~x)� p(~x) d� (~x) = � p� p(x); p � 0;

k(x; ~x) =
X

p� 0

� p� p(x)� p(~x);

Z

X

Z

X
k2(x; ~x) d� (x) d� (~x) =

X

p� 0

� 2
p < 1 :

We note that for the caseX = f 1; : : : ; N g the analogs of the previous equations areK � p =
� p� p, K = ��� and tr( K 2) =

P N
i =1 � 2

p where K = [ k(i; j )] i;j =1 ;:::;N , � p = [ � p(i )] i =1 ;:::;N ,
� = diag ([ � i ]i =1 ;:::;N ) and � = [ � i ]i =1 ;:::;N is orthogonal. We have the following proposition:
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Proposition 1.2. Let us consider a covariance kernelk(x; ~x) with an eigenfunction
decompositionk(x; ~x) =

P
p� 0 � p� p(x)� p(~x) with respect to the measure� . If we consider

f (x) =
P

p� 0 f p� p(x), f (x) is in the RKHS H with reproducing kernelk(x; ~x) if and only
if

X

p� 0

f 2
p

� p
< 1

and jj f jj2
H =

P
p� 0 f 2

p =� p. If f (x) 2 H , then we have the equality

f p =
Z

X
f (x)� p(x)d� (x); for p such that � p > 0:

Proof. The collection of functions f (x) with
P

p� 0 f 2
p =� p < 1 is a Hilbert space H with

jj f jj2
H =

P
p� 0 f 2

p =� p. We aim to prove that H is a RKHS with reproducing kernel k(x; ~x) =
P

p� 0 � p� p(x)� p(~x). We have

jjkx jj2
H =

X

p� 0

� 2
p� 2

p(x)

� p
=

X

p� 0

� p� 2
p(x) = k(x; x ) < 1 :

Thus, kx belongs toH . Furthermore, we have the equalities

hf; k x i H =
X

p� 0

f p(� p� p(x))
� p

=
X

p� 0

f p� p(x) = f (x);

which lead that k(x; ~x) has the reproducing property. Finally, we show that the evaluation
functional is bounded:

jf (x)j =

�
�
�
�
�
�

X

p� 0

f p(
p

� p� p(x))
p

� p

�
�
�
�
�
�

�

vu
u
t

X

p� 0

f 2
p

� p

X

p� 0

� p� 2
p(x)

= jj f jjH jj kx jjH :

We can now consider the RKHS constituted by the functions of the formf (x) =
P

p� 0 f p� p(x)
with the inner product

hf; g i H =
X

p� 0

f pgp

� p
; (1.66)

with g(x) =
P

p� 0 gp� p(x). We note that despite the fact that the eigenvalue decomposi-
tion depends on the measure� , the inner product is invariant under a change of measure
[Kailath, 1971]. Another view of the RKHS can be obtained from the reproducing kernel map
construction as stated in the following proposition.

Proposition 1.3. Let us consider a covariance kernelk(x; ~x) 8n 2 N, x i 2 X , � i 2 R,
f (x) =

P n
i =1 � i k(x; x i ) is in the RKHS H with reproducing kernelk(x; ~x), and jj f jj2

H =
P n

i;j =1 � i � j k(x i ; x j ).
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Proof. The collection of functions f (x) =
P n

i =1 � i k(x; x i ) is a Hilbert spaceH with jj f jj2
H =

P n
i;j =1 � i � j k(x i ; x j ). Furthermore, kx belongs toH and has the reproducing property:

hf; k x i H =
nX

i =1

� i k(x i ; x) = f (x):

We note that we recognize the form of the predictor given in Equation (1.6) in Subsection
1.2.1.

An example of Reproducing Kernel Hilbert Space in [0; 1]

Let us consider a function f : [0; 1] ! R with m � 1 continuous derivatives and such that
f (m) 2 L 2([0; 1]) where f (q) denote theqth derivative of f . The Taylor series expansion gives

f (x) =
m� 1X

q=0

xq

q!
f (q) (0) +

Z 1

0

(x � u)m� 1
+

(m � 1)!
f (m) (u) du;

with (x � u)+ = ( x � u)1x� u� 0. Furthermore, let us considerA m the class of functions such
that

�
f (q) (0) = 0

�
, 8q = 0 ; : : : ; m � 1. Then f 2 A m implies

f (x) =
Z 1

0
Gm (x � u)f (m) (u) du;

where Gm (x � u) = ( x � u)m� 1
+ =(m � 1)!. The function Gm is the Green's function for the

problem f (m) = g. Then, let us denote byH 0
m the following space

H 0
m :=

n
f 2 A m : [0; 1] ! R;

�
f (q) (0) = 0

�
8q = 0 ; : : : ; m � 1; f (m) 2 L 2([0; 1])

o
:

The collection of functions H 0
m is a Hilbert space with norm jj f jj2

H 0
m

=
R1

0

�
f (m) (u)

� 2
du.

Furthermore, let us consider the kernel

k(x; ~x) =
Z 1

0
Gm (x � u)Gm (~x � u) du: (1.67)

Denoting kx = k(x; :) we have
k(m)

x (~x) = Gm (x � ~x):

Thus, a simple calculation gives that

jjkx jj2
H 0

m
=

Z 1

0

�
k(m)

x (u)
� 2

du =
Z 1

0
(Gm (x � u))2 du = k(x; x ):

Therefore kx is in H 0
m . Furthermore, we have

hf; k x i H 0
m

=
Z 1

0
f (m) (u)k(m)

x (u) du =
Z 1

0
f (m) (u)Gm (x � u) du = f (x)

and kx has the reproducing property. Finally, it is easy to check that the evaluation functional
if bounded:

jf (x)j = hf; k x i H 0
m

� jj f jjH 0
m

jj kx jjH 0
m

= jj f jjH 0
m

p
k(x; x ):
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Connection with Gaussian processes.

Let us consider a Gaussian processZ (x), x 2 X with zero mean and covariance kernelk(x; ~x) =
P

p� 0 � p� p(x)� p(~x). Then, the Karhunen-Loeve representation ofZ (x) is given by

Z (x) �
X

p� 0

Zp� p(x);

where (Zp)p� 0 are independent Gaussian random variables with mean zero and variance� p

such that
Zp =

Z
Z (x)� p(x) d� (x): (1.68)

The integral (1.68) is well de�ned in quadratic mean [Cramer and Leadbetter, 1967]. Nonethe-
less, ifk(x; ~x) is non-degenerate (i.e., if it has a in�nite number of non-zero eigenvalues), then
samples ofZ (x) do not belong to H. Therefore, the assumptionf 2 H and f is a sample
of the Gaussian processZ (x) are not equivalent. To illustrate this statement, let us consider
the degenerate kernelk �p(x; ~x) =

P
p� �p � p� p(x)� p(~x) and the corresponding Gaussian process

Z �p(x) =
P

p� �p Zp� p(x). We have

E
�
jZ �p(x) � Z (x)j2

�
=

1X

p=�p+1

� p� 2
p(x)

�p!1
�! 0:

Therefore, Z �p(x) tends to Z (x) in mean square sense but

E
�
jjZ �p(x)jj2

H

�
=

�pX

p=0

E
�
jZpj2

�

� p
= �p + 1

�p!1
�! 1 :

However, as noted in [Rasmussen and Williams, 2006], the posterior mean of the Gaussian
process after observing some data will lie in the RKHS due to the averaging.

Now, let us consider the Hilbert spaceZ spanned byZ (x), x 2 X . It is the collection of
random variables of the formZ =

P n
i =1 � j Z (x i ) with the inner product hZ1; Z2i = E [Z1Z2]

and all of their quadratic mean limits. First, the equalities

hZ (x); Z (~x)i = E [Z (x)Z (~x)] = k(x; ~x) = hkx ; k~x i

show that there is a correspondence between the inner product ofZ and the one ofH . Now
let us consider a bounded linear function inH with representer � . Thus, � can be written in
the form � (x) = lim n � (n) (x) with � (n) (x) =

P n
i =1 � i k(x i ; x) . Furthermore, let us de�ne Z1

as the L2-limit of
P n

i =1 � i Z (x i ) = Z (n) , � (n) converges inH if and only if Z (n) converges in
L2 . Therefore, if the limit limn E

�
(Z1 �

P n
i =1 � i Z (x i ))2

�
= 0 holds, we have

E [Z1 Z (x)] = lim
n

nX

i =1

� i E [Z (x i )Z (x)] = lim
n

nX

i =1

� i k(x i ; x) = � (x):

Therefore, the Hilbert spaceZ is isomorphic to H with the correspondencesZ (x) � kx ,
Z1 � � and a preserved inner product.
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Regularization problem in a RKHS

Let us consider the following functional:

J (f ) =
�
2

jj f jj2
H + Q(zn ; f n ); (1.69)

where zn is the observed values of the objective functionz(x) we are approximating, f n =
f (D ) = ( f (x1); : : : ; f (xn ))0 and � is a scalar parameter. The termQ(zn ; f n ) in (1.69) is a
measure of the distance between the observed valueszn and the predicted onesf n . Moreover,
the norm jj f jjH in the Hilbert space H represents the regularity of the predictor f . The
purpose of this section is to determine the functionf minimizing (1.69). In a Gaussian
process regression framework, we consider thatQ(zn ; f n ) is a squared loss function, i.e.

Q(zn ; f n ) = ( zn � f n )0(zn � f n ):

More general forms of loss functions can be found in the book of [Wahba, 1990]. Let us
consider the following Theorem:

Theorem 1.7 (Representer Theorem). Let us consider a functionf in a RKHS H with
the reproducing kernelk(x; ~x). Each minimizer f 2 H of

J (f ) =
�
2

jj f jj2
H + Q(zn ; f n );

has the form

f (x) =
nX

i =1

� i k(x; x i ):

Again we recognize the form of the kriging predictor giving in Equation (1.6). Theorem
1.7 was �rst proved by [Kimeldorf and Wahba, 1971] in the case of squared loss functions.

Now let us consider the following functional

J (f ) =
1
2

jj f jj2
H +

1
2� 2

"
(zn � f n )0(zn � f n ): (1.70)

Theorem 1.7 gives us that the solution of (1.70) has the form f (x) = k0(x)� n with � n =
(� i ; : : : ; � n )0, n 2 N and k(x) = [ k(x; x i )] i =1 ;:::;n . Thus, the functional (1.70) can be written:

J (� ) =
1
2

(� n )0K � n +
1

2� 2
"

(zn � K � n )0(zn � K � n )

=
1
2

(� n )0
�

K +
1
� 2

"
K 0K

�
� n �

1
� 2

"
(zn )0K � n +

1
2� 2

"
(zn )0zn ;

with K = [ k(x i ; x j )] i;j =1 ;:::;n and noticing that jj f jj2
H = ( � n )0K � n as stated in Proposition

1.3. The minimum of J (� ) with respect to � n is given by

�̂ n =
�
K + � 2

" I
� � 1

zn :

Thus, the solution of the regularization problem is given by:

ẑ(x) = k0(x)
�
K + � 2

" I
� � 1

zn ; (1.71)
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which is exactly the form of the predictor in a noisy-kriging framework (1.8) with a constant
observation noise variance, i.e.� = � 2

" I . We can consider two extreme cases for the functional
J (f ) presented in Equation (1.70). First, let us consider the case� 2

" ! 1 . Thus, J (f ) becomes
J (f ) = jj f jj2

H which means that we only considered the penalization on the regularity off .
We can derive the same calculations as before and we �nd that� n = 0 . If we refer to the
kriging framework, it corresponds to the mean of the Gaussian processZ (x) modeling z(x) in
a simple kriging case. In fact, as presented by [Wahba, 1990] Sec 1.3, this case corresponds
to the one of the generalized linear regression. Then, let us consider the asymptotic� 2

" ! 0
which corresponds to the minimization problemJ (f ) = ( zn � f n )0(zn � f n ). In that case we
�nd the following solution for the minimization problem

�̂ n = K � 1zn ;

which corresponds to the predictor

ẑ(x) = k0(x)K � 1zn : (1.72)

We recognize the form of the predictor obtained in a simple Kriging framework with noisy-free
observations (1.3).

A useful property of RKHS

The Riesz representation theorem tells us that any bounded linear functionL in H has a
unique representer� in H . The powerful property of the reproducing kernelkx is that we can
deduce� from it. Indeed, we have

� (~x) = h�; k ~x i H = Lk ~x ;

which means that � (~x) can be obtained by applyingL to k~x . For example, if we consider
X = Rd and Lf =

R
f (u) du then � (~x) =

R
k~x (u) du. Moreover, if we considerX = R, f (x)

and k~x (x) di�erentiable and Lf = d
dx f (x) for somex 2 R, then � (~x) = d

dx k~x (x).
Then we can consider the spaceH � spanned by� and its orthogonal H ?

� . The spacesH �

and H ?
� are two subspaces ofH such that H = H � �H ?

� and are themselves RKHS. As stated
in [Berlinet and Thomas-Agnan, 2004] Theorem 11, the reproducing kernelk�

x of H � is given
by the orthogonal projection of kx on H � :

k�
x = hkx ; � i H

�
jj � jj2

H
= � (x)

�
jj � jj2

H
: (1.73)

Furthermore, the relation H = H � � H ?
� implies that the kernel of H ?

� is given by kx � k�
x .

We note that the norm jj � jj2
H can be deduced from the following equality

jj � jj2
H = h�; � i H = hLk x ; Lk ~x i H

As an application, a very interesting use of this property were suggested by [Durrande
et al., 2013] who propose an ANOVA decomposition for the reproducing kernelk(x; ~x). Then,
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this decomposition is used to perform sensitivity analysis in an e�cient way. Their approach
is based on the following proposition (see [Durrande et al., 2013] Proposition 1):

Proposition 1.4. Let H be an RKHS with a reproducing kernelk(x; ~x), x; ~x 2 R, then
H can be decomposed as a sum of two orthogonal RKHS

H = H 1
?
� H 0;

whereH 0 is a RKHS of zero-mean functions andH 1 is its orthogonal.

The proof is straightforward according to the previous discussion by considering the
bounded linear functional Lf =

R
f (u) du with its representer � (~x) =

R
k~x (u) du. By ap-

plying the presented results, the kernel forH 1 is given by k1
x (~x) = � (x)� (~x)=jj � jj2

H , i.e:

k1
x (~x) =

Z
kx (u) du

R
k~x (u) du

R R
k(v; u) du dv

:

Then, the reproducing kernel of the orthogonal spaceH ?
1 = H 0 - which corresponds to the

collection of functions g such that h�; g i H = Lg =
R

g(u) du = 0 , i.e. the space of zero-mean
functions - is given by

k0
x (~x) = kx (~x) � k1

x (~x):

Example of a Gaussian process with zero mean function. Let us consider a 1-
dimensional Gaussian processZ (x), x 2 [0; 1] with zero mean and covariance kernelk(x; ~x) =
exp (�j x � ~xj=� ) with � = 10. It corresponds to the Ornstein-Uhlenbeck kernel presented in
Subsection1.4.2. The advantage of this kernel is that a closed form expression can be given
for Equation (1.73). Indeed, after straightforward calculations, we �nd that

k1(x; ~x) =

�
2� � �

�
exp(� x

� ) + exp( x� 1
� )

�� �
2� � �

�
exp(� ~x

� ) + exp( ~x� 1
� )

��

2� � 2� 2 + 2 � 2 exp
�
� 1

�

�

and the reproducing kernel for the sub-RKHS of zero mean functions is given byk0(x; ~x) =
k(x; ~x) � k1(x; ~x). We illustrate in Figure 1.13 one realization of a Gaussian process with
covariance kernelk(x; ~x) and the same realization but with covariance kernelk0(x; ~x).
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Figure 1.13: Example of realizations for the Gaussian processesZ (x) with covariance kernel
k(x; ~x) and Z 0(x) with covariance kernel k0(x; ~x). k0(x; ~x) is the reproducing kernel of the
sub-RKHS of zero mean functions on[0; 1]. The two realizations are computed thanks to the
Cholesky's decomposition method (see Subsection1.4.2) with the same Gaussian white noise.
We empirically observe that the mean of the realization ofZ 0(x) is close to 0, as expected.
Indeed, it equals� 3:5:10� 5 whereas the one ofZ (x) is � 3:1:10� 1.
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Chapter 2
Co-kriging models

In Chapter 1, we have presented how to surrogate an objective functionz(x) with x 2 Q �
Rd, Q an nonempty open set, andz(x) 2 R. Nevertheless, in practical applications, the
objective function can be multivariate, i.e. its output can lie in Rs with s 2 N� . We denote
such functions by z(x) = ( z1(x); : : : ; zs(x)) 2 Rs with x 2 Q. Furthermore, the di�erent
components(zi (x)) i =1 ;:::;s of the vector of functions z(x) can be dependent. Therefore, if we
want to approximate a component zi (x) of z(x) it could be worthwhile to take into account
the other ones(zj (x)) j 6= i .

In this chapter, we are interested in that framework. The component ofz(x) that we want
to predict is generally called the principal component and the other ones are the secondary
components.

In Section 2.1 we present the extension of the kriging model for multivariate functions.
This extension is called co-kriging and was �rst developed in geostatistics (see [Chilès and
Del�ner, 1999] and [Wackernagel, 2003]). Then, in Section 2.2 we present the original model
of co-kriging suggested in the geostatistical literature. In Section2.3 we deal with the de�-
nition of valid covariance kernels for co-kriging models. Finally, in Section2.4 we present an
approach in computer experiments using co-kriging models to surrogate the output of a code.
It corresponds to the case where we want to take into account the code output derivatives
into the model.

2.1 Bayesian Kriging models for vectorial functions

Let us suppose that we want to approximate the last componentzs(x) of z(x) by taking
into account the other components(zi (x)) i =1 ;:::;s� 1. Analogously to the Gaussian process
regression, we consider that the output of the objective function is a multivariate Gaussian
processZ(x) = ( Z1(x); : : : ; Zs(x)) with mean m(x) and matrix-valued covariance function

69
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V (x; ~x). In a multivariate case, we have

m(x) =

0

B
@

m1(x)
...

ms(x)

1

C
A (2.1)

and

V (x; ~x) =

0

B
@

k11(x; ~x; � 11) : : : k1s(x; ~x; � 1s)
...

. . .
...

ks1(x; ~x; � s1) : : : kss(x; ~x; � ss)

1

C
A ; (2.2)

where kij (x; ~x) = cov ( Z i (x); Z j (~x); � ij ), i; j = 1 ; : : : ; s and mi (x) = E [Z i (x)], i = 1 ; : : : ; s.
We note that the hyper-parameters� ij , representing the parameters of the covariance kernel
kij (x; ~x), can include the variance parameter. For the moment, we consider thatV (x; ~x) is
a valid matrix-valued covariance function. In fact, its choice is non-trivial since assuring the
positive de�niteness of V (x; ~x) could be an issue. We present in Section2.3 how to de�ne
admissible covariance structures in a multivariate context. It is though important to note that
V (x; ~x) is not necessarily symmetric, i.e. we can havekij (x; ~x) 6= kji (x; ~x). Moreover, as in a
kriging case, we consider that thei th component ofm(x) is of the form mi (x) = f 0

i (x)� i with
f 0
i (x) a vector of functions of sizepi .

2.1.1 Simple co-kriging equations

Let us denote byZ (s) = (( Zn1
1 )0; : : : ; (Zns

s )0)0the values of(Z i (x)) i =1 ;:::;s at points in (D i ) i =1 ;:::;s

where D i = ( x(i )
1 ; : : : ; x(i )

n i ), x(n i )
j 2 Rd, j = 1 ; : : : ; ni , i = 1 ; : : : ; s. Furthermore, we denote

by z(s) = ( zn1
1 ; : : : ; zns

s ) the values of (zi (x)) i =1 ;:::;s at points in (D i ) i =1 ;:::;s and by M (s) =
(M 1; : : : ; M s) the values of (mi (x)) i =1 ;:::;s at points in (D i ) i =1 ;:::;s . Thus, we have M i =
f 0
i (D

i )� i := F i � i with F i a matrix of size ni � pi , i = 1 ; : : : ; s .
The purpose of the co-kriging model is to predict the value ofZs(x) by considering the

known valuesz(s) . As in the simple kriging case, the predictive distribution of the simple co-
kriging is given by [Zs(x)jZ (s) = z(s) ; (� i ) i =1 ;:::;s ; (� ij ) i;j =1 :::;s ]. Let us consider the following
Gaussian vector

0

B
B
B
B
@

Zs(x)
Z1
...

Zs

1

C
C
C
C
A

� N

0

B
B
B
B
@

0

B
B
B
B
@

f 0
s(x)� s

F1� 1
...

F s� s

1

C
C
C
C
A

;

0

B
B
B
B
@

kss(x; x ) k0
s1(x) : : : k0

ss(x)
k1s(x) K 11 : : : K 1s

...
...

. . .
...

kss(x) K s1 : : : K ss

1

C
C
C
C
A

1

C
C
C
C
A

; (2.3)

with ksj (x) = [ ksj (x; x (j )
k )]k=1 ;:::;n j , k js (x) = [ kjs (x(j )

k ; x)]k=1 ;:::;n j and K ij = [ kij (x(i )
k ; x(j )

l )]k=1 ;:::;n i
l=1 ;:::;n j

.

We note that although in general kij (x; ~x) 6= kji (x; ~x), we have the equalityksj (x) = k js (x)
and K ij = K 0

ji . Indeed, the equality cov (Z i (x); Z j (~x)) = cov ( Z j (~x); Z i (x)) implies that
ksj (x; ~x) = kjs (~x; x ) and thus k ij (x) = k ji (x) and K ij = K 0

ji . Thus, we obtain that the predic-
tive distribution [Zs(x)jZ (s) = z(s) ; (� i ) i =1 ;:::;s ; (� ij ) i;j =1 :::;s ] is Gaussian with meanmZs ;SK (x)
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and variances2
Zs ;SK (x) given by:

mZs ;SK (x) = f 0
s(x)� s + k0

s(x)V � 1
s

�
z(s) � M (s)

�
(2.4)

and

s2
Zs ;SK (x) = kss(x; x ) � k0

s(x)V � 1
s ks(x); (2.5)

where k0
s(x) =

�
k0

s1(x) : : : k0
ss(x)

�
and

V s =

0

B
@

K 11 : : : K 1s
...

. . .
...

K s1 : : : K ss

1

C
A : (2.6)

Considering the univariate cases = 1 , the predictive mean (2.4) and variance (2.5)
are identical to the ones of the Simple kriging (1.3) and (1.4).

