R. Coudret, G. Durrieu, and J. Saracco, Comparison of kernel density estimators with assumption on number of modes. Communications in Statistics - Simulation and Computation
URL : https://hal.archives-ouvertes.fr/hal-01266129

R. Coudret, B. Liquet, and J. Saracco, Comparison of sliced inverse regression approaches for underdetermined cases
URL : https://hal.archives-ouvertes.fr/hal-00768352

R. Aza¨?saza¨?s, R. Coudret, and G. Durrieu, A hidden renewal model for monitoring aquatic systems biosensors

R. Coudret, S. Girard, and J. Saracco, A new sliced inverse regression method for multivariate response regression Submitted in: Computational Statistics and Data Analysis

@. Technical, R. Coudret, G. Durrieu, and J. Saracco, A note about the critical bandwidth for a kernel density estimator with the uniform kernel, 2012.

R. @bullet-conferences-coudret, G. Durrieu, and J. Saracco, Comparison of kernel density estimators with assumption on number of modes, th International Conference on Computational Statistics, 2012.

R. Coudret, G. Durrieu, and J. Saracco, EstimateursàEstimateursà noyau bimodaux d'une densité bimodale et comparaison avec d'autres estimateurs non paramétriques, 2012.

R. Coudret, G. Durrieu, and J. Saracco, Une interface graphique pour analyser des données distantes sous R. 1 ` eres Rencontres R, 2012.

R. @bullet-seminars-aza¨?saza¨?s, R. Coudret, and G. Durrieu, Un processus de renouvellement pour des bioindicateurs de surveillance des milieux aquatiques, 2013.

R. Aza¨?saza¨?s and R. Coudret, Hu??treHu??tre ouvre-toi ! (Des hu??treshu??tres comme bioindicateurs de la qualité de l'eau) Unithé ou café, 2013.

R. Aza¨?saza¨?s, R. Coudret, and G. Durrieu, Un processus de renouvellement pour des bioindicateurs de surveillance des milieux aquatiques, Journée systèmes dynamiques, probabilités et statistique, 2013.

R. Coudret and S. Fourestier, Utiliser R : Spécificités du logiciel et exemples d'application, 2013.

R. Coudret, G. Durrieu, and J. Saracco, Comparaison d'estimateurs d'une densité avec hypothèse sur son nombre de modes, 2012.

J. Adler, R in a Nutshell, 2010.

U. Amato, A. Antoniadis, and I. De-feis, Dimension reduction in functional regression with applications, Computational Statistics & Data Analysis, vol.50, issue.9, pp.2422-2446, 2006.
DOI : 10.1016/j.csda.2004.12.007

URL : https://hal.archives-ouvertes.fr/hal-00103266

P. K. Andersen, Ø. Borgan, R. D. Gill, and N. Keiding, Statistical models based on counting processes, 1993.
DOI : 10.1007/978-1-4612-4348-9

A. Antoniadis, J. Bigot, and T. Sapatinas, Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study, Journal of Statistical Software, vol.6, issue.6, pp.1-83, 2001.
DOI : 10.18637/jss.v006.i06

URL : https://hal.archives-ouvertes.fr/hal-00823485

Y. Aragon, A gauss implementation of multivariate sliced inverse regression, Computational Statistics, vol.12, pp.355-372, 1997.

Y. Aragon and J. Saracco, Sliced Inverse Regression (SIR): an appraisal of small sample alternatives to slicing, Computational Statistics, vol.12, pp.109-130, 1997.

R. Aza¨?saza¨?s, F. Dufour, and A. Gégout-petit, In press) Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes. Annales de l'Institut Henri Poincaré

R. Aza¨?saza¨?s, A. Gégout-petit, and J. Saracco, Optimal quantization applied to sliced inverse regression, Journal of Statistical Planning and Inference, vol.142, issue.2, pp.481-492, 2012.
DOI : 10.1016/j.jspi.2011.08.006

Z. D. Bai and X. He, A chi-square test for dimensionality with non-Gaussian data, Journal of Multivariate Analysis, vol.88, issue.1, pp.109-117, 2004.
DOI : 10.1016/S0047-259X(03)00056-3

L. Barreda, A. Gannoun, and J. Saracco, Some extensions of multivariate sliced inverse regression, Journal of Statistical Computation and Simulation, vol.15, issue.1, pp.1-17, 2007.
DOI : 10.1080/10629360600687840

M. P. Barrios and S. Velilla, A bootstrap method for assessing the dimension of a general regression problem, Statistics & Probability Letters, vol.77, issue.3, pp.247-255, 2007.
DOI : 10.1016/j.spl.2006.07.020

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society. Series B. Statistical Methodology, vol.57, issue.1, pp.289-300, 1995.

