S. P. Valappil, D. Ready, and E. A. Neel, Antimicrobial Gallium-Doped Phosphate-Based Glasses, Advanced Functional Materials, vol.40, issue.5, p.732, 2008.
DOI : 10.1002/adfm.200700931

URL : http://dro.deakin.edu.au/eserv/DU:30055621/odell-antimicrobialgalliumdoped-2008.pdf

R. P. Warrell, R. S. Bockman, and C. J. Coonley, Gallium nitrate inhibits calcium resorption from bone and is effective treatment for cancer-related hypercalcemia., Journal of Clinical Investigation, vol.73, issue.5, pp.73-1487, 1984.
DOI : 10.1172/JCI111353

L. L. Hench, The story of Bioglass??, Journal of Materials Science: Materials in Medicine, vol.16, issue.1, p.967, 2006.
DOI : 10.1007/s10856-006-0432-z

J. R. Jones, E. Gentleman, and J. Polak, Bioactive Glass Scaffolds for Bone Regeneration, Elements, vol.3, issue.6, p.393, 2007.
DOI : 10.2113/GSELEMENTS.3.6.393

A. R. Jones and A. G. Clare, Bio-Glasses An Introduction

L. L. Hench, Bioceramics: From Concept to Clinic, Journal of the American Ceramic Society, vol.6, issue.1, p.1487, 1991.
DOI : 10.1016/0142-9612(86)90064-5

L. L. Hench and H. A. Paschall, Direct chemical bond of bioactive glass-ceramic materials to bone and muscle, Journal of Biomedical Materials Research, vol.6, issue.3, p.25, 1973.
DOI : 10.1002/jbm.820070304

N. Loveridge, Bone: more than a stick, Journal of Animal Science, vol.77, issue.suppl_2, p.190, 1999.
DOI : 10.2527/1999.77suppl_2190x

S. Dorozhkin and J. C. Elliott, Biological and Medical Significance of Calcium Phosphates Structure and chemistry of the apatites and other calcium orthophosphates, Angewandte Chemie-international EditionThe Netherlands, issue.17, pp.41-3130, 1994.

. Rhumatismes, Diagnosis, prophylaxis and treatment of osteoporosis, B3_masse_osseuse.asp. [13] Consensus development Conference, p.107, 1991.

F. Fayon, D. Massiot, and B. Bujoli, Biomatériaux pour la vectorisaiton d'agents anti-ostéoporétiques

T. P. Van-staa, H. G. Leufkens, and C. Cooper, Does a fracture at one site predict later fractures at other sites? -A British cohort study. Osteoporosis Int, pp.13-624, 2002.

J. A. Kanis, J. Adams, and F. Borgström, The cost-effectiveness of alendronate in the management of osteoporosis, Bone, vol.42, issue.1, 2008.
DOI : 10.1016/j.bone.2007.10.019

B. Hoerni, Dictionnaire des Cancers, 2006.

E. Carré, T. Elgoutini, and E. Truy, Implants pour surdités de transmission. Le moniteur hospitalier 2011. [22] Schéma de l'Oreille Interne

D. F. Williams, The Williams dictionnary of biomaterials, 1999.

. Dorland, Dorland's Medical Dictionary, 1994.

J. Wiley, International Dictionary of Medicine and Biology, 1986.

L. L. Hench and J. Wilson, An Introduction to Bioceramics, World Scientific, pp.4-6, 1993.

T. Albrektsson and C. Johansson, Osteoinduction, osteoconduction and osseointegration, European Spine Journal, vol.10, issue.0, p.96, 2001.
DOI : 10.1007/978-3-642-56071-2_3

T. Safronova, A. Kuznetsov, and S. Korneychuk, Abstract, Open Chemistry, vol.7, issue.2, p.184, 2009.
DOI : 10.2478/s11532-009-0016-0

R. Z. Legeros and J. C. Knowles, Biodegradation and bioresorption of calcium phosphate ceramics Phosphate based glasses for biomedical applications, Clinical Materials Journal of Materials Chemistry, vol.14, issue.6510, pp.13-2395, 1993.

H. Oonishi, L. L. Hench, and J. Wilson, Quantitative comparison of bone growth behavior in granules of Bioglass???, A-W glass-ceramic, and hydroxyapatite, Journal of Biomedical Materials Research, vol.38, issue.1, p.37, 2000.
DOI : 10.1002/(SICI)1097-4636(200007)51:1<37::AID-JBM6>3.0.CO;2-T

W. Cao and L. L. Hench, Bioactive materials, Ceramics International, vol.22, issue.6, p.493, 1996.
DOI : 10.1016/0272-8842(95)00126-3

L. L. Hench and J. K. West, Biological Applications of bioactive Glasses Life Chemistry Reports 1996, 13, 187. [35] North American Spine Society, www.spine.org/Documents/bone_grafts_2006.pdf , Bone graft alternatives, 2006.

S. Oh, N. Oh, and M. Appleford, Bioceramics for Tissue Engineering Applications ???????? A Review, American Journal of Biochemistry and Biotechnology, vol.2, issue.2, p.49, 2006.
DOI : 10.3844/ajbbsp.2006.49.56

E. Fernández, Bioactive Bone Cements, In Wiley Encyclopedia of Biomedical Engineering, vol.212, issue.H
DOI : 10.1002/9780471740360.ebs1367

M. P. Ginebra, T. Traykova, and J. A. Planell, Calcium phosphate cements as bone drug delivery systems: A review, Journal of Controlled Release, vol.113, issue.2, p.102, 2006.
DOI : 10.1016/j.jconrel.2006.04.007

S. Dorozhkin, Calcium orthophosphates, 2007.
DOI : 10.1007/s10853-006-1467-8

M. Bohner, Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements, Injury, vol.31, issue.0, p.37, 2000.
DOI : 10.1016/S0020-1383(00)80022-4

H. B. Pan and B. W. Darvell, Calcium Phosphate Solubility: The Need for Re-Evaluation, Crystal Growth & Design, vol.9, issue.2, p.639, 2009.
DOI : 10.1021/cg801118v

E. Fernandez, F. J. Gil, and M. P. Ginebra, Calcium phosphate bone cements for clinical applications. Part I: Solution chemistry Journal of materials science : materials in medicine, p.169, 1999.

V. Schnitzler, Système combiné Bisphosphonate / ciment apatitique : un matériau innovant actif contre les déréglements de la résorption osseuse, Thèse de Doctorat, 2009.

H. Mcdowell, T. M. Gregory, and W. E. Brown, Solubility of Ca 5 (PO 4 ) 3 OH in system Ca(OH) 2 -H 3 PO 4 -H 2 O at 5-degrees-C, 15-degrees-C, 25-degrees-C and 37-degrees-C, Journal of Research of the National Bureau of Standards Section, vol.81, issue.2-3, p.273, 1977.

M. Vallet-regí and J. M. González-calbet, Calcium phosphates as substitution of bone tissues, Progress in Solid State Chemistry, vol.32, issue.1-2, p.1, 2004.
DOI : 10.1016/j.progsolidstchem.2004.07.001

R. Cavagna, G. Daculsi, and J. M. Bouler, Macroporous calcium phosphate ceramic: A prospective study of 106 cases in lumbar spinal fusion, 403. [48] Substituts Osseux Endobon ®, 1999.

