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A B S T R A C T

The work presented in this thesis deals with data mining approaches
for the analysis of attributed graphs. An attributed graph is a graph
where properties, encoded by means of attributes, are associated to
each vertex. In such data, our objective is the discovery of subgraphs
formed by several dense groups of vertices that are homogeneous with
respect to the attributes.

More precisely, we de�ne the constraint-based extraction of collec-
tions of subgraphs densely connected and such that the vertices share
enough attributes. To this aim, we propose two new classes of patterns
along with sound and complete algorithms to compute them ef�ciently
using constraint-based approaches. The �rst family of patterns, named
Maximal Homogeneous Clique Set (MHCS), contains patterns satisfy-
ing constraints on the number of dense subgraphs, on the size of these
subgraphs, and on the number of shared attributes. The second class
of patterns, named Collection of Homogeneous k-clique Percolated
components (CoHoP), is based on a relaxed notion of density in order
to handle missing values.

Both approaches are used for the analysis of scienti�c collaboration
networks and protein-protein interaction networks. The extracted pat-
terns exhibit structures useful in a decision support process. Indeed,
in a scienti�c collaboration network, the analysis of such structures
might give hints to propose new collaborations between researchers
working on the same subjects. In a protein-protein interaction network,
the analysis of the extracted patterns can be used to study the rela-
tionships between modules of proteins involved in similar biological
situations. The analysis of the performances, on real and synthetic data,
with respect to different attributed graph characteristics, shows that the
proposed approaches scale well for large datasets.
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R É S U M É

Ce travail de thèse concerne la fouille de données sur des graphes
attribués. Il s'agit de graphes dans lesquels des propriétés, encodées
sous forme d'attributs, sont associées à chaque sommet. Notre objectif
est la découverte, dans ce type de données, de sous-graphes organisés
en plusieurs groupes de sommets fortement connectés et homogènes
au regard des attributs.

Plus précisément, nous dé�nissons l'extraction sous contraintes d'en-
sembles de sous-graphes densément connectés et tels que les sommets
partagent suf�samment d'attributs. Pour cela nous proposons deux
familles de motifs originales ainsi que les algorithmes justes et complets
permettant leur extraction ef�cace sous contraintes. La première famille,
nommée Ensembles Maximaux de Cliques Homogènes, correspond à
des motifs satisfaisant des contraintes concernant le nombre de sous-
graphes denses, la taille de ces sous-graphes et le nombre d'attributs
partagés. La seconde famille, nommée Collections Homogènes de
k-cliques Percolées emploie quant à elle une notion de densité plus
relaxée permettant d'adapter la méthode aux données avec des valeurs
manquantes.

Ces deux méthodes sont appliquées à l'analyse de deux types de
réseaux, les réseaux de coopérations entre chercheurs et les réseaux
d'interactions de protéines. Les motifs obtenus mettent en évidence
des structures utiles dans un processus de prise de décision. Ainsi,
dans un réseau de coopérations entre chercheurs, l'analyse de ces
structures peut aider à la mise en place de collaborations scienti�ques
entre des groupes travaillant sur un même domaine. Dans le contexte
d'un graphe de protéines, les structures exhibées permettent d'étudier
les relations entre des modules de protéines intervenant dans des
situations biologiques similaires. L'étude des performances en fonction
de différentes caractéristiques de graphes attribués réels et synthétiques
montre que les approches proposées sont utilisables sur de grands jeux
de données.
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context

Scienti�c research is built from many previous results and the results
presented in this thesis are not an exception. This work is based on
previous results in the data mining community. This domain of study
has emerged in the nineties at the boundaries of several other �elds of
research. Among these �elds, probably the main ones were database,
arti�cial intelligence and statistics. At that time, one of the main
objective of data mining was to support the analysts in the knowledge
discovery process.

Since then, while the original objectives of data mining remain, new
challenges have occurred [36, 83]. The results presented in this thesis
deal mainly with four challenges presented in the next paragraphs.
However the data mining community has also to deal with other prob-
lems such as privacy, data visualisation, or data distribution over multi-
ple computers, that are not tackled in this work.

Performance scaling

The ef�ciency challenge is strongly tied with one of the objective
of data mining, being able to treat large and continuously growing
volumes of data. The advance in hardware is of little help for this
aim. Many algorithms in data mining have an exponential complexity
with respect to the size of the data. For example, it is the complexity
of most algorithms performing subset enumeration. Reducing algo-
rithm complexity is then always a great challenge for the data mining
community.

Domain knowledge

Another objective is to give the possibility to the experts to use their
knowledge during the extraction process. Using this knowledge allows
not only to get more meaningful results but it might also be used to
avoid the cost of �nding something which is not relevant for the expert.
As a consequence, this challenge is linked with the ef�ciency. Being able
to exploit expert knowledge in the extraction process is still an open
problem. A common solution toward this aim is to specify the kind of The inductive query

framework proposed
in [41] is an attempt
to address this
problem in a general
manner.

information one wants to �nd by means of constraints that are then
used to focus on more relevant results. Moreover, these constraints can
also be used actively during the extraction to reduce the computational
cost.

Handling imperfect data

Another great challenge is to take into account missing values in the
data. Several factors can generate missing values. This can happen, for
example, during the data collection process. This can also be due to
the data preprocessing. Indeed the raw data are usually transformed
before they can be used by a data mining algorithm. Such preprocessing
(e.g., binarization) can lead to loss of information and consequently to
missing values. Taking into account the fact that values may be missing
is then important.

Analysis of complex data

The last problem tackled by this thesis is the analysis of complex data
objects, like web pages, genes or spatio temporal objects descriptions.
Among the data model used, graphs have been shown to be a very
general one, useful to encode many datasets. A large number of
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data mining algorithms have already been proposed for the analysis
of graphs. More recently, several works have been dedicated to the
analysis of graph extensions as for example dynamic graphs [74], multi
dimensional graphs [ 8] or attributed graphs.

In this thesis, our object of study is this last extension mentioned:
the attributed graphs. For short, an attributed graph is a graph ( i.e.,
a collection of vertices connected by edges) such that properties areIn the literature, the

term node is
sometimes used

instead of vertex. In
this thesis, we will

use the term vertex.

associated to each vertex. The properties can have different domain of
values, for example Boolean, numeric (e.g., age, weight), or categorical
(e.g., season, colour). Our work will consider the case where the domain
of the attributes is Boolean.

An example of attributed graph is given in Figure 1. These data
represent a group of individuals with their relationships and their
musical tastes. The kind of relationships can be for example friendship,
geographic closeness, or being member of the same organization. In the
attributed graph representation of these data, each person corresponds
to a vertex denoted by a capital letter. The relationships between
persons are represented by edges. The musical tastes (e.g., rock, pop)
of each person is encoded by means of attributes having either value
True or False (i.e., the domain of the attributes is Boolean). A person
associated to an attribute having value True denotes the fact that this
person enjoys the corresponding style of music. Note that in Figure 1,
only attributes having value True are represented. For example, the
person corresponding to vertex G (top right of the �gure), is in relation
with the persons denoted by vertices C, E, F, and H and enjoys rock,
folk and jazz music styles.
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Figure 1.: An example of attributed graph.

To sum up, the context of this thesis is the analysis of attributed
graphs with the objectives of being ef�cient, being able to handle
missing values, and allowing the experts to use their knowledge during
the extraction process. Given this context, the next section presents the
problem tackled in this thesis.
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problem

In this thesis, we focus on providing a method for the discovery
of structures in attributed graphs. This problem speci�cation is very Here, the term

structure is used in a
general sense, and

does not refer to the
discovery of

structures in
documents as

structure mining in
XML documents.

general and must be de�ned more precisely. In fact, it raises the
question “what can be considered as a relevant structure in an attributed
graph ?”

An example of well studied structure is a collection of properties or
itemsshared by the same set of objects. In a dataset of persons (the
objects) together with their musical tastes (the items), such a structure
corresponds to a set of music styles enjoyed by a group of persons. This
structure formed by a set of items, usually named itemset, occurring
frequently with a set of objects, has been studied in data mining under
the name frequent itemsets, and its extensions frequent closed itemset[70]
or error tolerant frequent closed itemsets[18] among others.

Structures formed by groups of objects such that there are many
connections between them have also been well studied in the context
of graphs. Considering only the graph part of the attributed graph
presented in Figure 1, Figure 2 highlights such collection of objects. The
notion of many connectionshas been de�ned in several ways. One of
these de�nitions is the notion of cliques[52] (a collection of objects all
pairwise connected, as the subgraph in solid lines depicted in Figure 2).
Since this de�nition is very restrictive, several extensions have been
proposed to allow missing connections within the structure, for example
quasi-cliques[51] or k-clique percolated components[67].
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Figure 2.: The graph part corresponding to the attributed graph presented Fig-
ure 1. The solid lines structure is formed by vertices being pairwise
connected.

In this thesis, we focus more particularly on attributed graphs. As
said previously, an attributed graph can be viewed as entities which
are both in relationship ( i.e., the graph) and associated to several prop-
erties (i.e., the attributes). Intuitively, from what have been previously
considered, an interesting structure could be a collection of objects
sharing attribute values and being strongly connected. Such structure
has been studied for example in [58] and can be considered as local
in the sense that it is usually formed by a small number of objects
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compared to the size of the whole dataset. However, it is possible to
consider structures at an intermediate level of analysis, even if there
is no strict de�nition of what is an intermediate level. In this thesis,
we consider that a structure formed by several dense subgraphs can
reasonably be placed at an intermediate level of analysis. Our work
is placed at such intermediate level. More precisely, our structure of
interest is formed by severalgroups of objects strongly connected and
similar with respect to the values of their attributes.

contribution

Our main contribution consists in the de�nition of two classes of
patterns used to discover collections of dense subgraphs sharing similar
Boolean attributes. In Figure 3 the highlighted collection of three groups
formed by densely connected vertices sharing attributes rock and folk
illustrates the kind of patterns we propose to extract.

The �rst class of patterns, named Maximal Homogeneous Clique Set
(MHCS), is based on cliques. To the best of our knowledge, it is the
�rst attempt to �nd collections of dense subgraphs. The second class
of patterns is named Collection of Homogeneous k-clique Percolated
components (CoHoP). This class of patterns allows to take into account
missing values in the data in the sense that the vertices in a subgraph
are not required to be fully pairwise connected.

In order to compute the collections of MHCS and CoHoP patterns,
we propose a sound and complete algorithm for each class of patterns.
These algorithms take advantage of several pruning techniques based
on constraint properties in order to reduce the search space. We also
provide formal proof of correctness for these algorithms.

We present experimental results in two real world contexts, a scien-
ti�c collaboration network and a protein-protein interaction network.
These experiments demonstrate the practical interest of these classes of
patterns. We also study the performances of our algorithms using large
real and synthetic datasets. The results show that our approaches are
able to handle real size datasets and scale well with respect to several
attributed graph characteristics.

We also develop a pattern extraction and visualisation software. This
tool allows to �lter the collection of patterns and highlight vertices with
respect to several graph characteristics.

The MHCS patterns have been introduced in [ 59, 61] and the Co-
HoP patterns in [ 62]. Their application to protein-protein interaction
networks have been presented respectively in [60] and [63].

organization of the thesis

In the following part (Part ii ), we propose a state of the art on the
analysis of attributed graphs using data mining techniques. Since
the interest for such context is rather recent in data mining, only few
approaches have been proposed. In order to get a broader overview, we
also consider the discovery of groups of properties in binary relations
(Section 1) and the discovery of groups of connected objects in graphs
(Section 2). In the attributed graph context (Section 3), we present
existing approaches to �nd groups either at a global level (clusters) or
at a more local level (dense subgraphs).
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Figure 3.: An example collection of subgraphs illustrating the type of patterns
we propose to extract.

Part iii details the main contributions of this thesis. Section 4 fo-
cuses on the Maximal Homogeneous Clique Sets and Section5 on
the Collection of Homogeneous k-clique Percolated components. The
organization of these two sections are similar. First, we present the
de�nition of our classes of patterns. Next, we present an extraction al-
gorithm using several pruning techniques and demonstrate their safety.
Finally, we present experimental results on bibliographical data in order
to give practical examples of patterns in real datasets and study the
scalability of our approaches on synthetic datasets.

Part iv proposes an application of both MHCS and CoHoP patterns
in the context of molecular biology. Using a domain speci�c measure,
we experimentally show that a large number of extracted patterns
contain information in agreement with previous knowledge in biology.
We also provide biological interpretations, obtained in collaboration
with a domain expert, for several MHCS and CoHoP patterns. Finally,
we present the performances of our algorithms on these datasets for
various settings.

Part v concludes with a short summary of the results, and proposes
several possible future works extending the results presented in this
thesis.

Appendix A gives several characteristics describing the datasets used
in the previous experiments. Appendix B describes the software which
have been developed in order to extract and visualise collections of
patterns. Appendix C details the symbols used in this thesis. Finally,
the references are given in Part vi .





Part II

S TAT E O F T H E A RT





O U T L I N E

In this state of the art, we present previous works regarding the
analysis of attributed graphs. Since the interest for this task is rather
recent, we also consider other contexts to provide a broader overview.
More precisely, we present techniques to �nd groups of properties, the
so-called itemsets, and to �nd groups of objects connected in a graph.

In Section 1, we present classes of local patterns in the binary relation
setting. These classes of patterns aim at �nding set of attributes (the
items) shared by several objects. Even though the data mining tasks
have evolved since these �rst results, many recent approaches still share
ideas with these works.

In Section 2, we consider the graph setting. In such context, we
�rst present several graph measures used to characterize the structure
of a graph. Then, we present three classes of patterns corresponding
to groups of connected objects, namely cliques, quasi-cliques, and k-
clique percolated components. The objective of this section is to give
an overview of structures commonly used to exhibit dense subgraphs.

Section 3 presents several data mining tasks in the context of at-
tributed graphs with a more general scope, from clustering to local
pattern extraction. The objective of this section is to present the existing
approaches to �nd groups in attributed graphs.

For each context, we discuss the ef�ciency of the presented ap-
proaches and the techniques used to handle missing values.

11





1L O C A L PAT T E R N M I N I N G I N B I N A RY R E L AT I O N S

1.1 the binary relation context

A binary relation is used to depict the fact that an element from a
set is related to an element from another set. More precisely, a binary
relation consists in a collection of ordered pairs de�ned as follows.

De�nition 1 (Binary Relation) Given two arbitrary setsO = fo1 ; : : : ; on g
andI = fi 1 ; : : : ; i m gcalled respectively domain and codomain, a binary rela-
tion R is a subset of the Cartesian productO� I , where the Cartesian product
of O andI is

O� I = f(o1 ; i 1 ); : : : ; (o1 ; i m ); : : : ; (on ; i 1 ); : : : ; (on ; i m )g

Example 1 Figure 4 depicts a binary relation over two setsO and I . The
ordered pair(o1 ; i 3 ) is in the relation whether(o1 ; i 4 ) is not.

In the data mining context, the elements of the domain O and of the
codomain I are usually named respectively objects and items. A typical
example of binary relation is a set of market baskets. In such data,
the set of items is the products available and the set of objects is the
customers. The relation will then associate a product i to a customer o
when the customer o has bought product i . In such context, the binary
relation presented Figure 4 depicts, for instance, the fact that customer
o4 bought products i 2 , i 3 , and i 5 .

i 1 i 2 i 3 i 4 i 5

o1 1 1 1 1

o2 1 1 1

o3 1 1

o4 1 1 1

Figure 4.: An example of binary relation over the domain O = fo1 ; o2 ; o3 ; o4g
and codomain I = fi 1 ; i 2 ; i 3 ; i 4 ; i 5g. A value 1 at the intersection of a
row and a column depicts the fact that the corresponding object and
item are related in the relation, otherwise they are not related. The
order of the rows and columns is arbitrary.

In the following, we will consider a binary relation R de�ned over
two arbitrary sets O and I named respectively objects and items. Let us
introduce some preliminary de�nitions. An itemsetis a subset of I and
a k-itemsetis an itemset of size k. The two following functions f and g
are de�ned to associate a set of items (respectively objects) to a set of
objects (respectively items).

De�nition 2 (Functions f and g) Let R be a binary relation de�ned over
two setsO andI . The functionsf : 2O ! 2I andg : 2I ! 2O are de�ned as:

f (O) = fi 2 I | 8o 2 O; (o; i ) 2 Rg

g(I ) = fo 2 O | 8i 2 I; (o; i ) 2 Rg

13
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Given I an itemset and O a set of objects,f (O) is the set of items
associated to all objects in O and g(I ) is the set of objects associated
to all items in I . The supportof an itemset I , denoted supp(I ), is the
number of objects related to all items in I , i.e., supp(I ) = jg(I )j.

Example 2 In the binary relation presented Figure4, f (fo1 ; o2g) = fi 2 ; i 3g,
g(fi 2 ; i 3g) = fo1 ; o2 ; o4g, andsupp(fi 2 ; i 3g) = 3.

1.2 local patterns in binary relations

An exhaustive presentation of local patterns in binary relations is out
of the scope of this state of the art. Instead, in the next subsections three
well studied examples of local patterns are described, namely frequent
itemsets, frequent closed itemsets and fault-tolerant closed itemsets.
The reader interested in a more complete survey on local patterns
mining in binary relations can refer to [ 33]. Within this presentation,
we will focus on the algorithmic aspects of several local pattern mining
algorithms, and compare the relative interest of the presented classes
of patterns.

1.2.1 Frequent itemsets

A frequent itemset as introduced in [ 3] is a set of items co-occurring
frequently in the data. This somehow trivial de�nition has produced
one of the most studied local pattern in data mining. An itemset is
considered frequentif it is formed by items shared by a set of objects
suf�ciently large.

De�nition 3 (Frequent itemset) Let � 2 N be a minimal support thresh-
old. An itemsetI � I is a frequent itemset if and only if the frequencyThe minimum

support threshold is
sometimes given as a

ratio relative to the
number of objects in

the relation.

constraintCfreq
� is satis�ed, withCfreq

� (I ) � supp(I ) > � .

Example 3 In the binary relation presented Figure4, with a minimum sup-
port threshold� = 2, the itemsetfi 2 ; i 3gis frequent whilefi 1 ; i 2gis not.

The �rst application to frequent itemsets, proposed together with the
problem of mining frequent itemsets, was the discovery of association
rules. An association rule can help to discover relationships between
entities in a dataset. In the market basket context, an association rule
represents the fact that, when one buys some given products, then
it is likely that she/he will also buy some other products indicated
by the rule. As it is possible to derive ef�ciently the collection of
association rules from the collection of frequent itemsets, it has been a
major application of frequent itemset mining. A survey on association
rule mining is proposed in [ 40].

Mining frequent itemsets

Shortly after the publication of the introductory article on the fre-
quent itemsets problem, Agrawal et al. proposed the Apriori algorithm
to compute more ef�ciently the complete collection of frequent item-
sets [2]. The general idea of Apriori is to generate a set of candidate
itemsets, check whether or not they satisfy the frequency constraint,
and build new candidate itemsets from the previous frequent itemsets.
More formally, let Ck and Fk be respectively the collection of candi-
date k-itemsets and the collection of frequent k-itemsets. The Apriori
algorithm performs the following four steps iteratively:
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1. Compute the support of each itemset in Ck

2. Add to Fk the itemsets in Ck verifying Cfreq
�

3. GenerateCk + 1 from Fk

4. Increment k and go to 1.

This process is described as Algorithm 1. The algorithm starts with
k = 1 (Ck is the collection of all singletons itemsets) (lines 1 and 2).
Once a value of k for which Ck is empty is found (line 3) the algorithm
stops and the complete collection of frequent itemsets is the collection
of frequent itemsets found for each values of k (line 7). As all candidate
k-itemsets are enumerated before (k + 1)-itemsets, the enumeration
is performed level-wise. This algorithm uses the anti-monotonicity
property of the support, i.e., if an itemset is not frequent, then none The

anti-monotonicity
property of the
support is also named
downward closure in
the literature.

of its superset are frequent. From this property, it is not necessary to
construct candidate itemsets which are supersets of a non frequent
itemset. Therefore, the (k + 1)-itemset candidate generation (line 5) is
performed by computing the union of frequent itemsets sharing the
same k - 1 pre�x with respect to an arbitrary order de�ned over the
items. To compute the support of each itemset (line 4), Apriori scans
the set of all objects, and increment the support of an itemset I for each
objectso such that I � f (fog).

Algorithm 1 : Apriori

Input : R � O� I , �
k  11

Ck  f f i g| i 2 I g2

while Ck 6= ; do3

Fk  fC 2 Ck | Cfreq
� (C)g4

GenerateCk + 1 from Fk5

k  k + 16

output [ k - 1
x = 1 Fx7

Even though this algorithm has received a lot of attention from the
data mining community, it suffers from several drawbacks. Conse-
quently, there have been many attempts to devise more ef�cient algo-
rithms for the frequent itemset mining task. For example, the algorithm
Eclat [91] improves the computation of the support. Instead of scan-
ning the collection of objects, it is generally more ef�cient to compute
the support of an itemset using the intersection of the lists of objects
associated to some of the subsets of the itemset. In this case, keeping in
memory all objects associated to 1-itemsets and 2-itemsets could exceed
main memory size. Fortunately, using a depth-�rst strategy can greatly
reduce the required amount of memory needed, especially for small
values of k.