B. Bercu and D. Chafa¨?chafa¨?, Modélisation stochastique et simulation: Cours et applications, 2007.

B. Bercu, T. Nguyen, and J. Saracco, A new approach on recursive and non-recursive SIR methods, Journal of the Korean Statistical Society, vol.41, issue.1, pp.17-36, 2011.
DOI : 10.1016/j.jkss.2011.05.005

URL : https://hal.archives-ouvertes.fr/hal-00642653

A. Bernard, Cadmium & its adverse effects on human health, Indian Journal of Medical Research, vol.128, issue.4, p.557, 2008.

C. Bernard-michel, S. Douté, M. Fauvel, L. Gardes, and S. Girard, Retrieval of Mars surface physical properties from OMEGA hyperspectral images using regularized sliced inverse regression, Journal of Geophysical Research, vol.20, issue.2, 2009.
DOI : 10.1029/2008JE003171

URL : https://hal.archives-ouvertes.fr/inria-00276116

C. Bernard-michel, L. Gardes, and S. Girard, A Note on Sliced Inverse Regression with Regularizations, Biometrics, vol.21, issue.3, pp.982-986, 2008.
DOI : 10.1111/j.1541-0420.2008.01080.x

URL : https://hal.archives-ouvertes.fr/inria-00180496

P. Besse, Exploration statistique multidimensionnelle, 2012.

J. Borcherding and M. Volpers, The dreissena monitor -first results on the application of this biological early warning system in the continuous monitoring of water quality, Water Science Technology, vol.29, pp.199-201, 1994.

D. Bosq and D. Blanke, Inference and prediction in large dimensions, 2008.
DOI : 10.1002/9780470724033

L. Bottolo, M. Chadeau-hyam, D. I. Hastie, S. R. Langley, E. Petretto et al., ESS++: a C++ objected-oriented algorithm for Bayesian stochastic search model exploration, Bioinformatics, vol.27, issue.4, pp.587-588, 2011.
DOI : 10.1093/bioinformatics/btq684

L. Bottolo and S. Richardson, Evolutionary stochastic search for Bayesian model exploration, Bayesian Analysis, vol.5, issue.3, pp.583-618, 2010.
DOI : 10.1214/10-BA523

E. Bura, L 1 -Statistical Procedures and Related Topics, chapter Dimension reduction via parametric inverse regression, Institute of Mathematical Statistics, pp.215-228, 1997.

E. Bura and R. D. Cook, Estimating the structural dimension of regressions via parametric inverse regression, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.2, pp.393-410, 2001.
DOI : 10.1111/1467-9868.00292

D. J. Call, C. N. Polkinghorne, T. P. Markee, L. T. Brooke, D. L. Geiger et al., SILVER TOXICITY TO CHIRONOMUS TENTANS IN TWO FRESHWATER SEDIMENTS, Environmental Toxicology and Chemistry, vol.18, issue.1, pp.30-39, 1999.
DOI : 10.1897/1551-5028(1999)018<0030:STTCTI>2.3.CO;2

R. J. Carroll and K. Li, Measurement Error Regression with Unknown Link: Dimension Reduction and Data Visualization, Journal of the American Statistical Association, vol.52, issue.420, pp.1040-1050, 1992.
DOI : 10.1093/biomet/75.3.507

S. Casas, Modélisation de la bioaccumulation de métaux traces (Hg, Cd, Pb, Cu et Zn) chez la moule, Mytilus Galloprovincialis, en milieu méditerranéen, 2005.