We note that the matrix V s must be positive de�nite. We present in Section2.3 di�erent co-
variance structures which ensure this property. Furthermore, the equalitykij (x; ~x) = kji (~x; x )
implies that V s is symmetric. The predictive meanmZs ;SK (x) is the surrogate model for the
component zs(x) of z(x) and the predictive variance s2

Zs ;SK (x) represents the model mean
squared error. Like in simple kriging with noisy-free observations,mZs ;SK (x) interpolates
zs(x) at points of the experimental design set ands2

Zs ;SK (x) equals zero at these points. Fur-
thermore, we can easily integrate a noise variance in the model by considering a nugget e�ect
as presented in Subsection1.2.1in the paragraph �The noisy case�. In that case, the surrogate
model will not interpolate the observed values anymore.

Example of simple co-kriging

Let us consider the bivariate Gaussian process(Z1(x); Z2(x)) , x 2 R such that

(
Z1(x) = a1� 1(x) + a2� 2(x)
Z2(x) = b1� 1(x) + b2� 2(x)

;

where � 1(x) and � 2(x) are two independent Gaussian processes with means zero and covari-
ancesk1(x; ~x) and k2(x; ~x) such that:

ˆ k1(x; ~x) is a 5=2-Matérn kernel with variance parameter� 2 = 1 and characteristic length
scale� = 0 :2,

ˆ k2(x; ~x) is a 3=2-Matérn kernel with variance parameter� 2 = 1 and characteristic length
scale� = 0 :3.
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The bivariate stochastic process(Z1(x); Z2(x)) is Gaussian since it is a linear combination of
the bivariate Gaussian process(� 1(x); � 2(x)) . We note that the independence ensures the nor-
mality for (� 1(x); � 2(x)) . Furthermore, (Z1(x); Z2(x)) has zero mean and covariance structure

V (x; ~x) =

 
a2

1k1(x; ~x) + a2
2k2(x; ~x) a1b1k1(x; ~x) + a2b2k2(x; ~x)

a1b1k1(x; ~x) + a2b2k2(x; ~x) b2
1k1(x; ~x) + b2

2k2(x; ~x)

!

: (2.7)

Let us consider the sample ofZ1(x) and Z2(x) showed in Figure2.1 with a1 = 1 , a2 = � 4,
b1 = 0 :5 and b2 = 3 .
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Figure 2.1: Example of sample for the bivariate Gaussian process(Z1(x); Z2(x)) with covari-
ance structure de�ned in (2.7) with a1 = 1 , a2 = � 4, b1 = 0 :5 and b2 = 3 . Figure (a)
illustrates the sample ofZ1(x) and Figure (b) illustrates the sample of Z2(x).

We aim to reconstruct the sample ofZ1(x) from its values at points in D 1 = ( � 0:20; 0:08;
0:36; 0:64; 0:93) and the sampled values ofZ2(x) at points in D 2 = ( � 0:20; � 0:06; 0:08; 0:22; 0:36; 0:50;
0:64; 0:78; 0:93; 1:07). Figure 2.2 illustrates the predictive mean and con�dence intervals ob-
tained for the simple co-kriging equations (2.4) and (2.5). Furthermore, we also illustrate the
predictive mean (1.3) and variance (1.4) of the simple kriging using only the sampled values
of Z1(x) at points in D 1. We see in Figure2.2 that the con�dence intervals of the co-kriging
model are smaller than the ones of the kriging model. Furthermore, they are more relevant in
the co-kriging model since they represent more precisely the real model error. Finally, we see
that the co-kriging mean is more accurate than the kriging one.

2.1.2 Co-kriging parameter estimation

In a co-kriging framework, the hyper-parameters(� ij ) i;j =1 :::;s are considered as known - this
include the variance parameters. We note that the selection methods presented in Section1.3
can naturally be extended for the co-kriging model. However, they will be in general extremely
computationally expensive. Nevertheless, we will see in PartII that in some particular contexts
we can easily infer from some hyper-parameters about the predictive distribution. In this
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Figure 2.2: Comparison between co-kriging and kriging models. The solid line represents the
co-kriging mean, the dotted line represents the kriging mean, the dashed line represents the
sample ofZ1(x) that we want to approximate. The shade areas represent the mean plus and
minus twice the predictive standard deviation of the co-kriging and kriging models.

subsection, we only deal with the estimation of the vector� (s) = ( � 1; : : : ; � s) of size(
P s

i =1 pi ).
We consider here a Bayesian estimate for� (s) but the maximum likelihood one can be deduced
from it without di�culties. First, let us consider the probability density function of the random
vector Z (s)

p(z(s) j� (s) ) =
exp

�
� 1

2

�
z(s) � F (s) � (s)

� 0
V � 1

s

�
z(s) � F (s) � (s)

� �

(2� )n=2
p

det V s
; (2.8)

where n =
P s

i =1 ni and F (s) is the following (
P s

i =1 ni ) � (
P s

i =1 pi ) matrix

F (s) =

0

B
B
B
B
B
B
@

F1 0 0 : : : 0
0 F2 0 : : : 0
...

...
. . .

...
...

0 : : : 0 F s� 1 0
0 : : : 0 0 F s

1

C
C
C
C
C
C
A

:

We note that p(z(s) j� (s) ) is the likelihood of parameter � (s) . Then, from the Bayes rule we
have:

p(� (s) jz(s) ) / p(z(s) j� (s) )p(� (s) )

and thanks to the improper Je�rey's prior distribution

p(� (s) ) / 1;

we �nd that the distribution [� (s) jz(s) ] is

N
�

�� (s) ; � � ( s)

�
; (2.9)
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where

� � ( s) =
� �

F (s)
� 0

V � 1
s F (s)

� � 1

(2.10)

and
�� (s) = � � ( s)

�
F (s)

� 0
V � 1

s z(s) : (2.11)

We emphasize that the posterior distribution of parameter� (s) is similar to the one found in
Equation (1.17). In particular, for s = 1 they are identical. We note that the MLE of � (s)

is given by �� (s) in (2.11). Furthermore, we can easily extend the result given in Subsection
1.2.2 if we consider a Gaussian prior distribution for� (s) .

2.1.3 Universal co-kriging equations

As presented in Subsection1.2.2, we can infer from the posterior distribution of � (s) given in
Equation (2.9) about the predictive distribution of the simple co-kriging which is a Gaussian
with mean given in Equation (2.4) and covariance given in Equation (2.5).

Let us integrate the posterior distribution of � (s) :

p(zs(x)jz(s) ) =
Z

p(zs(x)jz(s) ; � (s) )p(� (s) jz(s) ) d� (s) :

After direct calculations, it can be shown that the predictive distribution [Zs(x)jZ (s) =
z(s) ; (� ij ) i;j =1 :::;s ] is Gaussian with mean

mZs (x) = f 0
s(x)�̂ s + k0

s(x)V � 1
s

�
z(s) � F (s) �̂

(s)
�

(2.12)

and variance

s2
Zs

(x) = kss(x; x ) �
� �

f (s) (x)
� 0

k0
s(x)

�
 

0
�
F (s)

� 0

F (s) V s

! � 1  
f (s) (x)
ks(x)

!

; (2.13)

where

f (s) (x) =

0

B
B
B
B
@

0
...
0

fs(x)

1

C
C
C
C
A

;

�� (s) =
� �

F (s)
� 0

V � 1
s F (s)

� � 1 �
F (s)

� 0
V � 1

s z(s) and �̂ s are the ps last components of�� (s) .

For the univariate case s = 1 , the predictive mean (2.12) and variance (2.13) are
identical to the ones of the Universal kriging (1.20) and (1.21).

We highlight that closed form formulas can also be derived for the predictive distribution
when a Gaussian prior distribution is considered for� (s) . The universal co-kriging equations
are then similar to the ones presented in Subsection1.2.2.
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2.2 Co-kriging in geostatistics

We present in this section the geostatistical approach to deal with multivariate objective
functions. It is the natural extension to the one presented in Subsection1.5.1. Similarly to
the Bayesian scheme presented in Section2.1 we want to predict a principal component zs(x)
by taking into account the secondary components(zi (x)) i =1 ;:::;s� 1. As previously, the vector
of functions (zi ) i =1 ;:::;s is modeled with a multivariate Gaussian process(Z i (x)) i =1 ;:::;s with
mean m(x) (2.1) and matrix-valued covariance function V (x; ~x) (2.2). Nevertheless, in order
to simplify the equations, we present the bivariate cases = 2 . The extension for any s is
straightforward.

2.2.1 Simple co-kriging

Let us consider the bivariate Gaussian process(Z1(x); Z2(x)) and the corresponding Gaussian
random vector (Zn1

1 ; Zn2
2 ) where Zn i

i := Z i (D i ), i = 1 ; 2. Furthermore, we considerM i :=
m(D i ) = f 0

i (D
i )� i := F i � i where F i is a matrix of size ni � pi , i = 1 ; 2.

In a simple co-kriging case, the coe�cients(� i ) i =1 ;2 are considered as known. Therefore,
we can suppose them equal to zero without loss of generality. Let us consider that we want to
predict the principal component Z2(x). We consider the following linear unbiased predictor:

Ẑ2(x) =
n2X

i =1

� i Z2(x(2)
i ) +

n1X

i =1


 i Z1(x(1)
i ) = ( � n2 )0Zn2

2 + ( 
 n1 )0Zn1
1 ; (2.14)

where � n2 = [ � i ]i =1 ;:::;n 2 and 
 n1 = [ 
 i ]i =1 ;:::;n 1 . Like in Subsection1.5.1 we want to �nd the
coe�cients � n2 and 
 n1 minimizing

E
� �

Z2(x) � Ẑ2(x)
� 2

�
= k22(x; x ) + var

�
Ẑ2(x)

�

� 2
�
k0

22(x)� n2 + k0
21(x)
 n1

�
;

where
var

�
Ẑ2(x)

�
= ( � n2 )0K 22� n2 + ( 
 n1 )0K 11
 n1 + 2 ( � n2 )0K 21
 n1 ;

k2j (x) = [ k2j (x; x (j )
k )]k=1 ;:::;n j , k j 2(x) = [ kj 2(x(j )

k ; x)]k=1 ;:::;n j and K ij = [ kij (x(i )
k ; x(j )

l )]k=1 ;:::;n i
l=1 ;:::;n j

,

i; j = 1 ; 2. We note that k12(x; ~x) = k21(~x; x ) implies that K 12 = K 0
21 and k12(x) = k21(x).

We can derive the mean squared error with respect to� n2 and 
 n1 . Setting the derivatives
equal to zero, we obtain that the minimum satis�es the following system of equations:

(
(� n2 )0K 22 + ( 
 n1 )0K 12 = k0

22(x)
(
 n1 )0K 11 + ( � n2 )0K 21 = k0

21(x)
: (2.15)

Therefore, we can deduce� n2 and 
 n1 from the following linear problem:
 

K 22 K 21

K 12 K 11

!  
� n2


 n1

!

=

 
k22(x)
k21(x)

!

:
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The estimator is thus given by the equation

Ẑ2(x) =
�

k0
22(x) k0

21(x)
�

 
K 22 K 21

K 21 K 11

! � 1  
Zn2

2

Zn1
1

!

; (2.16)

and the predictive variances2
SK (x) = E

� �
Z2(x) � Ẑ2(x)

� 2
�

is

s2
SK (x) = k22(x; x ) �

�
k0

22(x) k0
21(x)

�
 

K 22 K 21

K 12 K 11

! � 1  
k22(x)
k21(x)

!

: (2.17)

Conditionally to the observed values, the predictive means (2.16) and (2.4) are iden-
tical when we considerm(x) = 0 . Furthermore, the predictive variances (2.17) and
(2.5) are identical too. Therefore, the predictive distributions of the Bayesian and
the best linear unbiased predictor are identical.

We have shown that the Bayesian simple co-kriging and the one introduced in the geostatistical
literature give the same predictive distributions in the bivariate case. In fact, the generalization
of this result for any multivariate function is straightforward.

2.2.2 Universal co-kriging

We use in this subsection the same notations as in Subsection2.2.2. In a universal co-kriging
context, the coe�cients (� i ) i =1 ;2 are unknown and have to be taken into account in the
constraint of unbiasedness. Let us consider that we want to predict the principal component
Z2(x). We consider the following linear predictor:

Ẑ2(x) =
n2X

i =1

� i Z2(x(2)
i ) +

n1X

i =1


 i Z1(x(1)
i ) = ( � n2 )0Zn2

2 + ( 
 n1 )0Zn1
1 : (2.18)

Like in Subsection2.2.1 we want to �nd the coe�cients � n2 and 
 n1 minimizing

E
� �

Z2(x) � Ẑ2(x)
� 2

�
= k22(x; x ) + � 2

�
k0

22(x) k0
21(x)

�
 

� n2


 n1

!

+
�

(� n2 )0 (
 n1 )0
�

 
K 22 K 21

K 12 K 11

!  
� n2


 n1

!

:

Furthermore, the constraint of unbiasedness implies that

(� n2 )0F2� 2 + ( 
 n1 )0F1� 1 = f 0
2(x)� ;

which is generally translated in geostatistic by the following conditions (see [Wackernagel,
2003]) (

(� n2 )0F2 = f 0
2(x)

(
 n1 )0F1 = 0
: (2.19)
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We use the Lagrangian formulation of the problem to minimizeE
� �

Z2(x) � Ẑ2(x)
� 2

�
under

the constraints (2.19):

E
� �

Z2(x) � Ẑ2(x)
� 2

�
+ 2 � 1(F0

2� n2 � f2(x)) + 2 � 2F0
1
 n1 ;

where � 1 and � 2 are the Lagrangien multipliers. We obtain the following linear system by
calculating the gradients with respect to (� n2 ; 
 n1 ; � 1; � 2) and setting them equal to zero

0

B
B
B
@

K 22 K 21 F0
2 0

K 12 K 11 0 F0
1

F2 0 0 0
0 F1 0 0

1

C
C
C
A

0

B
B
B
@

� n2


 n1

� 1

� 2

1

C
C
C
A

=

0

B
B
B
@

k22(x)
k21(x)
f2(x)

0

1

C
C
C
A

:

Let us introduce the following notations:

V 2 =

 
K 22 K 21

K 12 K 11

!

; F (2) =

 
F2 0
0 F1

!

; Z (2) =

 
Zn2

2

Zn1
1

!

and k0
2(x) =

�
k0

22(x) k0
21(x)

�
. After some algebra, we �nd that the estimator is given by

Ẑ2(x) = f 0
2(x)�̂ 2 + k0

2(x)V � 1
2

�
Z (2) � F (2) �̂

�
; (2.20)

where

�̂ =
� �

F (2)
� 0

V � 1
2 F (2)

� � 1 �
F (2)

� 0
V � 1

2 Z (2) (2.21)

and �̂ 2 are the p2 �rst components of �̂ .

Then, denoting the predictive variances2
UK (x) = E

� �
Z2(x) � Ẑ2(x)

� 2
�

and noticing that
�

(� n2 )0 (
 n1 )0
�

F (2) =
�

f 0
2(x) 0

�
, we have:

s2
UK (x) = k22(x; x ) �

�
k0

2(x) f 0
2(x) 0

�
 

V 2 F (2)
�
F (2)

� 0
0

! � 1
0

B
@

k2(x)
f2(x)

0

1

C
A : (2.22)

In the bivariate case, the predictive means (2.20) and (2.12) and the predictive
variances (2.22) and (2.13) are identical. Therefore, the predictive distributions of
the Bayesian and the best linear unbiased predictor are identical.

For the bivariate case the Bayesian and the geostatistical universal co-kriging provide the same
predictive distribution. Furthermore, this result is directly generalizable for any multivariate
cases.
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2.3 Admissible matrix-valued covariance kernels

In Section 2.1 we have presented the equations of the simple and universal co-kriging which
come from the Gaussian assumption for the multivariate stochastic processZ(x) = ( Z1(x); : : : ; Zs(x)) ,
s 2 N� with mean m(x) and matrix-valued covariance matrix V (x; ~x) such that

V (x; ~x) =

0

B
@

k11(x; ~x; � 11) : : : k1s(x; ~x; � 1s)
...

. . .
...

ks1(x; ~x; � s1) : : : kss(x; ~x; � ss)

1

C
A :

A valid covariance structureV (x; ~x) must satisfy the condition of positive de�niteness. Namely,
for any (D i ) i =1 ;:::;s where D i = ( x(i )

1 ; : : : ; x(i )
n i ), x(n i )

j 2 Rd, j = 1 ; : : : ; ni , i = 1 ; : : : ; s, the fol-
lowing covariance matrix

V s =

0

B
@

k11(D 1; D 1; � 11) : : : k1s(D 1; D s; � 1s)
...

. . .
...

ks1(D s; D 1; � s1) : : : kss(D s; D s; � ss)

1

C
A =

0

B
@

K 11 : : : K 1s
...

. . .
...

K s1 : : : K ss

1

C
A

has to be positive de�nite. We note that V s is the covariance matrix ofZ (s) = (( Zn1
1 )0; : : : ; (Zns

s )0)0

the values of (Z i (x)) i =1 ;:::;s at points in (D i ) i =1 ;:::;s . We present two methods to ensure the
positive de�niteness of V (x; ~x). The �rst one in Subsection 2.3.1 is the approach commonly
used in geostatistics. The second one in Subsection2.3.2 uses an extension of the Bochner's
theorem (see Theorem1.3, Subsection1.4.2).

2.3.1 Linear transformation of a multivariate Gaussian process

A �rst method to de�ne admissible matrix-valued covariance kernels V (x; ~x) is to notice
that any linear transformation of a multivariate Gaussian process is a multivariate Gaussian
process. We derive in this subsection some examples of valid covariance structures using this
property.

Linear model of coregionalization

Let us consider the multivariate Gaussian process� (x) = ( � 1(x); : : : ; � t (x)) where(� i (x)) i =1 ;:::;t

are univariate Gaussian processes with covariance kernelki (x; ~x) and such that � i (x) ? � j (x)
for all i; j = 1 ; : : : ; t, i 6= j . We note that the independence assumption ensures the normality
of � (x). Then, any linear combinations of (� i (x)) i =1 ;:::;t is a multivariate Gaussian process,
i.e. if we de�ne for all i = 1 ; : : : ; s, with s 2 N� , the following random process

Z i (x) =
tX

j =1

� i
j � j (x);

then Z(x) = ( Z i (x)) i =1 ;:::;s is a multivariate Gaussian process. Furthermore, we have

cov (Z i (x); Z j (~x)) =
tX

k=1

� i
k � j

kcov (� k (x); � k (~x)) =
tX

k=1

� i
k � j

kkk (x; ~x):
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Therefore, the covariance structure ofZ(x) is

V (x; ~x) =
tX

k=1

h
� i

k � j
k

i

i;j =1 ;:::;s
kk (x; ~x);

where the matrix
h
� i

k � j
k

i

i;j =1 ;:::;s
is nonnegative de�nite since it can be written with the

following form for all k = 1 ; : : : ; t
0

B
@

� 1
k � 1

k : : : � 1
k � s

k
...

. . .
...

� s
k � 1

k : : : � s
k � s

k

1

C
A =

0

B
@

� 1
k
...

� s
k

1

C
A

�
� 1

k
... � s

k

�
:

This approach is referred as the linear model of coregionalization and is frequently used in
geostatistics (see [Goulard and Voltz, 1992] and [Wackernagel, 2003]). For this model, the
smoothness of any Gaussian processZ i (x), i = 1 ; : : : ; s, is the one of the roughest latent
process� j (x), j = 1 ; : : : ; t such that � i

j is not zero.

Convolved Gaussian white noise process

As presented in point 3. in the introduction of Section1.4, a Gaussian process can be de�ned
with the following form:

Z (x) =
Z

k(x; u) dW(u);

whereW (x) is the Wiener process. Furthermore,Z (x) has the covariance kernel
R

k(x; u)k(u; ~x) du.
If we consider t independent Gaussian white noise processes(Wi (x)) i =1 ;:::;t , then by apply-
ing the linear operators (L j Wi )(x) =

R
k j

i (x; u)Wi (u) du = Z j
i (x), i = 1 ; : : : ; t, j = 1 ; : : : ; s,

s 2 N� , the following multivariate stochastic process is still Gaussian:

(Z j
i (x)) i =1 ;:::;t

j =1 ;:::;s
;

with covariance structure such that

cov
�

Z j
i (x); Z l

k (~x)
�

= � i = k

Z
k j

i (x; u)k l
k (u; ~x) du:

This technique was suggested by [Boyle and Frean, 2005] to deal with multiple output func-
tions. We present below their approach for the bivariate case. Let us consider three indepen-
dent Gaussian white noise processes(Wi (x)) i =1 ;:::;3 and four covariance kernels(ki (x; ~x)) i =1 ;2

and (hi (x; ~x)) i =1 ;2. Then we can de�ne the four following Gaussian processes:

V1(x) =
Z

h1(x; u)W1(u) du;

Y1(x) =
Z

k1(x; u)W2(u) du;

Y2(x) =
Z

k2(x; u)W2(u) du;

V2(x) =
Z

h2(x; u)W3(u) du:
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We note that the �nal multivariate random process (V1(x); Y1(x); Y2(x); V2(x) is Gaussian since
it is a linear transformation of a multivariate Gaussian process. Furthermore, its components
are all independent except forY1(x) and Y2(x) since they come from the same Gaussian white
noiseW2(x). Then, considering two independents Gaussian white noise processes(" i (x)) i =1 ;2,
one can de�ne the following bivariate Gaussian process:

(
Z1(x) = V1(x) + Y1(x) + � 2

1"1(x)
Z2(x) = V2(x) + Y2(x) + � 2

2"2(x)
;

where

cov (Z1(x); Z1(~x)) =
Z

h1(x; u)h1(u; ~x) du +
Z

k1(x; u)k1(u; ~x) du + � 2
1� x=~x ;

cov (Z2(x); Z2(~x)) =
Z

h2(x; u)h2(u; ~x) du +
Z

k2(x; u)k2(u; ~x) du + � 2
2� x=~x ;

cov (Z1(x); Z2(~x)) =
Z

k1(x; u)k2(u; ~x) du:

For some kernels as the squared exponential one, closed form expressions can be obtained for
these integrals (see [Boyle and Frean, 2005]).

Gaussian processes with zero mean

Following the work of [Durrande, 2011], we present here another approach than the one pre-
sented in Subsection1.5.2to deal with zero-mean Gaussian processes. We consider a Gaussian
processZ (x) with mean f 0(x)� and covariance kernelk(x; ~x), x 2 Q � Rd. Furthermore, we
consider the following linear transformation ofZ (x):

LZ (x) =
Z

Q
Z (u) du:

Since any linear transformation of a Gaussian process is Gaussian, we have

 
Z (x)R
Z (u) du

!

� N

  
f 0(x)�R
f 0(u)� du

!

;

 
k(x; x )

R
k(x; u) duR

k(u; x) du
R R

k(u; v) du dv

!!

and thus the distribution of [Z (x)j
R

Z (u) du = 0] is Gaussian with mean

f 0(x)� �
Z

k(x; u) du
� Z Z

k(u; v) du dv
� � 1 Z

f 0(u)� du

and variance

k(x; x ) �
Z

k(x; u) du
� Z Z

k(u; v) du dv
� � 1 Z

k(u; x) du:
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2.3.2 Spectral analysis of a multivariate covariance structure

Another approach to ensure the positive de�niteness forV (x; ~x) is to consider the stationary
caseV (x; ~x) = V (h) with h = x � ~x and the following generalization of the Bochner's Theorem
for multivariate Gaussian processes.

