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Spécialité: Informatique

présentée par

Iasonas Kokkinos

Learning and Optimization for Shape-based Representations

Soutenue le 25 Septembre 2013 devant le jury composé par
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Chapter 1

Introduction

Socrates: Let shape be this for us, what always happens to accompany color. Perhaps
this is acceptable, or do you seek something else? ...
Meno: But this is so naive, Socrates ...
some discussion follows
Socrates: ... That which limits a solid, that is shape.
Meno: And what do you say of color, Socrates?
Socrates: You are overbearing Meno, pressing a senior for answers.

– Plato, Meno

1.1 Shape, grouping, and recognition

Shape is used in computer vision in a broad sense to describe whatever is not affected by changes
in appearance, and in a more restricted manner to refer to geometric information, such as contours
that correspond to surface boundaries. This distinction is reminiscent of the two alternative defini-
tions provided in the introductory quote: the first defines shape as being the complement of color,
while the second makes explicit reference to an object and its boundary.

Shape is currently used in vision mainly in its first, broader, sense through features such as
Shape Context [1], Scale-Invariant Feature Transforms (SIFT) [2] or Histograms-of-Gradients
(HOG) [3], which describe shape around a point as a distribution on invariant features, such as
a histogram of gradients. By virtue of being probabilistic these features provide to subsequent
tasks such as recognition a robust description of shape.

This however leaves a geometric way of representing shape, as in the second sense, to be de-
sired: the use of geometric information coming in the form of contours has delivered results in
computer vision tasks as diverse and challenging as 3D instance recognition [4–7] tracking [8, 9]
and surface reconstruction [10–15]. In all these works exploiting the geometrical aspects of con-
tours had played a key role in simplifying the underlying problems. One can therefore anticipate
that similar approaches could simplify object recognition in its modern, statistical setting.

An example from [4] that illustrates the potential, but also the complex role of shape in recog-
nition is the pair of images in Fig. 1.1 and Fig. 1.2. It is hard to recognize the object in Fig. 1.1
- as reported in [4], 9 out of 10 of people presented with the image failed at recognizing it after
60 seconds. In the second image however an object can easily be perceived - 3 out of 10 subjects
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Figure 1.1: From [4]: All line segments in this image belong to a single object - so the segmentation
problem can be seen as solved. Still, the object’s identity is not obvious.

recognized it in less than 5 seconds and 7 out of 10 recognized it within 60 seconds. The only
difference is the introduction of an additional line on the bottom-right, which on its own is not
that different from the others. The different impression cannot be therefore attributed to the added
line itself, but rather to the longer contour whose grouping was facilitated by the added line. One
can imagine that finding this semi-cycle can ‘trigger’ a wheel hypothesis that in turn triggers the
object hypothesis.

This example illustrates how shape grouping can help when dealing with a large set of object
categories. When viewing these minimal sketches we have no color, shading, or other contextual
cues to help us guess the object’s identity. Therefore thousands of categories, and a continuum
of pose parameters may have to be considered; this is the case for the first image. However, in
the second image a more distinctive piece of evidence is available in the form of a long grouping.
Its effect can be understood as hinting at a model that involves this grouping; once this model is
suggested, in its turn it manages to explain the remaining image observations. This was the main
theme of geometric 3D recognition [4–7] before the advent of statistical learning techniques.

Extending this scheme to deal with broader classes of models relates to the top-down/bottom-
up computation problem: namely, ‘bottom-up’, image-based guidance is necessary for efficient
detection, while ‘top-down’, object-based knowledge can disambiguate and help reliably interpret
a given image. Organizing computation to combine both modes of operation has been motivated
based on arguments of computational efficiency and accuracy, as well as evidence related to human
vision and perception. But it remains elusive to construct practical computer vision algorithms
based on this principle.

The starting point for the research presented in this thesis has been my earlier research on the
combination of low- and high- level vision problems [16, 17]. As also demonstrated in several
other works of the same period [16, 18–23], the main positive conclusion is that a joint treatment
can yield better performance for both low- and high- level tasks; but the complexity of the sys-
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tems that result from combining separate low- and high- level modules can become excruciating.
Starting from [24] I have therefore been focused on shape-based approaches.

The main motivation for this direction, and the works presented in this thesis, is the under-
standing that shape, and more generally, grouping, can build a bridge between low- and high-
level representations, by delivering ‘mid-level’ structures of intermediate complexity. There are
two main advantages to this: first, having a single representation, that starts from the image mea-
surements and finishes at the object hypotheses; this can be trained and optimized in an integrated,
end-to-end manner. Second, developing a common, shared mid-level representation that can be
used by multiple categories, thereby reducing the amount of necessary data during training and
computation time during testing.

These ideas have some broad appeal in computer vision, but shape grouping is still not a
part of the object recognition mainstream. A main reason for this is that finding reliable and
repeatable groupings is challenging; for example occlusions and boundary detector failures can
disrupt grouping and break subsequent stages down. Other open questions include what is the
best way of representing shape mathematically, how to model its statistical variations, exploit it in
discriminative training, or use it for efficient detection.

Still, the combination of shape, grouping, and recognition remains the object of intensive
research, as documented e.g. in [25]. The following section aims at presenting in some more
detail the major research threads developed around this problem, before outlining in Section 1.3
the relevant contributions presented in this thesis.

1.2 Prior work: low-, high-, and mid-level vision

This section aims at providing background regarding the interplay of shape, grouping and recog-
nition in vision. We highlight in particular (i) that efficient computation dictates a joint low- and
high- level processing, (ii) the ‘mid-level’ problems that emerge at the interface of low- and high-
level vision, and (iii) how shape-based and grouping-based techniques fit in with this setting.

Sparse low-level image representations and grouping

Sparse, or feature-based, approaches to low-level vision represent an image in terms of a small set
of structures extracted by a front-end mechanism. The underlying assumption is that some small
set of features contains all of the task-relevant information. This is illustrated by Attneave’s cat
example [26]: as shown in Fig. 1.3(a), we can make a complex inference about the identity, pose
and state of an object while only employing corners and their connections. This suggests that as far
as recognition is concerned, we can compactly encode an image in terms of these few structures.

There are certain caveats to this. First, the sketch shown in (a) contains multiple interior edges,
which correspond to surface creases or tips. These are typically hard to detect in natural images,
in particular for smoothly textured objects. As shown in Fig. 1.3(b), removing such edges makes
it impossible to recover surface information. This highlights that information can be irrecoverably
lost through front-end processing, which should therefore operate well in the ‘high-recall’ regime.
Second, as shown in Fig. 1.3(c), forming a new image with corners at the midpoints of the original
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Figure 1.2: From [4], continued: The addition of one line (to the right of the picture) facilitates
grouping - which in turns makes it easier to perceive the object that gave rise to the configuration.

lines gives the same impression. This suggests that the corners themselves are not really crucial,
but rather it is their overall connection pattern that contains the pose information.

