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Abstract

This thesis investigates the problem of link-level anomaly detection and localization

using end-to-end path monitoring. The aim is to come up with cost-efficient, accurate

and fast schemes for link-level network anomaly detection and localization. The anomaly

detection aims at detecting the occurrence of anomalies in the network (e.g., excessive

delays, high loss rate, infrastructure failures, etc.) and identifying a set of links suspect

to be the source of the anomaly. The anomaly localization is triggered upon detecting an

anomaly. It aims at reducing the set of suspect links identified by the detection process to

the anomalous link(s).

It has been established that, for detecting all potential link-level anomalies, a set of

paths that cover all links of the network 1 must be monitored, whereas for localizing all

potential link-level anomalies, a set of paths that can distinguish between all links of the

network pairwise 2 must be monitored. Either end-node of each path monitored must be

equipped with a monitoring device.

Most existing link-level anomaly detection and localization schemes are two-step. The

first step selects a minimal set of monitor locations that can detect/localize all potential

link-level anomalies. The second step selects a minimal set of monitoring paths between the

selected monitor locations such that all links of the network are covered/distinguishable

pairwise. However, such step-wise schemes do not consider the interplay between the conflic-

ting optimization objectives of the two steps, which results in sub-optimal consumption of

the network resources and biased monitoring measurements. One of the objectives of this

thesis is to evaluate and reduce this interplay. To this end, one-step anomaly detection

and localization schemes that select monitor locations and paths that are to be monitored

1. A link is said to be covered if it is traversed by at least one monitoring path

2. Two links are said to be distinguishable if we are able to decide which one is anomalous when an

anomaly occurs on one of them
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ABSTRACT

jointly, thereby achieving a good trade-off between the number and locations of monitoring

devices and the quality of monitoring paths, are proposed

Furthermore, we demonstrate that the already established condition for link-level ano-

maly localization is sufficient but not necessary. A necessary and sufficient condition that

minimizes the localization cost drastically is established.

The problems are formulated as integer linear programs and are demonstrated to be

NP-Hard. Scalable and near-optimal heuristic algorithms for anomaly detection and ano-

maly localization are proposed. The effectiveness and the correctness of the proposed

schemes and algorithms are verified through theoretical analysis and extensive simulations.

Key Words : Network monitoring, anomaly detection, anomaly localization, end-to-

end path monitoring, link-level network anomalies
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Résumé en français

Cette thèse étudie le problème de la détection et de localisation des anomalies au niveau

des liens en utilisant un monitorage des chemins de bout-en-bout. L’objectif est de trouver

des techniques de détection et de localisation des anomalies au niveau des liens qui soient

à faible coût, précises et rapides. La détection d’anomalies vise à détecter l’apparition

d’anomalies dans le réseau (par exemple des retards excessifs, un taux de perte élevé, des

pannes d’infrastructure, etc) et d’identifier un ensemble de liens soupçonnés d’être la source

de cette anomalie. La localisation des anomalies est déclenchée en cas de détection d’une

anomalie. Elle vise à réduire l’ensemble des liens suspects identifiés par le processus de

détection d’anomalies au(x) lien(s) défaillant(s).

Il a été établi que pour détecter toutes les anomalies possibles au niveau des liens d’un

réseau, un ensemble de chemins qui couvrent tous les liens du réseau 3 doit être monitoré,

alors que pour localiser toutes les anomalies potentielles au niveau des liens d’un réseau, un

ensemble de chemins qui peuvent distinguer entre tous les liens du réseau paire par paire

4 doivent être monitorés. Chaque nœud d’extrémité de chaque chemin monitoré doit être

équipé d’un dispositif de monitorage.

La plupart des techniques de détection et de localisation des anomalies au niveau des

liens qui existent dans la littérature calculent les solutions, c-à-d l’ensemble des chemins à

monitorer et les emplacements des dispositifs de monitorage, en deux étapes. La première

étape sélectionne un ensemble minimal d’emplacements des dispositifs de monitorage qui

permet de détecter/localiser toutes les anomalies possibles. La deuxième étape sélectionne

un ensemble minimal de chemins de monitorage entre les emplacements sélectionnés de telle

sorte que tous les liens du réseau soient couverts/distinguables paire par paire. Toutefois,

ces techniques ignorent l’interaction entre les objectifs d’optimisation contradictoires des

deux étapes, ce qui entraîne une utilisation sous-optimale des ressources du réseau et des

mesures de monitorage biaisées. L’un des objectifs de cette thèse est d’évaluer et de réduire

cette interaction.À cette fin, nous proposons des techniques de détection et de localisation
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RÉSUMÉ EN FRANÇAIS

d’anomalies au niveau des liens qui sélectionnent les emplacements des moniteurs et les

chemins qui doivent être monitorés conjointement en une seule étape, ce qui permet de

réaliser un bon compromis entre le nombre et l’emplacement des moniteurs et la qualité

des chemins de monitorage.

Par ailleurs, nous démontrons que la condition pré-établie pour la localisation des ano-

malies au niveau des liens est suffisante mais pas nécessaire. Une condition nécessaire et

suffisante qui minimise le coût de localisation considérablement est établie.

Les deux problèmes sont formulés sous forme d’un programme linéaire en nombres

entiers et il est démontré qu’ils sont NP-durs. Des algorithmes heuristiques scalables et

efficaces sont alors proposés. L’efficacité et l’exactitude des technique et des algorithmes

proposés sont vérifées par le biais d’une analyse théorique et des simulations.

Mots Clès : Monitorage des réseaux, détection des anomalies, localisation des anoma-

lies, monitorage des chemins de bout-en-bout.

Introduction

L’Internet a connu une transition d’un réseau de transmission des données simples ser-

vant un nombre limité d’utilisateurs à un réseau multi-service qui prend en charge diverses

applications multimédias aux exigences élevées de qualité de service et servant un nombre

fortement croissant d’utilisateurs. Cela est dû à l’évolution rapide des équipements du ré-

seau de plus en plus puissants et accessibles (par exemple, supports de transmission à haute

capacité, haute vitesse de commutation, équipements de stockage à grande capacité, etc.).

Par conséquence, la nécessité d’outils de surveillance des réseaux efficaces qui garantissent

une performance désirées pour les réseaux et fournissent des garanties de qualité de ser-

vice a augmenté. Un grand nombre de techniques de surveillance et d’outils de mesure des

réseaux ont été proposés dans la littérature.

Les plus simples systèmes de surveillance utilisent d’outils réseau existants tels que

ping et traceroute [18][23]. Ils sont qualifiés comme simples, car ils ne nécessitent aucune

modification dans le réseau. Cependant, leur application est limitée à la détection et la

localisation des défaillances d’infrastructure et de l’indisponibilité des chemins [27]. Des

système de monitorage qui fournissent une information plus détaillée sur la performance

des réseaux ont été proposés. Ils peuvent être classés en deux catégories : des systèmes

de surveillance individuelle (par exemple les systèmes de surveillance basés sur le proto-

col SNMP (Simple Network Management Protocol) [7], RMON [28], Netflow [8]), et des
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RÉSUMÉ EN FRANÇAIS

systèmes de surveillance de bout-en-bout (par exemple [14] [24] [26] [9] [10] [11] [17] [16]

[15][21] [20] [19] [29] [1] [6] [22] [2]).

Les systèmes de surveillance individuelle reposent sur l’idée d’équiper chaque équipe-

ments réseau par un agent de surveillance qui recueille des statistiques sur les performances

du périphérique et de ses liens incidents en observant le trafic réseau qui le traverse. Les

statistiques collectées individuellement sont alors exportées vers une entité de gestion et

de surveillance du réseau chargé d’analyser les mesures. Les problèmes majeurs de ces

systèmes est le coût de l’infrastructure de surveillance qui peut être très élevés quand il

s’agit des réseaux de grandes tailles. En outre, l’exportation des statistiques vers l’entité

de gestion et de surveillance du réseau peut générer une lourde charge sur le réseau. La

surveillance de bout-en-bout est une solution intuitive à ces problèmes. Cela consiste à

déduire les performances internes du réseau à partir des mesures de bout-en-bout, ce qui

nécessite de déployer moins des dispositifs de surveillance (appelé moniteurs) dans le réseau

et aussi réduit la surcharge de la surveillance.

Il existe une autre classification des systèmes de surveillance : les systèmes de sur-

veillance passive et les systèmes de surveillance active. La surveillance passive déduit la

performance du réseau par la surveillance du trafic réseau existant. Il existe deux approches

pour effectuer ce type de surveillance passive :

– Surveillance à deux points : cette approche déploie deux moniteurs au niveau des

nœuds d’entrée et de sortie de chaque flux surveillés. Les mesures de performance

sont déduites en comparant les mesures effectuées au niveau des moniteurs d’entrée et

de sortie. Ceci nécessite que les moniteurs soient synchronisés et que tous les paquets

les traversant puissent être identifiés. Toutefois, le processus d’identification pourrait

conduire à un sérieux problème de passage à l’échelle lorsque le volume de trafic

traversant les moniteurs est important.

– Surveillance à un point : Cette approche nécessite un seul moniteur pour surveiller

un flux. Par exemple, elle exploite les accusés de réception TCP pour déduire des

mesures de performance (par exemple le taux de perte, RTT entre le moniteur et le

générateur du trafic) entre le point où le moniteur est déployé et le générateur du

flux TCP surveillé. Il est clair que l’application de cette approche se limite aux flux

échangés au sein des connexions où il y a des messages de contrôle qui circulent en

sans inverse des données.

La surveillance active déduit la performance du réseau en effectuant des mesures sur

des flux de surveillance spécifiquement générés et injectés dans le réseau par les moniteurs
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RÉSUMÉ EN FRANÇAIS

pour émuler les flux existants. La principale difficulté de la surveillance active est de faire

en sorte que, sans provoquer des interférences avec les services du réseau, les flux injectés

expérimentent les mêmes conditions que les flux du trafic réel afin d’obtenir des mesures

fidéles.

Bien que les deux approches de surveillances ont leurs propres inconvénients, la sur-

veillance active présente deux avantages importants par rapport à la surveillance passive.

Le premier est qu’elle préserve la confidentialité pour les services traversant le réseau. En

effet, les mesures ne sont pas fait sur des flux réels mais plutôt sur des flux d’émulation. La

deuxième est qu’il est possible, en utilisant la surveillance active, d’effectuer des mesures

quand il n’y a pas des flux traversant le réseau. Par exemple, un fournisseur de services

peut avoir besoin de vérifier la disponibilité et les caractéristiques d’un chemin précédem-

ment non utilisé avant qu’il n’y injecte des services, ce qui n’est pas faisable en utilisant la

surveillance passive.

Le problème de surveillance de bout-en-bout, active et passive, a été largement étudié

dans la littérature. En dépit de leurs divergences en termes de paramètres mesurés et la

méthode d’acquisition des mesures, tous les système de surveillance proposés partagent un

objectif commun important : garantir les performances souhaitée, tout en minimisant le

coût de surveillance en termes de coûts d’infrastructure et surcharge. L’objectif de cette

thèse est de proposer une technique de surveillance des réseaux de bout-en-bout qui permet

d’atteindre cet objectif. Nous notons que le problème de surveillance d’anomalies au niveau

des nœuds se réduit à un problème de surveillance d’anomalies au niveau des liens. En effet,

un nœuds défaillant rend tous les liens qui l’entourent défaillants.

Les techniques de surveillance de bout-en-bout

Les techniques de surveillance de bout-en-bout peuvent être classées en deux catégories :

surveillance analogique et surveillance binaire [22].

– Surveillance analogique : elle motivée par l’efficacité des communications multicast

en termes d’économie en bande passante, les premières techniques de surveillance de

bout-en-bout utilise des sondes d’émulation envoyées en multicast pour inférer les

caractéristiques internes du réseau (par exemple, le taux de perte au niveau des liens

constituent l’arbre multicast, la distribution de délai, les goulots d’étranglement

de la bande passante, etc.) e.g., [3] [14] [26] [24] [4] [25]. Cette technique consiste

principalement à corréler les différentes copies des paquets multicast observés au
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RÉSUMÉ EN FRANÇAIS

niveau des récepteurs multicast pour en déduire les performances des liens de l’arbre

multicast.

En dépit de ses potentiels avantages, les techniques de surveillance basés sur la com-

munication multicast ne peuvent pas être largement appliquées. En effet, actuelle-

ment, le multicast n’est que modestement déployé. Plusieurs travaux de recherche

proposent des techniques de surveillance utilisant une communication unicast qui

émulent les techniques basées sur le multicast [9], [10] [11], [17], [16], [5]. L’idée

consiste à envoyer deux paquets étroitement espacés dans le temps d’un serveur à un

ensemble de récepteurs dont les chemins vers le serveur partagent un ensemble des

liens. Les paquets sondes issues de la même source et ayant les mêmes caractéristiques

sont vraiment susceptibles de subir les mêmes performances sur les liens partagés.

Cette corrélation est exploitée de la même manière que les techniques basées sur le

multicast pour inférer les performances internes du réseau.

– Surveillance binaire : cette technique de surveillance a été largement largement

adoptée. Elle consiste à identifier les déviations de la performance du réseau par

rapport à un niveau donné de performance plutôt que d’estimer des mesures de

performance exactes. Cette technique repose sur l’hypothèse que les performances

au niveau des liens sont séparables, ce qui implique qu’un chemin souffre d’une

mauvaise performance si et seulement si au moins un des liens qui le constituent

souffre d’une mauvaise performance [15]. Ainsi, l’identification des anomalies de

performance peut être fait en identifiant les chemins qui ne respectent pas les seuils

de performance. Plus précisément, selon [15], il suffit de surveiller un ensemble de

chemins qui couvrent tous les liens du réseau pour détecter toutes les anomalies

qui pourraient affecter les liens du réseau. Des chemins additionnels doivent être

surveillés afin de localiser la (les) source(s) de l’anomalie.

De nombreux travaux de recherche ont exploité cette propriété de séparabilité de

performance pour mettre au point des technique de détection et de localisation des

anomalies au niveau des liens [21][20][19][29], [1][6].

Nous allons donc par la suite décrire les principales techniques utilisées lors de la phase

de détection d’anomalie et celles de la phase de localisation d’anomalie.
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Détection des anomalies au niveau des liens

Le but de la phase de détection d’anomalies au niveau des liens est de détecter toute

dégradation des performances ou défaillances d’infrastructures qui pourraient affecter les

liens du réseau. Dans cette thèse, nous considérons des anomalies séparables qui satisfont

la propriété de séparabilité des performances développée dans [15]. Comme mentionné pré-

cédemment, dans le cas d’anomalies séparables, un chemin souffre d’une anomalie si et

seulement si au moins un de liens le constituent souffre d’une anomalie. La conclusion tri-

viale qui peut être tirée de cette propriété est que pour la détection de toutes les anomalies

qui pourraient affecter les liens d’un réseau, il suffit de surveiller un ensemble de chemins

qui couvrent tous les liens du réseau. Un lien est dit couvert s’il est traversé par au moins

un chemin surveillé.

L’information fournie à la fin de la phase de détection est un ensemble de chemins

affectés par l’anomalie. Tous les liens du réseau qui sont traversés par seulement des chemins

affectés par l’anomalie sont suspects d’être défaillants. Cette information ne permet pas de

décider quel(s) lien(s), parmi les liens suspects, est (sont) défaillant(s).

Localisation des anomalies au niveau des liens

La phase de localisation vise à identifier l’origine d’une anomalie détectée. Une condition

suffisante pour localiser des anomalies au niveau des liens a été établie dans la littérature

[21][6][1]. Elle consiste à déployer un ensemble de moniteurs permettant de distinguer entre

chaque paire de sous-ensembles de liens du réseau. Ceci implique que, pour chaque paire de

sous-ensembles des liens, il existe un chemin entre les moniteurs déployés dont l’intersection

avec exactement un de deux sous-ensembles des liens n’est pas vide. Ainsi, si la surveillance

du chemin signale une anomalies, alors le sous-ensemble dont l’intersection avec le chemin

est vide est défaillant, sinon, l’autre sous-ensemble est défaillant.

En réalité, les anomalies qui affectent plusieurs liens sont des événements rares. Par

conséquent, de nombreux travaux de recherche limitent le nombre d’anomalies simulta-

nées dans une tentative de minimiser le coût de localisation. [1] affirme que les anomalies

impliquant plus que trois liens sont très peu susceptibles de se produire.
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Description de l’infrastructure de détection et de localisation

des anomalies au niveau des liens

L’infrastructure de détection (respectivement localisation) d’anomalies est constituée

d’un ensemble de moniteurs placés sur un sous-ensemble des nœuds de réseau tel qu’il

existe un ensemble des chemins entre les noeuds équipés de moniteurs qui couvrent tous

les liens du réseau (respectivement distinguent entre chaque paire de sous-ensembles de

liens).

Généralement, l’infrastructure de détection est active en permanence, tandis que l’in-

frastructure de localisation est activé uniquement suite à la détection d’une anomalie. Ceci

est justifié par le fait que les anomalies sont des évènements rares. En outre, en fonction de

la topologie du réseau, l’exécution du processus de localisation d’une façon continu peut

entraîner une charge lourde sur le réseau sous-jacent.

Par ailleurs, les mesures collectées par les moniteurs sont exportées vers une entité

de gestion et de surveillance du réseau. Cette entité analyse et mets en corrélation les

mesures collectées individuellement par les moniteurs. Quand une anomalie est détectée,

elle déclenche le processus de localisation en activant certains moniteurs permettant de

distinguer entre les liens suspects deux à deux.

Les coûts de détection et de localisation des anomalies au ni-

veau des liens

Les coûts de détection et localisation comprennent les coûts suivants :

– Coût d’infrastructure : c’est le coût d’acquisition, de déploiement et de maintenance

des équipements et des logiciels de surveillance .

– Coût de la communication : c’est le coût des communications entre l’entité de gestion

et de surveillance du réseau et les moniteurs qui sont déployés dans le réseau. L’entité

de gestion et de surveillance du réseau collecte les mesures effectués par les moniteurs

qui sont activés pour la détection. Lorsqu’une anomalie est détectée, elle déclenche le

phase de localisation en activant le processus de localisation sur un sous-ensemble des

moniteurs déployés qui sont capables de distinguer entre l’ensemble des liens suspects

deux à deux. Il est très important de choisir les endroits où les moniteurs sont déployés

judicieusement, afin de réduire la surcharge et les délais de communication.
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– Coût des sondes : ce coût exprime la charge de la surveillance des flux de surveillance

sur le réseau. Les mesures redondantes et les mesures qui ne fournissent aucune

information sur l’état des liens du réseau sont fortement indésirables. En effet, de

telles mesures augmentent les délais et la surcharge de détection/localisation.

Sélection des emplacements des moniteurs et des chemins de

surveillance pour la détection et la localisation des anomalies

au niveau des liens

L’un des problèmes qui ont reçu un grand intérêt au sein de la communauté de la

recherche sur la surveillance des réseaux est formulé comme suit : Comment choisir les

emplacements des moniteurs et les chemins de surveillance permettant de détecter/localiser

toutes les anomalies qui pourraient se produire, tout en minimisant les coûts et les délais[6]

[1] [20] [21] [29].

Presque tous les systèmes de surveillance de bout-en-bout au niveau des liens existants

appliquent une approche en deux étapes pour la sélection des emplacements des moniteurs

et des chemins de surveillance. La première étape sélectionne un ensemble minimal d’em-

placements des moniteurs permettant de détecter/localiser toutes les anomalies possibles.

La deuxième étape sélectionne le plus petit ensemble de chemins entre les emplacements

sélectionnés à la première étape qui permettent de detecter/localiser toutes les anomalies

possibles [6] [1].

[21] applique une approche en deux étapes inverse. La première étape sélectionne un

ensemble minimal de chemins de surveillance qui permettent de détecter/localiser toutes

les anomalies possibles, tandis que la seconde étape sélectionne un ensemble minimal d’em-

placements de moniteurs qui permettent de surveiller les chemins sélectionnés à la première

étape.

[29] propose une techniques de détection multi-round. Cette technique prend en compte

la capacité des liens du réseau de supporter les flux de surveillance et la capacité des moni-

teurs de gérer les flux de surveillance lors de la sélection des emplacements de moniteurs et

des chemin de surveillance. Le résultat est un ensemble minimal d’emplacements de moni-

teurs et des chemins de surveillance qui couvrent les liens du réseau en un certain nombre

de rounds.
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Comme mentionné précédemment, il a été démontré que la surveillance d’un ensemble

de chemins qui couvrent tous les liens du réseau est une condition nécessaire et suffisante

pour la détection de toute anomalie qui pourraient se produire dans le réseau. Toutefois,

l’ensemble des chemins qui doivent être surveillés pour déterminer la source d’une anomalie

détectée a été défini de deux façons. La première consiste à surveiller un ensemble de

chemins pré-calculé qui permet de distinguer entre tous les liens du réseau deux à deux

quelle que soit l’anomalie détectée [1]. La deuxième consiste à surveiller un ensemble de

chemins obtenu suite à la détection d’une anomalie qui permet de distinguer seulement

entre les liens suspects [2].

Le problème de sélection des emplacements de moniteurs, ainsi que le problème de

sélection des chemins de surveillance sont NP-dur. Par conséquent, plusieurs algorithmes

heuristiques ont été proposés.

Les limitations des techniques de détection et de localisation

existantes

Les techniques de détection et de localisation des anomalies au niveau des liens pré-

sentent les limitations suivantes :

– Les métriques d’optimisation habituellement considérées pour la sélection des empla-

cements de moniteurs (minimiser le nombre de moniteurs) et pour la sélection des

chemin de surveillance (minimiser le nombre de chemins) ne reflètent pas les coûts

de surveillance correctement. Par exemple, bien que la minimisation du nombre de

chemins de surveillance est fortement désirable afin de réduire le coût de communica-

tions due à l’exportation des mesures à l’entité de gestion et de surveillance du réseau,

cela pourrait augmenter le coût des sonde en produisant des mesures redondantes.

– Les techniques de sélection des emplacements de moniteurs et des chemins de sur-

veillance en deux étapes ignorent les interactions entre les objectifs d’optimisation de

chaque étape, ce qui peut conduire à une utilisation sous-optimale des ressource du

réseau. En effet, le nombre et les emplacements des moniteurs ont un grand impact

sur la qualité des chemins de surveillance.

– La technique de détection proposée dans [29] étudie les limitations abordées ci-dessus.

Elle tient en compte la capacité des liens de supporter les flux de surveillance lors

de la sélection des emplacements des moniteurs. Cependant, la principale limite de
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cette technique est que les liens sont couverts sur plusieurs rounds, ce qui augmente

les délais de détection proportionnellement aux nombre de rounds.

– La sélection des chemins de surveillance suite à la détection d’une anomalie, comme

proposé dans [2], induit un délai de localisation non-négligeable.

– La surveillance d’un ensemble de chemins qui distingue entre tous les liens du réseau

deux à deux à chaque fois qu’une anomalie est détectée, comme proposé dans [1],

génère des mesures inutiles et augmente la surcharge de la surveillance.

– Les heuristiques de détection et de localisation des anomalies sélectionnent les che-

mins de surveillance parmi un ensemble de chemins candidats. Cet ensemble est décrit

dans la littérature comme étant un petit sous-ensemble des chemins du réseau. Ce-

pendant, aucune indication sur la façon dont un tel ensemble est calculé est fournie.

Il est clair que la réduction de nombre de chemins candidats est fondamentale pour

assurer le passage à l’échelle, cependant, la réduction doit se faire de façon judicieuse

afin de ne pas dégrader la qualité de la solution de surveillance.

Contribution de la thèse

L’objectif de cette thèse est de mettre au point une technique de surveillance à

faible coût, efficace et précise qui surmonte les limitations soulevées dans le paragraphe

précédent. Les principales contributions peuvent être résumées comme suit.

– Les objectifs d’optimisation considérés pour la sélection des emplacements des

moniteurs et des chemins de surveillance ne sont pas limités à la minimisation du

nombre de moniteurs et la minimisation du nombre des chemins de surveillance.

Au contraire, les moniteurs sont placés de façon mesurée tel que le coût et les

délais de communication avec l’entité de gestion et de surveillance du réseau sont

réduits au minimum. En outre, les mesures qui ne fournissent pas d’information

supplémentaire sur la performance du réseau sont évitées, ce qui réduit la charge

des flux de surveillance sur le réseau.

– Les emplacements des moniteurs et les chemins de surveillance pour la détection,

respectivement pour la localisation, d’anomalies sont sélectionnés conjointement en

une seule étape. Il sera démontré que cette technique de sélection conjointe réalise
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un bon compromis entre le coût de l’infrastructure de surveillance, la surcharge

surveillance et les délais.

– Il est démontré dans la thèse que la condition sur l’ensemble des chemins qui doivent

être surveillés pour la localisation des anomalies unique au niveau des liens établies

dans [1] est suffisante mais n’est pas nécessaire. Une condition nécessaire et suffisante

est établie et démontrée.

– Il est démontré que des solutions de localisation complète, les moniteurs qui sont

à activer et les chemins qui sont à surveiller suite à la détection d’une anomalie,

peuvent être calculées en offline.

– Les problèmes de détection et de localisation des anomalies au niveau des liens sont

formulés mathématiquement. Il est démontré que les deux problèmes sont NP-durs.