Theorem 2.1 (Multivariate Bochner's Theorem). For any continuous positive de�nite
matrix-valued V (h) from Rd into Rs � Rs, such that

V (h) =

0

B
@

k11(h; � 11) : : : k1s(h; � 1s)
...

. . .
...

ks1(h; � s1) : : : kss(h; � ss)

1

C
A ;

there exists a unique matrix valued positive �nite measure� such that V (h) =R
Rd e2�i hw;h i d� (w). Furthermore, if � (w) has a spectral densityS(w) - S(w) is non-

negative de�nite - with

S(w) =

0

B
@

S11(w; � 11) : : : S1s(w; � 1s)
...

. . .
...

Ss1(w; � s1) : : : Sss(w; � ss)

1

C
A ;

whereSij (w; � ij ) is the power spectrum ofkij (h; � ij ), then V (h) =
R

Rd e2�i hw;h i S(w) dw.

Therefore, to de�ne a valid covariance structureV (h), we have to ensure that8w 2 Rd

S(w) � 0 is nonnegative.

An example of valid covariance structure

The example presented below comes from the article of [Gneiting et al., 2010]. Let us consider
the covarianceV (h) such that

kij (h) = ( ci � cj )(h);

where (ci ) i =1 ;:::;s are square integrable functions. Then, we have

kij (h) = F � 1(F (ci )F (cj ))( h);

whereF stands for the Fourier transform. The spectral density ofkij (h) is Sij (w) = f i (w)f j (w)
where f i (w) = F (ci ). Therefore, the matrix of the spectral densities is

S(w) =

0

B
@

f 1(w)f 1(w) : : : f 1(w)f s(w)
...

. . .
...

f s(w)f j (w) : : : f s(w)f s(w)

1

C
A = f (w)f 0(w);

with f 0(w) = ( f 1(w); : : : ; f s(w)) . This ensures the propertyS(w) is nonnegative.
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Valid cross-covariance functions for bivariate random �elds

We give here another example inspired by the article of [Gneiting et al., 2010]. Let us suppose
a bivariate Gaussian processZ(x) = ( Z1(x); Z2(x)) with covariance structure :

k11(h) = � 2
1k1(h; � 1);

k22(h) = � 2
2k2(h; � 2);

k12(h) = � 12� 1� 2k12(h; � 12);

k21(h) = k12(h):

with h = x � ~x, x; ~x 2 Rd. Then, we have :

S(w) =

 
� 2

1F (k1(h; � 1))( w) � 12� 1� 2F (k12(h; � 12))( w)
� 12� 1� 2F (k12(h; � 12))( w) � 2

2F (k2(h; � 2))( w)

!

:

To ensure the nonnegative de�niteness, the following inequality must be satis�ed for all
w 2 Rd

j� 12F (k12(h; � 12))( w)j2 � F (k1(h; � 1))( w)F (k2(h; � 2))( w): (2.23)

The isotropic Gaussian kernel class. Let us suppose thatk1(h; � ) = k2(h; � ) = k12(h; � ) =
k(h; � ) with :

k(h; � ) = exp
�

�
jjhjj2

2� 2

�
:

According to Subsection1.4.2, we have :

S(w) = F (k(h; � )) = (2 �� 2)d=2 exp(� 2� 2� 2jjwjj2):

The condition (2.23) becomes8t � 0 :

� 2
12(� 2

12)d exp(� 4� 2� 2
12t) � (� 2

1)d=2 exp(� 2� 2� 2
1t)( � 2

2)d=2 exp(� 2� 2� 2
2t):

Therefore, we have to satisfy the following condition to respect the nonnegative de�niteness
property 8t � 0:

� 2
12 �

(� 2
1� 2

2)d=2

(� 2
12)d inf

t � 0
exp(� 2� 2t(� 2

1 � 2� 2
12 + � 2

2)) : (2.24)

This means that � 2
1 � 2� 2

12 + � 2
2 > 0 implies � 12 = 0 and � 2

1 � 2� 2
12 + � 2

2 � 0 leads to � 2
12 �

(� 2
1� 2

2)d=2=(� 2
12)d.

The Matérn kernel class. We still consider that k1(h; � ) = k2(h; � ) = k12(h; � ) = k(h; � ).
As presented in Subsection1.4.2, the Matérn kernel class is given by

k(h; � ) =
21� �

�( � )

 p
2� jjhjj

�

! �

K �

 p
2� jjhjj

�

!

;
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with the power spectrum

S(! ) =
2d� d=2�( � + d=2)(2� ) �

�( � )� 2�

�
2�
� 2 + 4 � 2jjwjj2

� � (� + d=2)

:

The condition (2.23) gives that:

� 2
12 �

�( � 1 + d=2)�( � 2 + d=2)
�( � 12 + d=2)2

(2� 1) � 1 (2� 2) � 2

(2� 12)2� 12

�( � 12)2

�( � 1)�( � 2)

�
� 4� 12

12

� 2� 1
1 � 2� 2

2

inf
t � 0

�
2� 12

� 2
12

+ 4 � 2t
� 2� 12 + d�

2� 1

� 2
1

+ 4 � 2t
� � � 1 � d=2 �

2� 2

� 2
2

+ 4 � 2t
� � � 2 � d=2

:

This condition is presented in [Gneiting et al., 2010]. It leads the following cases:

1. � 12 < 1
2(� 1 + � 2) ) � 12 = 0 .

2. � 12 = 1
2(� 1 + � 2); � 2

12
� 1+ � 2

> max
�

� 2
1

2� 1
; � 2

2
2� 2

�
)

� 2
12 <

�
� 1� 2

� 2
12

� d �( � 1 + d=2)�( � 2 + d=2)�( � 12)2

�( � 12 + d=2)2�( � 1)�( � 2)
(� 1 + � 2)d

(4� 1� 2)d=2
:

3. � 12 = 1
2(� 1 + � 2); � 2

12
� 1+ � 2

< min
�

� 2
1

2� 1
; � 2

2
2� 2

�
)

� 2
12 <

�
2� 2

12� 1

(� 1 + � 2)� 2
1

� � 1 �
2� 2

12� 2

(� 1 + � 2)� 2
2

� � 2 �( � 1 + d=2)�( � 2 + d=2)�( � 12)2

�( � 12 + d=2)2�( � 1)�( � 2)
:

4. � 12 = 1
2(� 1 + � 2); min

�
� 2

1
2� 1

; � 2
2

2� 2

�
< � 2

12 < max
�

� 2
1

2� 1
; � 2

2
2� 2

�
) the minimum is reached for

t = 0 (case 3.), or fort ! 1 (case 2.), or for:

t =
a1(2� 1 + d) + a2(2� 2 + d) � 2a21(� 1 + � 2 + d)

2a12(� 1a1 + � 2a2) + a12d(a1 + a2) � 2a1a2(� 1 + � 2 + d)
;

where:

a1 =
� 2

1

2� 1
; a2 =

� 2
2

2� 2
; a12 =

� 2
12

� 1 + � 2
:

2.4 Co-kriging models using function derivatives

We introduce in this section a co-kriging model approach commonly used in the �eld of
computer experiments. We have seen in the introduction of Section1.4 that the mean square
partial derivatives @Z(x)=@xi , x = ( x1; : : : ; xd) 2 Rd of a Gaussian processZ (x) exists if
and only if its covariance kernel k(x; ~x) is twice di�erentiable with respect to x i . As the
di�erential operator is linear, if the covariance kernels are well de�ned, then the multivariate
stochastic process(Z (x); (@Z(x)=@xi ) i =1 ;:::;d ) is Gaussian. Furthermore, we have the following
cross covariances

cov
�

Z (x);
@Z(~x)

@~x i

�
=

@k(x; ~x)
@~x i ; (2.25)

cov
�

@Z(x)
@xi

;
@Z(~x)

@~x j

�
=

@2k(x; ~x)
@xi @~x j : (2.26)
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with i; j = 1 ; : : : ; d. Now, let us consider that we want to surrogate an objective functionz(x)
with a Gaussian processZ (x) of meanf 0(x)� and covariance kernelk(x; ~x) and with respect to
the partial derivatives of z(x) (see [Morris et al., 1993] and [Mitchell et al., 1994]). We denote
by Zn the values ofZ (x) at points in D n = f x1; : : : ; xng, such that x j = ( x1

j ; : : : ; xd
j ) 2 Rd,

j = 1 ; : : : ; n and by Zn
(i ) the values of @Z(x)=@xi at points in D n . Similarly, we denote

by zn and zn
(i ) the values of z(x) and @z(x)=@xi at points in D n . The joint distribution of

(Z (x); Zn ; (Zn
(i ) ) i =1 ;:::;d ) is the following multivariate normal distribution
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@
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@

k(x; x ) k0(x) k0
(1) (x) : : : k0

(d) (x)

k0(x) K K (01) : : : K (0d)

k0
(1) (x) K (10) K (11) : : : K (1d)

...
...

...
. . .

...
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(d) (x) K (d0) K (d1) : : : K (dd)
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A

1
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; (2.27)

where

Fn := f 0(D n ),

Fn
(l ) := [ @f 0(x i )=@xli ]i =1 ;:::;n ;l=1 ;:::;d ,

K := [ k(x i ; x j )] i;j =1 ;:::;n ,

K (0l ) := [ @k(x i ; x j )=@xlj ]i;j =1 ;:::;n ;l=1 ;:::;d ,

K (kl ) := [ @2k(x i ; x j )=@xki @xlj ]i;j =1 ;:::;n ;k;l =1 ;:::;d ,

k0(x) := [ k(x; x i )] i =1 ;:::;n ,

k0
(l ) (x) := [ @k(x; x i )=@xli ]i =1 ;:::;n ;l=1 ;:::;d ,

The desired predictive distribution [Z (x)jZn ; (Zn
(i ) ) i =1 ;:::;d ] can be obtained following the same

technique as the one presented in Subsection1.2.1. Denoting by

h(x) =
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: : :
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and

V =
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B
B
@

K K (01) : : : K (0d)

K (10) K (11) : : : K (1d)
...

...
. . .

...
K (d0) K (d1) : : : K (dd)

1
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A

;

the predictive distribution is normal with mean:

f 0(x)�̂ + h0(x)V � 1
�

z � F �̂
�

; (2.28)

where
�̂ =

�
F0V � 1F

� � 1
F0V � 1z;
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and variance

k(x; x ) �
�

f 0(x) h0(x)
�

 
0 F0

F V

! � 1  
f (x)
h(x)

!

: (2.29)

The predictive mean is the surrogate model forz(x) and the predictive variance represents
the model mean squared error. Therefore, we can improve the surrogate model onz(x) by
considering its partial derivatives.

Example of Gaussian process regression using derivatives

Let us consider Z (x) a Gaussian process with mean zero and covariance kernelk(x; ~x) =
exp

�
� (x � ~x)2=2� 2

�
with � = 0 :1 and x 2 [0; 1]. The covariance kernelk(x; ~x) being smooth,

the Gaussian processZ (x) is in�nitely mean square di�erentiable. Furthermore, according to
the previous developments we have:

cov
�

Z (x);
dZ
d~x

(~x)
�

=
(x � ~x)

� 2 exp
�

�
(x � ~x)2

2� 2

�

and

cov
�

dZ
dx

(x);
dZ
d~x

(~x)
�

=
�

1
� 2 �

(x � ~x)2

� 4

�
exp

�
�

(x � ~x)2

2� 2

�
:

Now let us condition Z (x) at points D = (0 :0; 0:2; 0:4; 0:7; 0:9) with z(D ) = ( � 1; 2; 6; � 2; 6)
and (dz=dx)(D ) = (0 ; � 20; 40; 0; 15). Figure 2.3 illustrates the predictive means and con�-
dence intervals obtained with a simple kriging and a simple co-kriging using the derivatives.
We see in Figure2.3 that the predictive means are signi�cantly di�erent between the simple

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

6
8

x

Z
(x

)

Figure 2.3: Example of Gaussian process regression using derivatives. The dotted line repre-
sents the kriging mean, the solid line represents the co-kriging using the derivatives. The shade
areas represent the predictive means plus and minus twice the predictive standard deviations.

kriging and the simple co-kriging using the derivatives. Furthermore, the derivatives giving
additional information, the con�dence intervals for the co-kriging are naturally smaller than
the ones of the kriging.
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Part II

Contributions in Multi-�delity
Co-kriging models
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Chapter 3
The AR(1) multi-�delity co-kriging model

3.1 Introduction

Large computer codes are widely used in science and engineering to study physical systems
since real experiments are often costly and sometimes impossible. Nevertheless, simulations
can sometimes be costly and time-consuming as well. In this case, conception based on an
exhaustive exploration of the input space of the code is generally impossible under reasonable
time constraints. Therefore, a mathematical approximation of the output of the code - also
called surrogate or metamodel - is often built with a few simulations to represent the real
system.

The Gaussian Process regression presented in Chapter1 is a particular class of surrogate
models which makes the assumption that prior beliefs about the code can be modeled by a
Gaussian Process. We focus here on this metamodel and on its extension to multiple response
models (see Chapter2).

Actually, a computer code can often be run at di�erent levels of complexity and a hierarchy
of levels of code can hence be obtained. The aim of this chapter is to study the use of several
levels of a code to predict the output of a costly computer code (see [Le Gratiet, 2013]).

A �rst metamodel for multi-level computer codes was built by [Kennedy and O'Hagan,
2000] using a spatially stationary correlation structure. This multi-stage model is a particular
case of the co-kriging one presented in Chapter2. Then, [Forrester et al., 2007] went into more
detail about the estimation of the model parameters. Furthermore,they presented the use of
co-kriging for multi-�delity optimization based on the EGO (E�cient Global Optimization)
algorithm created by [Jones et al., 1998]. A Bayesian approach was also proposed by [Qian
and Wu, 2008] which is computationally expensive and does not provide explicit formulas for
the joint distribution of the parameters.

This chapter presents a new approach to estimate the parameters of the model which
is e�ective when many levels of codes are available (see Subsection3.6.1). In particular, it
provides a closed form expression for the posterior distribution of the scale factor which is
new and of great practical interest for accuracy and computational cost. Furthermore, this
approach allows us to consider prior information in the estimation of the parameters. We also

89
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address the problem of the inversion of the co-kriging covariance matrix when the number
of levels is large. A solution to this problem is provided which shows that the inverse can
be easily calculated (see Subsection3.6.2). Finally, it is known that with a non-Bayesian
approach, the variance of the predictive distribution may be underestimated [Kennedy and
O'Hagan, 2000]. This chapter suggests a Bayesian modeling di�erent from the one presented
by [Qian and Wu, 2008] which provides an explicit representation of the joint distribution for
the parameters and avoids prohibitive implementations (see Section3.4.3).

3.2 Building a surrogate model based on a hierarchy of s levels
of code

Let us assume that we haves levels of codez1(x); : : : ; zs(x), x 2 Rd; d > 0. For all t = 1 ; : : : ; s
the t th scalar output zt (x) is modeled byzt (x) = Z t (x; ! ) whereZ t (x; ! ); ! 2 
 is a realization
of the Gaussian processZ t (x). We will introduce below a consistent set of hypotheses so that
the joint process (Z t (x)) x2 Rd ;t=1 ;:::;s is Gaussian given a certain set of parameters. [Kennedy
and O'Hagan, 2000] suggest an autoregressive model to build a metamodel based on a multi-
level computer code. Hence, we have a hierarchy ofs levels of code - from the less accurate
to the most accurate - and for each level, the conditional distribution of the Gaussian process
Z t (x) knowing Z1(x); : : : ; Z t � 1(x) is entirely determined by Z t � 1(x). Let us introduce here
the mathematical formalism that we will use in this chapter.

Q � Rd is a compact subset ofRd representing the input space. Fort = 1 ; : : : ; s, D t =
f x(t )

1 ; : : : ; x(t )
n t g is the experimental design set at levelt containing nt points in Q. Let Z t =

Z t (D t ) = ( Z t (x
(t )
1 ); : : : ; Z t (x

(t )
n t ))0 be the random Gaussian vector containing the values of

Z t (x) for x 2 D t . Let Z = ( Z0
1; : : : ; Z0

s)0 be the Gaussian random vector containing the values
of the processes(Z t (x)) t=1 ;:::;s at the points of the design sets(D t )t=1 ;:::;s . We assume here
that the code output is observed without measurement error. The column vector of responses
is written z = ( z0

1; : : : ; z0
s)0, wherezt = ( zt (x

(t )
1 ); : : : ; zt (x

(t )
n t ))0 is the output vector for the level

t.
If we consider Zs(x), the Gaussian process modeling the most accurate code, we want

to determine the predictive distribution of Zs(x0), x0 2 Q given Z = z, i.e. the following
conditional distribution: [Zs(x0)jZ = z].

We assume the Markov property introduced by [Kennedy and O'Hagan, 2000]:

Cov(Z t (x); Z t � 1(~x)jZ t � 1(x)) = 0 8x 6= ~x: (3.1)

The property Cov(Z t (x); Z t � 1(~x)jZ t � 1(x)) = 0 , 8x 6= ~x means that if Z t � 1(x) is
known, then nothing more can be learn aboutZ t (x) from any other run of the
cheaper codeZ t � 1(~x) for ~x 6= x.

This assumption leads to the following autoregressive model (see proof in AppendixA.1):

Z t (x) = � t � 1(x)Z t � 1(x) + � t (x) t = 2 ; : : : ; s; (3.2)
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where � t (x) is a Gaussian process independent ofZ t � 1(x); : : : ; Z1(x) and � t � 1(x) represents
a scale factor betweenZ t (x) and Z t � 1(x). It both represents the correlation degree and the
scale factor between two successive levels of code:

� t � 1(x) =
Cov(Z t (x); Z t � 1(x))

var(Z t � 1(x))
:

We assume that� t � 1(x) = gt � 1(x)� � t � 1
, t = 2 ; : : : ; s, wheregt � 1(x) = ( f 1

� t � 1
(x); : : : ; f qt � 1

� t � 1 (x))0

is a vector ofqt � 1 regression functions - generally including the constant function :x 2 Q ! 1
- and � � t � 1

2 Rqt � 1 .
Conditioning on parameters � t , � t and � t , � t (x) is assumed to be a Gaussian process with
mean f 0

t (x)� t , where f t (x) is a pt -dimensional vector of regression functions, and with a co-
variance function of the form kt (x; ~x) = cov( � t (x); � t (~x)) = � 2

t r t (x � ~x; � t ), where � 2
t is the

variance of the Gaussian process and� t are the hyper parameters of the correlation functionr t .
Moreover, conditioning on parameters� 1, � 1 and � 1, the simplest codeZ1(x) is modeled as a
Gaussian process with meanf 0

1(x)� 1 and with covariance function k1(x; ~x) = � 2
1r1(x � ~x; � 1).

With this consistent set of hypotheses, the joint process(Z1(x); : : : ; Z t (x)) x2 Q;t =1 ;:::;s given
� 2 = ( � 2

i ) i =1 ;:::;t , � = ( � i ) i =1 ;:::;t , � = ( � i ) i =1 ;:::;t and � � = ( � � i � 1
) i =2 ;:::;t , is Gaussian with

mean:

E[Z t (x)j� 2; � ; � ; � � ] = h0
t (x)� ; (3.3)

h0
t (x) =

  
t � 1Y

i =1

� i (x)

!

f 0
1(x);

 
t � 1Y

i =2

� i (x)

!

f 0
2(x); : : : ; � t � 1(x)f 0

t � 1(x); f 0
t (x)

!

(3.4)

and covariance:

cov(Z t (x); Z t (~x)j� 2; � ; � ; � � ) =
tX

j =1

� 2
j

0

@
t � 1Y

i = j

� 2
i (x)

1

A r j (x � ~x; � j ): (3.5)

For each levelt = 2 ; : : : ; s, the experimental designD t is assumed to be such thatD t �
D t � 1. Note that this assumption is not necessary but allows us to have closed form expressions
for the parameter estimate formulas. Furthermore, we denote byRt (D k ; D l ) the correlation
matrix between observations at points inD k and D l , 1 � k; l � s. Rt (D k ; D l ) is a (nk � nl )
matrix with (i; j ) entry given by:

[Rt (D k ; D l )] i;j = r t (x
(k)
i � x(l )

j ; � t ) 1 � i � nk 1 � j � nl :

We will use the notation: Rt (D k ) = Rt (D k ; D k ).
[Kennedy and O'Hagan, 2000] present the case where8t 2 [2; s], � t � 1(x) = � t � 1 is constant.
Here, we will consider the general model presented in equations (3.2). We will also propose
a new approach to estimate the coe�cients (� t ; � � t � 1

)t=2 ;:::;s based on a Bayesian approach,
which allows us to get information about their uncertainties. In the following section, we
describe the case of 2 levels of code where the scaling coe�cient� is constant and then we will
extend it for s levels in Section3.6. The general case in which� depends onx is addressed in
Appendix A.2.
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3.3 Building a model with 2 levels of code

Let us assume that we have 2 levels of codez2(x) and z1(x). From the previous section we
assume that: (

Z2(x) = �Z 1(x) + � (x); x 2 Q
(Z1(x)) x2 Q ? (� (x)) x2 Q

: (3.6)

The goal of this section is to build a surrogate model forZ2(x) given the observationsZ = z
with an uncertainty quanti�cation. The strategy is the following one. In Subsection 3.3.1 we
describe the statistical distribution of the output Z2(x0) at a new point x0 given the parameters
(� 1; � 2; � ); (� 2

1; � 2
2) and (� 1; � 2) and the observationsz. In Subsection3.3.2 we describe the

Bayesian estimation of the parameters(� 1; � 2; � ) and (� 2
1; � 2

2) given the observations. As
pointed out at the end of Subsection3.3.2 the hyper-parameters(� 1; � 2) are estimated using
a concentrated restricted log-likelihood method.

3.3.1 Conditional distribution of the output

For a point x0 2 Q we determine in this subsection the distribution of[Z2(x0)jZ = z; (� 1; � 2; � );
(� 2

1; � 2
2); (� 1; � 2)]. Standard results for normal distributions (see Chapter2) give that:

[Z2(x0)jZ = z; (� 1; � 2; � ); (� 2
1; � 2

2); (� 1; � 2)] � N (mZ2 (x0); s2
Z2

(x0)) ; (3.7)

with mean function:
mZ2 (x) = h0(x)� + k0(x)V � 1(z � H � ) (3.8)

and variance:
s2

Z2
(x) = � 2� 2

1 + � 2
2 � k0(x)V � 1k(x); (3.9)

where we have denoted� =

 
� 1

� 2

!