E. B. Nery, K. L. Lynch, and W. M. Hirthe, Bioceramic Implants in Surgically Produced Infrabony Defects, Journal of Periodontology, vol.46, issue.6, pp.46-328, 1975.
DOI : 10.1902/jop.1975.46.6.328

G. Daculsi, R. Legeros, and M. Heughebaert, Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics, Calcified Tissue International, vol.58, issue.1, p.20, 1990.
DOI : 10.1007/BF02555820

G. Daculsi, J. M. Bouler, R. Z. Legeros, J. M. Bouler, M. Trecant et al., Adaptive Crystal Formation in Normal and Pathological Calcifications in Synthetic Calcium Phosphate and Related Biomaterials Macroporous biphasic calcium phosphate ceramics: Influence of five synthesis parameters on compressive strength, Journal of Biomedical Materials Research, vol.172, issue.324, pp.129-53, 1996.

F. H. Perera, F. J. Martínez-vázquez, and P. Miranda, Clarifying the effect of sintering conditions on the microstructure and mechanical properties of ??-tricalcium phosphate, Ceramics International, vol.36, issue.6, p.36, 1929.
DOI : 10.1016/j.ceramint.2010.03.015

R. Z. Legeros, A. Chohayeb, and A. Shulman, Apatitic Calcium Phosphates: possible dental restorative materials, Journal of Dental Research, pp.61-343, 1982.

W. E. Brown and L. C. Chow, Dental restorative cements pastes, 1985.

W. E. Brown and L. C. Chow, A new calcium-phosphate setting cement, Journal of Dental Research, vol.62, p.672, 1983.

M. Bohner, U. Gbureck, and J. E. Barralet, Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment, 6423. [59] Graftys ® , Développeurs de Ciments Phosphocalciques à visées médicales, 2005.
DOI : 10.1016/j.biomaterials.2005.03.049

S. Dorozhkin, Bioceramics basics on calcium orthophosphates (review), 2007.

R. Z. Legeros, Properties of Osteoconductive Biomaterials: Calcium Phosphates, Clinical Orthopaedics and Related Research, vol.395, issue.395, p.81, 2002.
DOI : 10.1097/00003086-200202000-00009

J. Chevalier and L. Gremillard, Ceramics for medical applications: A picture for the next 20 years, Journal of the European Ceramic Society, vol.29, issue.7, pp.29-1245, 2009.
DOI : 10.1016/j.jeurceramsoc.2008.08.025

URL : https://hal.archives-ouvertes.fr/hal-00431366

H. Oudadesse, E. Dietrich, and X. V. Bui, Enhancement of cells proliferation and control of bioactivity of strontium doped glass, Applied Surface Science, vol.257, issue.20, pp.257-8587, 2011.
DOI : 10.1016/j.apsusc.2011.05.022

URL : https://hal.archives-ouvertes.fr/hal-00822376

L. L. Hench, J. Greenspan, and D. C. , Bioglass(R) : A short history and bibliography, Journal of Australian Ceramic Society, vol.40, issue.1, 2004.

Ö. H. Andersson and K. H. Karlsson, On the bioactivity of silicate glass, Journal of Non-Crystalline Solids, vol.129, issue.1-3, pp.1-3, 1991.
DOI : 10.1016/0022-3093(91)90090-S

I. Gotman, Characteristics of Metals Used in Implants, Journal of Endourology, vol.11, issue.6, p.383, 1997.
DOI : 10.1089/end.1997.11.383

J. Lemaître, Biomatériaux -Introduction, 2004.

F. Witte, T. Calliess, and H. Windhagen, Biodegradable synthetic implant materials, Der Orthop??de, vol.81, issue.2, p.125, 2008.
DOI : 10.1007/s00132-008-1193-9

N. Boucard, C. Viton, and D. Agay, The use of physical hydrogels of chitosan for skin regeneration following third-degree burns, Biomaterials, vol.28, issue.24, pp.28-3478, 2007.
DOI : 10.1016/j.biomaterials.2007.04.021

URL : https://hal.archives-ouvertes.fr/hal-00372606

X. V. Bui, H. Oudadesse, and Y. Le-gal, Bioactivity behaviour of biodegradable material comprising bioactive glass, Korean Journal of Chemical Engineering, vol.44, issue.2, pp.29-215
DOI : 10.1007/s11814-011-0151-0

URL : https://hal.archives-ouvertes.fr/hal-00821888

H. Oudadesse, Elaboration de verres bioactifs pour des applications en tant que biomatériaux. Conférence de l'USTV Rennes, 2011.

H. Autorité and D. Santé, Comment prévenir les fractures dues à l'ostéoporose, 2007.

F. H. Ebetino, M. D. Francis, and M. J. Rogers, Mechanisms of action of etidronate and other bisphosphonates Reviews in Contemporary Pharmacotherapy Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: Evidence from structure-activity relationships in J774 macrophages, Journal of Bone and Mineral Research, vol.9, issue.23311, pp.13-1668, 1998.

R. Russell, N. Watts, and F. Ebetino, Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy, Osteoporosis International, vol.13, issue.6, p.733, 2008.
DOI : 10.1007/s00198-007-0460-7

S. Mukherjee, C. C. Huang, and F. Guerra, Thermodynamics of Bisphosphonates Binding to Human Bone: A Two-Site Model, Journal of the American Chemical Society, vol.131, issue.24, pp.131-8374, 2009.
DOI : 10.1021/ja902895p

S. Mukherjee, Y. C. Song, and E. Oldfield, NMR Investigations of the Static and Dynamic Structures of Bisphosphonates on Human Bone:?? a Molecular Model, Journal of the American Chemical Society, vol.130, issue.4, p.1264, 2008.
DOI : 10.1021/ja0759949

E. R. Van-beek, C. Lowik, and F. H. Ebetino, Binding and antiresorptive properties of heterocycle-containing bisphosphonate analogs: Structure-activity relationships Relative binding affinities of bisphosphonates for human bone and relationship to antiresorptive efficacy, 437. [79] Leu, p.628, 1998.

H. Fleisch, Bisphosphonates in bone disease. From the laboratory to the patient, 2000.

H. Fleisch and M. J. Rogers, Bisphosphonates in osteoporosis New insights into the molecular mechanisms of action of bisphosphonates, European Spine Journal Curr Pharm Des, vol.12, issue.32, pp.9-2643, 2003.

J. C. Frith, J. Monkkonen, and G. M. Blackburn, Clodronate and liposomeencapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5'-(beta,gammadichloromethylene ) triphosphate, by mammalian cells in vitro, Bisphosphonates in Medical Practice Actions -Side Effects -Indications -Strategies, p.1358, 1997.

A. Ezra and G. Golomb, Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption, Advanced Drug Delivery Reviews, vol.42, issue.3, p.175, 2000.
DOI : 10.1016/S0169-409X(00)00061-2

J. A. Cramer, D. T. Gold, and S. L. Silverman, A systematic review of persistence and compliance with bisphosphonates for osteoporosis. Osteoporosis Int, pp.18-1023, 2007.

E. Seeman, J. Compston, and J. Adachi, Non-compliance: the Achilles' heel of antifracture efficacy. Osteoporosis Int, pp.18-711, 2007.

S. Josse, C. Faucheux, and A. Soueidan, Novel biomaterials for bisphosphonate delivery Hybrid materials applied to biotechnologies: coating of calcium phosphates for the design of implants active against bone resorption disorders Reaction of zoledronate with betatricalcium phosphate for the design of potential drug device combined systems, 3869. [90] Roussière, pp.35-36, 2005.

V. Schnitzler, F. Fayon, and C. Despas, Investigation of alendronate-doped apatitic cements as a potential technology for the prevention of osteoporotic hip fractures: Critical influence of the drug introduction mode on the in vitro cement properties, Acta Biomaterialia, vol.7, issue.2, p.759, 2011.
DOI : 10.1016/j.actbio.2010.09.017

URL : https://hal.archives-ouvertes.fr/hal-00608513

S. Parratte, T. Amphoux, and S. Kolta, Femoroplasty using an injectable and resobable bi-phosphonate laoded bone substitute to prevent contro-lateral hip fracture in the elderly : a cadaveric biomehcnical study Osteoporosis Int, p.346, 2010.

