H. Bahouri, J. Chemin, and R. Danchin, Fourier analysis and nonlinear partial differential equations. T. 343, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00732127

M. E. Bogovskii, « Solutions of some problems of vector analysis, associated with the operators div and grad ». Dans : Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, Novosibirsk : Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat, issue.1, pp.5-40, 1980.

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier???Stokes equations for viscous compressible and heat conducting fluids, Journal de Math??matiques Pures et Appliqu??es, vol.87, issue.1, 2007.
DOI : 10.1016/j.matpur.2006.11.001

URL : https://hal.archives-ouvertes.fr/hal-00385850

J. B?ezina and A. Novotný, « On weak solutions of steady Navier-Stokes equations for monatomic gas, Comment. Math. Univ. Carolin, vol.494, pp.611-632, 2008.

H. Brezis, Analyse fonctionnelle Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree]. Théorie et applications, pp.234-236, 1983.

J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani, and A. Unterreiter, « Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math, vol.1331, pp.1-82, 2001.

R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Transactions of the American Mathematical Society, vol.212, pp.315-331, 1975.
DOI : 10.1090/S0002-9947-1975-0380244-8

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal, 1979.
DOI : 10.1007/BF00250353

R. «. Danchin, Global existence in critical spaces for flows of compressible viscous and heatconductive gases, Arch. Ration. Mech. Anal, vol.1601, 2001.

R. J. Diperna and P. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, vol.307, issue.3, 1989.
DOI : 10.1007/BF01393835

B. Ducomet and E. Feireisl, The Equations of Magnetohydrodynamics: On the Interaction Between Matter and Radiation in the Evolution of Gaseous Stars, Communications in Mathematical Physics, vol.36, issue.6, 2006.
DOI : 10.1007/s00220-006-0052-y

S. Eliezer, A. Ghatak, H. Hora, and E. Teller, « An introduction to equations of state ? Theory and applications, Nuclear Fusion, vol.2612, p.1749, 1986.

L. Eskauriaza, G. A. Serëgin, and V. Shverak, -solutions of the Navier-Stokes equations and backward uniqueness, Russian Mathematical Surveys, vol.58, issue.2, 2003.
DOI : 10.1070/RM2003v058n02ABEH000609

C. Lawrence and . Evans, Partial differential equations. T. 19. Graduate Studies in Mathematics, pp.662-662, 1998.

R. Eymard, T. Gallouët, R. Herbin, and J. C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case, Mathematics of Computation, vol.79, issue.270, pp.649-675, 2010.
DOI : 10.1090/S0025-5718-09-02310-2

URL : https://hal.archives-ouvertes.fr/hal-00359140

E. Feireisl, Dynamics of viscous compressible fluids. T. 26. Oxford Lecture Series in Mathematics and its Applications, pp.212-212, 2004.

E. Feireisl, B. J. Jin, and A. Novotný, Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier???Stokes System, Journal of Mathematical Fluid Mechanics, vol.31, issue.4???6, 2012.
DOI : 10.1007/s00021-011-0091-9

URL : https://hal.archives-ouvertes.fr/hal-01284066

E. Feireisl and A. Novotný, Singular limits in thermodynamics of viscous fluids Advances in Mathematical Fluid Mechanics, 2009.

E. Feireisl and A. Novotný, Weak???Strong Uniqueness Property for the Full Navier???Stokes???Fourier System, Archive for Rational Mechanics and Analysis, vol.9, issue.2, pp.683-706, 2012.
DOI : 10.1007/s00205-011-0490-3

URL : https://hal.archives-ouvertes.fr/hal-01284063

E. Feireisl, A. Novotný, and H. Petzeltová, On the Existence of Globally Defined Weak Solutions to the Navier???Stokes Equations, Journal of Mathematical Fluid Mechanics, vol.3, issue.4, 2001.
DOI : 10.1007/PL00000976

URL : https://hal.archives-ouvertes.fr/hal-01283028

E. Feireisl, A. Novotný, and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana University Mathematics Journal, vol.60, issue.2, pp.611-631, 2011.
DOI : 10.1512/iumj.2011.60.4406

URL : https://hal.archives-ouvertes.fr/hal-01284070

J. Frehse, M. Steinhauer, and W. Weigant, The Dirichlet problem for steady viscous compressible flow in three dimensions, Journal de Math??matiques Pures et Appliqu??es, vol.97, issue.2, 2012.
DOI : 10.1016/j.matpur.2009.06.005

J. Frehse, M. Steinhauer, and W. Weigant, The Dirichlet Problem for Viscous Compressible Isothermal Navier???Stokes Equations in Two Dimensions, Archive for Rational Mechanics and Analysis, vol.7, issue.4, pp.1-12, 2010.
DOI : 10.1007/s00205-010-0338-2

J. Frehse, S. Goj, and M. Steinhauer, Lp-Estimates for the Navier?Stokes Equations for Steady Compressible Flow, manuscripta mathematica, vol.37, issue.3, pp.265-275, 2005.
DOI : 10.1007/s00229-004-0513-6

G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I. T. 38. Springer Tracts in Natural Philosophy. Linearized steady problems, pp.450-450, 1994.