, z =

 
z1

z2

!

and whereH is de�ned by:

H =

0

B
B
B
B
B
B
B
B
B
B
@

f 0
1(x(1)

1 ) 0
...

...

f 0
1(x(1)

n1 ) 0

� f 0
1(x(2)

1 ) f 0
2(x(2)

1 )
...

...

� f 0
1(x(2)

n2 ) f 0
2(x(2)

n2 )

1

C
C
C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
@

F1(D 1) 0

�F 1(D 2) F2(D 2)

1

C
C
C
C
C
C
C
A

;

with the notation Fi (D j ) =

0

B
B
@

f 0
i (x

(j )
n1 )

...

f 0
i (x

(j )
n j )

1

C
C
A . Furthermore, we haveh0(x) = ( � f 0

1(x); f 0
2(x)) and:

k0(x) = Cov( Z2(x); Z)
=

�
�� 2

1R1(f xg; D 1); � 2� 2
1R1(f xg; D 2) + � 2

2R2(f xg; D 2)
� : (3.10)
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The covariance matrix V of the Gaussian vectorZ =

 
Z1

Z2

!

can be written :

V =

 
� 2

1R1(D 1) �� 2
1R1(D 1; D 2)

�� 2
1R1(D 2; D 1) � 2� 2

1R1(D 2) + � 2
2R2(D 2)

!

: (3.11)

3.3.2 Bayesian estimation of the parameters with 2 levels of code

In this subsection, we describe the Bayesian estimation of the parameters(� 1; � 2; �; � 2
1;

� 2
2; � 1; � 2) for the 2-level model given the observationsZ = z. In particular, we look for

the posterior distribution of (� 1; � 2; �; � 2
1; � 2

2; � 1; � 2) given the observationsZ = z in the case
in which the prior distribution of (� 1; � 2; �; � 2

1; � 2
2; � 1; � 2) has a special (conjugate) form or a

non-informative form. Due to the conditional independence betweenZ1(x) and � (x), it is pos-
sible to estimate separately the parameters(� 1; � 2

1; � 1) and (� 2; �; � 2
2; � 2). We �rst describe

the posterior distribution of (� 1; � 2
1) given � 1 and (� 2; � 2

2; � ) given � 2, which can be obtained
in closed forms. We then describe how to estimate� 1 and � 2.

Firstly, we consider the parameters(� 1; � 2
1; � 1). We choose the following non-informative

prior distributions corresponding to the �Je�reys priors" [ Je�reys, 1961]:

p(� 1j� 2
1; � 1) / 1 p(� 2

1; � 1) /
1
� 2

1
: (3.12)

Considering the probability density function of [Z1j� 1; � 2
1; � 1] and the Bayes formula, the

posterior distribution of [� 1jz1; � 2
1; � 1] is :

[� 1jz1; � 2
1; � 1] � N p1

�
[F0

1R1(D 1) � 1F1]� 1[F0
1R1(D 1) � 1z1]; [F0

1
R1(D 1) � 1

� 2
1

F1]� 1
�

; (3.13)

whereF1 := F1(D 1). Then, using the Bayes formula, we obtain that the posterior distribution
of [� 2

1jz1; � 1] is:

[� 2
1jz1; � 1] � IG (� � 2

1 jn1
;
Q1

2
); (3.14)

where IG (�; Q ) stands for the inverse gamma and the parameters are given by:

� � 2
1 jn1

=
n1 � p1

2
Q1 = ( z1 � F1 ~� 1)0R1(D 1) � 1(z1 � F1 ~� 1) ; (3.15)

with ~� 1 = E
�
� 1jz1; � 2

1; � 1
�

= [ F0
1R1(D 1) � 1F1]� 1[F0

1R1(D 1) � 1z1].
The posterior mean ~� 1 of � 1 with non-informative �Je�reys priors" [ Je�reys, 1961] equals

the maximum likelihood estimate of � 1. For the parameter � 2
1, the estimate given by the

posterior harmonic average�̂ 2
1 = Q1

2� � 2
1 j n 1

is identical to the one obtained with the restricted

maximum likelihood method. This method was introduced by Patterson and Thompson [Pat-
terson and Thompson, 1971] in order to reduce the bias of the maximum likelihood estimator.

Secondly, let us consider the set of parameters(� 2; �; � 2
2; � 2). In order to have closed form

formulas for the posterior distribution of (� 2; � ), we estimate them together. The idea to carry
out a joint Bayesian analysis is proposed for the �rst time in this chapter and we believe it is
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important. Indeed, if the cheaper code is perfectly known, it can be considered as a regression
function and so � will be a regression parameter. In this case, it is clear that a separated
estimation of � 2 and � cannot be optimal.
Using the Je�rey prior distributions p(( �; � 2)j� 2

2; � 2) / 1 and p(� 2
2; � 2) / 1

� 2
2

and the same

methodology as for the posterior distribution of (� 1; � 2
1), we �nd that:

[(�; � 2)jz1; z2; � 2
2; � 2] � N p2+1

�
[F0R2(D 2) � 1F]� 1[F0R2(D 2) � 1F]; [F0R2(D 2) � 1

� 2
2

F]� 1
�

(3.16)
and:

[� 2
2jz2; z1; � 2] � IG (� � 2

2 jn2
;
Q2

2
); (3.17)

where:
� � 2

2 jn2
=

n2 � p2 � 1
2

Q2 = ( z2 � F ~� )0R2(D 2) � 1(z2 � F ~� ) ; (3.18)

with ~� = E[(�; � 2)jz1; z2; � 2
2; � 2] = [ F0R2(D 2) � 1F]� 1[F0R2(D 2) � 1z2]. The design matrix F is

such that F = [ z1(D 2) F2]. Furthermore, the estimate of � 2
2 given by the posterior harmonic

average�̂ 2
2 = Q2

2� � 2
2 j n 2

is the same as the restricted maximum likelihood one.

The hyper-parameters� 1 and � 2 are found by minimizing the negative concentrated re-
stricted log-likelihoods:

log (jdet (R1(D 1)) j) + ( n1 � p1)log(�̂ 1
2); (3.19)

log (jdet (R2(D 2)) j) + ( n2 � p2 � 1)log( ^� 2
2): (3.20)

These minimizations problems must be numerically solved with a global optimization method.
We use an evolutionary method coupled with a BFGS (Broyden-Fletcher-Goldfarb-Shanno)
algorithm [Avriel, 2003]. The drawback of the maximum likelihood estimation is that, con-
trarily to Bayesian estimation, we do not have any information about the variance of the
estimator in non-asymptotic cases (see [Lehmann and Casella, 1998]). Nevertheless, Bayesian
estimation of the hyper parameters� 1 and � 2 are prohibitive and as noted in [Santner et al.,
2003] the choice of the prior distribution is non trivial. Therefore, in this chapter, we will
always estimate these parameters with a concentrated restricted likelihood method.

3.4 Bayesian prediction for a code with 2 levels

The aim of a Bayesian prediction is to provide a predictive distribution for Zs(x) integrating
the posterior distributions of the parameters and hence taking into account their uncertainty.
The forthcoming developments are the extension of the Bayesian kriging presented in Section
1.2.2 to the multi-�delity co-kriging model.

A Bayesian prediction for a code withs = 2 levels was suggested by [Qian and Wu, 2008].
Nevertheless, we propose here a new Bayesian approach with some signi�cant di�erences.
First, we assume that the adjustment coe�cient is a regression function whereas [Qian and Wu,
2008] model it with a Gaussian process. Secondly, we use di�erent prior distributions for the
parameter estimation. More speci�cally, according to the Bayesian estimation of parameters
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previously presented, we use a joint prior distribution for (� 2; � ) conditioned by � 2
2 whereas

[Qian and Wu, 2008] use separated prior distributions with � not conditioned by � 2
2. Then,

we use a hierarchy between the di�erent parameters. At the lowest level is the regression
parameter � . At the second level is the variance parameter� 2 which controls the distribution
of the parameter � . At the top level is the parameter � which controls the distribution of the
parameters at the bottom levels. It is common to use a hierarchical speci�cation of models
for Bayesian prediction as presented in [Rasmussen and Williams, 2006]. This strategy will
allow us to obtain explicit formulas for the joint distribution of the parameters and above all,
to reduce dramatically the cost of the numerical implementation of the complete Bayesian
prediction.

We will also present the case in which we do not have any prior information about the
parameters. As described in the previous section, the hyper parameter� is estimated by
minimizing the negative concentrated restricted log-likelihood and it is assumed to be �xed
to this estimated value from now on.

3.4.1 Prior distributions and Bayesian estimation of the parameters

Many choices of priors can be made for the Bayesian modeling. Here we study the two following
cases:

(I) Priors for each parameter are informative.

(II) Priors for each parameter are non-informative.

For the non-informative case (II), we use the improper distributions corresponding to the
�Je�reys priors� and then the posterior distributions are given in Section 3.3.2. Note that non-
informative distributions are used when we do not have prior knowledge. For the informative
case (I), we will consider the following prior distributions:

[� 1j� 2
1] � N p1 (b1; � 2

1V 1); [(�; � 2)jz1; � 2
2] � N 1+ p2

 

b � =

 
b �

b2

!

; � 2
2V � = � 2

2

 
v� 0
0 V 2

!!

;

[� 2
1] � IG (� 1; 
 1); [� 2

2jz1] � IG (� 2; 
 2)

where b1 2 Rp1 , b � 2 R1+ p2 , V 1 is a (p1 � p1) diagonal matrix, V � is a ((1 + p2) � (1 + p2))
diagonal matrix, v� is a positive scalar and� 1; 
 1; � 2; 
 2 > 0. The forms of the priors are
chosen in order to be able to get closed form expressions for the posterior distributions. Note
that there are enough free parameters in the prior distributions to allow the user to prescribe
their means and variances. From the previous prior de�nitions, the posterior distributions of
the parameters are:

[� 1jz1; � 2
1] � N p1 (A 1

i � 1
i ; A 1

i ) [( �; � 2)jz1; z2; � 2
2] � N p2+1 (A �

i � �
i ; A �

i ); (3.21)

where:

A 1
i =

(
� 2

1[F0
1R1(D 1) � 1F1 + V � 1

1 ]� 1 i = (I)
� 2

1[F0
1R1(D 1) � 1F1]� 1 i = (II)

;

� 1
i =

(
[F0

1R1(D 1) � 1z1 + V � 1
1 b1]=� 2

1 i = (I)
[F0

1R1(D 1) � 1z1]=� 2
1 i = (II)

;



96 CHAPTER 3. THE AR(1) MULTI-FIDELITY CO-KRIGING MODEL

A �
i =

(
� 2

2[F0R2(D 2) � 1F + V � 1
� ]� 1 i = (I)

� 2
2[F0R2(D 2) � 1F]� 1 i = (II)

;

� �
i =

(
[F0R2(D 2) � 1z2 + V � 1

� b � ]=� 2
2 i = (I)

[F0R2(D 2) � 1z2]=� 2
2 i = (II)

and F = [ z1(D 2) F2]. Furthermore, we have:

[� 2
1jz1] � IG (� � 2

1 jn1
i ;

Q1
i

2
); [� 2

2jz2; z1] � IG (� � 2
2 jn2

i ;
Q2

i

2
); (3.22)

where:

Q1
i =

(
2
 1 + ( b1 � ~� 1)0(V 1 + [ F0

1R1(D 1) � 1F1]� 1) � 1(b1 � ~� 1) + Q1
2 i = (I)

z0
1[R1(D 1) � 1 � R1(D 1) � 1F1(F0

1R1(D 1) � 1F1) � 1F0
1R1(D 1) � 1]z1 i = (II)

;

Q2
i =

(
2
 2 + ( b � � ~� )0(V � + [ F0R2(D 2) � 1F]� 1) � 1(b � � ~� ) + Q2

2 i = (I)
z0

2[R2(D 2) � 1 � R2(D 2) � 1F(F0R2(D 2) � 1F) � 1F0R2(D 2) � 1]z2 i = (II)
;

~� 1 = ( F0
1R1(D 1) � 1F1) � 1F0

1R1(D 1) � 1z1; ~� = ( F0R2(D 2) � 1F) � 1F0R2(D 2) � 1z2;

� � 2
1 jn1

i =

(
n1
2 + � 1 i = (I)

n1 � p1
2 i = (II)

; � � 2
2 jn2

i =

(
n2
2 + � 2 i = (I)

n2 � p2 � 1
2 i = (II)

:

Mixing of informative and non-informative priors are of course possible and easy to imple-
ment. As we will discuss in Subsection3.4.4 and see in the examples of Section3.5, the use
of informative priors has minor impact on the mean estimation but may have a strong impact
on variance estimation.

3.4.2 Predictive distributions when � 2; �; � 2
1 and � 2

2 are known

As a preliminary step towards the Bayesian prediction carried out in the next subsection, we
give here Bayesian prediction in the form of closed form expressions when the parameters� 2,
� , � 2

1 and � 2
2 are known. The conditional distribution of [Z2(x)jZ = z; � 2; �; � 2

1; � 2
2] is given

by:
[Z2(x)jZ = z; � 2; �; � 2

1; � 2
2] � N

�
� i (x); � 2

i (x)
�

; (3.23)

where:

� i (x) = h0(x)

 
A 1

i � 1
i

� 2

!

+ k0(x)V � 1

 

z � H

 
A 1

i � 1
i

� 2

!!

;

� 2
i (x) = s2

Z2
(x) + g1A 1

i g0
1

and A 1
i and � 1

i are de�ned by (3.21). Note that the estimated variance is augmented by the
term g1A 1

i g0
1 which quanti�es the uncertainty due to the estimation of � 1. g1 is a (1 � p1)

vector composed of thep1 �rst elements of the (1 � p1; 1 � p2) vector g = ( g1; g2) = h0(x) �
k0(x)V � 1H . H is given by (3.3.1). The existence of closed form formulas is important as it
will allow for a fast numerical implementation.



3.4. BAYESIAN PREDICTION FOR A CODE WITH 2 LEVELS 97

3.4.3 Bayesian prediction

Before performing the Bayesian prediction we note that - thanks to the explicit joint prior
distribution for � 2 and � , the independence hypotheses and the hierarchical speci�cation of
the parameters - conditioning on� , we have an explicit formula for the following joint density
(see Section3.4.1):

p(� 1; � 2; �; � 2
1; � 2

2jz1; z2) = p(� 1j� 2
1; z1)p(� 2; � j� 2

2; z1; z2)p(� 2
1jz1)p(� 2

2jz1; z2): (3.24)

This explicit joint density is an original result which contrasts with [ Qian and Wu, 2008]
and which allows us to avoid prohibitive implementation for the Bayesian analysis.

First, we consider the predictive distribution with � 2
1 and � 2

2 known. Considering the con-
ditional independence assumption between(� (x)) x2 Q and (Z1(x)) x2 Q , the probability density
function of [Z2(x)jZ = z; � 2

1; � 2
2] can be deduced from the following integral:

p(z2(x)jz1; z2; � 2
1; � 2

2) =
Z

R1+ p2

p(z2(x)jz1; z2; � 2; �; � 2
1; � 2

2)p(�; � 2jz1; z2; � 2
2) d�d � 2; (3.25)

where p(z2(x)jz1; z2; � 2; �; � 2
1; � 2

2) is given by (3.23). This integral has to be numerically
evaluated. Since[�; � 2jz1; z2; � 2

2] has a known normal distribution given by (3.21), we here use
a Monte-Carlo algorithm when the dimension of� 2 and � is high, or a trapezoidal quadrature
method when it is low.

Then, we infer from the parameters� 2
1 and � 2

2. Due to the independence between(� (x)) x2 Q

and (Z1(x)) x2 Q , the probability density function of [Z2(x)jZ = z] is:

p(z2(x)jz1; z2) =
Z

R2
p(z2(x)jz1; z2; � 2

1; � 2
2)p(� 2

1jz1)p(� 2
2jz1; z2) d� 2

1d� 2
2; (3.26)

where p(� 2
1jz1) and p(� 2

2jz1; z2) are given by (3.22). This integral has also to be numerically
evaluated. Since we have a double integration, a quadrature method will be e�cient. We
use here a trapezoidal numerical integration, de�ning the region of integration[� 2

1inf
; � 2

1sup
] �

[� 2
2inf

; � 2
2sup

] from Equation (3.22) and such that p(� 2
1inf

jz1), p(� 2
1sup

jz1) p(� 2
2inf

jz1; z2) and
p(� 2

2sup
jz1; z2) are close to0. This region essentially contains the support of the function. Fur-

thermore, we create a non-uniform integration grid distributed with a geometric progression.
Finally p(z2(x)jz1; z2) is a predictive density function integrating the posterior distribution

of parameters(� 2; �; � 1; � 2
1; � 2

2). We hence have a predictive distribution taking into account
the uncertainties due to the parameter estimations.

3.4.4 Discussion about the numerical evaluations of the integrals

We saw in the previous section that we can obtain an analytical prediction when� 2, � , � 2
1 and

� 2
2 are known. From this analytical formula, we can have a Bayesian prediction with only two

nested integrations. One of them can be approximated with a quadrature or a Monte Carlo
method, which is not too expensive. The other is a double integration approximated with a
quadrature method which is e�cient and not expensive. Therefore, we do not use any Markov
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chain Monte Carlo method and we considerably reduce the time and the complexity of the
method. This allows us to easily build an accurate Bayesian metamodel. Practically, we use
441 integration points to approximate (3.26) and 1000 Monte-Carlo particles to approximate
(3.25). Therefore, we have 441000 call to the predictive density function (3.23).

To avoid a prohibitive implementation, another approach has also been proposed in [Cum-
ming and Goldstein, 2009]. They adopt a Bayes linear formulation which requires only the
speci�cation of the means, variances, and covariances. See [Goldstein and Woo�, 2007] for
further details about the Bayes linear approach. The strength of this method is that its com-
putational cost is low. Nonetheless, since it only focuses on posterior means and covariances,
it does not provide the full posterior predictive distribution.

Finally, we highlight the fact that our Bayesian procedure can be used to perform multi-
�delity analysis with more than 2 levels of code whereas the cost of the one presented by [Qian
and Wu, 2008] is too high to allow for such analysis. We illustrate in Section3.7 through an
industrial case the great practical importance of using more than 2 levels of code.

3.5 Academic examples

We will present in this section some co-kriging metamodels using one-dimensional functions
inspired by the example presented by [Forrester et al., 2007]. For the following examples, we
will use a non-Bayesian co-kriging model -i.e. the one presented by [Kennedy and O'Hagan,
2000] - but with a Bayesian estimation of the parameters (see Section3.3.2) and for the second
example we will use a Bayesian co-kriging.

Furthermore, the correlation kernels are assumed to be:

r t (x
(k)
i � x(l )

j ; � t ) = exp

 

�
(x(k)

i � x(l )
j )2

2� 2
t

!

;

where t; k; l = 1 ; 2 1 � i � n1 1 � j � n2 and the regression functions aref1(x) = 1 and
f 0
2(x) = (1 x).

Example 1. The aim of this example is to emphasize the e�ectiveness of the presented
Bayesian estimation of the parameters (see Section3.6.1). We assume that the cheap code
is given by z1(x) = 0 :5(6x � 2)2sin(12x � 4) + 10(x � 0:5) � 5 and the expensive code by
z2(x) = 2 z1(x) � 20x + 20 . The experimental design set of the cheapest code isD1 =
f 0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1g and the one of the expensive code isD2 = f 0; 0:4; 0:6; 1g.
This example is identical to the one-dimensional demonstration presented in [Forrester et al.,
2007]. Figure 3.1 shows the functionsx 7! z2(x) and x 7! z1(x), the training data for z2 and
z1, the ordinary kriging using only the expensive data and the co-kriging using expensive and
cheap data.

To validate the model, the Root Mean Squared ErrorRMSE =
P

x2 T (mZ2 (x) � z2(x))2=nT

and the Nash-Sutcli�e model e�ciency coe�cient (see [ Nash and Sutcli�e, 1970]) E� =

1 �
P

x 2 T (mZ 2 (x)� z2 (x))2

P
x 2 T (mZ 2 (x)� �z2)2 , �z2 =

P
x2 D 2

z2(x)=n2 are computed. The Nash-Sutcli�e e�ciency

compares the residual variance with the total variance. It is also referenced asQ2 coe�cient.
The closerE� is to 1, the more accurate the model is.
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Figure 3.1: Example 1. The co-kriging metamodel is very close to the expensive outputz2(:)
and improves signi�cantly the ordinary kriging metamodel using the small designD 2.

The test set T is composed of a regular grid points sampled from0 to 1 with a grid
step equal to 0:01 and �z2 is the empirical mean evaluated inT. The estimated RMSE is
5:68 � 10� 2 and the e�ciency E� is 99:98%, so we have a prediction error close to 0. The
Bayesian estimates of the parameters of co-kriging are given in Table3.1. Furthermore, the
estimates of the hyper-parameters(� 1; � 2), calculated by maximizing the concentrated log-
likelihoods (3.19) and (3.20), are �̂ 1 = 0 :25 and �̂ 2 = 0 :80. D 1 being a regular grid with
a grid step equal to 0.1 andD 2 being composed of points sampled from 0 to 1, points of
the experimental designs are hence strongly correlated which will imply a smooth surrogate
model.

Regression Coe�cient Posterior mean
� 2

� 2 (20; � 20)
� 1 � 3:49

Variance Coe�cient Posterior harmonic average
� 2

1 32:75
� 2

2 7:02� 10� 30

Table 3.1: A co-kriging example with one-variable functions. Bayesian estimation of parame-
ters.

We see that the Bayesian estimation of parameters is very e�ective since the estimations
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of parameters� and � 2 are perfect. Nevertheless this example does not highlight the strength
of the method since there is a relation betweenz2(x)x2 [0;1] and z1(x)x2 [0;1] which exactly
corresponds to Equation (3.2) with the error � 2 that can be written in terms of the regression
functions f2 exactly. Therefore, if the cheap code is well modeled, like in this case, the co-
kriging is equivalent to a linear regression. Moreover, the very small value of� 2

2 illustrates
this.

Example 2. This example illustrates a case where the non-Bayesian co-kriging underes-
timates the predictive variance whereas the Bayesian one adjusts it. We assume that the
expensive code is given byz2(x) = 2 z1(x) � 20x + 20 + sin(10 cos(5x)) and the cheaper code is
given by z1(x) = 0 :5((6x � 2)2 sin(12x � 4))+10( x � 0:5)� 5. Through the term sin(10 cos(5x)) ,
the expensive code has high frequencies which are not captured by the cheap code and the error
� 2 is not a simple linear combination of the regression functionsf2. Therefore, the functions
do not exactly match the model presented in Section3.2 and the high frequency discrepancy
makes the problem more challenging. Figure3.2 shows the results of kriging and co-kriging
for these two functions. The estimated RMSE is1:05 and the e�ciency E� is 93:57%, we
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Figure 3.2: Example 2. The high frequency components of the expensive code are not predicted
since they are not captured by the cheap code and the coarse grid used for the expensive code
cannot detect them either. Nevertheless, the co-kriging improves the ordinary kriging meta-
model since the cheap code allows us to predict the low frequencies of the expensive code
accurately.

still have a good prediction. The Bayesian estimation of the parameters are given in Table
3.2 and we have�̂ 1 = 0 :25 and �̂ 2 = 0 :07. The values of� 1 and � 2 have been �xed according
the following arguments. As the cheap code is the same as the one of the Example 1, we keep
the same estimate for� 1. Then, we consider that there are not enough points to carry out a
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signi�cant estimate of � 2. Therefore, we �x the value of �̂ 2 according to the high frequencies
introduced by the term sin(10 cos(5x)) .

