. Limites, ensemble de ces mesures, réalisées dans un temps relativement cours (moins d'un mois), ontétéontété assez difficilesàdifficilesà réaliser pour plusieurs raisons

L. Difficulté, oxyde de siliciumàsiliciumà la surface de l'´ echantillon, inéluctable (malgré un décapage préalable de l'oxyde de silicium au HF) car la pose de contact se réaliseréalisè a l'air libre. La présence d'oxyde en surface de l'´ echantillon augmente la résistance de contact, et nous obligè a appuyer plus fortement sur la pointe, quittè a la déformer (c'estàestà dire lui faire perdre son aspect pointu) voirè a la perdre. Ceci impose donc de réchauffer le dispositif pour reformer la pointe

. Enfin, le dispositif expérimental s'est montré assez sensible aux perturbations extérieures, telles que des portes claquées, ou deséclairsdeséclairs

. Mesures-complémentaires-comme-le-rappellent-arham, contact de type neede-anvil stable sur une large gamme de températures Afin d'´ etudier les caractéristiques intrigantes observées en PCS, un dispositif de jonction planaire (soft contact), plus stable pour les contacts a ´ eté réalisé par F.Lefloch, sous la forme debarrì ere de 5nm d'´ epaisseur d'Al 2 O 3 puis de dépôt d'or sur unéchantillonunéchantillon de la série de Les premiers résultats, obtenus par J.Ka?marcik et P.Szabò a Ko?ice, sont montrés en figure 106 et 107 En figure 106, l'inverse de la conductance différentielle est représenté en fonction de la tension appliquée, ` a différentes températures. L'ensemble des courbes en température semble suivre les courbes de résistivité en fonction de la température. En effet, si on regarde les valeurs de dV/dIàdIà tension de biais nulle, la valeur de dV/dI ne varie pas de 0 ` a 30K, diminue jusqu'` a 100K puis augmentè a nouveau jusqu'` a 160K. Autre caractéristique notable, pas nécessairement attribuablè a la dépendance de la résistivité en température : la courbure change en fonction de la température, De plate dans la région du plateau, les courbes deviennent courbées vers le haut dans la région de l'anomalie puis retrouvent une forme parabolique vers le bas audeì a de 100K. Enfin 50K, est tracée. L'anomalie est supprimée sous champ, 2009.

L. Marvin and . Cohen, The Existence of a Superconducting State in Semiconductors, Rev. Mod. Phys, vol.36, issue.1, pp.240-243, 1964.

L. Marvin and . Cohen, Superconductivity in Many-Valley Semiconductors and in Semimetals, Phys. Rev, vol.134, issue.2A, pp.511-521, 1964.

W. Buckel and J. Wittig, Supraleitung von germanium und silizium unter hohem druck, Physics Letters, vol.17, issue.3, pp.187-188, 1965.
DOI : 10.1016/0031-9163(65)90473-7

M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, D. W. Murphy, R. C. Haddon et al., Superconductivity at 28 K in Rb x C 60, Phys. Rev. Lett, issue.21, pp.662830-2832, 1991.

N. Breda, R. A. Broglia, G. Colo, G. Onida, D. Provasi et al., A possible room temperature organic superconductor, Physical Review B, vol.62, issue.1, pp.130-133, 2000.
DOI : 10.1103/PhysRevB.62.130

E. Bustarret, C. Marcenat, P. Achatz, J. Kacmarcik, F. Levy et al., Superconductivity in doped cubic silicon, Nature, issue.7118, pp.444465-468, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00115563

T. Klein, P. Achatz, J. Kacmarcik, C. Marcenat, F. Gustafsson et al., Metal-insulator transition and superconductivity in boron-doped diamond, Physical Review B, vol.75, issue.16, p.75165313, 2007.
DOI : 10.1103/PhysRevB.75.165313

URL : https://hal.archives-ouvertes.fr/hal-00165162

F. Foulon, Dopage photoassisté par laser excimère du silicium placé sous atmosphère de gaz dopant, 1989.

A. Slaoui, F. Foulon, R. Stuck, and P. Siffert, Boron doping of silicon by excimer laser irradiation in a reactive atmosphere, Applied Physics A Solids and Surfaces, vol.58, issue.10, pp.479-484, 1007.
DOI : 10.1007/BF00324571

URL : https://hal.archives-ouvertes.fr/in2p3-00016162

J. Boulmer, D. Débarre, A. Grouillet, and D. Lenoble, Dopage laser pour la micro??lectronique du futur, Le Journal de Physique IV, vol.11, issue.PR7, 2000.
DOI : 10.1051/jp4:2001733