T. Gallouët, R. Herbin, and J. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case, Mathematics of Computation, vol.78, issue.267, pp.1333-1352, 2009.
DOI : 10.1090/S0025-5718-09-02216-9

T. Gallouët, L. Gastaldo, R. Herbin, and J. Latché, An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.2, 2008.
DOI : 10.1051/m2an:2008005

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, pp.513-516, 1983.

B. Haspot, Existence of Global Weak Solution for Compressible Fluid Models of Korteweg Type, Math. Fluid Mech. 13, pp.21-30, 2011.
DOI : 10.1007/s00021-009-0013-2

B. «. Haspot, Existence of global weak solutions for compressible fluid models with a capillary tensor for discontinuous interfaces, Differential Integral Equations, pp.10-899, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00693015

D. Hoff, « Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids ». Dans : Arch. Rational Mech, Anal, vol.1394, 1997.

D. Hoff, Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions, Communications on Pure and Applied Mathematics, vol.120, issue.11, 2002.
DOI : 10.1002/cpa.10046

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Archive for Rational Mechanics and Analysis, vol.48, issue.1, 1995.
DOI : 10.1007/BF00390346

D. Hoff and M. M. Santos, Lagrangean Structure and Propagation of Singularities in Multidimensional Compressible Flow, Archive for Rational Mechanics and Analysis, vol.48, issue.3, pp.509-543, 2008.
DOI : 10.1007/s00205-007-0099-8

D. Hoff and D. Serre, The Failure of Continuous Dependence on Initial data for the Navier???Stokes equations of Compressible Flow, SIAM Journal on Applied Mathematics, vol.51, issue.4, 1991.
DOI : 10.1137/0151043

D. Jesslé, B. J. Jin, and A. Novotný, Navier--Stokes--Fourier System on Unbounded Domains: Weak Solutions, Relative Entropies, Weak-Strong Uniqueness, SIAM Journal on Mathematical Analysis, vol.45, issue.3, pp.1907-1951, 2013.
DOI : 10.1137/120874576

D. Jesslé and A. Novotný, Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regime, Journal de Math??matiques Pures et Appliqu??es, vol.99, issue.3, pp.280-296, 2013.
DOI : 10.1016/j.matpur.2012.06.016

S. Jiang and C. Zhou, « On the existence of weak solutions to the three-dimensional steady compressible Navier-Stokes equations in bounded domains

S. Jiang and C. Zhou, Existence of weak solutions to the three-dimensional steady compressible Navier???Stokes equations, Ann. Inst. H. Poincaré Anal, pp.485-498, 2011.
DOI : 10.1016/j.anihpc.2011.02.008

K. Trygve and . Karper, « A convergent FEM-DG method for the compressible Navier?Stokes equations, pp.1-70, 2012.

J. «. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace ». Dans : Acta Math, 1934.
DOI : 10.1007/bf02547354

P. Lions, Mathematical topics in fluid mechanics, T. 10. Oxford Lecture Series in Mathematics and its Applications. Compressible models, pp.348-348, 1998.

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Nonlinear partial differential equations in applied science, pp.153-170, 1982.
DOI : 10.1007/BF01214738

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, Journal of Mathematics of Kyoto University, vol.20, issue.1, pp.67-104, 1980.
DOI : 10.1215/kjm/1250522322

A. Mellet and A. Vasseur, On the Barotropic Compressible Navier???Stokes Equations, Communications in Partial Differential Equations, vol.36, issue.3, pp.1-3, 2007.
DOI : 10.3792/pjaa.55.337

B. Piotr, M. Mucha, and . Pokorný, « On the steady compressible Navier-Stokes-Fourier system, Comm. Math. Phys, vol.2881, pp.349-377, 2009.

