M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas , Graphs, and Mathematical Tables, 1964.

J. D. Achenbach, Wave Propagation in Elastic Solids, Journal of Applied Mechanics, vol.41, issue.2, 1973.
DOI : 10.1115/1.3423344

M. Ainsworth, Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, Journal of Computational Physics, vol.198, issue.1, pp.106-130, 2004.
DOI : 10.1016/j.jcp.2004.01.004

G. Bal, Kinetics of scalar wave fields in random media, Wave Motion, vol.43, issue.2, pp.132-157, 2005.
DOI : 10.1016/j.wavemoti.2005.08.002

G. Bal, T. Komorowski, and L. Ryzhik, Kinetic limits for waves in a random medium, Kinetic and Related Models, vol.3, issue.4, pp.529-644, 2010.
DOI : 10.3934/krm.2010.3.529

D. Bancroft, The Velocity of Longitudinal Waves in Cylindrical Bars, Physical Review, vol.59, issue.7, pp.588-593, 1941.
DOI : 10.1103/PhysRev.59.588

V. Baronian, Couplage des Méthodes Modales etÉlémentset´etÉléments Finis pour la Diffraction des OndesÉlastiquesOndes´OndesÉlastiques Guidées, 2009.

K. Bathe, Finite Element Procedures in Engineering Analysis, Journal of Pressure Vessel Technology, vol.106, issue.4, 1982.
DOI : 10.1115/1.3264375

V. D. Belov, S. A. Rybak, and B. D. Tartakovskii, Propagation of vibrational energy in absorbing structures, Journal of Soviet Physics Acoustics, vol.23, issue.2, pp.115-119, 1977.

T. Belytschko and R. Mullen, On Dispersive Properties of Finite Element Solutions

S. Bograd, P. Reuss, A. Schmidt, L. Gaul, and M. Mayer, Modeling the dynamics of mechanical joints, Mechanical Systems and Signal Processing, vol.25, issue.8, pp.252801-2826, 2011.
DOI : 10.1016/j.ymssp.2011.01.010

J. Bonini, ContributionàContribution`Contributionà la Prédiction Numérique de l'Endommagement de Stratifiés Composites sous Impact Basse Vitesse, Ecole Nationale Supérieure des Arts et Métiers, p.153, 1995.

S. Bougacha, J. Akian, and R. Alexandre, Gaussian beams summation for the wave equation in a convex domain, Communications in Mathematical Sciences, vol.7, issue.4, pp.973-1008, 2009.

F. Brezzi, L. D. Marini, and E. Suli, DISCONTINUOUS GALERKIN METHODS FOR FIRST-ORDER HYPERBOLIC PROBLEMS, Mathematical Models and Methods in Applied Sciences, vol.14, issue.12, pp.106-130, 2004.
DOI : 10.1142/S0218202504003866

E. Carrera, G. Giunta, P. Nali, and M. Petrolo, Refined beam elements with arbitrary cross-section geometries, Computers & Structures, vol.88, issue.5-6, pp.5-6283, 2010.
DOI : 10.1016/j.compstruc.2009.11.002

K. Chan, K. Lai, N. Stephen, and K. Young, A new method to determine the shear coefficient of Timoshenko beam theory, Journal of Sound and Vibration, vol.330, issue.14, pp.3488-3497, 2011.
DOI : 10.1016/j.jsv.2011.02.012

R. Clough and J. Penzien, Dynamics of Structures, Journal of Applied Mechanics, vol.44, issue.2, 1975.
DOI : 10.1115/1.3424082

B. Cockburn, Discontinuous Galerkin methods, Zeitschrift fr Angewandte Mathematik und Mechanik, pp.731-754, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01352444

B. Cockburn and C. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of Scientific Computing, vol.16, issue.3, pp.173-261, 2001.
DOI : 10.1023/A:1012873910884

G. R. Cowper, The Shear Coefficient in Timoshenko???s Beam Theory, Journal of Applied Mechanics, vol.33, issue.2, pp.335-340, 1966.
DOI : 10.1115/1.3625046

V. Damljanovic and R. L. Weaver, Propagating and evanescent elastic waves in cylindrical waveguides of arbitrary cross section, The Journal of the Acoustical Society of America, vol.115, issue.4, pp.1572-1581, 2004.
DOI : 10.1121/1.1687424

C. Devaux, Modélisation du Comportement Vibratoire des Structures par des MéthodesMéthodes´MéthodesÉnergétiques: Formulation Moyennée Spatialement pour des Systèmes Unidimensionnels, 2006.