B. Peter, D. P. Pioletti, and S. Laïb, Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration, Bone, vol.36, issue.1, p.52, 2005.
DOI : 10.1016/j.bone.2004.10.004

B. Peter, O. Gauthier, and S. Laïb, Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats, Journal of Biomedical Materials Research Part A, vol.25, issue.1, pp.76-133, 2006.
DOI : 10.1002/jbm.a.30456

URL : https://hal.archives-ouvertes.fr/hal-00320922

M. Yoshinari, Y. Oda, and T. Inoue, Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants, Biomaterials, vol.23, issue.14, pp.23-2879, 2002.
DOI : 10.1016/S0142-9612(01)00415-X

S. Josse, C. Faucheux, and A. Soueidan, Chemically Modified Calcium Phosphates as Novel Materials for Bisphosphonate Delivery, Advanced Materials, vol.16, issue.16, pp.16-1423, 2004.
DOI : 10.1002/adma.200306340

J. Zarzycki, Les verres et l'état vitreux, 1982.

H. Scholze, Le verre : Nature, structure et propriétés, 1980.

R. K. Brow, E. R. Kreidler, and F. A. Hummel, Review: the structure of simple phosphate glasses, Phase relationsships in system SrO-P 2 O 5 and influecne of water vapor on formation of Sr 4 P 2 O 9 Inorg. Chem, pp.263-264, 1967.
DOI : 10.1016/S0022-3093(99)00620-1

R. J. Kirkpatrick and R. K. Brow, Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: a review, Solid State Nuclear Magnetic Resonance, vol.5, issue.1, p.9, 1995.
DOI : 10.1016/0926-2040(95)00042-O

R. K. Brow, D. R. Tallant, and S. T. Myers, The short-range structure of zinc polyphosphate glass, Journal of Non-Crystalline Solids, vol.191, issue.1-2, p.45, 1995.
DOI : 10.1016/0022-3093(95)00289-8

F. Fayon, C. Bessada, and J. P. Coutures, High-resolution double-quantum P-31 MAS NMR study of the intermediate-range order in crystalline and glass lead phosphates, Inorg. Chem, issue.23, pp.38-5212, 1999.

C. Roiland, F. Fayon, and P. Simon, Characterization of the disordered phosphate network in CaO???P2O5 glasses by 31P solid-state NMR and Raman spectroscopies, Journal of Non-Crystalline Solids, vol.357, issue.7, pp.357-1636, 2011.
DOI : 10.1016/j.jnoncrysol.2011.01.023

URL : https://hal.archives-ouvertes.fr/hal-00592991

E. K. Park, Y. E. Lee, and J. Y. Choi, Cellular biocompatibility and stimulatory effects of calcium metaphosphate on osteoblastic differentiation of human bone marrow-derived stromal cells, Biomaterials, vol.25, issue.17, pp.3403-3411, 2004.
DOI : 10.1016/j.biomaterials.2003.10.031

W. Guo, S. Kim, and M. D. Grynpas, Calcium polyphosphates fibers for biodegradable composite biomaterials. Transactions of the 26th International Biomaterials Symposium Minneapolis: Society of Biomaterials A novel porous bone substitute, Transactions of the 5th World Biomaterials Congress Toronto, p.53, 1994.

D. Baksh and J. E. Davies, Three-dimensional matrices of calcium polyphosphates support bone growth in vitro and in vivo, Journal of Materials Science: Materials in Medicine, vol.9, issue.12, p.743, 1998.
DOI : 10.1023/A:1008959103864

Y. M. Lee, Y. J. Seol, and Y. T. Lim, Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices, Journal of Biomedical Materials Research, vol.19, issue.2, p.216, 2001.
DOI : 10.1002/1097-4636(200102)54:2<216::AID-JBM8>3.0.CO;2-C

A. Neel, E. Knowles, and J. , Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications, Journal of Materials Science: Materials in Medicine, vol.25, issue.1, p.377, 2008.
DOI : 10.1007/s10856-007-3079-5

A. Neel, E. Dell, and L. Smith, Processing, characterisation, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications, Journal of Materials Science: Materials in Medicine, vol.62, issue.2, p.1669, 2008.
DOI : 10.1007/s10856-007-3313-1

N. H. Ray, Inorganic polymers, 1978.

A. Neel, E. A. Chrzanowski, W. Valappil, and S. P. , Doping of a high calcium oxide metaphosphate glass with titanium dioxide, Journal of Non-Crystalline Solids, vol.355, pp.16-17, 2009.

T. Gilchrist, D. M. Healy, and C. Drake, Controlled silver-releasing polymers and their potential for urinary tract infection control, Biomaterials, vol.12, issue.1, p.76, 1991.
DOI : 10.1016/0142-9612(91)90136-X

R. Sheridan, P. J. Doherty, and T. Gilchrist, The effect of antibacterial agents on the behaviour of cultured mammalian fibroblasts, Journal of Materials Science: Materials in Medicine, vol.8, issue.12, p.853, 1995.
DOI : 10.1007/BF00134331

D. Mendeleïev, Zhurnal Russkoe Fiziko-Khimicheskoe Obshchestvo 1871, p.25

F. E. Katrak and J. C. Agarwal, Gallium: Long-Run Supply, JOM, vol.33, issue.9, p.33, 1981.
DOI : 10.1007/BF03339492

C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations, 1976.

R. G. Pearson, Hard and soft acids and bases, Chemistry in Britain, vol.1967, issue.103

S. A. Wood and I. A. Samson, Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. Techniques in Hydrothermal Ore Deposites, Reviews in Economic Geology J, p.33, 1998.

S. A. Wood and I. M. Samson, The aqueous geochemistry of gallium, germanium, indium and scandium, Ore Geology Reviews, vol.28, issue.1, p.57, 2006.
DOI : 10.1016/j.oregeorev.2003.06.002

D. Fiat and R. E. Connick, Magnetic Resonance Studies of Ion Solvation. The Coordination Number of Gallium(III) Ions in Aqueous Solutions, Journal of the American Chemical Society, vol.88, issue.20, pp.88-4754, 1966.
DOI : 10.1021/ja00972a059

P. Lindqvist-reis, A. Munoz-paez, and S. Diaz-moreno, The Structure of the Hydrated Gallium(III), Indium(III), and Chromium(III) Ions in Aqueous Solution. A Large Angle X-ray Scattering and EXAFS Study, Inorganic Chemistry, vol.37, issue.26, pp.37-6675, 1998.
DOI : 10.1021/ic980750y

R. M. Smith and A. E. Martell, Critical Stability Constants, 1976.

I. I. Diakonov, G. S. Pokrovski, and P. Bénézeth, Gallium speciation in aqueous solution. Experimental study and modelling: Part 1. Thermodynamic properties of Ga(OH)4??? to 300??C, Geochimica et Cosmochimica Acta, vol.61, issue.7, pp.61-1333, 1997.
DOI : 10.1016/S0016-7037(97)00011-2

P. Bénézeth, I. I. Diakonov, and G. S. Pokrovski, Gallium speciation in aqueous solution. Experimental study and modelling: Part 2. Solubility of ?-GaOOH in acidic solutions from 150 to 250°C and hydrolysis constants of gallium (III) to 300°C Thermodynamic binding constants for gallium transferrin, Geochimica et Cosmochimica Acta Biochemistry, vol.22, issue.72, pp.61-1345, 1983.