Another great improvement of Apriori is the algorithm FP-growth
proposed in [ 37]. Most of the time, it can reduce considerably the
runtime by representing the dataset using a frequent pattern tree struc-
ture (FP-tree) and performing projections of the database over the
enumerated itemsets.
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1.2.2 Frequent closed itemsets

In many practical applications, the collection of frequent itemsets
can be extremely large. One of the reason for this behaviour is the fact
that every subset of a frequent itemset is also frequent. Therefore, the
collection of frequent itemsets is usually too large for human browsing.
Another consequence of this behaviour is the prohibitive extraction
time for some datasets. Thefrequent closed itemsetsde�ned as follows
allow to diminish these drawbacks.

De�nition 4 (Closed itemset and frequent closed itemset) Let I be an
itemset,f � g(I ) is called the closure ofI . The setI is a closed itemset if and
only if the following closure constraintCclosed is satis�ed:

Cclosed (I ) � f � g(I ) = I

The itemsetI is a frequent closed itemset if and only if it satis�es the con-
junction of constraintsCclosed (I ) ^ Cfreq

� (I ), with � 2 N a minimal sup-
port threshold.

Example 4 In the binary relation presented Figure4, sinceg(fi 2 ; i 3g) =
fo1 ; o2 ; o4gandf (fo1 ; o2 ; o4g) = fi 2 ; i 3g, the itemsetfi 2 ; i 3gis closed.

The closure operator ensures the maximality of the closed itemset
among the other itemsets associated to the same set of objects, where
maximal means not being the subset of any other set.

The introductory work on frequent closed itemsets in data mining
has been proposed independently in [ 70] and [92]. However, in the
�eld of formal concept analysis, the same structure was already studied
under the name formal concept (see [28] for a survey on formal concept
analysis).

An interesting property of the frequent closed itemsets is that they
are an exact condensed representation of the frequent itemset. An
exact condensed representation allows to represent exactly the same
information about the support in a more succinct way. There have been
several other works on condensed representations of frequent patterns,
either exact or approximated, e.g., maximal frequent itemset [ 15, 34, 90],
non-derivable itemsets [16], key patterns [5], and � -free-sets [13].

Mining frequent closed itemsets

The �rst frequent closed itemset mining algorithm has been proposed
by Pasquier et al. in [70]. It constructs the collection of closed itemsets
in an Apriori manner using frequent generators. A generator is an
itemset not being a superset of any other itemset having the same
closure. The frequent closed sets are the closures of these generators.

A very ef�cient algorithm is the CLOSET algorithm [ 71] that uses a
depth-�rst strategy and extends the FP-Growth projection technique to
mine frequent closed itemsets.

1.2.3 Frequent closed error-tolerant itemsets

While the frequent closed itemsets usually allow to reduce the col-
lection of patterns by several orders of magnitude, most of the time
the collection remains still to numerous to be exploited directly by a
human. Indeed, in a collection of frequent closed itemset, many pat-
terns are very similar to each other and are due to a few missing values.
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For example, in the binary relation presented Figure 4, fi 2 ; i 3 ; i 5gand Missing values can
have several sources,
for example, it might

be intrinsic to the
system under study

or due to the
preprocessing, as for

instance a
binarization threshold

used to obtain a
binary relation from

numerical data.

fi 2 ; i 3g, associated respectively to the objectsfo1 ; o4gand fo1 ; o2 ; o4g,
are both closed itemsets. This is due to the absence of the ordered pair
(o2 ; i 5 ) in the relation. If (o2 ; i 5 ) would have been present, then fi 2 ; i 3g
would not be closed while fi 2 ; i 3 ; i 5gwould still be a closed itemset.

In [ 82], the authors demonstrate that the number of frequent itemsets
exponentially grows with the number of missing values. To take into
account missing values in data and avoid pattern �ooding, closed error-
tolerant itemsets(closed ET-itemsets for short) have been proposed. The
general idea is to allow a certain number of missing ordered pairs (o; i )
among the items and the objects used to build a pattern. A closed
ET-itemset is de�ned not as a single set of items but as an ordered
pair formed by an itemset and a set of objects. Considering a closed
ET-itemset (O; I ) 2 2O � 2I , the error tolerance threshold is a bounded
number of missing ordered pairs in the relation R \ (O � I ).

Several ways of counting the number of missing ordered pairs have
been proposed. The error tolerance threshold can be either absolute or
relative to the size of the pattern. The threshold can also be applied
either to each object or item separately, or to the whole pattern. In the Using a threshold for

the whole pattern has
been shown to
provide poor results
in [76].

following de�nition the threshold is absolute and applied to each object
and item separately.

De�nition 5 (closed ET-itemset, frequent closed ET-itemset) Given an
error tolerance threshold� 2 N , an ordered pair(O; I ) 2 2O � 2I is a closed
ET-itemset if and only if it satis�es the two following constraints:

Cconnected (O; I ) �

�
8o 2 O; j I n f (fog)j 6 �

8i 2 I; j O n g(fi g)j 6 �

CET - max (O; I ) � 8 (O0; I 0) 2 2O � 2I ; (O; I ) 6= ( O0; I 0);

(O � O0^ I � I 0) ) : Cconnected (O0; I 0)

(O; I ) 2 2O � 2I is a frequent closed ET-itemset if and only if it is a closed
ET-itemset andjOj > � , with � 2 N a minimal support threshold.

The Cconnected constraint ensures that for all items (respectively
objects) in the pattern, the number of objects (respectively items) in the
pattern which are not associated to it is at most � . Note that while it
is not the case here, the error tolerance threshold can be different for
the set of items and the set of objects. TheCET - max constraint ensures
the maximality of the pattern in the sense that there is no ordered pair
formed by supersets satisfying the Cconnected constraint.

Example 5 In the relation presented Figure4, with an error tolerance thresh-
old � = 1 and a minimum frequency threshold� = 2, the ordered pair
(fo1 ; o2 ; o4g; fi 2 ; i 3 ; i 5g) is a frequent closed ET-itemset. Indeed, only the
ordered pair(o2 ; i 5 ) is missing in the relation to have all associations be-
tweenfo1 ; o2 ; o4g and fi 2 ; i 3 ; i 5g. The ordered pairs(fi 2 ; i 3 ; i 5g; fo1 ; o4g)
and (fi 2 ; i 3g; fo1 ; o2 ; o4g) are not frequent closed ET-itemset since they are
not maximal.

1.2.4 Constraints on patterns and pattern sets

Constraints are important in local pattern mining tasks. On one hand,
they allow the analyst to inject domain knowledge in the extraction
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process. On the other hand, some constraint properties can be used to
enumerate more ef�ciently the patterns. Regarding domain knowledge,
the frequency constraint is very simple, and most of the time not
suf�cient. Other more complex constraints have been proposed in
the literature ( e.g. [81]). An example of such constraint is the area
constraint which bounds the product of the number of items in an
itemset and the number of associated objects. In most cases, such
constraints do not satisfy to the anti-monotonicity property and require
more sophisticated handling to use them actively in order to reduce the
search. Difference classes of constraints have been studied along with
techniques to use them in the enumeration process.

Most of these classes have been developed for itemset mining, and
several of them have been reused and/or adapted to other kinds of local
patterns (e.g., sequential patterns). Among the most representative ear-
liest classes that have been studied, we have the monotone constraints
and the convertible constraints. A monotone constraint is simply the
negation of an anti-monotone constraint. For such a constraint, if it is
satis�ed by an itemset, this implies that all supersets of this itemset
also satisfy the constraints. Handling these monotone constraints can
lead to important execution time gains, in particular when using data
reduction techniques [ 11, 12]. In the class of the convertible constraints,
we �nd constraints that exhibit some monotonic or anti-monotonic be-
haviour with respect to the order of enumeration of the patterns. From
an operational point of view, this means that there exists an enumera-
tion ordering to produce the patterns to be tested that guaranties one
of the following properties: for all patterns P0 produced by expanding
a pattern P, P0 will be such that (1) if P satis�es the constraint then P0

also satis�es it (monotonic behaviour), or (2) if P does not satisfy the
constraint then the same holds for P0 (anti-monotonic behaviour).

Since these works, other classes of constraints have been identi�ed,
with the aim to push ( i.e., to use actively) more and more complex
constraints, as for instance, the loose anti-monotone constraints [10], the
�exible constraints [ 81], or the piecewise anti-monotone constraints [ 17].

The constraints are also used when considering a collection of pat-
terns. This is one of the objectives of the approaches named pattern
set [73] or pattern teams [ 46]. Such approaches aim at �nding a col-
lection of patterns which is relevant with respect to a given optimality
criterion that can be expressed by means of constraints. For example,
the coverage [30] or the minimum description length [ 78] criterion aim
at �nding a collection of patterns which best describes the data.
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2.1 the graph context

A graph consists in a set of vertices and a set of edges linking the
vertices. It is generally used to depict the relationships between entities
of the same type. Graphs have been widely used to model an important
number of data. Typical applications using graphs are (non exhaus-
tive list) the analysis of communication networks, disease spreading,
social networks, protein protein interaction networks, World Wide Web,
structure of chemical compounds. This wide range of applications has
motivated a strong interest in the analysis of graphs. One of the oldest
problem regarding graphs is the seven bridges problem of Königsberg
published in 1741 [25]. Since then, many research �elds including
physics, biology, sociology, and computer science have been using
graph theory to solve problems.

Various classes of graphs have been de�ned, for example directed
or undirected, weighted or unweighted. In this section, we focus
on undirected and unweighted graphs, however most of the work
presented here have been extended to other classes of graphs. The
next section will focus on attributed graphs, a class of graphs where
information are associated to vertices. An undirected with no self-loop
and unweighted graph is called simple graph [ 32]. Here we use the
term graph for simple graph.

De�nition 6 (Graph) A graph G = ( V; E) is an ordered pair formed by a
set of verticesV and a set of edgesE representing relationships between the
vertices, where an edge is a set of two different vertices inV.

Example 6 Figure5 depicts a graph with the set of verticesfA; B; C; D; Eg.
The setfA; Cgis an edge of the graph whilefA; Egis not.

D

B

E

C

F

A

Figure 5.: An example of graph, with the set of vertices fA; B; C; D; Eg.

We will use the following standard vocabulary in the context of a
graph G= ( V; E). The neighbourhoodof a vertex v, denoted � (v), is the
set of vertices directly connected to v, i.e., � (v) = fv0 2 V | fv; v0g2 Eg.
The degreeof a vertex v is j� (v)j. The order of a graph is its number
of vertices, i.e., jVj, while its sizeis jEj. The densityof a graph denoted
by � (G) is the ratio between the number of edges and the number of

possible edges,i.e., � (G) = jEj
jV j�( jV j- 1) =2 . The subgraph inducedby a set

of vertices V � V, is denoted G[V] and is de�ned as Grestricted to the
vertices in V and including only edges between vertices in V.
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2.1.1 Graph measures

Before data mining techniques started to be adapted to study graphs,
other �elds of research were interested in the analysis of graphs. Several
approaches focus on macroscopic properties which are of great use to
understand the global structure of a graph.

A common approach in graph analysis is to study the degree distri-
bution. It is the probability distribution of the vertex degree over the
whole graph, sometimes presented as a cumulative degree distribution.
It has been shown that for a large class of graphs the degree distri-
bution follows a power law. Typical example of graphs having such
degree distribution are the world wide web, metabolic networks, and
telephone call graphs [66]. The diameterof a graph is the size of the
longest shortest path between every pair of vertices. In other words, it
is the minimum number of edges that must be traversed between the
two most distant vertices.

Other approaches study how vertices tend to group together. The
clustering coef�cientis a common measure to quantify whether or not
vertices tend to cluster together. It is de�ned as the ratio between the
number of triangle (a triangle is three vertices pairwise connected) and
the number of possible triangle containing a given vertex. For a vertex
v, the clustering coef�cient is

jffn1 ; n2g2 E | n1 2 � (v) ^ n2 2 � (v)gj
j� (v)j � (j� (v)j - 1)=2

The average clustering coef�cient gives an overview for the whole
graph. It is computed as the mean of the vertices clustering coef�cient.

Other measures try to quantify the relative importance of a given
vertex. They are called centrality measures. The betweenness centrality
has been proposed in [26]. It is used to measure the overall importance
of a vertex in a communication process between any two vertices in the
graph. It is de�ned as the average number of shortest paths that pass
trough the vertex under study. Such measure is important for example
in a computer network to capture the notion of bottleneck. The closeness
centrality proposed in [ 75] quantify the time it will take for a vertex
to communicate with all other vertices in the graph. For a vertex v it

is de�ned as jV j- 1P
u 2 V ;u 6= v d ( u;v ) where d(u; v) denotes the length of the

shortest path between vertices u and v.

2.2 local patterns in graphs

While graph measures tend to re�ect general topological character-
istics of a given graph or vertex, it does not allow to automatically
discover interesting subgraphs. Similarly to what has been presented
in the binary relation context, local pattern mining in graphs allows to
uncover potentially interesting structures in the data. Here we present
three classes of local patterns in graphs, namely cliques, quasi-cliques
and k-clique percolated components. We also present typical extraction
algorithms for maximal cliques and k-clique percolated components.
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2.2.1 Cliques and maximal cliques

A clique is usually de�ned as a set of vertices such that all vertices
are pairwise connected in the graph. Such structure has been studied
since 1935 [23] and many theoretical results have been obtained since
then. From [56], the maximum number of maximal cliques in a graph
with degree n > 2 is

8
>><

>>:

3n=3 if n modulo 3 is equal to 0

4 � 3bn=3 c- 1 if n modulo 3 is equal to 1

2 � 3bn=3 c if n modulo 3 is equal to 2

The formal de�nition of cliques and maximal cliques follows.

De�nition 7 (Cliques and Maximal Cliques) GivenG= ( V; E) a graph,
C � V is a clique if and only ifG[C] is a complete subgraph, i.e., all vertices In the literature, a

clique is also de�ned
as a complete
subgraph, i.e.,
including the edges.
The term clique is
also found in the
sense maximal clique.

are pairwise connected inG. It is a maximal clique ofGif and only if it is not
a subset of any other clique inG.

Example 7 In the graph presented Figure5, AB is a clique, but it is not
maximal since it is a subset of the maximal cliqueABC.

The cliques capture strong structure in the graph since every vertex
has to be connected with the others. For example, in a social network a
clique would be a group of person where everyone has a relationship
with all other members of the group. We will use the following vocabu-
lary. A k-cliqueis clique with exactly k vertices, and a k-maximal clique
is a maximal clique with at least k vertices. The collection of cliques,
k-cliques, maximal cliques, and k-maximal cliques in a graph G are
denoted respectively C(G), Ck (G), Cmax (G), and Ckmax (G).

2.2.1.1 Mining maximal cliques

Several algorithms have been proposed to extract maximal cliques
in a graph using different strategies [ 31, 53, 84]. Here, we will present
the algorithm CLIQUES [ 84] which has a worst case time complexity of
O(3n=3 ) for a graph having degree n. This is optimal in the sense that in
a graph containing n vertices, there can be no more than3n=3 maximal
cliques [56]. The standard technique to compute a maximal clique
consists in expanding a set of vertices C known to be a clique (possibly
a single node clique) with a vertex v 2 V connected to all vertices in C,
and repeat the same expansion on setC [ fvguntil no new vertex can
expand the current set. Let Vext be the set of vertices that can be used
to expand the current set C, i.e., Vext = fv 2 V nC | 8c 2 C; fv; cg2 Eg.
Clearly, when Vext is empty, then C is a maximal clique, otherwise, C
can be extended with a vertex from Vext to build a larger clique.

The CLIQUES algorithm is based on this idea, and follows an enu- We can extend the
algorithm to extract
k -maximal cliques by
testing line2 that C
satis�esjC j > k .
Moreover, an
additional pruning
can be made, by
requiring line4 that
the condition
jC [ V cand j > k is
also satis�ed.

meration tree that expands each single vertex clique at the �rst level, in
a depth-�rst way, and that stops an enumeration branch when a maxi-
mal clique is obtained. The CLIQUES algorithm extends the standard
technique with two prunings as presented in Algorithm 2.

The �rst pruning consists in avoiding to add a vertex that has already
been used to extend C in a previous branch of the enumeration tree. In
order to do so, a set Vcand is used, containing the candidate vertices
that are the vertices from Vext which have not been previously used to
extend C (line 8).
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The second pruning technique reduces the number of vertices in
Vcand . It is based on the following observation. Given C the clique
considered at the current node of the enumeration tree and u 2 Vext a
vertex which can extend C, since all maximal cliques containing C [ fug
have been enumerated in the previous branches or will be enumerated
in the subtree rooted at the current node, and because these maximal
cliques contains also the vertices in Vcand being in the neighbourhood
of u (i.e., vertices in Vcand \ � (u)), then it is not necessary to extend
C at the current node of the tree with a vertex from Vcand \ � (u).
The corresponding pruning technique consists in selecting the vertex
u 2 Vcand maximising the size of the intersection between � (u) and
Vcand (line 3) and to consider only the vertices from Vcand not being in
the neighbourhood of u (lines 4 and 5) as candidates to extendC. Then,
the enumeration goes on in the loop by extending C with each vertex
in Vcand n � (u) (this includes u) on lines 6 and 7. Notice that choosing
the vertex u that maximizes jVcand \ � (u)j leads to the smallest size for
Vcand n � (u), and thus to the smallest number of branches to expand
the current node.

For a graph G= ( V; E), the parameters of the initial call to CLIQUES

are Vext = V, Vcand = V, and C = ; .

Algorithm 2 : CLIQUES

Input : Vext , Vcand , C
if Vext = ; then1

C is a maximal clique2

else
u = arg maxv2 Vext

jVcand \ � (v)j3

while Vcand n � (u) 6= ; do4

Pick a vertex v from Vcand n � (u)5

C = C [ fvg6

CLIQUES(Vext \ � (v), Vcand \ � (v), C)7

Vcand = Vcand n fvg8

C = C n fvg9

2.2.2 Quasi-cliques

Since in many cases there is missing edges in the data, or one might
want to �nd dense but not necessarily complete subgraphs, it is nec-
essary to de�ne classes of patterns allowing a bounded number of
missing edges. Two de�nitions for such class of patterns are commonly
used: pseudo-cliques and quasi-cliques. The Pseudo-cliquede�nition
is based on a minimal density threshold applied on a subgraph as a
whole, whereas the quasi-cliquede�nition allows a bounded number
of missing edges for each vertex. We recall the formal de�nitions of
pseudo-cliques, quasi-cliques, and corresponding maximality.

De�nition 8 ( � -pseudo-clique, maximal � -pseudo-clique) Given a min-
imal density threshold� 2 [0; 1], C � V is a � -pseudo-clique if and only if
the conjunction of constraintsCp - clique

� (C) ^ Cconnected (C) is satis�ed,
where

Cp - clique
� (C) � � (G[C]) > � (with � the density introduced p. 19)

Cconnected (C) � 8 v 2 C; � (v) \ C 6= ;



2 local pattern mining in graphs 23

A � -pseudo-clique is maximal if it is not a subset of another� -pseudo-
clique.

The Cp - clique
� constraint requires that the density within the sub-

graph induced by the pseudo-clique is greater than the minimal density
threshold � . Since a subgraph can be dense but not being connected (for
example, a graph formed by a large clique and another disconnected
vertex), it is necessary to add the Cconnected constraint to ensure the
connectivity of the subgraph induced by the pseudo-clique.

Example 8 In the graph presented Figure5, with a minimal density thresh-
old � = 0.8, ABCE is a � -pseudo-clique since the induced subgraph has a
density of5=6. Moreover it is maximal since adding either vertexD or F
reduce the density under the density threshold.

De�nition 9 ( � -quasi-clique, maximal � -quasi-clique) Given� 2 [0; 1]
a minimum degree threshold,C � V is a quasi-clique if and only if the con- While parameter�

does not express a
density threshold, one
can derive a bound
since the maximal
number of missing
edges in a� -quasi
cliqueC is � � jC j.

junction of constraintsCq - clique
� (C) ^ Cconnected (C) is satis�ed, where

Cq - clique
� (C) � min v2 C (j� (v) \ Cj) > d� � (jCj - 1)e

Cconnected (C) � 8 v 2 C; � (v) \ C 6= ;

A � -quasi-clique is maximal if it is not a subset of another� -quasi-clique.

Example 9 In the graph from Figure5, with a minimum degree threshold
� = 0.6, BCDE is a � -quasi-clique since all vertices are connected to at least
two other vertices. It is also maximal since adding eitherA or Fwould violate
Cq - clique

� .

The Cq - clique
� constraint ensures that each vertex in a quasi-clique is

connected to at least a given fraction of the vertices in the quasi-clique.
For this reason, as argued in [80], it is usually preferable to extract
quasi-cliques instead of pseudo-cliques.

2.2.2.1 Mining quasi-clique

Several algorithms have been proposed to mine pseudo-cliques [1] or
quasi-cliques [51, 93]. Probably the most ef�cient quasi-clique mining
algorithm is Quick presented in [ 51]. The enumeration technique is
similar to the one presented in Algorithm 2, with additional pruning
techniques allowing to reduce the number of vertices which can possibly
extend a quasi-clique.