S. Novo and A. Novotný, On the existence of weak solutions to the steady compressible Navier-Stokes equations when the density is not square integrable, Journal of Mathematics of Kyoto University, vol.42, issue.3, pp.531-550, 2002.
DOI : 10.1215/kjm/1250283849

A. Novotný and M. Pokorný, Steady compressible Navier???Stokes???Fourier system for monoatomic gas and its generalizations, Journal of Differential Equations, vol.251, issue.2, pp.270-315, 2011.
DOI : 10.1016/j.jde.2011.04.008

A. Novotný and I. Stra?kraba, Introduction to the mathematical theory of compressible flow. T. 27. Oxford Lecture Series in Mathematics and its Applications, pp.506-506, 2004.

A. Novotný and M. Pokorný, Weak and Variational Solutions to Steady Equations for Compressible Heat Conducting Fluids, SIAM Journal on Mathematical Analysis, vol.43, issue.3, 2011.
DOI : 10.1137/100799393

A. Novotný and M. Pokorný, Weak solutions for steady compressible Navier-Stokes-Fourier system in two space dimensions, Applications of Mathematics, vol.56, issue.1, pp.10492-10503, 2011.
DOI : 10.1007/s10492-011-0013-4

G. Planas and F. Sueur, On the ???viscous incompressible fluid+rigid body??? system with Navier conditions, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.31, issue.1, 2012.
DOI : 10.1016/j.anihpc.2013.01.004

P. I. Plotnikov, . Zh, and . Sokolovski, Stationary solutions of Navier-Stokes equations for diatomic gases, Russian Mathematical Surveys, vol.62, issue.3, 2007.
DOI : 10.1070/RM2007v062n03ABEH004414

URL : https://hal.archives-ouvertes.fr/hal-00153833

P. I. Plotnikov and J. Sokolowski, Concentrations of Solutions to Time-Discretizied Compressible Navier-Stokes Equations, Communications in Mathematical Physics, vol.135, issue.3, 2005.
DOI : 10.1007/s00220-005-1358-x

URL : https://hal.archives-ouvertes.fr/inria-00070526

P. I. Plotnikov and J. Sokolowski, On Compactness, Domain Dependence and Existence of Steady State Solutions to Compressible Isothermal Navier???Stokes Equations, Journal of Mathematical Fluid Mechanics, vol.7, issue.4, pp.21-25, 2005.
DOI : 10.1007/s00021-004-0134-6

URL : https://hal.archives-ouvertes.fr/hal-00101957

W. Rudin, Real and complex analysis, p.412, 1966.

L. Saint-raymond, Hydrodynamic limits: some improvements of the relative entropy method, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.3, pp.705-744, 2009.
DOI : 10.1016/j.anihpc.2008.01.001

J. «. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Archive for Rational Mechanics and Analysis, vol.9, issue.1, pp.187-195, 1962.
DOI : 10.1007/BF00253344

V. A. Solonnikov and V. E. Shchadilov, « A certain boundary value problem for the stationary system of Navier-Stokes equations, VA Steklova, vol.125, pp.196-210, 1973.

Y. Sun, C. Wang, Z. «. Zhang, and . Beale-kato, A Beale???Kato???Majda Criterion for Three Dimensional Compressible Viscous Heat-Conductive Flows, Archive for Rational Mechanics and Analysis, vol.51, issue.2, pp.205-216, 2011.
DOI : 10.1007/s00205-011-0407-1

T. Takahashi and M. Tucsnak, Global Strong Solutions for the Two-Dimensional Motion of an Infinite Cylinder in a Viscous Fluid, Journal of Mathematical Fluid Mechanics, vol.6, issue.1, pp.53-77, 2004.
DOI : 10.1007/s00021-003-0083-4

URL : https://hal.archives-ouvertes.fr/hal-00141195

L. Tartar, Compensated compactness and applications to partial differential equations ». Dans : Nonlinear analysis and mechanics: Heriot-Watt Symposium, Res. Notes in Math, pp.136-212, 1979.

S. «. Ukai, The incompressible limit and the initial layer of the compressible Euler equation, Journal of Mathematics of Kyoto University, vol.26, issue.2, pp.323-331, 1986.
DOI : 10.1215/kjm/1250520925

V. A. Va?-igant and A. V. Kazhikhov, « On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid, Sibirsk. Mat. Zh, vol.36, issue.6, pp.1283-1316, 1995.

A. Valli and W. M. Zajaczkowski, Navier-stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case, Communications in Mathematical Physics, vol.16, issue.2, pp.259-296, 1986.
DOI : 10.1007/BF01206939

S. Wang and S. Jiang, « The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations ». Dans : Comm. Partial Differential Equations 31, pp.4-6, 2006.