– Des algorithmes heuristiques pour la détection et la localisation des anomalies au

niveau des liens sont développés. Les chemins de surveillance candidats sont sélec-

tionnés de manière prudente, afin de ne pas dégrader la qualité les solutions de

détection/localisation, tout en assurant le passage à l’échelle des algorithmes propo-

sés.

La technique de détection proposée est une technique qui sélectionnent les emplace-

ments des moniteurs et les chemins de surveillance conjointement en une seule étape. Une

formulation ILP du problème est fournie, et il est démontré que le problème est NP-dur.

Deux algorithmes sont, par conséquent, proposés. Le premier algorithme considère l’en-

semble de tous les chemins du réseau comme candidats à surveiller. Le second algorithme

met en œuvre une procédure de calcul des chemins candidats. Le but de cette procédure

est de réduire l’ensemble des chemins candidats afin de garantir le passage à l’échelle de

l’heuristique, tout en assurant la qualité de la solution de détection. La technique proposé

est comparée aux techniques de détection existantes qui procèdent en deux étapes. Les

résultats de comparaison montrent la supériorité la technique proposée, et son efficacité

pour réaliser un compromis entre les objectifs d’optimisation considérés.

L’applicabilité de la méthode de détection d’anomalies proposée sur les réseaux

multi-domaines est étudié. Un algorithme ILP et un algorithme heuristique qui prennent

en compte les propriétés et les limites de ces réseaux sont conçus. Une étude comparative

de deux méthodes de détection d’anomalies est effectuée. La première méthode est
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une approche globale qui considère le réseau multi-domaine comme étant un domaine

unique. Dans un tel cas, le système de détection d’anomalies proposé pour les réseaux

mono-domaines peut être appliqué. La deuxième méthode est une approche par domaine

qui minimise les interactions entre les domaines pour tenter de surmonter les problèmes

de confidentialité. Les résultats la comparaison montrent que la confidentialité est loin

d’être la seule limite de la technique globale. En particulier, les résultats montrent que

la technique de détection globale donne des solutions avec des chemins de surveillance

relativement longs, et ne garantit pas une répartition équitable de la charge de surveillance

entre les domaines de détection. En outre, le temps de calcul pour la technique globale est

considérablement élevé par rapport au temps de calcul pour la technique par domaine. En

revanche, la différence des coûts des solutions fournies par ces deux techniques, en termes

de nombre de moniteurs et surcharge de surveillance, est faible.

Bien que la thèse préconise un découplage de la localisation de la détection (le processus

de détection d’anomalies est exécuté en continu alors que le processus de localisation

est déclenché uniquement en cas de détection d’une anomalie ), il exploite le fait que la

sortie du processus de détection est une entrée du processus de localisation pour optimiser

la solution de localisation. En particulier, il est démontré que, connaissant l’ensemble

des chemins surveillés pour détecter une anomalie, tous les scénarios d’anomalies qui

pourraient se produire dans le réseau peuvent être déduits en offline 3. Par la suite,

l’ensemble des chemins qui doit être surveillé lors de la détection d’une anomalie est

réduite à un petit sous-ensemble de chemins qui peuvent distinguer seulement entre

les liens suspects. Cet ensemble est pré-calculé en offline. Tout comme la technique de

détection, les emplacements de moniteurs et les chemins de surveillance sont sélectionnés

conjointement en une seule étape. Le problème de la localisation est formulé en ILP, et il

est démontré que c’est un problème NP-dur. Un algorithme heuristique est donc proposé.

La capacité de la technique proposée de localiser toutes les anomalies correctement est

vérifiée analytiquement, et sa supériorité sur les techniques de localisation existantes est

démontrée par le biais de simulations.

3. Un scénario d’anomalie est caractérisé par un ensemble unique de liens suspects. Des anomalies

différentes peuvent provoquer le même scénario d’anomalie.
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CHAPTER

1 Introduction

The Internet has experienced a transition from being a simple data transmission net-

work serving a few users to becoming a multi-service network that supports various mul-

timedia applications with high QoS requirements (e.g., loss rate, end-to-end delay, jitter,

throughput, etc.) and serves a sharply growing number of demanding users. This is due

to the rapid development of more and more powerful and affordable network devices (e.g.,

high-capacity transmission mediums, high-speed switching, high-capacity storage devices,

etc.). The need for efficient network monitoring tools that ensure a desired network per-

formance and provide QoS guarantees has subsequently increased. A large number of

monitoring schemes and network measurement tools have been proposed in the literature.

The simplest monitoring schemes make use of existing networking tools such as ping

and traceroute [18][23]. They are qualified as simple because they do not require any spe-

cific feature in the network. However their application is limited to detect and localize

infrastructure failures and path outage [27]. Schemes that provide more detailed perfor-

mance information have been proposed. They can be broadly divided into two categories,

individual monitoring schemes (e.g., SNMP(Simple Network Management Protocol)-based

schemes [7], RMON [28], Netflow [8]), and end-to-end monitoring schemes (e.g., [14] [24]

[26] [9] [10] [11] [17] [16] [15][21] [20] [19] [29] [1] [6] [22] [2]). The basic idea of individual

monitoring schemes is to equip every network device with a monitoring agent that collects

performance statistics for the device and its incident links by snooping on the network

traffic crossing it. Individual statistics are exported to a network operations center for

analysis. The major problems of these schemes is that the monitoring infrastructure cost

can be very high in large-size network, and the exportation of individual statistics to the

operations center may generate a heavy burden on the network. End-to-end monitoring is

an intuitive solution to these problems. The idea is to infer internal network performance

through end-to-end measurements, which should require much less monitoring devices to

be deployed in the network and minimize the monitoring overhead.
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There exists another classification of monitoring schemes: passive monitoring schemes

and active monitoring schemes. Passive monitoring infers the network performance by

snooping on existing network traffic. There are two approaches to perform passive moni-

toring:

– Two-point monitoring: this monitoring approach deploys two monitoring devices at

the ingress and egress nodes of each monitored flow. Performance metrics are inferred

by comparing measurements performed at ingress and egress monitors. This requires

the timestamps of the monitors to be synchronized and all packets traversing them

to be identified. However, the identification process might lead to serious scalability

issues when the volume of traffic traversing the monitors is important.

– One-point monitoring: This monitoring approach requires one single monitor for

monitoring one flow. It uses TCP acknowledgments to infer performance metrics

between the point where the monitor is deployed and the sink of the monitored TCP

flow (e.g., loss rate and round trip time on the segment between the monitor location

and the sink of the monitored flow). Clearly, the application of this approach is

restricted to TCP flows.

Active monitoring infers the performance of the network (e.g., availability, loss rate,

delay, etc.) by making measurements on active monitoring flows, called in this context

active probes, injected in the network to simulate existing network flows. The main dif-

ficulty of active monitoring is to make active probes experience the same conditions as

real traffic flows in order to achieve accurate measurements, without interfering with the

network services.

Although the two monitoring approaches have their own drawbacks, the active moni-

toring have two important advantages over passive monitoring. the first is that it preserves

privacy and confidentiality of services crossing the network since it does not make mea-

surements on real traffic flows. The second is that it is possible using active monitoring to

make measurements when there are no flows traversing the network. For instance, a ser-

vice provider might need to check the availability and the characteristics of a network path

previously not used before it transmits services on it, which is not feasible using passive

monitoring.

Both active and passive end-to-end monitoring problems have been widely studied in

the literature. Despite their divergence in terms of measured metrics and the approach of

measurement acquisition, all the proposed schemes share a common important objective:

guarantee a desirable network performance while minimizing the monitoring expense in
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terms of infrastructure cost and monitoring overhead. The aim of this thesis is to come up

with an end-to-end network monitoring scheme that achieves this objective.

The remainder of this chapter is organized as follows. Section 1.1 provides a classifica-

tion of existing end-to-end monitoring techniques. Section 1.2 and section 1.3 define the

problem of link-level anomaly detection and link-level anomaly localization, respectively.

Section 1.4 and section 1.5 describe the infrastructure requirements and the costs incurred

for link-level anomaly detection and localization. section 1.6 and section 1.7 presents exist-

ing link-level anomaly detection and localization schemes and their limitations, respectively.

1.1 Overview of End-to-End Monitoring Techniques

End-to-end monitoring techniques can be broadly classified into two categories: ana-

logue and binary [22].

1.1.1 Analogue Monitoring

Motivated by the effectiveness of multicast communications in terms of bandwidth

saving, the early end-to-end monitoring schemes used end-to-end active multicast probes

to infer link-level loss rate, delay distribution, and bottleneck bandwidths (e.g., [3] [14]

[26] [24] [4] [25]). The key idea is to correlate the copies of multicast probe packets ob-

served at the multicast receivers to infer the performance of links within the multicast tree.

Figure 1.1: A tree-structured topology consisting of one source, one internal node and two

receivers

Consider the logical multicast tree depicted in Figure 1.1 to illustrate. The loss events

are inferred as follows. If a copy of a multicast probe packet is received by R1 but not

R2, then a loss has likely occurred on the link e3. If neither R1 nor R2 receive copies of
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the probe packet, then losses have likely occurred either on e1, or on e2 and on e3. A

probabilistic analysis of repeated multicast probes provides an estimation of the loss rates

of the tree links with high probability (textite.g., [14]). Similarly, a probabilistic analysis

of the correlations between the delays that make the copies of a probe packet issued by

the multicast source to reach the multicast receivers provides an estimation of the link

delay distributions (textite.g., [24]). Bottleneck bandwidths can be estimated through

correlations of loss statistics across the multicast receivers (textite.g.,[26]).

Despite its potential benefits, multicast-based schemes cannot not be widely applied

because multicast is so far only modestly deployed. Several research works proposed to

emulate multicast-based monitoring schemes using unicast measurements (e.g., [9], [10]

[11], [17], [16], [5]). The idea is to send two closely time-spaced packets, referred to as

back-to-back packet pairs, from one server to pairs of receivers whose paths back to the

source share a set of common links. The back-to-back packets issued from the same source

and having the same characteristics are very likely to experience the same performance

on the shared links. This performance correlation is exploited, in the same way as for

multicast-based schemes, to infer link-level performance parameters.

1.1.2 Binary Monitoring

A new feature has been widely adopted by the monitoring research community. It con-

sists in identifying the deviations of the network performance from a given performance

baseline rather than estimating link-level performance measurements. This feature resets

on the assumption that link performance is separable, which implies that a path expe-

riences bad performance if and only if at least one of its constituent links experiences

bad performance [15]. Thus, identifying link-level performance violations can be done by

identifying paths that violate performance thresholds. More specifically, according to the

property of separable performance, it is enough to monitor a set of paths that cover all links

of the network for detecting all potential link-level performance violations. Further paths

need to be monitored to localize the source(s) of the violation(s). [15] states numerous

separable link performance parameters such as connectivity, high-low loss model and delay

spike model.

Many research works exploited the property of separable performance to devise link-

level anomaly detection and localization schemes (e.g., [21], [20], [19], [29], [1], [6]). we

next investigate the problems of link-level anomaly detection and localization.

6



1.2. LINK-LEVEL ANOMALY DETECTION

1.2 Link-Level Anomaly Detection

The goal of link-level anomaly detection is to detect any performance degradation or

infrastructure failure that would occur on the network links. In this thesis we consider

separable anomalies that satisfy the separable performance property established in [15].

As mentioned previously, a path exhibits a separable anomaly if and only if at least one

of its constituent links is anomalous. The trivial conclusion that can be drawn from this

property is that for detecting all potential link-level anomalies in a given network, a set of

paths that cover all links of the network must be monitored. A link is said to be covered

if it is traversed by at least one monitored path. It can be easily shown that this is a

necessary and sufficient condition for link-level anomaly detection.

The information delivered by the anomaly detection process is a set of anomalous

paths, i.e., monitored paths that exhibit an anomaly. We refer to the set of links that

are traversed by only anomalous monitored paths as the set of suspect links. It cannot

be decided whether these links are anomalous using only the detection information. Let

us consider the network topology depicted in Figure 1.2 to illustrate. Suppose that

nodes a and d are equipped with monitoring devices. Consider the bidirectional paths

p1 = 〈(a, b), (b, c), (c, d)〉, p2 = 〈(a, b), (b, d)〉 and p3 = 〈(a, d)〉 that cover all links

of the network (refer to Figure 1.3 for an illustration). Assume that the detection process

which monitors these three paths reports that p1 is anomalous. According to the separable

performance property, all links that are traversed by paths not exhibiting the anomaly

are surely not anomalous. We conclude that all links that are not traversed by p1 as well

as the link connecting node a to node b are not anomalous. Thus, the set of suspect

links is {(b, c), (c, d)}. We say that paths p1, p2 and p3 cannot distinguish between

the links (b, c) and (c, d). Further paths must be monitored in order to decide whether

(b, c), (c, d) or both links are anomalous. This operation is called link-level anomaly

localization.

1.3 Link-Level Anomaly Localization

Link-level anomaly localization aims at identifying the root cause of a detected anomaly.

Let us consider again the anomaly scenario described in the previous section. The set

of suspect links constructed out of the detection information when path p1 exhibits an

anomaly is {(b, c), (c, d)}. To localize the anomalous link(s) among the suspect links,
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Figure 1.2: Example of a network topology

two additional paths must be monitored. Either path must traverse one of the two suspect

links, but not both. Additional monitoring devices may need to be deployed. In this case,

one additional monitoring device need to be deployed on node c. The paths monitored

during the localization process are p4 = 〈(a, b), (b, c)〉 and p5 = 〈(c, d)〉. If both paths

exhibit an anomaly, then both suspect links are anomalous. Otherwise the suspect link

traversed by the path that exhibits an anomaly is anomalous.

A sufficient condition for localizing link-level anomalies has been been established in

the literature (e.g., [21], [6], [1]). It consists in deploying a set of monitoring devices that

can distinguish between every two subsets of the network links. This implies that for each

pair of link subsets there exists a path between the deployed monitoring devices whose

intersection with exactly one of the two subsets is not empty. For instance, for the sample

topology depicted in Figure 1.2, there is only one path, p6 = 〈(a, b)〉, that can distinguish

between the subsets {(a, b), (b, c), (c, d)} and {(b, c), (c, d)}. Thus, monitoring devices

must inevitably be deployed on node a and node b. In practice, multiple link-level anomalies

that involve a large number of links are rare events. Therefore, numerous works bound the

number of concurrent anomalies in an attempt to minimize the localization cost, e.g., [1]

claims that anomalies involving more than three links are very unlikely to occur.

1.4 Infrastructure Requirements for Link-Level Anomaly De-

tection and Localization

The anomaly detection (respectively localization) infrastructure consists of a set of

monitoring devices placed at a subset of the network nodes such that there exists a set

of paths between the nodes equipped with monitoring devices that covers all links of the

network (respectively distinguish between all subsets of the network links pairwise). The
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network nodes that support monitoring devices are referred to as monitor locations. The

term monitoring path is used interchangeably with the term detection paths to designate

paths that are monitored for anomaly detection, and is used interchangeably with the term

localization paths to designate paths that are monitored for anomaly localization.

Figure 1.3 shows an example of a detection infrastructure and detection paths for the

sample network topology depicted in Fig 1.2, and Figure 1.4 shows an example of a single

link-level localization infrastructure, i.e., simultaneous anomalies involving multiple links

are not considered, and localization paths for the same network topology.

Figure 1.3: Example of a detection infrastructure (gray nodes are monitor locations) and

detection paths (thick gray lines)

Figure 1.4: Example of a single anomaly localization infrastructure and localization paths

Usually, the anomaly detection infrastructure is continuously active, whereas the

anomaly localization infrastructure is activated only upon detecting an anomaly. For

instance, if path 〈(a, b), (b, c), (c, d)〉 exhibits an anomaly, then, activating only the

monitors on node a and node c and monitoring only the localization path 〈(a, b), (b, c)〉

is sufficient to pinpoint the anomalous link. The rationale behind activating the anomaly

localization process only upon detecting an anomaly is that network anomalies are typi-
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cally rare events. Moreover, depending on the network topology, running the localization

process continuously may incur a heavy burden on the underlying network.

Furthermore, measurements collected by active monitoring devices are exported to a

network operations center, referred to as NOC. The NOC analyzes and correlates the mea-

surements collected individually by the monitoring devices. When it detects an anomaly,

it triggers the anomaly localization process by activating some monitoring devices that can

distinguish between the suspect links.

1.5 Link-Level Anomaly Detection and Localization Costs

The anomaly detection and localization costs consist of the following costs:

– Infrastructure cost: this is the effective cost of acquiring, deploying and maintaining

software and hardware monitoring devices.

– Communication cost: this is the cost of communications between the NOC and the

monitoring devices that are deployed in the network. The NOC collects monitoring

measurements from the monitoring devices that are activated for anomaly detection

periodically. When an anomaly is detected, the NOC triggers the localization phase

by activating the localization process on a subset of the monitors deployed that

can distinguish between the set of suspect links constructed out of the detection

measurements. It is of great importance to choose the locations where to deploy

monitors carefully, in order to reduce the communication overhead and delays.

– Probe cost: this cost expresses the load of monitoring flows on the network. Mea-

surements of links that do not provide any extra detection/localization information

is highly indesirable. Indeed, such measurements increase the detection/localization

delays and overhead.

1.6 Monitor Location and Monitoring Path Selection for

Link-Level Anomaly Detection and Localization

One of the problems that received great interest within the research community on

network monitoring is formulated as follows: How to choose monitor locations and how

to select monitoring paths that can detect/localize all potential anomalies while minimizing

the costs incurred and reducing the detection/localization delays (e.g., [6] [1] [20] [21] [29]).
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Almost all existing network monitoring schemes apply a two-step approach for monitor

location and monitoring path selection. Usually, the first step selects the smallest set

of monitor locations that can detect/localize all potential anomalies. The second step

selects the smallest set of paths between the monitor location selected at the first step that

cover/distinguish between all potential anomalies (e.g., [6] [1]).

[21] applies an inverse two-step approach of monitor location and monitoring path se-

lection for localizing multiple link failures. The first step selects a set of optimal monitoring

paths that can localize all potential multiple failures, whereas the second step selects the

smallest set of monitor locations that can monitor paths selected at the first step.

[29] proposes a multi-round link-level anomaly detection schemes. It takes into account

the capacity of the network links to support monitoring flows and the capacity of monitoring

devices to generate probe messages while selecting monitor locations. The result is a

minimal set of monitor locations and monitoring paths that covers all the network links in

a certain number of rounds.

As mentioned previously, it is agreed that monitoring a set of paths that covers all

network links is necessary for detecting all potential link-level anomalies. However, the set

of paths that is to be monitored to pinpoint the source of a detected anomaly has been

defined in two ways. The first proposes to monitor a set of paths that can distinguish

between every pair of link-level anomalies for any detected anomaly (e.g., [1]), whereas the

second monitors a set of paths selected upon detecting an anomaly that can distinguish

only between the set of suspect links (e.g., [2]).

Both the problems of monitor location and the problem of path selection are NP-Hard.

Therefore, heuristic algorithms, most of them greedy, have been proposed.

1.7 Limitations of The Existing Link-Level Anomaly Detec-

tion and Localization Schemes

The existing anomaly detection and localization schemes present the following limita-

tions:

– The optimization metrics usually considered for monitor location selection (minimiz-

ing the number of monitors that are to be deployed) and monitoring path selection

(minimizing the number of paths that are to be monitored) do not reflect the mon-

itoring costs properly. For instance, although minimizing the number of monitoring
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paths is highly desirable to reduce the communication overhead due to exporting the

measurements carried out for each monitored path to the NOC at each time interval,

this is likely to generate heavy probe overhead. For example, Figure 1.6 and Fig-

ure 1.5, each depicting a different anomaly detection solution for the same network

topology, illustrate that reducing the number of detection paths from seven paths to

three paths generates redundant measurements.

Figure 1.5: Example of an anomaly detection solution with two monitors, three detection

paths, and two redundant measurements

Figure 1.6: Example of an anomaly detection solution with four monitors, seven detection

paths, and zero redundant measurements

– The step-wise approaches for monitor location and monitoring path selection ignore

the interplay between the optimization objectives of each step, which may lead to

sub-optimal consumption of the network resources. We contend that the number

and locations of monitoring devices have an impact on the quality of monitoring

paths. For instance, Figure 1.6 shows that two monitoring devices are sufficient to

detect all potential link level anomalies of the considered network topology, however,

as illustrated in Figure 1.5, at least four monitoring devices are required to cover
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Figure 1.7: Example of an anomaly detection solution with four monitors, seven detection

paths, and two redundant measurements

the network links without generating redundant measurements. Figure 1.7 shows

that redundant measurements cannot be avoided when changing the locations of

two among the four monitoring devices of the solution presented in Figure 1.5, which

illustrates the correlation between the locations of monitoring devices and the quality

of monitoring paths.

– The anomaly detection scheme proposed in [29] addresses the issues discussed above

in that it takes into account the capacity of links to support monitoring flows while

selecting monitor locations. However, the major limitation of the proposed scheme

is that links are covered over multiple rounds, which increases the detection delays

proportionally to the number of rounds.

– Selecting localization paths online, i.e., upon detecting an anomaly, as done in [2],

induces non-negligible delay.

– Monitoring a set of localization path that distinguishes between every pair of link-

level anomalies whenever an anomaly is detected, as done in [1], incurs unnecessary

overhead and delay.

– Heuristic detection and localization algorithms select monitoring paths from a set of

candidate paths. This latter is described in the literature as a small subset of the net-

work paths. However, there is any indication on how such a set is computed. Clearly,

reducing the number of candidate paths is fundamental for scalability, however, the

reduction must be done in a measured way in order not to degrade the quality of the

monitoring solution.
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1.8 Contributions of The Thesis

The goal of this thesis is to come up with a cost-effective, fast and accurate monitoring

scheme. The proposed scheme is to some extent similar to recent monitoring schemes in

that it performs anomaly detection and localization in two phases. However, it overcomes

the limitations raised in the previous chapter. The main contributions can be summarized

as follows.

– The optimization objectives considered for monitor location and monitoring path

selection are not limited to minimizing the number of monitoring devices that

are to be deployed and the number of paths that are to be monitored. Rather,

monitors are placed in a measured way such as the cost and the delays of

communications with the NOC are minimized. Moreover, measurements that do

not provide extra information are avoided, thereby reducing the monitoring overhead.

– Monitor locations and monitoring paths for anomaly detection, respectively for

anomaly localization, are selected in one single step. It will be demonstrated that

the joint selection achieves a good trade-off between the monitoring infrastructure

cost and the monitoring overhead and delays.

– The condition on the set of paths that need to be monitored for localizing single

link-level anomalies established in [1] is proved to be sufficient but not necessary. A

necessary and sufficient condition is developed.

– A demonstration that full localization solutions, i.e., monitoring devices that are

to be activated and paths that are to be monitored upon detecting a given single

link-level anomaly, can be derived offline is provided.

– The anomaly detection and localization problems are formulated as ILPs. Both

problems are shown to be NP-hard.

– Heuristic algorithms for anomaly detection and for anomaly localization are devised.

Candidate monitoring paths are selected in a careful way, in order not to degrade

the quality of the detection/localization solutions, while ensuring the scalability of

the heuristic algorithms.
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– Operational constraints (e.g., limiting the capacity of monitoring devices to generate

and manage monitoring flows, limiting the capacity of links to support monitor-

ing flows, etc. ) can be easily introduced into the ILP formulations and the heuristics.

1.9 Outline of The Thesis

The remainder of the thesis is divided into two parts: Detection of Link-Level Net-

work Anomalies and Localization of Link-Level Network Anomalies. The former part is

composed of Chapter 2 and Chapter 3. The former chapter addresses the problem of link-

level anomaly detection in mono-domain networks, whereas the latter chapter investigates

the same problem in multi-domain networks. The latter part addresses the problem of

link-level anomaly localization. It is composed of Chapter 4. Chapter 5 concludes the

dissertation and presents future perspectives.
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CHAPTER

2 Link-level Anomaly

Detection in

Mono-Domain Networks

2.1 Introduction

Most existing monitoring approaches operate in two phases (e.g., [2], [29], [1], [19], [2]).

The first phase is the anomaly detection phase. It consists in deploying as few resources

as possible such that all links of the network are covered in order to detect all potential

link-level anomalies. The second phase is the anomaly localization phase. It is triggered

upon detecting an anomaly in order to identify its root cause.

In this chapter, we focus on the anomaly detection phase. We revisit a widely studied

problem that is the placement of monitoring devices and the selection of monitoring paths

for anomaly detection (e.g., [29], [2], [1], [19], [6], [21], [32], [37], [34], [36], [35]). The moti-

vation behind our work is that existing solutions suffer from two major shortcomings. The

first is that most of them adopt a two-step approach for monitor location and monitoring

path selection, and do not address the trade-off between the optimization objectives of

each steps. The monitor location step selects locations for a minimal set of monitoring

devices such that all links of the network are covered. The monitoring path selection step

computes a minimal set of paths between the deployed monitors that cover all links of the

network. The second is that existing monitoring cost models do not meet the requirements

of the monitored networks. For instance, the number of monitoring paths does not reflect

the effective monitoring load. Indeed, minimizing the number of monitoring paths is very

likely to produce long monitoring paths that cover some network links multiple times, and

thus, generating extra monitoring overhead and extending the detection delays. Further-

more, the monitor locations should be selected carefully with regard to the NOC location
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in order to minimize the overhead and the delays of communications between the monitors

and the NOC.