2.2.3 k-clique percolated components

The k-clique percolated components (named also k-clique percolation
cluster [29] or k-clique-community [ 47]) have been de�ned in [ 67] to
�nd communities in graphs. This class of patterns aims to merge
cliques to form larger connected patterns. More precisely, the idea
behind k-clique percolated components is to merge k-cliques sharing
k - 1 vertices into a single pattern. It ensures that two patterns will not
share more than a user de�ned number of vertices.

The de�nition of k-clique percolated component given in [ 20] can be
reformulated as follows using an equivalence relation over the cliques.
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De�nition 10 (Adjacency relation) Let G be a graph andRa be the ad-
jacency relation over thek-cliques inG. Two k-cliques are related byRa if
and only if they have an intersection of at leastk - 1 vertices. LetRt

a be the
transitive closure ofRa .

The relation Ra is symmetric and re�exive, so Rt
a is symmetric,

re�exive, and transitive. Consequently, Rt
a is an equivalence relation.

De�nition 11 ( k-clique percolated component ( k-PC)) A k-clique per-
colated component (k-PC) is the union of allk-cliques in a class of equivalence
overRt

a .

Example 10 Consider the 3-PC (i.e.,k = 3) in the graph presented in Fig-
ure 5. The graph contains four 3-cliques,ABC, BCE, BDE, andCEF. Since
ABC, BCE share two vertices (jABC \ BCEj = k - 1), they can be merged.
However, this union would not be maximal sinceCEFshare two vertices with
BCE. Indeed,BCE also share two vertices withBDE andABC, and thus the
graph contains only one 3-PC,ABCDEF.

We will denote Ckpc (G) the collection of all k-PCs in an attributed
graph G. Note that this de�nition does not ensure that the inducedNote that with

k = 2, the 2-PCs are
the connected

components having at
least 2 vertices.

subgraph is very dense. Consider the graph given Figure 6. The whole
graph is a 2-PC, each2-clique shares one vertex with an adjacent 2-
clique. However, it is clear that such graph is not very dense. Instead of
enforcing graph density, the k-PC de�nition enforces the fact that each
vertex can be reached from any other through well connected subset of
vertices [67].

A B C D E

Figure 6.: Example of path graph.

2.2.3.1 Mining k-clique percolated components

Together with the introduction of k-clique percolated components
in [ 67], the authors proposed an algorithm to compute the k-PCs. Their
algorithm computes the k-PCs using the following three steps:

1. Compute the collection of k-maximal cliques ( i.e., the maximal
cliques containing at least k vertices, as introduced p.21);

2. Build a binary matrix representing the adjacency relation between
the k-maximal cliques;

3. Compute the connected components of the adjacency relation
using the matrix.

The k-PCs are then these connected components. Note that since all
k-cliques in a k-maximal clique are necessarily adjacent, these steps use
directly the k-maximal cliques instead of the k-cliques. For simplicity,
Algorithm 3 uses a binary relation instead of a matrix, however, since
the order of the rows and columns in the matrix are arbitrary, the
principle remain identical.

On line 1, the collection of k-maximal cliques is computed and storedAny k -maximal
clique mining
algorithm, like

CLIQUES presented
previously, can be

used to compute
Ckmax on line1.

in Ckmax . The lines 2 to 5 build the adjacency relation Ra by adding
an ordered pair (C1 ; C2 ) in Ra if C1 and C2 share at leastk - 1 vertices.
Lines 6 to 14 compute the k-PCs from Ra by computing the transitive
closure of the relation. The idea is to pick a �rst k-maximal clique
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and expend it until there is no more adjacent k-maximal cliques (loop
lines 10 to 13). A k-PC is then the union of all adjacent k-maximal
cliques.

Algorithm 3 : CFinder

Input : G
Ckmax  Ckmax (G)1

Let Ra = ; be a binary relation over Ckmax � Ckmax2

for (C1 ; C2 ) 2 Ckmax � Ckmax do3

if jC1 \ C2 j > k - 1 and C1 6= C2 then4

Ra  Ra [ f(C1 ; C2 )g5

while Ckmax 6= ; do6

choose ak-maximal clique C in Ckmax7

kcliques _in _kpc  ;8

adj  fCg9

while adj 6= ; do10

kcliques _in _kpc  kcliques _in _kpc [ adj11

Ckmax  Ckmax n adj12

adj = fC2 2 Ckmax | 9C1 2 adj s.t. (C1 ; C2 ) 2 Ra g13

output [ C 2 kcliques _in _kpc14

A second algorithm has been proposed in [ 47] to extract k-PCs.
Instead of computing the k-maximal cliques, it computes the k-cliques
using the following property. If there is an edge between two vertices u
and v, and if there is a (k - 2)-clique C formed by the vertices being in
the neighbourhood of both u and v, then C [ fu; vgis a k-clique. To use
this property ef�ciently, the authors propose an incremental method.
More precisely, the algorithm starts with a graph with no edge and
it adds iteratively the edges from the original graph. For each edge
fu; vgit checks if a (k - 2)-clique is found in the neighbourhood shared
by u and v. If so, this (k - 2)-clique can be extend by vertices u and v
to form a new k-clique. Then, to extract the k-PCs from the k-cliques,
the algorithm builds a graph where the vertices are (k - 1)-cliques
and there is an edge between two vertices if the corresponding (k - 1)-
cliques are part of the same k-clique. The k-PCs are then the connected
components of this graph and an algorithm similar to Algorithm 3
lines 2 to 14 can be used to compute them. Depending on the graph to
process, this algorithm can be faster than Algorithm 3. On the one hand,
it replaces the computation of all maximal cliques (Algorithm 3 line 1)
by an enumeration of the edges. On the other hand, the adjacency
graph used can be larger and then can require more time to compute
the connected components.
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3.1 the attributed graph context

Graphs where information are associated to vertices have been used
in different works under various names including, for example, at-
tributed graphs [ 80], itemset-associated graphs [77], graphs with fea-
ture vectors [58], informative graphs [ 57]. Even though the names are
different, all these data types can be model using the attributed graphs.

For example, an itemset-associated graphs as de�ned in [77] is a
simple graph where a set of labels is associated to each vertex. By
encoding each label using a Boolean attribute it is possible to build
an attributed graph where each vertex is attached to a set of attribute
values, such that an attribute will have value True for a vertex if the
corresponding label is associated to the vertex in the itemset-associated
graphs, and False otherwise.

For the sake of simplicity, we will use the term attributed graphfor
such structure and de�ne the corresponding attribute domain depend-
ing on the task performed.

A

red,25,pop

B

yellow,14,jazz

C

blue,23,classic

D

blue,35,rock

E

purple,42,rock

Figure 7.: An example of attributed graph with vertices fA; B; C; D; Eg and
three attributes: colour 2 fred; yellow; blue; purple g, age 2 R, and
music 2 fpop; jazz; classic; rock g.

De�nition 12 (Attributed graph) An attributed graph is denotedG= ( V;
E; A; F) whereV is the set of vertices,E is the set of edges,A = fA1 ; : : : ; An g
is the set of attributes, andF : V 7! dom(A1 ) � � � � � dom(An ) is a func-
tion associating to each vertex a tuple of attribute values, withdom(A i ) the
domain of attributeA i .

Since for many applications, the domain of the attributes can be
restricted to Boolean values, we also de�ne the Boolean attributed graph
context. It is a specialisation of the attributed graphs where the domain
of the attributes is fTrue; Falseg.

De�nition 13 (Boolean Attributed graph) A Boolean attributed graph is
denotedG= ( V; E; A; atb ) whereV is the set of vertices,E is the set of edges,
A is the set of Boolean attributes, andatb : V 7! 2A is a function associating
to each vertex the Boolean attributes having value True for this vertex.

The vocabulary de�ned previously in the context of a simple graph
remains identical in the context of an attributed graph. The following
notation will be used in the context of a Boolean attributed graph. The

27
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A

pop, jazz

B

jazz, blues

C

rock, pop

D

jazz, rock, pop

E

blues,rock

Figure 8.: An example of Boolean attributed graph with vertices fA; B; C; D; Eg
and �ve Boolean attributes: pop, jazz, rock, pop, blues. Only at-
tributes having value True are represented in the graph.

set of attributes having value True for all vertices in a set of vertices V
is denoted Atb (V), i.e., Atb (V) = \ v2 V atb (v). The graph induced by
the vertices sharing a set of attributes X is denoted G[[X]] , i.e., G[[X]] =
G[fv 2 V | X � atb (v)g], and G[[X]] is called the subgraph ofGinduced by
the set of attributesX.

Example 11 Consider the Boolean attributed graph presented in Figure8.
Only verticesC and D share attributesrock and pop, and then we have
Atb (fC; Dg) = frock; pop g. As only verticesA andD share attributespop
and jazz, the subgraph induced by the set of attributesfpop; jazz gand de-
notedG[[ fpop; jazz g]] is G[fA; D g].

3.2 global approaches in attributed graphs

As mentioned in the introduction of this thesis, a common approach
when analysing data is to perform a clustering. Clustering is the
process of partitioning data objects into several groups with respect to
a similarity measure, such that the objects within a group are similar to
each other and dissimilar to data objects from other groups [ 55]. This
task has been well studied in the context of binary relations and graphs
without attributes. By taking into account both the graph topology
and the attributes, the result of the clustering is expected to be more
relevant than a clustering based solely on graph topology or attributes
value. Let us give an overview of the clustering methods for attributed
graphs.

Connected k-center

The connectedk-centerproblem proposed in [ 24] is a �rst clustering
approach in attributed graphs. It extends the k-center problem to
attributed graphs. The original k-center problem consists in �nding
if there exists k cluster centroids such that the distance between all
vertices within a cluster and its centroid is at most r . In the connected
k-center problem, as proposed in [24], the distance between the vertices
is based on the value of the attributes. To take into account graph
topology, a connectivity constraint is added. This constraint requires
that each subgraph induced by a cluster is a connected component.

To solve the connectedk-center problem, the NetScan algorithm is
proposed. This algorithm is similar to K-Medoids [ 43]. At �rst, k
medoids are selected from the set of vertices. In a second step, the
vertices are assigned to the closest cluster if they are within a distance r
from the medoids and the connectivity constraint is satis�ed. The third
step consists in computing new medoids for each cluster. As long as
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there is vertices not assigned to a cluster, the algorithm increasesr (the
maximum radius of a cluster), and goes on from the second step.

SA-Cluster: Structural/Attribute similarities clustering

In the work presented in [ 95] and extended in [ 96], the authors intro-
duce another attributed graph clustering approach. One of the interests
of their approach is based on the idea that attributes are not equally
discriminative. For example, in a social network a gender attribute is
less likely to discriminate a community than hobbies. Consequently, it
might be interesting to associate more weight to some attributes while
less importance is given to the others.

Here the domains of the attributes in the attributed graph are categor-
ical, i.e., not restricted to Boolean values. To take into account both the
structure of the graph and the attributes, the authors propose to build
an attribute augmented graph where each possible attribute values
correspond to a new vertex. Such vertex is named attribute vertices. In It is supposed that the

attributes have
disjoint domains,
eventually after an
appropriated value
renaming.

such graph, the number of new attribute vertices is then the number of
distinct values for all the attributes. A structure vertex v (a vertex of
the original graph) is connected to an attribute vertex if v has the value
corresponding to this attribute vertex.

In this attributed augmented graph, the similarity between two struc-
tural vertices u and v is then computed using a random walk. The
idea of a random walk is to start from a vertex and move to another
vertex, possibly an attribute vertex, in the neighbourhood of v with a
given probability. Two vertices are similar if it is possible to reach one
from the other in a small expected number of steps. Clearly, with such
technique, adding paths through attribute vertices between structural
vertices allows to take into account attribute values when computing
the vertices similarity. The clustering based on this similarity measure
follows the K-Medoids clustering method [ 43].

The weight of the attributes are equal in the �rst iteration and up-
dated at each iteration of the K-Medoids algorithm. If the vertices
within a cluster tend to have the same value for an attribute, the weight
associated to this attribute is increased, otherwise it is decreased. The
attribute weight is then used to compute the probability of moving
through this attribute vertex in the random walk. The extension pro-
posed in [96] improves the runtime for the random walk computation
by performing an incremental update of the random walk distance
matrix.

Connected X Clusters

One drawback of the two previous approaches is that the user must
provide K, the number of clusters while in general this number is not
a priori known. To overcome this problem, the ConnectedX Clusters
method has been proposed in [57] in order to perform a graph clustering
using attribute values without specifying the number of clusters. The
idea is to perform an initial clustering with a large number of clusters
and then to merge the clusters by pairs until all clusters have been

merged. The number of initial centroids is set to dk � ln
�

k
- ln ( p )

�
e with

k = djGj
m e, m the minimal size of a cluster and p the probability that

each true cluster is represented by at least one initial centroid. At each
iteration, the algorithm considers all pairs of clusters (such that the
two clusters shared at least a vertex) as a possible merge. Then, the
merge that leads to the best clustering quality is performed. To assess
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this quality, the authors propose a measure called the Joint Silhouette
Coef�cient extending the standard Silhouette Coef�cient [ 44]. This
measure takes into account both the edges of the graphs between the
objects and their attribute values.

3.3 local patterns in attributed graphs

Approaches targeted toward more local structure than a whole clus-
tering have been proposed in the context of an attributed graph. For
example, in [85] and [88], the authors propose matching techniques
to �nd subgraphs within an attributed graph that best match a graph
query. In this section, we will consider the mining of local pattern in
attributed graphs.

3.3.1 Application speci�c approaches

The �rst results proposed regarding the discovery of local patterns in
attributed graphs were application oriented. Indeed, the idea of using
both the topology and the attributes has emerged early in molecular
biology for the discovery of functional modules [ 38, 94, 86]. A functional
modules is usually de�ned as a group of cellular components ( e.g.,
proteins) and their interactions such that this group can be associated
to a speci�c biological function [ 39].

Another early application of attributed graphs was the analysis of
social networks [21]. This work proposes to enrich the communities
discovered in a social network with attributes. The patterns, corre-
sponding to communities, are based on the union of cliques containing
a given vertex. Once all patterns have been extracted, the corresponding
communities are labelled with the attribute values considered to be
representative using the attributes values associated to the objects form-
ing the community. Note that this approach does not use the attribute
information during the community detection process. Consequently,
the communities discovered are not necessarily homogeneous with
respect to the attributes values.

3.3.2 General frameworks

A few years after these applications, several works have tackled the
problem of extending well studied graph local patterns to the context
of attributed graphs in a more general way. This led to new classes
of patterns: the cohesive patterns, the proximity patterns, the itemset-
sharing subgraph set, and the structural correlation patterns.

Cohesive Patterns

In [ 58], the authors propose one of the �rst extension of dense graph
mining to take into account the attributes. They use the term feature
instead of attribute, however the concept remains identical. A feature
vector graph is an attributed graph where the graph is undirected and
unweighted and a categorical attribute corresponds to each feature.

Their patterns of interest are named Cohesive Patterns. Such a pattern
is de�ned as a subgraph induced by a pseudo-clique ( i.e., connected
subgraph having density above a threshold) and being homogeneous.
The homogeneity corresponds to a subspace cohesion function s :
2V � 2A � R 7! fTrue; Falsegwhich returns True if and only if a set of
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vertices associated to a subset of attributes and a real number used as
a threshold is considered homogeneous. This function is not imposed
by the framework, the only constraint is that the function must be
anti-monotone. I.e., with V � V 0 two sets of vertices, X � X0 two sets
of attributes, and x a real value, the function must hold s(V; A; x) )
s(V 0; A 0; x). For example, a subspace cohesion function might return
True if and only if all vertices share the same value for the given set of
attributes.

Proximity pattern

In [ 45] the authors propose the proximity patternmining task. While
cohesive patterns focus on dense subgraphs, proximity patterns are
more related to frequent itemset mining. A proximity pattern is de�ned
as a set of attributes such that (1) the vertices associated to these at-
tributes are tightly connected in the graph and (2) they occur frequently.
The interest of such pattern is to consider not only the attributes asso-
ciated to a vertex (which would be similar to the traditional frequent
itemset mining problem) but also the attributes associated to the ver-
tices in the neighbourhood. It is sensible since in most contexts an
object is in�uenced by its neighbourhood.

In order to �nd such patterns, the authors propose two models:
the neighbour association model and the information propagation
model. Since the authors experimentally show that the �rst model is
not tractable in practice, we present only the information propagation
model. The idea is to consider that the graph represents the reality at
a given timestamp. After a while, the information ( i.e., the attributes)
will propagate in the graph until it reach a stable state. The proximity
patterns are then the frequent set of attributes in the attributed graph
at the stable state.

Subspace Clustering

In [ 35], the authors propose a subspace clustering method allowing
arbitrary shape of the clusters. Differently to the method proposed While the term

clustering is used in
the name of the
pattern, one can
consider it as a local
pattern since its
validity is evaluated
independently from
the other patterns, a
characteristic of local
patterns as proposed
in [73].

in [ 58], based on quasi-clique, they propose a density measure based
on the size of the neighbourhood within the pattern.

To take into account both graph topology and attributes, they de�ne
two neighbourhoods for a vertex. One is the graph k-neighbourhood
de�ned for a vertex as the set of vertices reachable in the graph by a
path of size at most k. The other one is the � -neighbourhood de�ned
in the attribute space. More precisely, the � -neighbourhood of a vertex
v is the set of vertices such that the distance in the attribute space
between v and these vertices is lesser than a given threshold � , i.e.,
fu 2 V | dist (atb (u); atb (v)) 6 � g, with dist an arbitrary distance
measure in the attribute space.

Itemset-sharing subgraph set

In [ 27] and [77] the authors propose the itemset-sharing subgraph set
enumeration problem. An itemset-sharing subgraph set is de�ned as
the collection of connected components in the subgraph induced by a
non empty set of attributes, with a minimum bound, � S, on the number
of vertices in the connected components. Note that this de�nition
does not require the subgraph to be very dense. The itemset-sharing
subgraph set enumeration problemconsists then in �nding all itemset-
sharing subgraph sets such that (1) the set contains at least� F connected
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components and (2) the vertices forming the pattern share at least � I
attributes.

Structural Correlation Pattern

The work presented in [ 79] and extended in [ 80] and [54] introduces
the structural correlation patterns. This class of patterns is based on a
structural correlation measure for a set of attributes. For short, a set of
attributes is considered to be structurally correlated if, in the subgraph
induced by this set of attributes, a suf�cient percentage of vertices are in
dense subgraphs. More precisely, the structural correlation measure for
a set of attributes is the ratio between the number of vertices being in a
� -quasi-clique in the subgraph induced by this set of attributes and the
number of vertices in this subgraph. Using this structural correlation
measure, it is possible to express how attribute values are related to the
existence of dense components.

A structural correlation patternis then de�ned as a � -quasi-clique along
with a set of attribute such that (1) the vertices share at least � attributes,
(2) the � -quasi-clique contains at least min size vertices, and (3) the
structural correlation measure corresponding to the set of attributes
is above a threshold � min . This de�nition is similar to the cohesive
patterns proposed in [ 58] since both are based on quasi-cliques being
homogeneous with respect to the attributes. However, the structural
correlation measure ensures that the attribute values associated to a
pattern are strongly associated to the presence of � -quasi-cliques.



C O N C L U S I O N

In this state of the art we presented several data mining approaches
for the analysis of attributed graphs. Since it is a relatively recent task
in data mining we proposed to enlarge the scope to binary relations
and graphs.

In the binary relation context, we considered groups of properties oc-
curring frequently together. Three typical examples of such structures
were presented: frequent itemsets, frequent closed itemsets and fre-
quent error-tolerant closed itemsets. The objective was to present what
has been considered as a group of properties associated to objects in
the literature and the general concepts to extract such structures. In the
graph setting, we introduced several graph measures used to character-
ize a graph. We also presented structures formed by groups of objects
connected in a graph. Three examples of well studied structures were
presented, namely, cliques, quasi-cliques, and k-clique percolated com-
ponents. Our objective was to give an overview of common structures
used to characterize dense or strongly connected subgraphs. Finally, we
presented several data mining tasks in the context of attributed graphs
with a wider scope, from clustering to local pattern extraction. The
objective was to present existing approaches to �nd groups of vertices
in attributed graphs. The interest of such structures is that their rele-
vancy is evaluated not only from their topology within the graph but
also from the values of the attributes associated to the vertices. Among
the presented local patterns in attributed graphs, some are formed by
a single dense subgraph being homogeneous (e.g., cohesive patterns,
proximity patterns) while the itemset-sharing subgraph set is formed
by a collection of subgraphs not required to be dense.