This brings us to the task of grouping, which can be understood as the identification of image
structures that ‘go together’. The solution space to such problems typically has a combinatorial
structure - for instance in contour grouping the solution can indicate which edgels form a group
and in what order they appear. The resulting optimization problems are therefore often hard, but in
particular for contour grouping efficient algorithms can exploit the problem’s mostly 1D structure.
In specific, Dynamic Programming was applied to contour grouping in [28],A∗ in [29] and coarse-
to-fine DP in [30]. Moreover, if one normalizes the contour’s energy function by the curve length
this renders the grouping invariant to scale changes; again the resulting optimization problem can
be globally optimized, as shown originally in [31], and then extended in [32–35].

Shape variability and high-level vision

In object category detection shape deformations are accommodated primarily with deformable
part models (DPM), defined in terms of a set of parts that can deform with respect to each other.
The state y of a DPM with P parts involves a set of position vectors, xi, i = 1, . . . P and global
transformation parameters T that encode scale changes or rotations:

y = {x1, . . . ,xP , T }. (1.1)

Each of the position vectors can correspond to any of the N image pixels, meaning that in
principleNP part combinations should be considered. Furthermore the continuous transformation
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(a) (b) (c)

Figure 1.3: Image (a) shows Attneave’s sketch, from [26], and (b), (c) its perturbations from [27],
and [4] respectively. As demonstrated in image (a), we can perceive a complex object configura-
tion even when we are provided with only a reduced shape-based representation, coming in the
form of corners, junctions and their connections. But as shown in image (b), object boundaries
need to be complemented with internal contours to estimate pose; and as shown in image (c), by
displacing the corners of image (a) to the line midpoints, the information is encoded in the corner
arrangement, rather than the corners themselves.

parameters T need to be estimated, while for the goal of scene analysis NO object categories may
need to be simultaneously dealt with. This can result in a complexity in the order of

C(NO, T , N, P ) = |T | ·NO ·NP , (1.2)

where T is understood as a set of quantized transformation parameters and |T | denotes its cardi-
nality. Coming up with algorithms of a smaller complexity is thus crucial for fast object detection.

The Pictorial Structure works of Felzenszwalb and collaborators [36–38] express the object’s
scoring function as a Markov Random Field (MRF) with a tree-structured graph topology. For the
case of a ‘star-shaped’ graph, i.e. a tree of depth one, the model’s score function is:

s(y, x, w) =
P∑
i=0

ui(x, yi, w
u
i ) +

P∑
i=1

vi, (yi, y0, w
p
i ) (1.3)

where node 0 is the ‘root’ and the remaining P parts connect to the root; the score is formed as the
sum of unary, appearance fidelity terms at the part positions y0, . . . , yP , and pairwise, geometric
consistency terms between the locations y1, . . . , yP and the root’s location, y0. Maximizing this
score with Max-Product [39] has a complexity of O(PN2), but for special cases of the pairwise
term the Generalized Distance Transform (GDT) technique [40] can bring the complexity down
to O(PN); furthermore, as detailed in Section 5.1 in [41] we have developed a branch-and-bound
algorithm that maximizes Eq. 1.3 with a best-case complexity of O(P logN), making to a large
extent the image size N the least important aspect of the complexity of optimization.

These acceleration techniques do not deal though with the |T | factor in Eq. 1.2: DPMs require
exhaustive search over scale, and potentially in-plane rotations, while out-of-plane rotations are
currently dealt with by using different, view-specific mixtures, which amounts to an increase in
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(a) (b)

Figure 1.4: Examples of images where one cannot name any single object, yet there exists a ‘mid-
level’ interpretation in terms of simple geometric primitives: (a) ‘blue segment’, by V. Kandinsky
and (b) a chimeric object, from [42].

NO. Furthermore, the linear complexity in NO amounts to using a separate detector per cate-
gory; this makes large-scale recognition infeasible, when working with hundreds, or thousands of
categories. It is at this point that image-based (or, ‘bottom-up’) information can help detection.

Perceptual organization, shared parts and geometric constraints

A straightforward way to accelerate detection through bottom-up processing is to use sparse image
representations; this allows us to cut the N term down to the number of interest point locations,
and also to potentially suggest proper values of T by exploiting scale- and orientation- invariant
front end processing. This approach was extensively explored in conjunction with the learning of
part-based models from the responses of interest point detectors [43–50]. But treating an image as
a set of corners/junctions misses out on the way in which these are organized - and one can expect
that larger structures can convey more information and further increase efficiency.

This is one the main tenets of perceptual organization: before identifying objects in an image,
we can already perceive certain structures that are extended, regular, and unlikely to have occurred
from an accidental configuration of unrelated objects. So we have the apparent traces of some
object whose identity and pose remains to be determined. Microscopy, astrophysical, or abstract
art images are prominent examples where this happens; as illustrated in Fig. 1.4, despite having
never encountered any of the observed structures, we can still decompose what we see into a small
set of structures and relations, in terms of which we can, at least partially, interpret the image.

This observation opens up two avenues for accelerating object detection: first, we can use the
structures formed by perceptual organization as the basis for a common ‘dictionary’ across multi-
ple categories. Namely, if a few structures are common across multiple categories, the computa-
tional cost of any task related to extracting and processing these shared parts will be amortized as
NO becomes large. Therefore, only the ‘object assembly’ task remains, which presumably should
be of lower complexity than directly matching the object to the input.
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(a) 3D modeling primitives and aspect hierarchy

(b) Shape decomposi-
tion

(c) ‘Butcher’s shop’
(d) Information flow in the FORMS system

Figure 1.5: Mid-level parts in the aspect hierarchy of [61] and the FORMS system [27].

Second, we can use properties of the formed structures to guide the search over object identity
or transformation parameters. Namely, if we constrain object parts to be placed so that their bound-
aries coincide with grouped image contours we can limit the position, scale, or object orientation,
depending on the grouping’s complexity.

Early works: Geometry-based 3D object recognition

These ideas were pursued since the earliest days of object recognition. The use of general group-
ing laws as an intermediary between the image and objects can be traced back to the hierarchical
cylindrical/ribbon representations advocated by Marr in [51] and the ACRONYM system [52]
respectively. The SCEPRO system [53] and the principles behind it, laid out in [4], expanded
the repertoire of contour relations to include other ‘gestalt’ cues, such as co-linearity and prox-
imity, using non-accidentality as a common measure for quantifying the importance of different
cues. The GROPER system [54] used convexity-based line groupings to represent and detect
different man-made structures by computing relationships among such groups. Ettinger [55] used
curvature-guided contour grouping to represent objects hierarchically as combinations of contours,
and explored methods of using this representation to search a library of objects.

Coming to constraining search using grouping, the use of geometric constraints and the asso-
ciated combinatorics of grouping-based recognition are covered in [56], where it is demonstrated
that the expected complexity of matching goes down from exponential to polynomial in the num-
ber of image structures if segmentation is available. Viewpoint invariant contour configurations
are used to index into object libraries in [4], while other works such as [57–59] use combinations
of local features to shortlist and initialize the matching of 3D object models to image observations.
This direction was pushed further in the geometric invariant program [5, 7, 60]; a main theme in
these works was the computation of invariants from point or contour groups their use to index
object libraries in a transformation-invariant manner.