We define a monitoring cost model that takes into account realistic constraints and

aims at reducing the anomaly detection overhead and delays, and the cost of deploying the

monitoring infrastructure. Then, we provide a one-step formulation of the monitor loca-

tion and the monitoring path selection problems. Our goal is to optimize the associated

costs jointly, thereby minimizing the total anomaly detection cost. Two ILP formulations

are provided. A path-based ILP that requires high memory capacity and low processing

capacity, and a link-flow ILP that requires high processing capacity and low memory ca-

pacity. We show that the problem is NP-hard. Commonly, to simplify the problem, the

set of candidate paths that are to be monitored is restrained to a small sub-set of the

network paths and the set of candidate monitor locations is restrained to a small subset

of the network nodes. However, none of existing works on anomaly detection investigated

the impact of these restrictions on the quality of the detection solution. Moreover, none of

them specified how to choose the set of candidate monitoring paths and the set of candidate

monitor locations. We provide a heuristic solution that achieves scalability by reducing the

number of candidate monitoring paths in an efficient way, and thus delivers cost-effective

detection solutions.

We use extensive simulations to illustrate the interplay between the optimization ob-

jectives of the monitor location and the monitoring path selection problems. By way of

comparison, we show that our anomaly detection scheme outperforms existing two-step

anomaly detection schemes, and we demonstrate the efficiency and the scalability of our

heuristic solution.

The remainder of this chapter is organized as follows. Section 2.2 describes the network

model, and Section 2.3 states the anomaly detection problem. Section 2.4 introduces the

anomaly detection cost model. The Path-based ILP is formulated in section 2.5, whereas

the link-flow-based ILP is introduced in Section 2.6. Section 2.7 demonstrates that the

anomaly detection problem isNP-Hard. The heuristic algorithms are introduced in Section

2.8. The performance of the proposed anomaly detection scheme is evaluated through

simulations in section 2.9. Concluding remarks are provided in Section 2.10.
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2.2 Network Model

We model the network as an undirected graph G = (N , E), where N is the set of nodes

and E is the set of links interconnecting them. In some parts of the paper, we express links

using the nodes that they connect. For instance, a link e ∈ E that connects nodes i and j

is denoted as (i, j). Let P be the set of non-looping paths of the networks, i.e. all loop-free

paths between every pair of the network nodes, we assume that all the network nodes are

candidate to hold monitoring devices and that all the network paths are candidate to be

monitored. Thus the set of candidate monitor locations is N and the set of candidate

monitoring paths is P . We assume that the monitoring devices can differently be source

or sink of monitoring flows. If a path is selected to be monitored, then its end-nodes must

be selected to hold monitoring devices. A monitoring path covers all its constituent links.

The NOC coordinates the monitoring task, collects and processes the monitoring mea-

surements. The anomaly detection phase is run periodically. For active monitoring, this

consists in injecting monitoring flows along a set of monitoring paths that cover all the

network links. For passive monitoring, it consists in snooping on real traffic flows that

cover all the network links. We consider an active monitoring approach. However, the

proposed anomaly detection scheme applies for passive monitoring. The particularity of

passive monitoring is that the cost associated to injecting monitoring flows in the network

in zero.

2.3 Problem Formulation

An anomaly detection solution consists of two parts: A set of locations, i.e., nodes,

where to deploy monitoring devices and a set of paths that are to be monitored. There are

two satisfactory constraints to be considered while devising the anomaly detection solution.

First the selected monitoring paths must start and end at nodes that hold monitoring

devices. Second, the union of the monitoring paths must cover all links of the network. Each

link must be covered at least by one monitoring path. However, multiple measurements of

links do not provide any extra anomaly detection information.

The problem with the existing anomaly detection schemes is that they compute the two

parts of the solution in a stepwise fashion without considering the impact of the number

and the locations of monitoring devices on the quality of monitoring paths. Consider the

network in Fig. 2.1(a) to illustrate the interplay between these metrics. Fig. 2.1(b) depicts

21



CHAPTER 2. LINK-LEVEL ANOMALY DETECTION IN MONO-DOMAIN
NETWORKS

!

"#

$

%

&

' (

(a) Sample network topology

Solution Selected monitor Number of monitoring Number of redundant

number locations paths measurements

1 3, 6 4 7

2 1, 2 6 3

3 1, 3 6 5

4 0, 6 7 5

5 2, 6, 7 5 1

(b) Associated anomaly detection solutions

Figure 2.1: Illustrative example of anomaly detection solutions

some anomaly detection solutions, computed using a stepwise approach, for this network

topology. The considered operational constraints are the minimization of the number of

monitoring devices that are to be deployed, and the minimization of the number of paths

that are to be monitored (Refer to section 2.9.1 for a description of the ILP formulations

and the simulation environment used for computing these solutions). It should be noted

that Fig. 2.1b does not present the exhaustive list of solutions. On the one hand, Fig.

2.1(b) shows that although the solutions 1, 2, 3 and 4 deploy a small number of monitoring

devices, they do not monitor the same number of paths. For instance, solution 1 monitors

43% less paths than solution 4. This illustrates the impact of monitor locations on the

number of monitoring paths. On the other hand, we notice that reducing the number of

monitoring paths does not necessarily avoid redundant measurements. Indeed, solution 1

incurs four more redundant measurements than solution 2 that monitors three more paths.
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Furthermore, adding one monitor in solution 5 reduces drastically the number of redundant

measurements.

Based on the above observations, we contend that there is an interplay between the

number and the locations of monitors, and the quality of monitoring paths. Moreover, the

operational constraints, considered in previous works, are suboptimal. In the remainder

of this chapter, we address these two issues. We first introduce a novel anomaly detection

cost model that takes into account new operational constraints towards minimizing the

anomaly detection overhead and delays. Then we provide ILP formulations that select

monitor locations and monitoring paths jointly, thereby achieving a good trade-off between

the desired minimization objectives.

2.4 Cost Model

The anomaly detection cost includes three costs:

– Infrastructure cost: This is the effective cost of acquiring, deploying and maintain-

ing software and hardware monitoring devices. Let Cinfra be the cost of installing

and maintaining one monitoring device on a node of the network. Let Yn be a bi-

nary variable that indicates whether node n is selected as a monitor location. The

infrastructure cost can be expressed as follows:

Cinfra

∑

n∈N

Yn (2.1)

The minimization of (2.1) aims at deploying as few monitoring devices as possible.

Note that all or a subset of the network nodes can be candidate to support monitoring

devices. We assume, in this work, without loss of generality, that all the network

nodes are candidate.

– Communication cost: this is the cost of communications between the NOC and the

monitoring devices that are deployed in the network. The NOC collects monitoring

measurements from the monitors periodically. When an anomaly is detected, the

NOC stops the detection phase and triggers the localization phase. This is done by

sending messages to the monitors asking them to switch to the localization phase.

The detection phase resumes by sending messages to the monitors when the anomaly

is localized and fixed. It is of great importance to choose the locations where to deploy

monitors carefully, in order to reduce the communication overhead and delays. Let

Cn be the cost of communications between the NOC and a monitor deployed on node
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n. For instance, Cn can be proportional to the number of hops that separate node n

from the NOC. The total communication cost reads as follows:

∑

n∈N

CnYn (2.2)

The minimization of (2.2) aims at selecting the monitor locations that incur the

lowest communication overhead and delays.

– Probe cost: This cost expresses the load of monitoring flows on the network. Each

link of the network must be monitored at least by one monitoring path. However,

redundant measurements are highly undesirable. This is because they only increase

detection delays and overhead, and do not provide any extra detection information.

Let Zp be a binary variable that indicates whether path p is selected to be monitored.

Let δpe be a binary input parameter that indicates whether path p covers link e. Let

Ce be the cost of injecting one detection flow along link e. Ce should be proportional

the the load of e 1, in order to avoid redundant measurements of the most loaded

links of the network. The number of times a link e is measured equals the number of

monitoring paths that cross e, that is
∑

p∈P δpeZp. The probe cost reads as follows:

∑

e∈E,p∈P

CeδpeZp (2.3)

The objective of our anomaly detection scheme is to find an anomaly detection solution

that achieves the best trade-off between these three costs. To this end, we propose two ILP

formulations that minimize the three costs jointly. Let α, β and γ be the weights associated

to the infrastructure cost, the communication cost, and the probe cost, respectively. The

objective functions of the ILPs minimize the total anomaly detection cost that reads as

follows:

α Cinfra

∑

n∈N

Yn + β
∑

n∈N

CnYn + γ
∑

e∈E,p∈P

CeδpeZp (2.4)

2.5 Path-based ILP Formulation

This ILP takes as inputs the set of the network links E , a set of links that are to be

covered E
′

(E = E
′

because we want to cover all the network links), a set of candidate

monitor locations N , and a set of candidate monitoring paths P . The problem can be

reduced to covering a subset of the network links. It also takes as inputs a set a binary

1. We would suggest that Ce be proportional to the nominal bandwidth of link e, because the load of

links can hardly be predicted since it is prone to the variations of the network load.
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parameters δPE = {δpe; ∀p ∈ P , e ∈ E}, where δpe indicates whether path p covers link e ;

a set of binary parameters δPN = {δpn; p ∈ P , n ∈ N}, where δpn indicates whether node

n is an end node of path p; the link measurement costs Ce, ∀e ∈ E ; the infrastructure cost

Cinfra; and the communication costs Cn, ∀n ∈ N . For simplicity of notation we define the

sets CE = {Ce; e ∈ E} and CN = {Cn; e ∈ N}. The input into the ILP can be written

as (E , E
′

, N , P , δPE , δPN , CE , CN , Cinfra, α, β, γ).

The objective function minimizes the total detection cost as given by (2.4). The outputs

are a set of monitor locations where to deploy monitoring devices and a set of paths that

are to be monitored. The ILP is subject to the following constraints:

– Full coverage constraints: these constraints ensure that each link of E
′
2 is covered

by at least one monitoring path.

∑

p∈P

δpeZp ≥ 1; ∀e ∈ E
′

(2.5)

– Monitor location constraints: These constraints ensure that the either end nodes of

each selected monitoring path is selected as a monitor location.

Yn ≥ δnpZp; ∀n ∈ N , ∀p ∈ P (2.6)

2.6 Link-Flow-Based ILP Formulation

Clearly, the path-based ILP formulation requires high memory capacity for pre-

computing and processing the network paths and the input parameters. In an attempt

to overcome this limitation, we propose a link-flow-based ILP formulation. Like the path-

based ILP, this ILP minimizes the total anomaly detection cost under the same full cov-

erage and monitor constraints. However, it takes only the network graph as input. A

flow is a sequence of directed links that are crossed by a monitoring flow. We use di-

rected links in order to formulate the flow conservation constraints described in the sequel.

However, a link needs to be covered only in one direction to enable anomaly detection.

Let A = {(i → j), (j → i); ∀(i, j) ∈ E} be the set of directed links constructed out

of E . Let C(i→j) denotes the cost of monitoring the directed link (i → j). We have

C(i→j) = C(j→i) = C(i,j), ∀(i, j) ∈ E . The flows are modeled using a set of binary variables

{Xi→j(n, n
′); ∀(i → j) ∈ A; ∀n, n′ ∈ N}, each variable Xi→j(n, n

′) expresses whether the

flow traveling between the pair of nodes (n, n′) and crossing the directed link (i → j) is

2. E
′

= E for a full coverage of the network links.
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part of the detection solution. The total anomaly detection cost is expressed as follows

using the new variables:

αCinfra

∑

n∈N

Yn + β
∑

n∈N

CnYn + γ
∑

(i,j)∈E;n,n′∈N

C(i,j)[Xi→j(n, n
′) +Xj→i(n, n

′)] (2.7)

The ILP is subject to the following constraints:

1. Full coverage constraints:

∑

n,n′∈N

Xi→j(n, n
′) +Xj→i(n, n

′) ≥ 1; ∀(i, j) ∈ E
′

(2.8)

2. Flow conservation constraints: multiple monitoring flows might be carried between

a pair of nodes 3. We define a set of integer variables {W(n,n′);n, n
′ ∈ N}. W(n,n′)

quantifies the number of monitoring flows that starts from node n and ends at node

n′. Let IN(v) and OUT (v) be the set of directed links entering node v and the set

of directed links leaving node v, respectively. The flow conservation constraints 4 are,

hence, expressed as follows:

∑

i→j∈OUT (v)

Xi→j(n, n
′)−

∑

i→j∈IN(v)

Xi→j(n, n
′) =















W(n,n′), iff v = n

−W(n,n′), iff v = n′

0, otherwise

; ∀v, n, n′ ∈ N (2.9)

3. Monitor location constraints:

KYn ≥
∑

n′∈N

(W(n,n′) +W(n′,n)); ∀n ∈ N ,K > | N |! (2.10)

The above constraints state that Yn, ∀n ∈ N , equals 1 iff at least one monitoring flow

starts or ends at node n, otherwise Yn equals 0.

4. Loop-free constraints: toward preventing looping flows, we define a set of integer

variables {H(n,n′)(i);n, n
′, i ∈ N}. H(n,n′)(i) specifies the number of hops separating

node i visited by a flow traveling between the pair of nodes (n, n′) from its originating

node n. The idea is to force flows to travel through nodes in an ascending order of

3. In this case, the monitoring flows have the same end nodes, but they are carried by different paths

4. The flow that enters a node leaves it except if it is the originating node (in which case the flow only

exits), or the terminating node (in which case the flow only enters)
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the values of their hop variables, which prevents them from looping. The loop-free

constraints can be expressed as follows:

H(n,n′)(n) = 0; ∀n, n′ ∈ N (2.11)

1−Xi→j(n, n
′) +

H(n,n′)(j)−1−H(n,n′)(i)

K
≥ 0

1−Xj→i(n, n
′) +

H(n,n′)(i)−1−H(n,n′)(j)

K
≥ 0

; ∀(i, j) ∈ E ;n, n′ ∈ N ,K >| N |!

(2.12)

H(n,n′)(n
′) ≤ |N |− 1; ∀n, n′ ∈ N (2.13)

Constraints (2.11) assign the value 0 to the hop variable of the originating node of

each path, whereas constraints (2.13) set the upper bound of the flow lengths to the

number of network nodes. Constraints (2.12) guarantee that flows do not re-visit an

already visited node, i.e., a node having a value of hop variable lower than the values

of those of visited the nodes.

2.7 The Anomaly Detection Problem is NP-Hard

The anomaly detection problem can be reduced from the NP-Hard facility location

problem.

Facility location problem [30]: consider a set of potential facility locations F , and

a set of clients D. Opening a facility at location i incurs a non-negative cost that is equal

to fi. The cost of servicing client j ∈ D by a facility installed at location i ∈ F is dij . The

problem is to find an assignment of each client to exactly one facility such that the sum of

the facility opening costs and the service costs is minimized.

We denote by f the set of facility opening costs, f = {fi, i ∈ F}, and we

denote by d the set of service costs, d = {dij ; i ∈ F , j ∈ D}. Given an in-

stance I = (D,F , f, d) of the facility location problem, we produce an instance

R(I) = (E , E
′

,M,P
′

, δPE , δPM, CE , CM, Cinfra,α,β, γ) of our path-based formulation of

the anomaly detection problem as follows. For each facility location i ∈ F , we create two

nodes labeled by mi1 and mi2. For each client j ∈ D, we create two nodes labeled by nj1

and nj2 and one undirected link connecting nj1 to nj2 and labeled by ej . For each i ∈ F

and for each j ∈ D, we create:

– One undirected link connecting mi1 to nj1, labeled by e1ij

– One undirected link connecting mi2 to nj2, labeled by e2ij
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We obtain a graph G = (E ,N ), where N = {mik; i ∈ F , k ∈ [1; 2]} ∪ {njk; j ∈ D, k ∈

[1; 2]}, and E = {ekij ; i, j ∈ F × D, k ∈ [1; 2]} ∪ {ej ; j ∈ F}. An example of a graph

constructed out of a facility location instance with three facility locations and four clients

is shown in Fig. 4.2.
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Figure 2.2: Example of a graph constructed out of a facility location instance with three

facility locations and four clients

We define the set of candidate monitor locations as M = {mik; i ∈ F , k ∈ [1; 2]}, and

we define the set of links that are to be covered as E
′

= {ej ; j ∈ D}. The set of candidate

monitoring paths is defined as P
′

= {pij ; i ∈ F , j ∈ D}, where pij is the non-looping path

between nodes mi1 and mi2 that crosses links ej , e1ij , and e
2
ij . The link measurement costs,

the communication costs, and the infrastructure cost are defined are defined as follows:

– Cinfra + Cmik
= fi/2; ∀i ∈ F , k ∈ [1; 2]

– Cej = 0 and Ce1ij
= Ce2ij

= dij/2; ∀i ∈ F , ∀j ∈ D

The remaining input parameters to the anomaly detection problem are defined as fol-

lows:

– δpijeki′j′
=







1 if i = i′ and j = j′

0 otherwise
; ∀j, j

′

∈ D, k ∈ [1; 2]

– δ
pije

′

j
= 1 if j = j

′

, 0 otherwise; ∀i ∈ F , ∀j, j
′

∈ D
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– δnikpi′j′
=







1 if i = i′

0 otherwise
; ∀j, j

′

∈ D, k ∈ [1; 2]

– α = β = γ = 1

The above reduction has | F | × | D | of time complexity, and therefore, it can be

carried out in polynomial-time. We now show that there is a solution to the instance I of

the facility location problem if and only if there is a solution to the instance R(I) of the

anomaly detection problem.

We first demonstrate that if there is an optimal solution to I, then, there is a feasible

solution to R(I). Let S∗
I be an optimal solution to I that assigns each client j to a facility

installed at location i. Consider the anomaly detection solution SR(I) that selects the

set of paths Dp = {pij : S∗
I assigns j to i; i ∈ F , j ∈ D}, and selects the set of monitor

locations Dm = {mik : ∃j such that pij ∈ Dp; i ∈ F , i ∈ D, k ∈ [1; 2]}. Recall that a

feasible anomaly detection solution must satisfy the coverage constraint, i.e., selecting a

set of monitoring paths that cover all links of the input link set; and must satisfy the

monitor location constraint, i.e., selecting the end nodes of each selected monitoring path

as monitor locations. Clearly, Dp covers all links of E
′

, and Dm contains the end nodes of

all paths of Dp. It follows that SR(I) is a feasible solution to R(I).

Conversely, we demonstrate that if there is an optimal solution to R(I), then, there is

a feasible solution to I. Let S∗
R(I) be an optimal solution to I. Let us fix a link ej of E

′

.

We show by contradiction that any optimal solution to I selects only one path that crosses

ej . Assume to the contrary that there is an optimal solution whose set of monitoring paths

D∗
p contains two paths p1 and p2 each of them crossing ej . Consider the solution to I

whose set of monitoring paths equals D∗
p \ {p1}, and whose set of monitor locations is the

same as for the optimal solution. This solution is feasible since it covers all links of E
′

.

Moreover, its cost equals the cost of the optimal solution minus the cost of monitoring p1.

This leads to a contradiction. The facility location solution SI that assigns each client j

to the facility installed at locations i such that S∗
R(I) selects pij to be monitored is clearly

a feasible solution to I.

We now show that the cost of SR(I) equals the cost of S
∗
I (the proof that the cost

of SI equals the cost of S∗
R(I) is similar). Let Fi be a binary variable that indicates

whether a facility is installed at location i, and let Dij be a binary variable that indicates

whether client j is serviced by a facility installed at location i. As explained above, SR(I)

is constructed such that D∗
ij = Zpij and F

∗
i = Yni1 = Yni2 , ∀i ∈ F and ∀j ∈ D. Recall that

Zp is a binary variable that indicates whether path p is selected to be monitored, and Yn
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is a binary variable that indicates whether node n is selected as a monitor location. We

have:

Cost(SR(I)) =
∑

ni1∈M
(Cinfra + Cni1)Yni1 +

∑

ni2∈M
(Cinfra + Cni2)Yni2+

∑

pij∈P
′
, e∈E CeδpijeZpij

=
∑

i∈F fi/2 F
∗
i +

∑

i∈F fi/2 F
∗
i +

∑

pij∈P
′
, e1ij∈E

′ Ce1ij
δpije1ij

Zpij+
∑

pij∈P
′
, e2ij∈E

′ Ce2ij
δpije2ij

Zpij

=
∑

i∈F fi F
∗
i +

∑

j∈D, i∈F dij D
∗
ij

= Cost(S∗
I)

Finally we demonstrate by contradiction that SR(I) is an optimal solution to I (the

proof that SI is an optimal solution to I is similar). Assume to the contrary that SR(I) is

not an optimal solution. Let S
′∗
R(I) be an optimal solution to R(I), and let S

′

I be a feasible

solution constructed out of S∗
R(I). We have Cost(S

∗
I ) = Cost(SR(I)) < Cost(S

′∗
R(I)) =

Cost(S
′

I), leading to a contradiction. Thus, SR(I) is an optimal solution to R(I).

2.8 Heuristic Algorithms for joint monitor location and mon-

itoring path selection

In this section, we provide two greedy algorithms using the monitoring cost model

introduced in section 2.4. The aim of the algorithms is to find a set of monitor locations and

a set of monitoring paths that cover all links of the network, while minimizing jointly the

monitor cost, the communication cost, and the probe cost. The first algorithm is based on

an exhaustive heuristic that explores all the network paths; whereas the second algorithm

is based on selective heuristics that address scalability issues by reducing the number of

explored paths. The challenge is to achieve scalability without negatively impacting the

quality of the detection solution.

2.8.1 Exhaustive greedy algorithm

Algorithm 1 describes the pseudo-code of the exhaustive algorithm. The algorithm

proceeds as follows. Monitor locations and monitoring paths are selected greedily. At

each greedy iteration, one monitor location whose communication cost is the smallest is

added to the solution (the tie is broken randomly) (line 5). Then, all candidate monitoring

paths between the added monitor location and the already selected monitor locations are

explored. One path that maximizes the coverage capacity is selected. In case of a tie, a path
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Table 2.1: Notations used in the pseudo-codes

Symbol Definition

CP The set of candidate paths

CM The set of candidate monitor locations

SP The set of permanently selected paths

TSP The set of temporarily selected paths

BP The set of paths temporarily selected at the previous iteration

SM The set of selected monitors

nbCL The number of links covered by paths in SP

nbTCL The number of links covered by paths in TSP

that minimizes the incurred probe cost is selected. Further tie is broken randomly (lines 11,

12). This process of selecting one candidate monitoring path is re-iterated until all links

are covered or remaining paths cannot cover links still uncovered. Selected monitoring

paths that generate redundant measurements, i.e., monitoring paths that cross already

covered links, are labeled. They are temporarily stored in T SP . Selected paths that do

not generate redundant measurements are permanently stored in SP . By the end of each

greedy iteration, the obtained solution is evaluated (line 25). A new greedy iteration is

executed if the set of candidate monitor locations CM is not yet empty, and if one of the

following conditions is satisfied:

– The obtained solution cannot cover all links of the network.

– The weighted cost of redundant measurements of the obtained solution is larger then

the weighted cost of deploying a new monitoring device. The algorithm attempts

to reduce redundant measurements by deploying an additional monitoring device,

which is likely to reduce the detection cost. The aim is to achieve a good balance

between the detection infrastructure cost and the detection overhead.

Labeled monitoring paths are removed from the solution and stored in BP . They

are injected into the set of candidate paths that is examined at the next greedy iteration

(line 6). The rational of this operation is to avoid re-exploring all candidate paths between

already selected monitor locations. If none of the above conditions is satisfied, the algorithm

returns the current solution (line 26).

Note that selecting the monitor location with the smallest communication cost does

not necessarily lead to finding a set of monitoring paths that covers the maximum number
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Algorithm 1: Exhaustive greedy algorithm for anomaly detection
Input : G = (E ,N ), P, CN , CE , Cinfra, CM

Output : A set of monitor locations and a set of monitoring paths that can cover all links

in E

1 SP ← ∅, BP ← ∅, SM ← ∅;

2 m ← selectRandomElement(arg min
n∈CM

Cn);

3 SM ← SM ∪ {m}, CM ← CM \ {m};

4 while (true) do

5 m ← selectRandomElement(arg min
n∈CM

Cn);

6 CP ← {all paths of P whose end nodes are in SM× {m}} ∪ BP ;

7 SM ← SM ∪ {m}, CM ← CM \ {m};

8 T SP ← ∅;

9 nbTCL ← 0, ProbeCost ← 0;

10 while (nbCL+ nbTCL <| E | or CP �= ∅) do

11 Q ← arg max
q∈CP

coverage_capacity(q,SP ∪ T SP) ;

12 p ← selectRandomElement(argmin
q∈Q

probe_cost(q)) ;

13 if (coverage_capacity(p,SP ∪ T SP) = 0) then

14 CP ← ∅;

15 else

16 if (| p | − coverage_capacity(p,SP ∪ T SP) = 0) then

17 nbCL += coverage_capacity(p,SP ∪ T SP);

18 SP ← SP ∪ {p};

19 else

20 nbTCL += coverage_capacity(p,SP ∪ T SP);

21 T SP ← T SP ∪ {p};

22 ProbeCost += ProbeCost(p);

23 CP ← CP \ {p};

24 BP ← T SP;

25 if

(CM = ∅ or (nbCL+nbTCL =| E | and γ(ProbeCost−
∑

e∈E

Ce) ≤ αCinfra+β max
n∈CM

Cn))

then Go to line 26;

26 return (SP ∪ T SP,SM);

of links and minimizes the probe cost. Ideally, all remaining candidate monitor locations

should be explored at each greedy iteration. The monitor location whose associated moni-

toring paths achieve the largest coverage capacity, while achieving the best balance between
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the probe cost and the communication cost should be selected. However, this operation

is very expensive, mainly because the exhaustive heuristic explores all paths of the net-

work between the currently explored monitor location and the already selected monitor

locations. One might suggest not considering all paths of the network as candidate to be

monitored. This requires finding an efficient heuristic to compute candidate paths such

that the quality of the detection solution is not degraded. This is the aim of the selective

greedy algorithm.