J. F. Doyle, Wave Propagation in Structures -Spectral Analysis Using Fast Discrete Fourier Transforms. Mechanical Engineering, 1997.

M. Eisenberger, Dynamic stiffness vibration analysis using a high-order beam model, International Journal for Numerical Methods in Engineering, vol.76, issue.11, pp.1603-1614, 2003.
DOI : 10.1002/nme.736

B. Engquist and O. Runborg, Computational high frequency wave propagation, Acta Numerica, vol.12, pp.181-266, 2003.
DOI : 10.1017/S0962492902000119

B. Engquist, O. Runborg, and A. Tornberg, High-Frequency Wave Propagation by the Segment Projection Method, Journal of Computational Physics, vol.178, issue.2, pp.373-390, 2002.
DOI : 10.1006/jcph.2002.7033

B. Erin, Modèles de Diffusion d' ´ Energie Vibratoire en Dynamique des Structures = Vibratory Energy Diffusion Models in Structural Dynamics, 1995.

E. Fatemi, B. Engquist, and S. Osher, Numerical Solution of the High Frequency Asymptotic Expansion for the Scalar Wave Equation, Journal of Computational Physics, vol.120, issue.1, pp.145-155, 1995.
DOI : 10.1006/jcph.1995.1154

M. Fink, Time Reversed Acoustics, Physics Today, vol.50, issue.3, pp.34-40, 1997.
DOI : 10.1063/1.881692

B. Fornet, Probì emes HyperboliquesàHyperboliques`Hyperboliquesà Coefficients Discontinus et Pénalisation de Probì emes Hyperboliques, 2007.

P. Gérard, P. A. Markowich, N. J. Mauser, and F. Poupaud, Homogenization limits and Wigner transforms, Communications on Pure and Applied Mathematics, vol.50, issue.4, pp.323-379, 1997.
DOI : 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.3.CO;2-Q

Y. M. Ghugal and R. P. Shimpi, A Review of Refined Shear Deformation Theories for Isotropic and Anisotropic Laminated Beams, Journal of Reinforced Plastics and Composites, vol.20, issue.3, pp.255-272, 2001.
DOI : 10.1177/073168401772678283

S. Gottlieb, C. Shu, and E. Tadmor, Strong Stability-Preserving High-Order Time Discretization Methods, SIAM Review, vol.43, issue.1, pp.89-112, 2001.
DOI : 10.1137/S003614450036757X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. F. Graff, Wave Motion in Elastic Solids, 1975.

F. Gruttmann and W. Wagner, Shear correction factors in Timoshenko's beam theory for arbitrary shaped cross-sections, Computational Mechanics, vol.27, issue.3, pp.199-207, 2001.
DOI : 10.1007/s004660100239

M. Guo and X. Wang, Transport equations for a general class of evolution equations with random perturbations, Journal of Mathematical Physics, vol.40, issue.10, pp.4828-4858, 1999.
DOI : 10.1063/1.533003

S. M. Han, H. Benaroya, and T. Wei, DYNAMICS OF TRANSVERSELY VIBRATING BEAMS USING FOUR ENGINEERING THEORIES, Journal of Sound and Vibration, vol.225, issue.5, pp.935-988, 1999.
DOI : 10.1006/jsvi.1999.2257

P. Hardy, M. Ichchou, L. Jzquel, and D. Trentin, A hybrid local energy formulation for plates mid-frequency flexural vibrations, European Journal of Mechanics - A/Solids, vol.28, issue.1, pp.121-130, 2009.
DOI : 10.1016/j.euromechsol.2008.04.007

P. C. Herdic, B. H. Houston, M. H. Marcus, E. G. Williams, and A. M. Baz, The vibro-acoustic response and analysis of a full-scale aircraft fuselage section for interior noise reduction, The Journal of the Acoustical Society of America, vol.117, issue.6, pp.3667-3678, 2005.
DOI : 10.1121/1.1887125

J. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-Dependent Problems. Applied and computational mathematics, 2007.

J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms , Analysis, and Applications, 2007.
DOI : 10.1007/978-0-387-72067-8

F. Honarvar, E. Enjilela, and A. N. Sinclair, An alternative method for plotting dispersion curves, Ultrasonics, vol.49, issue.1, pp.15-18, 2009.
DOI : 10.1016/j.ultras.2008.07.002

F. Q. Hu, H. L. Atkins, and D. M. Bushnell, Eigensolution Analysis of the Discontinuous Galerkin Method with Non-uniform Grids?Part 1; One Space Dimension, 2001.