D. Causeur, C. Friguet, M. Houee-bigot, and M. Kloareg, Package for Large-Scale Significance Testing under Dependence, Journal of Statistical Software, vol.40, issue.14, p.40, 2011.
DOI : 10.18637/jss.v040.i14

URL : https://hal.archives-ouvertes.fr/hal-00730155

C. Chambon, A. Legeay, G. Durrieu, P. Gonzalez, P. Ciret et al., Influence of the parasite worm Polydora sp. on the behaviour of the oyster Crassostrea gigas: a study of the respiratory impact and associated oxidative stress, Marine Biology, vol.277, issue.2, pp.329-338, 2007.
DOI : 10.1007/s00227-007-0693-1

URL : https://hal.archives-ouvertes.fr/hal-00909889

M. Chavent, V. Kuentz, B. Liquet, and J. Saracco, A Sliced Inverse Regression Approach for a Stratified Population, Communications in statistics -Theory and Methods, pp.1-22, 2011.
DOI : 10.1214/aos/1032526955

C. Chen and K. Li, Can SIR be as popular as multiple linear regression?, Statistica Sinica, vol.8, issue.2, pp.289-316, 1998.

Y. Chen, S. Petersen, M. Pacyna-gengelbach, A. Pietas, and I. Petersen, Identification of a Novel Homeobox-Containing Gene, LAGY, Which Is Downregulated in Lung Cancer, Oncology, vol.64, issue.4, pp.450-458, 2003.
DOI : 10.1159/000070306

R. R. Coifman and D. L. Donoho, Translation-Invariant De-Noising, Lecture Notes in Statistics, vol.103, pp.125-150, 1995.
DOI : 10.1007/978-1-4612-2544-7_9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. D. Cook, On the Interpretation of Regression Plots, Journal of the American Statistical Association, vol.41, issue.425, pp.177-189, 1994.
DOI : 10.1214/aos/1176347254

R. D. Cook and B. Li, Dimension reduction for conditional mean in regression, The Annals of Statistics, vol.30, issue.2, pp.450-474, 2002.
DOI : 10.1214/aos/1021379861

R. D. Cook and C. J. Nachtsheim, Reweighting to Achieve Elliptically Contoured Covariates in Regression, Journal of the American Statistical Association, vol.21, issue.426, pp.592-599, 1994.
DOI : 10.1002/0471725218

R. D. Cook and C. M. Setodji, A Model-Free Test for Reduced Rank in Multivariate Regression, Journal of the American Statistical Association, vol.98, issue.462, pp.98340-351, 2003.
DOI : 10.1198/016214503000134

I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 1992.

L. P. Devroye, A Course in Density Estimation, 1987.

L. P. Devroye and P. J. Wagner, The strong uniform consistency of kernel density estimates, Multivariate Analysis V: Proceedings of the fifth International Symposium on Multivariate Analysis, pp.59-77, 1980.

D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol.81, issue.3, pp.425-455, 1994.
DOI : 10.1093/biomet/81.3.425

S. Douté, B. Schmitt, Y. Langevin, J. Bibring, F. Altieri et al., South Pole of Mars: Nature and composition of the icy terrains from Mars Express OMEGA observations, Planetary and Space Science, vol.55, issue.1-2, pp.113-133, 2007.
DOI : 10.1016/j.pss.2006.05.035

N. Duan and K. Li, Slicing Regression: A Link-Free Regression Method, The Annals of Statistics, vol.19, issue.2, pp.505-530, 1991.
DOI : 10.1214/aos/1176348109

G. Durrieu, R. Maury-brachet, and A. Boudou, Goldmining and mercury contamination of the piscivorous fish Hoplias aimara in French Guiana (Amazon basin), Ecotoxicology and Environmental Safety, vol.60, issue.3, pp.315-323, 2005.
DOI : 10.1016/j.ecoenv.2004.05.004

URL : https://hal.archives-ouvertes.fr/hal-00909825

J. Einbeck and J. Taylor, A number-of-modes reference rule for density estimation under multimodality, Statistica Neerlandica, vol.13, issue.1, pp.54-66, 2013.
DOI : 10.1111/j.1467-9574.2012.00531.x

L. Ferré, Determining the dimension in sliced inverse regression and related methods, Journal of the American Statistical Association, vol.93, pp.132-140, 1998.

L. Ferré and A. Yao, Reply to the paper : " A note on smoothed functional inverse regression, Statistica Sinica, vol.17, pp.1683-1687, 2007.