Regression Coe�cient Posterior mean
� 1:86

� 2 (18:39; � 17:00)
� 1 � 3:49

Variance Coe�cient Posterior harmonic average
� 2

1 32:75:03
� 2

2 0:30

Table 3.2: A co-kriging example with one-dimensional functions. Bayesian estimation of
parameters.

Due to the additional term sin(10 cos(5x)) , the estimate of the parameter� is less e�ec-
tive than in the �rst example. This highlights the dependence between� and the mean of
� (x)x2 [0;1]. Furthermore, Figure 3.3 represents the con�dence interval at plus or minus twice
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Figure 3.3: Example 2 without any prior information. The thick dotted line represents the
prediction mean, the thin dotted lines represent the con�dence interval at plus or minus twice
the standard deviation in the non-Bayesian case and the dashed lines represent the same
con�dence interval in the Bayesian case.

the standard deviation of the predictive distribution in the Bayesian and non-Bayesian cases.
We see that we underestimate the variance of the predictive distribution in the non-Bayesian
case. Its estimate is well adjusted in the Bayesian case.
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We �nally consider the case in which we have prior information:

[(�; � 2)jz1; � 2
2] � N

0

B
@

0

B
@

2
20

� 20

1

C
A ; � 2

2

0

B
@

0:05 0 0
0 0:05 0
0 0 0:05

1

C
A

1

C
A ; [� 2

2jz1] � IG (3; 1):

Figure 3.4shows the result of the Bayesian co-kriging with the given prior information. The
estimated RMSE is 0.79 and the e�ciency E� is 96:57%, we hence improve the accuracy of
the metamodel. The predictive mean is closer to the true function and the predictive variance
is reduced compared to the non-informative Bayesian case, with the con�dence intervals that
still contain the true function. The posterior distributions of the parameters are given in Table
3.3 and we have�̂ 1 = 0 :25 and �̂ 2 = 0 :07.

Regression Coe�cient Posterior mean
� 2:00
� 2 (20:12; � 19:81)
� 1 � 3:49

Variance Coe�cient Posteriori harmonic average
� 2

1 32:75
� 2

2 0:29

Table 3.3: A co-kriging example with one-dimensional functions and prior information. Pos-
terior distribution of parameters.
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Figure 3.4: Example 2 with prior information. The prior information improves the accuracy
of the co-kriging metamodel and the variance of the predictive distribution has decreased.
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3.6 The case of s levels of code

The aim of this section is to perform a multi-level co-kriging with any number of codes. Let us
considers levels of code. The generalization of the previous model is straightforward. Actually,
if we denote by � = ( � 0

1; : : : ; � 0
s)0, � = ( � 1; : : : ; � s� 1), � 2 = ( � 2

1; : : : ; � 2
s ) and � = ( � 1; : : : ; � s),

we have:
8x 2 Q [Zs(x)jZ = z; � ; �; � 2; � ] � N

�
mZs (x); s2

Zs
(x)

�
;

where:
mZs (x) = h0

s(x)� + k0
s(x)V � 1

s (z � H s� ) (3.27)

and:
s2

Zs
(x) = � 2

Zs
� k0

s(x)V � 1
s ks(x): (3.28)

Furthermore, the correlation matrix for D t and � s = 0 , 8s � 0. The matrix V s has the form:

V s =

0

B
@

V (1;1) : : : V (1;s)

...
. . .

...
V (s;1) : : : V (s;s)

1

C
A : (3.29)

The s diagonal blocks of sizent � nt are de�ned by:

V (t;t ) = � 2
t Rt (D t ) + � 2

t � 1� 2
t � 1Rt � 1(D t ) + � � � + � 2

1

 
t � 1Y

i =1

� 2
i

!

R1(D t ) (3.30)

and the o�-diagonal blocks of sizent � n~t are given by:

V (t; ~t ) =

0

@
~t � 1Y

i = t

� i

1

A V (t;t ) (D t ; D ~t ) 1 � t < ~t � s: (3.31)

The vector ks(x) is such that ks(x) = ( k�
1(x; D 1)0; : : : ; k�

s (x; D s)0)0, where:

k�
t (x; D t )0 = � t � 1k�

t � 1(x; D t )0+

 
s� 1Y

i = t

� i

!

� 2
t Rt (x; D t ) 1 < t � s; (3.32)

where
� Q s� 1

i = s � i

�
= 1 and k�

1(x; D 1)0 =
� Q s� 1

i =1 � i

�
� 2

1R1(x; D 1). If we de�ne:

Fk (D l ) =

0

B
B
@

f 0
k (x(l )

1 )
...

f 0
k (x(l )

n l )

1

C
C
A 1 � k; l � s;

then the matrix H s can be written as:

H s =

0

B
B
B
B
B
B
B
@

F1(D 1)
� 1F1(D 2) F2(D 2) 0

� 1� 2F1(D 3) � 2F2(D 3)
...

...
. . .� Q s� 1

i =1 � i

�
F1(D s)

� Q s� 1
i =2 � i

�
F2(D s) : : : Fs(D s)

1

C
C
C
C
C
C
C
A

; (3.33)

h0
s(x) and var(Zs(x)) = � 2

Zs
are given by the equations (3.3) and (3.5).
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3.6.1 Bayesian estimation of parameters for s levels of code

From the assumptions of conditional independence between(� t (x)) x2 Q and (Z t � 1(x); : : : ; Z1(x)) x2 Q ,
we can extend the Bayesian estimation of the parameters to the case ofs levels. Note that we
do not assume the independence of� t and � t � 1. We can obtain a closed form expression for
the posterior distribution of (� t ; � t � 1). For all t = 2 ; : : : ; s, we have:

[(� t � 1; � t )jzt ; zt � 1; � t ; � 2
t ] � N

� �
H 0

t Rt (D t ) � 1H t
� � 1

H 0
t Rt (D t ) � 1zt ; � 2

t

�
H 0

t Rt (D t ) � 1H t
� � 1

�
;

(3.34)
where H t = [ zt � 1(D t ) Ft (D t )]. Furthermore, if we note ~� t = E[(� t � 1; � t )jzt ; zt � 1; � t ; � 2

t ],
then we have:

[� 2
t jzt ; zt � 1; � t ] � IG (� t ;

Qt

2
); (3.35)

where � t = ( nt � pt � 1)=2 and Qt = ( zt � H t ~� t )0Rt (D t ) � 1(zt � H t ~� t ).
The REML estimator of � 2

t is �̂ 2
t = Qt =2� t and we can estimate� t by minimizing the

expression:

log(jdet(Rt (D t )) j) + ( nt � pt � qt � 1)log(�̂ 2
t ): (3.36)

The generalization of the Bayesian estimation previously presented is important since it shows
that the parameter estimation for a s-levels co-kriging is equivalent in terms of numerical
complexity to the one for s independent krigings.

3.6.2 Reduction of computational complexity of inverting the covariance
matrix V s

V s is an (
P s

i =1 ni �
P s

i =1 ni ) matrix, its inverse can hence be di�cult to process. We present
in this subsection two propositions to reduce the complexity of the processing ofV � 1

s .

Proposition 3.1. Let us consider the covariance matrixV s presented in Equation
(3.29). By sorting the experimental design sets such that8t = 2 ; : : : ; s, D t � 1 =
(x(t � 1)

1 ; : : : ; x(t � 1)
n t � 1 � n t

; x(t )
1 ; : : : ; x(t )

n t ) = ( D t � 1 n D t ; D t ), 8t = 2 ; : : : ; s the inverse of the
matrix V s has the form:

V � 1
s =

0

B
B
@

V � 1
s� 1 +

 
0 0

0
� 2

s� 1Rs (D s ) � 1

� 2
s

!

�

 
0

� s� 1Rs (D s ) � 1

� 2
s

!

�
�

0 � s� 1Rs (D s ) � 1

� 2
s

�
Rs (D s ) � 1

� 2
s

1

C
C
A V � 1

1 =
R1(D 1) � 1

� 2
1

;

(3.37)
with V � 1

s� 1 an (
P s� 1

i =1 ni �
P s� 1

i =1 ni ) matrix and Rs(D s) � 1 an (ns � ns) matrix.

Proof. The proof is proposed with the general form� (x) = gt � 1(x)� � t � 1
for the adjustment

coe�cient. Throughout the proof, we denote by � the matrix element-by-element product
(see AppendixA.2). Let us consider the following sorting procedure:

8t = 2 ; : : : ; s D t � 1 = ( D t � 1 n D t ; D t ):
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The proof is based on the block-wise inversion formula of the covariance matrixV s. The
covariance matrix V s can be written with the form:

V s =

 
V s� 1 U s� 1

U 0
s� 1 V (s;s)

!

U s� 1 =

0

B
@

V (1;s)

...
V (s� 1;s)

1

C
A ;

where V s� 1 is the covariance matrix of the random vector(Z1; : : : ; Zs� 1) and U s� 1 is the
covariance matrix between(Z1; : : : ; Zs� 1) and Zs. Classical block-inversion matrix formula
gives that

 
V s� 1 U s� 1

U 0
s� 1 V (s;s)

! � 1

=

 
V � 1

s� 1 + V � 1
s� 1U s� 1Q � 1

s U 0
s� 1V � 1

s� 1 � V � 1
s� 1U s� 1Q � 1

s

� Q � 1
s U 0

s� 1V � 1
s� 1 Q � 1

s

!

:

where Qs = V (s;s) � U 0
s� 1V � 1

s� 1U s� 1. For s > t the following equalities stands:

V (t;s ) = cov ( Z t (D t ); Zs(D s))

= cov ( Z t (D t ); � s� 1(D s) � Zs� 1(D s) + � s(D s))

= cov ( Z t (D t ); � s� 1(D s) � Zs� 1(D s))

=
�
1n t � s� 1(D s)0� � cov (Z t (D t ); Zs� 1(D s))

=
�
1n t � s� 1(D s)0� � V (t;s � 1)(D t ; D s):

Therefore, we have:

U s� 1 =

0

B
@

V (1;s)

...
V (s� 1;s)

1

C
A =

�
1P s� 1

i =1 n i
� s� 1(D s)0

�
�

0

B
@

V (1;s� 1)(D 1; D s)
...

V (s� 1;s� 1)(D s� 1; D s)

1

C
A :

Denoting that 0

B
@

V (1;s� 1)(D 1; D s)
...

V (s� 1;s� 1)(D s� 1; D s)

1

C
A

are the ns last columns ofV s� 1, we obtain that:

V � 1
s� 1U s� 1 = V � 1

s� 1

0

B
@

�
1P s� 1

i =1 n i
� s� 1(D s)0

�
�

0

B
@

V (1;s� 1)(D 1; D s)
...

V (s� 1;s� 1)(D s� 1; D s)

1

C
A

1

C
A

=
�

1P s� 1
i =1 n i

� s� 1(D s)0
�

�

 
0(

P s� 1
i =1 n i � ns )� ns

I ns

!

:

Furthermore, we have the equality

Qs = cov ( Zs(D s); Zs(D s))

� cov (Z n Zs(D s); Zs(D s))0cov (Z n Zs(D s); Z n Zs(D s)) � 1 cov (Z n Zs(D s); Zs(D s)) ;
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with Z n Zs(D s) = ( Z1(D 1); : : : ; Zs� 1(D s� 1)) . Therefore, Qs is the covariance matrix of
Zs(D s) conditioned by (Z1(D 1); : : : ; Zs� 1(D s� 1)) . Furthermore, the equality:

Zs(D s) = � s� 1(D s) � Zs� 1(D s) + � s(D s)

implies that:

var (Zs(D s)jZ n Zs(D s)) = var ( � s� 1(D s) � Zs� 1(D s) + � s(D s)jZ n Zs(D s))

= var ( � s(D s)jZ n Zs(D s)) ;

sinceZs� 1(D s) is [Z n Zs(D s)]-measurable. Moreover, we have the equality

var (Zs(D s)jZ n Zs(D s)) = var ( � s(D s)) ;

since� s(D s) ? Z n Zs(D s). Therefore, we have:

Qs = var ( � s(D s)) = � 2
sRs(D s):

From the previous equality, we deduce that

V � 1
s� 1U s� 1Q � 1

s =

0

@
0(

P s� 1
i =1 n i � ns )� ns

( � s� 1 (D s )10
n s ) � Rs (D s ) � 1

� 2
s

1

A

and

V � 1
s� 1U s� 1Q � 1

s U 0
s� 1V � 1

s� 1 =

 
0(

P s� 1
i =1 n i � ns )� (

P s� 1
i =1 n i � ns ) 0(

P s� 1
i =1 n i � ns )� ns

0ns � (
P s� 1

i =1 n i � ns )
(� s� 1 (D s )� s� 1 (D s )0)� Rs (D s ) � 1

� 2
s

!

:

Finally, we �nd that

V � 1
s =

 
W 11 W 12

W 0
12 W 22

!

;

where

W 11 =

 
0(

P s� 1
i =1 n i � ns )� (

P s� 1
i =1 n i � ns ) 0(

P s� 1
i =1 n i � ns )� ns

0ns � (
P s� 1

i =1 n i � ns )
(� s� 1 (D s )� s� 1 (D s )0)� Rs (D s ) � 1

� 2
s

;

!

W 12 = �

0

@
0(

P s� 1
i =1 n i � ns )� ns

( � s� 1 (D s )10
n s ) � Rs (D s ) � 1

� 2
s

1

A ;

W 0
12 = �

�
0ns � (

P s� 1
i =1 n i � ns )

(1n s � s� 1 (D s )0)� Rs (D s ) � 1

� 2
s

�
;

W 22 =
Rs(D s) � 1

� 2
s

:

Furthermore, with the equality V 1 = var ( Z1(D 1)) = � 2
1R1(D 1) we �nd the recursive form

presented earlier in this subsection.
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This is a very important result since it shows that we can deduceV � 1
s from Rt (D t ) � 1,

t = 1 ; : : : ; s. Therefore, the complexity of the processing ofV � 1
s is O(

P s
i =1 n3

i ) instead of
O((

P s
i =1 ni )3).

From Equation (3.37) and the Bayesian estimation of parameters presented in Section
3.6.1, we have shown here that building as-level co-kriging is equivalent in terms of
numerical complexity to build s independent krigings.

We emphasize that, for practical applications, the form (3.37) for the inverse ofV s allows
us to perform �ne matrix regularization in the case of ill-conditioned problems. Indeed,V s

is invertible if and only if the matrices Rt (D t ), t = 1 ; : : : ; s are invertible. Therefore, if
the problem is ill-conditioned, we just have to regularize the matricesRt (D t ) which are ill-
conditioned too. Moreover, we can further simplify the problem by considering the proposition
below.

Proposition 3.2. Let us considerV s the covariance matrix presented in Equation (3.29)
and ks(x) the covariance vector presented in Equation (3.32). Then, we have the follow-
ing equality:

V � 1
s ks(x) =

0

B
@

� s� 1V � 1
s� 1ks� 1(x) �

 
0(

P s� 1
i =1 n i � ns )� 1

� s� 1Rs(D s) � 1Rs(D s; f xg)

!

Rs(D s) � 1Rs(D s; f xg)

1

C
A : (3.38)

Proof. We know that the vector ks(x) is such that ks(x) = ( k�
1(x; D 1)0; : : : ; k�

s(x; D s)0)0, with:

k�
t (x; D t )0 = � 0

t � 1(D t ) � k�
t � 1(x; D t )0+

 
s� 1Y

i = t

� i (x)

!

� 2
t Rt (x; D t ):

Let us denote by

A =

0

B
B
@

V � 1
s� 1 +

 
0 0

0 (� s� 1 (D s )� s� 1 (D s )0)� Rs (D s ) � 1

� 2
s

!

�
�

0
(10

n 1
� s� 1 (D s )0) � Rs (D s ) � 1

� 2
s

�

1

C
C
A

and

B =

0

B
B
@

�

 
0

(� s� 1 (D s )1n s )� Rs (D s ) � 1

� 2
s

!

Rs (D s ) � 1

� 2
s

1

C
C
A :

The following equality stands:

ks(x)0V � 1
s =

�
ks(x)0A k s(x)0B

�
:

Let us focus on the termks(x)0A , we have:

ks(x)0A = ( k�
1(x; D 1)0; : : : ; k�

s� 1(x; D s� 1)0)

 

V � 1
s� 1 +

 
0 0

0 (� s� 1 (D s )� s� 1 (D s )0)� Rs (D s ) � 1

� 2
s

!!

� k�
s(x; D s)0

�
0 (1n s � s� 1 (D s )0)� Rs (D s ) � 1

� 2
s

�
:
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We note that we have the equality:

(k�
1(x; D 1)0; : : : ; k�

s� 1(x; D s� 1)0) = � s� 1(x)k0
s� 1(x):

Indeed, the vector (k�
1(x; D 1)0; : : : ; k�

s� 1(x; D s� 1)0) represents the covariance betweenZs(x)
and (Z1(D 1); : : : ; Zs� 1(D s� 1). Therefore, we have:

(k�
1(x; D 1)0; : : : ; k�

s� 1(x; D s� 1)0) = cov ( Zs(x); (Z1(D 1); : : : ; Zs� 1(D s� 1)))

= cov ( � s� 1(x)Zs� 1(x) + � s(x); (Z1(D 1); : : : ; Zs� 1(D s� 1)))

and the independence� s(x) ? (Z1(x); : : : ; Zs� 1(x)) , gives that:

(k�
1(x; D 1)0; : : : ; k�

s� 1(x; D s� 1)0) = cov ( � s� 1(x)Zs� 1(x); (Z1(D 1); : : : ; Zs� 1(D s� 1)))

= � s� 1(x)cov (Zs� 1(x); (Z1(D 1); : : : ; Zs� 1(D s� 1)))

= � s� 1(x)k0
s� 1(x):

Let us return to the term ks(x)0A . Noticing that

k�
s� 1(x; D s� 1)0 = ( k�

s� 1(x; D s� 1 n D s)0 k�
s� 1(x; D s)0);

we obtain the following equality:

ks(x)0A = � s� 1(x)k0
s� 1(x)V � 1

s� 1 +
�

0 k�
s� 1(x; D s)0(� s� 1 (D s )� s� 1 (D s )0)� Rs (D s ) � 1

� 2
s

�

� k�
s (x; D s)0

�
0 (1n s � s� 1 (D s )0)� Rs (D s ) � 1

� 2
s

�
:

We know that k�
s(x; D s)0 = � s� 1(D s)0� k�

s� 1(x; D s)0+ � 2
sRs(x; D s). Therefore, we can deduce

that:

ks(x)0A = � s� 1(x)k0
s� 1(x)V � 1

s� 1 � Rs(x; D s)
�

0 (1ns � s� 1(D s)0) � Rs(D s) � 1
�

� s� 1(x)k0
s� 1(x)V � 1

s� 1 �
�

01� (
P s� 1

i =1 n i � ns ) (� s� 1(D s)0� Rs(f xg; D s))Rs(D s) � 1
�

:

Let us focus now on the termks(x)0B :

ks(x)0B = � (k�
1(x; D 1)0; : : : ; k�

s� 1(x; D s� 1)0)

 
0

( � s� 1 (D s )10
n s ) � Rs (D s ) � 1

� 2
s

!

+ k�
s(x; D s)0Rs(D s) � 1

� 2
s

= � k�
s� 1(x; D s)0

�
� s� 1(D s)10

ns

�
� Rs(D s) � 1

� 2
s

+ k�
s (x; D s)0Rs(D s) � 1

� 2
s

= � k�
s� 1(x; D s)0

�
� s� 1(D s)10

ns

�
� Rs(D s) � 1

� 2
s

+
�
� s� 1(D s)0� k�

s� 1(x; D s)0+ � 2
sRs(x; D s)

� Rs(D s) � 1

� 2
s

= Rs(x; D s)R� 1
s :
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Finally we obtain:

V � 1
s ks(x) =

0

B
@

� s� 1V � 1
s� 1ks� 1(x) �

 
0

� s� 1Rs(D s) � 1Rs(D s; x)

!

Rs(D s) � 1Rs(D s; x)

1

C
A :

Therefore, k0
s(x)V � 1

s is independent of� 2
s . Sincek1(x)V � 1

1 = R1(f xg; D 1)R1(D 1) � 1 does
not depend on� 2

1, by induction, k0
s(x)V � 1

s is independent of� 2
i for all 1 � i � s. We have

just shown here that the co-kriging mean does not depend on the variance coe�cients.

3.6.3 Numerical test on the reduction of computational complexity

In the previous section, we have presented a reduction of complexity for the co-kriging model by
expressing the inverse of the matrixV s with the inverses of the matricesRt (D t ), t = 1 ; : : : ; s.
We present here a numerical test to highlight the gain of CPU time obtained with this method.
We focus on the case of 2 levels of code with constant regression functions and the following
Gaussian kernel for the 2 levels:

r (x � ~x; � ) = exp
�

�
(x � ~x)2

2� 2

�
:

The experimental design set for the cheap code is a regular grid composed ofn1 points
between 0 and 1 and the experimental design set for the expensive code are then2 �rst points
of this grid. We consider the relation n1 = 4n2 with n2 = 50; 60; : : : ; 500 and the parameter
� = 5=n2 (the parameter � is controlled by n2 in order to avoid ill-conditioned covariance
matrices). The total number of observations is hencen = n1 + n2. Figure 3.5 compares the
CPU time needed to build a co-kriging model with or without reduction complexity.

First, the slope of the two CPU times is close to 3 (the least-squares estimate value is
3.03). The complexity of a matrix inversion beingO(n3), with n the size of the matrix, the
estimate of the slope highlights the fact that it is the matrix inversion which leads the CPU
time. Then, Figure 3.5 emphasizes that the reduction of complexity is worthwhile. Indeed, we
see that the ratio between the two CPU times is approximately a constant equal to 1.93. We
are hence close to the theoretical ratio equal to(n1 + n2)3=(n3

1 + n3
2) � 1:92 which is obtained

when we consider that the CPU time is essentially due to the matrix inversion.

