Transient dynamics of beam trusses under impulse loads

Abstract : This research is dedicated to the simulation of the transient response of beam trusses under impulse loads. The latter lead to the propagation of high-frequency waves in such built up structures. In the aerospace industry, that phenomenon may penalize the functioning of the structures or the equipments attached to them on account of the vibrational energy carried by the waves. It is also observed experimentally that high-frequency wave propagation evolves into a diffusive vibrational state at late times. The goal of this study is then to develop a robust model of high-frequency wave propagation within three-dimensional beam trusses in order to be able to recover, for example, this diffusion regime. On account of the small wavelengths and the high modal density, the modelling of high-frequency wave propagation is hardly feasible by classical finite elements or other methods describing the displacement fields directly. Thus, an approach dealing with the evolution of an estimator of the energy density of each propagating mode in a Timoshenko beam has been used. It provides information on the local behavior of the structures while avoiding some limitations related to the small wavelengths of high-frequency waves. After a comparison between some reduced-order beam kinematics and the Lamb model of wave propagation in a circular waveguide, the Timoshenko kinematics has been selected for the mechanical modelling of the beams. It may be shown that the energy densities of the propagating modes in a Timoshenko beam obey transport equations. Two groups of energy modes have been isolated: the longitudinal group that gathers the compressional and the bending energetic modes, and the transverse group that gathers the shear and torsional energetic modes. The reflection/transmission phenomena taking place at the junctions between beams have also been investigated. For this purpose, the power flow reflection/transmission operators have been derived from the continuity of the displacements and efforts at the junctions. Some characteristic features of a high-frequency behavior at beam junctions have been highlighted such as the decoupling between the rotational and translational motions. It is also observed that the energy densities are discontinuous at the junctions on account of the power flow reflection/transmission phenomena. Thus a discontinuous finite element method has been implemented, in order to solve the transport equations they satisfy. The numerical scheme has to be weakly dissipative and dispersive in order to exhibit the aforementioned diffusive regime arising at late times. That is the reason why spectral-like approximation functions for spatial discretization, and strong-stability preserving Runge-Kutta schemes for time integration have been used. Numerical simulations give satisfactory results because they indeed highlight the outbreak of such a diffusion state. The latter is characterized by the following: (i) the spatial spread of the energy over the truss, and (ii) the equipartition of the energy between the different modes. The last part of the thesis has been devoted to the development of a time reversal processing, that could be useful for future works on structural health monitoring of complex, multi-bay trusses.
Document type :
Liste complète des métadonnées

Cited literature [112 references]  Display  Hide  Download
Contributor : Abes Star <>
Submitted on : Tuesday, September 24, 2013 - 10:12:14 AM
Last modification on : Friday, April 6, 2018 - 3:46:38 AM
Document(s) archivé(s) le : Wednesday, December 25, 2013 - 4:32:22 AM


Version validated by the jury (STAR)


  • HAL Id : tel-00865191, version 1



Yves Le Guennec. Transient dynamics of beam trusses under impulse loads. Other. Ecole Centrale Paris, 2013. English. ⟨NNT : 2013ECAP0016⟩. ⟨tel-00865191⟩



Record views


Files downloads