M. E. Smith, Application of27Al NMR techniques to structure determination in solids, Applied Magnetic Resonance, vol.40, issue.33, p.1, 1993.
DOI : 10.1007/BF03162555

L. R. Bernstein, Mechanisms of therapeutic activity for gallium, Pharmacological Reviews, vol.50, issue.4, p.665, 1998.

R. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides, Acta Crystalline, 1976.

R. G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry, Inorganic Chemistry, vol.27, issue.4, p.734, 1988.
DOI : 10.1021/ic00277a030

R. D. Hancock and F. Marsicano, Parametric correlation of formation constants in aqueous solution. 2. Ligands with large donor atoms, Inorganic Chemistry, vol.19, issue.9, p.2709, 1980.
DOI : 10.1021/ic50211a045

A. E. Martell and R. D. Hancock, Metal Complexes in Aqueous Solutions, 1996.
DOI : 10.1007/978-1-4899-1486-6

K. J. Logan, P. K. Ng, and C. J. Turner, Comparative pharmacokinetics of 67Ga and 59Fe in humans, International Journal of Nuclear Medicine and Biology, vol.8, issue.4, p.271, 1981.
DOI : 10.1016/0047-0740(81)90033-4

R. E. Weiner, The mechanism of 67Ga localization in malignant disease, Nuclear Medicine and Biology, vol.23, issue.6, p.745, 1996.
DOI : 10.1016/0969-8051(96)00119-9

S. R. Vallabhajosula, J. F. Harwig, and J. K. Siemsen, Radiogallium localization in tumors -Blood binding and transport and the role of transferrin, J. Nucl. Med, vol.21, issue.7, p.650, 1980.

S. R. Vallabhajosula, J. F. Harwig, and W. Wolf, The mechanism of tumor localization of gallium-67 citrate: Role of transferrin binding and effect of tumor pH, International Journal of Nuclear Medicine and Biology, vol.8, issue.4, p.363, 1981.
DOI : 10.1016/0047-0740(81)90044-9

C. R. Chitambar and Z. Zivkovic, Uptake of gallium-67 by human leukemic cells: demosntration of transferrin receptor-dependant and transferrin-independent mechanisms, Cancer Res, issue.15, pp.47-3929, 1987.

W. R. Drobyski, R. Ulhaq, and D. Majewski, Modulation of in vitro and in vivo Tcell responses by Transferrin-gallium and gallium nitrate Le gallium, propriétés thérapeutiquesdans la syphilis et les trypanosomiases expérimentales, Comptes Rendus De L Academie Des Sciences Séries D Sci Nate, p.1142, 1931.

O. Olakanmi, B. E. Britigan, and L. S. Schlesinger, Gallium Disrupts Iron Metabolism of Mycobacteria Residing within Human Macrophages, Infection and Immunity, vol.68, issue.10, pp.68-5619, 2000.
DOI : 10.1128/IAI.68.10.5619-5627.2000

M. M. Hart and R. H. Adamson, Antitumor activity and toxicity of salts of inorganic group IIIA metals -Aluminium

M. M. Hart, C. F. Smith, and S. T. Yancey, Toxicity and antitumor activity of gallium nitrate and periodically related metals salts, Journal of the National Cancer Institute, issue.5, pp.47-1121, 1971.

E. D. Crawford, J. H. Saiers, and L. H. Baker, Gallium nitrate in advanced bladdercarcinoma: Southwest oncology group study, Urology, vol.38, issue.4, p.355, 1991.
DOI : 10.1016/0090-4295(91)80152-W

A. D. Seidman, H. I. Scher, and M. H. Heinemann, Continuous infusion gallium nitrate for patients with advanced refractory urothelial tract tumors, Cancer, vol.71, issue.12, pp.68-2561, 1991.
DOI : 10.1002/1097-0142(19911215)68:12<2561::AID-CNCR2820681205>3.0.CO;2-G

L. H. Einhorn, B. J. Roth, and R. Ansari, Phase II trial of vinblastine, ifosfamide, and gallium combination chemotherapy in metastatic urothelial carcinoma., Journal of Clinical Oncology, vol.12, issue.11, pp.12-2271, 1994.
DOI : 10.1200/JCO.1994.12.11.2271

R. P. Warrell, C. J. Coonley, and D. J. Straus, Treatment of patients with advanced malignant-lymphomia using gallium nitrate administered as a 7-day continuous infusion, Cancer, issue.11, p.51, 1982.

J. K. Weick, R. L. Stephens, and L. H. Baker, Gallium nitrate in malignantlymphoma -A southwest oncology group-study. Cancer Treatment Reports, p.823, 1983.

C. R. Chitambar, S. A. Zahir, and P. S. Ritch, Evaluation of Continuous-Infusion Gallium Nitrate and Hydroxyurea in Combination for the Treatment of Refractory Non-Hodgkin's Lymphoma, American Journal of Clinical Oncology, vol.20, issue.2, p.173, 1997.
DOI : 10.1097/00000421-199704000-00015

E. S. Casper, G. F. Stanton, and P. P. Sordillo, Phase -II trial of gallium nitrate in patients with advanced malignant-melanoma Cancer Treatment Reports, pp.69-1019, 1985.

H. I. Scher, T. Curley, and N. Geller, Gallium nitrate in prostatic-cancer - Evaluation of antitumor-activity and effects on bone turnover Phase-I-II Trial of gallium nitrate for advanced hypernephroma, 887. [153] Schwartz, pp.4-5, 1984.

P. Collery, B. Keppler, and C. Madoulet, Gallium in cancer treatment, Critical Reviews in Oncology/Hematology, vol.42, issue.3, p.283, 2002.
DOI : 10.1016/S1040-8428(01)00225-6

K. Jabboury, D. Frye, and F. A. Holmes, Phase II evaluation of gallium nitrate by continuous infusion in breast cancer, Investigational New Drugs, vol.7, issue.2-3, p.225, 1989.
DOI : 10.1007/BF00170863

R. P. Warrell, N. W. Alcock, and R. S. Bockman, Gallium nitrate inhibits accelerated bone turnover in patients with bone metastases., Journal of Clinical Oncology, vol.5, issue.2, p.292, 1987.
DOI : 10.1200/JCO.1987.5.2.292

R. P. Warrell, D. Lovett, and F. A. Dilmanian, Low-dose gallium nitrate for prevention of osteolysis in myeloma: results of a pilot randomized study., Journal of Clinical Oncology, vol.11, issue.12, pp.11-2443, 1993.
DOI : 10.1200/JCO.1993.11.12.2443

R. Niesvizky, Gallium nitrate in multiple myeloma: Prolonged survival in a cohort of patients with advanced-stage disease, Seminars in Oncology, vol.30, issue.2 Suppl 5, p.20, 2003.
DOI : 10.1016/S0093-7754(03)00172-6

C. R. Chitambar, Gallium nitrate revisited, Seminars in Oncology, vol.30, issue.2 Suppl 5, p.1, 2003.
DOI : 10.1016/S0093-7754(03)00169-6

R. Bockman, The effects of gallium nitrate on bone resorption, Seminars in Oncology, vol.30, issue.2 Suppl 5, p.5, 2003.
DOI : 10.1016/S0093-7754(03)00170-2

R. S. Bockman, M. A. Repo, and R. P. Warrell, Distribution of trace levels of therapeutic gallium in bone as mapped by synchrotron x-ray microscopy., Proceedings of the National Academy of Sciences, vol.87, issue.11, p.4149, 1990.
DOI : 10.1073/pnas.87.11.4149

T. J. Hall and T. J. Chambers, Gallium inhibits bone resorption by a direct effect on osteoclasts, Bone and Mineral, vol.8, issue.3, p.211, 1990.
DOI : 10.1016/0169-6009(90)90106-P

V. Matkovic, G. Apseloff, and D. R. Shepard, Use of gallium to treat Paget's disease of bone: a pilot study, The Lancet, vol.335, issue.8681, pp.335-72, 1990.
DOI : 10.1016/0140-6736(90)90540-L

R. P. Warrell, B. Bosco, and S. Weinerman, Gallium nitrate for advanced Paget disease of bone -effectiveness and dose-response anlysis Annals of Internal Medicine, pp.113-847, 1990.