3.6.4 Academic example on the complexity reduction

A 3-level co-kriging metamodel is presented in this section to illustrate the gain of CPU which
can be obtained with the presented reduction of complexity. We focus on the inversion of the
co-kriging matrix V s by comparing the CPU time needed with a direct inversion or by using
the formula (3.37). We assume that the 3 levels of code are given by the followings three
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Figure 3.5: CPU time comparison between 2-level co-kriging models. The triangles represent
the CPU time for the crude co-kriging model and the circles represent the CPU time for the
co-kriging model with the complexity reduction. The gain of CPU time with the reduction
complexity is approximately a factor equal to 1.93.

dimensional functions:

z1(x) = sin( x1); (3.39)

z2(x) = z1(x) + asin(x2)2; (3.40)

z3(x) = z2(x) + bx4
3sin(x1); (3.41)

with x = ( x1; x2; x3) 2 [� �; � ]3, a = 7 and b = 1=10. We note that the complex function z3(x)
corresponds to the Ishigami function which is very popular in the �eld of sensitivity analysis
[Saltelli et al., 2000]. We consider n3 = 50 observations for the most accurate codez3(x),
n2 = 200 for the intermediate code andn1 = 400 for the less accurate code. All experimental
design sets are randomly sampled from the uniform distribution. As presented in Section3.2
we consider nested experimental designs8t = 2 ; : : : ; s D t � D t � 1.

We use a tensorised Matérn-5=2 kernel for the three correlation functions:

r t (x; ~x; � t ) =
dY

i =1

r1D (x i ; ~x i ; � t;i ); (3.42)

with r1D (t; ~t; � ) =
�

1 +
p

5 jt � ~t j
� + 5

3
(t � ~t )2

� 2

�
exp

�
�

p
5 jt � ~t j

�

�
, t; ~t 2 R and constant regression

functions f t (x) = 1 .
The estimates of the hyper-parameters� t are presented in Table3.4.



3.6. THE CASE OF S LEVELS OF CODE 111

Parameter Estimate

�̂ 1

�
0:61 1:99 2:04

�

�̂ 2

�
1:98 0:26 2:48

�

�̂ 3

�
0:23 0:89 0:21

�

Table 3.4: Academic example on the complexity reduction. Estimates of the hyper-parameters
(correlation lengths) for the 3-level co-kriging.

The hyper-parameter estimates show us thatz1(x) is very smooth in the directionsx2 and
x3 re�ecting the fact that it depends only on the �rst direction x1. Similarly, the bias between
z2(x) and z1(x) only depending on the second directionx2, it is rough in this direction and
very smooth in the other ones. Finally, the bias betweenz3(x) and z2(x) is rougher in the
direction x3 than in the directions x1 and x2. This is due to the important impact of x3 on
the third level.

The estimates of the variance, scale and regression parameters are given in Table3.5.

Parameter Estimate
� 1 0.00 
� � 1

� 2

!  
0:99
2:44

!

 
� � 2

� 3

!  
0:95
0:64

!

� 2
1 0.09

� 2
2 1.66

� 2
3 6.25

Table 3.5: Academic example on the complexity reduction. Estimates of the variance, scale
and regression parameters for the 3-level co-kriging.

Table 3.5 shows the e�ciency of the suggested method for the parameter estimations since
it provides very accurate estimates of� 1 and � 2.

To evaluate the accuracy of the co-kriging model, we use a test set of 30,000 points uni-
formly sampled from the uniform distribution. Then, we compute the e�ciency E� with
the co-kriging predictions and the responses ofz3(x) on this set. We obtain for the co-kriging
model E� = 83:21%, we hence have a good accuracy despite the small number of observations
used for the high �delity model. Nonetheless, we have a signi�cant improvement relatively
to the kriging model since with the same kernel and the same experimental design setD 3 we
obtain E� = 47:97% which is a very poor accuracy. The hyper-parameter estimate of the
kriging model is �̂ = (0 :79; 0:14; 0:29), the variance one is�̂ 2 = 13:66 and the trend coe�cient
one is �̂ = 3 :89.
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Let us now compare the di�erence of CPU time between the co-kriging building with a
crude inversion of the covariance matrixV s and the one with an inversion using the formula
presented in Subsection3.6.2. The CPU time necessary without the reduction complexity is
CPUcrude = 0 :47 whereas the one necessary with the complexity reduction is CPUlight = 0 :14.
We hence �nd that the CPU time ratio between the two methods approximately equals3:36.
This is not far from the theoretical ratio which equals 6503=(4003 + 2003 + 503) � 3:80. We
note that the complexity reduction could be of important practical interest. For example,
without it the computational cost of a leave-one-out cross validation procedure will be much
more important (the ratio will still be around 3 in our example). The complexity of this
procedure beingO(n4), the gain of CPU time will be substantial.

3.6.5 Comparison with existing methods on an academic example

We proceed here on a numerical comparison between the suggested model and the ones pre-
sented by [Kennedy and O'Hagan, 2000] and [Qian and Wu, 2008]. The comparison is made
both in terms of RMSE and computational resources. For the comparison, we consider a
2-level co-kriging model with the following functions:

(
z1(x) = sin( x1) + asin(x2)2

z2(x) = z1(x) + bx4
3sin(x1)

; (3.43)

with x = ( x1; x2; x3) 2 [� �; � ]3, a = 7 and b = 1=10. Furthermore, the experimental design
set D 1 for the coarse codez1(x) is composed of 100 points uniformly spread on[� �; � ]3 and
the experimental design set for the �ne codez2(x) is composed of 50 points randomly extracted
from D 1. Then, we consider a test setX test of 1000 points uniformly spread on[� �; � ]3. In
order to propose a fair comparison, we use the R-CRAN package �approximator.1.2-2� on the
R.2.15.2 platform to implement the model of Kennedy and O'Hagan. This package has been
specially created to compute the equations given by [Kennedy and O'Hagan, 2000]. Then,
we use the WinBUGS software version 1.4.3 to implement the model presented by [Qian and
Wu, 2008]. It is a software specially dedicated to Bayesian analysis and particularly e�cient
to develop Metropolis-within-Gibbs algorithms [Liu, 2001]. Finally, we use the R-CRAN
package �MuFiCokriging.1.2� to implement our model. This package computes the mean and
the variance of the predictive distribution presented in Subsection3.4.3 and integrates the
proposed complexity reductions (see Chapter4 Section4.6). For the two correlation functions
r1(x; x 0) and r2(x; x 0) we use Gaussian covariance kernels for the three models

r j (x; x 0) = exp

 

�
1
2

dX

i =1

(x i � x0
i )

2

� 2
i;j

!

;

and for the model presented by Qian et al. we assume a Gaussian covariance kernel for the
adjustment coe�cient. Furthermore, we assume a constant trend for the Gaussian processes
modeling the coarse code and the bias between the two codes.

The correlation parameters and the adjustment parameter of the model presented by
Kennedy and O'Hagan are estimated with a concentrated likelihood method with a joint esti-
mation of (� i; 2) i =1 ;:::;3 and � as presented in their paper. The other parameters are estimated
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with a classical maximum likelihood estimate. Note that in this model the scaling coe�cient
� is constant.

The correlation parameters of the model presented by Qian et al. are estimated with a
Bayesian method and the prior for each of them is�(2 ; 0:1) where � stands for the Gamma
distribution. As in [ Qian and Wu, 2008] we consider these parameters as known and �xed
to the modes of their posterior distributions. Furthermore, for the Bayesian procedure the
convergence is achieved after 50,000 burn-in iterations and another 100,000 runs are then
generated to compute the posterior distributions as in [Qian and Wu, 2008]. We note that the
convergence is assessed both visually and with the method of Geweke [Geweke et al., 1991]
as presented by Qian et al.. The other parameters are estimated thanks to the Metropolis-
within-Gibbs algorithm with the following parameters for the prior distributions:

ˆ (� l ; 
 l ; � � ; 
 � ; � � ; 
 � ) = (2 ; 1; 2; 1; 2; 1),

ˆ ul = 0 ,

ˆ � l = 1 ,

ˆ (u� ; � � ; u� ; � � ) = (1 ; 1; 0; 1),

The reader is referred to [Qian and Wu, 2008] for more detail about these parameters. They
re�ect that we do not have information about the variance and the regression parameters of
the model. Moreover, the prior information on � is such that its mean is centered on 1. We
note that in this model, � depends onx. For the Bayesian procedure, the convergence is
reached again after 50,000 burn-in iterations and another 100,00 runs are then generated.

The prediction RMSE of the model presented in Section3.4 is compared with the ones of
the models presented by Kennedy and O'Hagan and Qian et al. on 100 di�erent experimental
design setsD 1 and D 2 and test setsX test . The resulting RMSEs for the three models are
given in Figure 3.6.

We see in Figure3.6 that the RMSEs of the presented model and the one of Qian et al.
are signi�cantly better than the one of the model of Kennedy and O'Hagan. Furthermore,
our model is slightly better than the one of Qian et al. in terms of RMSE. Indeed, we see
that the notches in Figure 3.6 do not overlap. According to [Chambers et al., 1983] p.62,
this means that the di�erence between the two medians are signi�cant. We note that the
correlation length for the model of Qian et al. and the one obtained with the restricted
maximum likelihood method (see Subsection3.6.1) are similar, i.e. around (1:60; 0:45; 1:95)
for � 1 and around (0:30; 1:90; 0:30) for � 2. The di�erence of RMSE between the proposed
model and the one of Qian et al. is essentially explained by a less e�cient estimation of the
parameter � for the model of Qian et al.. Indeed, it varies around1:13 whereas the real value
is 1. Moreover, with the estimation method presented in Subsection3.6.1 the parameter � is
estimated to be around0:99. This highlights the importance to have an e�cient estimation
of this parameter.

Finally, we compare the three methods in terms of computational costs. Figure3.7 illus-
trates the di�erent CPU times obtained from the 100 di�erent experimental and test sets. We
see in Figure3.7 that there is a signi�cant di�erence between the model CPU times. Indeed,
the ratio of CPU time between the model of Kennedy and O'Hagan and the presented one is
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Figure 3.6: RMSEs of the presented model"LG , the model of [Kennedy and O'Hagan, 2000]
"KO (see [Kennedy and O'Hagan, 2000]) and the model of [Qian and Wu, 2008] "QIAN (see
[Qian and Wu, 2008]). The numerical comparisons are performed on the 3-dimensional aca-
demic example (3.43) with 100 di�erent experimental and test sets.

around 10 whereas the one between the model of Qian et al. and the presented one is around
1000. The important di�erence between the model of Qian et al. and the other models is
natural since in this model a complex Bayesian scheme is used which is known to be expensive.
The one between the suggested model and the one of Kennedy and O'Hagan can be explained
by the complexity reduction for the covariance matrix inversion.

3.7 Example : Fluidized-Bed Process

This example illustrates the comparison between 2-level and 3-level co-kriging. A 3-level
co-kriging method is applied to a physical experiment modeled by a computer code. The
experiment, which is the measurement of the temperature of the steady-state thermodynamic
operation point for a �uidized-bed process, was presented by [Dewettinck et al., 1999], who
developed a computer model named �Topsim� to calculate the measured temperature. The
code, developed for a Glatt GPCG-1, �uidized-bed unit in the top-spray con�guration, can
be run at 3 levels of complexity. We hence have 4 available responses:

ˆ T exp: the experimental response.

ˆ T 3: the most accurate code modeling the experiment.

ˆ T 2: a simpli�ed version of T 3.

ˆ T 1: the lowest accurate code modeling the experiment.
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Figure 3.7: CPU times for the presented model CPULG , the one of Kennedy and O'Hagan
CPUKO and the one of Qian et al. CPUQIAN (note that the scales are di�erent). The numerical
comparisons are performed on the 3-dimensional academic example (3.43) with 100 di�erent
experimental and test sets. The ratio between CPUKO and CPULG is around 10 and the ratio
between CPUQIAN and CPULG is around 1000.

The di�erences betweenT 1, T 2 and T 3 are discussed by Dewettinck et al. (1999). The aim
of this study is to predict the experimental responseT exp given the two levels of codeT 3 and
T 2. We only focus on a 3-level co-kriging usingT 3 and T 2 to predict T exp since 28 responses
available for each level is not enough to build a nested experimental design relevant for a
4-level co-kriging. The experimental design set and the responsesT 1, T 2, T 3 and T exp are
given by [Qian and Wu, 2008] who have presented a 2-level co-kriging usingT exp and T 2.
Furthermore, the responses are parameterized by a 6-dimensional input vector presented by
Dewettinck et al. (1999).

3.7.1 Building the 3-level co-kriging

To build the 3-level co-kriging, we use 10 measures ofT exp (measures 1, 3, 8, 10, 12, 14, 18,
19, 20, 27 in Table 4 in [Qian and Wu, 2008]), 20 simulations of T 3 (runs 1, 2, 3, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 24, 27) and the 28 simulations ofT 2 and the input vector
is scaled between 0 and 1. The last 18 measures ofT exp are used for validation. The design
sets are nested such thatD t � 1 = ( D t � 1 n D t ; D t ) for t = 2 ; 3 and we use a Matérn-5=2 kernel
for the three covariance functions. The estimates of the hyper-parameters which represent
correlation lengths of the three covariance kernels are given in Table3.6.
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�̂ 1 1.790 3.988 1.218 1.790 3.595 0.722
�̂ 2 1.810 1.842 2.008 1.036 0.001 0.345
�̂ 3 0.890 0.721 2.008 2.952 1.790 0.241

Table 3.6: Example: �uidized-bed process. Estimates of the hyper-parameters (correlation
lengths) for the 3-level co-kriging.

The estimates of hyper-parameters in Table3.6 show us that the surrogate model is very
smooth in the �rst four directions. For the �fth direction the Gaussian processes modeling
the cheap codeT 2 and the bias betweenT exp and T 3 are very smooth and the one modeling
the bias betweenT 3 and T 2 is close to a regression. Finally, the model is more oscillating in
the sixth direction in particular for the two biases where correlation lengths are around 0.3.

Furthermore, Table 3.7 gives the estimates of the variance and regression parameters (see
Section 3.6.1).

Regression coe�cient Posterior mean Posterior Covariance=� 2
t

� 1 47.02 0.134 
� � 1

� 2

!  
0:97

� 0:17

!  
0:001 � 0:034

� 0:034 1:610

!

 
� � 2

� 3

!  
0:95
1:93

!  
0:003 � 0:121

� 0:121 5:188

!

Variance coe�cient Qt � t

� 2
1 1032 13.5

� 2
2 5.30 9

� 2
3 8.39 4

Table 3.7: Example: �uidized-bed process. Bayesian estimation of the variance and regression
parameters for the 3-level co-kriging.

Table 3.7shows that the responses have approximately the same scale since the adjustment
coe�cients are close to 1. Furthermore, we see an important bias betweenT 3 and T 2 with
� 3 = 1 :93. Finally, the variance coe�cients for the biases indicate that they are possibly much
simpler to model than the cheap codeT 2 as their estimates are smaller.

3.7.2 3-level co-kriging prediction: predictions when code output is avail-
able

The aim of this section is to show that co-kriging can improve signi�cantly the accuracy of
the surrogate model at points where at least one level of responses is available.

The predictions of the 3-level co-kriging are here presented and compared with the pre-
dictions obtained with a 2-level co-kriging using only the 10 responses ofT exp and the 20
responses ofT 3. The predictions for the 2-level and the 3-level co-krigings vs. the real values



3.7. EXAMPLE : FLUIDIZED-BED PROCESS 117

(i.e., the measured temperatureT exp) are shown in Figure3.8. The 3-level co-kriging gives us
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Figure 3.8: Predictions of the 2-level and the 3-level co-krigings for the �uidized-bed process.
The 3-level co-kriging improves signi�cantly the predictions of the 2-level one.

the same prediction means as the 2-level co-kriging at the 10 points (points 2, 5, 6, 7, 9, 11,
13, 16, 22, 24) whereT 3 is known. These overlapped points mean thatT 2 does not in�uence
the surrogate model at these points. This follows from the Markov property introduced in
Section 3.2, which implies that the prediction of T exp is entirely determined by T 3 at these
points. We also note that, in general, the 2-level co-kriging predictions - at points whereT 3

is unknown - are not accurate and the 3-level co-kriging improves signi�cantly the prediction
means compared to the 2-level co-kriging. Table3.8 compares the 2-level co-kriging with the
3-level co-kriging and summarizes some results about the quality of the predictions on the 18
validation points. Nonetheless, it is important to notice that, in the 3-level case, the output of
the cheapest codeT 2 is known at the 18 test points. This means that the results of this sub-
section show that the 3-level co-kriging prediction is more accurate than the 2-level co-kriging
prediction at a point where the cheapest responseT 2 is available. In the next subsection we
will show that the 3-level co-kriging prediction is more accurate than the 2-level one at a point
where no response is available.
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E� RMSE MaxAE
2-level co-kriging 61.23 % 4.24 14.04
3-level co-kriging 98.71 % 0.89 1.98

Average Std. dev. Median Std. dev. Maximal Std. dev
2-level co-kriging 2.90 1.02 5.68
3-level co-kriging 0.90 1.02 1.04

Table 3.8: Example: �uidized-bed process. Comparison between 2-level co-kriging and 3-
level co-kriging. Predictions are better in the 3-level case and the prediction variance seems
well-evaluated since the RMSE and the average standard deviation are close.

Figure 3.9 shows the prediction errors of the 2-level co-kriging and the con�dence interval
at plus or minus twice the prediction standard deviation. The last 10 prediction errors and
their con�dence intervals are the same as those of the 3-level case since it corresponds to
the points where T 3 is known. We see in Figure3.9 that the con�dence intervals are well
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Figure 3.9: Prediction errors of the 2-level co-kriging and con�dence intervals at plus or minus
twice the standard deviation. We see a signi�cant di�erence between the accuracy of the
predictions means and their con�dence intervals for the point whereT 3 is unknown (the 8
�rst validation points) and for the ones where it is known (the last 10 validation points).

predicted. Furthermore, we see a signi�cant di�erence between the accuracy of the prediction
means and their con�dence intervals for the point whereT 3 is unknown (the 8 �rst validation
points) and for the ones where it is known (the last 10 validation points).
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3.7.3 3-level co-kriging prediction: predictions when code output is not
available

In this subsection, we show that a multi-level co-kriging can signi�cantly improve the predic-
tion of a surrogate model at points where no response is available.

We have seen in Section3.7.2 that the 3-level co-kriging improves signi�cantly the 2-level
co-kriging at points whereT 3 is unknown and T 2 has been sampled. Nevertheless, to have a
fair comparison between these two co-kriging models, we compare their accuracy by applying a
Leave-One-Out Cross-Validation (LOO-CV) procedure at the 10 points whereT exp is known.
This means that we perform for each of these 10 points the following procedure:

1. The experimental and the two code outputs corresponding to the point are removed
from the data set.

2. The 2-level co-kriging method and the 3-level co-kriging method are applied using the
truncated data set in order to give a con�dence interval for the experimental output at
the point.

Figure 3.10 shows the result of the LOO-CV procedure for the 2-level and 3-level co-kriging.
We see that the 3-level co-kriging is more accurate than the 2-level one. Indeed, the LOO-CV
RMSE for the 2-level co-kriging is equal to 1.88 whereas it is equal to 1.09 for the 3-level
co-kriging. This shows that the 3-level co-kriging provides better predictions also at points
where no response is available. This highlights the strength of the proposed method and shows
that a co-kriging method with more than 2 levels of code can be worthwhile.
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Figure 3.10: Leave-One-Out Cross-Validation predictive errors and variances of the 2-level
and 3-level co-kriging. We see that the con�dence intervals are accurate and the precision of
the 3-level co-kriging is signi�cantly better than the one of the 2-level co-kriging.
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3.7.4 Comparison with existing methods

In this subsection we carry out a numerical comparison between the proposed model and the
ones of [Kennedy and O'Hagan, 2000] and [Qian and Wu, 2008] on the Fluidized-Bed Process
example. The comparison is performed similarly to the one presented in Subsection3.6.5.

First we consider a 2-level co-kriging withT exp as �ne level and T 2 as coarse level. For
the coarse level we randomly extract 20 observations ofT 2 and for the �ne level we randomly
extract 10 observations ofT exp such that the experimental design set ofT exp is nested into
the one ofT 2. The other 18 observations ofT exp are used as test sets. We have generated 100
di�erent combinations of design and test sets for the numerical comparisons. The comparisons
are also performed thanks to the R CRAN package �approximator� for the model of Kennedy
and O'Hagan, to the WinBugs software to the one of Qian et al. and to the R CRAN package
�MuFiCokriging� for the presented method. Like in Subsection 3.6.5, Gaussian covariance
kernels and constant trends are chosen for all the Gaussian processes and constant adjustment
coe�cients are taken for the suggested model and the one of Kennedy and O'Hagan. Further-
more, for the Bayesian procedure presented by [Qian and Wu, 2008] we choose the following
parameters for the prior distributions:

ˆ (� l ; 
 l ; � � ; 
 � ; � � ; 
 � ) = (2 ; 1; 2; 1; 2; 1),

ˆ ul = 0 ,

ˆ � l = 1 ,

ˆ (u� ; � � ; u� ; � � ) = (1 ; 1; 0; 1),

ˆ (al ; bl ; a� ; b� ; a� ; b� ) = (2 ; 0:1; 2; 0:1; 2; 0:1)

Like in Subsection3.6.5the convergence is reached after 50,000 burn-in iterations and 100,000
additional runs have been generated to compute the posterior distributions.

Figure 3.11 compares the RMSE of the three models evaluated on the 18 test points.
We see in Figure3.11 that the presented model is signi�cantly better than the other ones.
Furthermore, contrary to the comparison performed in Subsection3.6.5, we see that the worst
model is the one of Qian et al.. This is explained by the fact that, as mentioned in their
article at the end of Section 2.4, the model suggested by Qian et al. supposed that the cheap
code is known at a new pointx. If it is not the case, they consider it equal to the prediction
given by a Bayesian model on the cheap code. Nevertheless, in our example, we only have
20 observations in a 6-dimensional input space and the predictions of the cheap code are not
good enough for the method of Qian et al..

Finally, we present in Figure3.12the computational costs of the three methods. As pointed
out in Subsection3.6.5, the suggested and the Kennedy and O'Hagan's models are signi�cantly
less computationally expensive than the one of Qian et al.. Nevertheless, contrary to the
comparison in Subsection3.6.5, the presented model and the one of Kennedy and O'Hagan
are equivalent in terms of CPU times. This is due to the fact that the complexity reduction
for the covariance matrix inversion does not bring signi�cant di�erences when the number of
observations is very small as in the Fluidized-Bed Process application.
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Figure 3.11: RMSEs of the presented model"LG , the model of [Kennedy and O'Hagan, 2000]
"KO (see [Kennedy and O'Hagan, 2000]) and the model of [Qian and Wu, 2008] "QIAN (see
[Qian and Wu, 2008]). The numerical comparisons are performed on the Fluidized-Bed Process
application with 100 di�erent experimental and test sets.