T. R. Fleming and D. P. Harrington, Nonparametric estimation of the survival distribution in censored data, Communications in Statistics - Theory and Methods, vol.6, issue.20, pp.2469-2486, 1984.
DOI : 10.1080/03610928408828837

C. Friguet, M. Kloareg, and D. Causeur, A Factor Model Approach to Multiple Testing Under Dependence, Journal of the American Statistical Association, vol.104, issue.488, pp.1406-1414, 2009.
DOI : 10.1198/jasa.2009.tm08332

URL : https://hal.archives-ouvertes.fr/hal-00458049

A. Futschik and E. Isogai, On the consistency of kernel density estimates under modality constraints, Statistics & Probability Letters, vol.76, issue.4, pp.76431-437, 2006.
DOI : 10.1016/j.spl.2005.08.030

P. S. Galtsoff, PHYSIOLOGY OF REPRODUCTION OF OSTREA VIRGINICA, The Biological Bulletin, vol.74, issue.3, pp.461-486, 1938.
DOI : 10.2307/1537816

A. Gannoun and J. Saracco, An asymptotic theory for SIR ? method, Statistica Sinica, vol.13, pp.297-310, 2003.

D. Geman and J. Horowitz, Occupation densities. The Annals of Probability, pp.1-67, 1980.
DOI : 10.1214/aop/1176994824

G. H. Golub and C. F. Van-loan, Matrix computations, of Johns Hopkins Series in the Mathematical Sciences, 1983.

P. Hall and K. Li, On almost linearity of low dimensional projections from high dimensional data. The Annals of Statistics, pp.867-889, 1993.

P. Hall and J. S. Marron, Estimation of integrated squared density derivatives, Statistics & Probability Letters, vol.6, issue.2, pp.109-115, 1987.
DOI : 10.1016/0167-7152(87)90083-6

P. Hall, M. C. Minnotte, and C. Zhang, Bump hunting with non-gaussian kernels. The Annals of Statistics, pp.2124-2141, 2004.

P. Hall and P. Patil, Effect of threshold rules on performances of waveletbased curve estimators, Statistica Sinica, vol.6, issue.2, pp.331-345, 1996.

P. Hall and M. York, On the calibration of Silverman's test for multimodality, Statistica Sinica, vol.11, pp.515-536, 2001.

T. Hsing, Nearest neighbor inverse regression. The Annals of Statistics, pp.697-731, 1999.
DOI : 10.1214/aos/1018031213

URL : http://projecteuclid.org/download/pdf_1/euclid.aos/1018031213

T. Hsing and R. J. Carroll, An asymptotic theory for sliced inverse regression . The Annals of Statistics, pp.1040-1061, 1992.

M. F. Hughes, Arsenic toxicity and potential mechanisms of action, Toxicology Letters, vol.133, issue.1, pp.1-16, 2002.
DOI : 10.1016/S0378-4274(02)00084-X

L. Järup, M. Berglund, C. G. Elinder, G. Nordberg, and M. Vanter, Health effects of cadmium exposure?a review of the literature and a risk estimate, Scandinavian Journal of Work Environment & Health, vol.24, pp.1-51, 1998.

H. Jenner, F. Noppert, and T. Sikking, A new system for the detection of valve movement response of bivalves, Kema Scientific and Technical Reports, vol.7, issue.2, pp.91-98, 1989.

M. C. Jones and S. J. Sheather, Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives, Statistics & Probability Letters, vol.11, issue.6, pp.511-514, 1991.
DOI : 10.1016/0167-7152(91)90116-9

L. J. Jou and C. M. Liao, A dynamic artificial clam (Corbicula fluminea) allows parsimony on-line measurement of waterborne metals, Environmental Pollution, vol.144, issue.1, pp.172-183, 2006.
DOI : 10.1016/j.envpol.2005.12.032

T. T. Kötter, Smoothing and regression. Approaches, computation and application ., chapter Sliced inverse regression, pp.497-512, 2000.

K. Kramer, H. Jenner, D. Zwart, and D. , The valve movement response of mussels: a tool in biological monitoring, Hydrobiologia, vol.188189, pp.433-443, 1989.