R. Donnelly, R. S. Bockman, and S. B. Doty, Bone particles from gallium-treated rats are resistant to resorption in vivo, Bone and Mineral, vol.12, issue.3, p.167, 1991.
DOI : 10.1016/0169-6009(91)90030-4

H. C. Blair, S. L. Teitelbaum, and H. L. Tan, Reversible inhibition of osteoclastic activity by bone-bound gallium (III), Journal of Cellular Biochemistry, vol.84, issue.4, p.401, 1992.
DOI : 10.1002/jcb.240480409

E. Verron, M. Masson, and S. Khoshniat, Gallium modulates osteoclastic bone resorption in vitro without affecting ostoblasts, British Journal of Pharmacology, 2010.

Z. Ma and Q. Fu, Comparison of the Therapeutic Effects of Yeast-incorporated Gallium with those of Inorganic Gallium on Ovariectomized Osteopenic Rats, Biological Trace Element Research, vol.7, issue.2, p.280, 2010.
DOI : 10.1007/s12011-009-8472-0

Z. Ma and Q. Fu, Therapeutic Effect of Organic Gallium on Ovariectomized Osteopenic Rats by Decreased Serum Minerals and Increased Bone Mineral Content, Biological Trace Element Research, vol.43, issue.6, p.342, 2010.
DOI : 10.1007/s12011-009-8445-3

R. Donnelly and A. Boskey, The effect of gallium on seeded hydroxyapatite growth, Calcified Tissue International, vol.11, issue.2, p.138, 1989.
DOI : 10.1007/BF02556473

M. Korbas, E. Rokita, and W. Meyer-klaucke, Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite, Journal of Biological Inorganic Chemistry, vol.9, issue.1, p.67, 2004.
DOI : 10.1007/s00775-003-0497-9

P. Melnikov, A. R. Teixeira, and A. Malzac, Gallium-containing hydroxyapatite for potential use in orthopedics, Materials Chemistry and Physics, vol.117, issue.1, p.86, 2009.
DOI : 10.1016/j.matchemphys.2009.05.046

C. Mellier, F. Fayon, and V. Schnitzler, Characterization and Properties of Novel Gallium-Doped Calcium Phosphate Ceramics, Inorganic Chemistry, vol.50, issue.17, pp.50-8252, 2011.
DOI : 10.1021/ic2007777

URL : https://hal.archives-ouvertes.fr/hal-00640087

R. K. Brow, Review: the structure of simple phosphate glasses, Journal of Non-Crystalline Solids, vol.263, issue.264, pp.1-4, 2000.
DOI : 10.1016/S0022-3093(99)00620-1

F. Pourpoint, C. Gervais, and L. Bonhomme-coury, Calcium phosphates: First-principles calculations vs. solid-state NMR experiments, Comptes Rendus Chimie, vol.11, issue.4-5, pp.4-5, 2008.
DOI : 10.1016/j.crci.2007.09.011

URL : https://hal.archives-ouvertes.fr/hal-00277151

M. Feike, R. Graf, and I. Schnell, Structure of crystalline phosphates from P-31 double-quantum NMR spectroscopy, Journal of the American Chemical Society, issue.40, pp.118-9631, 1996.

P. Losso, B. Schnabel, and C. Jager, 31P NMR investigations of binary alkaline earth phosphate glasses of ultra phosphate composition, Journal of Non-Crystalline Solids, vol.143, issue.2-3, p.265, 1992.
DOI : 10.1016/S0022-3093(05)80576-9

M. Feike, C. Jager, and H. W. Spiess, Connectivities of coordination polyhedra in phosphate glasses from P-31 double-quantum NMR spectroscopy, J. Non-Cryst. Solids, vol.223, issue.3, 0200.

F. Fayon, I. J. King, and R. K. Harris, Application of the through-bond correlation NMR experiment to the characterization of crystalline and disordered phosphates, Comptes Rendus Chimie, vol.7, issue.3-4, p.351, 2004.
DOI : 10.1016/j.crci.2003.10.019

D. Massiot, J. Hiet, and N. Pellerin, Two-dimensional one pulse MAS of half-integer quadrupolar nuclei, Journal of Magnetic Resonance, vol.181, issue.2, p.310, 2006.
DOI : 10.1016/j.jmr.2006.05.007

URL : https://hal.archives-ouvertes.fr/hal-00079119

B. Blümich, P. Blümler, and J. Jansen, Presentation of sideband envelopes by twodimensional one-pulse (TOP) spectroscopy. Solid State Nuclear Magnetic Resonance, p.111, 1992.

P. Blümler, J. Jansen, and B. Blümich, Two-dimensional one-pulse rotational echo spectra, Solid State Nuclear Magnetic Resonance, vol.3, issue.4, p.237, 1994.
DOI : 10.1016/0926-2040(94)90044-2

C. Otero-arean, M. Delgado, and V. Montouillout, Synthesis and Characterization of spinel-type Gallia-Alumina Solid Solutions. Zeitschrift fur anorganische und allgemeine Chemie, p.2121, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00095794

G. Engelhardt and D. Michel, High Resolution Solid-State NMR of silicates and zeolites

G. Czjzek, J. Fink, and F. Gotz, Atomic coordination and the distribution of electric field gradients in amorphous solids, Physical Review B, vol.23, issue.6, p.2513, 1981.
DOI : 10.1103/PhysRevB.23.2513

L. Caër, G. Brand, and R. A. , General models for the distributions of electric field gradients in disordered solids, Journal of Physics: Condensed Matter, vol.10, issue.47, pp.10-10715, 1998.
DOI : 10.1088/0953-8984/10/47/020

L. Caër, G. Bureau, B. Massiot, and D. , An extension of the Czjzek model for the distributions of electric field gradients in disordered solids and an application to NMR spectra of 71Ga in chalcogenide glasses, Synthèse et caractérisation de biomatériaux phosphocalciques multiphasés ou non avec des inhibiteurs de la résorption osseuse Thèse de Doctorat, 2010.

D. M. Pickup, R. M. Moss, and D. Qiu, Structural characterization by x-ray methods of novel antimicrobial gallium-doped phosphate-based glasses, The Journal of Chemical Physics, vol.130, issue.6, 2009.
DOI : 10.1063/1.3076057

B. C. Bunker, G. W. Arnold, and J. A. Wilder, Phosphate glass dissolution in aqueous solutions, Journal of Non-Crystalline Solids, vol.64, issue.3, p.291, 1984.
DOI : 10.1016/0022-3093(84)90184-4

F. Delahaye, L. Montagne, and G. Palavit, Acid dissolution of sodium???calcium metaphosphate glasses, Journal of Non-Crystalline Solids, vol.242, issue.1, p.25, 1998.
DOI : 10.1016/S0022-3093(98)00784-4

H. S. Gao, T. N. Tan, and D. H. Wang, Effect of composition on the release kinetics of phosphate controlled release glasses in aqueous medium, Journal of Controlled Release, vol.96, issue.1, 2004.
DOI : 10.1016/j.jconrel.2003.12.030

H. Takebe, Y. Baba, and M. Kuwabara, Dissolution behavior of ZnO-P 2 O 5 glasses in water, Journal of Non-Crystalline Solids, vol.352, pp.28-29, 2006.