N. Huang, Theories of elastic slender curved rods, Zeitschrift fr Angewandte Mathematik und Physik, pp.1-19, 1973.
DOI : 10.1007/BF01593995

G. E. Hudson, Dispersion of Elastic Waves in Solid Circular Cylinders, Physical Review, vol.63, issue.1-2, pp.46-51, 1943.
DOI : 10.1103/PhysRev.63.46

J. R. Hutchinson, Shear Coefficients for Timoshenko Beam Theory, Journal of Applied Mechanics, vol.68, issue.1, pp.87-92, 2001.
DOI : 10.1115/1.1349417

G. Inquiété, Simulation Numérique de la Propagation des Ondes dans les Structures Composites Stratifiées, 2010.

S. Jin and D. Yin, Computational high frequency waves through curved interfaces via the Liouville equation and geometric theory of diffraction, Journal of Computational Physics, vol.227, issue.12, pp.6106-6139, 2008.
DOI : 10.1016/j.jcp.2008.02.029

R. K. Kapania and J. Li, On a geometrically exact curved/twisted beam theory under rigid cross-section assumption, Computational Mechanics, vol.30, issue.5-6, pp.428-443, 2003.
DOI : 10.1007/s00466-003-0421-8

H. Kuttruff, Room Acoustics, 1999.
DOI : 10.4324/9780203186237

A. Labuschagne, N. Van-rensburg, and A. Van-der-merwe, Comparison of linear beam theories, Mathematical and Computer Modelling, vol.49, issue.1-2, pp.20-30, 2009.
DOI : 10.1016/j.mcm.2008.06.006

R. S. Langley, A wave intensity technique for the analysis of high frequency vibrations, Journal of Sound and Vibration, vol.159, issue.3, pp.483-502, 1992.
DOI : 10.1016/0022-460X(92)90754-L

R. S. Langley and F. J. Fahy, High frequency structural vibration, Advanced Applications in Acoustics, Noise and Vibration, pp.490-530, 2004.

A. L. Bot, M. N. Ichchou, and L. Jezequel, Energy flow analysis for curved beams, The Journal of the Acoustical Society of America, vol.102, issue.2, pp.943-954, 1997.
DOI : 10.1121/1.419913

Y. , L. Guennec, and E. Savin, A transport model and numerical simulation of the highfrequency dynamics of three-dimensional beam trusses, The Journal of the Acoustical Society of America, vol.130, issue.6, pp.3706-3722, 2011.

M. Levinson, Further results of a new beam theory, Journal of Sound and Vibration, vol.77, issue.3, pp.440-444, 1981.
DOI : 10.1016/S0022-460X(81)80180-0

P. Lions and T. Paul, Sur les mesures de Wigner (On Wigner measures), Revista Matemática Iberoamericana, vol.9, pp.553-618, 1993.

O. I. Lobkis and R. L. Weaver, Anderson localization of ultrasound in plates: Further experimental results, The Journal of the Acoustical Society of America, vol.124, issue.6, pp.3528-3533, 2008.
DOI : 10.1121/1.2999345

A. Love, A Treatise on the Mathematical Theory of Elasticity, 1927.
URL : https://hal.archives-ouvertes.fr/hal-01307751

R. H. Lyon, Statistical Energy Analysis of Dynamical Systems : Theory and Applications, 1975.

R. H. Lyon and R. G. Dejong, Theory and Application of Statistical Energy Analysis, 1995.

R. H. Lyon and G. Maidanik, Power Flow between Linearly Coupled Oscillators, The Journal of the Acoustical Society of America, vol.34, issue.5, p.623, 1962.
DOI : 10.1121/1.1918177

B. R. Mace and E. Manconi, Wave motion and dispersion phenomena: Veering, locking and strong coupling effects, The Journal of the Acoustical Society of America, vol.131, issue.2, pp.1015-1028, 2012.
DOI : 10.1121/1.3672647

URL : http://hdl.handle.net/11381/2399530

H. Mechkour, The exact expressions for the roots of Rayleigh wave equation, Proceedings of The 2-nd International Colloquium of Mathematics in Engineering and Numerical Physics (MENP-2), pp.96-104, 2002.

T. R. Meeker and A. H. Meitzler, Guided wave propagation in elongated cylinders and plates Academic press, Principles and methods, volume 1A of Physical acoustics, pp.111-167, 1964.