V. Kuentz, B. Liquet, and J. Saracco, Bagging Versions of Sliced Inverse Regression, Communications in statistics -Theory and Methods, pp.1985-1996, 2010.
DOI : 10.2307/2291210

URL : https://hal.archives-ouvertes.fr/hal-00389125

V. Kuentz and J. Saracco, Cluster-based Sliced Inverse Regression, Journal of the Korean Statistical Society, vol.39, issue.2, pp.251-267, 2010.
DOI : 10.1016/j.jkss.2009.08.004

URL : https://hal.archives-ouvertes.fr/hal-00547252

P. Lafaye-de-micheaux, R. Drouilhet, and B. Liquet, Le logiciel R - Ma??triserMa??triser le langage -Effectuer des analyses statistiques. Statistiques et probabilités appliquées, 2010.

B. Li, S. Wen, and L. Zhu, On a Projective Resampling Method for Dimension Reduction With Multivariate Responses, Journal of the American Statistical Association, vol.103, issue.483, pp.1177-1186, 2008.
DOI : 10.1198/016214508000000445

K. Li, Sliced Inverse Regression for Dimension Reduction, Journal of the American Statistical Association, vol.13, issue.414, pp.316-327, 1991.
DOI : 10.1214/aos/1176345514

K. Li, Y. Aragon, K. Shedden, and C. T. Agnan, Dimension Reduction for Multivariate Response Data, Journal of the American Statistical Association, vol.98, issue.461, pp.9899-109, 2003.
DOI : 10.1198/016214503388619139

L. Li and C. J. Nachtsheim, Sparse Sliced Inverse Regression, Technometrics, vol.48, issue.4, pp.503-510, 2006.
DOI : 10.1198/004017006000000129

L. Li and X. Yin, Sliced Inverse Regression with Regularizations, Biometrics, vol.67, issue.1, pp.124-131, 2008.
DOI : 10.1111/j.1541-0420.2007.00836.x

Y. Li and L. Zhu, Asymptotics for sliced average variance estimation. The Annals of Statistics, pp.41-69, 2007.

B. Liquet and J. Saracco, Application of the bootstrap approach to the choice of dimension and the ? parameter in the SIR ? method, Communications in statistics -Simulation and Computation, pp.1198-1218, 2008.

H. Lue, Sliced inverse regression for multivariate response regression, Journal of Statistical Planning and Inference, vol.139, issue.8, pp.2656-2664, 2009.
DOI : 10.1016/j.jspi.2008.12.006

L. Cao, K. Martin, P. Robert-granie, C. Besse, and P. , Sparse canonical methods for biological data integration: application to a cross-platform study, BMC Bioinformatics, vol.10, issue.1, p.34, 2009.
DOI : 10.1186/1471-2105-10-34

URL : https://hal.archives-ouvertes.fr/hal-00323818

S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 2008.

E. Mammen, J. S. Marron, and N. J. Fisher, Some asymptotics for multimodality tests based on kernel density estimates. Probability Theory and Related Fields, pp.115-132, 1991.

S. Mangiarotti, R. Coudret, L. Drapeau, and L. Jarlan, Polynomial search and global modeling: Two algorithms for modeling chaos, Physical Review E, vol.86, issue.4, 2012.
DOI : 10.1103/PhysRevE.86.046205

URL : https://hal.archives-ouvertes.fr/ird-01062696

J. Marron and M. Wand, Exact mean integrated squared error. The Annals of Statistics, pp.712-736, 1992.
DOI : 10.1214/aos/1176348653

M. C. Minnotte, Nonparametric testing of the existence of modes. The Annals of Statistics, pp.1646-1660, 1997.

M. C. Minnotte, D. J. Marchette, and E. J. Wegman, The Bumpy Road to the Mode Forest, Journal of Computational and Graphical Statistics, vol.7, issue.2, pp.239-251, 1998.

M. C. Minnotte and D. W. Scott, The mode tree: A tool for visualization of nonparametric density features, Journal of Computational and Graphical Statistics, vol.2, issue.1, pp.51-68, 1993.

C. B. Moler and G. W. Stewart, An Algorithm for Generalized Matrix Eigenvalue Problems, SIAM Journal on Numerical Analysis, vol.10, issue.2, pp.241-256, 1973.
DOI : 10.1137/0710024

D. W. Müller and G. Sawitzki, Excess mass estimates and tests for multimodality, Journal of the American Statistical Association, vol.86, issue.415, pp.738-746, 1991.