C. Vitale-brovarone, G. Novajra, and D. Milanese, Novel phosphate glasses with different amounts of TiO 2 for biomedical applications: Dissolution tests and proof of concept of fibre drawing, Materials Science and Engineering, issue.2, pp.31-434, 2011.

D. Massiot, F. Fayon, and M. Capron, Modelling one-and two-dimensional solidstate NMR spectra Magnetic Resonance in Chemistry Proton-enhanced nuclear induction spectroscopy -Method for High-Resolution NMR of dilute spins in solids, Journal of Chemical Physics, vol.40, issue.564, p.1776, 1972.

E. O. Stejskal, J. Schaefer, and J. S. Waugh, Magic-angle spinning and polarization transfer in proton-enhanced NMR, Journal of Magnetic Resonance (1969), vol.28, issue.1, p.105, 1977.
DOI : 10.1016/0022-2364(77)90260-8

M. Cerruti, G. Magnacca, and V. Bolis, Characterization of sol???gel bioglasses with the use of simple model systems: a surface-chemistry approach, J. Mater. Chem., vol.87, issue.3, p.1279, 2003.
DOI : 10.1039/B300961K

M. Cerruti, C. L. Bianchi, and F. Bonino, Surface Modifications of Bioglass Immersed in TRIS-Buffered Solution. A Multitechnical Spectroscopic Study, The Journal of Physical Chemistry B, vol.109, issue.30, p.14496, 2005.
DOI : 10.1021/jp050705t

C. Lin, L. Huang, and P. Shen, Na 2 CaSi 2 O 6 -P 2 O 5 based bioactive glasses. Part 1: Elasticity and structure, Journal of Non-Crystalline Solids, vol.351, pp.40-42, 2005.

V. Fitzgerald, D. M. Pickup, and D. Greenspan, A Neutron and X-Ray Diffraction Study of Bioglass?? with Reverse Monte Carlo Modelling, Advanced Functional Materials, vol.1, issue.18, pp.17-3746, 2007.
DOI : 10.1002/adfm.200700433

L. Linati, G. Lusvardi, and G. Malavasi, Medium-range order in phospho-silicate bioactive glasses: Insights from MAS-NMR spectra, chemical durability experiments and molecular dynamics simulations, Journal of Non-Crystalline Solids, vol.354, issue.2-9, pp.2-9, 2008.
DOI : 10.1016/j.jnoncrysol.2007.06.076

A. Pedone, T. Charpentier, and G. Malavasi, New Insights into the Atomic Structure of 45S5 Bioglass by Means of Solid-State NMR Spectroscopy and Accurate First- Principles Simulations Study of the alkaline environment in mixed alkali compositions by multiple-quantum magic angle nuclear magnetic resonance (MQ?MAS NMR) Journal of Non-Crystalline Solids, Chemistry of Materials, vol.22, issue.354, pp.2-9, 2008.

A. Tilocca and N. H. De-leeuw, Ab Initio Molecular Dynamics Study of 45S5 Bioactive Silicate Glass, The Journal of Physical Chemistry B, vol.110, issue.51, pp.110-25810, 2006.
DOI : 10.1021/jp065146k

A. Tilocca, A. N. Cormack, and N. H. De-leeuw, The Structure of Bioactive Silicate Glasses:?? New Insight from Molecular Dynamics Simulations, Chemistry of Materials, vol.19, issue.1, p.95, 2007.
DOI : 10.1021/cm061631g

T. Kokubo, H. Kushitani, and S. Sakka, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W, J Biomed Mater Res, issue.6, pp.24-721, 1990.

T. Kokubo, S. Ito, and Z. T. Huang, Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W, Journal of Biomedical Materials Research, vol.80, issue.39, p.331, 1990.
DOI : 10.1002/jbm.820240306

P. Sepulveda, J. R. Jones, and L. L. Hench, In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses, Journal of Biomedical Materials Research, vol.155, issue.2, pp.61-301, 2002.
DOI : 10.1002/jbm.10207

O. Peitl, Z. E. Hench, and L. , Highly bioactive P2O5???Na2O???CaO???SiO2 glass-ceramics, Journal of Non-Crystalline Solids, vol.292, issue.1-3, p.115, 2001.
DOI : 10.1016/S0022-3093(01)00822-5

I. Lebecq, F. Desanglois, and A. Leriche, Compositional dependence on thein vitro bioactivity of invert or conventional bioglasses in the Si-Ca-Na-P system, Journal of Biomedical Materials Research Part A, vol.263, issue.264, pp.83-156, 2007.
DOI : 10.1002/jbm.a.31228

V. Aina, L. Bertinetti, and G. Cerrato, On the dissolution/reaction of small-grain Bioglass® 45S5 and F-modified bioactive glasses in artificial saliva (AS) Applied Surface Science Synthesis and characterization of nanosized-silica gels formed under controlled conditions, 4185. [214] Pijarn, p.462, 2010.

M. Cerruti, D. Greenspan, and K. Powers, Effect of pH and ionic strength on the reactivity of Bioglass?? 45S5, Biomaterials, vol.26, issue.14, pp.26-1665, 2005.
DOI : 10.1016/j.biomaterials.2004.07.009

D. Bellucci, G. Bolelli, and V. Cannillo, In situ Raman spectroscopy investigation of bioactive glass reactivity: Simulated body fluid solution vs TRIS-buffered solution, Materials Characterization, vol.62, issue.10, pp.62-1021, 2011.
DOI : 10.1016/j.matchar.2011.07.008

L. J. Skipper, F. E. Sowrey, and D. M. Pickup, The structure of a bioactive calciasilica sol-gel glass, Journal of Materials Chemistry, issue.24, pp.15-2369, 2005.

P. Li, C. Ohtsuki, and T. Kokubo, Process of formation of bone-like apatite layer on silica gel, Journal of Materials Science: Materials in Medicine, vol.45, issue.2, p.127, 1993.
DOI : 10.1007/BF00120381

J. R. Jones, Review of bioactive glass: From Hench to hybrids, Acta Biomaterialia, vol.2013, issue.91, p.4457

M. Ogino, F. Ohuchi, and L. L. Hench, Compositional dependence of the formation of calcium phosphate films on bioglass, Journal of Biomedical Materials Research, vol.57, issue.1, p.55, 1980.
DOI : 10.1002/jbm.820140107

A. Angelopoulou, V. Montouillout, and D. Massiot, Study of alkaline metal ions and glass-formers in glasses with advanced NMR methods and quantum mechanic calculations, Journal of Non-Crystalline Solids, vol.356, issue.4-5, pp.4-5, 2010.
DOI : 10.1016/j.jnoncrysol.2009.11.018

URL : https://hal.archives-ouvertes.fr/hal-00454363

C. Mercier, C. Follet-houttemane, A. Pardini, and B. Revel, Influence of P 2 O 5 content on the structure of SiO 2 -Na 2 O-CaO-P 2 O 5 bioglasses by 29Si and 31P MAS-NMR, Journal of Non-Crystalline Solids, 2011.

R. H. Dupree, D. Mortuza, and M. G. , The role of small amounts of P 2 O 5 in the structure of alkali disilicate glasses. Physics and Chemistry of glasses, p.207, 1988.

M. W. Lockyer, D. Holland, and R. Dupree, NMR investigation of the structure of some bioactive and related glasses, Journal of Non-Crystalline Solids, vol.188, issue.3, p.207, 1995.
DOI : 10.1016/0022-3093(95)00188-3

M. W. Lockyer, D. Holland, and R. Dupree, The structure of (5X)P 2 O 5 .(1-X)K 2 O- X)SiO 2 glasses. Physics and Chemistry of glasses, p.22, 1995.