3.8 Conclusion

We have presented a method for building kriging models using a hierarchy of codes with di�er-
ent levels of accuracy. This method allows us to improve a surrogate model built on a complex
code using information from a cheap one. It is particularly useful when the complex code is
very expensive. We see in our literature review that the �rst multi-level metamodel originally
suggested is a �rst-order auto-regressive model built with Gaussian processes. The AR(1)
relation between two levels of code is natural and the building of the model is straightforward.
Nevertheless, we have highlighted some key issues which makes it di�cult to use this model
in practical ways.

First, important parameters of the model, which are the adjustment coe�cients between
two successive levels of codes, were numerically estimated. We propose here an analytical
estimation of these parameters with a Bayesian method. This method allows us to have infor-
mation about the uncertainties of the estimations and above all, to easily use the AR(1) model
and its generalization to the case of non-spatial stationarity. Furthermore, a strength of the
proposed method is that it even works for a code with more than 2 levels since its implemen-
tation is such that the estimations of the parameters of as-level co-kriging is equivalent to the
ones ofs independent krigings in terms of numerical complexity. It is important to highlight
that this method is based on a joint Bayesian analysis between the adjustment coe�cient and
the mean of the Gaussian process modeling the di�erence between two successive levels of
code.
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Figure 3.12: CPU times for the presented model CPULG , the one of Kennedy and O'Hagan
CPUKO and the one of Qian et al. CPUQIAN . The numerical comparisons are performed on
the Fluidized-Bed Process application with 100 di�erent experimental and test sets. The ratio
between CPUQIAN and CPULG is around 1000 and CPULG and CPUKO have the same order
of magnitude.

Second, we have seen that the variance of the predictive distribution of the AR(1) model
could be underestimated. A natural approach to improve this estimation is a Bayesian model-
ing. We propose here a Bayesian co-kriging for 2 levels of code and to avoid computationally
expensive implementation, we suggest another model than the one presented. This new model
is based on a hierarchical speci�cation of the parameters of the model. This allows us to have
a Bayesian model including only two nested integrations without Markov chain Monte Carlo
procedure.

Finally, for a non-Bayesian s-level co-kriging, we have proved that building as-level co-
kriging is equivalent to build s independent krigings. This result is very important since it
solves one of the most important key issues of the co-kriging which is the inversion of the
covariance matrix. A 3-level co-kriging example has been provided to show the e�ciency of
the presented method.



Chapter 4
Multi-�delity co-kriging model: recursive
formulation

4.1 Introduction

We have developed in Chapter3 a co-kriging based surrogate model for multi-�delity computer
codes. In fact, the �rst multi-�delity model in a computer experiments framework has been
proposed by [Craig et al., 1998] and is based on a linear regression formulation. Then this
model is improved in [Cumming and Goldstein, 2009] by using a Bayes linear formulation.
The reader is referred to [Goldstein and Woo�, 2007] for further detail about the Bayes linear
approach. The methods suggested by [Craig et al., 1998] and [Cumming and Goldstein, 2009]
have the strength to be relatively computationally cheap but as they are based on a linear
regression formulation, they could su�er from a lack of accuracy. Another approach is to use
the model of [Kennedy and O'Hagan, 2000] presented in Chapter3. This method turns out
to be very e�cient and it has been applied and extended signi�cantly.

The strength of the co-kriging model is that it gives very good predictive models but
it is often computationally expensive, especially when the number of simulations is large.
Furthermore, large data set can generate problems such as ill-conditioned covariance matrices.
These problems are known for kriging but they become even more di�cult for co-kriging since
the total number of observations is the sum of the observations at all code levels.

In Chapter 3, we solve two mains issues of the model suggested by [Kennedy and O'Hagan,
2000] by proposing a complexity reduction for the inverse of the covariance matrices and by
improving the estimation of the model parameters. Despite these improvements, it is hard
to use this model to manage some problems such as sequential design (see Chapter5) or
sensitivity analysis (see Chapter6). Indeed, for sequential design we wish to obtain the part
of each code level on the predictive variance. This is not clear with the model of [Kennedy
and O'Hagan, 2000]. Moreover, for sensitivity analysis we wish to �nely infer from the model
uncertainty about the one of the sensitivity indices. This problem is hard to address by using
the model of [Kennedy and O'Hagan, 2000] since we are not able to generate samples from
the predictive distribution incorporating the posterior distributions of the adjustment and
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FORMULATION

regression parameters.
To handle these problems, we adopt in this chapter a new approach for multi-�delity

surrogate modeling which uses a co-kriging model but with an original recursive formulation.
An important property of this model is that it provides predictive mean and variance identical
to the ones presented in [Kennedy and O'Hagan, 2000] and in Chapter 3. Therefore, it has
the same e�ciency of the model of [Kennedy and O'Hagan, 2000] in terms of prediction
accuracy. However, our approach signi�cantly reduces the complexity of the model presented
in [Kennedy and O'Hagan, 2000] since it divides the whole set of simulations into groups of
simulations corresponding to the ones of each level. Therefore, we will haves sub-matrices to
invert which is less expensive and ill-conditioned than a large one. In fact, the computational
complexity is equivalent to the one obtained in Chapter3 Subsection3.6.2by using Equation
(3.37) for the inverse of the covariance matrix. Therefore, we keep the advantages of the
improvement presented in Chapter3.

We will see in chapters5 and 6 that the presented formulation allows for dealing e�ectively
with sequential design and sensitivity analysis. Furthermore, a strength of our approach is
that it allows to extend classical results of kriging to the considered co-kriging model. The
two original results presented in this chapter are the following ones:

1. First, closed form expressions for the universal co-kriging predictive mean and variance
are given (Section4.3).

2. Second, the fast cross-validation method proposed in [Dubrule, 1983] is extended to the
multi-�delity co-kriging model (Section 4.4).

Finally, we illustrate these results in a complex hydrodynamic simulator (Section4.5).

4.2 Multi-�delity Gaussian process regression

In Subsection 4.2.1, we detail our recursive approach to build such a model. The recursive
formulation of the multi-�delity model is the �rst novelty of this chapter. We will see in the
next sections that the new formulation allows us to �nd original results about the co-kriging
model and to reduce its computational complexity.

4.2.1 Recursive multi-�delity model

Let us suppose that we haves levels of code(zt (x)) t=1 ;:::;s sorted by increasing order of
�delity and modeled by Gaussian processes(Z t (x)) t=1 ;:::;s , x 2 Q. We still consider that
zs(x) is the most accurate and costly code that we want to surrogate and(zt (x)) t=1 ;:::;s� 1 are
cheaper versions of it withz1(x) the less accurate one. Let us consider the following model
for t = 2 ; : : : ; s :

8
><

>:

Z t (x) = � t � 1(x) ~Z t � 1(x) + � t (x)
~Z t � 1(x) ? � t (x)
� t � 1(x) = g0

t � 1(x)� � t � 1

; (4.1)
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where ~Z t � 1(x) is a Gaussian process with distribution[Z t � 1(x)jZ (t � 1) = z(t � 1) ; � t � 1; � � t � 2
; � 2

t � 1],
� t (x) is a Gaussian process with meanf 0

t (x)� t and covariance kernel� 2
t r t (x; ~x) and D s �

D s� 1 � � � � � D 1.

Here, gt � 1(x) is a vector of qt � 1 regression functions,f t (x) is a vector of pt regression
functions, � t is apt -dimensional vector,� � t � 1

is aqt � 1-dimensional vector,Z (s) = ( Z0
1; : : : ; Z0

s)0

is the Gaussian vector containing the values of the random processes(Z t (x)) t=1 ;:::;s at the
points in the experimental design sets(D t )t=1 ;:::;s and z(s) = ( z0

1; : : : ; z0
s)0 the vector containing

the values of(zt (x)) t=1 ;:::;s at the points in (D t )t=1 ;:::;s .

The nested property of the experimental design sets is not necessary to build the model
but it allows for a simple estimation of the model parameters. Since the codes are sorted
in increasing order of �delity it is not an unreasonable constraint for practical applications.
Nonetheless, we present in AppendixB.1 the equations of the multi-�delity co-kriging model
when the experimental design sets are not nested.

The unique di�erence with the model presented in Chapter3 is that we expressZ t (x)
(the Gaussian process modeling the response at levelt) as a function of the Gaussian process
Z t � 1(x) conditioned by the valuesz(t � 1) = ( z1; : : : ; zt � 1) at points in the experimental de-
sign sets(D i ) i =1 ;:::;t � 1. The Gaussian processes(� t (x)) t=2 ;:::;s have the same de�nition as in
Chapter 3 and we have fort = 2 ; : : : ; s and for x 2 Q:

h
Z t (x)jZ (t ) = z(t ) ; � t ; � � t � 1

; � 2
t

i
� N

�
� Z t (x); s2

Z t
(x)

�
; (4.2)

where:

� Z t (x) = � t � 1(x)� Z t � 1 (x) + f 0
t (x)� t + r 0

t (x)R � 1
t (zt � � t � 1(D t ) � zt � 1(D t ) � F t � t ) (4.3)

and:

� 2
Z t

(x) = � 2
t � 1(x)� 2

Z t � 1
(x) + � 2

t

�
1 � r 0

t (x)R � 1
t r t (x)

�
: (4.4)

The notation � represents the element by element matrix product.R t is the correlation
matrix R t = ( r t (x; ~x)) x; ~x2 D t and r 0

t (x) is the correlation vector r 0
t (x) = ( r t (x; ~x)) ~x2 D t . We

denote by � t (D t � 1) the vector containing the values of� t (x) for x 2 D t � 1, zt (D t � 1) the vec-
tor containing the known values of Z t (x) at points in D t � 1 and F t is the experience matrix
containing the values off t (x)0 on D t .

The mean � Z t (x) is the surrogate model of the response at levelt, 1 � t � s, taking
into account the known values of thet �rst levels of responses(zi ) i =1 ;:::;t and the variance
� 2

Z t
(x) represents the mean squared error of this model. The mean and the variance of the

Gaussian process regression at levelt being expressed in function of the ones of levelt � 1, we
have a recursive multi-�delity metamodel. Furthermore, in this new formulation, it is clearly
emphasized that the mean of the predictive distribution does not depend on the variance
parameters (� 2

t )t=1 ;:::;s . This is a classical result of kriging which states that for covariance
kernels of the formk(x; ~x) = � 2r (x; ~x), the mean of the kriging model is independent of� 2.



126
CHAPTER 4. MULTI-FIDELITY CO-KRIGING MODEL: RECURSIVE

FORMULATION

An important strength of the recursive formulation is that contrary to the formulation
suggested in [Kennedy and O'Hagan, 2000] and in Chapter 3, once the multi-�delity
model is built, it provides the surrogate models of all the responses(zt (x)) t=1 :::;s .

We have the following proposition. We note that we consider here an adjustment coe�cient
depending onx. The reader is referred to AppendixA.2 for the details about the predictive
mean and variance of the model presented in Chapter3.

Proposition 4.1. Let us consider s Gaussian processes(Z t (x)) t=1 ;:::;s and Z (s) =
(Z t )t=1 ;:::;s the Gaussian vector containing the values of(Z t (x)) t=1 ;:::;s at points in
(D t )t=1 ;:::;s with D s � D s� 1 � � � � � D 1. If we consider the meanmZs (x) (3.27) and
the variance s2

Zs
(x) (3.28) induced by the model presented in Chapter3 and the mean

� Zs (x) (4.3) and the variance� 2
Zs

(x) (4.4) induced by the model (4.1) when we condition
the Gaussian processZs(x) by the known valuesz(s) of Z (s) and by the parameters� ,
� � and � 2, then, we have:

� Zs (x) = mZs (x);

� 2
Zs

(x) = s2
Zs

(x):

Proof. Let us consider the co-kriging mean of the model presented in Chapter3 for a t-level
co-kriging with t = 2 ; : : : ; s and � t � 1(x) = g0

t � 1(x)� � t � 1
:

mZ t (x) = h0
t (x)� (t ) + k0

t (x)V � 1
t (z(t ) � H t � (t ) );

where � (t ) = ( � 0
1; : : : ; � 0

t )
0, z(t ) = ( z0

1; : : : ; z0
t )

0, H t is de�ned in Equation (3.33) and h0
t (x) is

de�ned in the following equation:

h0
t (x) =

  
t � 1Y

i =1

� i (x)

!

f 0
1(x);

 
t � 1Y

i =2

� i (x)

!

f 0
2(x); : : : ; � t � 1(x)f 0

t � 1(x); f 0
t (x)

!

: (4.5)

We have:

h0
t (x)� (t ) = � t � 1(x)

  
t � 2Y

i =1

� i (x)

!

f 0
1(x);

 
t � 2Y

i =2

� i (x)

!

f 0
2(x); : : : ; f 0

t � 1(x)

!

� (t � 1) + f 0
t (x)� t

= � t � 1(x)h0
t � 1(x)� (t � 1) + f 0

t (x)� t :

Then, from equations:

cov(Z t (x); Z~t (~x)j� 2; � ; � � ) =

 
t � 1Y

i = t0

� i (x)

!

cov(Z~t (x); Z~t (~x)j� 2; � ; � � ) (4.6)

and:

cov(Z t (x); Z t (~x)j� 2; � ; � � ) =
tX

j =1

� 2
j

0

@
t � 1Y

i = j

� i (x)� i (~x)

1

A r j (x; ~x); (4.7)
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with t > ~t , we have the following equality:

k0
t (x)V � 1

t z(t ) = � t � 1(x)k0
t � 1(x)V � 1

t � 1z(t � 1) �
�
� 0

t � 1(D t )
�

�
�
r 0

t (x)R � 1
t zt � 1(D t )

�

+ r 0
t (x)R � 1

t zt

and with Equation ( 4.5):

k0
t (x)V � 1

t H t � (t ) = � t � 1(x)k0
t � 1(x)V � 1

t � 1H t � 1� (t � 1) + r 0
t (x)R � 1

t F t (D t )� t ;

where � stands for the element by element matrix product. We hence obtain the recursive
relation:

mZ t (x) = � t � 1(x)mZ t � 1 (x) + f 0
t (x)� t + r 0

t (x)R � 1
t [zt � � t � 1(D t ) � zt � 1(D t ) � F t (D t )� t ] :

The co-kriging mean of the model (4.1) satis�es the same recursive relation and we have
mZ1 (x) = � Z1 (x). This proves the �rst equality of Proposition 4.1:

� Zs (x) = mZs (x):

We follow the same guideline for the co-kriging covariance:

s2
Z t

(x; ~x) = v2
Z t

(x; ~x) � k0
t (x)V � 1

t k t (~x);

wherev2
Z t

(x; ~x) is the covariance betweenZ t (x) and Z t (~x) and s2
Z t

(x; ~x) is the covariance func-
tion of the conditioned Gaussian process[Z t (x)jZ (t ) = z(t ) ; � ; � � ; � 2] for the model presented
in Chapter 3. From Equation (4.7), we can deduce the following equality:

� 2
Z t

(x; ~x) = � t � 1(x)� t � 1(~x)v2
Z t � 1

(x; ~x) + v2
t (x; ~x);

where � 2
Z t

(x; ~x) is the covariance function of the conditioned Gaussian process[Z t (x)jZ (t ) =
z(t ) ; � t ; � � t � 1

; � 2
t ] of the recursive model (4.1). Then, from equations (4.6) and (4.7), we have:

k0
t (x)V � 1

t k t (~x) = � t � 1(x)� t � 1(~x)k0
t � 1(x)V � 1

t � 1k t � 1(~x) + � 2
t r 0

t (x)R � 1
t r t (~x):

Finally we can deduce the following equality:

s2
Z t

(x; ~x) = � t � 1(x)� t � 1(~x)
�

v2
Z t � 1

(x; ~x) � k0
t � 1(x)V � 1

t � 1k t � 1(~x)
�

+ � 2
t

�
1 � r 0

t (x)R � 1
t r t (~x)

�
;

which is equivalent to:

s2
Z t

(x; ~x) = � t � 1(x)� t � 1(~x)s2
Z t � 1

(x; ~x) + � 2
t

�
1 � r 0

t (x)R � 1
t r t (~x)

�
:

This is the same recursive relation as the one satis�es by the co-kriging covariance� 2
Z t

(x; ~x)
of the model (4.1) (see Equation (4.4)). Since s2

Z1
(x; ~x) = � 2

Z1
(x; ~x), we have :

� 2
Zs

(x; ~x) = s2
Zs

(x; ~x):

This equality with x = ~x proves the second equality of Proposition4.1.

Proposition 4.1 shows that the model presented in [Kennedy and O'Hagan, 2000] and
the recursive model (4.1) have the same predictive Gaussian distribution. Our objective in
the next sections is to show that the new formulation (4.1) has several advantages compared
to the one of [Kennedy and O'Hagan, 2000]. First, its computational complexity is lower
(Section 4.2.2); second, it provides closed form expressions for the universal co-kriging mean
and variance contrarily to [Kennedy and O'Hagan, 2000] (Section 4.3); third, it makes it
possible to implement a fast cross-validation procedure (Section4.4).
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4.2.2 Complexity analysis

The computational cost is dominated by the inversion of the covariance matrices. In the
original approach proposed in [Kennedy and O'Hagan, 2000] one has to invert the matrix V s

of size
P s

i =1 ni �
P s

i =1 ni .
Our recursive formulation shows that building a s-level co-kriging is equivalent in terms of

numerical complexity to build s independent krigings. This implies a reduction of the model
complexity. Indeed, the inversion ofs matrices (R t )t=1 ;:::;s of size (nt � nt )t=1 ;:::;s where nt

corresponds to the size of the vectorzt at level t = 1 ; : : : ; s is less expensive than the inversion
of the matrix V s of size

P s
i =1 ni �

P s
i =1 ni . We also reduce the memory cost since storing the

s matrices (R t )t=1 ;:::;s requires less memory than storing the matrixV s. The computational
cost is thus equivalent to the one obtained with the results given in Chapter3 Subsection
3.6.2.

We note that the model with this formulation is more interpretable since we can de-
duce the impact of each level of response into the model error through(� 2

Z t
(x)) t=1 ;:::;s .

4.2.3 Parameter estimation

We present in this section a Bayesian estimation of the parameter = ( � ; � � ; � 2) focusing
on conjugate and non-informative distributions for the priors. This allows us to obtain closed
form expressions for the posterior distributions of the parameters. Furthermore, from the non-
informative case, we can obtain the estimates given by a maximum likelihood method. The
presented formulas can hence be used in a frequentist approach. We note that the recursive
formulation and the nested property of the experimental designs allow for separating the
estimations of the parameters(� t ; � � t � 1

; � 2
t )t=1 ;:::;s and (� 1; � 2

1).
Like in Chapter 3 Section 3.4, we address two cases in this section

Case(i): all the priors are informative

Case(ii ): all the priors are non-informative

It is of course be possible to address the case of a mixture of informative and non-informative
priors. For the non-informative case (ii), we use the �Je�reys priors� [Je�reys, 1961]:

p(� 1j� 2
1) / 1; p(� 2

1) /
1
� 2

1
; p(� � t � 1

; � t jz
(t � 1) ; � 2

t ) / 1; p(� 2
t jz(t � 1)) /

1
� 2

t
; (4.8)

where t = 2 ; : : : ; s. For the informative case (i), we consider the same conjugate prior distri-
butions as in Chapter 3 Section 3.4:

[� 1j� 2
1] � N p1 (b1; � 2

1V 1);

[� � t � 1
; � t jz

(t � 1) ; � 2
t ] � N qt � 1+ pt

 

b t =

 
b �

t � 1

b �
t

!

; � 2
t V t = � 2

t

 
V �

t � 1 0
0 V �

t

!!

;
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[� 2
1] � IG (� 1; 
 1); [� 2

t jz(t � 1) ] � IG (� t ; 
 t );

with b1 a vector a sizep1, b �
t � 1 a vector of sizeqt � 1, b �

t a vector of sizept , V 1 a p1 � p1

matrix, V �
t � 1 a qt � 1 � qt � 1 matrix, V �

t a pt � pt matrix, � 1; 
 1; � t ; 
 t > 0 and IG stands for
the inverse Gamma distribution. The posterior distributions are then as follows. We have:

[� 1jz1; � 2
1] � N p1 (� 1� 1; � 1) [� � t � 1

; � t jz
(t ) ; � 2

t ] � N qt � 1+ qt (� t � t ; � t ); (4.9)

where, for t � 1:

� t =

8
<

:

[H 0
t

R � 1
t

� 2
2

H t + V � 1
t

� 2
2

]� 1 (i )

[H 0
t

R � 1
t

� 2
2

H t ]� 1 (ii )
� t =

8
<

:

[H 0
t

R � 1
t

� 2
2

zt + V � 1
t

� 2
2

b t ] (i )

[H 0
t

R � 1
t

� 2
2

zt ] (ii )
; (4.10)

with H 1 = F1 and for t > 1, H t = [ G t � 1 � (zt � 1(D t )10
qt � 1

) F t ] where

G t � 1;

is the experience matrix containing the values ofgt � 1(x)0 in D t and 10
qt � 1

is a qt � 1-vector of
ones. Furthermore, we have fort � 1:

[� 2
t jz(t ) ] � IG (at ;

Qt

2
); (4.11)

where:

Qt =

(
2
 t + ( b t � ~� t )0(V t + [ H 0

t R
� 1
t H t ]� 1) � 1(b t � ~� t ) + ~Qt (i )

~Qt (ii )
;

with ~Qt = ( zt � H t ~� t )0R � 1
t (zt � H t ~� t ) , ~� t = ( H 0

t R
� 1
t H t ) � 1H 0

t R
� 1
t zt and :

at =

(
n t
2 + � t (i )
n t � pt � qt � 1

2 (ii )
;

with the convention q0 = 0 .
We highlight that the maximum likelihood estimators for the parameters � 1 and (� � t � 1

; � t )
are given by the means of their posterior distributions in the non-informative case. Further-
more, the restricted maximum likelihood estimate of the variance parameter� 2

t can also be de-
duced from its posterior distribution in the non-informative case and is given bŷ� 2

t;REML = Qt
2at

.
Finally, we see that the parameter posterior distributions for the recursive model are iden-
tical to the ones presented in Chapter3 Section 3.4. This strengthen the relation between
the two models. However, we will see in the remainder of this chapter and in the following
chapters that the recursive model bring signi�cant advantages compared to the one presented
in Chapter 3.

4.3 Universal co-kriging model

We can see in Equation (4.2) that the predictive distribution of Zs(x) is conditioned by the
observationsz(s) and the parameters� , � � and � 2. The objective of a Bayesian prediction
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is to integrate the parameter posterior distributions into the predictive distribution. Indeed,
in the previous subsection, we have expressed the posterior distributions of the variance pa-
rameters (� 2

t )t=1 ;:::;s conditionally to the observations and the posterior distributions of the
trend parameters � 1 and (� � t � 1

; � t )t=2 ;:::;s conditionally to the observations and the variance
parameters. Thus, using the Bayes formula, we can easily obtain a predictive distribution
only conditioned by the observations by integrating into it the posterior distributions of the
parameters as presented in Chapter3 Section 3.4.