K. Nagai, T. Honjo, J. Go, H. Yamashita, and S. Oh, Detecting the shellfish killer Heterocapsa circularisquama (Dinophyceae) by measuring bivalve valve activity with a Hall element sensor, Aquaculture, vol.255, issue.1-4, pp.395-401, 2006.
DOI : 10.1016/j.aquaculture.2005.12.018

G. Nkiet, Consistent estimation of the dimensionality in sliced inverse regression, Annals of the Institute of Statistical Mathematics, vol.93, issue.2, pp.257-271, 2008.
DOI : 10.1007/s10463-006-0106-0

O. Connell, J. Højsgaard, and S. , Hidden semi markov models for multiple observation sequences: The mhsmm package for R, Journal of Statistical Software, vol.39, issue.4, 2011.

E. Parzen, On estimation of probability density function and mode. The Annals of Mathematical Statistics, pp.1065-1076, 1962.

E. Petretto, L. Bottolo, S. R. Langley, M. Heinig, C. Mcdermott-roe et al., New Insights into the Genetic Control of Gene Expression using a Bayesian Multi-tissue Approach, PLoS Computational Biology, vol.3, issue.4, p.1000737, 2010.
DOI : 10.1371/journal.pcbi.1000737.s014

W. Polonik, Density Estimation under Qualitative Assumptions in Higher Dimensions, Journal of Multivariate Analysis, vol.55, issue.1, pp.61-81, 1995.
DOI : 10.1006/jmva.1995.1067

L. A. Prendergast, Influence Functions for Sliced Inverse Regression, Scandinavian Journal of Statistics, vol.5, issue.3, pp.385-404, 2005.
DOI : 10.1111/1467-9868.03411

R. Development and C. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2012.

H. T. Ratte, Bioaccumulation and toxicity of silver compounds: A review, Environmental Toxicology and Chemistry, vol.13, issue.98, pp.89-108, 1999.
DOI : 10.1002/etc.5620180112

A. Robson, R. Wilson, G. De-leaniz, and C. , Mussels flexing their muscles: a new method for quantifying bivalve behaviour, Marine Biology, vol.142, issue.3, pp.1195-1204, 2007.
DOI : 10.1007/s00227-006-0566-z

M. Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Function, The Annals of Mathematical Statistics, vol.27, issue.3, pp.43-47, 1956.
DOI : 10.1214/aoms/1177728190

M. Rudemo, Empirical choice of histograms and kernel density estimators, Scandinavian Journal of Statistics, vol.9, issue.2, pp.65-78, 1982.

R. Sabatier and C. Reynès, Extensions of simple component analysis and simple linear discriminant analysis using genetic algorithms, Computational Statistics & Data Analysis, vol.52, issue.10, pp.524779-4789, 2008.
DOI : 10.1016/j.csda.2008.03.021

J. Saracco, An asymptotic theory for sliced inverse regression, Communications in statistics -Theory and Methods, pp.2141-2171, 1997.
DOI : 10.1214/aos/1176345514

E. E. Schadt, S. A. Monks, T. A. Drake, A. J. Lusis, N. Che et al., Genetics of gene expression surveyed in maize, mouse and man, Nature, vol.422, issue.6929, pp.422297-302, 2003.
DOI : 10.1038/nature01434

F. Schmitt, M. De-rosa, G. Durrieu, M. Sow, P. Ciret et al., STATISTICAL STUDY OF BIVALVE HIGH FREQUENCY MICROCLOSING BEHAVIOR: SCALING PROPERTIES AND SHOT NOISE ANALYSIS, International Journal of Bifurcation and Chaos, vol.21, issue.12, pp.1-12, 2011.
DOI : 10.1142/S0218127411030738

URL : https://hal.archives-ouvertes.fr/hal-00906320

I. J. Schoenberg, On pólya frequency functions II: Variation diminishing integral operators of the convolution type. Acta Universitatis Szegediensis, Acta Scientiarum Mathematicarum, vol.12, pp.97-106, 1950.