2.8.2 Selective Greedy Algorithm

The purpose of this section is to provide a scalable heuristic solution for joint monitor

location and monitoring path selection. As discussed above, the quest for scalability should

not degrade the quality of the detection solution. Our heuristic is described in Algorithm

2. Similarly to the exhaustive greedy algorithm, this is a greedy algorithm that selects

monitor locations and monitoring paths greedily. However, it explores more solutions than

the exhaustive algorithm. This is possible due to the use of the candidate monitoring

path computation heuristic described in Procedure 1 that reduces drastically the time of

exploring candidate monitoring paths.

We now describe the heuristics. Let us fix two candidate monitor locations n1 and

n2. First, the algorithm computes greedily a set of non-overlapping paths between n1 and

n2 (lines 4-8 of Algorithm 2). Ideally, one path between n1 and n2 that maximizes the

coverage capacity, i.e., crosses the maximum number of links still uncovered, should be

selected at a time.

As discussed earlier, pre-computing the set of all candidate paths leads to serious scal-

ability issues, and reducing the number of candidate paths arbitrarily leads to quality

degradation. To overcome these limitations, we propose to compute a satisfactory path by

exploring the network graph selectively as follows. The network graph is explored in an

in-depth first order starting from one of the candidate monitor locations, say n1. If the link

connecting the currently explored node to the last explored node is already covered, then

the exploration of all the descendants of the currently explored node is abandoned, which

means that all the network paths having as prefix the current path will not be explored. If

the currently explored node is n2 and the coverage capacity of the current path dominates

the coverage capacity of the best path then the latter path is set equal to the former path.

This way we compute a satisfactory path without memorizing any candidate paths.
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Algorithm 2: Selective Greedy Algorithm
Input : G = (E ,N ), P, CN , CE , Cinfra, CM (set of candidate monitor locations)

Output : A set of monitor locations and a set of monitoring paths that can cover all links

in E

1 SM∗ ← ∅,SP∗ ← ∅;

2 foreach n1, n2 ∈ N do

3 SP ← ∅, CL ← ∅, SM ← {n1, n2}, ProbeCost ← 0;

4 while () do

5 p ← candidatePathComputation(G, n1, n2, CL);

6 if (p = Null) then Go to line 9;

7 SP ← SP ∪ {p}, CL ← CL ∪ {e ∈ E : δep = 1};

8 ProbeCost += probe_cost(p);

9 while (| CL |<| E |) do

10 Q ← {paths composed only of links in E \ CL};

11 p ← selectRandomElement(argmax
q∈Q

| q |);

12 (ni, nj) ← the end nodes of p;

13 if ( ni /∈ SM) then

14 p1 ← Dijkstra(G, ni,SM, CE);

15 if (αCinfra + βCni
> γprobe_cost(p1)) then

16 p1 ← Null, SM ← SM ∪ {ni};

17 if ( nj /∈ SM ) then

18 p2 ← Dijkstra(G, nj ,SM, CE);

19 if (αCinfra + βCnj
> γprobe_cost(p2)) then

20 p2 ← Null, SM ← SM ∪ {nj};

21 q ← concatenate(p1, p, p2); ProbeCost += probe_cost(q);

22 SP ← SP ∪ {q}, CL ← CL ∪ {e ∈ E : δeq = 1};

23 if (β
∑

m∈SM

Cm + γ
∑

e∈E,p∈SP

δepCe < β
∑

m∈SM∗

Cm + γ
∑

e∈E,p∈SP∗

δepCe) then

24 SM∗ ← SM,SP∗ ← SP;

25 return (SM∗,SP∗);

Clearly, the computation becomes faster and easier as the number of covered links in-

creases. However, depending on the network density, the computation can be very complex

and expensive in terms of time when the proportion of covered links is still small. Namely,

when the set of covered links is empty the problem is reduced to finding the longest path

between two nodes which is an NP-Complete problem.
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In order to avoid intractable computations, the algorithm proceeds as follows. If the

number of covered links is smaller than 50% of the network links, then the network graph is

explored randomly 10 times (lines 13-27 of Procedure 1). Each time, the exploration ends

up as soon as one path between n1 and n2 has been found. Then the path whose coverage

capacity is the largest among the 10 paths is selected. If the number of covered links is

larger than or equal to 50% of the network links, then the candidate path is computed

by exploring the network graph selectively as described above (lines 3-13 of Procedure

1). This configuration parameters have been decided after evaluating many configuration

parameters through simulations. We found that it offers a good trade-off between the

computation time and the solution quality.

Note that the set of non-overlapping paths minimizes the probe cost since it avoids

redundant measurements by avoiding overlaps among its paths. The aim is to cover the

largest number of links without generating redundant measurements. Upon selecting the

set of non-overlapping paths, the algorithm re-iterates the following operations until all

links of the network are covered. It computes the longest path composed of only uncovered

links. Let ni and nj be the end nodes of that path. Clearly, we have ((ni /∈ SM or

nj /∈ SM) or (ni /∈ SM and nj /∈ SM)). The monitor location constraint requires that

the end nodes of any monitoring path must be selected as monitor locations. There are

two alternatives to satisfy this constraint. The first is to select each end node that does

not satisfy this constraint as a monitor location. The second is to compute for each node

not satisfying the constraint one path connecting it to one node in SM. This path must

minimize the probe cost. It is computed using the algorithm of Dijkstra. The decision

of deploying one of the two alternatives is made by comparing their costs (lines 15, 19 of

Algorithm 2).

The above computations are made for all the pairs of candidate monitor locations.

Then, the algorithm returns the solution that achieves the smallest detection cost (lines

23, 24, 25 of Algorithm 2).

2.9 Evaluation

We evaluate our ILPs and our heuristics through extensive simulations running on a PC

equipped with an Intel Core 2 Duo processor, a clock rate of 2,992.47 MHz, and 3.9 GB of

RAM. The ILPs are solved using Cplex11.2 [12], and the heuristics are implemented using

C++. All results are the mean over 30 simulations on random topologies generated using
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Procedure 1: candidatePathComputation(G, n1, n2, CL)

1 pc ← newPath(); ps ← Null;

2 add-node-to-path(m, pc);

3 if (| CL |≥| E | /2) then

4 depthFirst (m, pc, G, CL){

5 foreach (n ∈ children(n1,G) : n /∈ pc and (m,n) /∈ CL) do

6 add-node-to-path(n, pc);

7 if (n = n2) then

8 if coverage_capacity(pc, CL) > coverage_capacity(ps, CL)) then

9 ps = pc;

10 if (| ps |=| CL |) then return ps;

11 else Recursively call depthFirst (n, pc, G, CL);

12 }

13 else

14 k ← 1;

15 repeat

16 randomDepthFirst (m, pc, G, CL){

17 n ← randomChild(n1,G) : n /∈ pc and (m,n) /∈ CL;

18 if (n = Null) then Go to line 27;

19 else

20 add-node-to-path(n, pc);

21 if (n = n2) then

22 if (coverage_capacity(pc, CL) > coverage_capacity(ps, CL)) then

23 ps = pc;

24 k++; Go to line 27;

25 else Recursively call randomDepthFirst (n, pc, G, CL);

26 }

27 until k ≤ 10;

28 return ps;

the topology generator BRITE [13] [33] (Waxman model [31]: α = β = 0.4, random node

placement 5). Our experiments indicate that the results are almost the same for larger

number of simulations. Table 4.3 depicts a summary of the topologies considered. We

devised an algorithm that computes the set of all non-looping paths in a given network

5. These parameters are not to be confused with the infrastructure cost weight (α) and the communica-

tion cost weight (β) introduced in Section 2.4. Their values equal the values used by Waxman to generate

network topologies [31].
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topology. It was infeasible to store the path sets for topologies with more than 12 nodes

and 41 links due to memory insufficiency. In all the simulations, we assume that the NOC

is equidistant from all the network nodes. Therefore the communication cost is the same for

all the candidate monitor locations. We also assume that Ce = 1 ∀e ∈ E , Cn = 1 ∀n ∈ N ,

and Cinfra = 1.

Table 2.2: Summary of the topologies considered in the evaluation

Topology Number of nodes Number of links Average number of paths

TOP(6, 10) 6 10 162

TOP(8, 18) 8 18 3.176

TOP(10, 31) 10 31 209.235

TOP(12, 41) 12 41 3.679.756

TOP(15, 59) 15 58 362.919.718

TOP(20, 80) 20 80 135.604.169.577

TOP(30, 120) 30 120 295.438.105.637

TOP(50, 250) 50 250 536.337.473.112

2.9.1 Evaluation of The ILP Formulations

In this section, we illustrate the trade-off between the number and locations of mon-

itoring devices, and the quality of monitoring paths; and we show how well our one-step

detection scheme balances efficiently this trade-off. We compare the performance of the

path-based ILP with the link-flow-based ILP, and then, we compare our detection scheme

with existing detection schemes. Recall that existing detection schemes start, in the first

step, by deploying as few monitoring devices as possible such that all links of the network

can be covered. The associated ILP can be expressed as follows:

Minimize:
∑

n∈N

Yn

Subject to:
∑

p∈P

δepZp ≥ 1; ∀e ∈ E

Yn ≥ δnpZp; ∀n ∈ N , ∀p ∈ P

(2.14)
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In a second step, a minimal set of monitoring paths that cover all the network links is

selected. The associated ILP reads as follows:

Minimize:
∑

p∈P

Zp

Subject to:
∑

p∈P

δepZp ≥ 1; ∀e ∈ E

Yn ≥ δnpZp; ∀n ∈ N , ∀p ∈ P

(2.15)

In the second ILP, Yn is constant. It indicates whether node n has been selected by

the first ILP as a monitor location.

Path-Based ILP vs. Link-Flow-Based ILP: we compare the two ILPs along two

metrics: the CPU running time and the gap-to-optimality, i.e., the worst-case optimality

gap between the obtained solution and the optimal solution estimated by the solver. We

choose to present the gap-to-optimality instead of the values of the objective functions,

because for some topologies we could not obtain optimal solutions in tractable time. In

such case, we have granted 1000 s of CPU running time. To simplify the study, we assume

that α = β = γ = 1. However, in the next section we will variate the values of α, β,

and γ in order to investigate the impact of the number of monitors and their locations on

the quality of monitoring paths. For TOP(6, 10)) the solver delivered optimal solutions for

the two ILPs, whereas we could not obtain solutions for TOP(12, 41) using the path-based

formulation due to memory insufficiency.

Table 2.3 depicts the observed performance for these two topologies. As expected, the

path-based ILP is several steps faster than the the link-flow-based ILP (0.03 s against

25.5 s for TOP(6, 10)). However, the link-flow-based ILP scales better for large topologies.

Indeed, although the running time required to obtain optimal solutions is in the order of

days, we could obtain a solution that is only 25% worse than the optimal solution in

1000 s for TOP(12, 41).

These observations are confirmed for average topologies, i.e., TOP(8, 18) and TOP(10,

31). Fig. 2.3(a) and Fig. 2.3(b) plot the gap-to-optimality versus the granted CPU running

time for TOP(8, 18) and TOP(10, 31), respectively.

Two-Step vs. One-Step Detection Scheme: in this part we consider only the

path-based ILP because, as shown in the previous section, it delivers good solutions in

tractable time (optimal solutions for TOP(8, 18) in 10 s, and solutions with a 15% gap-

to-optimality in 250 s for TOP(10, 31)). We compare our one-step detection scheme to

the existing two-step detection scheme. The aim is to (i) illustrate the trade-off between
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Table 2.3: CPU Running Time (CPU) and Gap-To-Optimality (GTO) for TOP(6,10) and

TOP(12,41).

Path-based ILP Link-flow-based ILP

Topology GTO [%] CPU [s] GTO [%] CPU [s]

TOP(6, 10) 0 0.03 0 20.5

TOP(12, 41) Out of Memory 25.01 1000

the optimization objectives of the monitor location step and the optimization objectives

of the monitoring path selection step; (ii) demonstrate that the joint optimization of the

two objectives balances the trade-off efficiently; (iii) demonstrate that our detection cost

model is more appropriate than the existing cost model that expresses the detection cost

in terms of the number of deployed monitors and the number of monitoring paths.

For our detection scheme, we variate the values of α, β and γ. We consider 4 scenarios:

α = β = γ, α = β = 2γ, α = β = γ/2 and α = β = γ/4. We report the number of deployed

monitors, the number of redundant measurements and the number of monitoring paths for

the 4 scenarios and for the existing detection scheme. Fig. 2.4(a) and Fig. 2.4(b) show

the results for TOP(8, 18) and TOP(10, 31), respectively. For both topologies, the solutions

of the existing detection scheme are optimal solutions that are computed using the ILPs

(2.14) and (2.15). Three conclusions can be drawn from Fig. 2.4(a) and Fig. 2.4(b):

1. The number of monitoring paths does not reflect the detection overhead. Consider,

for instance, the results for TOP(8, 18) when α = γ/4 (Fig. 2.4(a)). For this scenario,

our detection scheme selects about 43% more paths to be monitored than the existing

detection scheme, however, it achieves 100% less redundant measurements. In general,

the smaller the set of monitoring paths is, the longer and the more likely to overlap

the paths are.

2. The minimization of the number of monitors and the minimization of the detection

overhead are two conflicting objectives. Indeed, the figures show that the gap between

the number of deployed monitors and the number of redundant measurements increases

when the gap between α and γ gets larger. This means that if more importance is

given for the minimization of one of the two associated costs, this will intuitively incur

the increase of the other cost.
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Figure 2.3: Gap-to-Optimality vs. Granted Running Time. (a) Results for the topologies

with 8 nodes and 18 links; (b) Results for the topologies with 10 nodes and 31 links.

3. The two-step detection scheme delivers sub-optimal solutions with respect to the cost

that is minimized in the second step. In effect, although the existing detection scheme

minimizes the number of monitoring paths, it could not find the solution delivered by

our detection scheme for α = 2γ for TOP(10, 31) that monitors about 33% less paths
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using the same number of monitors. This demonstrates the impact of the number

of monitors and their locations on the quality of the monitoring paths, and validates

our assertion that the two-step optimization of conflicting objectives generates sub-

optimal solutions. It is worth recalling that for TOP(10, 31) we show optimal solutions

for the existing detection scheme and solutions with a 15% gap-to-optimality for our

detection scheme.

2.9.2 Evaluation of The Heuristic Algorithms

In this section, we investigate the efficiency of our heuristic algorithms. We compare

the solutions delivered by the two algorithms with the exact solutions delivered by the

path-based ILP, in order to investigate the gap of the greedy solutions to the optimal.

Furthermore, we compare the solutions delivered by the two algorithms with the solutions

delivered by an LP-assisted exhaustive algorithm. This is an variant of the exhaustive

algorithms that takes as input the results of a randomized rounding of the solutions of an

LP-relaxation of the path-based ILP. These results constitute a good starting point for the

exhaustive greedy algorithm, and reduce the complexity and the computation time of the

algorithm since a part of the network links are already covered by the randomized rounding

solution.

We refer to the exhaustive greedy algorithm as EGA, and we refer to the selective

greedy algorithm as SGA. We assume that α = β = γ = 1.

Table 2.4: CPU running time (OOM means Out Of Memory)

Topology Path-Based ILP LP-Assisted EGA EGA SGA

TOP(6, 10) 0,03 s 0,0035 s < 1 tic < 1 tic

TOP(8, 18) 98,3 s 3,75 s 0,02 s < 1 tic

TOP(10, 31) - 55242,46 s 3,96 s 0,02 s

TOP(12, 41) OOM OOM OOM 0,02 s

TOP(15, 59) OOM OOM OOM 1,03 s

TOP(20, 80) OOM OOM OOM 4,48 s

TOP(30, 120) OOM OOM OOM 33,11 s

TOP(50, 250) OOM OOM OOM 177, 59 s

TABLE 2.4 depicts the CPU computation time versus the network topology for the

five approaches. Results show that the two variants of the exhaustive greedy algorithm

41



CHAPTER 2. LINK-LEVEL ANOMALY DETECTION IN MONO-DOMAIN
NETWORKS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

! = " ! = 2*" ! = "/2 ! = "/4    EDS

TOP(8, 18)

Average nb. of deployed monitors
Average nb. of redundant measurements

Average nb. of monitoring paths

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

! = " ! = 2*" ! = "/2 ! = "/4    EDS

TOP(10, 31)

Average nb. of deployed monitors
Average nb. of redundant measurements

Average nb. of monitoring paths

(b)

Figure 2.4: Performance results for our detection scheme with different values of α, β, and γ

(β = α); and for the existing detection scheme (denoted as EDS). (a) Results for topologies with

8 nodes and 18 links; (b) Results for topologies with 10 nodes and 31 links.

run out of memory for networks with 12 nodes and 41 links and larger. Notice that the

computation time of the LP-assisted greedy algorithm increases exponentially. TABLE 2.4

shows that the resolution of exhaustive greedy algorithm takes less than 4 seconds of CPU
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time for these topologies. This means that the resolution of the LP takes quite a long time

for average topologies and shows serious scalability concerns for large topologies.

As we would expect, the selective greedy algorithm succeeds to overcome the memory

limitation, and delivers solutions for all the considered topologies in quite a short time,

e.g., 177 seconds for the largest networks. This provides a strong evidence of the scalability

of this algorithm.

Table 2.5: Average number of deployed monitors + average number of redundant measure-

ments (network utilization)

Topology ILP LP-Assisted EGA EGA SGA

TOP(6, 10) 2,7 3,75 3,9 2.8

TOP(8, 18) 3,8 4,35 5,9 4.55

TOP(10, 31) - 6,11 6,05 4.9

TOP(12, 41) - - 7,4 4.9

TOP(15, 59) - - - 5,5

TOP(20, 80) - - - 6.95

TOP(30, 120) - - - 11.95

TOP(50, 250) - - - 20,79

TABLE 2.5 depicts the summation of the number of deployed monitors and the number

of redundants measurements of the detection solutions delivered by the four approaches for

the eight considered topologies. This metric illustrates the cost gap between the different

approaches and shed light on the impact of the heuristics used by the selective algorithm

that reduces the number of explored paths.

As expected, the selective algorithm performs better than the exhaustive algorithm,

although it does not explore all the network paths. This is because the selective algorithm

covers the maximum number of the network links using only two monitors and without gen-

erating redundant measurements. Besides, it explores all possible starting points, thereby

increasing the number of explored solutions. Furthermore, we observe that the gap be-

tween the exact solutions and the solutions of the selective algorithm is quite small for

small topologies, which suggests that the heuristics used in the selective algorithm are

reasonably accurate.

We define the resource utilization as the proportion of the network nodes and links

used for anomaly detection. It reads as follows:

43



CHAPTER 2. LINK-LEVEL ANOMALY DETECTION IN MONO-DOMAIN
NETWORKS

Resource utilization = 100
∑

l∈E,p∈P δlpZp−|E|+
∑

n∈N Yn

|N |+|E| .

Table 2.6: Resource utilization for SGA

Topology Resource utilization

TOP(6, 10) 17.50%

TOP(8, 18) 17.50%

TOP(10, 31) 11.95%

TOP(12, 41) 9.24%

TOP(15, 59) 7.43%

TOP(20, 80) 6.95%

TOP(30, 120) 7.96%

TOP(50, 250) 6.93%

Table 2.6 shows the resource utilization values for the selective greedy algorithm. This

metric is an alternative representation of the the results shown in table 2.5 that aims at

evaluating the performance of the selective greedy algorithm for large topologies. Results

show that less than 10% of the network resources are used to detect anomalies in networks

with 59 links and larger. This provides a confirmation of the capacity of the selective

greedy algorithm to find low-cost detection solutions for large networks.

2.10 Conclusion

In this chapter, we considered the problem of link-level network anomaly detection. We

proposed a novel detection cost model, and devised a one-step detection scheme. Unlike

existing two-step detection schemes, the one-step detection scheme selects monitor locations

and monitoring paths in one step, thereby reducing the trade-off between the number

and locations of monitors and the quality of monitoring paths. We provided two ILP

formulations for computing a set of monitor locations and a set of monitoring paths that

cover all links of the network, while minimizing the associated costs jointly.

We demonstrated that the problem is NP-Hard, and consequently, we proposed two

heuristic algorithms, exhaustive and selective greedy algorithms. We verified the effective-

ness of our scheme by comparison with the existing two-step detection schemes through

extensive simulations. The simulations results illustrate the impact of monitor locations on

the quality of monitoring paths. Namely, the results validate our assertion that minimizing
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the number of monitoring devices and minimizing the detection overhead are conflicting

objectives. Moreover, it is demonstrated that using the same number of monitors, the

one-step detection solutions yield much less overhead than the two-step detection solution.

This confirms that the existing cost model does not reflect the detection costs properly.

Furthermore, results show that the selective greedy algorithm provides near-optimal so-

lutions for small networks, and yields solutions that use less than 10% of the network

resources for large-scale networks.

The next chapter investigates the problem of anomaly detection in multi-domain net-

works. The properties and the limitations of these networks are studied in order to come

up with an appropriate anomaly detection scheme.
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CHAPTER

3 Link-Level Anomaly

Detection in

Multi-Domain Networks

3.1 Introduction

Most existing studies on link-level network monitoring have focused on mono-domain

networks (e.g., [1] [2] [29] [6]). However, usually, services cross multiple domains that belong

to different administrative authorities, and that are likely to have conflict of interests. This

raises some confidentiality problems that constrain the monitoring task. Namely, most

proposed monitoring schemes, which assume a detailed knowledge of the network topology,

cannot be applied on multi-domain networks. This is because domains are usually not

willing to disclose detailed information of their network topology and available resources.

In this chapter, we focus on the problem of detecting link-level anomalies in multi-

domain networks. This includes deploying monitors and selecting monitoring paths than

can cover all the multi-domain network links. Our goal is to come up with an anomaly

detection scheme that overcomes the confidentiality limitations. To this end, we investigate

the problem along two axes. The first axis ignores confidentiality constraints and consid-

ers the multi-domain network as a single domain. This is the global anomaly detection

technique. The second axis overcomes the confidentiality issue by minimizing the infor-

mation that is to be exchanged between domains. Each domain monitors its intra-domain

links independently from the other domains, i.e., without disclosing any information of its

intra-domain topology. Neighboring domains exchange only the set of their border nodes

that are candidate to support monitoring devices, in order to compute monitor locations

and paths that can cover the inter-domain links connecting them. This is the per-domain

anomaly detection technique. Practically, the global technique might be infeasible due to
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confidentiality issues. However, a comparative study of these two anomaly detection tech-

niques aims at finding out and evaluating all the constraints, other than confidentiality,

that the multi-domain detection schemes must comply to.

The problem of monitor location and anomaly detection has gained great interest over

the few last years. The shared goal of all these works is to minimize the detection cost

that includes, usually, the cost of deploying monitoring devices and the detection overhead.

The main challenge of this chapter is to extend the anomaly detection scheme proposed

in the previous chapter to multi-domain networks with respect to topology characteristics.

We provide a mathematical formulation of the problem, and we show that it is NP-Hard.

Therefore, we devise a heuristic solution that takes into considerations the characteristics

and the limitations of multi-domain network topologies.

Besides the computation time and the detection cost, we consider new criteria that

emerge from the characteristics of multi-domain networks to evaluate the two monitoring

techniques. First multi-domain networks are large networks. Therefore, the global moni-

toring technique that considers the multi-domain network as a single domain is likely to

monitor long paths that cross multiple domains. This would result in large detection de-

lays. Indeed, the longer the monitored paths are, the larger the anomaly detection delays

are. Furthermore, long monitoring paths result in large number of suspect links in case

of failure. This is because all the links of a monitoring path that exhibits an anomaly,

except those who belong to monitoring paths not exhibiting an anomaly, are suspect to be

anomalous. Second, multi-domain networks are composed of domains that belong to dif-

ferent administrative and economic authorities. Therefore, the monitoring solution should

distribute the monitoring load among domains fairly, otherwise, the most overloaded do-

mains would not be willing to collaborate.

We show through simulations that confidentiality is so far not the only limitation to

global anomaly detection. Indeed, the results show that this anomaly detection technique

yields solutions with relatively long monitoring paths, and does not guarantee a fair distri-

bution of monitoring load among domains. Besides, the computation time for the global

technique is drastically high compared to the computation time for the per-domain tech-

nique. In contrast, the difference of costs of the solutions of the two techniques, in terms

of number of monitors and redundant measurements of links, is small. This is due to the

characteristics of the multi-domain topology that will be discussed throughout this chapter.

The remainder of this chapter is organized as follows. Section 3.2 states the problem

of anomaly detection in multi-domain networks, and describes the network model, the
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multi-domain architecture, and the anomaly detection cost model. Section 3.3 provides an

ILP formulation of the problem, and Section 3.4 introduces the heuristic algorithm. The

comparison results of the two anomaly detection approaches are reported in Section 3.5.

Concluding remarks are provided in Section 3.6.