As a result of this integration, the predictive distribution is not Gaussian. In particular, we
cannot have a closed form expression for the predictive distribution. However, it is possible
to obtain closed form expressions for the posterior meanE[Zs(x)jZ (s) = z(s) ] and variance
Var( Zs(x)jZ (s) = z(s) ).

The following proposition giving the closed form expressions of the posterior mean and
variance of the predictive distribution only conditioned by the observations is a novelty. The
proof of this proposition is based on the recursive formulation which emphasizes the strength
of this new approach. Indeed, it does not seem possible to obtain this result by considering
directly the model suggested in [Kennedy and O'Hagan, 2000].

Proposition 4.2. Let us consider s Gaussian processes(Z t (x)) t=1 ;:::;s and Z (s) =
(Z t )t=1 ;:::;s the Gaussian vector containing the values of(Z t (x)) t=1 ;:::;s at points in
(D t )t=1 ;:::;s with D s � D s� 1 � � � � � D 1. If we consider the conditional predictive
distribution in Equation ( 4.2) and the posterior distributions of the parameters given in
equations (4.9) and (4.11), then we have fort = 1 ; : : : ; s:

E[Z t (x)jZ (t ) = z(t ) ] = h0
t (x)� t � t + r 0

t (x)R � 1
t (zt � H t � t � t ) ; (4.12)

with h0
1 = f 0

1, H 1 = F1 and for t > 1, h0
t (x) =

�
gt � 1(x)0E[Z t � 1(x)jZ t � 1 = zt � 1] f 0

t (x)
�

and H t = [ G t � 1 � (zt � 1(D t )10
qt � 1

) F t ]. Furthermore, we have:

Var( Z t (x)jZ (t ) = z(t ) ) = �̂ 2
� t � 1

(x)Var( Z t � 1(x)jZ (t � 1) = z(t � 1))
+ Qt

2(at � 1)

�
1 � r 0

t (x)R � 1
t r 0

t (x)
�

+
�
h0

t � r 0
t (x)R � 1

t H t
�

� t
�
h0

t � r 0
t (x)R � 1

t H t
� 0

; (4.13)

with �̂ 2
� t � 1

(x) = gt � 1(x)0
�

[� t ][1;:::;qt � 1 ;1;:::;qt � 1 ] + [ � t � t ]1;:::;qt � 1 [� t � t ]01;:::;qt � 1

�
gt � 1(x).

Proof. Noting that the mean of the predictive distribution in Equation ( 4.2) does not depend
on � 2

t and thanks to the law of total expectation, we have the following equality:

E
h
Z t (x)jZ (t ) = z(t )

i
= E

h
E

h
Z t (x)jZ (t ) = z(t ) ; � 2

t ; � t ; � � t � 1

i �
�
�Z (t ) = z(t )

i
:

From the equations (4.3) and (4.9), we directly deduce Equation (4.12). Then, we have the
following equality:

var
�

� Z t (x)
�
�
�z(t ) ; � 2

t

�
= ( h0

t (x) � r t (x)0R � 1
t H t )� t (h0

t (x) � r t (x)0R � 1
t H t )0: (4.14)
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The law of total variance states that:

var(Z t (x)jz(t ) ; � 2
t ) = E

h
var(Z t (x)jz(t ) ; � t ; � � t � 1

; � 2
t )

�
�
�z(t ) ; � 2

t

i

+ var
�

E
h
Z t (x)jz(t ) ; � t ; � � t � 1

; � 2
t

i �
�
�z(t ) ; � 2

t

�
:

Thus, from equations (4.3), (4.12) and (4.14), we obtain:

var(Z t (x)jZ (t ) = z(t ) ; � 2
t ) = �̂ 2

� t � 1
(x)var(Z t � 1(x)jZ (t � 1) = z(t � 1) ; � 2

t ) + � 2
t

�
1 � r 0

t (x)R � 1
t r 0

t (x)
�

+
�
h0

t � r 0
t (x)R � 1

t H t
�

� t
�
h0

t � r 0
t (x)R � 1

t H t
� 0 :

(4.15)

Again using the law of total variance and the independence betweenE
h
Z t (x)jZ (t ) = z(t ) ; � t ; � � t � 1

i

and � 2
t , we have:

var(Z t (x)jz(t ) ) = E
h
var(Z t (x)) jz(t ) ; � 2

t

i
: (4.16)

We obtain Equation (4.13) from Equation ( 4.11) by noting that the mean of an inverse Gamma
distribution IG (a; b) is b=(a � 1).

We note that, in the mean of the predictive distribution, the parameters have been replaced
by their posterior means. Furthermore, in the variance of the predictive distribution, the vari-
ance parameter has been replaced by its posterior mean and the term

�
h0

t � r 0
t (x)R � 1

t H t
�

� t�
h0

t � r 0
t (x)R � 1

t H t
� 0

has been added. It represents the uncertainty due to the estimation of
the regression parameters (including the adjustment coe�cient). We call these formulas the
universal co-kriging equations due to their similarities with the universal kriging equations
(they are identical for s = 1 ).

An important di�erence between the universal kriging predictive variance and the
universal multi-�delity co-kriging one is that the latter depends on the observations.
Therefore, the classical methods based on the predictive variance (e.g. sequential
design strategies) are not easy. We address this question in Chapter6.

4.4 Fast cross-validation for co-kriging surrogate models

The idea of a cross-validation procedure is to split the experimental design set into two disjoint
sets, one is used for training and the other one is used to monitor the performance of the
surrogate model. The idea is that the performance on the test set can be used as a proxy
for the generalization error. A particular case of this method is the Leave-One-Out Cross-
Validation (noted LOO-CV) where n test sets are obtained by removing one observation
at a time. This procedure can be time-consuming for a kriging model but it is shown in
[Dubrule, 1983], [Rasmussen and Williams, 2006], [Zhang and Wang, 2009] and Chapter 1
Subsection1.3.3 that there are computational shortcuts. Our recursive formulation allows us
to extend these ideas to co-kriging models (which is not possible with the original formulation
in [Kennedy and O'Hagan, 2000]). Furthermore, the cross-validation equations proposed in



132
CHAPTER 4. MULTI-FIDELITY CO-KRIGING MODEL: RECURSIVE

FORMULATION

this section extend the previous ones even fors = 1 (i.e. the classical kriging model) since
they do not suppose that the regression and the variance coe�cients are known. Therefore,
those parameters are re-estimated for each training set. We note that the re-estimation of
the variance coe�cient is a novelty which is important since �xing this parameter can lead
to huge errors for the estimate of the cross-validation predictive variance when the number of
observations is small or when the number of points in the test set is important.

If we denote by� s the set of indices of thentest points in D s constituting the test set D test

and � t , 1 � t < s , the corresponding set of indices inD t - indeed, we haveD s � D s� 1 � � � � �
D 1, therefore D test � D t . The nested experimental design assumption implies that, in the
cross-validation procedure, if we remove a set of points fromD s we can also remove it from
D t , 1 � t � s.

The following proposition gives the vectors of the cross-validation predictive errors and
variances at points in the test setD test when we remove them from thet highest levels of
code. In the proposition, we consider that we are in the non-informative case for the parameter
posterior distributions (see Section4.2.3) but it can be easily extended to the informative case
presented in Section4.2.3. We note that this result presented for the �rst time to a multi-
�delity co-kriging model can be obtained thanks to the recursive formulation.

Notations: If � is a set of indices, thenA [� ;� ] is the sub-matrix of elements� � � of A , a[� ]

is the sub-vector of elements� of a, B [� � ] represents the matrix B in which we remove the
rows of index � , C [� � ;� � ] is the sub-matrix of C in which we remove the rows and columns of
index � and C [� � ;� ] is the sub-matrix of C in which we remove the rows of index� and keep
only the columns of index� .

Proposition 4.3. Let us consider s Gaussian processes(Z t (x)) t=1 ;:::;s and Z (s) =
(Z t )t=1 ;:::;s the Gaussian vector containing the values of(Z t (x)) t=1 ;:::;s at points in
(D t )t=1 ;:::;s with D s � D s� 1 � � � � � D 1. We denote byD test a set made with the
points of index � s of D s and � t the corresponding points inD t with 1 � t � s. Then,
if we denote by"Zs ;� s

the errors (i.e. real values minus predicted values) of the cross-
validation procedure when we remove the points ofD test from the t highest levels of code,
we have:

�
"Zs ;� s

� �̂ s� 1(D test ) � "Zs� 1 ;� s� 1

� �
R � 1

s

�
[� s ;� s ] =

�
R � 1

s

�
zs � H s� s;� � s

��
[� s ] ; (4.17)

with "Zu ;� u
= 0 when u < t , � s;� � s

=
�

[H s]0[� � s ]K s[H s][� � s ]

� � 1
[H s]0[� � s ]K szs(D s n

D test ), �̂ s� 1(D test ) = g0
s� 1(D test )[� s;� � s

]1;:::;qs� 1 and:

K s =
�
R � 1

s

�
[� � s ;� � s ] �

�
R � 1

s

�
[� � s ;� s ]

� �
R � 1

s

�
[� s ;� s ]

� � 1 �
R � 1

s

�
[� s ;� � s ] : (4.18)

Furthermore, if we note � 2
Zs ;� s

the variances of the corresponding cross-validation proce-
dure, we have:
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� 2
Zs ;� s

= �̂ 2
� s� 1 ;� � s

(D test ) � � 2
Zs� 1 ;� s� 1

+ � 2
s;� � s

diag
� � �

R � 1
s

�
[� s ;� s ]

� � 1
�

+ Vs; (4.19)

with � �;s � 1;� � s
=

� �
[H s]0[� � s ]K s[H s][� � s ]

� � 1
�

[1;:::;qs� 1 ;1;:::;qs� 1 ]
,

�̂ 2
� s� 1 ;� � s

(D test ) = g0
s� 1(D test )

�
� �;s � 1;� � s

+ [ � s;� � s
]1;:::;qs� 1 [� s;� � s

]01;:::;qs� 1

�
gs� 1(D test );

and

� 2
s;� � s

=

�
zs(D s n D test ) � [H s][� � s ]� s;� � s

� 0K s
�
zs(D s n D test ) � [H s][� � s ]� s;� � s

�

ns � ps � qs� 1 � ntrain
:

where � 2
u;� � u

= 0 when u < t , ntrain is the length of the index vector� s, H s = [ G s� 1 �
(zs� 1(D s)10

qs� 1
) F s] and:

Vs = U0
s

�
[H s]0[� � s ]K s[H s][� � s ]

� � 1
Us; (4.20)

with Us =
�
[R � 1

s ][� s ;� s ]
� � 1 �

R � 1
s H s

�
[� s ].

Proof. Let us consider that � s is the index of thek last points of D s. We denote byD test these
points. First we consider the variance and the trend parameters as �xed, i.e.� 2

t; � � t
= Qt

2(at � 1)
and � t; � � t

= � t � t , and Vs = 0 , i.e. we are in the simple co-kriging case. Thanks to the
block-wise inversion formula, we have the following equality:

R � 1
s =

 
A B
B 0 Q� 1

!

; (4.21)

with A = [ R s]� 1
[� � s ;� � s ] + [ R s]� 1

[� � s ;� � s ] [R s][� � s ;� s ] Q� 1 [R s][� s ;� � s ] [R s]� 1
[� � s ;� � s ],

B 0 = �Q � 1 [R s][� s ;� � s ] [R s]� 1
[� � s ;� � s ] and:

Q = [ R s][� s ;� s ] � [R s][� s ;� � s ] [R s]� 1
[� � s ;� � s ] [R s][� � s ;� s ] : (4.22)

We note that Qs
2(as � 1) Q = Qt

2(at � 1)

� �
R � 1

s

�
[� s ;� s ]

� � 1
represents the covariance matrix of the

points in D test with respect to the covariance kernel of a Gaussian process of kernelQs
2(as � 1) r s(x; ~x)

(which is the one of� s(x)) conditioned by the points D s nD test . Therefore, from the previous
remark and Equation (4.4), we can deduce Equation (4.19).

Furthermore, we have the following equality:
� �

R � 1
s

�
[� s ;� s ]

� � 1 �
R � 1

s

�
zs � H s� s;� � s

��
[� s ] = zs(D test ) � h0

s(D test )� s� s

� [R s][� s ;� � s ] [R s]� 1
[� � s ;� � s ]�

zs(D s n D test ) � [H s]0[� � s ]� s� s

�
: (4.23)

where h0
s(x) = [ � s� 1(x)� Zs� 1 (x) f 0

t (x)]. From this equation and Equation (4.3), we can
directly deduce Equation (4.17) with "Zs ;� s

= zs(D test ) � � Zs (D test ).
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Then, we suppose the trend and the variance parameters as unknown and we have to
re-estimate them when we remove the observations. Thanks to the parameter posterior distri-
bution presented in Section4.2.3, we can deduce that the estimates of� 2

t; � � t
and � t; � � t

when
we remove observations of index� t are given by the following equations:

� s;� � s
=

�
[H s]0[� � s ]K s[H s][� � s ]

� � 1
[H s]0[� � s ]K szs(D s n D test ) (4.24)

and:

� 2
s;� � s

=

�
zs(D s n D test ) � [H s]� � s

� s;� � s

� 0K s
�
zs(D s n D test ) � [H s]� � s

� s;� � s

�

ns � ps � qs� 1 � ntrain
; (4.25)

with K s = [ R s]� 1
[� � s ;� � s ].

From the equality (4.21), we can deduce thatK s = A � B QB 0 from which we obtain
Equation (4.18). Finally, to obtain the cross-validation equations for the universal co-kriging,
we just have to estimate the following quantity (see Equation (4.13)):

�
h0

s(D test ) � [R s][� s ;� � s ] K s[H s]� � s

�
� s

�
h0

s(D test ) � [R s][� s ;� � s ] K s[H s]� � s

� 0
; (4.26)

with � s =
�
[H 0

s]� � s
K s[H s]� � s

� � 1. The following equality:

�
h0

s(D test ) � [R s][� s ;� � s ] K s[H s]� � s

�
=

� �
[R � 1

s ][� s ;� s ]
� � 1 �

R � 1
s H s

�
[� s ]

�
; (4.27)

allows us to obtain Equation (4.20) and completes the proof.

We note that these equations are also valid whens = 1 , i.e. for kriging model. We
hence have closed form expressions for the equations of ak-fold cross-validation with a re-
estimation of the regression and variance parameters. These expressions can be deduced from
the universal co-kriging equations. The complexity of this procedure is essentially determined
by the inversion of the matrices

� �
R � 1

u

�
[� u ;� u ]

�

u= t;:::;s
of sizentest � ntest . Furthermore, if we

suppose the parameters of variance and/or trend as known, we do not have to compute� 2
t; � � t

and/or � t; � � t
(they are �xed to their estimated value, i.e. � 2

t; � � t
= Qt

2(at � 1) and � t; � � t
= � t � t ,

see Section4.2.3) which reduces substantially the complexity of the method. These equations
generalize those of [Dubrule, 1983] and [Zhang and Wang, 2009] where the variance� 2

t; � � t
is

supposed to be known. Finally, the termVs is the additive term due to the parameter posterior
distributions in the universal co-kriging. Therefore, if the trend parameters are supposed to
be known, this term is equal to 0.

Remark: We must recognize that our closed form cross-validation formulas do not allow for
the re-estimation of the hyper-parameters of the correlation functions. However, as discussed
in Subsection 4.5.1, Proposition 4.3 is useful even in that case to reduce the computational
complexity of the cross-validation procedure.



4.5. ILLUSTRATION: HYDRODYNAMIC SIMULATOR 135

4.5 Illustration: hydrodynamic simulator

In this section we apply our co-kriging method to the hydrodynamic code �MELTEM�. The
aim of the study is to build a prediction as accurate as possible using only a few runs of
the complex code and to assess the uncertainty of this prediction. In particular, we show
the e�ciency of the co-kriging model compared to the kriging one. We also illustrate the
di�erence between simple and universal co-kriging and the results of the LOO-CV procedure.
These illustrations are made possible and easy by the closed form formulas for the predictive
mean and variance for universal co-kriging and by the fast cross-validation procedure described
in Section4.4 and 4.3 respectively. Finally, we show that considering an adjustment coe�cient
depending onx can be worthwhile.

The code MELTEM simulates a second-order turbulence model for gaseous mixtures in-
duced by Richtmyer-Meshkov instability [Grégoire et al., 2005]. Two input parameters x1

and x2 are considered. They are phenomenological coe�cients used in the equations of
the energy of dissipation of the turbulent �ow. These two coe�cients vary in the region
[0:5; 1:5] � [1:5; 2:3]. The considered code outputs, calledepsand L c, are respectively the dis-
sipation factor and the mixture characteristic length. The simulator is a �nite-elements code
which can be run at s = 2 levels of accuracy by altering the �nite-elements mesh. The simple
codez1(:), using a coarse mesh, takes 15 seconds to produce an output whereas the complex
codez2(:), using a �ne mesh, takes 8 minutes. We use5 runs for the complex codez2(x) and
25 runs for the cheap codez1(x). This represents 8 minutes on a hexa-core processor, which
is our constraint for an operational use. Then, we build an additional set of175points to test
the accuracy of the models. We note that no prior information is available: we are hence in
the non-informative case.

4.5.1 Estimation of the hyper-parameters

In the previous sections, we considered the correlation kernels(r t (x; ~x)) t=1 ;:::;s as known. In
practical applications, we choose these kernels in a parameterized family of correlation kernels.
Therefore, we consider kernels such thatr t (x; ~x) = r t (x; ~x; � t ). For t = 1 ; : : : ; s the hyper-
parameter � t can be estimated by maximizing the concentrated restricted log-likelihood (see
[Santner et al., 2003] and Chapter 1 Section 1.3) with respect to � t :

log (jdet (R t )j) + ( nt � pt � qt � 1) log
�
� 2

t;REML

�
; (4.28)

with the convention q0 = 0 and � 2
t;REML is the restricted likelihood estimate of the variance

� 2
t (see Section4.2.3). This minimization problem has to be solved numerically.

It is a common choice to estimate the hyper-parameters by maximum likelihood [Santner
et al., 2003]. It is also possible to estimate the hyper-parameters(� t )t=1 ;:::;s by minimizing a
loss function of a Leave-One-Out Cross-Validation procedure (see Section1.3). Usually, the

complexity of this procedure isO
�

(
P s

i =1 ni )
4
�

. Nonetheless, thanks to Proposition4.3, it is

reduced to O
� P s

i =1 n3
i

�
since it is essentially determined by the inversions of thes matrices

(R t )t=1 ;:::;s .Therefore, the complexity for the estimation of(� t )t=1 ;:::;s is substantially reduced.
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Furthermore, the recursive formulation of the problem allows us to estimate the parameters
(� t )t=1 ;:::;s one at a time by starting with � 1 and estimating � t , t = 2 ; : : : ; s recursively.

4.5.2 Comparison between kriging and multi-�delity co-kriging

Before considering the real case study, we propose in this section a comparison between the
kriging and co-kriging models when the number of runsn2 for the complex code varies such
that n2 = 5 ; 10; 15; 20; 25. For the co-kriging model, we considern1 = 25 runs for the cheap
code. In this section, we focus on the outputeps.

To perform the comparison, we generate randomly 500 experimental design sets(D 2;i ;
D 1;i ) i =1 ;:::;500 such that D 2;i � D 1;i , i = 1 ; : : : ; 500, D 1;i hasn1 points and D 2;i hasn2 points.

We use for both kriging and co-kriging models a Matérn-5=2 covariance kernel and we
consider � , � 1 and � 2 as constant. The accuracies of the two models are evaluated on the
test set composed of 175 observations. From them, the Root Mean Squared Error (RMSE) is

computed: RMSE =
�

1
175

P 175
i =1 (� Z2 (x test

i ) � z2(x test
i ))2

� 1=2
.

Figure 4.1 gives the mean and the quantiles of probability 5% and 95% of the RMSE
computed from the 500 sets(D 2;i ; D 1;i ) i =1 ;:::;500 when the number of runs for the expensive
coden2 varies. In Figure 4.1, we can see that the errors converge to the same value whenn2

5 10 15 20 252e
-0

4
1e

-0
3

5e
-0

3
2e
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1

n2

R
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Figure 4.1: Comparison between kriging and co-kriging withn1 = 25 runs for the cheap code
(500 nested design sets have been randomly generated for eachn2). The circles represent the
averaged RMSE of the co-kriging, the triangles represent the averaged RMSE of the kriging,
the crosses represent the quantiles of probability 5% and 95% for the co-kriging RMSE and
the times signs represent the quantiles of probability 5% and 95% of the kriging RMSE. Co-
kriging predictions are better than the ordinary kriging ones for smalln2 and they converge
to the same accuracy whenn2 tends to n1 = 25.
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tends to n1. Indeed, due to the Markov property given in Section3.2, when D 2 = D 1, only
the observationsz2 are taken into account. Furthermore, we can see that for small values of
n2, it is worth considering the co-kriging model since its accuracy is signi�cantly better than
the one of the kriging model.

4.5.3 Nested space �lling design

As presented in Section4.2 we consider nested experimental design sets:8t = 2 ; : : : ; s D t �
D t � 1. Therefore, we have to adopt particular design strategies to uniformly spread the inputs
for all D t . A strategy based on Orthogonal array-based Latin hypercube for nested space-
�lling designs is proposed by [Qian et al., 2009].
We consider here another strategy for space-�lling design, described in the following algorithm,
which is very simple and not time-consuming. The number of pointsnt for each designD t is
prescribed by the user, as well as the experimental design method applied to determine the
coarsest gridD s used for the most expensive codezs (see [Fang et al., 2006] for a review of
di�erent methods).

Algorithm 1 Nested space �lling design

1: build D s = f x(s)
j gj =1 ;:::;n s with the experimental design method prescribed by the user.

2: for t = s to 2 do
3: build design ~D t � 1 with the experimental design method prescribed by the user.
4: for i = 1 to nt do
5: �nd ~x(t � 1)

j 2 ~D t � 1 the closest point from x(t )
i 2 D t where j 2 [1; nt � 1].

6: remove ~x(t � 1)
j from ~D t � 1.

7: end for
8: D t � 1 = ~D t � 1 [ D t .
9: end for

This strategy allows us to use any space-�lling design method and it conserves the initial
structure of the experimental designD s of the most accurate code, contrarily to a strategy
based on selection of subsets of an experimental design for the less accurate code as presented
by [Kennedy and O'Hagan, 2000] and [Forrester et al., 2007]. We hence can ensure thatD s

has excellent space-�lling properties. Moreover, the experimental designD t � 1 being equal to
~D t � 1 [ D t , this method ensures the nested property.

We illustrate in the next page the di�erent stage of the nested design procedure fors = 2 .




















































































































































































































































































































































	Context