J. Miklowitz, The Theory of Elastic Waves and Waveguides, Journal of Applied Mechanics, vol.46, issue.4, 1978.
DOI : 10.1115/1.3424709

C. J. Moening, Views of the world of pyrotechnic shock, Shock and Vibration Bulletin, vol.56, issue.3, p.28, 1986.

D. J. Nefske and S. H. Sung, Power Flow Finite Element Analysis of Dynamic Systems: Basic Theory and Application to Beams, Journal of Vibration Acoustics Stress and Reliability in Design, vol.111, issue.1, pp.94-100, 1989.
DOI : 10.1115/1.3269830

N. M. Newmark, A method of computation for structural dynamics, Journal of the Engineering Mechanics Division, vol.85, issue.3, pp.67-94, 1959.

R. Niclasen and H. Blackburn, Gauss and GaussLobatto element quadratures applied to the incompressible NavierStokes equations, Computational techniques and applications, 1998.

M. Onoe, H. D. Mcniven, and R. D. Mindlin, Dispersion of Axially Symmetric Waves in Elastic Rods, Journal of Applied Mechanics, vol.29, issue.4, pp.729-734, 1962.
DOI : 10.1115/1.3640661

P. Pai and M. J. Schulz, Shear correction factors and an energy-consistent beam theory, International Journal of Solids and Structures, vol.36, issue.10, pp.1523-1540, 1999.
DOI : 10.1016/S0020-7683(98)00050-X

Y. Pao and R. D. Mindlin, Dispersion of Flexural Waves in an Elastic, Circular Cylinder, Journal of Applied Mechanics, vol.27, issue.3, pp.513-520, 1960.
DOI : 10.1115/1.3644033

P. Papadopoulos, Introduction to the Finite Element Method. Lecture notes

G. C. Papanicolaou and L. V. Ryzhik, Waves and Transport, Hyperbolic Equations and Frequency Interactions, pp.305-382, 1999.

R. Pinnington and D. Lednik, TRANSIENT ENERGY FLOW BETWEEN TWO COUPLED BEAMS, Journal of Sound and Vibration, vol.189, issue.2, pp.265-287, 1996.
DOI : 10.1006/jsvi.1996.0019

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes: The Art of Scientific Computing, 2007.

J. Reddy, C. Wang, G. Lim, and K. Ng, Bending solutions of Levinson beams and plates in terms of the classical theories, International Journal of Solids and Structures, vol.38, issue.26-27, pp.4701-4720, 2001.
DOI : 10.1016/S0020-7683(00)00298-5

M. Redwood and J. Lamb, On the Propagation of High Frequency Compressional Waves in Isotropic Cylinders, Proceedings of the Physical Society, p.136, 1957.
DOI : 10.1088/0370-1301/70/1/319

J. Renton, Generalized beam theory applied to shear stiffness, International Journal of Solids and Structures, vol.27, issue.15, pp.1955-1967, 1991.
DOI : 10.1016/0020-7683(91)90188-L

O. Runborg, Mathematical models and numerical methods for high frequency waves, Commun Comput Phys, vol.2, issue.5, pp.827-880, 2007.

S. Rybak, Waves in a plate containing random inhomogeneities, Soviet PhysicsAcoustics, vol.17, issue.3, p.345349, 1972.

Z. Rychter, A simple and accurate beam theory, Acta Mechanica, vol.73, issue.1-4, pp.57-62, 1988.
DOI : 10.2514/3.7938

E. Savin, Midfrequency Vibrations of a Complex Structure: Experiments and Comparison with Numerical Simulations, AIAA Journal, vol.40, issue.9, pp.1876-1884, 2002.
DOI : 10.2514/2.1867

E. Savin, A transport model for high-frequency vibrational power flows in coupled heterogeneous structures, Interaction and multiscale mechanics, vol.1, issue.1, pp.53-81, 2007.
DOI : 10.12989/imm.2008.1.1.053

E. Savin, Diffusion regime for high-frequency vibrations of randomly heterogeneous structures, The Journal of the Acoustical Society of America, vol.124, issue.6, pp.3507-3520, 2008.
DOI : 10.1121/1.3003088

E. Savin, High-frequency dynamics of heterogeneous slender structures, Journal of Sound and Vibration, vol.332, issue.10, 2013.
DOI : 10.1016/j.jsv.2012.10.009

P. Shorter and R. Langley, Vibro-acoustic analysis of complex systems, Journal of Sound and Vibration, vol.288, issue.3, pp.669-699, 2005.
DOI : 10.1016/j.jsv.2005.07.010

C. Soize, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Engineering Mechanics, vol.15, issue.3, pp.277-294, 2000.
DOI : 10.1016/S0266-8920(99)00028-4

URL : https://hal.archives-ouvertes.fr/hal-00686293

C. R. Steele, Asymptotic analysis of stress waves in inhomogeneous elastic solids., AIAA Journal, vol.7, issue.5, pp.896-902, 1969.
DOI : 10.2514/3.5242