Transition to deformable categories

The early geometric works were focused on rigid object recognition, or in the best case dealt with
parametric deformations, such as opening scissors [6]. The representation of deformable object
categories in terms of shape groupings was explored in the 90’s with more abstract representations,
such as aspect hierarchies [61], grouping of 3D geometric primitives [62], shock graphs [63, 64],
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the FORMS system of [27] and also the grouping-based pose estimation models of [65]. These
approaches were predominantly geometrical, relying on representing and detecting objects with
contour-based techniques; in several among them, in particular [61] and [27] the use of shared
mid-level parts was clearly articulated and hard-wired into the inference schemes. But given the
limited power of contour detection methods at that time, these works either took the segmentation
for granted, or were evaluated in scenes with only a small amount of visual clutter.

Shared dictionaries for multi-class and multi-view voting

In the beginning of the previous decade, after consolidating the first successes of category recogni-
tion [66–69], the problems related to shared parts were revisited from a statistical perspective. One
of the first works in this direction [70] proposed the sharing of weak learners for multi-view and
multi-class object detection, using region-based features as inputs to decision stumps. In [71] this
idea was applied to the implicit shape model (ISM) of [46], and it was demonstrated that one can
use it to share a library of contours across multiple shape-based categories. In its original, point-
based formulation, the ISM was also extended to multi-view [72] and multi-class [73] recognition
by employing a shared dictionary across different views/categories; more recent work in [74] re-
visited the dictionary construction stage to ensure a more distinctive per-class distribution of votes
for multi-class detection, while [75] combined voting with 3D geometric models recovered using
structure-from-motion [76, 77].

These techniques have demonstrated that sharing computation can attain a complexity that is
sublinear in the viewpoints, or classes. However, most of these works rely on voting, which dis-
cards the correspondence information [6]; this means that the features that give rise to a detection
are ‘lost’ in the voting process and it is therefore hard to train such models. Partial remedies have
been proposed in [78] by discriminatively setting the codebook weights and in [79] by reducing
the effects of overcounting weights. However it has still not been demonstrated that voting-based
techniques compare favorably to energy-based models for detection, such as DPMs [80] - actually,
if the final verification stage is not used the performance of voting in itself is dramatically lower
than DPMs, as demonstrated e.g. in [74]. So voting can at best be seen as a preliminary atten-
tion mechanism that triggers the application of more elaborate models, rather than a full-blown
detection algorithm.

Shared structures in hierarchical, energy-based models

Turning to energy-based detection schemes, the integration of shared parts in category recognition
has been pursued in the hierarchical, grammatical, or compositional framework. One of the earliest
works in this direction was [27], but the most influential works came in the previous decade,
together with the first data-driven category recognition systems.

In the ‘image parsing’ work of S.C. Zhu and collaborators [20, 81] image interpretation is
pursued in terms of AND-OR grammars, which can be seen as templates for defining hierarchical
mixtures of models. Grouping algorithms for lines, rectangles, parallelism and higher-order rela-
tionships, such as ‘butting’, ‘inside’ or ‘above’ are used to guide a stochastic search over generative
models for buildings [82], faces [83], deformable categories [84] and scenes [85].
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(a) (b)

Figure 1.6: Learned contour-based mid-level features by Fidler et al. [86] and Zhu et al. [87].

A data-driven approach to discovering the shared structure of object categories was proposed
by [86] who used agglomerative clustering to recover hierarchical, shape-based representations.
For this purpose recursive clustering was used, starting from a Gabor filterbank’s output and grad-
ually recovering increasingly complex structures until in the end forming the whole object. In
[88] it was demonstrated that this kind of representation can be used for object detection with a
complexity that is sublinear in the number of categories.

In a similar vein [87] and later [89] use unsupervised learning to recover an hierarchy of
tests which can simultaneously be used for detection with multiple categories and views. They
demonstrate that the learned shared parts correspond to generic grouping rules at the lowest levels
and more semantic configurations at the higher parts of the hierarchy.

A region-based approach is pursued for both learning and detection in [90] and to exploit the
shared structures among similar categories in [91, 92]. During training, object models are discov-
ered by computing the maximal common subtree from a set of hierarchical image segmentations,
while during testing, the hierarchical segmentation of a new image is matched to the learned tree,
which allows for the simultaneous detection and segmentation of objects.

In [93] a Steiner tree formulation is used to learn and perform inference on a hierarchical
model. The authors use approximate optimization to identify the optimal manner of putting to-
gether low- and intermediate- level structures within images of an object category.

Recently some works have also explored part sharing from a multi-task learning perspective,
without necessarily focusing on the computational efficiency aspect; part sharing [94] and root
sharing [95] were demonstrated to facilitate the learning of category models from only a limited
number of training images. Similarly, [96] use sparse coding to express multiple part filters on a
common basis and accelerate detection with DPMs; in [97] this is shown to also yield improved
performance on a large-scale category recognition task if properly integrated during training. In
[98] locality sensitive hashing [99] is used to index into a large library of model parts, cutting
down computation time with lookup-based operations; this facilitates constant-time retrieval of
the top-K scoring parts, but the part combination is not addressed.

Finally, the comeback of neural networks [100–111] has shown that given large enough datasets,
large hierarchical networks trained essentially with back-propagation [103] can outperform sys-
tems that are using hand-crafted features. Ideas such as feature sharing and hierarchical processing
are at the core of such models as shown in Fig. 1.7, and presumably play also a role in their suc-
cess, yet it is still not clear how to exploit them for fast and accurate detection - with the exception

9



(a)

Figure 1.7: Learned mid-level features in the convolutional network of [100].

of [108], current validation of such models is mostly focused on classification/labeling tasks. One
can anticipate that in the next years several of the low-level features used in current vision models
will be replaced by such learned features and that some more classic problems computer vision
will be ‘injected’, or revisited through the design of appropriate models, as e.g. in [112] and
[113]. The main challenge is to make the best use of their flexibility, while staying in control of
their computational complexity - as we can do for instance with deformable part models.

Mid-level segmentation and object proposals

A complementary direction of research that fits with the overall scheme described here is the
exploration of mid-level segmentation algorithms to come up with object proposals, effectively
avoiding the exhaustive search over object transformations. Some of the earliest works in this
direction [114–116] considered coming up with multiple, complementary, and potentially over-
lapping, segmentations of an image and using the segments as proposals for object hypotheses,
mostly in the context of learning. In [91, 117], hierarchical segmentation was used to shortlist de-
tection hypotheses, while in [118] Steiner trees were used to search through a set of segmentations
for the pairing of regions to object hypotheses.