The approach proposed in this thesis is at the boundaries of these
previous works. More precisely, we propose to study structures formed
by collectionsof homogeneous and densesubgraphs. The discovery of
such patterns will be studied in the next part with the objectives of
being ef�cient, tolerant to missing values, and to allow the experts to
specify the structures of interest by mean of constraints.
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Part III

A PAT T E R N A S A C O L L E C T I O N O F
S U B G R A P H S





I N T R O D U C T I O N

The analysis of attributed graphs opened the possibility to take into
account more information than just simply the topology of the graph.
Up to now, using both graph topology and the attributes associated to
vertices has allowed to propose new classes of patterns. The relevancy
of these patterns is evaluated not only from the structure within the
graph, but also from some measure with respects to the attributes.
The fact that the relevancy of a pattern is evaluated by two measures
leads to another interesting property. Indeed, when two measures
of interest are available, it is possible to group the relevant patterns
with respect to the �rst measure when they are similar with respect
to the second measure. In our work we will develop this idea, to
�nd not a single group of vertices but structures that are organized
in several groups. For example, consider a measure of density and a
measure of homogeneity. It is possible to look for a set of dense groups
whose union is homogeneous. In the context of a social network, that
would be several communities 1 sharing common interests instead of
a single community having similar interests. From now on, we will
consider that a collection of subgraphs is homogeneous when the union
of the vertices forming the subgraphs is homogeneous. In the next
two sections, we consider the Boolean attributed graph context, and
propose two pattern de�nitions in order to �nd collections of subgraphs
which are both dense and homogeneous: the Maximal Homogeneous
Clique Sets and the Collections of Homogeneous k-clique Percolated
components.

The Maximal Homogeneous Clique Sets

The �rst patterns we introduce are the Maximal Homogeneous Clique
Sets(MHCS for short). The term maximal refers to the fact that the
patterns are the most general. Homogeneousrefers to the homogeneity
of the vertices within the pattern. The term cliquerefers to the density
constraint on the vertices, and the term setsrefers to the fact that we
seek a collection of subgraphs instead of a single subgraph. More
precisely, a MHCS is a group of cliques satisfying constraints on the
number of separated cliques, the size of the cliques and the number
of attributes shared by all vertices. The constraints on the minimal
size and the minimum number of shared attributes are similar to the
ones proposed in [27] for the Itemset-Sharing Subgraph problem (see
Section 3.3.2).

We present an example of such pattern in the Boolean attributed
graph presented Figure 9, already introduced page 4 but reproduced
here to ease the reading. This dataset represents a set of individuals
and relationships between them. Each person corresponds to a ver-
tex denoted by a capital letter, and the relationships are represented
by edges. Such relationships might represent friendship, geographic
closeness, or being member of the same organization. Moreover, the
musical tastes (e.g., Rock, Pop) of each person is encoded by means of
Boolean attributes. A person associated to an attribute having the value

1. If we adopt a density-based de�nition of communities. See [ 19] for an overview of
the different de�nitions of communities.
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True represents the fact that this person enjoy the corresponding style
of music. In Figures 9 and 10, only attributes having value True are
represented.

In this setting, consider the MHCSs formed by a collection of at least
two 4-maximal cliques sharing at least two attributes. The collection
of set of vertices fABCD; EGH; M; NOPQR gis such a MHCS. Indeed, it
contains two cliques with at least four vertices ( ABCD and NOPQR)
and all the vertices share the attributes rock and folk. The vertex F,
which might be used to build the 4-maximal clique EFGH, is not in
the pattern since it does not share these two attributes with the other
vertices. Note that the clique EGH and the single vertex clique M are
also in the pattern even if they have less than four vertices. While
the � -maximal cliques form the core part of the pattern, the smaller
cliques point out vertices sharing the same two attributes but being
more isolated.

As a comparison with other local patterns in attributed graphs,
ABCD or NOPQR might be considered as maximal cohesive pat-
terns [58] or structural correlation patterns [ 79] using reasonable pa-
rameters. Indeed, all vertices in ABCD share attributes rock, folk and
jazz. Considering NOPQR the vertices share attributes rock, folk, and
pop. Note that even though both ABCD and NOPQR share attributes
rock and folk, these two patterns would not be considered as related in
the output when looking for cohesive patterns or structural correlation
patterns.
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Figure 9.: Example of Boolean attributed graph representing a social network
(same as Figure1).

Extension to tolerate missing edges in the groups

We have seen in the state of the art that local patterns approaches
have tend to evolve to take into account missing values in the data.
For example closed frequent patterns gave rise to frequent closed error
tolerant itemsets, and cliques to quasi-cliques. Following the same
trend, we extend the MHCS approach to allow missing edges within
the cliques forming the pattern.
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Figure 10.: Example of MHCS pattern in the Boolean attributed graph presented
in Figure 9.

Being able to �nd dense but not necessarily complete subgraphs
(tolerating missing edges) allows to (1) avoid �nding very similar
subgraphs and (2) do not “miss” groups due to the presence of a few
missing edges. Removing an edge in

a k -maximal clique
leads to two
( k - 1) -maximal
cliques havingk - 2
vertices in common.

Two methods are commonly used to �nd dense subgraphs with
missing edges: quasi-cliques (see Section2.2.2), and k-PC, (k-clique
percolated components, see Section2.2.3). Compared to the de�nitions
of quasi-cliques, the de�nition of k-PCs ensures that two complete
subgraphs sharing many common vertices are merged in the same
k-PC (i.e., in the same group of vertices).

So, we propose a de�nition of patterns based on k-PCs where a
pattern is a Collection of Homogeneousk-clique Percolated component(Co-
HoP for short). The term collectionrefers to the fact that we want
several subgraphs, homogeneousrefers to the attributes shared by the
vertices forming the pattern and k-clique percolated componentrefers to
the topology of the subgraphs.

Outline

In the next section (Section 4.1), we give a constraint based de�nition
of the MHCS patterns. The interest of the constraints is illustrated with
several examples. Then, we re�ne our �rst pattern de�nition to remove
redundant patterns.

In Section 4.2, we propose a correct algorithm based on subgraph
enumeration to extract all patterns. From a naive approach which
is intractable in practice, we improve the ef�ciency by using several
pruning techniques. A formal proof of the correctness is given for each
pruning.

Experiments are presented on bibliographic data in Section 4.3. We
give several examples of MHCSs and illustrate how they can be used
to support decisions regarding the selection of a research supervisor,
the selection of article reviewers, and the elaboration of scienti�c collab-
orations. We also perform a quantitative evaluation of our algorithm
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showing that the extraction remains possible for large attributed graphs.
The runtime evolution is also studied with respect to different graph
structures and user parameters using synthetic graphs. Finally, we
study the impact on runtime of each pruning techniques compared to
a baseline algorithm.

Then, we extend the MHCS de�nition to �nd collections of homoge-
neous subgraphs with missing edges, namely k-PCs (Section5.1). We
propose an extraction algorithm based on subgraph enumeration using
several pruning techniques (Section 5.2). We perform the same type of
experiments as for the MHCSs, considering also a network of scienti�c
collaborations and synthetic datasets (Section5.3).



4M I N I N G C O L L E C T I O N S O F C L I Q U E S H AV I N G
H O M O G E N E O U S V E RT I C E S

4.1 pattern definition

In this section, we �rst recall the Boolean attributed graph setting.
Then we propose a constraint based de�nition of the Homogeneous
Clique Set (HCS) pattern and illustrate the interest of the constraints.
Finally, we introduce the Maximal Homogeneous Clique Sets (MHCS)
patterns.

Before giving a formal de�nition of our pattern of interest, let us recall
the Boolean attributed graph setting as presented in Section 3 of the
state of the art. A Boolean attributed graph is denoted G= ( V; E; A; atb )
where V is the set of vertices,E is the set of edges,A is the set of Boolean
attributes, and atb : V ! 2A is the function returning for a vertex the
set of attributes having value True. We denote G[V] the subgraph of G
induced by the set of vertices V � V and G[[A]] the subgraph induced
by the set of vertices having value True for all attributes in A � A.

For notational convenience, we will also de�ne the next two functions.

De�nition 14 (Functions vert and CAtb ) Letx be an attribute. The func-
tion vert (x) = fv 2 V | x 2 atb (v)g is the set of vertices having value
True for the attributex. Let M be a collection of sets of vertices. Then,
CAtb (M ) =

T
V 2 M (\ v2 V atb (v)) is the set of attributes shared by all ver-

tices inM .
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Figure 11.: Example of Boolean attributed graph. Vertices are identi�ed by
capital letters and attributes are identi�ed by attributes a i , i 2
f1; : : : ; 6g.

For the sake of simplicity in the examples, a set of vertices is simply
denoted by the sequence of letters corresponding to the vertices.

Example 12 In the example of Boolean attributed graph presented Figure11,
vert (a6) = ABCJH. ConsideringM = fDEF; A; GHI ga collection of set of
vertices,CAtb (M ) = fa3 ; a4g.

In a Boolean attributed graph dataset, our goal is to �nd collections
of homogeneous cliques. Each pattern is a collection of set of vertices,
such that:

41
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– the vertices are homogeneous in the sense that they share some
attributes (attributes having value True for all vertices);

– the pattern contains several large groups of strongly connected
vertices (the other groups in the pattern can be small and even
reduced to a single vertex);

– the cliques in the pattern are separated (two groups in the pattern
cannot be merge trivially to form another group).

These patterns, termed homogeneous clique sets(HCS) are de�ned as
follows:

De�nition 15 (Homogeneous Clique Set) Let �; � , and be three strictly
positive integers, andGbe a Boolean attributed graph. A collection of cliques
M = fC1 ; : : : ; Cn g� C(G) is an Homogeneous Clique Set (HCS) if and only
if the three following constraintsChomo

� ; Cclique
;� andCsep are satis�ed:

– Chomo
� (M ) � jCAtb (M )j > � , i.e., all vertices share at least� at-

tributes;
– Cclique

;� (M ) � jfC 2 M | jCj > � gj >  , i.e.,M contains at least
cliques of size at least� ;

– Csep (M ) � M = Cmax
�
G[

S
C 2 M ]

�
, i.e.,M is the collection of max-

imal cliques in the subgraph induced by all the vertices appearing in
M .

Before presenting the interest of each constraint, let us give an exam-
ple of a HCS using the toy dataset presented Figure 11.

Example 13 (Homogeneous Clique Set) Consider the set of cliquesM =
fABCD; DEFg. It satis�es the constraintChomo

2 since all vertices are asso-
ciated to attributesa1 and a4 . It also satis�esCclique

2;3 as the set contains
two cliques having at least three vertices. Finally, as cliques are maximal in
G[ABCDEF], thenP also satis�esCsep , and thus is a HCS. Note that since
cliques can overlap, vertexD is in two cliques.

We will now illustrate the interest of each constraint.

4.1.1 The homogeneity constraint:Chomo
�

This constraint ensures that all vertices in a pattern share a set of
attributes. This set of attributes ensures the homogeneity of the pattern.The homogeneity

threshold is absolute,
however one can
obtain a relative

threshold by dividing
� by jA j.

Since� is the minimal number of shared attributes, the higher is � , the
more homogeneous the patterns will be.

Example 14 (Constraint Chomo
� ) Consider the attributed graph presented

Figure11. As the set of cliquesfABCD; DEF; GHI gis built on vertices asso-
ciated to attributesa4 , this set satis�esChomo

1 . More stringent constraints
Chomo

� can be used to focus on sets of cliques that are more homogeneous,
i.e., that share more attributes. For instance, the set of cliquesfDEF; GHIg
satis�esChomo

3 as all vertices are associated to attributesa3 , a4 , and a5 ,
while this constraint is not satis�ed byfABCD; DEF; GHI g.

4.1.2 The topology constraint:Cclique
;�

This constraint is used to avoid small patterns, i.e., collections of
small subgraphs or collections of few large subgraphs. The analyst
might want to avoid such patterns as they usually do not provide
valuable information. The parameter  de�ne the minimal number of
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cliques in the pattern having a size of at least � vertices. Note that
a pattern might contain cliques with less than � vertices as long as
there is at least  cliques of size � . The cliques of size at least� have a
straightforward interest as forming the core part of the pattern (large
groups of strongly connected vertices). The cliques of size less than �
are kept in the pattern since they point out vertices sharing the same
attributes but being more isolated. In the experiments, we will present
several patterns illustrating the interest of these isolated groups (see
Section 4.3). However, if needed the cliques with less than � vertices
can be removed using a simple post-processing.

Example 15 (Constraint Cclique
;� ) The verticesA,B,C,H, and J share at-

tributes a6 . Using these vertices we can build the HCSfABC; H; Jgsatisfy-
ing Cclique

1;3 . On the dataset of Figure11, a more stringent constraint would

beCclique
2;3 , to ask for at least 2 groups of size 3. ThenfABC; H; Jg is no

longer retrieved as a HCS, while we still obtain, for instance,fA; DEF; GHI g
(sharing attributesa3 anda4 ).

4.1.3 The separation constraint:Csep

This constraint is needed to avoid that a single large clique could Note that this does
not require that the
cliques are maximal
cliques of the whole
graphG

be counted as a collection of smaller cliques, since it could hardly be
considered as an interesting collection cliques. The Csep constraint
requires that the union of two cliques within a pattern is not a clique
itself. The following example illustrates this case using the graph
presented Figure 11.

Example 16 (Constraint Csep ) Consider the verticesA; B; C andD shar-
ing attributes a2 and a4 . Using these vertices, we can build a set of four
cliques of size threefABC; ABD; ACD; BCD g that would satisfy the con-
straint Cclique

4;3 . However, sinceABCD is itself a clique, the collection
fABC; ABD; ACD; BCD gdoes not satisfyCsep .

4.1.4 Reducing the collection of patterns

A common issue when extracting patterns is to provide small and
easy to browse collections [14]. By de�nition, a set of HCSs can contain
redundant patterns, in the sense that, when we know the parameters
� and  , some patterns can be directly derived from others. Indeed,
consider any set of cliques M 0 obtained by removing some vertices
from a HCS M . If M 0 satis�es Cclique

;� and Csep then M 0 is also a
HCS. This is illustrated by the following example.

Example 17 (Redundant patterns) In Figure 11, using vertices sharing
attributesa1 anda4 , we can build a HCSfABCD; DEFgsatisfying the con-
straintsChomo

2 , Cclique
2;3 , andCsep . We can also build four other HCSs sat-

isfying the same constraints by removing any vertex from the cliqueABCD ,
e.g.,fACD; DEFg.

Since the number of HCSs formed by cliques which are subsets
of cliques in another HCS can be large, such redundant patterns are
discarded by focusing on maximalHCSs only.

De�nition 16 (Maximal Homogeneous Clique Set) A Maximal Homo-
geneous Clique Set (MHCS) is a HCS which is maximal with respect to the
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partial order� de�ned as follows. GivenM 1 andM 2 two HCSs,M 1 � M 2
if and only if for allC1 2 M 1 there existsC2 2 M 2 such thatC1 � C2 .

Notice that antisymmetry does not hold for � in an arbitrary collec-
tion of sets, and thus � is not necessarily a partial ordering relation.
However, in the case of a collection of HCSs, the relation � is a partial
order as stated by the following property.

Property 1 On a collection of HCSs, the relation� is a partial order.

Proof 1 The relation is trivially re�exive and transitive. To show antisym-
metry, considerM 1 andM 2 two HCSs such thatM 1 � M 2 andM 2 � M 1 .
Suppose thatM 1 6= M 2 , then there existsC in M 1 that is different from all
sets inM 2 . And sinceM 1 � M 2 , there existsC0 in M 2 such thatC � C0.
As, M 2 � M 1 , there existsC00in M 1 such thatC0 � C00. So,C � C00, but
this cannot hold since by de�nition of a HCSM 1 must satisfyCsep . Thus
M 1 = M 2 .

Example 18 (Maximal Homogeneous Clique Set) The two sets of cliques
fABCD; DEFg and fA; DEF; GHI g, sharing respectively attributesfa1 ; a4g
and fa3 ; a4g, are MHCSs in the graph depicted Figure11, for constraints
Chomo

2 andCclique
2;3 . Satisfying the same constraints, there are other HCSs

that are not maximal ones, as for instancefABC; DEFgandfDEF; GHIg.

4.2 finding all maximal homogeneous clique sets

In this section we present a sound and complete algorithm to �nd
all MHCSs in a given dataset. For the sake of clarity, three versions of
the algorithm are proposed. A naive generate and test approach is �rst
presented and several pruning techniques are then incorporated in two
successive versions. The �nal version is given as Algorithm 8.

4.2.1 Algorithm generate and test

Let G= ( V; E; A; atb ) be a Boolean attributed graph. The algorithm
enumerates in a depth �rst way subgraphs of Gtogether with the sets of
attributes shared by the vertices of these subgraphs. The extraction of all
MHCSs is done in two steps. The main step consists in the extraction of
all MHCSs together with some non maximal HCSs ( ExploreSubgraphs1 ,
Algorithm 4), and then a second step �lters out these non maximal
patterns (ExtractMHCS , Algorithm 5).

Before presenting the naive algorithm, let us de�ne the function Vert
which is an extension of vert for a set of attributes instead of a single
attribute.

De�nition 17 Vert . The functionVert : 2A 7! 2V is de�ned asVert (A) =T
a 2 A vert (a). It maps a set of attributesA to the set of vertices associated

to all the attributes inA.

Example 19 In the attributed graph presented Figure11, Vert (a1a4a5 ) =
DEF since all these vertices and only them are associated to attributesa1 , a4 ,
anda5 .

In the recursive function ExploreSubgraphs1 , the �rst parameter Ge is
the current enumerated (sub-)graph to be tested, As is a set of attributes
already known to be shared by all vertices of Ge , Vr is the set of vertices
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remaining in Ge , and Ac is the set of candidate attributes that remain
under consideration to �nd attributes shared by Ge or by subgraphs of
Ge . The initial call to ExploreSubgraphs1 is made in ExtractMHCS with
parameter Ge set to the whole graph, As = ; , Vr = V, and Ac = A.

Starting from the whole graph and with Ac = A, Algorithm 4 enu-
merates all subsetsAs � A (all sets of attributes that can be shared)
together with the subgraph Ge of Gcomposed of the vertices associated
to all the attributes in As . For each of the enumerated subgraph, the
algorithm �rst checks on line 2 if the set of maximal cliques of the
subgraph is considered to be a HCS (i.e., contains at least  cliques
having � vertices and if the vertices are already known to share at least
� attributes). If so, the pattern is added to the result HCSs. In this
preliminary version of the algorithm no pruning is performed here,
and the enumeration always goes on (lines 4 to 8).

This enumeration uses the set Ac containing the attributes that re-
main candidates as attributes shared by the current graph or its sub-
graphs. While Ac is not empty, an attribute y is picked and removed
from Ac , and a set of verticesV

0

r is built by restricting the current set of
vertices Vr to the vertices associated to attribute y. The set of attributes
known to be shared by the vertices in V

0

r is then simply A
0

s = As [ fyg.
Then function ExploreSubgraphs1 is called recursively on Ge [V

0

r ] (the
subgraph of Ge induced by the set of vertices V

0

r ).

Algorithm 4 : ExploreSubgraphs1

Input : Ge , As , Vr , Ac
HCSs  ;1

if jAs j > � and jfC 2 Cmax (Ge ) | jCj > � gj>  then2

HCSs  fCmax (Ge )g3

while Ac 6= ; do4

Pick and remove an element y from Ac5

V
0

r  Vr \ vert (y)6

A
0

s  As [ fyg7

HCSs  HCSs [ ExploreSubgraphs1 (Ge [V
0

r ], A
0

s , V
0

r , Ac )8

return HCSs9

Algorithm 5 : ExtractMHCS

Input : G, an attributed graph
HCSs  ExploreSubgraphs1 (G, ; , V, A)1

output RemoveNonMaximalHCSs (HCSs)2

In order to illustrate the general recursive scheme, and to introduce
the pruning techniques, let us de�ne the underlying enumeration tree.

De�nition 18 (Node in the enumeration tree) A nodei in the enumer-
ation tree represents a recursive call toExploreSubgraphs1 in Algorithm 4.
A total order< is de�ned on the nodes, based on the calling sequence during
an execution, i.e., giveni and j two nodes in the enumeration tree,i < j if
and only if the call toExploreSubgraphs1 for nodei is done before the call
to ExploreSubgraphs1 for nodej . A nodei is the father of a nodej and j is
a child ofi if and only if the call toExploreSubgraphs1 corresponding toj
is done line8 in the call corresponding toi . The ancestor relation is simply
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the transitive closure of relation father. Parameters of the call corresponding
to nodei are denoted usingi as superscript:Gi

e , A i
s , Vi

r , andA i
c .

Example 20 (Enumeration tree) Figure 12 depicts a part of an enumera-
tion tree that could be obtained on the graph presented Figure11. The labels
on the branches correspond to the attributey picked to generate the calls.
The nodes are identify by arbitrary increasing integers re�ecting the call-
ing sequence (order< on nodes). For instance node 0 is the initial call to
ExploreSubgraphs1 (the ancestor of all nodes), node 33 is a call performed
before the call corresponding to node 49, and node 56 is a child of node 49. In
Figure12, for the nodes at depth 1 and the nodes on the left-most branch, two
input parameters of the call are indicated:Vr (vertices in the current graph),
and Ac (remaining candidate attributes). Each possible subset of attributes
is enumerated together with the subgraph induced by the vertices sharing
these attributes. The other subgraphs are not enumerated, e.g., the subgraph
induced by the verticesfB; C; D; E; F; G; H; I; Jg.

To establish the completeness of the enumeration, we need the prop-
erties stated by the following lemmas.

Lemma 1 For all MHCS M in a Boolean attributed graphGwe haveM =
Cmax (G[[CAtb (M )]] ).