3.2 Problem Formulation

3.2.1 Network Model

We model a multi-domain network composed of M connected domains as a set of

undirected graphs Gi = (Vi,Li), i = 1, 2, ...,M . Vi is the set of nodes of domain i. It is

composed of two sets: V inter
i and V intra

i . V inter
i represents the set of border nodes that

connect domain i to its neighboring domains, and V intra
i represents the set of core nodes.

Similarly, the set of links Li is composed of two sets: Lintra
i and Linter

i . Lintra
i represents

the set of intra-domain links that connect the core nodes, and Linter
i represents the set of

inter-domain links that connect nodes of V inter
i to the border nodes of neighboring domains.

We denote by Pi, i = 1, 2, ...,M the set of intra-domain paths of domain i. A path p ∈ Pi

is a set of undirected intra-domain links. We denote by P inter the set of inter-domain paths

of the multi-domain network. A path p ∈ P inter includes at least one inter-domain link.

We refer to Gintra
i = (Vi,L

intra
i ) as the intra-domain graph of domain i. Let ND = {(i, j);

i, j = 1, 2, ...,M ; i and j are neighbor domains} be the set of neighbor domains. We refer

to G(i,j) = (Vi,j ,Li,i) as the graph of the inter-domain topology connecting domain i to

domain j. Vi,j is the set of border nodes of domains i and j that are connected to each

other, and Li,j is the set of inter-domain links connecting domain i to domain j.

3.2.2 Problem Definition

This work addresses the problem of anomaly detection in multi-domain networks. For

mono-domain networks, minimizing the monitor location cost and the probe cost consists

in deploying as few monitors as possible in carefully selected locations and avoiding redun-

dant measurements of links, i.e., avoiding overlaps among monitoring paths. These two

minimization objectives are conflicting objectives. We have shown in the previous chapter

of this thesis that a joint optimization of monitor location and anomaly detection costs bal-

ances efficiently the trade-off and reduces the two costs. However the problem is NP-Hard.

Heuristics have been proposed for mono-domain networks in chapter 2. For multi-domain
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networks, the problem can be formulated as follows. We want to deploy monitors in a

multi-domain network and select monitoring paths between the deployed monitors. The

aim is to cover all the inter-domain and the intra-domain links, while reducing the number

of deployed monitors and avoiding redundant measurements.

The constraints to global anomaly detection in multi-domain networks stem from the

characteristics of these networks. The first constraint is related to the structure of multi-

domain networks. A multi-domain network is a set of domains that belong to different

administrative authorities. Due to economic and security considerations, domains are

usually not willing to share detailed information of their network topologies and resources.

This is a blocking constraint to the global anomaly detection technique. This technique

assumes the existence of a central entity that has a detailed knowledge of the intra-domain

topologies of all the domains composing the multi-domain network as well as the inter-

domain topologies connecting neighboring domains. An alternative solution would be to

let each domain cover its intra-domain links using intra-domain paths only. Neighboring

domains collaborate to cover inter-domain links connecting them. This is the per-domain

technique.
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Figure 3.1: Per-domain detection solution
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Figure 3.2: Global detection solution

At first glance, when the global topology is known, we tend to assert that the global

technique outperforms the per-domain technique. This is because, considering only the

metrics of the number of monitors and the number of redundant measurements of links,

all the solutions to the per-domain technique are feasible solutions to the global anomaly

detection technique. We illustrate our assertion in Figure 3.1. and Figure 3.2. Hereby, we
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consider a multi-domain network composed of two domains connected by a single inter-

domain link (3, 5). We assume that the cost of deploying a monitor equals the cost of a

redundant measurement, i.e., the cost of measuring a link that is already measured. Grey

nodes are equipped with monitoring devices. The thick lines draw the monitoring paths.

Figure 3.1. depicts a minimal per-domain anomaly detection solution, whereas Figure

3.2. depicts a minimal global anomaly detection solution. We notice that the per-domain

solution deploys 4 monitors, against 2 monitors and 1 redundant measurement for the

global solution. The global technique succeeded to reduce the detection cost by removing

monitors that are deployed on the border nodes of each domain.

The question that arises here is the following: how worse is the performance of the

per-domain technique compared to the global anomaly detection technique ? To answer this

question, we investigate the quality of the global solutions. Reducing the number of moni-

tors results in longer monitoring paths. The figures above validate this claim. Nonetheless,

multi-domain networks are usually very large networks. Subsequently, the global tech-

nique is likely to select very long monitoring paths. This is the second constraint to global

anomaly detection, because the longer the monitored paths are, the larger the anomaly

detection delays are and the larger the number of suspect links in case an anomaly occurs

is. Furthermore, when domains accept to collaborate to perform global anomaly detec-

tion, they expect to achieve individual benefits in return. This means that the monitoring

solution should distribute the monitoring load among the participating domains evenly.

Therefore, besides the minimization of monitor cost and the probe cost, the quality of

monitoring paths and the fairness of monitoring load distribution must be considered in

the evaluation of the two anomaly detection techniques.

Based on this discussion, we claim that confidentiality is so far not the only constraint

to global anomaly detection, and that the per-domain anomaly detection might turn out

to be more efficient with respect to some metrics. We validate our claims in the remainder

of this chapter.

3.2.3 Architecture and Cost Model of Multi-Domain Anomaly Detection

Figure 3.3. depicts a sample multi-domain monitoring architecture, only nodes that

are equipped with monitoring devices are drawn. In each domain there is a Network

Operations Center, denoted by Domain NOC, that communicates with the monitors of

the domain, in order to collect monitoring information and manage the monitoring task

within the domain. A Domain NOC has a detailed knowledge of the domain topology and
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resources. In addition, there is a central NOC that communicates with all the Domain

NOC s. It collects and analyzes monitoring information collected within the domains.

This multi-domain architecture matches the usual architecture proposed in most works on

multi-domain monitoring (e.g., [42], [41]). For the global technique, the central NOC has

a detailed knowledge of the topologies and the resources of all the domains, whereas, for

the per-domain technique it does not participate in the detection task.

Figure 3.3: Sample Multi-domain Monitoring Architecture

A summary of the symbols used in the remainder of this chapter is depicted in TABLE

3.1.

The multi-domain anomaly detection cost can be expressed as the summation of the

following costs:

– Monitor cost: it includes the effective cost of deploying hardware and software mon-

itoring devices and the cost of their maintenance. In addition, it includes the cost

of communications between monitors and their corresponding Domain NOC. For in-

stance, the cost of communications between a monitor and the Domain NOC can

be expressed as a function of the number of routing hops separating them. Let us

denote by Cn the cost of deploying a monitor on node n, the multi-domain monitor

cost can be expressed as follows:
∑

i=1,...,M, n∈Ni

CnYn (3.1)
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Table 3.1: Notations used throughout this chapter

Symbol Definition

Zp A binary variable that indicates whether path p

is selected to be monitored

Yn A binary variable that indicates whether node n

is selected as a monitor location

Cn The cost of deploying a monitoring device on node n

Cl The cost of monitoring the intra-domain link l

Cl(i,j) The cost of monitoring the inter-domain link li,j

δlp A binary parameter that indicates whether link l belongs

to path p

δl(i,j)p A binary parameter that indicates whether the inter-domain

link l(i,j) belongs to path p

δnp A binary parameter that indicates whether node n is an

end node of path p

CP The set of candidate monitoring paths

SP The set of selected monitoring paths

SM The set of selected monitors

DRi(SP) the detection ratio of path pi considering the set of selected

monitoring paths SP

– Probe cost: it expresses the overhead of monitoring flows on the underlying network.

Each link must be monitored at least once. Redundant measurements of links are

considered as monitoring overhead. Let us denote by Cl the cost of measuring link l.

Cl must be proportional to the load of link l, in order to avoid multiple measurements

of the most overloaded links of the network. The multi-domain probe cost can be

expressed as follows:

∑

(i,l,p)∈S1

δlpClZp +
∑

((i,j),l,p)∈S2

δlpClZp

(3.2)

where S1 = {1, . . . ,M}× Li × Pi ∪ P inter and S2 = ND × L(i,j) × P inter.
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3.3 ILP formulation

The anomaly detection scheme should minimize the monitor cost (3.1), and the probe

cost (3.2). In the previous chapter, we demonstrated that there is an interplay between

these two minimization objectives. However, it turned out that the joint minimization

of the two objectives balances efficiently this interplay (refer to the previous chapter).

Therefore, our ILP formulation minimizes the detection costs defined in the previous section

jointly. Let α and β be the weight associated to the minimization of the monitor cost and

the weight associated to the minimization of the probe cost, respectively. The objective

function reads as follows:

α
∑

i=1,...,M, n∈Ni

CnYn + β(
∑

(i,l,p)∈S1

δlpClZp +
∑

((i,j),l,p)

δlpClZp) (3.3)

All the links of the multi-domain network, i.e., the intra-domain and the inter-domain

links, must be monitored at least once. Practically, this means that each link must belong

to at least one monitoring path. These link coverage constraints read as follows:

∑

i=1,...,M, p∈Pi∪Pinter

δlpZp ≥ 1; ∀i = 1, . . . ,M, ∀l ∈ Li

(3.4)

∑

p∈Pinter

δl(i,j)pZp ≥ 1; ∀(i, j) ∈ ND, ∀ l(i,j) ∈ L(i,j)

(3.5)

Either end node of each monitoring path must be selected as a monitor location. These

monitor location constraints read as follows:

Yn ≥ δnpZp, ∀i = 1, . . . ,M, ∀n ∈ Ni, ∀p ∈ Pi ∪ P inter

(3.6)

The equivalent problem for mono-domain networks has been shown to be NP-Hard in

chapter 2. The multi-domain monitoring problem is reduced to the mono-domain monitor-

ing problem for ND = ∅ and P inter = ∅. We conclude that the multi-domain monitoring

problem is NP-Hard, and thus, we propose a heuristic solution in the next section.
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3.4 Heuristic Algorithm for Anomaly Detection in Multi-

Domain Networks

The heuristic algorithm aims at minimizing the monitor cost and the probe cost jointly,

thereby balancing the trade-off between these two minimization objectives, while consid-

ering the properties and the limitations of inter-domain networks.

Muli-domain networks are, usually, composed of dense domains interconnected by few

inter-domain links [38]. Therefore, computing an inter-domain path connecting two nodes

each belonging to a different domain is a difficult task. In the previous chapter, we have

proposed a heuristic for joint optimization of monitor location and anomaly detection in

mono-domain networks. This heuristic performs an in-depth exploration of the network

graph, in order to find candidate monitoring paths between two given nodes. It has been

shown that this technique delivers good candidate monitoring paths in short time. How-

ever, when we ran this heuristic on multi-domain networks and mono-domain networks of

the same size (i.e., the same number of links and the same number of nodes), we noted

that the computation time of the multi-domain solution is drastically higher than the

computation time of the mono-domain solution. As expected, this exponential increase of

the computation time is due to the computation time of candidate monitoring paths in

multi-domain networks. We consider the multi-domain network depicted in Figure 3.4. to

illustrate our assertions.
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Figure 3.4: Illustrative multi-domain network

The network is composed of two domains denoted by Domain 1 and Domain

2, respectively. The gray nodes are equipped with monitoring devices. Path

〈(1, 2), (2, 4), (4, 3), (3, 7), (7, 6), (6, 9), (9, 10), (10, 11), (11, 14), (14, 15), (15, 16), (16, 13),

(13, 12), (12, 8)〉 is an inter-domain monitoring path that starts from the monitor de-

ployed in Domain 1, reaches Domain 2 and then returns back to domain 1. Path
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〈(1, 5), (5, 4), (4, 6), (6, 8), (8, 9), (9, 7)〉 is an intra-domain path that starts from the monitor

deployed in Domain 1, crosses the two border nodes of Domain 1 (nodes 9 and 8), but do

not reach Domain 2. We note that we avoid looping paths, i.e., paths that cross the same

nodes multiple times. These are two examples of excluded paths: long paths that do not

end at a monitoring device and whose computation time is long. It is the existence of such

inefficient paths that makes the computation time of inter-domain candidate monitoring

paths quite long, and therefore, heuristics for mono-domain networks are inappropriate

for global anomaly detection in multi-domain networks. Furthermore, existing works on

intra-domain anomaly detection have not provided solutions for the problem of candidate

monitoring path computation (e.g., [1] [2] [29] [6]).

3.4.1 Computation of Candidate Monitoring Paths in Multi-Domain

Networks

The solution that we propose to compute candidate monitoring paths consists in as-

signing a positive weight to each network link, and exploring the network links with a

probability that is proportional to their weights. The underlying idea is to reduce the

probability to re-explore bad sequences of links, while increasing the probability to cross

inter-domain links. Initially, all the links have an equal weight. This means that links have

the same probability to be added to the computed path. The computation ends when the

path reaches the target node, this is a good path, or when it reaches a node whose neigh-

boring nodes already belong to the path, this is a bad path. If the computed path is good,

the weights of all its links are incremented. Since all the good paths cross inter-domain

links, this will increase the probability to use those links. We resume the computation of

new paths from the starting node, in order to increase the space of explored paths.

3.4.2 Greedy Monitor Location and Path Selection Algorithm

Here, we give an outline of Algorithm 3. The algorithm starts by selecting two monitor

locations with the lowest detection costs (ties are broken randomly). Then, it computes

a set of candidate paths between the selected monitor locations as described above. For

each candidate path, the algorithm computes a detection ratio that expresses the ratio

between the number of links that are covered by the path and the number of redundant

measurements, i.e., the number of links that belong to the path and that are already

covered by the already selected monitoring paths, i.e., paths in SP . The path that have

the highest detection ratio is selected. This is because it achieves the best trade-off between
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Algorithm 3: Monitor location and path selection algorithm for anomaly detection

in multi-domain networks

1 SP = ∅;

2 Select two monitor locations m1,m2 that have the lowest monitor locations costs;

3 Add m1 and m2 to SM;

4 CP ← {candidate paths between m1 and m2};

5 ∀pi ∈ CP , DRi(SP) ← (number of links covered by pi) / (number of links of pi that are

covered by paths in SP);

6 while ( not all links are covered ) do

7 Find ps ∈ CP such that ∀pi ∈ CP , DRs(SP) ≥ DRi(SP);

8 if (DRs(SP) == 0 ) then

9 Go to line 25

10 /* the deployed monitors cannot cover all the network links*/;

11 else

12 Add ps to SP;

13 Remove ps from CP ;

14 Update DRi(SP), ∀pi ∈ CP;

15 if ( Not all links are covered ) then

16 Go to line 25;

17 else

18 if (the cost of deploying a new monitors ≥ redundant measurements incurred by paths

in SP) then

19 End of the algorithm;

20 else

21 Go to line 25;

22 Select a new monitor that minimize the probe cost;

23 Add the new monitor to SM;

24 Clear CP;

25 CP ← candidate paths between the new monitor and the deployed monitors;

26 Remove paths that incur redundant measurements from SP and add them to CP ;

27 Go to line 5;

the number of covered links and the number of redundant measurements. The detection

ratios are updated whenever a new path is selected.

Monitoring paths are selected until all the network links are covered, or all the candidate

paths have their detection ratios equal to zero. In the latter case, the deployed monitors

are not sufficient to cover all the network links, therefore, a new monitor is deployed. In
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the first case we get a full monitoring solution, i.e., full coverage of the network links.

However, as said earlier, we want to find the best trade-off between the monitor cost and

the probe cost. Therefore, when the algorithm gets a full solution, it verifies whether it can

diminish the anomaly probe cost by deploying new monitors. It decides to deploy a new

monitor if the cost of deploying a new monitor is lower than the probe cost of the current

solution .

Now, when a new monitor is deployed, the algorithm removes all the paths that incur

redundant measurements from the set of selected paths, and injects them into the set

of candidate paths CP . Then it selects monitoring paths with respect to their current

detection ratios.

3.5 Performance Evaluation

In this section we first describe the evaluation methodology, and then we present and

discuss numerical results.

3.5.1 Evaluation Methodology

The aim of the evaluation is to assess the performance of per-domain anomaly detec-

tion versus global anomaly detection in multi-domain networks. To this end, we run the

heuristic proposed in the previous section for these two monitoring techniques on several

multi-domain network topologies generated randomly using the network generator Brite

[13] [33] (Waxman model [31]: α = β = 0.4, random node placement 1.). Unless men-

tioned, we consider the following setting to generate multi-domain topologies: the network

is composed of three domains; a domain of 10 nodes and 31 links is connected to a domain

of 15 nodes and 59 links, which is in turn connected to a domain of 10 nodes and 31 links.

The number of border nodes that connect each domain to a neighboring domain ranges

from 2 to 3 nodes, and the number of inter-domain links between two neighboring domains

ranges from 4 to 6 links. In the remainder of this chapter, we refer to this setting as the

default setting. Figure 3.5. depicts a sample multi-domain topology. We assume that

all the network nodes are candidate to support monitoring devices and that the cost of

deploying monitors is the same for all the nodes; i.e., Cni
= 1, ∀ni ∈ Ni ∀i = 1, 2, ...,M .

1. These parameters are not to be confused with the monitor cost weight (α) and the probe cost weight

(β) introduced in Section 4.6. Their values equal the values used by Waxman to generate network topologies

[31]
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Furthermore, we assume that the link monitoring cost is the same for all the network links;

i.e., Cli = 1, ∀li ∈ Li ∀i = 1, 2, ...,M . We assume that α = β = 1. All simulation mea-

sures are the mean over 30 simulations on randomly generated topologies. Our simulation

plateform is developed in C++.
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Figure 3.5: Sample multi-domain topology

For global anomaly detection, we assume that the central NOC, which has a global

knowledge of the multi-domain topology, runs the heuristic on the global topology including

the three domains and the inter-domain links connecting them. For per-domain anomaly

detection, each domain runs the heuristic on its intra-domain topology. Once all the intra-

domain links are covered, neighboring domains exchange their set of border nodes that

are equipped with monitoring devices, if any, in order to cover the inter-domain links

connecting them using the same heuristic on the inter-domain topology. We note that in

our simulations, if two intra-domain solutions have the same monitoring cost, we choose

the solution that deploys the most monitors on its border nodes so that they can be re-used

to cover inter-domain links.

3.5.2 Numerical Results

We evaluate and compare the global monitoring technique and the per-domain moni-

toring technique along four metrics:
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Figure 3.6: Monitoring cost: default setting

Monitoring Cost

We expect that the fewer are the inter-domain links, the smaller is the difference be-

tween the costs of the solutions delivered by each of the two anomaly detection techniques.

Indeed, the global detection technique reduces the probe cost by monitoring inter-domain

paths, i.e. paths that cross multiple domains. This is because the monitoring of inter-

domain paths requires less monitoring devices, and can cover links of crossed domains and

also inter-domain links. However, the number of non-overlapping inter-domain monitoring

paths is proportional to the number of inter-domain links. Therefore, the global technique
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gets blocked by redundant measurements of inter-domain links, and ends by deploying

additional monitors to avoid overlaps among inter-domain paths.

 0

 2

 4

 6

 8

 10

 12

Global detection Per-domain detection

Nb. of Monitors

(a)

 0

 2

 4

 6

 8

 10

 12

Global detection Per-domain detection

Nb. of Redundant Measurements of Links

(b)

Figure 3.7: Monitoring Cost: doubling inter-domain links

To validate our expectations, we run the heuristics for global and per-domain anomaly

detection on topologies with the default setting, and on topologies for which we doubled the

number of inter-domain links. Figure 3.6 plots the number of deployed monitors (a) cost

and the number of redundant measurements of links (b) for the two monitoring techniques

applied on topologies with the default setting. Fig 3.7 plots the same metrics for the two
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monitoring techniques applied on topologies for which we have doubled the number of

inter-domain links.

As expected, Figure 3.6. shows that the difference between the monitoring costs of

the solutions delivered by the two monitoring techniques is low for the default setting. We

notice also that the global monitoring technique deploys few monitors than the per-domain

monitoring technique, whereas the number of redundant measurements is slightly larger

for global monitoring. Figure 3.7. shows that, compared to the results for the default

setting, the global monitoring technique deploys less monitors and achieves almost the

same number of redundant measurements. In contrast, the cost of the solutions delivered

by the per-domain monitoring technique has almost doubled. Clearly, the per-domain

monitoring techniques needs to deploy additional monitors to cover the large number of

inter-domain links.
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Figure 3.8: CPU Running Time (s)

Computation Time

Figure 3.8. draws the average CPU computation time for global and per-domain mon-

itoring. The figure shows that per-domain monitoring is much more faster than global

monitoring. As explained earlier, this is because it takes longer time to compute candidate

monitoring paths that cross multiple domains than to compute intra-domain candidate

monitoring paths. However, the heuristic succeeds to deliver a solution for global moni-
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toring in about 1200 seconds, whereas other heuristics devised for mono-domain networks

have stumbled against the topology properties of multi-domain networks.

We note that practically the number of inter-domain connections is generally small in

usual networks, and thus, the default setting is more realistic [38].

Quality of paths monitored

We categorize the monitoring paths according to their lengths, in terms of number of

links, into five groups: paths of length in [1-5], paths of length in [6-10], paths of length in

[11-15], paths of length in [16-20], and paths of length in [21-30]. In Figure 3.9., we show

the distribution of network links by path length groups for the two monitoring techniques.

A link belongs to a path length group if it is monitored by a path whose length is included

in the length range of that group.
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Figure 3.9: Distribution of network links by path length groups

First, we notice that the longest monitoring paths for the per-domain monitoring tech-

nique are of length less than or equal to 15 links; whereas for the global monitoring tech-

nique, the length of monitoring paths reaches 30 links. This is because the global moni-

toring technique monitors inter-domain paths that are naturally longer than intra-domain

paths. Second, Figure 3.9. shows that more than 40% of the network links are crossed by

long monitoring paths, paths whose length exceeds 15. This means that in 40% of cases of

link-level anomalies, we get between 15 and 30 suspect links. In contrast, for per-domain
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monitoring almost 90% of network links are traversed by short monitoring paths, paths

whose length is less than or equal to 10. We conclude that the per-domain monitoring tech-

nique reduces the length of monitoring paths, and therefore, reduces anomaly detection

delays and the number of suspect links when an anomaly occurs.

Fairness of monitoring solutions
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Figure 3.10: Distribution of monitors and redundant measurements across domains

In this section we propose to show the distribution of monitors and redundant mea-

surements across domains. The aim is to evaluate the fairness of the monitoring solutions

delivered by the two monitoring techniques in distributing the monitoring load among do-

mains. To this end, we consider in our simulations multi-domain networks composed of four

domains having the same number of intra-domain links, 18 links, and the same number of

nodes, 8 nodes. Each of the four domains is connected to two other domains. The number

of inter-domain connections, i.e., number of inter-domain links and inter-domain nodes

connecting two neighboring domains, is the same for each couple of neighboring domains.

For such symmetric multi-domain networks, a fair monitoring solution would distribute

monitors and redundant measurements among domains evenly.

We use the Gini coefficient to measure the efficiency of the probe cost balancing among

domains [39] [40]. Figure 3.10. plots the Lorenz curves for the two monitoring techniques.
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Here, the curves are functions of the cumulative percentage of the number of domains

ordered by their detection costs, i.e., the number of monitors deployed in the domain and

the number of redundant measurements of the domain links, on the x-axis mapped onto

the corresponding cumulative percentage of their detection costs on the y-axis. We note

that if an inter-domain link is measured multiple times, we add the cost of this redundant

measurement to the detection costs of the two domains it connects. If the detection cost

is distributed among domains evenly, the Lorenz curve is a diagonal line that we call the

line of equality. Uneven distributions generate curves below this line. The larger is the

area between the line of equality and the Lorenz curve, the greater is the inequality in the

distribution of the detection load among domains.

Figure 3.10. shows that the curve corresponding to the global detection technique

falls below the curve corresponding to the per-domain technique. This means that the

per-domain technique balances the detection load among domains more efficiently. This

is explained by the fact that, in contrast to the per-domain technique, the global tech-

nique considers the multi-domain networks as a single domain, which generates uneven

distributions of the detection load among domains.

3.6 Conclusion

This chapter investigates the problem of anomaly detection in multi-domain networks.

An ILP formulation of the anomaly detection problem is proposed, and a heuristic that

takes into account the limitations of multi-domain topologies is devised. This heuristic

is used to evaluate and compare two anomaly detection techniques, a global anomaly

detection technique and a per-domain anomaly detection technique, with respect to a set

of performance metrics that emerge from the properties of multi-domain networks.

Simulation results show that confidentiality is so far not the only constraint to global

anomaly detection. Indeed, This monitoring technique yields solutions with relatively

long monitoring paths (for the global technique, 40% of the links of the evaluated multi-

domain network topologies are covered by paths longer than 15 hops, whereas, for the

per-domain technique, 90% of links are covered by paths shorter than 10 hops), and does

not guarantee a fair distribution of monitoring load among domains. Besides, the time

required for computing a global anomaly detection solution is much larger than the time

required for computing a per-domain anomaly detection solution. In contrast, the cost of

the per-domain solutions is slightly larger than the cost of global solutions. This makes the
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per-domain technique an efficient and secure alternative for anomaly detection in multi-

domain networks.
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CHAPTER

4 Localization of Single

Link-Level Network

Anomalies

4.1 Introduction

Upon detecting an anomaly, a set of suspect links is constructed out of the measure-

ments collected during the detection phase. The anomaly localization phase is triggered

then. It aims at reducing the set of suspect links to the anomalous link(s). The main

challenge of this phase is to pinpoint the root cause of the detected anomaly as fast as

possible in order to enable a fast recovery of the network.