G. Kerrien, . Boulmer, . Débarre, . Bouchier, D. Grouillet et al., Ultra-shallow, super-doped and box-like junctions realized by laser-induced doping, Applied Surface Science, vol.186, issue.1-4, pp.45-51, 2002.
DOI : 10.1016/S0169-4332(01)00623-7

A. Bhaduri, T. Kociniewski, F. Fossard, J. Boulmer, and D. Débarre, Optical and electrical properties of laser doped Si :B in the alloy range, Applied Surface Science

J. Boulmer, C. Guedj, and D. Débarre, Incorporation of substitutional carbon in Si and SiGe by laser processing in methane and propylene, Thin Solid Films, vol.294, issue.1-2, pp.137-140, 1997.
DOI : 10.1016/S0040-6090(96)09293-0

A. Aliouchouche, J. Boulmer, B. Bourguignon, J. Budin, D. Débarre et al., Laser etching of silicon by chlorine: effect of post-desorption collisions and chlorine in-diffusion on the laser desorption yield, Applied Surface Science, vol.69, issue.1-4, pp.52-58, 1993.
DOI : 10.1016/0169-4332(93)90481-P

A. Desmur, B. Bourguignon, J. Boulmer, J. B. Ozenne, J. P. Budin et al., Pulsed laser etching of silicon: Dopant profile modification and dopant desorption induced by surface melting, Journal of Applied Physics, vol.76, issue.5, pp.3081-3087, 1994.
DOI : 10.1063/1.357490

V. Privitera, Ultra-low energy ion implantation of boron for future silicon devices, Current Opinion in Solid State and Materials Science, vol.6, issue.1, pp.55-65, 2002.
DOI : 10.1016/S1359-0286(02)00007-4

J. C. Vickerman, Secondary ion mass spectrometry-basic concepts, instrumental aspects, applications and trends. A. BENNINGHOVEN, F. G. RUDENAUER and H. W. WERNER, Wiley, New York, 1987, 1277 pages, Surface and Interface Analysis, vol.10, issue.8, pp.435-435, 1987.
DOI : 10.1002/sia.740100811

C. Dubois, G. Prudon, J. Dupuy, B. Gautier, B. Canut et al., The isotopic comparative method (ICM) for SIMS quantification of boron in silicon up to 40 at.%, Surface and Interface Analysis, vol.573, issue.1-2, pp.36-40, 2011.
DOI : 10.1002/sia.3629

URL : https://hal.archives-ouvertes.fr/hal-00597364

J. Dupuy, C. Dubois, G. Prudon, B. Gautier, R. Kägler et al., Isotopic comparative method (ICM) for the determination of variations of the ion yields in boron-doped silicon as a function of oxygen concentration in the 0-10 at.% range, Surface and Interface Analysis, vol.255, issue.204, pp.137-140, 2011.
DOI : 10.1002/sia.3657

C. Dubois, G. Prudon, B. Gautier, and J. Dupuy, Quantitative SIMS measurement of high concentration of boron in silicon (up to 20at.%) using an isotopic comparative method, Applied Surface Science, vol.255, issue.4, pp.1377-1380, 2008.
DOI : 10.1016/j.apsusc.2008.05.051

T. F. Kelly and M. K. Miller, Atom probe tomography, Review of Scientific Instruments, vol.78, issue.3, p.31101, 2007.
DOI : 10.1063/1.2709758

B. Gault, D. Haley, F. De-geuser, M. P. Moody, E. A. Marquis et al., Advances in the reconstruction of atom probe tomography data, Ultramicroscopy, vol.111, issue.6, pp.448-457, 2011.
DOI : 10.1016/j.ultramic.2010.11.016

URL : https://hal.archives-ouvertes.fr/hal-00692313

K. Hoummada, F. Dahlem, T. Kociniewski, J. Boulmer, C. Dubois et al., Three dimensional boron distribution in heavily doped silicon epilayers resolved by atom probe tomography, 2011.

C. Marcenat, J. Kacmarcik, R. Piquerel, P. Achatz, G. Prudon et al., Low-temperature transition to a superconducting phase in boron-doped silicon films grown on (001)-oriented silicon wafers, Physical Review B, vol.81, issue.2, p.20501, 2010.
DOI : 10.1103/PhysRevB.81.020501

URL : https://hal.archives-ouvertes.fr/hal-00739727

M. Birkholz, P. F. Fewster, and C. Genzel, Thin film analysis by X-ray scattering, 2006.
DOI : 10.1002/3527607595

R. Kennedy and P. A. Stampe, Reciprocal space mapping of epitaxial MgO films on SrTiO3, Journal of Crystal Growth, vol.207, issue.3, pp.200-205, 1999.
DOI : 10.1016/S0022-0248(99)00371-1