Proof 2 Let M be a MHCS in a Boolean attributed graphG. By de�ni-
tion M = Cmax (G[

S
C 2 M ]). Let M 0 = Cmax (G[[CAtb (M )]] ) and sup-

pose thatM 6= M 0. ThenM 0 satis�esCsep by construction, and since the
set of attributes shared by the vertices inM 0 is CAtb (M ) and M satis�es
Chomo

� , then M 0 satis�es Chomo
� . By de�nition of functionsVert and

CAtb ,
S

C 2 M � Vert (CAtb (M )) , soG[
S

C 2 M ] is an induced subgraph of

G[[CAtb (M )]] . So,M 0 satis�esCclique
;� sinceM satis�esCclique

;� , and then
M 0 is a HCS such thatM � M 0. This is not possible sinceM is a MHCS.
Whence,M = M 0.

Since for a nodei in the enumeration tree, Algorithm 4 enumerates all
subgraphs Gi

e [Vert (X)] such that X � A i
c , then the following property

is straightforward.

Lemma 2 For all nodei in the enumeration tree, if there existsA � A i
c and

M a MHCS such thatM = Cmax (Gi
e [Vert (A)]) , thenM is obtained in the

subtree rooted at nodei .

The following theorems state the correctness of the extraction process.

Theorem 1 Algorithm 4 outputs all MHCSs and only HCSs.

Proof 3 Let G be an attributed graph andM a MHCS in G. Consider the
root (i = 0) of the enumeration tree explored by Algorithm4, then we have
G0

e = G and A0
c = A. Let A = CAtb (M ), then we know by Lemma1 that

M = Cmax (G[Vert (A)]) . And �nally, Lemma2 ensures thatM is obtained
in the subtree rooted ati = 0.

In addition, since the Algorithm 5 �lters out non maximal HCS, we
have the following property.

Theorem 2 Algorithm 5 is correct.
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Figure 12.: Enumeration tree corresponding to the attributed graph presented Figure 11.
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4.2.2 Enumeration tree pruning techniques

Five safe pruning techniques are used. Algorithm 6 extends Algo-
rithm 4 and introduced the �rst four pruning techniques. For the sake
of clarity, the �fth pruning technique is described in Algorithm 8 as an
extension of Algorithm 6.

For each technique, we discuss its safety, and illustrate the corre-
sponding pruning on an enumeration tree presented Figure 13 and
obtained for the dataset of Figure 11 under constraints Chomo

2 and
Cclique

2;3 .

pruning 1 (Algorithm 6 line 2): This pruning checks that there is at
least  maximal cliques with at least � vertices in Gi

e . If it is not the case
no subgraph of Gi

e can satisfy Cclique
;� , and thus the subtree rooted at i

can be pruned. Considering node 33, we have V33
r = fA; B; C; D g. Since

G33
e (the subgraph induced by fA; B; C; D g) does not contain at least

two maximal cliques with three vertices, the subtree rooted at node 33
is pruned.

pruning 2 (Algorithm 6 lines 3 and 4): Attributes from A i
c shared

by all vertices in Vi
r are added to A i

s and removed from A i
c . This

prunes the tree by avoiding to pick these attributes to create new
children of node i . Removing these attributes from A i

c does not change
the collection of different subgraphs enumerated in the tree, since if
we pick such an attribute y to create a child we have Gi

e [Vi
r \ vert (y)]

that is equal to Gi
e itself. Finally, since these attributes are added

to A i
s , then

�
�A i

s

�
� is the correct total number of attributes shared by

all vertices of the graph at enumeration node i . Considering node
1, we have A1

c = fa2 ; a3 ; a4 ; a5 ; a6gand V1
r = fA; B; C; D; E; Fg. Since

V1
r � vert (a4 ), attribute a4 is added to A1

s and removed from A1
c

(lines 3 and 4). And thus, the branch rooted at node 1 corresponding to
attribute a4 is pruned.

pruning 3 (Algorithm 6 line 7): If the set of attributes shared by all
vertices has a cardinality greater than or equal to � (line 5), and as the
current graph already satis�es to the test of line 2, then it contains a
HCS M = fCmax (Ge )gthat is collected in the result line 6. In this case,
since all attributes shared by all vertices of Gi

e has been removed from
A i

c (line 4) then all graphs in the subtree rooted at i will contain strictly
less vertices thanGi

e and thus cannot lead to HCS M 0such that M � M 0.
Whence, the subtree rooted at i does not contain a maximal HCS and
can be pruned (line 7). Considering node 54, we have A54

s = fa3 ; a4g
and V54

r = fD; E; F; G; H; I; Jg. Since the set of cliquesfDEF; GHI; Jgis a
HCS, no subgraph of G54

e can contains a MHCS, thus the subtree rooted
at node 54 is pruned.

The fourth pruning technique requires the following property.

Lemma 3 Given a Boolean attributed graphG = ( V; E; A; atb ) with jVj <

max
�

�; d3log (  )
log ( 3) e

�
, a set of cliques ofGcannot satisfyCclique

;� ^ Csep .

Proof 4 Since a HCS satis�esCclique
;� , it contains at least one clique with�

vertices, and thus the corresponding graph has at least� vertices. Moreover
[56] demonstrates that the maximum number of maximal cliques in a graph
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with n vertices is3n=3 , and so, a graph must have at leastd3log (  )
log ( 3) evertices

to contain maximal cliques.

pruning 4 (Algorithm 6 lines 8 and 9): Attributes and vertices
which are not valid candidates to build a MHCS are removed from A i

c
and Vi

r :

1. All current vertices share
�
�A i

s

�
� attributes, thus to be part of a HCS

satisfying Chomo
� , a remaining vertex must have at least � -

�
�A i

s

�
�

more attributes. Moreover, these � -
�
�A i

s

�
� attributes must be in

A i
c (the candidate attributes to be shared by the vertices of the

graphs in the enumeration subtree rooted at i ). Any vertex that
does not satisfy to this condition (line 8) can be safely removed.

2. As stated by Lemma 3, to contain a HCS satisfying Cclique
;� ^

Csep a graph must have a number of vertices greater than or equal

to max
�

�; d3log (  )
log ( 3) e

�
. Then, an attribute associated in Gi

e to less

vertices than this lower bound cannot be an attribute shared by
the vertices of a HCS found in the subtree rooted at i . Thus it can
be removed from the remaining candidate attributes A i

c (line 9).

To illustrate these reductions of A i
c and Vi

r , let us consider node 61.
We have A61

c = fa6g, V61
r = fD; E; F; G; H; I; Jg, and A61

s = fa5g. Since
no attribute in A61

c is shared by all vertices in V61
r , then A61

s and A61
c

are not modi�ed by lines 3 and 4. Since � = 2 and jAs j = 1, then
line 8 keeps in V61

r only vertices associated to at least one attribute in
A61

c . Thus, V61
r is reduced to fH; Jg. On line 9, for  = 2 and � = 3

we have max
�

�; d3log (  )
log ( 3) e

�
= 3, and since

�
�vert (a6 ) \ V61

r

�
� = 2 (i.e.,

attribute a6 appears only on two vertices in V61
r ) then a6 is removed

from A61
c . So, the branch rooted at node 61 corresponding to attribute

a6 is pruned.

Algorithm 6 : ExploreSubgraphs2

Input : Ge , As , Vr , Ac
HCSs  ;1

if jfC 2 Cmax (Ge ) | jCj > � gj>  then // Pruning 12

S  fl 2 Ac | Vr � vert (l )g // Pruning 23

Ac  Ac nS ; As  As [ S // Pruning 24

if jAs j > � then5

HCSs  fCmax (Ge )g6

else // Pruning 37

Vr  fv 2 Vr | jatb (v) \ Ac j > � - jAs jg // Pruning 48

Ac  fl 2 Ac | jvert (l ) \ Vr j > max
�

�; d3log (  )
log ( 3) e

�
g9

// Pruning 4
while Ac 6= ; do10

Pick and remove an element y from Ac11

V
0

r  Vr \ vert (y)12

A
0

s  As [ fyg13

HCSs  HCSs [ ExploreSubgraphs2 (Ge [V
0

r ], A
0

s , V
0

r ,14

Ac )

return R15

It should be pointed out that a possible extension of Pruning 4 is
to propagate incrementally the reduction over Vr and Ac until no
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:

:

:
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Figure 13.: Enumeration tree with pruning techniques 1, 2, 3, 4, and 5 corresponding to the
attributed graph presented Figure 11 for constraints Chomo

2 and Cclique
2;3 .
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more attribute or vertex can be removed. This extension, described
as Algorithm 7, can replace lines 8 and 9 in Algorithm 6. However,
when tested on real datasets and parameter settings corresponding to
the experiments presented Section4.3, the gain due to this extension
is counterbalanced by its computing overhead (processing times with
and without this extension were not signi�cantly different). So, this
incremental reduction has not been retained here.

Algorithm 7 : Extension of Pruning 4

repeat1

Vprev
r  Vr ; Aprev

c  Ac2

Vr  fv 2 Vr | jatb (v) \ Ac j > � - jAs jg3

Ac  fa 2 Ac | jvert (a) \ Vr j > max
�

�; d3log (  )
log ( 3) e

�
g4

until Vprev
r 6= Vr or Aprev

c 6= Ac ;

The safety of the pruning techniques embedded in Algorithm 6 is
established by the following lemma.

Lemma 4 The property stated by Lemma2 also holds for the enumeration
trees obtained with Algorithm6.

Proof 5 Pruning 1 and Pruning 4 remove subtrees that cannot lead to a
HCS. Pruning 2 safely remove elements fromA i

c (avoiding some duplicated
graph during enumeration). Pruning 3 remove subtrees that cannot lead to
a maximal HCS. So, for any nodei in the enumeration tree, if there exists
L � A i

c and M a MHCS such thatM = Cmax (Gi
e [Vert (L)]) , then by

Lemma2 we still have the guaranty thatM is obtained in the subtree rooted
at nodei .

The �fth pruning technique (Pruning 5) avoids redundant enumera-
tion of some MHCSs. It is presented in Algorithm 8 which is similar
to Algorithm 6 apart from line 14 that is replaced by lines 13 to 15
in the new algorithm. This pruning uses a set A i

done which contains
for a node i the attributes used to build all immediate children of the
ancestors of i apart from the attributes in the branch leading to i itself.
For example, the set A54

done corresponding to node 54 is fa1 ; a2 ; a4g.
The setA i

done is updated line 15 of Algorithm 8. An example of enu-
meration tree with Adone values is given Figure 13. Given i a node
corresponding to a call with input parameters A i

done and Vi
r such that

there exists an attribute z 2 A i
done that is associated to all vertices of

Vi
r . Then, as stated by the following lemma, the MHCSs that could

be obtained in the subtree rooted at i are redundant. Thus, in the call
corresponding to the father of i , Pruning 5 line 13 of Algorithm 8 avoids
the generation of i .

Lemma 5 (Redundancy of Algorithm 6) Given i a node in the enumer-
ation tree corresponding to Algorithm6, and an attributez 2 A i

done such
that Vi

r � vert (z). If M is a MHCS obtained in the subtree rooted ati , then
M is also obtained in a subtree rooted at a nodej , such thatj < i andj is not
an ancestor ofi .

Proof 6 Let M be a MHCS obtained in the subtree rooted at nodei and let
z be an attribute inA i

done such thatVi � vert (z). If M is obtained in
the subtree, this implies that there exists a subgraphG of Gi

e for which the
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algorithm computesM asCmax (Ge ). Thus there existsA � A i
c such that

M = Cmax (Gi
e [Vert (A)]) .

Let us now show thatM is also obtained in a subtree rooted at a node
j de�ned as follows. Let nodek be the ancestor ofi in which attribute z
was picked, nodej is the node corresponding to the call made fromk for this
attribute z. Finally, let nodei 0 be the child ofk in the branch leading toi
(notice thati 0 can bei itself if i is a child ofk). Figure13 gives an example
of such nodes withi = 58, k = 0, i 0 = 57, j = 49, andz = a3 .

Let V = fv 2 Vk
r |

�
�atb (v) \ Ak

c

�
� > � -

�
�Ak

s

�
�g be the reduced set of

vertices computed line8 during the call corresponding to nodek. The call
corresponding toj is made withVj

r = V \ vert (z). As Vi
r � V (V is used

in nodek to generatei 0 ancestor ofi ) and Vi
r � vert (z) (by hypothesis),

then Vi
r � Vj

r . Thus Gi
e is an induced subgraph ofGj

e , and thenM =
Cmax (Gj

e [Vert (A)]) .
Sincei 0 has the same father asj and j < i 0, we haveA i 0

c � A j
c and thus

A i
c � A j

c (i 0 is an ancestor ofi ). So,A � A j
c .

Whence, there existsA � A j
c such thatM = Cmax (Gj

e [Vert (A)]) , and
by Lemma4, we know thatM is obtained in the subtree rooted atj .

The completeness of Algorithm 8 is stated by the following lemma.

Lemma 6 In the enumeration tree explored by Algorithm8, if a subtreeT
rooted at a nodei (including i itself) is pruned using Pruning 5 and a MHCS
M would be obtained inT thenM is obtained in a subtree rooted alabt node
j , with j < i andj is not an ancestor ofi .

Proof 7 Proof is immediate by strong induction. The property holds forn =
0, i.e. the root of the whole enumeration tree, since the root cannot be pruned
by Pruning 5. Letn be any node in the enumeration tree. Suppose that for
all nodek < n Lemma6 holds. Let us show that the property also holds for
n. Let T be a subtree rooted atn and pruned using Pruning 5. LetM be a
MHCS that would be obtained inT. Then from Lemma5 there is a subtree
rooted atn 0 < n in which M is obtained by Algorithm6. If this branch has
not been pruned by Pruning 5, then we obtainedM with Algorithm 8. If this
branch has been pruned by Pruning 5, then by induction hypothesis, there
exists a subtree rooted atn 00< n 0 in which M is obtained with Algorithm8.

Notice that Pruning 5 can also avoid the enumeration of non-maximal
HCSs, but in this case there is no need to prove that they have already
been obtained, since we are not interested in such HCSs.

Example 21 (Enumeration tree with Pruning 5) In the enumeration tree
using Pruning 5 presented Figure13, consider node 58. The setA58

done
contains all the attributes used to build all immediate children of the ances-
tor of node 58 apart from the attributes in the branch leading to node 58,
i.e., A58

done = fa1 ; a2 ; a3g. Considering attributea3 in A58
done , we have

vert (a3 ) = fA; D; E; F; G; H; I; Jgand V58
r = fD; E; F; G; H; Ig. As all ver-

tices in V58
r are also invert (a3 ), the pruning criterion for Pruning 5 is

satis�ed line13 during the call corresponding to node 57, and thus node 58
is pruned.

The following theorem states the correctness of the �nal extraction
algorithm given as Algorithm 9. It is a direct consequence of Lemma 6.

Theorem 3 Algorithm 9 returns all MHCSs and only MHCSs.
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Algorithm 8 : ExploreSubgraphs

Input : Ge , As , Vr , Ac , Adone
HCSs  ;1

if jfC 2 Cmax (Ge ) | jCj > � gj>  then // Pruning 12

S  fl 2 Ac | Vr � vert (l )g // Pruning 23

Ac  Ac nS ; As  As [ S // Pruning 24

if jAs j > � then5

HCSs  fCmax (Ge )g6

else // Pruning 3
Vr  fv 2 Vr | jatb (v) \ Ac j > � - jAs jg // Pruning 47

Ac  fl 2 Ac | jvert (l ) \ Vr j > max
�

�; d3log (  )
log ( 3) e

�
g8

// Pruning 4
while Ac 6= ; do9

Pick and remove an element y from Ac10

V
0

r  Vr \ vert (y)11

A
0

s  As [ fyg12

if 8z 2 Adone ; V
0

r * vert (z) then // Pruning 513

HCSs  HCSs [ ExploreSubgraphs (Ge [V
0

r ], A
0

s , V
0

r ,14

Ac , Adone )
Adone  Adone [ fyg15

return HCSs16

Algorithm 9 : ExtractMHCS

Input : G= ( V; E; A; atb )
HCSs  ExploreSubgraphs (G, ; , V, A, ; )1

output RemoveNonMaximalHCSs (HCSs)2

4.2.3 Implementation

The RemoveNonMaximalHCSs post-processing used to remove from a
collection of HCSs non maximal ones has been implemented using
the two following optimizations. First, it is not necessary to check
maximality over the whole collection, since the HCSs whose vertices
share exactly � labels are necessarily maximal and do not need to be
tested. The second optimization is based on the following property.
To compare two HCSs it is not required to test the pairwise inclusion
of all cliques in the two HCSs, but it is suf�cient to test the inclu-
sion of the unions of these cliques: given M 1 and M 2 , two HCSs,
M 1 � M 2 if

S
C 12 M 1

�
S

C 22 M 2
. In our experiments, the runtime

of RemoveNonMaximalHCSs was negligible with respect to the extraction
time. Post-processing runtimes are given in Section 4.3.

The algorithm used to compute maximal cliques is CLIQUES [ 84]
presented page21 as Algorithm 2. Two improvements were made to
use CLIQUES in our main extraction algorithm. The �rst one is used on
line 2 in Algorithm 8 to avoid the computation of all maximal cliques.
The algorithm stop once a set of cliques satisfying Cclique

;� ^ Csep has
been found. The second optimization consists in verifying that there

is at least max
�

�; d3log (  )
log ( 3) e

�
vertices connected to at least� - 1 other

vertices in the enumerated graph, otherwise it is not possible to satisfy
Cclique

;� ^ Csep .
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4.3 experiments

In this section we report the results of our experiments. They were
performed using a network of collaborations of researchers associated
to the conference and journals where they have published. Another
set of experiments in the context of molecular biology is presented
in Section 6. Experiments were also realized on synthetic datasets to
measure the impact of graph structure over time performance, and are
described in Section 4.3.4.

All experiments were performed on a PC running GNU/Linux with
a 3 GHz Core 2 Duo CPU and 8 GB of main memory installed (no
more than 800 MB used in the experiments as shown in Section 4.3.3).
The algorithm has been implemented using Scala 2.91. This algorithm
has been embedded in a tool, described in Appendix B, that allows to
browse and visualise the collections of MHCSs.

This section is organized as follows. First we present the datasets,
then we illustrate the interest of MHCS in real data. The next section
presents quantitative results with respect to runtime, memory usage
and number of patterns extracted. The impact of graph structure over
performance is studied later using a synthetic dataset. Finally we
present the runtime improvement for each pruning technique with
respect to a baseline algorithm.

4.3.1 DBLP: a scienti�c collaboration network dataset

Here we give a short description of the scienti�c collaboration net-
work datasets. We use the public DBLP database2. This database
contains rather exhaustive bibliographic information on most computer
science conferences and journals. It has been extensively used as an
experimental dataset by many researchers. From this database, we built
three attributed graphs, DBLP 1 , DBLP2 , and DBLP3 . Several graph
characteristics are presented on Table1 and an exhaustive description
is given in Appendix A. The vertices in an attributed graph correspond
to authors, an edge representing a coauthor relationship. The attributes
are the conferences and journals where the authors have published. All
data from DBLP up to august 2011 was used to build the datasets.

DBLP1 and DBLP2 are used to assess the performances of the algo-
rithm. Consequently, we wanted large datasets even if the extracted
patterns might not be very meaningful. On the other hand, in DBLP 3
we kept only what can be considered as strong cooperation between
researchers and strong engagement in a speci�c research �eld. DBLP1
contains all coauthor relationships, and an author is associated to all
journals and conferences where she/he has published at least once
(all editions of a conference are aggregated under the same conference
name). In DBLP2 (resp. DBLP3 ) we have an edge between two au-
thors only if they have coauthored at least two (resp. three) articles,
and an author is associated to journals and conferences where she/he
has published at least two (resp. three) times. In DBLP2 and DBLP3 ,
authors with empty attribute list are removed (authors that have never
published twice/three times in the same journal or conference).

1. Scala is a language running over a Java virtual machine.
2. http://dblp.uni-trier.de/
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DBLP1 DBLP2 DBLP3

# Vertices 997,050 266,125 127,386

# Attributes 5,963 5,309 3,980

# Edges 3,427,683 650,205 234,896

Avg. degree 6.88 4.89 3.69

Maximum degree 1014 240 149

Avg. attributes/vertex 3.06 2.44 2.15

Maximum attributes 302 112 68

Table 1.: Measures describing datasets DBLP1 , DBLP2 , and DBLP3 .

4.3.2 Interpretation of MHCSs from DBLP

The interest of our approach is illustrated with two patterns extracted
from DBLP 3 . On this dataset, we �rst search for MHCSs formed by
relatively large communities so, � , the minimal size of the core cliques,
is set to 5. We want at least two groups of core cliques (i.e.,  = 2) and
we do not require them to be very homogeneous so we set � to 2. With
this parameter setting, we found 498 MHCSs. Among them, we focus
on the patterns related to the conference IEEE International Conference
on Computer Communications (INFOCOM). It is a major conference
on the topic of computer communications. Five MHCSs among the
extracted collection are related to this conference and we present in
Figure 14 the one having the smallest number of vertices.