A. Tilocca and A. N. Cormack, Structural Effects of Phosphorus Inclusion in Bioactive Silicate Glasses, The Journal of Physical Chemistry B, vol.111, issue.51, pp.111-14256, 2007.
DOI : 10.1021/jp075677o

E. Leonova, I. Izquierdo-barba, and D. Arcos, Multinuclear Solid-State NMR Studies of Ordered Mesoporous Bioactive Glasses, The Journal of Physical Chemistry C, vol.112, issue.14, pp.112-5552, 2008.
DOI : 10.1021/jp7107973

M. Neo, S. Kotani, and T. Nakamura, A comparative-study of ultrastructures of the interfaces between 4 kinds of surface-reactive ceramics and bone Structure and properties of B-type phosphocalcium carbonated apatites, 1419. [231] Labarthe, p.289, 1973.

M. R. Filgueiras, G. Latorre, and L. L. Hench, Solution effects on the surface reactions of a bioactive glass, Journal of Biomedical Materials Research, vol.26, issue.4, p.445, 1993.
DOI : 10.1002/jbm.820270405

M. R. Filgueiras, G. Latorre, and L. L. Hench, Solution effects on the surfacereactions of 3 bioactive glass compositions, Journal of Biomedical Materials Research, issue.12, pp.27-1485, 1993.

H. H. Takadama, M. Mizuno, M. Kokubo, and T. , ROUND-ROBIN TEST OF SBF FOR <I>IN VITRO</I> MEASUREMENT OF APATITE-FORMING ABILITY OF SYNTHETIC MATERIALS, Phosphorus Research Bulletin, vol.17, issue.0, p.119, 2004.
DOI : 10.3363/prb1992.17.0_119

A. Oyane, H. M. Kim, and T. Furuya, Preparation and assessment of revised simulated body fluids, Journal of Biomedical Materials Research, vol.14, issue.2, pp.65-188, 2003.
DOI : 10.1002/jbm.a.10482

T. T. Kokubo and H. , How useful is SBF in predicting in vivo bone bioactivity ? Biomaterials, p.2907, 2006.

J. L. Gamble, Y. Aoki, and T. Kokubo, Chemical anatomy, physiology and pathology of extracellular fluid; a lecture syllabus Transmission electron-microscopic observation of glass-ceramic a-W and apatite layer formed on its surface in a simulated bodyfluid, Journal of the Ceramic Society of Japan, vol.103, issue.5, p.449, 1954.

T. Kokubo, Bioactive glass ceramics: properties and applications, Biomaterials, vol.12, issue.2, p.155, 1991.
DOI : 10.1016/0142-9612(91)90194-F

M. Bohner and J. Lemaitre, Can bioactivity be tested in vitro with SBF solution? Biomaterials, p.2175, 2009.

I. D. Xynos, A. J. Edgar, and L. D. Buttery, Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass??? 45S5 dissolution, Journal of Biomedical Materials Research, vol.9, issue.2, p.151, 2001.
DOI : 10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D

I. D. Xynos, M. V. Hukkanen, and J. J. Batten, Bioglass ??45S5 Stimulates Osteoblast Turnover and Enhances Bone Formation In Vitro: Implications and Applications for Bone Tissue Engineering, Calcified Tissue International, vol.67, issue.4, p.321, 2000.
DOI : 10.1007/s002230001134

L. L. Hench, Genetic design of bioactive glass, Journal of the European Ceramic Society, vol.29, issue.7, p.1257, 2009.
DOI : 10.1016/j.jeurceramsoc.2008.08.002

R. C. Bielby, I. S. Christodoulou, and R. S. Pryce, Time-and concentrationdependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts, Tissue Eng, vol.10, pp.7-8, 1018.

I. D. Xynos, A. J. Edgar, and L. D. Buttery, Ionic Products of Bioactive Glass Dissolution Increase Proliferation of Human Osteoblasts and Induce Insulin-like Growth Factor II mRNA Expression and Protein Synthesis, Biochemical and Biophysical Research Communications, vol.276, issue.2, p.461, 2000.
DOI : 10.1006/bbrc.2000.3503

J. Y. Sun, Y. S. Yang, and J. Zhong, The effect of the ionic products of Bioglass dissolution on human osteoblasts growth cycle in vitro Bioactive glass-induced osteoblast differentiation: a noninvasive spectroscopic study, 281. [248] Jell, p.31, 2007.

G. Jell and M. Stevens, Gene activation by bioactive glasses, Journal of Materials Science: Materials in Medicine, vol.23, issue.11, p.997, 2006.
DOI : 10.1007/s10856-006-0435-9

J. Wilson, G. H. Pigott, and F. J. Schoen, Toxicology and biocompatibility of bioglasses, Journal of Biomedical Materials Research, vol.2, issue.6, pp.15-805, 1981.
DOI : 10.1002/jbm.820150605

F. Betts and A. S. Posner, X-ray radial Al-distribution study of amorphous calciumphosphate, Materials Research Bulletin, vol.1974, issue.93, p.353

R. A. Martin, H. Twyman, and D. Qiu, A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass?? using surface sensitive shallow angle X-ray diffraction, Journal of Materials Science: Materials in Medicine, vol.78, issue.9, p.883, 2009.
DOI : 10.1007/s10856-008-3661-5

F. Betts, N. C. Blumenthal, A. S. Posner, and . Bone-mineralization, Bone mineralization, Journal of Crystal Growth, vol.53, issue.1, p.63, 1981.
DOI : 10.1016/0022-0248(81)90056-7

R. J. Newport, L. J. Skipper, and D. Carta, The use of advanced diffraction methods in the study of the structure of a bioactive calcia: silica sol-gel glass Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite -pH -dependent, solution-mediated, solid-solid conversion, 1003. [255], pp.77-2313, 1973.

V. Fitzgerald, D. M. Pickup, and D. Greenspan, An atomic scale comparison of the reaction of Bioglass(R) in two types of simulated body fluid, Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B, issue.3, pp.50-137, 2009.

I. Rehman, J. C. Knowles, and W. Bonfield, Analysis ofin vitro reaction layers formed on Bioglass??? using thin-film X-ray diffraction and ATR-FTIR microspectroscopy, Journal of Biomedical Materials Research, vol.16, issue.1, pp.41-162, 1998.
DOI : 10.1002/(SICI)1097-4636(199807)41:1<162::AID-JBM19>3.0.CO;2-P

V. Fitzgerald, R. A. Martin, and J. R. Jones, monitoring of apatite layer formation using small- and wide-angle X-ray scattering, Journal of Biomedical Materials Research Part A, vol.41, issue.1, pp.91-76, 2009.
DOI : 10.1002/jbm.a.32206

R. Mathew, P. N. Gunawidjaja, and I. Izquierdo-barba, Solid-State 31P and 1H NMR Investigations of Amorphous and Crystalline Calcium Phosphates Grown Biomimetically From a Mesoporous Bioactive Glass, The Journal of Physical Chemistry C, pp.115-157, 2011.

P. N. Gunawidjaja, I. Izquierdo-barba, and R. Mathew, Quantifying apatite formation and cation leaching from mesoporous bioactive glasses in vitro: a SEM, solid-state NMR and powder XRD study, Journal of Materials Chemistry, vol.370, issue.39, pp.22-7214
DOI : 10.1039/c2jm15066b

S. Radin, P. Ducheyne, and S. Falaize, In vitro transformation of bioactive glass granules into Ca-P shells, Journal of Biomedical Materials Research, vol.94, issue.2, p.264, 2000.
DOI : 10.1002/(SICI)1097-4636(200002)49:2<264::AID-JBM16>3.0.CO;2-2

H. E. Mason, A. Kozlowski, and B. L. Phillips, Solid-State NMR Study of the Role of H and Na in AB-Type Carbonate Hydroxylapatite, Chemistry of Materials, vol.20, issue.1, p.294, 2008.
DOI : 10.1021/cm0716598

C. Rey, B. Collins, and T. Goehl, The carbonate environment in bone mineral: A resolution-enhanced fourier transform infrared spectroscopy study, Calcified Tissue International, vol.65, issue.1, pp.45-157, 1989.
DOI : 10.1007/BF02556059

B. Hadj-yahia, F. Jemal, and M. , Synthesis, structural analysis and thermochemistry of B-type carbonate apatites, Thermochimica Acta, vol.505, issue.1-2, p.22, 2010.
DOI : 10.1016/j.tca.2010.03.017

. Si-29, Na-23 and C-13 Solid-State NMR, Journal of Physical Chemistry C, vol.114, issue.45, 2010.