O. V. Lounasmaa, Experimental Principles and Methods Below 1K, 1974.

O. Lounasmaa, Dilution refrigeration, Journal of Physics E: Scientific Instruments, vol.12, issue.8, p.668, 1979.
DOI : 10.1088/0022-3735/12/8/001

W. Meissner and R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitf???higkeit, Die Naturwissenschaften, vol.21, issue.44, p.787, 1933.
DOI : 10.1007/BF01504252

C. J. Gorter, Theory of Supraconductivity, Nature, vol.132, issue.3346, p.931, 1933.
DOI : 10.1038/132931b0

M. Tinkham, Introduction to Superconductivity, 1996.

C. Kittel, Introduction to Solid State Physics, 1986.

F. London and H. London, The Electromagnetic Equations of The Superconductor, Proc. R. Soc. Lond. A 1, pp.71-88, 1935.

A. A. Abrikosov, On the Magnetic Properties of Superconductors of the Second Group, JETP, vol.5, pp.1174-1182, 1957.

E. Maxwell, Isotope Effect in the Superconductivity of Mercury, Physical Review, vol.78, issue.4, pp.477-477, 1950.
DOI : 10.1103/PhysRev.78.477

C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt, Superconductivity of Isotopes of Mercury, Physical Review, vol.78, issue.4, pp.487-487, 1950.
DOI : 10.1103/PhysRev.78.487

H. Fröhlich, Theory of the Superconducting State. I. The Ground State at the Absolute Zero of Temperature, Physical Review, vol.79, issue.5, pp.845-856, 1950.
DOI : 10.1103/PhysRev.79.845

L. N. Cooper, Bound Electron Pairs in a Degenerate Fermi Gas, Physical Review, vol.104, issue.4, pp.1189-1190, 1956.
DOI : 10.1103/PhysRev.104.1189

F. Marsiglio and J. P. Carbotte, Electron-Phonon Superconductivity, Superconductivity, pp.73-162978, 1007.
DOI : 10.1007/978-3-540-73253-2_3

F. Dahlem, T. Kociniewski, C. Marcenat, A. Grockowiak, L. M. Pascal et al., Subkelvin tunneling spectroscopy showing Bardeen-Cooper-Schrieffer superconductivity in heavily boron-doped silicon epilayers, Physical Review B, vol.82, issue.14, p.82140505, 2010.
DOI : 10.1103/PhysRevB.82.140505

URL : https://hal.archives-ouvertes.fr/hal-00735571

V. Emery and S. A. Kivelson, Importance of phase fluctuations in superconductors with small superfluid density, Nature, vol.374, issue.6521, pp.434-437, 1995.
DOI : 10.1038/374434a0

E. Helfand and N. R. Werthamer, . II, Physical Review, vol.147, issue.1, pp.288-294, 1966.
DOI : 10.1103/PhysRev.147.288

P. G. De-gennes, Behavior of dirty superconductors in high magnetic fields, Physik der Kondensierten Materie, vol.9, issue.2, pp.79-90, 1964.
DOI : 10.1007/BF02422354

V. P. Mineev, General expression for the angular dependence of the critical field in layered superconductors, Physical Review B, vol.65, issue.1, p.12508, 2001.
DOI : 10.1103/PhysRevB.65.012508

M. Tinkham, Effect of Fluxoid Quantization on Transitions of Superconducting Films, Physical Review, vol.129, issue.6, pp.2413-2422, 1963.
DOI : 10.1103/PhysRev.129.2413

V. F. Gantmakher and V. T. Dolgopolov, Superconductor???insulator quantum phase transition, Physics-Uspekhi, vol.53, issue.1, pp.1-49, 2010.
DOI : 10.3367/UFNe.0180.201001a.0003

S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Continuous quantum phase transitions, Reviews of Modern Physics, vol.69, issue.1, pp.315-333, 1997.
DOI : 10.1103/RevModPhys.69.315

E. Bourgeois and X. Blase, study, Applied Physics Letters, vol.90, issue.14, pp.142511-142514, 2007.
DOI : 10.1063/1.2719663

URL : https://hal.archives-ouvertes.fr/in2p3-00013102

L. Boeri, J. Kortus, and O. K. Andersen, -Type Superconductivity in Hole-Doped Diamond, Physical Review Letters, vol.93, issue.23, p.237002, 2004.
DOI : 10.1103/PhysRevLett.93.237002

URL : https://hal.archives-ouvertes.fr/hal-01130576

L. Boeri, J. Kortus, and O. Krogh-andersen, Normal and superconducting state properties of B-doped diamond from first-principles, Science and Technology of Advanced Materials, vol.7, issue.sup1, pp.54-59, 2006.
DOI : 10.1103/PhysRevB.55.4120