This pattern contains 18 maximal cliques, two containing at least �ve
vertices (i.e., the core cliques):

– fYuan He, Mo Li, Xiang-Yang Li, Yurhao Liu, Zheng Yang g, bottom
left of Figure 14

– fTarek F. Abdelzaher, Qing Cao, Lin Gu, Tian He, Liqian Luo, John
A. Stankovic, Gang Zhoug, top of Figure 14

Using ArnetMiner and the web pages of the authors, we consider the ArnetMiner
(http://

arnetminer.org/ )
is a web site used to
index and search
academic networks.

af�liations of the authors. The �rst core clique is formed by authors who
have all been working in Virginia, while the second core clique is formed
by four out of �ve authors af�liated to the university of Tsinghua in
China (the �fth author is also af�liated to a university in China). A
third group of vertices at the bottom left of Figure 14 is structured as
several 3-cliques with large overlaps. It corresponds to seven authors:
Deborah Estrin, Ramesh Govindan, John S. Heidemann, Ahmed Helmy,
Polly Huang, Bhaskar Krishnamachari, and Scott Shenker. All these
authors are currently af�liated to universities in the west coast of the
United States of America, four being more particularly located in the
university of Southern California.

We also consider MHCSs being more homogeneous and containing
more core cliques while relaxing the constraint on the size of the core
cliques. To perform the extraction, we looked for patterns with at least
5 cliques of 3 vertices and 6 shared attributes (� = 6, � = 3, and  = 5).
Using this parameter setting, 718 patterns were extracted. Among them,
8 patterns are related to the data mining conference IEEE International
Conference on Data Mining (ICDM). We present in Figure 15 one of the
extracted MHCSs having the smallest number of vertices.
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Figure 14.: A pattern related to conferences INFOCOM and SenSys. Each colour denotes a clique
of at least � vertices. A vertex in several colours is contained in multiple cliques.
Vertices in light grey are not contained in a clique of at least � vertices.
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Figure 15.: A pattern related to conferences ACM SIGMOD, CIKM, EDBT, ICDE, ICDM, and
SDM. Each colour denotes a clique of at least� vertices. A vertex in several colours is
contained in multiple cliques. Vertices in light grey are not contained in a clique of at
least � vertices.
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DBLP1 DBLP2 DBLP3

Mean 1,207 Mb 421 Mb 198 Mb

Max 1,886 Mb 735 Mb 416 Mb

Standard deviation 175 Mb 84 Mb 46 Mb

Table 2.: Memory consumption over all experiments reported Figure 16.

This pattern contains seven maximal cliques and, among them, �ve
contains at least three vertices (the core cliques):

– fJiawei Han, Jian Pei, Ke Wang, Philip S. Yug
– fHaixun Wang, Jeffrey Xu Yu, Philip S. Yu g
– fJiawei Han, Ke Wang, Jeffrey Xu Yu, Philip S. Yug
– fJian Pei, Haixun Wang, Philip S. Yug
– fChristian Böhm, Hans-Peter Kriegel, Peer Krögerg
Two groups are forming this pattern. One is formed by Christian

Böhm, Hans-Peter Kriegel and Peer Kröger, all these authors working
in the same university located in Germany. The second group is formed
by people located in North America (working in the same universities
at some time). These two groups are connected by Christos Faloutsos,
who is not part of any � -clique in this pattern but still associated to the
same conferences. This vertex has a betweenness centrality measure
of 4.5 (the betweenness centrality measure is presented page20 in the
state of the art).

The main interest of such MHCSs is to exhibit a local structure of
groups sharing similar interests. Knowing such structures can be useful,
for instance, to help reviewer selection for projects, or to set up new
scienti�c collaborations (a task also considered in [ 7], using different
approaches).

4.3.3 Performance study on DBLP datasets.

The runtime, number of extracted patterns, and maximal memory
consumption are reported for extractions done on DBLP 1 , DBLP2 , and
DBLP3 with different parameter settings.

Concerning time performances, Figure 16 shows that the extractions
can be made in less than one minute on DBLP2 and DBLP3 even when
constraints are weakly selective. On DBLP1 , the runtime is presented
only for � > 4. The worst case is obtained for � = 7, � = 4, and  =
3 and requires about one hour. Presented runtime take into account
the post-processing needed to remove non-maximal MHCSs. This post-
processing requires less than one second for all reported experiments.

When � (i.e., the minimum number of shared attributes) increases,
runtime increases until it reach a maximum, then start to decrease. This
behaviour is due to the fact that at �rst there are more combinations
of attributes of size n + 1 compares to the combinations of size n, thus
maximal cliques have to be compute on more subgraphs and runtime
increases with � . In a second phase, the runtime decreases when�
increases since large set of attributes are less likely to be shared by
enough vertices to satisfy Cclique

;� , and thus are more likely to be
pruned during the enumeration. Moreover for � ,  �xed and large
values of � , the runtime tends to stabilize. One can also notice that for
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Figure 16.: Runtime for different sets of parameters on DBLP1 , DBLP2 , and DBLP3 .



4 mining collections of cliques 59

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1  2  3  4  5  6  7  8  9

N
um

be
r 

of
 M

H
C

S
s

a

k = 4
k = 5
k = 6
k = 7

(a) # MHCS on DBLP1 with  = 3

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2  3  4  5  6  7  8  9

N
um

be
r 

of
 M

H
C

S
s

g

k = 4
k = 5
k = 6
k = 7

(b) # MHCS on DBLP1 with � = 3

 1

 10

 100

 1000

 10000

 100000

 1  2  3  4  5  6  7  8  9

N
um

be
r 

of
 M

H
C

S
s

a

k = 3
k = 4
k = 5
k = 6
k = 7

(c) # MHCS on DBLP2 with  = 3

 1

 10

 100

 1000

 10000

 100000

 2  3  4  5  6  7  8  9

N
um

be
r 

of
 M

H
C

S
s

g

k = 3
k = 4
k = 5
k = 6
k = 7

(d) # MHCS on DBLP2 with � = 3

 1

 10

 100

 1000

 10000

 100000

 1  2  3  4  5  6  7  8  9

N
um

be
r 

of
 M

H
C

S
s

a

k = 3
k = 4
k = 5
k = 6
k = 7

(e) # MHCS on DBLP3 with  = 3

 1

 10

 100

 1000

 10000

 100000

 2  3  4  5  6  7  8  9

N
um

be
r 

of
 M

H
C

S
s

g

k = 3
k = 4
k = 5
k = 6
k = 7

(f) # MHCS on DBLP3 with � = 3

Figure 17.: Number of MHCS for different sets of parameters on DBLP 1 , DBLP2 , and DBLP3 .
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� = 1, the values of � seems to have a smaller impact on runtime. This
is because when� = 1 the enumeration stops on the second level of the
enumeration tree and the pruning based on  or � are not used.

Regarding the number of output patterns, Figure 17 shows that it
shrinks fast when parameters � , � , or  increase. For values of� 6 5
and � > 1 , increasing � by two reduces the size of the collection of
patterns by one order of magnitude.

Regarding main memory usage, only maximal memory consumption
during each extraction is considered. Table 2 summarizes the results
for all experiments reported in this section.

4.3.4 Evaluation on synthetic datasets

In this section we describe an experimental evaluation of the algo-
rithm using synthetic datasets. The goal of these experiments is to
study runtime evolution with regards to different graph structures and
user parameters. The generation of synthetic data which model accu-
rately graph structure is an active research area. Several models has
been proposed to mimic graph structures, however as far as we know,
only two approaches allows the generation of attributed graphs [ 50, 58].
Both models use an existing attributed graph which determines the
structure of the generated data. As we wanted to set the parameters
given on Table 3 for each datasets, these models did not �t our needs.

The model used to generate synthetic data is simple. An attributed
graph is �rst generated with four parameters:

– #vert : number of vertices
– #attr : number of different attributes
– avgDeg: average vertex degree
– avgAtt : average number of attributes having value True per vertex
For the generation of the vertices and edges, we used the well stud-

ied Erd�os-Rényi random graph model [ 22]. This model requires two
parameters, the �rst is simply the number of vertices # vert , and the
second one is the probability p for each pair of vertices to be con-
nected by an edge. We setp to #edges=#edgesMax where #edges was
the expected number of edges and was equal to #vert � avgDeg=2,
and #edgesMax was the maximum number of possible edges, i.e.,
#edgesMax = #vert � (#vert - 1)=2.

Then, the attributes were associated randomly to the vertices as
follows: for each vertex v and each attribute x, x was associated tov
with the probability avgAtt= #attr .

For the generation, we took a reference parameter setting that was
close to the characteristics of the BioData400 dataset used in the ex-
periments presented in Section 6 in order to start from a real setting.
However, we did not intend to mimic the BioData 400 structure (perfor-
mances on this kind of structures are presented in Section 6). The values
retained for the reference parameters were #vert = 15; 000; #attr = 500;
avgDeg = 20; and avgAtt = 10.

Due to the random generation process, it is unlikely that such syn-
thetic datasets contain some MHCS, except trivial ones. Thus a number
#hcs of HCSs were injected in the dataset. These HCSs were generated
randomly according to three parameters k; g and s, as follows. Each of
these HCSs containedk � g vertices, structured in the form of g cliques
of size k, and with s attributes shared by all vertices. Note that the
injected HCSs might be non-maximal in the resulting dataset if the orig-
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S#vert S#attr SavgDeg SavgAtt S#hcs

#vert 5,000-25,000 15,000 15,000 15,000 15,000

#attr 500 200-800 500 500 500

avgDeg 20 20 10-30 20 20

avgAtt 10 10 10 5-25 10

#hcs 300 300 300 300 100-500

Table 3.: Parameters used to generate the synthetic datasets.

inal graph contains vertices sharing the same set of attributes. However,
except for trivial cases (low values of #attr and s), this is not likely to
occur, and then these injected HCSs are expected to be MHCSs. The
number of injected patterns #hcs was used as an additional generation
parameter, and we used #hcs = 300as a reference value.

We generated several datasets, by changing in turn each parameter
(#vert , #attr , avgDeg, avgAtt and #hcs), within a range encompassing
its reference value. Let var be one of the parameter, we denote Svar the
collection of datasets obtained by varying this parameter var . For each
collection, the constant parameter values and the range of the parameter
that was changed, are given in Table 3. In each dataset, we did not only
perform a single pattern injection, but we built four derived datasets
by adding four different sets of random HCSs using the four following
parameters settings: (1)s = 2; k = 6; g = 2, (2) s = 2; k = 6; g = 4, (3)
s = 4; k = 6; g = 2 and (4) s = 4; k = 6; g = 4.

Then, the MHCSs were extracted on each of these derived datasets
using parameters � = s;  = g and � = k, so as to retrieve the patterns
that have been injected. The runtimes and the precise values used
within each range for # vert , #attr , avgDeg, avgAtt and #hcs can be
found Figure 18. Each point of the graphs of Figure 18 corresponds
to the average of the runtime over ten different random generations
of the data. The runtime remained stable with a maximal standard
deviation of 0.26 for each point. The curves show that the extraction
were tractable in practice on this graph model, for a wide range of
parameter values.

Concerning the number of extracted patterns, the number of MHCSs
obtained was always equal to the number of injected HCSs, except for
a few experiments. In the worst case, we had a difference of 6 patterns.
For each apparently missing pattern, we observed that this difference
came from two injected HCSs sharing the same attributes and forming
a single MHCS, and thus only one pattern was obtained instead of two.

4.3.5 Comparison of the prunings to baseline algorithms

In this section we compared the effects of each pruning techniques
(pruning 1 to 5 introduced Section 4.2) on runtime. In order to perform
this comparison, we proposed �ve versions of the extraction algorithm
based on a baseline algorithm. This baseline algorithm is similar to
the generate and test version presented as Algorithm 4 except for two
simple additional veri�cations. First, a test ensures that Vr contains at
least � vertices (less than � vertices cannot form a pattern satisfying
Cclique

;� ). A second test checks that the number of shared attributes or
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Figure 18.: Runtime for the collections of datasets S#vert , SavgDeg , S#attr , SavgAtt and S#hcs .
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candidate attributes ( i.e., jAc [ As j) is at least � , otherwise the homo-
geneity constraint cannot be satis�ed (this baseline algorithm is given
as Algorithm 10).

Algorithm 10 : Baseline

Input : Ge , As , Vr , Ac
HCSs  ;1

if jAs j > � and jfC 2 Cmax (Ge ) | jCj > � gj>  then2

HCSs  fCmax (Ge )g3

while Ac 6= ; do4

Pick and remove an element y from Ac5

V
0

r  Vr \ vert (y)6

A
0

s  As [ fyg7

if
�
�
�V

0

r

�
�
� > � and jAc [ As j > � then8

HCSs  HCSs [ Baseline (Ge [V
0

r ], A
0

s , V
0

r , Ac )9

return HCSs10

We incrementally added the pruning techniques to the baseline algo-
rithm, starting from Pruning 1 to Pruning 5. The version incorporating
all prunings from 1 to 5 is then the same as the one presented as
Algorithm 8 page 53.

The experiments were only run over DBLP 2 and DBLP3 since extrac-
tion runtimes using only Pruning 1 were prohibitive on DBLP 1 . The
results are presented Figure 19. We observe that adding step by step
the prunings 1 to 4 improves the runtime in most cases. Considering
Pruning 5, one can notice that when the runtime of prunings 1 + 2 + 3 +
4 is low, adding Pruning 5 can slightly increase the runtime, but when
the runtime of prunings 1 + 2 + 3 + 4 is larger, then adding Pruning 5
can reduce it substantially (see Figure 19a).

In the next section, we will now introduce a second family of patterns
related to the MHCS but being less restrictive on the connectivity of
the different groups of vertices in the patterns.
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(a) DBLP2 with  = 2 and � = 3.
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(b) DBLP2 with  = 3 and � = 3.
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(c) DBLP2 with  = 2 and � = 4.
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(d) DBLP2 with  = 3 and � = 4.
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(e) DBLP3 with  = 2 and � = 3.
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(f) DBLP3 with  = 3 and � = 3.
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(g) DBLP3 with  = 2 and � = 4.
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Figure 19.: Runtime for different pruning techniques on the datasets DBLP 2 and DBLP3 . The
scale is logarithmic for the runtime.



5M I N I N G C O L L E C T I O N S O F K - C L I Q U E
P E R C O L AT E D C O M P O N E N T S

5.1 pattern definition

We now de�ne a family of patterns similar to the MHCSs, but based
on k-clique percolated components and being more tolerant on the
connectivity.
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Figure 20.: A Boolean attributed graph illustrating the CoHoP patterns. Vertices
are identi�ed by capital letters and attributes are identi�ed by a i ,
i 2 f1; : : : ; 5g. Only attributes having value True are displayed.

As mentioned in the state of the art page 24, a k-clique percolated
component (termed also k-clique-community), k-PC for short, intro-
duced in [ 67] is a relaxed version of the cliques. A k-PC is the union
of all k-cliques that can be reached from each other through a series of
adjacent k-cliques. Compared to other fault-tolerant clique de�nitions,
a particularity of the k-PCs is to enforce the fact that each vertex can
be reached from any other vertex through highly connected subset of
vertices [67]. In the context of social networks, it represents a commu-
nity of individuals where each person, even if not directly connected to
another member, can easily �nd a way to communicate with him/her.

Example 22 Let us look for 4-PCs in the attributed graph presented Fig-
ure 20. It contains three 4-cliques (i.e.,k = 4): ABCD , DEFG, andEFGH.
As DEFG andEFGHshare three vertices, these two cliques form a4-PC. The
cliqueABCD does not share enough vertices with the other cliques so the col-
lection of4-PCs isfABCD; DEFGH g. If we look for 3-PCs, all single 3-clique
exceptIJK can be merged. So, the collection of3-PCs isfABCDEFGH; IJKg.

We now de�ne a new family of patterns similar to the MHCSs, but
based on k-PCs. Letk, � , and  be three strictly positive integers, we

65
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de�ne a pattern called a Collection of Homogeneous k-PCs (CoHoP) as
a pattern satisfying three conditions:

1. the vertices are homogeneous, in the sense that they share at least
� attributes;

2. the collection contains at least  k -PCs;

3. all k-PCs sharing the same set of attributes are in the collection.

These patterns are de�ned more precisely as follows.

De�nition 19 (Collection of Homogeneous k-PCs (CoHoP)) Let k, � ,
and  be three strictly positive integers, withk > 2, and G an attributed
graph. A collectionM of sets of vertices is a CoHoP in a graphGif and only
if it satis�es the three following constraints:

– Chomo
� (M ) � jCAtb (M )j > � (the vertices inM are homogeneous);

– Ckpc
;k (M ) �

�
�Ckpc (G[[ C 2 M ])

�
� >  , i.e.,M contains at least k -PCs;

– Cmax (M ) � M = Ckpc (G[[CAtb (M )]] ), i.e., M contains allk-PCs
sharing the attributes inCAtb (M) and only thesek-PCs.

Before comparing the constraints used to de�ne MHCS and CoHoP
patterns, let us give an example of CoHoP pattern.

Example 23 In the attributed graph presented Figure20, consider the Co-
HoP patterns satisfying constraintsChomo

2 (i.e., all vertices share at least
two attributes),Ckpc

2;3 (i.e., at least two3-PCs) andCmax . The collection of
set of verticesfACD; DEFH; IJK gsatis�es these constraints. Indeed, all ver-
tices share attributesa4 and a5 . Moreover, the collection is formed by three
3-PCs soCkpc

2;3 is satis�ed. Finally, there is no other3-PC in the attributed
graph induced by the attributesfa4 ; a5g, thusCmax is also satis�ed.

5.2 finding all cohop patterns

We �rst present a naive algorithm enumerating all subgraphs possibly
containing a pattern. Then we show how we can safely reduce the
subgraphs enumeration, and we describe the corresponding algorithm.
Implementation techniques are discussed in Section 5.2.4.

5.2.1 A naive algorithm

While De�nition 19 is very declarative, we establish a more construc-
tive de�nition of the CoHoP patterns as follows.

Lemma 7 Let k, � , and  be three strictly positive integers, withk > 2,
and G be an attributed graph withA the set of Boolean attributes inG. A
collectionM of sets of vertices is a CoHoP if and only if there existsX � A
such thatM = Ckpc (G[[X]] ), jXj > � , andjM j >  .

Proof 8 First, consider a CoHoPM . By direct application of De�nition19,
there existsX = CAtb (M ) � A such thatM = Ckpc (G[[X]] ), jXj > � , and
jM j >  . Now we prove the converse. ConsiderX a set of attributes satisfying
jXj > � , and M a collection of sets of vertices such thatM = Ckpc (G[[X]] )
and jM j >  . SinceM = Ckpc (G[[X]] ), thenX � CAtb (M ), and eachk-PC
of G[[CAtb (M )]] is included in or equal to ak-PC ofG[[X]] . Since all vertices
in M are also inG[[CAtb (M )]] , then eachk-PC member of the collection
M = Ckpc (G[[X]] ) is included in or equal to ak-PC ofG[[CAtb (M )]] . Thus
M = Ckpc (G[[X]] ) = Ckpc (G[[CAtb (M )]] ) andM is a CoHoP.
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To compute all patterns, a naive algorithm can enumerate the sub-
graphs Ge = G[[X]] for all non empty sets of attributes X, and for each
Ge compute all k-PCs in Ge . Then, if jXj > � and if there is at least
 k -PCs in Ge , this collection of k-PCs is a CoHoP. From Lemma 7,
this algorithm is correct. However, with this enumeration technique,
2jA j - 1 subgraphs will have to be enumerated (there are 2jA j - 1 non
empty subsets of A). The following pruning techniques are used to
avoid the enumeration of some subgraphs.

5.2.2 Enumeration tree pruning techniques

In order to avoid the enumeration of subgraphs that do not contain
CoHoP patterns, we propose four safe pruning techniques. For each of
them, we show its safety and give an example.

pruning 1 This pruning techniques allows to reduce the set of
vertices under consideration. Indeed, only vertices in a k-maximal-
clique can form a pattern, so the other vertices can be discarded.

Lemma 8 Let G be an attributed graph. Only vertices in ak-maximal-
clique of Gcan form a CoHoP inGor in any subgraph ofG.

Proof 9 Direct, since a vertex which is not in ak-maximal-clique cannot
be in anyk-PC.

Example 24 When extracting CoHoPs withk = 3, consider the subgraph
G[[ fa1 ; a2g]] in the attributed graph presented Figure20. It is formed by
the set of verticesfA; B; C; F; Gg. In this subgraph,F and G are not in a
3-maximal clique and consequently cannot be in a3-PC.

pruning 2 From the following property, this pruning allows to stop
the enumeration once a subgraph containing less than  k -maximal-
cliques is found.

Lemma 9 Let G be an attributed graph. IfG does not contains at least
k-maximal-clique s, then neitherG nor any subgraph ofG can contain a
CoHoP.

Proof 10 LetGbe an attributed graph having less than k -maximal-clique s.
Since allk-cliques in ak-maximal-clique are in the samek-PC, then the
number ofk-maximal-clique s cannot be greater than the number ofk-PCs.
So,G cannot contain k -PCs and thus cannot contain a CoHoP. The same
holds for any subgraph ofG, since a subgraph ofG cannot contain morek-
maximal-clique thanG.

Example 25 Consider the subgraphG[[ fa1 ; a3g]] formed by the verticesF, G,
andH in the attributed graph presented Figure20. As this subgraph contains
only onek-maximal-clique, if > 2 the enumeration of the subgraphs of
G[[ fa1 ; a3g]] can stop since theCkpc constraint would not be satis�ed.

pruning 3 This pruning is used to avoid the enumeration of an
attribute shared by all the vertices in the graph under consideration.