J. R. Schott, Determining the Dimensionality in Sliced Inverse Regression, Journal of the American Statistical Association, vol.16, issue.425, pp.141-148, 1994.
DOI : 10.1214/aos/1176345514

C. Schwartzmann, G. Durrieu, M. Sow, P. Ciret, C. E. Lazareth et al., In situ giant clam growth rate behavior in relation to temperature: A one-year coupled study of high-frequency noninvasive valvometry and sclerochronology, Limnology and Oceanography, vol.56, issue.5, pp.1940-1951, 2011.
DOI : 10.4319/lo.2011.56.5.1940

URL : https://hal.archives-ouvertes.fr/ird-01097945

D. W. Scott, Multivariate Density Estimation : Theory, Practice and Visualization, 1992.
DOI : 10.1002/9781118575574

D. W. Scott and G. R. Terrell, Biased and Unbiased Cross-Validation in Density Estimation, Journal of the American Statistical Association, vol.9, issue.400, pp.621131-1146, 1987.
DOI : 10.1214/aoms/1177696810

L. Scrucca, Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression, Computational Statistics & Data Analysis, vol.52, issue.1, pp.438-451, 2007.
DOI : 10.1016/j.csda.2007.02.005

C. M. Setodji and R. D. Cook, -Means Inverse Regression, Technometrics, vol.46, issue.4, pp.421-429, 2004.
DOI : 10.1198/004017004000000437

Y. Shao, R. D. Cook, and S. Weisberg, Partial central subspace and sliced average variance estimation, Journal of Statistical Planning and Inference, vol.139, issue.3, pp.952-961, 2009.
DOI : 10.1016/j.jspi.2008.06.002

S. J. Sheather and M. C. Jones, A reliable data-based bandwidth selection method for kernel density estimation, Journal of the Royal Statistical Society. Series B. Statistical Methodology, vol.53, issue.3, pp.683-690, 1991.

C. H. Shin, Z. Liu, R. Passier, C. Zhang, D. Wang et al., Modulation of Cardiac Growth and Development by HOP, an Unusual Homeodomain Protein, Cell, vol.110, issue.6, pp.110725-735, 2002.
DOI : 10.1016/S0092-8674(02)00933-9

B. W. Silverman, Using kernel density estimates to investigate multimodality, Journal of the Royal Statistical Society. Series B. Statistical Methodology, vol.43, issue.1, pp.97-99, 1981.

W. Sloff, D. De-zwart, and J. Marquenie, Detection limits of a biological monitoring system for chemical water pollution based on mussel activity. Environmental Contamination and Toxicology, pp.400-405, 1983.

M. Sow, G. Durrieu, L. Briollais, P. Ciret, and J. Massabuau, Water quality assessment by means of HFNI valvometry and high-frequency data modeling, Environmental Monitoring and Assessment, vol.26, issue.7, pp.1-4155, 2011.
DOI : 10.1007/s10661-010-1866-9

URL : https://hal.archives-ouvertes.fr/hal-00905395

M. E. Szretter and V. J. Yohai, The sliced inverse regression algorithm as a maximum likelihood procedure, Journal of Statistical Planning and Inference, vol.139, issue.10, pp.3570-3578, 2009.
DOI : 10.1016/j.jspi.2009.04.008

P. Teetor, R Cookbook. O'Reilly Media, 2011.

R. Tibshirani, Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society. Series B (Methodological), vol.58, issue.1, pp.267-288, 1996.

D. Tran, P. Ciret, A. Ciutat, G. Durrieu, and J. Massabuau, Estimation of potential and limits of bivalve closure response to detect contaminants: Application to cadmium, Environmental Toxicology and Chemistry, vol.57, issue.189, pp.914-920, 2003.
DOI : 10.1002/etc.5620220432

D. Tran, E. Fournier, G. Durrieu, and J. Massabuau, Copper detection in the Asiatic clam Corbicula fluminea: optimum valve closure response, Aquatic Toxicology, vol.66, issue.3, pp.333-343, 2004.
DOI : 10.1016/j.aquatox.2004.01.006

URL : https://hal.archives-ouvertes.fr/hal-00909822

D. Tran, H. Haberkorn, P. Soudant, P. Ciret, and J. Massabuau, Behavioral responses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum, Aquaculture, vol.298, issue.3-4, pp.338-345, 2010.
DOI : 10.1016/j.aquaculture.2009.10.030

URL : https://hal.archives-ouvertes.fr/hal-00645621

D. Tran, A. Nadau, G. Durrieu, P. Ciret, J. Parisot et al., Field Chronobiology of a Molluscan Bivalve: How the Moon and Sun Cycles Interact to Drive Oyster Activity Rhythms, Chronobiology International, vol.132, issue.4, pp.307-317, 2011.
DOI : 10.3109/07420529808998684