Agrawal et al. [1] proposed an accurate link-level anomaly localization scheme that

can localize all potential single link-level anomalies in a given network. The key idea is to

deploy resources that enable the monitoring of a set of paths that distinguish all links of

the network pairwise. Two links are said to be distinguished from each other if we are able

to decide which one is anomalous when an anomaly occurs on one of them. Whenever an

anomaly is detected, this set of paths is monitored in order to pinpoint the anomalous link.

This technique is suboptimal in that it considers all the network links as suspect, ignoring

the information provided by the detection process, which generates unnecessary overhead

and delays the localization. More recently, Barford et al. [2] proposed another scheme

that selects paths that are to be monitored during the localization phase. Although this

technique minimizes the localization overhead, because the monitored paths distinguish

only between the suspect links pairwise, it suffers from two imperfections. The first is the

non-negligible time of computing the set of paths that are to be monitored upon detecting

an anomaly, which increases the localization delay (i.e., time elapsed between the moment

when an anomaly is detected and the moment when the anomalous link is pinpointed). The
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second is that there is no guarantee to localize all potential anomalies, because the deployed

monitors ensure only the coverage of links 1. In this chapter, we demonstrate that 1) not all

links of the network need to be distinguishable pairwise for localizing any potential anomaly,

2) all potential anomaly scenarios can be derived offline from any detection solution that

covers all the network links. Thus, we compute full and cost-efficient localization solutions,

i.e., monitors that are to be activated and paths that are to be monitored upon detecting

an anomaly, for all potential anomalies offline. Subsequently, we achieve an important gain

in the localization delay and overhead.

Multiple works propose to compute the set of paths that are to be monitored dynam-

ically upon detecting an anomaly (e.g., [43] [46] [44] [45] [47] [48] [49] [50]). Practically,

this means that one probe that maximizes the information gain given the previous probe

observations is selected and sent in the network at a time. Such an approach is practical for

highly dynamic environments. However, it is not practical for networks where anomalies

are rare events, especially, because it yields excessive delays.

Furthermore, most existing works consider only one criterion for monitoring path se-

lection that is the minimization of the number of monitored paths, and only one criterion

for monitor location selection that is the minimization of the number of deployed mon-

itoring devices (e.g., [2] [1]). However, these criteria do not reflect the localization cost

properly. Indeed, to reduce the localization delay and overhead, monitoring of links that do

not provide extra localization information during the localization phase must be avoided.

Moreover, monitor locations must be selected carefully towards minimizing the delay of

communications between the Network Operations Center (NOC) and the deployed moni-

tors. A novel anomaly localization cost model that considers the infrastructure cost, the

localization overhead and the localization delay is, therefore, proposed in this chapter.

Besides, our anomaly localization scheme selects monitor locations and monitoring paths

jointly, thereby enabling a trade-off between the number and locations of deployed moni-

toring devices and the quality of selected monitoring paths. We formulate the problem as

an ILP, and we show that it is NP-hard through a polynomial-time reduction from the

facility location problem.

Prior works on anomaly localization propose greedy approaches for computing local-

ization solutions (e.g., [1], [2], [6], [29]). In order to ensure the scalability, the number of

candidate monitoring paths should reduced to a small subset of the network paths. Un-

1. The monitors used for anomaly detection are deployed such that all the network links are covered

by at least one monitoring paths. They can not necessarily localize all potential anomalies
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fortunately, none of these works described how candidate monitoring paths are selected,

however, the choice of candidate paths has a great impact on the quality of the localization

solution. In this work we propose a heuristic that implements our anomaly localization

scheme. We devise an efficient algorithm for candidate path computation that makes the

heuristic scalable and near-optimal at a time. The key idea is to use a mathematically

proven properties that enable us to find the best candidate monitoring paths between two

given monitor locations by exploring a very small proportion of the network paths.

We verify the effectiveness of our anomaly localization scheme through extensive sim-

ulations and by comparing it with an hybrid anomaly localization scheme that combines

the strengths of the scheme proposed in [1] and the scheme proposed in [2].

The remainder of this chapter is organized as follows. Section 4.2 states the anomaly

localization problem and describes the network model. Section 4.3 proves that the condition

for single link-level localization established in [1] is sufficient but not necessary. A necessary

and sufficient condition is established in the same section. Section 4.4 shows how to derive

all potential anomaly scenarios offline. Section 4.5 describes the localization cost model,

and section 4.6 introduces the ILP formulation. Section 4.7 demonstrates that the problem

is NP-Hard. The heuristic algorithm is introduced in Section 4.8. The performance of the

proposed scheme is evaluated through simulations in section 4.9. Section 4.10 discusses the

robustness of the proposed schemes. Concluding remarks are provided in Section 4.11.

4.2 Network Model and Problem Statement

We model the network as an undirected graph G = (N , E) comprising a set of nodes

N connected by a set of undirected links 2 in E . Let P be the set of all non-looping paths

of the network. Unless otherwise mentioned, without loss of generality, we assume that

all paths in P are candidate to be monitored and all the network nodes are candidate to

support monitoring devices. We use the term monitoring paths to designate paths that are

monitored during the detection phase, also referred to as detection paths, or during the

localization phase, also referred to as localization paths. We consider that a network path

is a set of links, instead of a sequence of links, and therefore, we apply set operations (e.g.,

∩,∪) on paths. We denote the anomaly detection solution by (Dm,Dp). Dm is the set

of monitor locations where to deploy monitoring devices. Dp is a set of monitoring paths

between the selected monitor locations that covers all the network links, ∪p∈Dp
p = E .

2. This work can be easily applied for directed links. Each directed link is duplicated into
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We consider separable anomalies (e.g., connectivity, high-low loss model, delay spike

model, etc) that satisfy the following property: a path experiences an anomaly if and only

if at least one of its constituent links is anomalous [15]. According to this property all

links that are traversed by at least one detection path not exhibiting an anomaly are not

anomalous, and all paths crossing an anomalous links exhibit the same anomaly. The

remaining links constitute the set of suspect links. Anomaly localization aims at reducing

the set of suspect links, inferred upon detecting an anomaly from the detection information,

to the anomalous link. This requires monitoring additional paths that can distinguish

between suspect links pairwise. Two links are said to be distinguishable from each other if

we are able to decide which one is anomalous when an anomaly occurs on one of them.

The objective of this work is to come up with a localization scheme that enables the

localization of all potential link-level anomalies accurately; while minimizing the cost of

acquiring and deploying monitoring devices, the localization overhead and the localization

delay. Our localization scheme infers all potential anomaly scenarios from any detection

solution that covers all links of the network. This has two major benefits. The first is

that we do not need to monitor a set of paths that can distinguish between every single

pair of the network links whenever an anomaly is detected. The second is that we pre-

compute full localization solutions for all anomaly scenarios offline, thereby accelerating

the localization process. The inputs into our localization problem are an instance of the

graph G = (N , E) and a set of detection paths Dp that covers all links in E , and the outputs

are a set of monitor locations whose monitors are to be activated and a set of paths that

are to be monitored for each potential anomaly. The localization solution must achieve

a good trade-off between the monitor deployment cost, the localization overhead and the

localization delay. To this end, a novel cost model that measures these three metrics is

proposed. Also, our localization scheme selects monitor locations and localization paths

jointly; as opposed to existing schemes that apply a two-step selection procedure, therefore

omitting the trade-off between the number and locations of monitors and the quality of

localization paths.

4.3 Not all link pairs need to be distinguishable for localizing

any single link-level anomaly

In this section, we first establish a necessary and sufficient condition to distinguish

between two links. Then, we prove that not all link pairs need to be distinguishable for
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localizing any potential single link-level anomaly accurately. This excludes an already

established condition claiming that it is necessary to monitor a set of paths that can

distinguish between all links of the network pairwise whenever an anomaly is detected [1].

Theorem 1. The necessary and sufficient condition for two links e1 and e2 to be distin-

guishable from each other is the existence of a monitoring path that crosses either e1 or e2,

but not both.

Proof. We first demonstrate the sufficiency condition. Assume that either e1 or e2 is

anomalous. Let p be a path that crosses e1 (interchangeably e2) but not e2 (interchangeably

e1). If p exhibits an anomaly, then the anomalous link must be covered by p. We conclude

that e1 is the anomalous link. If, p does not exhibit an anomaly, then all its constituent

links are not anomalous. It follows that the anomalous link is e2. Thus, p is sufficient to

distinguish between e1 and e2.

The necessary condition can be proved as follows. Assume that there does not exist

any path that crosses only one of the two links. Then, the monitoring path set can be

divided into two types of paths: paths that cross both e1 and e2, and paths that neither

cross e1 nor e2. An anomaly on a given link affects all the monitoring paths that cross

that link. Therefore, the latter type of paths is not affected by the anomalies that occur

on any the two links, whereas the former type of paths is affected by the anomalies that

occur on any of the two links. Thus, the set of monitoring paths that are affected by an

anomaly on e1 is exactly the same set of paths that is affected by an anomaly on e2. This

means that e1 and e2 cannot be distinguished from each other.

Existing localization schemes (e.g., [1]) claim that all links of the network must be

distinguished pairwise in order to localize any potential anomalies. According to Theorem

1, this means that ∀e1, e2 ∈ E there exists a localization path that crosses either e2 or e2, but

not both. However, we will demonstrate that this is a sufficient but not necessary condition,

and we show how to infer the minimal set of pair of links that are to be distinguished from

a given detection solution that covers all the network links.

Consider a network link e ∈ E . We denote by De+ and De− the set of detection paths

that cross e and the set of detection paths that do not cross e, respectively. The set of

suspect links associated to an anomaly on a link e is the set of all links that cannot be

distinguished from e using only the detection information.

Theorem 2. The set of suspect links associated to an anomaly on a given link e ∈ E equals

∩p∈De+
p− ∪p∈De−

p.
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Proof. We prove this theorem by construction. The set of detection paths can be divided

into two sets:

– De+ : paths that cross link e.

– De− : paths that do not cross link e.

An anomaly on link e affects only paths that cross this link. Subsequently, paths in De−

do not exhibit an anomaly. It follows that all the links that are traversed by paths in De−

are not suspect. Now, let L be the set of links that are traversed by paths in De+ and that

are not traversed by paths in De− , L = ∪p∈De+
p - ∪p∈De−

p . L can be divided into two

subsets of links:

– L1: links that do not belong to ∩p∈De+
p− ∪p∈De−

p

– L2: links that belong to ∩p∈De+
p− ∪p∈De−

p

We prove by contradiction that all links in L1 are not suspect. Assume to the contrary

that a link l ∈ L1 is suspect. This means that there does not exist any path in De+ that

distinguishes between l and e. It follows that for each p ∈ De+ , p crosses e and l. Thus

l ∈ ∩p∈De+
p− ∪p∈De−

p, leading to a contradiction.

Likewise, we prove by contradiction that all links in L2 are suspect. Assume to the

contrary that a link l ∈ L2 is not suspect, then, there exists at least one path p ∈ De+ such

that p distinguishes between e and l. Since all paths in De+ cross e, then p does not cross

l. It follows that l /∈ ∩p∈De+
p− ∪p∈De−

p, leading to a contradiction.

Corollary 1. A sufficient and necessary condition for localizing any potential link-level

anomaly is to distinguish each link e ∈ E from links that belong to ∩p∈De+
p− {∪p∈De−

p ∪

{e}}.

Let S(e) denotes the set of suspect links associated to anomalies on link e, S(e) =

∩p∈De+
p− {∪p∈De−

p ∪ {e}}.

Corollary 2. e1 ∈ S(e2) ⇔ S(e1) = S(e2), ∀e1, e2 ∈ E

Corollary 3. S(e1) �= S(e2) ⇔ S(e1) ∩ S(e2) = ∅

The properties presented in the above corollaries are demonstrated in Appendix A.

4.4 Derivation of potential anomaly scenarios

Theorem 2 states that the set of suspect links returned at the end of the detection

phase whenever an anomaly on link e occurs is ∩p∈De+
p− ∪p∈De−

p. Therefore, instead of
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(a)

Monitor locations nodes 0, 1 and 7

Detection Paths 〈(0, 7)〉

〈(0, 1)〉

〈(0, 4), (4, 1)〉

〈(0, 2), (2, 3), (3, 1), (1, 7)〉

〈(0, 6), (6, 5), (5, 4), (4, 2), (2, 1)〉

〈(1, 5), (5, 0), (0, 3), (3, 2), (2, 6), (6, 7)〉

(b)

Figure 4.1: Illustrative network topology, (a), and an associated detection solution, (b).

computing monitors that are to be activated and paths that are to be monitored during

the localization phase whenever an anomaly is detected, we propose to perform these

computations for all potential anomalies only once offline. Having a set of detection paths

that cover all links of the network, we infer the set of suspect links for all potential anomalies

as described in Theorem 2. Then, a single anomaly scenario is created for all links that

have the same set of suspect links, i.e., an anomaly scenario is created for each distinct set

of suspect links. Let us denote by A the set of all anomaly scenarios, and let Sa denotes

the set of suspect links associated to the anomaly scenario a ∈ A. Let dS = {Sa, ∀a ∈ A}.

dS have the following properties.

Corollary 4. ∪e∈ES(e) = ∪S(i)∈dSS(i) = E

Corollary 5.
∑

S(i)∈dS | S(i) | = | E |

Clearly, an upper bound of the number of anomaly scenarios, whatever the topology of

network and whatever the detection solution, is the number of the network links. It is easy
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Table 4.1: Sets of suspect links for all potential anomalies

Anomalous link Set of suspect links

(0, 1) {(0, 1)}

(0, 2) {(0, 2), (1, 3), (1, 7)}

(1, 2) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}

(0, 3) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}

(1, 3) {(0, 2), (1, 3), (1, 7)}

(2, 3) {(2, 3)}

(0, 4) {(0, 4), (1, 4)}

(1, 4) {(0, 4), (1, 4)}

(2, 4) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}

(0, 5) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}

(1, 5) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}

(4, 5) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}

(0, 6) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}

(2, 6) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}

(5, 6) {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}

(0, 7) {(0, 7)}

(1, 7) {(0, 2), (1, 3), (1, 7)}

(6, 7) {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}

Table 4.2: Anomaly scenarios

Anomaly scenario Set of suspect links

a1 Sa1 = {(0, 2), (1, 3), (1, 7)}

a2 Sa2 = {(0, 6), (5, 6), (4, 5), (2, 4), (1, 2)}

a3 Sa3 = {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}

a4 Sa1 = {(0, 4), (1, 4)}

to show that when this bound is reached, the set of suspect links for an anomaly on link

e, ∀e ∈ E , is reduced to the link e. In such case, the localization of all potential anomalies

is immediate from the detection information. According to Corollary 2, we need to deploy
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monitors that enable the monitoring of a set of paths distinguishing links of each anomaly

scenario pairwise in order to ensure the localization of all potential anomalies.

To illustrate, consider the sample network topology depicted in Figure 4.1(a). An

associated anomaly detection solution that covers all links of the network is depicted in

Figure 4.1(b). We use Theorem 2 to compute the set of suspect links for all potential

anomalies. The result is depicted in Table 4.1. The sets of suspect links associated to

link (2, 3) and link (0, 7) are unitary. When an anomaly occurs on one of these two links,

there is no need to trigger the localization phase because the anomalous link is immediately

pinpointed by intersecting the detection paths that exhibit the anomaly. Furthermore, four

non-unitary anomaly scenarios (a1, a2, a3, a4) are created for this topology (see table 4.2).

These are the four distinct non-unitary sets of suspect links.

Let AllPairs denotes the number of all the network link pairs. Clearly, AllPairs = (|

E | (| E | −1))/2. Let dPairs denotes the number of pair of links that need be distinguish-

able for localizing any potential link-level anomaly.

Corollary 6. dPairs = AllPairs -
∑

S(i),S(j)∈dS:i<j

| S(i) || S(j) |

Corollary 6 confirms that we do not need to distinguish between all the network link

pairs unless the number of detection paths equals 1, which is very unlikely.

The proofs of Corollary 4, Corollary 5 and Corollary 6 are described in Appendix A.

4.5 Anomaly localization cost

Consider a set of candidate monitor locations, M, a set of network paths that are

candidate to be monitored, P, and a set of anomaly scenarios A. The anomaly localization

cost includes two costs:

– Monitor cost : it includes the effective cost of acquiring hardware and software mon-

itoring devices and the cost of their maintenance. In addition, it includes the cost

of communications between the monitors and the NOC. For instance, the cost of

communications between a monitor and the NOC can be expressed as a function of

the number of routing hops that separates them. Let us denote by Cn the cost of

deploying a monitor on node n. Let Yn be a binary variable that indicates whether

node n is selected to hold a monitoring device. The monitor cost can be expressed
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as follows:
∑

n∈M

CnYn (4.1)

– Probe cost : it expresses the overhead of monitoring flows on the underlying net-

work. Measurements of links that do not provide localization information should

be avoided in order to minimize the monitoring overhead. Clearly, measuring links

that do not belong to the set of suspect links of an anomaly scenario does not pro-

vide any extra localization information. Furthermore, measurement of links that

belong to the set of suspect links might be useless. Revisit Figure 4.1 and table

4.1 to illustrate. Consider an anomaly on link (6, 7). The associated set of sus-

pect links is Sa3
= {(1, 5), (0, 5), (0, 3), (2, 6), (6, 7)}. Consider now the set of localiza-

tion paths {p1:〈(1, 5)(5, 6)(2, 6)〉; p2:〈(1, 5)(0, 5)(0, 2)〉; p3:〈(1, 7)(6, 7)(2, 6)〉} that distin-

guishes between all the links of Sa3 pairwise. Path p1 divides Sa3 into two subsets:

S1
a3
{(1, 5), (2, 6)} and S2

a3
{(0, 5), (0, 3), (6, 7)}. p1 distinguishes each link of S1

a3
from

each link of S2
a3
. Link (5, 6) that is traversed by p1 does not belong to Sa3 , and there-

fore, it does not provide any localization information. Path p2 divides S1
a3
into two

subsets: S11
a3
{(1, 5)} and S12

a3
{(2, 6)}, and divides S2

a3
into two subsets: S21

a3
{(0, 5), (6, 7)}

and S22
a3
{(0, 3)}. Finally, p3 distinguishes between (0, 5) and (6, 7). However, it crosses

(2, 6) that is already distinguished from all the other suspect links. Thus, measuring

(2, 6) by p3 does not provide extra localization information, although it belongs to

Sa3
.

Let us denote by Ce the cost of measuring link e. Ce should be proportional to the

load of link e, in order to avoid multiple measurements of the most overloaded links

of the network. Consider an anomaly scenario a ∈ A. Let us denote by Sa the set

of suspect links associated to the anomaly scenario a. Let Xpa be a binary variable

that specifies whether path p is part of the localization solution of a. Let δpe be a

binary input parameter that indicates whether path p crosses link e. The probe cost

of the localization solution of a reads as follows:

∑

e∈E,p∈P ′

CeδpeXpa (4.2)

4.6 ILP Formulation

The objective of the ILP is to find a localization solution for each anomaly scenario in

A such that the anomaly localization cost is minimized. Let δpn be a binary parameter
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that indicates whether node n is an end-node of path p. For simplicity of notation, we

define the following sets:

– δPE = {δpe; p ∈ P, e ∈ E}

– δPM = {δpn; p ∈ P , n ∈ M}

– CM = {Cn; n ∈ M}

– CE = {Ce; e ∈ E}

Let α be the weight associated to the monitor cost, and let β be the weight associated

to the probe cost. α,β ∈ R. The input into the ILP is an instance of the graph G =

(E ,M,P,A, δPE , δPM, CE , CM,α,β). The objective function minimizes the sum of the

monitor cost and the probe cost. It reads as follows:

α
∑

n∈M

CnYn + β
∑

a∈A,e∈E,p∈P

CeδpeXpa (4.3)

The ILP is subject to two constraints. The first constraint ensures that either end node

of each selected monitoring paths is selected as monitor location. It reads as follows:

Yn ≥ δpnXpa; ∀n ∈ M, ∀p ∈ P, ∀a ∈ A (4.4)

The second constraint ensures that the suspect links associated to each anomaly sce-

nario are distinguishable pairwise. To this end, according to Theorem 2, the constraint en-

sures that for each anomaly scenario a and for each pair of suspect links (e1, e2) : e1, e2 ∈ Sa

there exists at least one monitoring path that crosses either e1 or e2, but not both. This

constraint reads as follows:

∑

p∈P

(δpe1 + δpe2 − 2δpe1δpe2)Xpa > 0; ∀a ∈ A; ∀e1, e2 ∈ Sa (4.5)

We show that the above inequality is sufficient to distinguish between all the link pairs

of each anomaly scenario using the argument of the following theorem.

Theorem 3. Let P1 be the subset of paths of P that cross either e1 or e2, but not both.
∑

p∈P(δpe1 + δpe2 − 2δpe1δpe2) =| P1 |.

Proof. Refer to Appendix B.

Corollary 7. If
∑

p∈P(δpe1 + δpe2 − 2δpe1δpe2)Xpa > 0, then there exists at least one

path in P that crosses either e1 or e2 but not both, then there exists at least one path in

P that distinguishes between e1 and e2.
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4.7 The Anomaly Localization Problem is NP-Hard

Theorem 4. The anomaly localization problem presented in the previous section is NP-

Hard.

Proof. Our formulation of the anomaly localization problem can be reduced from the NP-

Hard facility location problem.

Facility location problem [30]: consider a set of potential facility locations F , and

a set of clients D. Opening a facility at location i incurs a non-negative cost that is equal

to fi. The cost of servicing client j ∈ D by a facility installed at location i ∈ F is dij . The

problem is to find an assignment of each client to exactly one facility such that the sum of

the facility opening costs and the service costs is minimized.

We denote by f the set of facility opening costs, f = {fi, i ∈ F}, and by d the set of

service costs, d = {dij ; i ∈ F , j ∈ D}. Given an instance I = (D,F , f, d) of the facility

location problem, we produce an instance R(I) = (E ,M,P,A, δPE , δPM, CE , CM,α,β) of

the localization problem as follows. For each client j ∈ D, we create:

– Three nodes labeled by nj1, nj2, and nj3.

– One link connecting nj1 to nj2, labeled by ej1.

– One link connecting nj2 to nj3, labeled by ej2.

– An anomaly scenario aj such that Saj = {ej1, ej2}.

For each facility location i ∈ F , we create two nodes labeled by mi1 and mi2. For

each i ∈ F and for each j ∈ D, we create one link connecting mi1 to nj1, labeled by

e1ij , and one link connecting mi2 to nj2, labeled by e2ij . We obtain a graph G = (E ,N ),

where N = {nik; i ∈ D, k ∈ [1; 3]} ∪ {mjk; i ∈ F , k ∈ [1; 2]}, and E = {ejk; j ∈ D, k ∈

[1; 3]} ∪ {ekij ; i ∈ F , j ∈ D, k ∈ [1; 2]}. An example of a graph constructed out of a facility

location instance with four facility locations and four clients is shown in Figure 4.2.

The candidate monitor location set isM = {mjk; i ∈ F , k ∈ [1; 2]}. The set of anomaly

scenarios is A = {aj ; j ∈ D}. The set of candidate localization paths is P = {pij ; i ∈ F , j ∈

D}, where pij is the non-looping path between mi1 and mi2 that crosses the links e1ij , ej1

and e2ij . The monitor deployment costs are defined as follows: Cmi1 = Cmi2 = fi/2. The

link measurement costs are defined as follows: Cei1 = Cei2 = 0, Ce1ij
= Ce2ij

= dij/2. The

remaining input parameters can be inferred easily from G, M, A and P as follows:
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Figure 4.2: Example of a graph constructed out of a facility location instance with four facility locations

and four clients

– δajej′k =







1 if j = j
′

0 otherwise
; ∀j, j

′

∈ D, k ∈ [1; 2]

– δajekij
= 0; ∀i ∈ F , j ∈ D, k ∈ [1; 2]

– δpijmi′k
=







1 if i = i
′

0 otherwise
; ∀i, i

′

∈ F , k ∈ [1; 2]

– δpijej1 = δpije1ij
= δpije2ij

= 1; ∀i ∈ F , j ∈ D

– δpijej2 = 0; ∀i ∈ F , j ∈ D

– α = β = 1

It can be easily shown that the time complexity of the above reduction is O(| F |×| D |),

and therefore, it can be carried out in polynomial-time. In the sequel, we show that there

is an optimal solution to the Instance I of the facility location problem if and only of there

is an optimal solution to the instance R(I) of our anomaly localization problem.

Let us start by demonstrating that if there is an optimal solution to the facility location

instance, then there is a feasible solution to the anomaly localization instance. Let the

facility location solution assign each client j to a facility installed at location i. Consider

the anomaly localization solution that selects for each anomaly scenario aj the path pij

and the monitor locations mi1 and mi2. Then, let us fix an anomaly scenario aj . By

construction, path pij crosses three links that are ej1 and e1ij and e
2
ij . It follows, according
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to Theorem 1, that pij distinguishes between ej1 and ej2. Constraint (4.4) states that if

pij is selected to be monitored, then, its end nodes must be selected to hold monitoring

devices. Thus, the solution that selects for each anomaly scenario aj the path pij to be

monitored, and its end nodes, mi1 and mi2, as monitor locations is a feasible solution to

the anomaly localization instance.