Lemma 10 Let Gbe an attributed graph,X the set of attributes shared by all
vertices inG and x =2 X an attribute having value True for all vertices inG,
then we haveG[[X [ fxg]] = G.
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Proof 11 Straightforward, since by de�nition all vertices share the attributes
in X [ fxg.

Example 26 Consider the subgraphG[[ fa1 ; a4g]] in the attributed graph pre-
sented Figure20. It is formed by the set of verticesfA; C; D; F; H g. As at-
tribute a5 has also value True for all these vertices, we haveG[[ fa1 ; a4 ; a5g]] =
G[[ fa1 ; a4g]] .

pruning 4 According to the following lemma, we can avoid the
enumeration of graphs (and their subgraphs) if they are induced by
sets of attributes shared by an insuf�cient number of vertices to contain
a CoHoP.

Lemma 11 Let G be an attributed graph andx an attribute shared by less
than k vertices inG. Then, the graphG[[ fxg]] and all its subgraphs cannot
contain a CoHoP.

Proof 12 Sincejvert (x)j < k , G[[ fxg]] and its subgraphs contains less than
k vertices thus they cannot contain ak-clique and by extension a CoHoP.

Example 27 In the attributed graph presented Figure20, consider the sub-
graphG[[ fa5g]] . Among the vertices forming this subgraph, the attributea3
has value True only for two vertices,F and H. Consequently, for a value of
k > 3, no subgraph ofG[[ fa5g]] induced by the attributea3 can form a CoHoP
pattern.

5.2.3 Algorithm description

A recursive function FindCoHoP , that takes advantage of Pruning 1
to 4 is presented as Algorithm 11. The input of the algorithm for the
�rst call is the whole attributed graph, i.e., Ge = G, and Ac , the set of
candidate attributes that remain under consideration to �nd attributes
shared by subgraph, is set to A.

Line 1 checks that there is at least k -maximal-cliques in Ge . If it
is not the case, from Lemma 9 no subgraph of Ge including Ge itself
can contain a k-PC. Line 2 computes the set Vr of vertices possibly
containing a k-PC as the union of all k-maximal-cliques in Ge according
to Lemma 8. Line 3 checks (1) if there is at least� attributes shared
by all vertices in Vr (

�
� \ v2 V r atb (v)

�
� > � ) and (2) if there is at least 

k-PCs (
�
�Ckpc (Ge [Vr ])

�
� >  ). If so, the collection of k-PCs is a CoHoP,

and is output on line 4. On line 5, attributes from Ac shared by all
vertices in Vr are removed from Ac . Removing these attributes does
not change the collection of enumerated subgraphs, since if we pick
such an attribute x we have Ge [Vr \ vert (x)] that is equal to Ge [Vr ]
itself in the recursive call to FindCoHoP (line 9). On line 6, attributes
shared by less than k vertices in Vr are removed from Ac , according to
Lemma 11. This avoids unnecessary calls toFindCoHoP with subgraphs
having not enough vertices. Lines 7 to 9 perform a standard recursive
enumeration scheme to produce in a depth-�rst way, and element by
element (the x that is picked), all subsets of Ac . While Ac is not empty,
an attribute x is picked (line 8) and function FindCoHoP is called with
the subgraph of Ge induced by the set of vertices in Vr sharing attribute
x, i.e., Ge [Vr \ vert (x)].

Theorem 4 Algorithm 11 returns all CoHoP patterns and only CoHoP pat-
terns.
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Algorithm 11 : FindCoHoP

Input : Ge , Ac
if jCkmax (Ge )j >  then // Pruning 21

Vr = [ C 2 Ckmax ( Ge ) // Pruning 12

if
�
� \ v2 V r atb (v)

�
� > � and

�
�Ckpc (Ge [Vr ])

�
� >  then3

output Ckpc (Ge [Vr ])4

Ac  fx 2 Ac | Vr * vert (x)g // Pruning 35

Ac  fx 2 Ac | jvert (x) \ Vr j > kg // Pruning 46

while Ac 6= ; do7

Pick and remove an attribute x from Ac8

FindCoHoP (Ge [Vr \ vert (x)], Ac )9

Proof 13 Lemma7 and Lemmas8 to 11 (safety of the pruning) ensure the
completeness of Algorithm11. Line 3 ensures its soundness.

Note that a given CoHoP might be output several times by Algo-
rithm 11. Such duplicates are removed in a simple post-processing
step.

5.2.4 Implementation

Since vertices in a pattern must share at least one attribute (� >
1), usually it is not necessary to compute the k-maximal-cliques on
the whole attributed graph. So, the �rst level of the enumeration is
computed using only lines 6 to 9 of Algorithm 11, with Vr the set of all
vertices of the input attributed graph.

The algorithm used to compute the collection of k-PCs in a graph is
described as Algorithm 3 in Section 2.2.3.1of the state of art [29, 67].
It �rst builds a matrix representing the adjacency relation between the
k-cliques, then computes the connected components from this matrix,
which are the k-PCs. The algorithm used to compute the k-maximal-
cliques is CLIQUES [84] described as Algorithm 2 in Section 2.2.1.1
of the state of the art. Both the collection of k-maximal-cliques ( i.e.,
Ckmax (Ge )) and the collection of k-PCs (i.e., Ckpc (Ge [Vr ])) are com-
puted only once for a given attributed graph Ge on respectively lines 1
and 3. Further use of Ckmax (Ge ) and Ckpc (Ge [Vr ]) on lines 2 and 4
use the collections previously computed. Moreover, the computation
of the k-PCs is done on line 3 only if the vertices in Vr share at least�
attributes ( i.e.,

�
� \ v2 V r atb (v)

�
� > � ).

5.3 experiments

In this section we report experiments on the bibliographic datasets
already presented in the Section 4, DBLP1 , DBLP2 , and DBLP3 .

First, we present two examples of CoHoP patterns found in DBLP 3 .
Next, we present and discuss the performances of the algorithm. The
impact of several graph characteristics over runtime is studied using
a synthetic dataset. Finally we present the runtime improvement for
each pruning technique with respect to a baseline algorithm.

All experiments were performed on a PC running GNU/Linux with
a 3 GHz Core 2 Duo CPU and 8 GB of main memory installed. The
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�  k # CoHoP

5 7 3 51

3 7 4 57

4 9 3 79

3 6 4 84

5 6 3 85

Table 4.:The �ve set of parameters with � between 3 and 9,  between 5 and 9,
and k between 3 and 6 that lead to a number of CoHoPs between 50
and 100 in DBLP3 .

algorithm has been implemented using Scala 2.9. This algorithm has
also been embedded in the software presented in Appendix A.

5.3.1 Illustration of the patterns interest

Let us �rst de�ne some vocabulary in the context of a network of
researchers. In [67] the authors consider that a k-PC is a community
in the sense that “it consists of several complete subgraphs that tend
to share many of their nodes”. Consequently, we will use the term
community for a k-PC. We will also say that two communities are
connected if there is an edge between both communities.

To set the parameters� ,  , and k we wanted between 3 and 9 shared
attributes and a value of  between 5 and 9. Concerning parameter
k, in [29, 67, 68] the authors advice to use a value between 3 and 6.
Moreover, we wanted a relatively small collection of CoHoP patterns
but still containing different structures, so we required a collection
containing 50 to 100 CoHoPs. Table4 presents the �ve parameters
settings, within the parameters ranges given above, that satisfy these
constraints in DBLP3 . Among these parameters, we selectedk = 4,
 = 7, and � = 3, i.e., CoHoPs with at least seven 4-PCs where all
authors have published in the same three conferences or journals.

With this parameters setting, 57 CoHoPs were extracted. To illustrate
the kind of patterns that were retrieved, we focus on two patterns
presented in Figures 21aand 21b.

The pattern in Figure 21acontains seven4-PCs, all authors having
published in conferences or journals related to medical imaging. The
authors N. Ayache, H. Delingette, G. Malandain, S. Ourselin, X. Pennec,
and P. M. Thompson form a community connected to all other com-
munities except one and is the core of a star-based topology. Knowing
such a structure is useful to make some decisions. For instance having
researchers of the core community as partners in a project, or choosing
this community as a destination for a post-doc position could be a great
opportunity to bene�t from contacts with all the other groups. We alsoArnetMiner

(http://

arnetminer.org/ )
is an application

providing the
relationship (e.g.,
coauthor, adviser,
advisee) between

researchers.

investigated the role of the authors connecting two communities ( i.e.,
the endpoints of edges connecting two communities) in this pattern
using ArnetMiner. We found that four of these bridging nodes[64] were
advisers of at least half of the authors of their respective communities.
So they are likely to be senior researchers and this is coherent with the
fact that they appear as bridges between communities.
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(a) Seven 4-PCs concerning conferences IPMI, ISBI, MICCAI and journal IEEE Trans. Med.
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������������������������������

�	�
��������������� �������������������������
��

�������������������
��������

��������������������������������

�������������������������
�
�������������������
����

� �����������!���������
��

�"����������������� ��������������

�#��������� �����������


�$�����%�����������
��������

�����������������"����������

�&�����%����%��������

�����
�'���������(��

�)�������������*����

�"�������������������"�������+���,��

� ���������
�
��������������������

�����
�
��������������

�����������������-����������

������������������������������

���������������������%��������

�������%�������������%����������

�������������������%��������

�#�������������-�����
������

�#�������(�����.���
���'��������

�#���������&�������������/������

�0�����������������������������

�&���������&�������


�����������������������!������������

�"����������������������������

�#�����1��� ���������
���.��������

���������+����������������

�������(���������������������2

�#�����1���!���
�3��

�"������������������������������

�#��������� ���������
��� ������������

�0���
������� �-��� �����%

�$���������
���������
���/���%����

����������������� �-���������,�������+

�)���
���������4����������

�#���/��������� ��������������������������

� ���������+�������5�����
���%��

�#���/��������������������������

�"��������������� ����������

� �������������������������$����������

(b) Nine 4-PCs concerning conferences INTERSPEECH, ICSLP, and EUROSPEECH.

Figure 21.: Two patterns extracted from DBLP 3 with k = 4,  = 7, and � = 3. Each colour
corresponds to a k-PC. A vertex in several colours is contained in multiple k-PCs.
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DBLP1 DBLP2 DBLP3

Mean 1,298 Mb 507 Mb 243 Mb

Max 2,264 Mb 884 Mb 489 Mb

Standard deviation 235 Mb 140 Mb 61 Mb

Table 5.: Memory consumption over all experiments reported in Figure 22.

In the second CoHoP, presented Figure 21b, all authors have pub-
lished at least three times in three conferences related to speech commu-
nication / spoken language (EUROSPEECH, INTERSPEECH, ICSLP).
It contains nine communities, seven of them not being connected to
any other. It is interesting to notice that EUROSPEECH and ICSLP
were two conferences organized over a decade from 1990 to 1999 and
merged in 2000 giving rise to the INTERSPEECH conference (still active
in 2011). This indicates that the part of the research activity denoted
by the pattern is very homogeneous in terms of research domain. In
addition, since all researchers of the pattern have published at least
three times in EUROSPEECH, ICSLP and INTERSPEECH, this means
that the pattern depicts an activity over two decades, and that these
researchers are likely to have been active in the domain over a rather
long period. Moreover, from the personal pages of the authors, we
found out that in most cases a community is formed by people work-
ing in the same research institute. So, here most communities are
formed by researchers working in the �eld of speech processing and
not strongly publishing with researchers from other institutes. Such
structure with disconnected groups of people sharing similar interest
might be interesting for several tasks. For instance, it can give hints to
funding agencies to set up long term development strategies of collabo-
ration networks. It can also be helpful, in a normal day-to-day activity,
like �nding reviewers for a article, by suggesting experts in the same
domain as the authors, but having no closed collaborations (no strong
coauthor relationship) with these authors, and also eventually having
no closed collaborations with the other experts (picking them in other
disconnected groups).

5.3.2 Performance study

Concerning time performances, Figure 22 show that the extraction
can be made in less than 20 minutes whenk > 4 on the three datasets.
Indeed, the extraction requires less than a few tens of seconds on DBLP2
and DBLP3 for all recommended k values (between 3 and 6). On the
DBLP1 dataset (using the complete DBLP database) the extractions can
take several thousands of seconds, but remain feasible. We can also
notice that, as expected, for weaker constraints (lower values of � ,  ,
and k) the runtime increases.

Regarding the number of output patterns, Figure 23 shows that it
shrinks fast when parameter values increase (i.e., stronger constraints).
In particular, when k increases by two, the size of the collection of
patterns decreases by more than one order of magnitude in all settings.

For the main memory usage, Table 5 reports the maximal memory
consumption during each extraction reported in this section.
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Figure 22.: Runtime for different sets of parameters on DBLP1 , DBLP2 , and DBLP3 .
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Figure 23.: Number of CoHoP for different sets of parameters on DBLP 1 , DBLP2 , and DBLP3 .
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S#vert S#attr SavgDeg SavgAtt S#CoHoP

#vert 5,000-25,000 15,000 15,000 15,000 15,000

#attr 500 200-800 500 500 500

avgDeg 20 20 10-30 20 20

avgAtt 10 10 10 5-25 10

#CoHoP 300 300 300 300 100-500

Table 6.: Parameters used to generate the synthetic datasets.

5.3.3 Evaluation on synthetic datasets

In this section we describe an experimental evaluation of the algo-
rithm using synthetic datasets as made for the MHCSs in Section 4.3.4.

The synthetic datasets generator and the generation parameters are
the same as the ones used in the experiments for MHCS presented
in Section 4.3.4except for the injected patterns. Here the number of
patterns is #CoHoP and three parameters control their structure: s, l ,
and g.

All the injected CoHoP are structured such that they are formed by
g l -PCs. A l -PC is built by inserting g overlapping l -cliques in the
graph. Each l -clique share at most l - 1 vertices with the other l -cliques.
More precisely, the l -cliques are built from a previous l -clique (except
the �rst one which is picked at random) by removing a vertex and
adding a new vertex not present in any other l -clique forming the
injected CoHoP. The vertices forming the CoHoPs were then randomly
associated tos attributes. Table 6 summarizes the parameters settings
used for all synthetic datasets. These settings are similar to the ones
used for the MHCSs. From each random dataset, we obtained four
derived datasets by injecting four sets of random CoHoPs obtained
with the four following settings: (1) s = 2, l = 6, and g = 2, (2) s = 2,
l = 6, and g = 4, (3) s = 4, l = 6, and g = 2, and (4) s = 4, l = 6, and
g = 4. As for the experiments on the MHCSs, we used s, l , and g as
values for the extraction parameters and set � = s, k = l , and  = g.
The corresponding runtimes are given Figure 24 where each point is
the average runtime of extractions over ten different random datasets.

These results show that the runtime scales well with respect to the
parameters of the attributed graph generation: number of vertices,
attributes and CoHoPs, average vertex degree and average number of
attributes with value True per vertex.

5.3.4 Comparison with baseline algorithm

Here we study the gain of each pruning techniques regarding the
runtime. We proposed four versions of the algorithm based on a
baseline algorithm corresponding to the naive version proposed in
Section 5.2.1. As for the MHCSs, we incrementally added the pruning
techniques to the baseline algorithm, starting from Pruning 1 to Pruning
4. The algorithm version using prunings 1+2+3+4 is then the same as
the one presented as Algorithm 11.

The experiments were only run over DBLP 2 and DBLP3 since extrac-
tion runtimes using only Pruning 1 were prohibitive on DBLP 1 . For the
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Figure 24.: Runtimes for the extraction of CoHoP patterns in the collections of datasets S#vert ,
SavgDeg , S#attr , SavgAtt and S#CoHoP .
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same reason, the runtimes without any pruning were not collected. The
results are presented in Figure 25. We observe that using incrementally
the Pruning 1 to 4 improves signi�cantly the runtime in most cases.
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(a) DBLP2 with  = 2 and k = 3.
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(b) DBLP2 with  = 3 and k = 3.
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(c) DBLP2 with  = 2 and k = 4.
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(d) DBLP2 with  = 3 and k = 4.
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(e) DBLP3 with  = 2 and k = 3.
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(f) DBLP3 with  = 3 and k = 3.
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(g) DBLP3 with  = 2 and k = 4.
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Figure 25.: Runtime for the extraction of CoHoP patterns using different pruning techniques on
DBLP2 and DBLP3 . The scale is logarithmic for the runtime.



C O N C L U S I O N

In this section we presented the main contributions of this thesis.
In the Boolean attributed graph setting, we de�ned two classes of
patterns in order to �nd sets of homogeneous groups, namely, the
Maximal Homogeneous Cliques Sets (MHCS) and the Collections of
Homogeneous k-clique Percolated components (CoHoP).

Both the MHCSs and the CoHoPs are based on constraints specify-
ing a minimum number of shared attributes (the homogeneity) and a
minimum number of large groups forming a pattern. However, their
de�nitions differ in several points. These classes of patterns require
a different topology for the groups, a MHCS is formed by complete
subgraphs while a CoHoP is made of k-clique percolated components.
Moreover, a CoHoP is formed only by groups containing at least k ver-
tices, whereas a MHCS can collect small additional contextual groups
(i.e., groups containing less than k vertices). The de�nition of maximal-
ity used for the MHCSs also requires that a MHCS cannot be include
in another MHCS.

Notice that the cliques of a MHCS M obtained with parameters � , 
and � cannot always be used to build a CoHoP satisfying parameters
� ,  and k = � . This is because two cliques of M containing more than
� vertices can be merged (if they shared at leastk vertices) in a single
k-PC. So, it is possible that the subgraph induced by the vertices in M
contains less than  k -PCs, and cannot form a CoHoP. Thus, there is no
direct relationship between the number of MHCSs and the number of
CoHoPs. Depending on the data and for a parameter setting � ,  and
k = � , we can obtain more MHCSs or more CoHoPs.

In order to compute the collections of patterns, we proposed two
sound and complete algorithms. These algorithms reduce the search
space by taking advantage of several pruning techniques, for which we
prove the safety.

The performance of these algorithms is studied using large real
and synthetic datasets. The results show that both approaches scale
well with respect to different attributed graph characteristics. We also
presented several examples of usage for both classes of patterns for the
analysis of a network of scienti�c collaborations.

Beyond the design of the algorithms and their implementation as
research prototypes, we also developed a fully �edge software tool in
order to ease the visualisation and browsing of the MHCSs and CoHoPs
(software presented in Appendix B).
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Part IV

A P P L I C AT I O N TO M O L E C U L A R B I O L O G Y





I N T R O D U C T I O N

The accumulation of large protein-protein interaction (PPI) networks
and the need for their analysis has lead to the emergence of new re-
search domains in systems biology. Recently, the simultaneous use
of both PPI networks and gene related properties such as biological
functions [ 69], species [49] or expression in biological situations [ 86] has
provided biological contexts from which meaningful structures can be
extracted. When using both PPI networks and the biological functions
associated to genes, an important number of methods have been pro-
posed to extract functional modules(a short overview is proposed in [ 86]
and [94]). They are usually de�ned as a group of cellular component
(e.g., proteins) and their interactions that can be associated to a speci�c
biological function [ 39].

Our application, made in collaboration with an expert in biology
(Dr. Olivier Gandrillon 1), draws its motivation from the result in [ 89]
stating that it is not possible to infer the PPI network using only gene co-
expression data. Since genes co-expressed in the same set of biological
situations do not necessarily produce proteins in interaction, one can
deduce that there might be several groups of interacting proteins,
or protein moduleswhose corresponding genes are overexpressed in
the same biological situations. Such groups might have strong inner
interaction, and few or no interactions with proteins in other protein
modules. Then, when analysing a protein module, it is possible to get a
larger picture by retrieving the other modules of proteins produced by
genes involved in the same set of biological situations. Studying such
structures might also be useful when studying biological questions
regarding modular cell biology as proposed in [ 39]. Such questions
might be, for instance: Why protein modules overexpressed in similar
situations are disconnected? How do connections between modules
change during evolution?

Given this context, the MHCS and CoHoP patterns �t well for the
analysis of such data. The proteins are encoded as vertices, and their
interactions as edges. Boolean attributes, representing the biological
situations, are associated to each protein. These attributes encode the
fact that the protein is considered to be overexpressed or not in a given
biological situation. In such setting, a MHCS or a CoHoP is a collection
of protein modules where all proteins correspond to genes that are
overexpressed in a same set of biological situations.

In the following sections, we report experimental results in two
biological datasets using both MHCS and CoHoP patterns. We will
use the term pattern to refer to both MHCSs and CoHoPs. After a
description of the datasets we propose a measure based on a p-value
to assess the biological interestingness of the extracted patterns. Then,
we focus on four patterns, two MHCSs and two CoHoPs, and we
provide a biological interpretation of these patterns. Finally, we present
quantitative results regarding the runtime and the number of output
patterns.

1. Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534,
Villeurbanne.
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6.1 the dataset

We built two datasets, BioData 150 and BioData400 , by processing and
merging information from two databases: STRING 1 [42] and SQUAT 2

[48]. STRING integrates data on protein-protein interactions from differ-
ent sources (e.g., genomic data, co-expressions, other wet experiments,
literature). Evidences of interaction are weighted depending on the
source, and a con�dence score between 150 and 1000 is given. The
dataset BioData150 have been built using all reported interactions ( i.e.,
with a con�dence threshold of 150). The second dataset, BioData400 ,
uses all interaction with a con�dence higher or equal to 400, that is the
default STRING selection threshold. For the sake of model simplicity,
we kept only proteins for which correspond a unique gene encoding
the protein (this is the case for most of the proteins). So, the graph
can also be interpreted as a gene-gene interaction graph, and in the
following we will use both the terms genes and proteins to refer to the
vertices.