A recent twist to this idea is to learn how to come up with good object proposals. Learning
‘objectness’ measures was proposed in [119] to propose bounding boxes of objects and extended
in [120] by introducing faster features and better ranking algorithms. In [121] this idea was ad-
vanced to propose regions instead of bounding boxes, using segmentation functions that incor-
porate Gestalt features in CRF training. This approach was pushed further in [122] where using
multiple segmentations seeded at different image points, and computed at different scales, was
demonstrated to outperform similar segmentation algorithms [123–125] at the task of recovering
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segments that correspond to object hypotheses. The current state-of-the-art method of [126] uses
hierarchical segmentation in multiple color spaces to achieve high recall; as mentioned in the first
section, this is crucial in order to ensure that object hypotheses do not ‘fall through the cracks’ of
image segmentation. Recent advances in improving fast boundary detection [127] will most likely
make this objective easier to achieve.

1.3 Contributions

The main goal of the works presented in this thesis is to integrate shape, and grouping in gen-
eral, into the detection of deformable object categories. The research presented here has started
from relatively simple shape-based models and detection algorithms [24, 128, 129] and then pro-
ceeded to increasingly elaborate models for both low-level [35, 130–132] and high-level tasks [41,
133–135], while more recently opening up to other problems that lend themselves to a geometric
or grouping-based treatment [136–139]. For simplicity, the remainder of this thesis is organized
thematically rather than temporally.

Chapters 2 and 3 present contributions to low-level problems. In Chapter 2 we address the de-
tection of geometric image features, namely boundaries and symmetry axes. We present advances
in (i) training feature detectors with machine learning techniques that are resilient to imprecise
and ambiguous labeling information and (ii) contour grouping based on a fractional programming
formulation of the minimum cost ratio problem. In Chapter 3 we turn to the extraction of invariant
features from images. We present techniques to (i) extract dense scale-invariant shape descriptors
from images (ii) exploit soft segmentation to remove background clutter and (iii) extend these
ideas to surfaces.

Chapters 4 and 5 present contributions to high-level problems. Chapter 4 addresses the task
of learning shape-based models from unregistered and unsegmented data. We present advances
in (i) the automated construction of statistical shape models, (ii) the training of discriminative
classifiers for hierarchical shape models, and (iii) the training of grouping-based models for action
categories. Chapter 5 covers new contributions in efficient optimization with shape-based models.
We address the problems of (i) detecting deformable models with Branch-and-Bound (ii) parsing
hierarchical shape models using Hierarchical A∗ and (ii) parsing facades with shape grammars
using Reinforcement Learning.

The advances in Chapter 5 are the ones that most closely address the objective of compu-
tational efficiency, which has been the theme of this introduction, and all rely on some form of
bottom-up/top-down computation, as anticipated. In hindsight, our fastest detection algorithm
[41, 135] is using the dense HOG features of [80], while in our facade parsing work [140] we
use densely evaluated classifiers. So, the use of shape in the form of contours did not prove to
be strictly necessary - this is also the case in convolutional networks, where mid-level features
are learned directly from the intensity. However, understanding grouping has been crucial to the
development of our algorithms: our starting point has been the use of Hierarchical A∗ for shape
parsing [133], while Hierarchical A∗ was originally developed in [33] in conjunction with contour
grouping: both for contours and objects, the main question is how to figure out quickly how and
what to put together.
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Chapter 2

Contour Detection in Natural Images

This chapter describes contributions to the extraction of geometric features, such as boundaries
and symmetry axes from natural images. We have developed machine learning techniques that
deal with challenges particular to boundary [1] and symmetry [2] detection, as well as a linear-
fractional programming approach to grouping [3] that simplifies the solution of the minimum cost
ratio problem.

These techniques have been evaluated on the Berkeley segmentation benchmark [4], demon-
strating consistent improvements. The contour detection evaluations provided in here have also
been updated with respect to the earlier publications [1, 3] so as to compare our latest results with
the current state-of-the-art [5, 6].

2.1 Learning-based boundary detection

Good low-level features are often a determining factor of success in tasks such as image segmenta-
tion, object recognition and correspondence, while front-end failures can propagate to later stages
of processing, making it crucial to achieve good performance in these first steps.

Early approaches to boundary detection were originally based on simplified analytic signal
models, such as step edges, used in Canny’s criteria for edge detection [7, 8] or lines and edges,
used in the design of quadrature filter pairs [9–11]. As the developed detectors had been estab-
lished as optimal, most of the subsequent research effort was devoted to grouping them into larger
and more reliable assemblies, using variational [12–14] or statistical [15–17] techniques. While
these techniques yielded visible improvements, taking a different route turned out to yield larger
rewards; first, the ‘compass operator’ [18] did away with the linear, convolution-based tradition of
boundary detection, and instead detected discontinuities by measuring dissimilarity in a nonlinear,
statistical manner, that also facilitated the treatment of diverse cues. And, second, the introduc-
tion of human annotated datasets [4, 19] facilitated the formulation of boundary detection as a
statistical learning problem and also made it possible to measure progress systematically.

Following these works, consistent improvements in performance on these benchmarks have
been achieved [1, 5, 6, 20–25], relying primarily on the design of new features and the appli-
cation of appropriate machine learning techniques to the problem. In what follows we describe
our contributions to learning-based boundary detection including (i) the adaptation of machine
learning techniques to address the particularities of the boundary detection task and (ii) the use of
additional, efficiently computable features.
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Customizing Adaboost for boundary detection

In [1] we build on the Anyboost framework [26] to develop variants of Adaboost [27] that take
into account some aspects of training that are particular to boundary detection. This allows us to
first develop F-measure boosting to optimize the F-measure, which better matches the evaluation
measure used for testing, and also to accommodate a certain amount of labeling ambiguity by
relying on Multiple Instance Learning (MIL). In [1] some further ideas were pursued to work
with large datasets, such as combining boosting with Monte Carlo to pick a subset of the training
examples in the spirit of Filterboost [28], as well as using discriminative dimensionality reduction
[29] to compactly encode high-dimensional features. As these turned out to be unnecessary after
a careful reimplementation of the training algorithms, we focus on the first two aspects, which
remain central to our current approach.

Background - Anyboost: Our starting point is Anyboost, which gives us freedom in designing
variants of Adaboost by phrasing it as optimization. In particular, given a training set of N input-
output pairs, (Xi, yi), Xi ∈ Rd, yi ∈ {−1, 1}, i = 1, . . . , N we can measure the performance of a
classifier f : Rd → R in terms of a loss function:

C(f) =

N∑
i=1

c(f(Xi), yi) (2.1)

that penalizes the deviation of the prediction f(Xi) from the label yi. For instance when using the
exponential loss, c(f(Xi), yi) = exp(−yif(Xi)), C(f) provides us with a differentiable upper
bound to the number of misclassifications. Adaboost can be understood as a method to minimize
Eq. 4.10 with a function of the form:

fT (X) =

T∑
t=1

atht(X), (2.2)

where the functions ht(x) belong to a family of simple functions H (’weak learners’) but their
combination fT can result in a complex classifier (‘strong learner’). Adaboost is iterative, obtain-
ing ft(x) from ft−1(x) by only changing the t-th term.