K. S. Lin, Y. H. Tseng, and Y. Mou, Mechanistic study of apatite formation on bioactive glass surface using P-31 solid-state NMR Spectroscopy, Chemistry of Materials, issue.17, pp.17-4493, 2005.

E. Dietrich, H. Oudadesse, and M. Le-floch, Glasses: an Original Approach by Solid-State NMR Spectroscopy, In vitro Chemical Reactivity of Doped Bioactive Advanced Engineering Materials, issue.8, pp.11-98, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00497102

I. L. Mudrakovskii, V. P. Shmachkova, and N. S. Kotsarenko, 31P nmr study of I???IV group polycrystalline phosphates, Journal of Physics and Chemistry of Solids, vol.47, issue.4, pp.47-335, 1986.
DOI : 10.1016/0022-3697(86)90022-3

T. Gullion and J. Schaefer, Rotational-Echo Double-Resonance Journal of Magnetic Resonance, p.196, 1989.

V. G. Plotnichenko, V. O. Sokolov, and V. V. Koltashev, On the structure of phosphosilicate glasses, Journal of Non-Crystalline Solids, vol.306, issue.3, p.209, 2002.
DOI : 10.1016/S0022-3093(02)01172-9

X. Xue and J. F. Stebbins, 23Na NMR chemical shifts and local Na coordination environments in silicate crystals, melts and glasses, Physics and Chemistry of Minerals, vol.20, issue.5, p.297, 1993.
DOI : 10.1007/BF00215100

C. Jäger, T. Welzel, and W. Meyer-zaika, A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite, Magnetic Resonance in Chemistry, issue.6, pp.44-573, 2006.

S. Peroos, Z. M. Du, and N. H. De-leeuw, A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite, Biomaterials, vol.27, issue.9, p.2150, 2006.
DOI : 10.1016/j.biomaterials.2005.09.025

L. Torre, G. H. , and L. L. , Characterization Methods for the Solid-Solution interface in Ceramics System, 1993.

S. Kim, H. S. Ryu, and H. Shin, In situ observation of hydroxyapatite nanocrystal formation from amorphous calcium phosphate in calcium-rich solutions, Materials Chemistry and Physics, vol.91, issue.2-3, p.500, 2005.
DOI : 10.1016/j.matchemphys.2004.12.016

T. Kokubo, H. M. Kim, and M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials, vol.24, issue.13, p.2161, 2003.
DOI : 10.1016/S0142-9612(03)00044-9

J. Kolmas, A. Jaklewicz, and A. Zima, Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: The effect on physicochemical properties, Journal of Molecular Structure, vol.987, issue.1-3, pp.1-3, 2011.
DOI : 10.1016/j.molstruc.2010.11.058

D. Laurencin, N. Almora-barrios, and N. H. De-leeuw, Magnesium incorporation into hydroxyapatite, Biomaterials, vol.32, issue.7, pp.32-1826, 2011.
DOI : 10.1016/j.biomaterials.2010.11.017

URL : https://hal.archives-ouvertes.fr/hal-00556834

A. Pines, M. G. Gibby, and J. S. Waugh, Proton???enhanced NMR of dilute spins in solids, The Journal of Chemical Physics, vol.59, issue.2, p.569, 1973.
DOI : 10.1063/1.1680061

G. E. Maciel and D. W. Sindorf, Si-29 nuclear magnetic resonance study of the surface of silica-gel by cross polarization and magic angle spinning, J. Am. Chem. Soc, issue.25, pp.102-7606, 1980.

D. W. Sindorf and G. E. Maciel, Si-29 NMR study of dehydrated rehydrated silica-gel using cross polarization and magic angle spinning, J. Am. Chem. Soc, issue.6, pp.105-1487, 1983.

W. P. Aue, A. H. Roufosse, and M. J. Glimcher, Solid-state phosphorus-31 nuclear magnetic resonance studies of synthetic solid phases of calcium phosphate: potential models of bone mineral, Biochemistry, vol.23, issue.25, pp.23-6110, 1984.
DOI : 10.1021/bi00320a032

J. P. Yesinowski and H. Eckert, Hydrogen environments in calcium phosphates

F. Pourpoint, C. Gervais, and L. Bonhomme-coury, Calcium Phosphates and Hydroxyapatite: Solid-State NMR Experiments and First-Principles Calculations, Applied Magnetic Resonance, vol.27, issue.653, p.435, 2007.
DOI : 10.1007/s00723-007-0040-1

URL : https://hal.archives-ouvertes.fr/hal-00343640

A. Kaflak, D. Chmielewski, and A. Gorecki, Efficiency of 1H???31P NMR cross-polarization in bone apatite and its mineral standards, Solid State Nuclear Magnetic Resonance, vol.29, issue.4, p.345, 2006.
DOI : 10.1016/j.ssnmr.2005.11.005

S. Cazalbou, C. Combes, and D. Eichert, Poorly crystalline apatites: evolution and maturation in vitro and in vivo, Journal of Bone and Mineral Metabolism, vol.22, issue.4, p.310, 2004.
DOI : 10.1007/s00774-004-0488-0

K. Beshah, C. Rey, and M. J. Glimcher, Solid state carbon-13 and proton NMR studies of carbonate-containing calcium phosphates and enamel, Journal of Solid State Chemistry, vol.84, issue.1, pp.71-72, 1990.
DOI : 10.1016/0022-4596(90)90185-Z

. Dans-le-cas-d, une paire de spin, la valeur de la constante de l'interaction dipolaire D IS peut être déterminée à partir de la valeur du moment M 2. Comme nous l'avons vu précédemment

F. Bloch and E. M. Purcell, Development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith, Nobel Prize in Physics, 1952.

E. R. Andrew, A. Bradbury, and R. G. Eades, Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation Nature, pp.183-1802, 1959.

I. J. Lowe, Free Induction Decays of Rotating Solids, Physical Review Letters, vol.2, issue.7, p.285, 1959.
DOI : 10.1103/PhysRevLett.2.285

S. R. Hartmann and E. L. Hahn, Nuclear Double Resonance in the Rotating Frame, Physical Review, vol.128, issue.5, p.2042, 1962.
DOI : 10.1103/PhysRev.128.2042

A. Pines, J. S. Waugh, and M. G. Gibby, Proton???Enhanced Nuclear Induction Spectroscopy. A Method for High Resolution NMR of Dilute Spins in Solids, The Journal of Chemical Physics, vol.56, issue.4, p.1776, 1972.
DOI : 10.1063/1.1677439

A. Abragam, The principles of the nuclear Magnetism, 1961.

M. Mehring, High resolution NMR Spectroscopy in solids, 1976.

P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy Oxford Sciences publications 1993. [11] Duer, M., Solid-state NMR spectroscopy. Principles and applications, Blackwell Science, vol.3, issue.126, 2002.

S. Grandjean, A. Douy, and F. Fayon, Etude de phases métastables dans les systèmes Al2O3-M2O