D. E. Tyler, Asymptotic Inference for Eigenvectors, The Annals of Statistics, vol.9, issue.4, pp.725-736, 1981.
DOI : 10.1214/aos/1176345514

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA078960

J. R. Van-dorp and S. Kotz, A novel extension of the triangular distribution and its parameter estimation, Journal of the Royal Statistical Society: Series D (The Statistician), vol.43, issue.1, pp.63-79, 2002.
DOI : 10.1111/1467-9884.00299

S. Vines, Simple principal components, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.49, issue.4, pp.441-451, 2000.
DOI : 10.1111/1467-9876.00204

D. F. Walnut, An Introduction to Wavelet Analysis, 2004.
DOI : 10.1007/978-1-4612-0001-7

DOI : 10.1017/S0266466603191062

S. L. Watwood, P. J. Miller, M. Johnson, P. T. Madsen, and P. L. Tyack, Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus), Journal of Animal Ecology, vol.139, issue.3, pp.75814-825, 2006.
DOI : 10.1121/1.1828501

H. Wu, Kernel Sliced Inverse Regression with Applications to Classification, Journal of Computational and Graphical Statistics, vol.17, issue.3, pp.590-610, 2008.
DOI : 10.1198/106186008X345161

S. Yamaguchi, K. Asanoma, T. Takao, K. Kato, W. et al., Homeobox gene HOPX is epigenetically silenced in human uterine endometrial cancer and suppresses estrogen-stimulated proliferation of cancer cells by inhibiting serum response factor, International Journal of Cancer, vol.27, issue.11, pp.1242577-2588, 2009.
DOI : 10.1002/ijc.24217

X. Yin and E. Bura, Moment-based dimension reduction for multivariate response regression, Journal of Statistical Planning and Inference, vol.136, issue.10, pp.3675-3688, 2006.
DOI : 10.1016/j.jspi.2005.01.011

X. Yin and L. Seymour, Asymptotic distributions for dimension reduction in the sir-ii method, Statistica Sinica, vol.15, pp.1069-1079, 2007.

J. K. Yoo, Iterative optimal sufficient dimension reduction for conditional mean in multivariate regression, Journal of Data Science, vol.7, pp.267-276, 2009.

W. Zhong, P. Zeng, P. Ma, J. S. Liu, and Y. Zhu, RSIR: regularized sliced inverse regression for motif discovery, Bioinformatics, vol.21, issue.22, pp.4169-4175, 2005.
DOI : 10.1093/bioinformatics/bti680

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Zhu, B. Miao, and H. Peng, On Sliced Inverse Regression With High-Dimensional Covariates, Journal of the American Statistical Association, vol.101, issue.474, pp.630-643, 2006.
DOI : 10.1198/016214505000001285

L. Zhu and Z. Yu, On spline approximation of sliced inverse regression, Science in China Series A: Mathematics, vol.36, issue.9, pp.1289-1302, 2007.
DOI : 10.1007/s11425-007-0085-5

L. Zhu and L. Zhu, On kernel method for sliced average variance estimation, Journal of Multivariate Analysis, vol.98, issue.5, pp.970-991, 2007.
DOI : 10.1016/j.jmva.2006.11.005

L. Zhu, L. Zhu, and Z. Feng, Dimension Reduction in Regressions Through Cumulative Slicing Estimation, Journal of the American Statistical Association, vol.105, issue.492, pp.1455-1466, 2010.
DOI : 10.1198/jasa.2010.tm09666

L. Zhu, L. Zhu, W. , and S. , On dimension reduction in regressions with multivariate responses, Statistica Sinica, vol.20, issue.3, pp.1291-1307, 2010.

L. Zhu and K. Fang, Asymptotics for kernel estimate of sliced inverse regression. The Annals of Statistics, pp.1053-1068, 1996.

L. Zhu and K. Ng, Asymptotics of sliced inverse regression, Statistica Sinica, vol.5, pp.727-736, 1995.

L. Zhu, M. Ohtaki, L. , and Y. , On hybrid methods of inverse regressionbased algorithms, Computational Statistics, vol.51, pp.2621-2635, 2007.