This loss-based formulation of Adaboost is clearly articulated in its Anyboost variant [26].
Considering that the scores of the classifier ft at round t form an N -dimensional vector ft =
[ft(X1), . . . , ft(XN )]T , the update to ft that most rapidly decreases Eq. 4.10 is along the direction:

gt =

[
−∂C
∂f1

, . . . ,− ∂C
∂fN

]
. (2.3)

Since ft+1 is obtained by adding to ft a single ht ∈ H, Adaboost resorts to finding the function
h∗ ∈ H that is closest to g as measured by their inner product:

h∗ = argmax
h
〈g,h〉 = argmax

h

∑
i

gih(Xi), (2.4)

where we denote by gi the i-th element of gt, and by h the vector formed by the values of h
on the training set. Once h∗ is chosen, αt can be found by minimizing C(ft−1 + αh∗). For
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c(f(Xi), yi) = exp(−yif(Xi)), these last two steps yield Adaboost [27].

F-measure boosting: Building on Anyboost we can replace the common exponential loss used
in Adaboost with better performance measures for boundary detection. In particular, due to the 1D
nature of boundaries, we have substantially more negatives that positives during both training and
testing; this can skew our classifier towards being very negative. The F-measure is appropriate
for measuring performance on imbalanced datasets; it is defined as the geometric mean of the
classifier’s precision, p and recall, r, which are in turn defined using the counts of true positives
(t), false alarms (f) and misses (m), as follows:

F =
2pr

p+ r
, where p =

t

t+ f
, r =

t

t+m
(2.5)

t =

N∑
i=1

[ŷi = 1][yi = 1], f =

N∑
i=1

[ŷi = 1][yi = −1], m =

N∑
i=1

[ŷi = −1][yi = 1]. (2.6)

In Eq. 2.6 ŷi is the estimated label, yi is the correct label, and [·] is binary, indicating if · is true.
Since [ŷi = 1] and [ŷi = −1] are non-differentiable, we use the sigmoidal function to construct a
differentiable approximation in terms of the real-valued classifier’s output:

σl(f(X)) =
1

1 + exp(−lf(X))
' [ŷi = l] (2.7)

Substituting this in Eq. 2.6 yields a differentiable approximation to the F-measure:

F̃ =
2p̃r̃

p̃+ r̃
=

t̃

t̃+ 1
2(f̃ + m̃)

, (2.8)

where we denote by f̃ , m̃, t̃ the respective approximations to f,m, t. This expression can now be
optimized through Anyboost: by settingC(f) = −F̃ and applying the chain rule of differentiation
we can compute the quantity ∂C

∂f(Xi)
required to guide the weak learner selection at each step.

Dealing with annotation inconsistencies: By using Anyboost we can also deal with inconsis-
tencies in human annotations. As shown in Fig. 2.1, there is a certain amount of inconsistency
among the annotations provided by different humans in the Berkeley benchmark regarding both
the spatial localization and the orientation of boundaries; the position variability is due to the am-
biguity about where the reflection on water begins (blue circle), while the orientation variability
is due to the difference in granularity, giving horizontal boundaries for the reflection and vertical
boundaries for the whiskers (orangle circle). Since our classifiers use orientation- and position-
dependent features as inputs, we need to take this into account during training.

In particular, since the final decision is obtained by maximizing over all candidate orientations,
a point will be labeled as positive if it is a boundary along any orientation, and negative otherwise.
This matches the setting of Multiple Instance Learning (MIL) [30–32]. Standard, ‘single instance’
learning assumes training samples come in feature-label pairs. Instead, MIL takes as a training
sample a set of features (‘bag’) and its label. A bag should be labeled positive if at least one of its
features is classified as positive, and negative otherwise.
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Figure 2.1: Inconsistency of human annotations in the Berkeley segmentation dataset: different
humans interpret an image at varying levels of granularity, resulting in annotations that are poten-
tially inconsistent. As shown by the blue circle, the exact position of the boundaries may vary,
while as shown by the orange ellipse, pixels indicated as boundaries by two annotators may be
associated with different orientations.

The MIL setup allows us to train a classifier in a manner that automatically deals with missing
orientation information. For this we extract features at N = 8 orientations, obtaining a ‘bag’ of
features Xi = {Xi,1, . . . , Xi,N} at each point i. In the same manner we pool multiple spatial
positions, to account for the spatial uncertainty, and insert all of these in the feature bag. For each
feature Xi,j our classifier provides a probability estimate πi,j

.
= P (yi = 1|Xi,j) = σ1(Xi,j); the

final decision is taken by maximizing over the individual responses:

πi = P (yi = 1|Xi) = max
j∈[1,...N ]

πi,j = max
j∈[1,...N ]

σ1(f(Xi,j)). (2.9)

In Adaboost, according to Eq. 2.3, we search for the effect that perturbing any of the classifier’s
outputs will have in the overall score; the max operation in Eq. 2.9 is not differentiable, so we can
either substitute it with a ‘noisy-or’ combination [33, 34], or use a subdifferential of πi instead of
the gradient:

∂πi =
dπi,j∗

df(Xi,j∗)
, where j∗ = arg max

j
πi,j . (2.10)

For boundary detection the subdifferential turned out to deliver more precise results, while for the
case of symmetry detection, presented in the following section, the noisy-or combination delivered
better results. We refer to [35] for a thorough review of noisy-or as well as other MIL variants.

Efficiently computable features

The ‘global Pb’ detector of [36] is using a very small feature set, which however takes a long time
to extract from images. In [3] we consider complementing that feature set with other, easily com-
putable features. We originally considered using SIFT features in [3], computed around a sparse
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(a) Pre-2010 boundary detectors vs. global Pb
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Global PB, F = .7

Our Detector, F = .712

Our Detector + Descriptors, F = .717

(b) Our detector vs. global Pb

Figure 2.2: Benchmarking results on the BSD300 dataset: the left image compares the perfor-
mance of boundary detectors developed before 2010 to the global Pb detector [36]. The right
image compares our detector [1] to global Pb: our detector’s F-measure 0.712, while together
with descriptors it increases to 0.717 - the F-measure of the global-Pb detector is .70.

set of locations short-listed by another detector. In [1] we turned to Daisy-like descriptors [37], as
their polar sampling pattern allows to efficiently accommodate rotations. We further introduced
multi-scale Gaussian, Derivative-of-Gaussian and Laplacian-of-Gaussian features, rapidly com-
puted using recursive (IIR) implementations [7, 38] as well as multi-scale Gabor features, again
computed using recursive implementations [39].

Benchmarking Results

We provide results corresponding to two different stages of our boundary detector’s development:
First, we report the results obtained in [1], where we had demonstrated the merit of (i) using ma-
chine learning algorithms that are better adapted to the task at hand and (ii) adding more features.
These results, shown in Fig. 2.2 were evaluated on the BSD300 dataset [4], comprising 200 train-
ing and 100 test images. We then report our latest results on the BSD500 dataset [36], comprising
300 training and 200 test images and using our current implementation of the ideas laid out above;
these results are shown in Fig. 2.3.