L. Boeri, J. Kortus, and O. K. Andersen, Electron???phonon superconductivity in hole-doped diamond: A first-principles study, Journal of Physics and Chemistry of Solids, vol.67, issue.1-3, pp.1-3552, 2006.
DOI : 10.1016/j.jpcs.2005.10.109

P. B. Allen, Neutron Spectroscopy of Superconductors, Physical Review B, vol.6, issue.7, pp.2577-2579, 1972.
DOI : 10.1103/PhysRevB.6.2577

X. Blase, . Ch, D. Adessi, and . Connétable, Role of the Dopant in the Superconductivity of Diamond, Physical Review Letters, vol.93, issue.23, p.237004, 2004.
DOI : 10.1103/PhysRevLett.93.237004

URL : https://hal.archives-ouvertes.fr/hal-00002280

M. Strongin, O. F. Kammerer, and A. Paskin, Superconducting Transition Temperature of Thin Films, Physical Review Letters, vol.14, issue.23, pp.949-951, 1965.
DOI : 10.1103/PhysRevLett.14.949

V. L. Ginzburg, On surface superconductivity, Physics Letters, vol.13, issue.2, pp.101-102, 1964.
DOI : 10.1016/0031-9163(64)90672-9

P. G. De and . Gennes, Boundary Effects in Superconductors, Rev. Mod. Phys, vol.36, issue.1, pp.225-237, 1964.

A. Gurevich and E. A. Pashitskii, Enhancement of superconductivity at structural defects in high-temperature superconductors, Physical Review B, vol.56, issue.10, pp.6213-6225, 1997.
DOI : 10.1103/PhysRevB.56.6213

N. Ya, A. S. Fogel, Y. V. Pokhila, A. Bomze, . Yu et al., Novel Superconducting Semiconducting Superlattices : Dislocation-Induced Superconductivity ?, Phys. Rev. Lett, vol.86, issue.3, pp.512-515, 2001.

N. Ya, E. I. Fogel, Y. V. Buchstab, O. I. Bomze, A. Yuzephovich et al., Interfacial superconductivity in semiconducting monochalcogenide superlattices, Phys. Rev. B, issue.17, p.66174513, 2002.

N. Ashcroft and D. Mermin, Solid State Physics, Thomson Learning, 1976.

J. Bass, . Jr, W. P. Pratt, and P. A. Schroeder, The temperature-dependent electrical resistivities of the alkali metals, Reviews of Modern Physics, vol.62, issue.3, pp.645-744, 1990.
DOI : 10.1103/RevModPhys.62.645

J. E. Dijkstra, W. Th, and . Wenckebach, Effects of strain and alloying on the Hall scattering factor for holes in Si and Si1???xGex, Journal of Applied Physics, vol.85, issue.3, pp.1587-1590, 1999.
DOI : 10.1063/1.369290

D. C. Look, Electrical Characterization of GaAs materials and devices, 1991.

W. Alpheus and . Smith, The Variation of the Hall Effect in Metals with Change of Temperature, Phys. Rev. (Series I), vol.30, issue.1, pp.1-34, 1910.

G. White, Thermal expansion of reference materials: copper, silica and silicon, Journal of Physics D: Applied Physics, vol.6, issue.17, p.2070, 1973.
DOI : 10.1088/0022-3727/6/17/313

K. Behnia, The Nernst effect and the boundaries of the Fermi liquid picture, Journal of Physics: Condensed Matter, vol.21, issue.11, p.113101, 2009.
DOI : 10.1088/0953-8984/21/11/113101

A. Pourret, Nernst signal in low-tc disordered superconductors (in strongly disordered superconductors and electronic segregation workshop, lorentz center, 2011.

H. Ri, R. Gross, F. Gollnik, A. Beck, R. P. Huebener et al., Nernst, Seebeck, and Hall effects in the mixed state of YBCO and BiSrCaCuO thin films : A comparative study, Phys. Rev. B, issue.5, pp.503312-3329, 1994.

A. Pourret, H. Aubin, J. Lesueur, C. A. Marrache-kikuchi, L. Berge et al., Observation of the Nernst signal generated by fluctuating Cooper pairs, Nature Physics, vol.51, issue.10, pp.683-686, 2006.
DOI : 10.1103/PhysRev.134.A1322

URL : https://hal.archives-ouvertes.fr/in2p3-00113394

Y. G. Naidyuk and I. K. Yanson, Point-Contact Spectroscopy, Series in Solid-State Sciences, 2004.
DOI : 10.1007/978-1-4757-6205-1

H. Z. Arham, C. R. Hunt, W. K. Park, J. Gillett, S. D. Das et al., Detection of orbital fluctuations above the structural transition temperature in the iron pnictides and chalcogenides, Physical Review B, vol.85, issue.21, p.85214515, 2012.
DOI : 10.1103/PhysRevB.85.214515