SQUAT is a public database of Boolean gene expression data re-
sulting from SAGE experiments [ 87]. A complete description of the
discretization process is available in [ 6].

Both databases follow the HUGO 3 nomenclature (see Figure 26) to
encode gene names, so this nomenclature was used to link them. In
our experiments, only Human species genes and their corresponding
proteins were used. For these genes we have expression data in SQUAT
for 486 biological situations. Several measures describing the datasets
are presented in Table 7. A more complete description of the data is
available in Appendix A.

The qualitative experiments were performed using the BioData 400
since we want to consider only the interactions between the proteins
for which we have a relatively high con�dence. The BioData 150 dataset
is used for the quantitative experiments in order to compare the perfor-
mances with BioData400 which have a lower average degree.

6.2 evaluation of the pattern collection

6.2.1 The L2L Measure

An important dif�culty of experiments on real datasets is the qualita-
tive evaluation of the whole collection that is output, without having to
ask to an expert to interpret/to assess the patterns one by one. Different
statistical approaches exist to measure pattern signi�cance, however
in most cases they do not take in account domain information. In the
case of the patterns extracted from the bibliographic dataset, we are
not aware of typical tool to assess such collections, but fortunately, for

1. http://string-db.org/ , snapshot of November 2009.
2. http://bsmc.insa-lyon.fr/squat/ , snapshot of November 2009
3. http://www.genenames.org/
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86 application to molecular biology

(a) Screen copy of the SQUAT access web site. It represents three biological situations,
termed libraries, where the gene CRX is overexpressed.

(b) A protein protein interaction network containing gene CRX from the STRING access
web site.

Figure 26.: Screen copy from SQUAT and STRING databases, showing information about gene
CRX (HUGO nomenclature).
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BioData150 BioData400

# Vertices 15,571 15,571

# Attributes 486 486

# Edges 458,713 155,784

Avg. degree 58.92 20.01

Maximum degree 1500 496

Avg. attributes/vertex 11.46 11.46

Maximum attributes 92 92

Table 7.: Several characteristics of the datasets BioData150 and BioData400 .

sets of genes, as the ones contained in the MHCSs and CoHoPs found
in the biological dataset, some methods have already been designed.

So, it is possible to performed such systematic evaluation on complete
collections of patterns for various parameter settings. To this aim, we
used the p-value measure as computed by the L2L method [65], a
well known tool designed to facilitate the interpretation of microarray
experiments results. The measure is built using prede�ned list of genes,
where each list is a list of genes known to be involved in a similar
biological process (e.g., transcription, biological regulation, vision).

The L2L p-value for a set of genes G and an L2L list of genes L
is the probability to obtain the overlap of size at least jG \ Lj if the
elements in L were chosen uniformly at random (the null hypothesis).
It is computed with the following cumulative binomial distribution, as
recommended in [ 65]:

p-value = 1 -
q - 1X

x = 0

�
n
x

�
px (1 - p)n - x

The number of trials, n, is the number of genes in L; the number of
success,q, is the number of genes of L contained in G; and for one trial
the probability of success, p, is the number of genes in G divided by
the number of different genes in the union of the lists (13,746 genes 4).

For a given pattern, we took as set G the set of all genes in this
pattern. Then, among all L2L lists, we retained the list, noted LG , that
led to the lowest p-value with respect to G. So,LG was the list such
that the observed intersection G \ LG was the less likely to occur by
chance. The pattern was then simply associated to this L2L list LG and
to the corresponding p-value. We set a base signi�cance level of 0.05.
Multiple hypothesis testing (one test against each L2L list) increased the
odds to have a low p-value by chance. So, we adjusted the signi�cance
level using the common Bonferroni correction (simply dividing the base
signi�cance level by the number of tests). Since we used the 2; 075lists
of L2L being related to biological functions, this correction resulted in
a signi�cance threshold of 0.05=2075� 2.4 � 10- 5 . Then, for a pattern
associated to a list LG , if the corresponding p-value was lesser than
the adjusted signi�cance threshold, we considered that the pattern was
signi�cantly related to the biological function associated to LG in L2L.

4. We used a snapshot of the L2L lists based on the biological process reported in
Gene Ontology. It contains 2,075 lists corresponding to a total of 13,746 different genes.
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6.2.2 Global evaluation of complete collections of patterns

The global evaluation of the collection of patterns has been performed
using BioData400 in order to consider only the protein interactions for
which we have a high con�dence. Figure 27 and 28 present cumulative
distributions of the number of respectively MHCS and CoHoP patterns
extracted for different values of � ,  , � , and k, according to their
associated p-value. For most parameter settings (16 out of 20), at
least 70 % of the patterns correspond to a p-value lesser than the
adjusted signi�cance threshold. The four cases that do not lead to such
promising collections of patterns are among the weakest constraint
settings. Indeed, this is observed for the MHCSs (see Figure 27), when
� = 2 and for the CoHoPs (see Figure 28), when k = 2 or � = 2 or  = 2.
We can notice that when the values of the parameters increase (i.e.,
the selection constraints are stronger), this also increases most of the
times the percentage of patterns with a p-value below the signi�cance
threshold ( i.e., patterns signi�cantly related to a biological function by
the L2L measure). This is an interesting evidence, advocating that these
constraints are appropriate and meaningful in this application.

6.2.3 Interpretation

6.2.3.1 Analysis of two MHCSs

The previous experiments, run to assess whole sets of extracted
patterns, helped us then to set the parameters to �nd a meaningful
and easy to browse collection (i.e., rather small and containing patterns
having low p-values). As shown Figure 27, three collections were such
that 90% of the MHCSs have a p-value lesser than or equal to 10- 10 .
So, we choose to focus on one of these collections, and selected the one
obtained for the thresholds � = 3, � = 4 and  = 3. It contained 10
MHCSs, and here we present two of them.

The �rst MHCS is depicted Figure 29. For the sake of readability,
Figure 29a shows the core cliques only (cliques having at least � ver-
tices), and all interactions (all cliques excluding isolated vertex) are
given Figure 29b. This MHCS contains 17 cliques of size at least 4, and
all genes are overexpressed in 3 biological situations that correspond to
normal activities of retinal cells. This MHCS has the lowest L2L p-value
(1.3 � 10- 25 ) of the whole collection, and this p-value corresponds to
the L2L list entitled sensory perception of light stimulus5. This advocate
for the biological coherence of the pattern since the common biological
situations are retinal cell activities. With respect to the structure of the
interaction graph, the MHCS reveals in Figure 29a that the core cliques
are connected together, in particular through genes CRX and RHO, as
con�rmed in the Table 29cwhere it can be veri�ed that CRX and RHO
belong to all core cliques, except one. More global information about
the structure are given Figure 29b that contains all interactions in the
pattern and shows that most of these interactions occur within the core
cliques (63 edges out of 87).

Additionally, the Table 29c also gives a �ner grain L2L scoring of
the core part of the pattern. For each core cliques (column 3), its own
L2L measure has been computed and the table reports the retained

5. Sensory perception of light stimulus is de�ned as the series of events required for
an organism to receive a sensory light stimulus, convert it to a molecular signal, and
recognize and characterize the signal.
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Figure 27.: Cumulative distributions of p-values (on dataset BioData 400 with � ,  and � varying)
in number of MHCSs extracted (left column) and in percentage of the MHCSs
extracted (right column). P-value scale is logarithmic. The vertical dotted line
corresponds to the signi�cance level using Bonferroni correction ( i.e., � 2.4 � 10- 5 ).
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Figure 28.: Cumulative distributions of p-values (on dataset BioData 400 with � ,  and � varying)
, in number of CoHoPs extracted (left column) and in percentage of the CoHoPs
extracted (right column). P-value scale is logarithmic. The vertical dotted line
corresponds to the signi�cance level using Bonferroni correction ( i.e., � 2.4 � 10- 5 ).
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p-value (column 1) and the name of the corresponding L2L list (column
2). In this table, the name perception of lightis simply a short name
used for sensory perception of light stimulus. As mentioned above, this
biological process was associated to the whole pattern, but the table
shows that it is also associated to most of the core cliques of the pattern
in isolation. For the other core cliques, two are associated to the more
speci�c process of phototransductionand the last one is associated to the
more general process ofsensory perception.

A different kind of structures is illustrated by a second MHCS pre-
sented Figure 30. Here, the core cliques of the patterns, depicted
Figure 30a, show that the pattern is structured around two separated
components (no direct interaction between the genes of these two
groups), and the context, given Figure 30b, points out that most of the
interactions are not in the core cliques (35 edges out of 98).

Additionally, from a structural point of view, Figure 30areveals that
gene MYD88 seems to act as a local hub for the core cliques. This is
con�rmed by Figure 30c), where MYD88 is the only genes appearing in
all core cliques (except in the isolated one).

For this MHCS all biological situations in which the genes are overex-
pressed correspond to activities of cells from the immune system, more
precisely, they are all overexpressed simultaneously in four situations
corresponding to normal activities of white blood cells. Here again,
this is very coherent with the L2L list associated to the whole MHCS
(p-value of 3.29� 10- 15 ) that is entitled immune response. The L2L lists
which correspond to the different core cliques that compose this MHCS
are given Fig. 30c. While one of the core clique is tagged (as the whole
MHCS) as being involved in the general immune response process,
three other are associated to more speci�c immune responses: response
to virus and in�ammatory response. Finally two other core cliques form
a set of genes involve in a regulation process and the last one (the one
not directly connected to the other core cliques) is associated to a signal
transduction process.

6.2.3.2 Analysis of two CoHoPs

Similarly to what have been done for the MHCSs, we used the
results presented Figure 28 to set the parameters, but we also wanted
the CoHoPs to share as much biological situations as possible. The
parameter setting � = 4,  = 3 and k = 3 provides a collection of 25
CoHoPs with at least 70% of them having a p-value that satis�es to the
signi�cance threshold retained (Figure 28, top right graph).

We describe two CoHoPs from this collection.
The �rst one is presented Figure 31. It is associated to the L2L list

“mitochondrial electron transport, NADH to ubiquinone” with a p-value
of 9.86� 10- 10 , and describes a group of genes that are simultaneously
overexpressed in four biological situations of a speci�c breast carcinoma
cell line (ZR75). Three groups of genes appear in the pattern as threek-
PCs. This exhibits three protein modules, all corresponding to different
very speci�c functions, as shown by the three associated L2L lists given
Table 31b (and con�rmed by the expert), but all being active in the
same four biological situations.

The CoHoPs can also contain groups with similar functions, as for
instance the second CoHoP presented Figure32. This CoHoP is asso-
ciated to the L2L list “intracellular signalling cascade” with a p-value
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(a) Only � -maximal cliques. A colour corresponds to each � -maximal clique,
vertices in multiple colours are part of several 4-maximal cliques.
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(b) All cliques except single node cliques. A colour corresponds to each � -maximal
cliques. Vertices in grey are not in a 4-maximal cliques.

p-value L2L list Protein module

9.89� 10- 13 perception of light CNGB1,CRX,PDE6A,RHO,RLBP1,TULP1

8.09� 10- 11 perception of light CRX,PDE6A,PDE6G,RHO ROM1

8.09� 10- 11 perception of light CRX,RBP3,RCVRN,RHO,SAG

8.09� 10- 11 perception of light CNGB1,CRX,PRPH2,RHO,TULP1

8.09� 10- 11 perception of light ABCA4,CNGB1,CRX,PDE6A,TULP1

8.09� 10- 11 perception of light CRX,PRPH2,RHO,ROM1,TULP1

8.09� 10- 11 perception of light CRX,PDE6A,RHO,ROM1,TULP1

8.09� 10- 11 perception of light CNGB1,CRX,PDE6A,PDE6G,RHO

2.91� 10- 09 phototransduction CRX,RCVRN,RHO,TULP1

5.69� 10- 09 phototransduction CRX,GNGT1,RCVRN,RHO,SAG

6.71� 10- 09 perception of light RBP3,RDH8,RHO,RLBP1

6.71� 10- 09 perception of light CNGB1,CRX,GUCA1A,RHO

6.71� 10- 09 perception of light CRX,PRPH2,RHO,SAG

6.71� 10- 09 perception of light CRX,RBP3,RHO,RLBP1

1.63� 10- 08 perception of light CRX,GNGT1,GUCA1A,RHO,SAG

1.63� 10- 08 perception of light CRX,GNB1,PDE6A,PDE6G,RHO

7.36� 10- 05 sensory perception CRX,GNB1,GNGT1,RHO

(c) p-value and L2L list for the cliques having at least 4 vertices

Figure 29.: MHCS extracted from dataset BioData400 with � = 3, � = 4 and  = 3. All genes are
overexpressed in 3 biological situations corresponding to normal activities of retinal
cells.
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(a) Only 4-maximal cliques. A colour corresponds to each � -maximal clique, vertices in multiple colours are
part of several 4-maximal cliques.
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(b) All cliques except single node cliques. A colour corresponds to each � -maximal cliques. Vertices in grey
are not in a 4-maximal cliques.

p-value L2L list Protein module

1.22� 10- 07 response to virus IRF8,MYD88,STAT1,TLR8

1.22� 10- 07 response to virus MYD88,STAT1,TLR8,UNC93B1

4.39� 10- 07 signal transduction ARHGAP4,ARHGDIB,GMIP,RAC2,RHOT2

4.15� 10- 06 in�ammatory response CCR2,CD4,MYD88,S100A9

8.83� 10- 06 regulation process CCR2,CD4,MYD88,TNFAIP8L2

8.83� 10- 06 regulation process CCR2,CD4,MYD88,TNFAIP2

4.11� 10- 05 immune response IRF8,MYD88,STAT1,TLR5

(c) L2L list (middle column) having the best p-value (left column) for each protein module (right column)
forming the CoHoP.

Figure 30.: MHCS extracted from dataset BioData400 with � = 3, � = 4 and  = 3. All genes are
overexpressed in 4 biological situations corresponding to normal activities of white
blood cells. In the table, signal transductionand regulation processare short names for
respectively small GTPase mediated signal transductionand positive regulation of cytokine
biosynthetic process.
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(a) Protein protein interaction network for 15 proteins forming the three
protein modules in the CoHoP. A colour corresponds to each k -PC.

p-value L2L list Protein module

4.15� 10- 12 mitochondrial electron transport, NDUFA3,NDUFA9,NDUFAB1

NADH to ubiquinone NDUFB3,NDUFS8

1.75� 10- 05 ubiquitin-dependent PSMA6,PSMA7,RPS19,UBE2C

protein catabolic process

6.45� 10- 03 negative regulation of transcription ERCC4,FUS,NFX1,POLR2H,POLR2J

TH1L

(b) L2L list (middle column) having the best p-value (left column) for each protein module (right column)
forming the CoHoP.

Figure 31.: A CoHoP extracted from dataset BioData400 with � = 4, k = 3 and  = 3. The genes
are overexpressed in four biological situations related to breast carcinoma cell line,
ZR75.

of 3.51� 10- 7 . It contains three k-PCs associated to the L2L lists given
Table 32b, all corresponding to functions involved in signalling path-
ways, according to the expert knowledge. We can also notice that if we
had considered MHCS instead of CoHoP, the groups formed by four
vertices in Figure 31 (UBE2C, PSMA6, RPS19, PSMA7) and Figure32
(ADRBK1, PPP1R9B, RGS2, PLCB2) would have been split since they
are formed by 3-cliques.

6.3 performance evaluation

Here we present a quantitative evaluation of the MHCSs and CoHoPs
patterns on the biological datasets. The experiments were performed
on a PC running GNU/Linux with a 3 GHz Core 2 Duo CPU and 8 GB
of main memory installed. Regarding runtime, Figure 33 shows that all
extractions can be made in less than 6 seconds and that the runtime is
smaller when extracting CoHoP patterns compared to MHCS, except
when � = 1.
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(a) Protein protein interaction network for 15 proteins forming the three protein modules in the
CoHoP. A colour corresponds to each k -PC.

p-value L2L list Protein module

1.02� 10- 07 JAK-STAT cascade CCR2,CD4,IL27RA,IRF8,JAK2,MYD88,PSME2

S100A9,SECTM1,STAT1,STAT5B,TLR8

TNFAIP8L2,TNFRSF1B,UNC93B1

1.55� 10- 05 Rho protein signal ARHGAP4,ARHGDIB,GMIP,RAC2

transduction RHOG,SRGAP2

5.91� 10- 05 regulation of G-protein ADRBK1,PLCB2,PPP1R9B,RGS2

(b) L2L list (middle column) having the best p-value (left column) for each protein module (right column)
forming the CoHoP.

Figure 32.: A CoHoP extracted from dataset BioData400 with � = 4, k = 3 and  = 3. The
genes are overexpressed four biological situations related to antigen-puri�ed CD14+
monocytes.
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(a) MHCSs on BioData150 with � = 3.
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(b) CoHoPs on BioData150 with � = 3.
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(c) MHCSs on BioData150 with  = 3.
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(d) CoHoPs on BioData150 with  = 3.
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(e) MHCSs on BioData400 with � = 3.
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(f) CoHoPs on BioData400 with � = 3.
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(g) MHCSs on BioData400 with  = 3.
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(h) CoHoPs on BioData400 with  = 3.

Figure 33.: Extraction runtime for MHCSs and CoHoPs using different sets of parameters on
BioData150 and BioData400 .
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(a) # MHCSs on BioData150 with � = 3.
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(b) # CoHoPs on BioData150 with � = 3.
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(c) # MHCSs on BioData150 with  = 3.
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(d) # CoHoPs on BioData150 with  = 3.
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(e) # MHCSs on BioData400 with � = 3.
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(f) # CoHoPs on BioData400 with � = 3.
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(g) # MHCSs on BioData400 with  = 3.
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(h) # CoHoPs on BioData400 with  = 3.

Figure 34.: Number of extracted MHCSs and CoHoPs using different sets of parameters on
BioData150 and BioData400 . The line is not drawn if no pattern are output for a set
of parameters.





C O N C L U S I O N

In this part, we applied our results in the context of a protein-protein
interaction networks with biological situations associated to the proteins.
Using a p-value measure, we experimentally shown that for reasonable
ranges of parameters, most of the extracted groups are coherent with
the current knowledge in biology.

Moreover, in collaboration with a domain expert, we were able to
interpret several patterns. We also provided a performance evaluation
showing that the MHCSs and CoHoPs can be extracted in a few seconds
for real settings.

Due to the data collection process, which might lead to missing
values, the CoHoP patterns seems to be well adapted for the discovery
of set of groups in these data (a dense subgraph with a few missing
edges is less likely to be counted as several groups). Moreover, the
presented runtimes indicate that extracting CoHoPs was faster than
extracting MHCSs in most experiments on these data. However, the
MHCSs remain interesting when one wants to �nd sets of groups
formed by objects being all pairwise connected.
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Part V

C O N C L U S I O N





C O N C L U S I O N

In this thesis, we proposed to identify collections of homogeneous
groups in attributed graphs. This work complete the existing ap-
proaches that consider patterns formed by either (1) a single dense
homogeneous group or (2) a set of homogeneous but not necessarily
dense groups.

summary of our contributions

Our main contribution is the de�nition of two classes of patterns
used to compute homogeneous collections of dense subgraphs.

We �rst proposed the Maximal Homogeneous Clique Sets (MHCS),
which are formed by collections of cliques where the vertices are homo-
geneous with respect to the values of the attributes. The second class
of patterns, named Collection of Homogeneous k-clique Percolated
components (CoHoP) extends the MHCS in order to allow missing
values in the pattern. They are based on a relaxed notion of density
which allows the subgraphs not to be fully pairwise connected. Two
constraint-based algorithms were proposed in order to compute the
complete collections of patterns. These algorithms take advantage of
several pruning techniques, for which we provided proof of correctness,
to reduce the search space. The practical interest of the MHCSs and
the CoHoPs are presented in two contexts, a scienti�c collaboration
network and a protein protein interaction network. The scalability and
the performances of our algorithms were also studied by performing
experiments on synthetic datasets and large real datasets.

We also developed a software tool in order to extract, visualise
and browse collections of patterns. This software has been used by
another group of researchers for the analysis of large texts. Their
results have been published in [72]. They propose to extract CoHoP
patterns in an attributed graph where the vertices represent sentences
and the attributes associated to a vertex are the lexical units in the
corresponding sentence. They show that the CoHoPs can be used to
study the structures called sentence networksin linguistic.

future directions of work

Browsing general and speci�c patterns

A possible improvement for the analysis of CoHoP patterns is to give
the ability to browse the collection of more general or more speci�c
patterns. More precisely, given X a CoHoP pattern associated to a
set of attributes, another pattern is considered more general if it is
associated to a subset of these attributes and more speci�c if it is
associated to a superset of these attributes. The more general patterns
give the context of the pattern X with respect to some attributes, while a
more speci�c ones highlights a subpart of X (a subgraph sharing more
attributes). Indeed, very preliminary browsing facilities have already
been implemented in our visualisation software. An example of results
is presented Figure 35.
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