To validate our contribution in learning, we first train a classifier using exactly the same fea-
tures as the global Pb (gPb) detector of [36]; these features include multi-scale color and texture
gradients computed by the compass operator, as well as ‘spectral gradients’, obtained from the
directional derivatives of the eigenvectors found by normalized cuts. Both we and [36] use the
F-measure for training, so we are optimizing essentially the same cost; the difference lies in the
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0.787: Humans

0.750: Fused (ours + others)
0.741: MIL detector (ours)
0.739: Sparse Code Gradients
0.728: Sketch Tokens
0.714: GlobalPb

ODS OIS AP
Fused 0.750 0.771 0.774
MIL 0.741 0.761 0.808
SCG 0.739 0.757 0.772
ST 0.727 0.745 0.780
gPb 0.714 0.736 0.719

Figure 2.3: Left: Precision-Recall curves on the BSD500 dataset, using our latest classifier and
the global Pb detector of [36], the Sparse Code Gradients of [5] and the sketch token classifiers of
[6]. Our MIL-based detector outperforms the two competing methods - while score-level fusion of
the three classifiers results in an F-measure of 0.75. On the right we report the ’Optimal Dataset
Scale’ and ’Optimal Image Scale’ F-measures, and ’Average Precision’ metrics used in [36].

training algorithm, which allows us to (i) accommodate uncertainty in the labeling and (ii) recover
nonlinear decision rules, by using Adaboost. In [36] a combination of the gPb detector with the
Ultrametric Contour Map segmentation algorithm resulted in a improvement of the gPb detector’s
F-measure from .7 to .71. Our detector achieves an F-measure of .712 without needing any seg-
mentation post-processing. To validate our contribution in feature extraction we repeat the training
procedure, but now introducing the new features obtained from the appearance descriptors; these
provide an additional boost in performance, increasing it to .717.

We continue with the results presented in Fig. 2.3, which have been obtained from our on-
going research on learning boundary detection; the first substantial difference is that we have
replaced the nonlinear classifier obtained from Adaboost with a nonlinear classifier obtained with
Random Fourier Expansions [40]; this is simpler to train and also performs better. A second
difference is that we now have a preliminary, trainable contour localization module. Breaking
up the task into two distinct steps turned out to be very helpful in achieving high recall. Finally,
we extract Daisy descriptors on top of the boundary detector’s response, implementing classifier
stacking. This gave again a small, but substantial boost in performance when compared to using
image gradient features. All of these modifications have certain technical novelties -to be presented
more thoroughly once consolidated- but in principle are similar to the techniques outlined above
in the sense that we (i) train non-linear classifiers and (ii) extract a richer feature set (iii) account
for inconsistencies in the labeling. Qualitative results are provided in Fig. 2.4.
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Figure 2.4: Sample results from the Berkeley benchmark: we show in the middle the response of
our detector, and on the right the ground truth, obtained by averaging the human boundaries.
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Figure 2.5: We aim at extracting ribbon-like structures that mark local, approximate reflection
symmetry; these can be understood as ‘generic part’ detectors and can be used as inputs to region-
based detection algorithms.

2.2 Learning-based symmetry detection

Inspired by the success that machine learning has found in boundary detection, in [2] we ap-
plied machine learning to symmetry detection in natural images. Even though symmetry is a
rather generic term that can mean different types of structures, we focus on ribbon-like structures,
namely contours having local and approximate reflection symmetry, as illustrated in Fig. 2.5. Such
structures can serve object recognition by providing proposals for object part locations [41, 42],
while potentially building a bridge between region- and contour- based approaches: symmetry
axes correspond to regions, while also being organized along 1D structures. Symmetry axes have
also been considered in a ‘transfer learning’ setting for object classes [43], while they naturally
fit with the recent quest for ‘objectness’ and generic region proposals [44–46].

Symmetry detection is commonly seen as a process that follows segmentation [47–51] but
in our work we are interested in directly detecting symmetry from natural images. Several works
have studied the latter problem [52–56] under the names of grayscale symmetry-, skeleton-, ridge-
valley-, crease-, or ribbon- detection, but they all use hand-crafted criteria to detect symmetries.
Instead, we use human annotations to learn how to detect symmetry axes.

Our contributions lie in three directions: first, annotating the Berkeley segmentation dataset
with symmetry axis information; second, using statistical features at multiple scales and orienta-
tions; and third using multiple-instance learning to deal with the inherently multi-scale nature of
symmetry. We detail these three points in the following.

Dataset Construction

We build on the Berkeley Segmentation Dataset (BSD300) [4] and use a combination of auto-
mated symmetry detection [57] with human post-processing, which is necessary for two reasons.
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Figure 2.6: Construction of an image skeleton: the user examines individually the segments in the
ground truth of [4] and rejects the ones that deliver inappropriate skeletons. This is repeated for
every segmentation and the union of the resulting skeletons forms the symmetry ground-truth.

First, background segments are occluded by the foreground regions, which severely distort their
shape; the resulting symmetry axes often do not correspond to either semantically meaningful
parts or symmetric regions. Second, skeleton extraction often produces spurious branches.

We use the procedure illustrated in Fig. 2.6 to control the ground truth construction: given a
segmentation of the input image, the user examines each segment separately and decides whether
its skeleton should be included in the final image skeleton map. We apply this procedure separately
to each of the 5-8 segmentations provided per image on BSDS300 and aggregate the validated
skeleton maps by taking their union. In Fig. 2.6 we show the partial and final skeletons obtained
from the segmentations of an image.

Feature Extraction

For feature extraction we develop statistical features, which can be understood as adaptations of
the compass operator [4, 18], to symmetry detection. The compass operator measures the cue
variation across two image regions i, j by comparing their respective cue histograms, Ri, Rj . For
instance using the χ2-distance gives us a scalar quantity:

Hi,j =
1

2

∑
k

(Ri(k)−Rj(k))2

Ri(k) +Rj(k)
, (2.11)
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Figure 2.7: Left: The feature contents of the middle part are not similar to either the contents of
the left or the right parts. Therefore the strength of the symmetry in the vertical axis (in yellow) is
high. Right: Rectangles used to rapidly calculate sums with integral images. Using rotated filters
on the original image I is equivalent to using axis-aligned filters on a rotated image, IR.

that measures region dissimilarity. By virtue of being statistical, it can deal with a broader set of
discontinuities other than step edge-like transitions, for instance having different bi- or even multi-
modal distributions on each side. Two adaptations are required to apply this operator to our case:
first, we need to redefine the regions over which the statistics are being computed, and second, we
need to deal with the inherent multi-scale nature of symmetry detection.