Conversely, we demonstrate that if there is an optimal solution to the anomaly localiza-

tion instance, then there is a feasible solution to the facility location instance. An optimal

solution to the facility location problem selects exactly one path for each anomaly scenario.

This is because, by construction, for each anomaly scenario ai ∈ A | Sai |= 2. Thus, moni-

toring one path that crosses exactly one of the two links is sufficient to distinguish between

them. Let the optimal anomaly localization solution selects for each anomaly scenario aj

the path pij , and naturally, the monitor locations mi1 and mi2. Trivially, the solution that

assigns to each client j ∈ D the facility installed at location i is a feasible solution to the

facility location instance.

We now prove that the constructed anomaly localization solution has the same cost as

its corresponding optimal facility location solution (the proof holds in the converse case).

Let Wi be a binary variable that indicates whether a facility is installed at location i, and

let Zij be a binary variable that indicates whether client j is serviced by a facility installed

at location i. Using the arguments that Zij = Xpijaj and Wi = Ymi1 = Ymi2
3, we show

that the cost of the localization solution, denoted by Cost(SR(I)), is equal to the cost of

its corresponding facility location solution, denoted by Cost(SI), as follows:

Cost(SR(I)) = α
∑

mik∈M

Cmik
Ymik

+ β
∑

aj∈A,e∈E,pij∈P

CeXpijaj

=
∑

mik∈M

Cmik
Ymik

+
∑

aj∈A,pij∈P

(Ce1ij
+ Ce2ij

)Xpijaj

=
∑

mi1∈M

fiYmi1 +
∑

aj∈A,pij∈P

dijXpijaj

=
∑

i∈F

fiWi +
∑

j∈D,i∈F

dijZij

= Cost(SI)

Now, we show that the solution to the anomaly localization instance, denoted by SR(I),

that is constructed out of an optimal solution to the facility location instance, denoted

by S∗
I , is optimal. Assume to the contrary that SR(I) is not optimal. Let S

′∗
R(I) be an

3. Recall that Xpa is a binary variable that indicates whether path p is part of the localization solution

of the anomaly scenario a, and Yn is a binary variable that indicates whether node n is selected as a

monitor location
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optimal solution to the anomaly localization instance, and let S
′

I be the facility location

solution constructed out of S
′∗
R(I). We have Cost(S

∗
I ) = Cost(SR(I)) < Cost(S

′∗
R(I)) = Cost(S

′

I),

leading to a contradiction. Using the same arguments, we can show that the solution to the

facility location instance constructed out of an optimal solution to the anomaly localization

instance is optimal.

4.8 Heuristic solution

In this section, we provide a monitor location and path selection algorithm for localizing

single link-level anomalies. The inputs of the algorithm are a network graph G = (N , E), a

set of anomaly scenarios A, a set of candidate monitor locationsM, the costs of deploying

monitoring devices on the network nodes CM = {Cn; n ∈ M}, and the costs of monitoring

the network links CE = {Ce; e ∈ E}. The outputs are a set of monitor locations, SMa,

and a set of monitoring paths, SPa, that can distinguish between all links of Sa pairwise,

for each a ∈ A.

Similarly to the ILP, the heuristic solution aims at minimizing the infrastructure cost,

the communication cost and the probe cost jointly. To this end, we use a nested greedy ap-

proach that selects monitor locations jointly with monitoring paths. Algorithm 4 describes

the pseudo-code. ProbeCost(p, CE) is a function that returns the probe cost incurred by

monitoring path p. This cost is computed as described in section 4.5. ms stores the

best current candidate monitor location. SM stores the monitor locations selected at the

previous iterations. minPcost stores the current lowest probe cost, and maxlc stores the

current largest localization capacity, i.e., the number of link pairs that can be distinguished

by monitors in SM∪ {ms}. CP stores paths selected by the current best solution. In the

sequel, we define the criteria of monitor location selection and monitoring path selection.

A detailed description of how monitor locations and monitoring paths are selected, and

how candidate localization paths are computed is provided in the following subsections.

4.8.1 Monitor location selection

The algorithm starts by selecting one candidate monitor location randomly. Alterna-

tively, the candidate monitor location with the smallest monitor cost (sum of the infras-

tructure cost and the communication cost) can be selected. However, we advocate random

selection for two reasons. The first is that the monitor location with the smallest monitor

cost does not necessarily incur the smallest probe cost. The second is that selecting the
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starting point randomly enlarges the space of explored solutions over multiple runs of the

algorithm. Monitor locations are, then, added to the solution greedily until all link pairs

of all the anomaly scenarios are distinguished.

At each greedy iteration (lines 5-26), all the remaining candidate monitor locations are

explored. Let us fix a candidate monitor location m. A set of monitoring paths whose

end nodes are in SM∪ {m} is selected greedily (lines 7-26). The path selection procedure

is described in details in section 4.8.2. The candidate monitor location whose associated

monitoring paths can distinguish between the largest number of link pairs over all the

anomaly scenarios is selected (line 24). In case of a tie, a monitor location that incurs the

smallest localization cost (α× monitor cost + β× probe cost, where the probe cost is the

summation of the probe costs of the associated monitoring paths) is selected.

When a solution that distinguishes between all the link pairs of all the anomaly scenar-

ios is found, the algorithm continues the exploration of the remaining candidate monitor

locations, if any, towards reducing the probe cost. However, a filter is applied on these

locations before exploring them (line 6). Only candidate locations whose monitor cost is

smaller than the probe cost of the current best solution are explored. Clearly, the local-

ization cost of any solution that selects a monitor location not satisfying this filter would

be larger than the localization cost of the current best solution. The algorithm ends when

the set of candidate monitor locations gets empty, i.e., all candidate monitor locations

have been selected, or when remaining candidate monitor locations can neither improve

the localization capacity nor the probe cost of the current best solution.

4.8.2 Selection of localization paths

Given a candidate monitor location m and a set of already selected monitor locations

SM, the procedure of selecting an associated set of monitoring paths, (lines 7-26), is as

follows. Let us fix an anomaly scenario a. A set of monitoring paths that maximizes the

number of distinguished pair of links of Sa while minimizing the probe cost is selected

greedily as follows. First, one path that can distinguish between the largest number of link

pairs of Sa is selected. We refer to the number of pair of links of a set of suspect links Sa

that can be distinguished by a path p as the localization capacity of p with respect to Sa,

denoted by lc(p,Sa). It can be easily shown that:

lc(p,Sa) =| p ∩ Sa | (| Sa |− | p ∩ Sa |) (4.6)
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Algorithm 4: Monitor location and path selection algorithm for single anomaly

localization

1 nbPairs =
∑

a∈A

|Sa|−1
∑

k=1

k; minPcost ← INT_MAX; maxlc ← 0; CP ← ∅;

2 SM ← {selectRandomElement(M)}; Remove the selected monitor location from M;

3 while (M �= ∅) do

4 Reset ms ← Null;

5 foreach (m ∈ M) do

6 if (( maxlc = nbPairs and βminPCost ≤ αCm)) then Jump to line 5;

7 Reset lc ← 0; Reset Pcost ← 0;

8 for (a ∈ A) do

9 Clear Pa; Clear Ma; j ← 1; s(0) ← 1; S
(0)1
a ← Sa;

10 while (s(j) > 0) do

11 S
(j)
a ← {S

(j)1
a , ... S

(j)k
a ,S

(j)k+1
a ...,S

(j)s(j)
a };

12 pa(j) ← CandidatePathSelection(m,SM,G,S
(j)
a , CP);

13 lc+=
∑

1≤k≤s(j)
lc(pa(j),S

(j)k
a );

14 Pcost+= ProbeCost(pa(j), CE);

15 l ← 1;

16 for (1 ≤ k ≤ s(j)) do

17 if (| pa(j) ∩ S
(j)k
a |> 1) then S

(j+1)l
a ← pa(j) ∩ S

(j)k
a ; l ← l + 1;

18 if (| S
(j)k
a − {pa(j) ∩ S

(j)k
a } |> 1) then

S
(j+1)l+1
a = S

(j)k
a − {pa(j) ∩ S

(j)k
a }; l ← l + 1;

19 s(j) ← l − 1;

20 if (maxlc = nbPairs and (αCm + β(PCost +
s(j+1)
∑

l=1

ThMinPCost(S
(j+1)l
a ) +

∑

a
′
∈A,a

′
>aThMinPCost(Sa

′ )) ≥

21 αCms
+ βminPCost)) then

22 /*Stop the exploration of the current candidate monitor location*/

Jump to line 5;

23 Add the end nodes of pa(j) to Ma; Add pa(j) to Pa; j ← j + 1;

24 if (lc > maxlc or (lc = maxlc and αCm + βPcost < αCms
+ βminPcost)) then

25 ms ← m; maxlc ← lc; minPCost ← PCost; SPa ← Pa; SMa ← Ma;

26

27 if (ms = Null) then return ({SPa,SMa}; ∀a ∈ A)

28 Update CP ←
⋃

a∈A

SPa; Add ms to SM; Remove ms from M;

29 return ({SPa,SMa; ∀a ∈ A});
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In case of a tie, a path that minimizes the probe cost is selected. The algorithm used

for computing the candidate monitoring path is described in section 4.8.3. Let pa(1) be

the selected path. Two subsets of suspect links are generated: S
(1)1
a = Sa ∩ pa(1) and

S
(1)2
a = Sa − {Sa ∩ pa(1)}. According to Theorem 1, pa(1) distinguishes between every pair

of links (e1, e2) such that e1 ∈ S
(1)1
a and e2 ∈ S

(1)2
a . At the next step, we need to distinguish

between the links of S(1)1
a pairwise and between the links of S(1)2

a pairwise. Hence, a path

that maximizes lc(p,S(1)1
a ) + lc(p,S

(1)1
a ) is selected. Ties are broken by selecting a path

that minimizes the probe cost.

Let pa(j) be the monitoring path selected at step (j). Let s(j−1) be the number of

non-unitary subsets of suspect links generated at step (j − 1). pa(j) is selected such that
∑

1≤k≤s(j−1)
lc(p, S

(j−1)k
a ) is maximized. In case of a tie, a path that minimizes the probe

cost is selected. For each S(j−1)k
a , 1 ≤ k ≤ s(j−1), two subsets of suspect links are generated:

S
(j−1)k
a ∩pa(j) and S

(j−1)k
a −{S

(j−1)k
a ∩pa(j)}. Each link of the former subset is distinguished

from each link of the latter subset. Only non-unitary subsets, whose links need to be

distinguished from each other, are considered at the next step. This greedy process is

re-iterated until all the generated subsets of suspect links are unitary or until no candidate

localization path can distinguish between the pair of links of non-unitary subsets. For each

selected path pa(j), the localization capacity of m is incremented by lc(pa(j),S
(j)
a ) (line 13),

and its probe cost is incremented by probeCost(pa(j), CE) (line 14). The above procedure

is applied on the all the anomaly scenarios in A. Then, the localization capacity and the

probe cost of m are evaluated (line 24). If the localization capacity of m is greater than

maxlc, or if the localization capacity of m equals maxlc and its probe cost is less than

minPcost; then maxlc is set equal to the localization capacity of m, minPcost is set equal

to the probe cost of m and ms is set equal to m.

Furthermore, using the argument of the following theorem, we can compute a lower

bound of the probe cost of the explored monitor location at any step in the path selection

procedure.

Theorem 5. The theoretical minimal probe cost relative to a set of suspect links S denoted

by ThMinPcost(S) reads as follows:

ThMinPcost(S) =
∑

e∈S

Ce −max
e∈S

Ce (4.7)

Proof. Refer to Appendix C.
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The lower bound of the probe cost of a candidate monitor location after path pa(j) is

added to the set of its associated monitoring paths reads as follows:

Pcost +

s(j)
∑

k=1

ThMinPcost(S(j)k
a ) +

∑

a
′
∈A,a

′
>a

ThMinPcost(S
′

a), (4.8)

where Pcost is the summation of the probe costs of the already selected paths.

When the algorithm finds a solution that can distinguish between all link pairs of all

the anomaly scenarios, it continues exploring the remaining candidate monitor locations

that satisfy the monitor cost filter (line 6) towards reducing the probe cost. Using (4.8), we

propose an optimization of the exploration process of these candidate monitor locations.

The idea is to update the lower bound of the probe cost of the explored monitor location

whenever a monitoring path is selected, and to infer a lower bound of the localization cost

(line 20). The exploration of the considered candidate monitor location is abandoned if,

at any step of the path selection procedure, the calculated lower bound of the localization

cost dominates the localization cost of the current best solution.

4.8.3 Candidate path selection algorithm

This section describes the procedure candidatePathSelection called by Algorithm 4 at

line 12. The inputs into this procedure are the network graph, the currently explored

monitor location m, the subsets of suspect links generated at the current step of the

path selection procedure S(j)
a = {S

(j)1
a , ... S

(j)k
a ,S

(j)k+1
a ...,S

(j)s(j)
a }, the set of the already

selected monitor locations SM, and the set of monitoring paths selected by the current

best solution CP. The output is one monitoring path, whose end nodes are in SM∪ {m},

that maximizes the localization capacity while minimizing the probe cost.

The main difficulty of this procedure is the computation of the set of candidate paths.

Generally, the smaller the set of candidate paths is, the worst the quality of the heuristic

is. This is because good paths might be missed when reducing the number of candidate

paths. However, this reduction is imperative to ensure the scalability of the heuristic.

The procedure candidatePathSelection implements an algorithm for candidate localization

path computation. The algorithm considers all the network paths whose end nodes belong

to {m} × SM as candidate to be monitored. However, computing this set of paths is

computationally expensive, because it requires exploring all the network graph. Moreover,

since Algorithm 4 explores all remaining candidate monitor locations at each iteration,

the graph would be explored multiple times; which makes the heuristic non-scalable and
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Procedure 2: candidatePathSelection(m,SM,G,S
(j)
a , CP)

1 pc ← newPath();

2 minli ←
∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a | /2− 1; minPcost ←

∑

e∈E Ce;

3 foreach q ∈ CP do

4 li =
∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a | /2− | S

(j)k
a ∩ q |;

5 if (li < minli or (li = minli and probeCost(pc, CE) < minPc)) then minli = li;

minPc = probeCost(pc, CE); ps = q;

6 add-node-to-path(m, pc);

7 depthFirst (m, pc){

8 foreach (n ∈ children(m,G) and (m,n) /∈ pc) do

9 add-node-to-path(n, pc);

10 li(pc,S
(j)
a ) =

∑

S
(j)k
a ∈S

(j)
a

absoluteV alue(| S
(j)k
a | /2− | S

(j)k
a ∩ pc |);

11 if (n ∈ SM) then

12 if (li(pc,S
(j)
a ) < minli or (li(pc,S

(j)
a ) = minli and

probeCost(pc, CE) <= minPc)) then

13 ps ← pc; minli ← li(pc,S
(j)
a ); minPc = probeCost(pc, CE);

14 if (minli = 0 and minPc = 0) then

15 /*end the algorithm*/ Jump to line 23;

16 else

17 if ((minli = 0 and (probeCost(pc, CE) + li(pc,S
(j)
a )−minli >=

minPc or ∃ S
(j)k
a ∈ S

(j)
a such that

18 | S
(j)k
a ∩ pc |>| S

(j)k
a | /2)) or (li(pc,S

(j)
a ) > minli and ∀ S

(j)k
a ∈ S

(j)
a |

S
(j)k
a ∩ pc |>| S

(j)k
a | /2)) then

19 do not explore the descendants of n;

20 else

21 Recursively call depthFirst (n, pc);

22 }

23 return ps;

non-practical for dense networks. An alternative solution is to compute and store all paths

traveling between all candidate monitor locations offline, thereby reducing the number of

times the network graph is explored to one. Clearly, this solution is impractical due to

memory issues. We conclude, based on the above discussion, that our candidate path

computation algorithm must minimize the number of paths that are to be explored, while

guaranteeing that good candidate paths are not missed. To this end, we make use of the

argument of the following theorem:
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Theorem 6.

Let absval(x) be a function that returns the absolute value of the number x, and let

lc(S
(j)
a , p) =

∑

S
(j)k
a ∈S

(j)
a
lc(S

(j)k
a , p) be the localization capacity of p with respect to S(j).

We have,

max
p∈P

lc(S(j)
a , p) = min

p∈P

∑

S
(j)k
a ∈S

(j)
a

absval(| S(j)k
a | /2− | S(j)k

a ∩ p |) (4.9)

Proof. Refer to Appendix D.

We refer to
∑

S
(j)k
a ∈S

(j)
a

absval(| S
(j)k
a | /2− | S

(j)k
a ∩ p |) as the localization indicator of

path p with respect to S(j)
a , and we denote it by li(p,S(j)

a ). According to Theorem 6, the

smaller li(p,S(j)
a ) is, the higher the localization capacity of p with respect to S(j)

a is. The

localization indicator is used along with the probe cost to avoid exploring all the network

graph, while guaranteeing that good candidate paths are not missed. Procedure 2 provides

an overview of the pseudo-code. ps stores the current best candidate path, minli stores

the localization indicator of ps, and minPc stores its probe cost. ps, minli and minPc are

initialized to Null,
∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a | /2 − 1 and

∑

e∈E Ce, respectively. Note that the

least upper bound of the localization indicator is
∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a | /2, which corresponds

to a path that does not provide any localization information (i.e., ∀S(j)k
a ∈ S

(j)
a ,S

(j)k
a ∩p =

∅ or ∃S(j)k
a ∈ S

(j)
a such that p = S

(j)k
a ) 4; whereas the least upper bound of the probe cost

is
∑

e∈E Ce, which corresponds to a path that crosses all the network nodes and does not

provide any localization information. However, if CP is not empty, then ps is set equal to

the best path in CP , i.e., the path that maximizes the localization capacity (in case of a

tie, a path that minimizes the probe cost); and minli and minPc are initialized to the

localization capacity and the probe cost of that path, respectively. The rational behind

considering paths in CP is to avoid re-exploring all candidate paths traveling between the

already selected monitors.

The network graph is, then, explored in depth-first order starting from the candidate

monitor location m. It is worth noting that we believe that a breadth-first search can

find candidate paths faster. However, the depth-first search approach requires much less

memory.

We now introduce the optimizations made to avoid exploring all the network graph,

which speeds up the search and ensures the scalability of the algorithm. Let n be the

4. By construction,
⋂

k
S

(j)k
a = ∅
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currently explored node and pc the current path to that node. ps , minli and minPc are

set equal to pc, li(pc,S
(j)
a ), and probeCost(pc, CE), respectively, if the following condition

is true:

n ∈ SM and (li(pc,S
(j)
a ) < minli or (li(pc,S

(j)
a ) = minli and probeCost(pc, CE) < minPc))

(4.10)

The above condition implies that the path selection criterion is the minimization of the

localization indicator, which is equivalent to the maximization to the localization capacity,

and that ties are broken by minimizing the probe cost. Moreover, it ensures that the end

nodes of the selected path are in SM ∪ {m}.

Now, the most important feature of the algorithm is that it is able, using Theorem (6),

to decide whether all paths having a given prefix are not good. A good path is a path that

dominates the current best path, i.e., a path that satisfies Condition (4.10). In fact, all

paths having as prefix the current path pc are undoubtedly inefficient if one of the following

conditions is true:

minli = 0 and ∃ S(j)k
a ∈ S(j)

a such that | S(j)k
a ∩ pc |>| S

(j)k
a | /2 (4.11)

minli = 0 and ∀S(j)k
a ∈ S(j)

a | S(j)k
a ∩ pc |≤| S

(j)k
a | /2 and probeCost(pc, CE)+

min
e∈E

Celi(pc,S
(j)
a ) ≥ minPc (4.12)

li(pc,S
(j)
a ) > minli and ∀S(j)k

a ∈ S(j)
a | S(j)k

a ∩ pc |≥| S
(j)k
a | /2 (4.13)

Whenever a node that is not in SM is explored, the current path to that node is

examined. If it satisfies one of the above conditions, then the descendant nodes of the

current node will not be explored, i.e., all paths having as prefix the current path will

be discarded without exploring their suffixes. This achieves great savings in terms of the

number of explored paths and in terms of time. The accuracy of conditions (4.11), (4.12)

and (E) is demonstrated in Appendix E.

4.9 Performance Evaluation

Extensive simulations are conducted on network topologies built using the BRITE gen-

erator [13] [33] (Waxman model [31]: α = β = 0.4, random node placement 5). We use

5. These parameters are not to be confused with the monitor cost weight (α) and the probe cost weight

(β) introduced in Section 4.6. Their values equal the values used by Waxman to generate network topologies

[31].
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Cplex11.2 [12] to solve ILPs and we implement our algorithms using C++. All the numerical

results presented in this section are the mean over 30 simulations on random simulations.

Our experiments indicate that the results are almost the same for larger number of simula-

tions. Table 4.3 depicts a summary of the topologies considered. Our localization scheme

takes as input any detection solution that covers all links of the network. For small topolo-

gies, i.e., TOP(8, 18), optimal detection solutions are computed using the ILP proposed

in the chapter 2 of this thesis; whereas the anomaly detection heuristic proposed in the

same chapter is used to compute detection solutions for larger topologies. Note that the

anomaly detection problem is NP-Hard, therefore, optimal detection solutions could not

be computed for large topologies.

Table 4.3: Summary of the topologies considered in the evaluation

Topology Nb. of nodes Nb. of links

TOP(8, 18) 8 18

TOP(10, 31) 10 31

TOP(12, 41) 12 41

TOP(15, 59) 15 59

TOP(20, 80) 20 80

The evaluations are performed on a PC equipped with a 2,992.47 MHz Intel(R)

Core(TM)2 Duo processor and 3.9 GB of RAM. We assume that every nodes of the network

is candidate to support a monitoring device and all paths of the networks are candidate to

be monitored. We set Cn = Ce = 1, ∀n ∈ N and ∀e ∈ E .

4.9.1 Comparing our Anomaly Localization Scheme with Existing

Schemes

We compare our anomaly localization scheme with an hybrid anomaly localiza-

tion scheme that combines the strengths of the schemes proposed in [1] and [2]. As

proposed in [2], a set of paths that distinguishes only between the suspect links is

monitored during the localization phase. However, to guarantee that all potential

anomalies can be localized uniquely, a set of monitors that can distinguish between all

pairs of the network links is deployed [1]. Such a scheme can be formulated as two

ILPs. The first ILP computes a minimal subset of monitor locations that enables the
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localization of all potential anomalies. This ILP is run only once offline. It reads as follows:

Minimize
∑

n∈M

Yn

Subject to:
∑

p∈P(δpe1 + δpe2 − 2δpe1δpe2)Zp > 0; ∀e1, e2 ∈ E ; ∀p ∈ P

δpnYn ≥ Zp; ∀p ∈ P , ∀n ∈ N

The second ILP is run whenever an anomaly is detected. The input is the set of

monitor locations selected by the first ILP,M
′

, and a set of suspect links S. The output is

a minimal set of monitoring paths that can distinguish between the suspect links pairwise.

This ILP reads as follows:

Minimize
∑

p∈P

Zp

Subject to:
∑

p∈P(δpe1 + δpe2 − 2δpe1δpe2)Zp > 0; ∀e1, e2 ∈ S; ∀p ∈ P

Zp ≤ δpnYn; ∀p ∈ P , ∀n ∈ M
′

We refer to this hybrid anomaly localization scheme as HLS.

Only small topologies for which the ILPs can deliver solutions in tractable time are

considered. We set the weight associated to the probe cost β = 1, and we vary the weight

associated to the monitor cost, α ∈ [1, 2, 4] and α ≥ 6.

We define three metrics for the comparison. The first metric is the time of computing

the localization solution, i.e., monitors that are to be activated and paths that are to be

monitored when an anomaly is detected. This metric reflects the speed of the localization

scheme. The better is to avoid online computations, i.e., computations done upon detecting

an anomaly, in order to shorten the localization delay.

Table 4.4: Average ILP computation time for TOP(8, 18)

Hybrid scheme Our scheme

Offline Computation Time 64.16 s 6.67 s

Online Computation Time 25.7 10−3 s 0 s
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Figure 4.3: Average number of monitoring paths per anomaly for TOP(8, 18). The first

histogram to the left presents results for solutions computed using the hybrid localization

scheme (HLS), and the other histograms present results for the solutions computed using

our anomaly localization ILP with different values of α (β = 1).

Table 4.4 depicts the online computation time and the offline computation time for the

hybrid localization scheme and for our localization scheme. Intuitively, as shown in the

table, the online computation time is zero for our localization scheme. This is because

we compute full localization solutions for all potential anomalies offline. In contradiction,

the hybrid scheme leaves the selection of monitoring paths upon detecting an anomaly,

thereby achieving a non-negligible online computation time. This time can be relatively

high for large topologies where the number of candidate monitoring paths is large. For the

offline computation time, the table shows that our scheme is about 10 times faster than the

hybrid scheme, although, it computes full localization solutions for all potential anomalies.

We explain this result by the fact that, unlike the hybrid scheme, our scheme does not

distinguish between every pair of the network links.