C. R. Steele, Application of the WKB Method in Solid Mechanics, volume 3 of Mechanics Today, 1976.

N. Stephen, Considerations on second order beam theories, International Journal of Solids and Structures, vol.17, issue.3, pp.325-333, 1981.
DOI : 10.1016/0020-7683(81)90066-4

N. G. Stephen and S. Puchegger, On the valid frequency range of Timoshenko beam theory, Journal of Sound and Vibration, vol.297, issue.3-5, pp.1082-1087, 2006.
DOI : 10.1016/j.jsv.2006.04.020

F. Sui, Theoretical Study on Time-Varying Vibroacoustic Energy at High Frequency, 2004.

Q. A. Ta, Modélisation des Propriétés Mécaniques Anisotropes Aléatoires et Impact sur la Propagation des OndesÉlastiquesOndes´OndesÉlastiques, 2011.

G. Tanner, Dynamical energy analysis???Determining wave energy distributions in vibro-acoustical structures in the high-frequency regime, Journal of Sound and Vibration, vol.320, issue.4-5, pp.1023-1038, 2009.
DOI : 10.1016/j.jsv.2008.08.032

S. P. Timoshenko, LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine Series 6, vol.41, issue.245, pp.744-746, 1921.
DOI : 10.1080/14786442108636264

A. Tornberg, Interface Tracking Methods with Application to Multiphase Flows, Royal Institute of Technology, 2000.

F. Treyssède, Elastic waves in helical waveguides, Wave Motion, vol.45, issue.4, pp.457-470, 2008.
DOI : 10.1016/j.wavemoti.2007.09.004

H. Tsay and H. B. Kingsbury, Vibrations of rods with general space curvature, Journal of Sound and Vibration, vol.124, issue.3, pp.539-554, 1988.
DOI : 10.1016/S0022-460X(88)81394-4

Y. Tso and C. Norwood, Vibratory power transmission through three-dimensional beam junctions, Journal of Sound and Vibration, vol.185, issue.4, pp.595-607, 1995.
DOI : 10.1006/jsvi.1995.0403

J. A. Turner and R. L. Weaver, Diffuse energy propagation on heterogeneous plates: Structural acoustics radiative transfer theory, The Journal of the Acoustical Society of America, vol.100, issue.6, pp.3686-3695, 1996.
DOI : 10.1121/1.417231

URL : http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1006&context=engineeringmechanicsfacpub

N. F. Van-rensburg and A. J. Van-der-merwe, Natural frequencies and modes of a Timoshenko beam, Wave Motion, vol.44, issue.1, pp.58-69, 2006.
DOI : 10.1016/j.wavemoti.2006.06.008

K. Van-wijk, M. Haney, and J. A. Scales, 1D energy transport in a strongly scattering laboratory model, Physical Review E, vol.69, issue.3, p.36611, 2004.
DOI : 10.1103/PhysRevE.69.036611

]. V. Cerven´ycerven´y, Seismic Ray Theory, 2001.

J. Virieux, -wave propagation in heterogeneous media: Velocity???stress finite???difference method, GEOPHYSICS, vol.49, issue.11, pp.1933-1942, 1984.
DOI : 10.1190/1.1441605

URL : https://hal.archives-ouvertes.fr/hal-00408480

E. Wester and B. Mace, Wave component analysis of energy flow in complex structures ??? Part I: a deterministic model, Journal of Sound and Vibration, vol.285, issue.1-2, pp.209-227, 2005.
DOI : 10.1016/j.jsv.2004.08.025

E. Wester and B. Mace, Wave component analysis of energy flow in complex structures???Part II: ensemble statistics, Journal of Sound and Vibration, vol.285, issue.1-2, pp.229-250, 2005.
DOI : 10.1016/j.jsv.2004.08.026

E. Wester and B. Mace, Wave component analysis of energy flow in complex structures ??? Part III: two coupled plates, Journal of Sound and Vibration, vol.285, issue.1-2, pp.251-265, 2005.
DOI : 10.1016/j.jsv.2004.08.027

A. Yu, M. Fang, and X. Ma, Theoretical research on naturally curved and twisted beams under complicated loads, Computers & Structures, vol.80, issue.32, pp.2529-2536, 2002.
DOI : 10.1016/S0045-7949(02)00329-2

J. J. Zemanek, An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder, The Journal of the Acoustical Society of America, vol.51, issue.1B, pp.265-283, 1972.
DOI : 10.1121/1.1912838

O. Zienkiewicz and R. Taylor, The Finite Element Method, 1994.