Regarding the first adaptation we consider three adjacent rectangles as shown in Fig. 2.7,
instead of two; the middle rectangle corresponds to the symmetric, coherent part, and the other two
correspond to its lobes, which are supposed to be dissimilar to the center. The intuition is that if a
symmetric structure is present, at least at a given combination of scale and orientations the statistics
of the middle rectangle should be different from those of its surrounding rectangles. Instead of
hand-coding such a rule, we extract the associated features and leave it to the learning algorithm
to figure out how to combine them. In particular for every pair of rectangles we measure their
region-based dissimilarityHi,j(x, y, θ, s), where i, j ∈ {1, 2, 3} indicate which two rectangles are
being compared, while x, y, θ, s determine the shape of the rectangles: θ denotes orientation, s
denotes scale, and (x, y) the center of the middle rectangle.

For the second adaptation, we need to consider more neighborhoods and also use larger scales.
To alleviate the resulting computational burden we first create a Gaussian pyramid of the original
image before feature extraction, and also replace the filtering operations with recursive filters; in
particular for axis-aligned rectangles these can be implemented with integral images [58], while
instead of using rotated rectangles we use rotated versions of the original image again in conjunc-
tion with integral images, as in [59]. This is repeated for the brightness, color (LAB), and texture
features (textons - [4]). With thirteen scales and eight orientations per scale, the overall feature
extraction and scoring procedure currently takes about 5 seconds in Matlab for a 321×481 image.

30



(a) Input (b) First eigenvectors of symmetry-based Normalized Cut relaxation (c) Spectral symmetry

Figure 2.8: Spectral symmetry feature: using as input image (a) and the output of a ‘first stage’
symmetry detector we can setup a generalized eigenvector problem, whose first three eigenvectors
are shown in (b). The resulting spectral symmetry feature is shown in (c).

As shown in Fig. 2.8 we can also construct a ‘spectral symmetry’ feature to elicit a ‘global’
measure of coherence in the image. For this we use relaxation to the Normalized Cut problem
[60] used in [36], but replace their first-stage boundary detector with our own first-stage symmetry
detector. This is the computationally most demanding cue, requiring computation in the order of
a minute per image, so we treat this as optional, to be used when time is not important.

Since our features are scale- and orientation- dependent, training our detector in the standard
supervised setting would require choosing a scale and orientation combination for every symmetry
point. Instead, we leave this decision to MIL, as we also did for boundary detection, using features
at 8 orientations and 13 scales for each pixel’s bag. We show the results of the trained symmetry
detector in the top row of Fig. 2.9. We estimate the probability-of-symmetry at every pixel and
every scale and orientation combination, resulting in a 4D symmetry map. These probabilities
are combined with the noisy-or rule into an aggregate symmetry response. As this can result in a
diffuse response, a non-maximum suppression step is used for thinning prior to thresholding.

In the bottom row of Fig. 2.9 we show how the response map is computed, by showing the
per-scale results, obtained by taking the noisy-or of the orientations at a fixed scale. We note
that our detector has learned to automatically pick the dominant local image scale, which could
potentially be useful for tasks such as image segmentation, or to provide generic part proposals
that are supported by regions.

Results

We evaluate our detector using our symmetry axis ground truth for BSDS300. We first assess the
hardness of the task at hand by measuring human performance on it; this can be computed by
picking the binary map delivered by a single user, matching it with the binary maps of the other
users, and then going in turns. An F-measure for humans can thereby be obtained, which can be
understood as an upper bound of what we can expect to achieve with a computer. The estimated
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(a) Input (b) Pb map (c) Non-max suppression (d) Symmetries

Probability responses at increasing scales

Figure 2.9: Top: processing steps from the initial image to the final symmetry axis map. Bottom:
probability responses before non-maximum suppression at increasing scales from left to right.

score was F = 0.73 and the corresponding iso-curve is shown in Fig. 2.11. This is substantially
below the F-measure estimated for humans on boundary detection –F = 0.78– which indicates
the difficulty of symmetry detection.

In Fig. 2.11 we show the precision-recall curves of our method; in order to confirm the im-
portance of each separate feature used to train our detector, we compare with the results of detec-
tors trained with only a subset of the available features. Our main observation is that the largest
part of the performance improvement is due to the multi-cue combination, as illustrated by the
precision-recall curves of the different cues in Fig. 2.11: when using only Brighntess gradients the
performance is very similar to Linderberg’s ridge detector, implemented as in [41]. But since our
learning-based framework allows us to combine different cues in a data-driven way, adding more
cues consistently improves performance, and we attain a uniformly better performance throughout
the precision-recall spectrum.

We also compare our algorithm to the more recent, learning-based approach of Levinshtein
et al. [56]; since their algorithm returns binary results we have a single point corresponding to
the precision and recall of their detector, amounting to an F-measure of 0.355. We note that they
solve a slightly different problem (delivering line segments for symmetry), and they do not use our
dataset for training, so the comparison is somehow skewed in favor of our method; still there is a
quite substantial difference, as also suggested by the qualitative results shown in Fig. 2.10. Our
technique also delivers continuous contours, which can be subsequently broken and re-grouped at
will; as such, we do not make “early commitments” from which it may be hard to recover post-hoc.

Our dataset and implementation is publicly available at [61]. We are currently exploring ways
to integrate these cues in subsequent tasks, such as image segmentation [45], ‘objectness’ estima-
tion [44] and region/symmetry-based object recognition with deformable models [41, 43].
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(a) Lindeberg [41, 52] (b) Levinshtein [56] (c) Our work [2] (d) Ground truth

Figure 2.10: Qualitative results for all three compared methods and respective ground-truth.
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CG+BG+TG+SP: F=0.434

CG+BG+TG: F=0.427

BG+TG: F=0.415

CG+BG: F=0.375

Lindeberg: F=0.360

Levinshtein: F=0.356

(a) Precision-recall curves (b) Lindeberg [41, 52] (c) Levinshtein et al [56] (d) Our work [2]

Figure 2.11: Quantitative and qualitative comparison of our detector with other methods. In (a)
we plot the performance of our detector trained with different feature combinations to illustrate
the boost due to color and spectral features. The ground truth F-measure is represented by the red
iso-curve. For (b) we use the implementation of [41] and for (c) the available code of [56]. .

2.3 Contour grouping with linear-fractional programming

Despite any advances in contour detection, detector failures due to occlusions, poor illumination,
or strong shading are inevitable. This calls for a contour grouping stage that will provide higher-
level modules with long and informative structures by linking fragmented contours. Grouping has
also been argued [62, 63] and empirically demonstrated in [20, 64, 65] to eliminate isolated edge
fragments, thereby boosting contour detection performance in the high-precision regime.

Contour grouping is commonly phrased in terms of optimizing a length-normalized saliency
measure [64–66]. This ensures scale-invariance, cancelling the short contour bias of un-normalized
criteria, e.g. [12], but the resulting optimization problem becomes harder.

Our contribution consists in phrasing this optimization task as a fractional programming prob-
lem, which in turn can be solved using linear programming [67]. Our approach has two positive
aspects: first, we have the same flexibility as [65], namely we can solve both open and closed
contour grouping. Second, we use standard linear programming, resulting in substantially simpler
implementations than those proposed e.g. in [65]. Our implementation is available at [68].