The second metric is the localization cost. Figure 4.4 plots the total number of deployed

monitors (Figure 4.4c), the average number of monitors activated per anomaly (Figure

4.4b), and the average overhead (4.4a), i.e., the number of links monitored that provide

no localization information, per anomaly for the hybrid localization scheme and for our

localization scheme with different values of α. Three conclusions can be drawn from the

numerical results. The first is that there is an interplay between the monitor location

cost and the probe cost. The different results for the different values of α illustrate this
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Figure 4.4: Localization costs for TOP(8, 18)
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conclusion. Indeed, the larger the value of α is, the fewer the number of monitors is and the

larger the localization overhead is. For instance, for α = 1, we have localization solutions

with zero overhead and 7 monitors, i.e., 7 of the 8 nodes of the network hold monitoring

devices. The second is that the existing localization scheme that deploys monitors offline

and selects monitoring paths online does not take into consideration this interplay, and

therefore, delivers sub-optimal localization solutions. Using the same number of monitors,

for α ≥ 6, our localization scheme can localize any potential anomaly with about 65% less

overhead than the existing localization scheme.

The third metric is the number of monitoring paths. Recall that this is the path selec-

tion criterion for the existing localization scheme. We do not consider this criterion in our

localization scheme for two reasons. The first is that, upon detecting an anomaly, the set of

paths that distinguish between the suspect links are monitored simultaneously. Therefore,

the minimization of the number of monitoring paths does not reduce the localization delay.

The second reason is that this metric is tightly correlated to the number of monitors and

the localization overhead. Indeed, if we relax the constraint on the localization overhead,

this would allow long monitoring paths that cross a large number of links. Therefore, the

number of monitoring paths that can distinguish between the suspect links would decrease.

Similarly, if we relax the constraint on the number of monitors, we would deploy more mon-

itors in the network, thus, the monitoring paths would get shorter. Therefore, the number

of monitoring paths that can distinguish between the suspect links would increase. Figure

4.3 validates these claims. Hereby, we can observe that the larger α is, the more monitoring

paths we have. Not surprisingly, for α ≥ 6, our localization scheme monitors only 8% more

paths than the hybrid localization scheme, while deploying the same number of monitors

and incurring 65% less overhead.

4.9.2 Evaluating the Scalability and Quality of the Heuristic

In this section, we evaluate the performance of our anomaly localization heuristic. We

set α >> β. For each network topology, we run the heuristic n times, where n is the number

of the network nodes. The first monitor location that is selected randomly must be different

for each run. Then, we consider the solution with the smallest localization cost. For TOP(8,

18), we compare the results obtained using the heuristic with the results obtained using our

anomaly localization ILP (α ≥ 6), and the results obtained using the hybrid localization

scheme. Furthermore, we evaluate the evolution of resource consumption and computation
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time with respect to the network size to evaluate the performance of the heuristic on larger

topologies.

Table 4.5 depicts the heuristic computation time (this is the time of the n runs of the

heuristic) and the average percentage of the network paths explored in one execution of

Procedure 2 for all the topologies considered. For TOP(8, 18) the heuristic computation

time is about 29.103 times faster than our ILP, and about 27.104 times faster than the

hybrid localization scheme. Recall that all computations are done offline. For TOP(10, 31),

TOP(12, 41) and TOP(15, 59) the heuristic computation time is in the order of few seconds

(< 25 s), while it was infeasible to obtain the ILP results for these topologies in tractable

time. For TOP(20, 80), whose number of paths is in the order of hundreds of billions, it was

impossible to run the ILPs due to memory insufficiency. However, the heuristic succeeded

to compute solutions in less than one hour for these topologies. This confirms the efficiency

of our candidate path computation algorithm that minimizes the number of the networks

paths that are to be explored. For instance, we found that only 0.007% of the network

paths are explored in one execution of Procedure 2 for TOP(20, 80).

Table 4.5: Heuristic computation time (all computations are done offline) and percentage of paths

explored in one execution of Procedure 2

Topology Heuristic computation % of paths explored in one

time execution of Procedure 2

TOP(8, 18) 0.00023 s 1.22%

TOP(10, 31) 0.08 s 0.21%

TOP(12, 41) 0.78 s 0.07%

TOP(15, 59) 24.11 s 0.02%

TOP(20, 80) 3525.52 s 0.007%

We now investigate the quality of the solutions delivered by the heuristic. Figure

4.5 plots the total number of monitors deployed (4.5c), the average number of monitors

activated per anomaly (4.5b), and the average overhead per anomaly for the topologies

considered in the evaluation4.5a.

First, we notice that two monitors are sufficient to localize all potential anomalies for

all topologies, except TOP(20, 80) for which the average number of monitors deployed and

the average number of monitors activated per anomaly are slightly larger than two. This

is expected, since we set α >> β, which means that the heuristic minimizes in priority the
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Figure 4.5: Localization cost of the heuristic solutions, α >> β
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Figure 4.6: Impact of the number and the quality of candidate monitoring paths on the quality of the

localization solution. RProc means random procedure (numerical results for TOP(15, 59))
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number of monitors that are to be deployed. A comparison of Figure 4.5 with Figure 4.4

shows that, for TOP(8, 18), the solutions computed using our ILP (α ≥ 6) is very close to the

solutions computed using the heuristic: the heuristic solution gnenerates about 9% more

overhead, however, the two solutions deploy the same number of monitors and activate,

in average, the same number of monitors when an anomaly occurs. This confirms that

the candidate path computation algorithm that avoids exploring all paths of the network

does not miss good paths. Moreover, the overhead of the heuristic solutions for TOP(10,

31), TOP(12, 41) and TOP(12, 59) is smaller than the overhead of the hybrid localization

scheme solutions for TOP(8, 18). It is worth to recall that the hybrid localization solutions

for TOP(8, 18) are exact solutions. This confirms that i) the heuristic succeeds to minimize

the localization costs, i.e., the monitor cost and the probe cost, jointly; ii) the heuristic

outperforms the hybrid localization scheme, since the former can localize anomalies in large

topologies using less resources that those used by the latter to localize anomalies in smaller

topologies.

We finally evaluate the impact of the number and the quality of candidate monitoring

paths on the quality of the localization solution. To this end, we compare the localization

solutions obtained using the proposed heuristic, i.e., Algorithm 4 and Procedure 2, to the

localization solutions obtained using Algorithm 4 and a procedure that computes candidate

paths randomly (instead of Procedure 2). In the latter case, we variate the number of paths

explored per one execution of the random candidate path computation procedure (0.015%,

0.03%, 0.15%, 0.3%). We report the results for TOP(15, 59) when α >> β in Figure 4.6

(The results are essentially the same for the other topologies). Not surprisingly, Figure

4.6 shows that, when candidate paths are explored randomly, the larger the number of

paths explored is the smaller the localization overhead is. Furthermore, it shows that

the proposed heuristic achieves smaller overhead than the random approach, thought it

explores more than 15 times less paths as shown in Table 4.5. This validates our claim on

the correlation between the number and quality of monitoring paths and the quality of the

localization solution.

4.10 Discussion

The anomaly localization solution must be updated whenever the detection solution

changes. However, the detection solution changes in rare cases where a persistent anomaly

makes a network link unavailable for a long period of time, or where the network topology

is modified voluntary (e.g., add and/or removal of network equipments).
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Usually, in the first case, the detection solution is updated partially. Only the detection

paths that are affected by the anomaly are re-computed. The anomaly scenarios are up-

dated accordingly, and the localization solution is re-computed, partially, for the affected

anomaly scenarios. The evaluation results show that, for instance, the average computa-

tion time of the localization solution for one anomaly scenario using the heuristic is in the

order of 5 minutes for TOP(20, 80). Knowing that anomalies are rare events, we assert

that it is rather unlikely that anomalies occur before the localization solution is updated.

However, in case an anomaly occurs before the localization solution is updated, the local-

ization process could be executed for the current solution, though, not all anomalies could

be localized accurately. The best solution for such situation is to provide backup detection

and localization solutions. However, this issue is out of the scope of this thesis.

Furthermore, voluntary network changes are usually planned in advance. Thus, detec-

tion and localization updates could be computed offline before voluntary network changes

are made.

4.11 Conclusion

This chapter addressed the problem of single link-level anomalies localization. Two

findings were demonstrated: 1) Not all pairs of the network links need to be distinguish-

able for localizing any potential link-level anomaly, 2) All potential anomaly scenarios can

be derived offline from any detection solution that covers all the network links. These

findings were exploited to develop an anomaly localization scheme that computes full lo-

calization solutions offline. In order to achieve a good trade-off between the number and

locations of monitoring devices and the quality of monitoring paths, monitor locations

and monitoring paths are selected jointly. A novel anomaly localization cost model that

expresses the localization overhead and delay besides the localization infrastructure cost

was proposed. The problem was formulated as an ILP algorithm and was shown to be

NP-hard. Therefore, an efficient heuristic was proposed. The key idea of the heuristic is

to reduce the number of candidate paths without missing good paths, thereby achieving

scalability and quality.

The proposed anomaly localization scheme was compared with an hybrid anomaly

localization scheme that combines the strengths of two existing schemes through extensive

simulations. Results demonstrate the superiority of the proposed scheme, in terms of

computation time and cost reduction, and its efficiency in balancing the trade-off between
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the localization costs. Furthermore, the results confirm that the heuristic algorithm is

effective at achieving scalability and quality.
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CHAPTER

5 Conclusion and

Perspectives

This thesis investigates the problems of anomaly detection and localization in com-

puter networks. Especially, the focus is on the use of end-to-end path measurements for

detecting and localizing link-level network anomalies. The aim of the thesis is to answer

the following question: where to place monitoring devices and which paths to monitor

towards detecting and localizing all potential link-level anomalies in an accurate, fast and

cost-efficient fashion.

The first step towards answering the above question is the study of existing network

anomaly detection and localization schemes. A review of the body of literature relevant

to the investigated problems is provided, and the limitations and the strengths of

existing anomaly detection and localization schemes are highlighted. The contributions

of this thesis consist in coming up with anomaly detection and localization schemes that

implement the strengths of existing schemes and overcome their limitations.

The proposed anomaly detection scheme is a one-step scheme that selects paths that

are to be monitored and monitor locations jointly. An ILP formulation of the scheme is

provided, and the problem is shown to be NP-Hard. Two one-step heuristic algorithms

for anomaly detection solution computation are, therefore, devised. The first algorithm

considers the total set of the network paths as candidate to be monitored. The second

algorithm implements a procedure for computing candidate monitoring paths. The aim of

this procedure is to reduce the set of candidate paths in order to achieve the scalability

of the heuristic, while ensuring a good quality of the detection solution. The proposed

one step scheme is compared to the existing two-step anomaly detection schemes. The
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superiority of the one step scheme, and its efficiency to achieve a good trade-off between

the optimization objectives of monitor location selection and the optimization objectives

of monitoring path selection are demonstrated.

The applicability of the proposed anomaly detection scheme on multi-domain networks

is investigated. An ILP algorithm and a heuristic algorithm that take into account the

properties and the limitations of such networks are provided. A comparative study of

two anomaly detection approaches is conducted. The first approach is a global approach

that considers the multi-domain network as a single domain, in which case the anomaly

detection scheme proposed for mono-domain networks can be applied. The second

approach is a per-domain technique that minimizes the interactions between domains

in an attempt to overcome the confidentiality issues. Evaluations results show that

confidentiality is so far not the only limitation to the application of the global anomaly

detection technique for multi-domain networks. Especially, the results show that the

global detection technique yields solutions with relatively long monitoring paths, and

does not guarantee a fair distribution of the detection load among domains. Besides, the

computation time for the global technique is drastically high compared to the computation

time for the per-domain technique. In contrast, the difference of costs of the solutions of

the two techniques, in terms of the number of monitors and overhead, is small.

Although the thesis advocates decoupling the anomaly localization from the anomaly

detection, i.e., the anomaly detection process is run continuously whereas the localization

process is triggered only upon detecting an anomaly as opposed to monitoring a set of

paths that can detect and localize anomalies continuously, it exploits the fact that the

outputs of the detection process are the inputs to the localization process to optimize

the localization solution. Particularly, it has been demonstrated, in the thesis, that,

knowing the set of paths that is monitored for anomaly detection, all potential anomaly

scenarios can be derived offline 1. Subsequently, the set of paths that is to be monitored

upon detecting an anomaly is reduced to a small subset of paths that can distinguish

only between suspect links. Moreover, full localization solutions, i.e., paths that are to be

monitored and monitors that are to be activated upon detecting an anomaly, are computed

offline for all potential anomaly scenarios. Similarly to the detection schemes, monitor

locations and localization paths are selected jointly in one single step. The localization

1. An anomaly scenario is characterized by a unique set of suspect links. Different anomalies can cause

the same anomaly scenario.
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problem is formulated as an ILP, and is demonstrated to be NP-Hard. A heuristic

algorithm is devised. The capacity of the proposed scheme to localize all potential single

link-level anomalies accurately is verified analytically, and its superiority over existing

anomaly localization schemes is demonstrated through simulations.

Further research need to be performed in order to investigate the problem of localizing

concurrent link-level anomalies. Such anomalies are considered as very unlikely, which

justifies the scarcity of research on this problem. A solution is proposed in [1]. It requires

deploying a set of monitoring devices that can distinguish between every two subsets of

the network links. This implies that for each pair of link subsets there exists a monitoring

path between the deployed monitoring devices whose intersection with exactly one of

the two subsets is not empty. Admitting the complexity of this process and the heavy

overhead it yields, the authors propose to limit the number of concurrent anomalies

(≤ 3). One of our goals for future work, is to evaluate and optimize this solution. We

plan to devise a technique that enables us to decide whether a detected anomaly event is

associated to a single anomaly or to multiple concurrent anomalies, and to activate the

appropriate localization solution accordingly.

A more frequent type of anomalies that have not been considered enough in the

literature dealing with network monitoring is the Shared Risk Link Group (SRLG)

anomalies. The particularity of a SRLG anomaly is that it affects a group of links that

have a common anomalous resource. A common example of this kind of anomalies is

node failures. When a node fails, all its surrounding links fail systematically. A necessary

and sufficient condition for localizing accurately any SRLG failure in all-optical networks

has been established in [51]. Moreover, [51] provides an interesting scheme for localizing

uniquely any SRGL with up to k links in any (k+2)-edge connected all-optical network

using one single monitoring device. However, there are key differences between all-optical

networks and IP networks, namely the limited capacity of IP links to support traffic flows

as opposed to the abundant capacity of fiber-optic links, that constrain the application of

this scheme to IP networks. In our future work, we will investigate the problem of SRLG

anomaly localization in IP networks. The aim is to establish a necessary and sufficient

condition for localizing any SRLG anomaly in IP networks.
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Furthermore, when an anomaly occurs in the network, all links that are covered only

by paths crossing the anomalous link remain uncovered until the anomaly is fixed. The

problem becomes more complicated when an anomaly occurs, while a previously detected

anomaly is not yet fixed. This problem of sequential anomalies deserves to be investigated,

and a scheme for computing backup detection and localization solutions should be devised.
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APPENDIX

A

This appendix presents the proofs of corollaries 2, 3, 4, 5 and 6.

Corollary 2. e1 ∈ S(e2) ⇔ S(e1) = S(e2), ∀e1, e2 ∈ E

Proof. e1 ∈ S(e2) ⇔ (according to Theorem 1) there does not exist any path that crosses

either e1 or e2, but not both⇔ for each p ∈ P , p crosses both e2 and e1, or p neither crosses

e1 nor e2 ⇔De1+ = De2+ andDe1− = De2− ⇔ (according to Theorem 2) S(e1) = S(e2)

Corollary 3. S(e1) �= S(e2) ⇔ S(e1) ∩ S(e2) = ∅

Proof. We prove the direct implication by contradiction. Assume to the contrary that

S(e1) �= S(e2) and S(e1)∩S(e2) �= ∅. Let e3 ∈ S(e1)∩S(e2). According Corollary 2, S(e3)

= S(e1) and S(e3) = S(e2). thus, S(e1) = S(e2), leading to a contradiction. The indirect

implication is trivially true.

Corollary 4. ∪e∈ES(e) = ∪S(i)∈dSS(i) = E

Proof. According to Theorem 2, e ∈ S(e), ∀e ∈ E . Thus, ∪e∈ES(e) = E . Obviously,

∪e∈ES(e) = ∪S(i)∈dSS(i).

Corollary 5.
∑

S(i)∈dS | S(i) | = | E |

Proof. According to Corollary 4, | ∪S(i)∈dSS(i) |=| E |, and according to Corollary 2,

∩S(i)∈dSS(i) = ∅. Thus,
∑

S(i)∈dS

| S(i) | = | E |.

Corollary 6. dPairs = AllPairs -
∑

S(i),S(j)∈dS:i<j

| S(i) || S(j) |
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Proof. According to Corollary 1, only links that belong to same set of suspect links need

to be distinguishable pairwise. Therefore, the set of link pairs that are to be distinguished

can be expressed as {{(ei, ej); ei, ej ∈ E} - {(ei, ej); S(ei) �= S(ej)}}. We conclude that

dPairs = AllPairs -
∑

S(i),S(j)∈dS:i<j

| S(i) | ∗ | S(j) | . Clearly, the number of pair of links that

need to be distinguishable equals the number of all link pairs of the network if and only

if the number of distinct sets of suspect links equals 1, i.e. the number of detection paths

equals 1.
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B

This appendix presents the proof of Theorem 3.

Theorem 3. Let P1 be the subset of paths of P that cross either e1 or e2, but not both.
∑

p∈P(δpe1 + δpe2 − 2δpe1δpe2) =| P1 |.

Proof. Paths in P
′

can be divided into three subsets of paths.

– P1: paths that cross either e1 or e2, but not both.

– P2: paths that cross both e1 and e2.

– P3: paths that neither cross e1 nor e2.

On the one hand, we have

∀p ∈ P2, δpe1 = 0 and δpe2 = 0.

Thus, ∀p ∈ P2, (δpe1 + δpe2 − 2δpe1δpe2) = 0.

Contributing to
∑

p∈P2
(δpe1 + δpe2 − 2δpe1δpe2) > 0.

On the other hand, we have ∀p ∈ P3, δpe1 = 1 and δpe2 = 1.

Thus, ∀p ∈ P3, (δpe1 + δpe2 − 2δpe1δpe2) = 0.

Contributing to
∑

p∈P3
(δpe1 + δpe2 − 2δpe1δpe2) = 0.

Subsequently,
∑

p∈P ′ (δpe1 + δpe2 − 2δpe1δpe2) =
∑

p∈P1
(δpe1 + δpe2 − 2δpe1δpe2).

Now, we have ∀p ∈ P1 δpe1 + δpe2 = 1 and δpe1δpe2 = 0.

Thus, δpe1 + δpe2 − 2δpe1δpe2 = 1.

Therefore,
∑

p∈P1
(δpe1 + δpe2 − 2δpe1δpe2) =| P1 |.

We conclude that
∑

p∈P ′ (δpe1 + δpe2 − 2δpe1δpe2) =| P1 |.
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C

This appendix presents the proof of Theorem 5.

Theorem 5. The theoretical minimal probe cost relative to a set of suspect links S

denoted by ThMinPcost(S) reads as follows:

ThMinPcost(S) =
∑

e∈S

Ce −max
e∈S

Ce

Proof. Let P
′

be a set of paths that can distinguish between all links of S. According

to Theorem 1, for each e1, e2 ∈ S ∃p ∈ P
′

such that p crosses either e1 or e2, but not

both. Thus, at most one link of S is not traversed by paths in P
′

. We conclude that any

localization solution must imperatively monitor | S | −1 links of S in order to distinguish

between all links. It follows that the localization solution that incurs the minimal probe

cost is a solution that monitors exactly | S | −1 links of S whose measurement cost if

the lowest. Thus, ThMinPcost(S) =
∑

e∈S Ce −maxe∈S Ce. Note that such a solution is

feasible only if each link of the | S | −1 links is monitored separately, which requires to

have monitors deployed on the end nodes of each of these links.
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D

This appendix presents the proof of Theorem 6.

Theorem 6: Let absval(x) be a function that returns the absolute value of the number

x, and let lc(S
(j)
a , p) =

∑

S
(j)k
a ∈S

(j)
a
lc(S

(j)k
a , p) be the localization capacity of p with respect

to S(j). We have,

max
p∈P

lc(S(j)
a , p) = min

p∈P

∑

S
(j)k
a ∈S

(j)
a

absval(| S(j)k
a | /2− | S(j)k

a ∩ p |)

Proof. We have maxp∈P lc(S
(j)
a , p) =

∑

S
(j)k
a ∈S

(j)
a

maxp∈P lc(S
(j)k
a , p), where lc(S(j)k

a , p) =|

p∩ S
(j)k
a | ∗ (| S

(j)k
a | − | p∩ S

(j)k
a |). Consider the variations of lc(S(j)k

a , p) with respect to

the values of | p ∩ S
(j)k
a |. It can be easily shown that:

– lc(S
(j)k
a , p) is increasing for | p∩S

(j)k
a |<| S

(j)k
a | /2, and decreasing for | p∩S

(j)k
a |>|

S
(j)k
a | /2

– ∀ p1, p2 ∈ P , if absval(| S(j)k
a | /2− | p1∩S

(j)k
a |) = absval(| S

(j)k
a | /2− | p2∩S

(j)k
a |),

then, lc(S(j)k
a , p1) = lc(S

(j)k
a , p2)

– The global maximum of lc(S(j)k
a , p) is achieved at | p ∩ S

(j)k
a |=| S

(j)k
a | /2

It follows that maxp∈P lc(S
(j)k
a , p) = minp∈P absval(| S

(j)k
a | /2− | p2 ∩ S

(j)k
a |). Subse-

quently, maxp∈P lc(S
(j)
a , p) = minp∈P

∑

S
(j)k
a ∈S

(j)
a
absval(| S

(j)k
a | /2− | S

(j)k
a ∩ p |)
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This appendix demonstrates the correctness of conditions (4.11), (4.12) and (E).

Condition 4.11:

minli = 0 and ∃ S(j)k
a ∈ S(j)

a such that | S(j)k
a ∩ pc |>| S

(j)k
a | /2

Condition 4.12:

minli = 0 and ∀S(j)k
a ∈ S(j)

a | S(j)k
a ∩ pc |≤| S

(j)k
a | /2 and probeCost(pc, CE)+

min
e∈E

Celi(pc,S
(j)
a ) ≥ minPc

Condition E:

li(pc,S
(j)
a ) > minli and ∀S(j)k

a ∈ S(j)
a | S(j)k

a ∩ pc |≥| S
(j)k
a | /2

Let q be a path, and let pc be a prefix of q. We have:

(i) ∀S
(j)k
a , | S

(j)k
a ∩ q |≥| S

(j)k
a ∩ pc |

(ii) ∃S
(j)k
a ∈ S

(j)
a such that | S(j)k

a ∩ pc |>| S
(j)k
a | /2 ⇒ li(q,S

(j)
a ) > 0

Proof. It is clear that li(q,S(j)
a ) = 0 ⇐⇒ ∀S

(j)k
a ∈ S

(j)
a absval(| S

(j)k
a | /2− | q ∩ S

(j)k
a |

) = 0 ⇐⇒ ∀S
(j)k
a ∈ S

(j)
a | q ∩ S

(j)k
a |=| S

(j)k
a | /2. However, according to (i), ∀S(j)k

a

| S
(j)k
a ∩ pc |>| S

(j)k
a | /2 ⇒| S

(j)k
a ∩ q |>| S

(j)k
a | /2. Therefore, (ii) is true.

(iii) ∀S
(j)k
a | S

(j)k
a ∩pc |>| S

(j)k
a | /2 ⇒ li(q,S

(j)
a ) = li(pc,S

(j)
a )+

∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a ∩pc |

− | S
(j)k
a ∩ q |

Proof. ∀S
(j)k
a | S

(j)k
a ∩ pc |>| S

(j)k
a | /2 ⇒ ∀S

(j)k
a

| S
(j)k
a ∩ q |>| S

(j)k
a | /2 ⇒ li(q,S

(j)
a ) =

∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a | /2− | S

(j)k
a ∩ q |= li(pc,S

(j)
a )−

∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a ∩ q | +

∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a ∩ pc |.
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(iv) ∀S
(j)k
a | S

(j)k
a ∩ pc |>| S

(j)k
a | /2 ⇒ ProbeCost(q) ≤ probeCost(pc) +mine∈ECe ∗

li(q,S
(j)
a )− li(pc,S

(j)
a )

Proof. We have ProbeCost(q) =
∑

e∈pCe =
∑

e ∈ pcCe+
∑

e∈e∈q\pc
Ce = probeCost(pc)+

∑

e∈q\pc
Ce ≤ probeCost(pc) + mine∈ECe∗ | q | − | pc | By construction,

⋂

k S
(j)k
a = ∅.

Therefore, ∀p ∈ P | p |≤
∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a ∩ p |. Hence, ProbeCost(q) ≤ probeCost(pc) +

mine∈ECe ∗
∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a ∩ q | − | S

(j)k
a ∩ pc |. Further, ∀S

(j)k
a | S

(j)k
a ∩ pc |>| S

(j)k
a |

/2, thus, according to (iii), ProbeCost(q) ≤ probeCost(pc) + mine∈ECe ∗ li(q,S
(j)
a ) −

li(pc,S
(j)
a )

(v) ∀S
(j)k
a ∈ S

(j)
a | S

(j)k
a ∩ pc |≥| S

(j)k
a | /2 ⇒ li(q,S

(j)
a ) ≥ li(pc,S

(j)
a )

Proof. According to (i),
∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a ∩ q |≥

∑

S
(j)k
a ∈S

(j)
a

| S
(j)k
a ∩ pc |. Therefore,

according to (iii), (v) is true.
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