Cost Ratio Optimization

We use a graph-based formulation for grouping, which views contours as cycles in a graph. Fol-
lowing [69] we use a bidirected graph, representing each line segment with two nodes -one for
each direction; we will be referring to such nodes as conjugate. Closed contours amount to cycles
of this graph, i.e. paths that begin and end at the same node. Furthermore, introducing connections
between conjugate nodes [65] allows us to also associate open contours with graph cycles by using
two ‘u-turn’ connections at the curve’s endpoints, as shown in Fig. 2.12 on the right.
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Figure 2.12: Graph construction following [69] and [65]: Left: A bidirected graph is constructed
by separately treating edges with different directions. Right: Connections among conjugate nodes
help detect open contours as cycles in a graph.

Turning to finding good contour groups, an idea that has been broadly used in the grouping
literature is to normalize any contour-dependent energy by the contour’s length, so as to ensure
scale-invariance; this has first been introduced in the Minimum Ratio Weight Contours of [66] and
extended in the works of [64, 70, 71]. In the continuous setting this amounts to scoring a candidate
curve Γ in terms of the ratio of two curvilinear integrals:

C(Γ) =

∫
Γ

(
E(s) + aκ2(s)

)
ds+ cT∫

Γ 1ds
=
W(Γ)

L(Γ)
, (2.12)

where κ is the curve’s curvature, E(s) = − logPB(s) is a local term formed in terms of the
boundary strength and cT is an, optional, termination penalty that favors longer curves. We thus
have an Elastica-type [13] smoothness penalty combined with a local boundary strength to mea-
sure the quality of a curve, and a length normalization term which ensures the score will remain
invariant to image scaling, modulo the complexity term, cT . Using the rightmost fraction, we will
refer to W (Γ) as the ‘weight’ of the curve and to L(Γ) as its length.

Mapping this continuous setting to the discrete, graph-based setting is detailed in [3], but is
mostly straightforward, involving the substitution of integrals in Eq. 2.12 by line-based approx-
imations. This allows us to write the numerator and denominator of the grouping criterion in
Eq. 2.12 for any cyclic path traversing nodes (e1, . . . , eC , e1) as:

W(Γ) '
C∑
i=1

wei,ei+1 + cT , L(Γ) '
C∑
i=1

lei,ei+1 (2.13)

which in turn allows us to formulate our problem as a minimum cost ratio cycle detection problem,
i.e. finding a graph cycle that has the minimum cost, when divided by the length of the path.

Fractional-Linear Programming Grouping

Finding the minimum cost ratio cycle on a graph is a well-studied combinatorial optimization
problem that can be addressed with a variety of discrete optimization techniques, covered in [66].
However these solutions require implementing nontrivial algorithms such as finding zero-weight
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Figure 2.13: The first (strongest) 50 groupings found by our algorithm. Please see in color.

cycles [66], maintaining priority queues and hashing schemes [64], approximately finding circular
paths with largest area [65], and using linear [66] or binary search [71] for the optimal cost value,
and solving a combinatorial problem for each such value. This makes them hard for non-experts
-at least the author- and impedes their broader adoption. Here we propose an approach based on
fractional-linear programming, whose main advantage is being substantially simpler to implement
and understand: its implementation amounts to setting up a linear program, which can be solved
using standard libraries such as MOSEK.

Since in Eq. 2.13 we express the numerator and denominator of our cost criterion in terms
of the weights/lengths of graph connections, we formulate our optimization problem in terms of
variables that indicate whether a graph connection is used. We therefore now switch to using
indexes for connections, while if a connection between nodes i, j is indexed by k we will denote
the ‘conjugate’ connection between j′, i′ as k′. We use vk to indicate whether the k-th connection
is used, and relax the constraint vk ∈ {0, 1} to vk ∈ [0, 1]. We introduce the node-connection
adjacency matrix A, whose entry Ai,k is +1 when connection k departs from node i and −1 when
it arrives. Finally, depending on the kind of group we want to extract (closed/open contour) we
introduce appropriate constraints to ensure that the solution delivered by the linear program will
correspond respectively to a closed contour (no pair of conjugate nodes is used) or an open contour
(only conjugate nodes are used).

Putting these together, our optimization problem becomes:
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min

∑
k vkwk + cT∑

j vklk
(2.14)

s.t. vk ≥ 0, vk ≤ 1, ∀k (2.15)∑
k

vkAi,k = 0, ∀i (2.16)

Open Curves : vk − vk′ = 0 (2.17)∑
k∈K′

vk = 2 (2.18)

Closed Curves : vk + vk′ ≤ 1, (2.19)∑
k∈K′

vk = 0 (2.20)

The optimized quantity in Eq. 2.14 is the ratio between the aggregated cost of the utilized
connections and their length, in direct analogy to Eq. 2.12. Constraint Eq. 5.4 guarantees that
the connections will form a cycle. The open-curve constraint Eq. 2.17 assures that for each used
connection k its conjugate connection k′ will also be used, ensuring that an open curve will travel
back in the same way that it went from one endpoint to another. On the flip side, the closed curve
constraint Eq. 2.19 allows the use of only one of the conjugate connections. The set K ′ appearing
in Eq. 2.18 and Eq. 2.20 consists of the connections among conjugate nodes, i.e. points where a
curve turns around. Eq. 2.18 thus constrains each open curve to have two such nodes, one in its
middle and another in the end, while Eq. 2.20 prohibits the use of such nodes for closed curves.

Having described our optimization problem we can turn to solving it. As detailed in [67],
an optimization problem of this form can be converted into a linear program. In specific, for
y = x

eT x+f
and z = 1

eT x+f
, the following two optimization problems are equivalent:

P1 : min
cTx+ d

eTx+ f

Gx ≺ 0

Ax = b

min cT y + dz

Gy − hz ≺ 0, z � 0

Ay − bz = 0, eT y + fz = 1

Having built the matrices for the original fractional programming problem, solving the equiv-
alent problem can be done efficiently using any sparse LP library. We detect contours greedily,
by iteratively solving the fractional-linear program above, and for every edge that participates in a
grouping all of its connection weights are set to infinity at the next iteration. Fractional solutions
can occur when the flow along a patch splits into two halves at a certain edge and merges later
on at a subsequent edge. Whenever this happens, we temporarily remove all connections includ-
ing such edges and solve the optimization problem again. On average, the optimization takes a
fraction of a second per contour and approximately 20 seconds for an image containing 200-300
hundred contours. The 50 strongest groupings per image are shown in Fig. 2.13 for several images
of the BSD300 dataset. In [3] it was demonstrated that this improved the performance of a baseline
detector; it remains to be seen whether this is also the case for the detectors described previously.
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Chapter 3

Invariant Image and Surface Descriptors

This chapter describes descriptors that achieve scale and rotation invariance without relying on
scale or rotation estimation - this allows us to compute such descriptors densely. We first adapt
the Fourier Transform Modulus technique [1, 2] to construct dense Scale-Invariant Descriptors
(SIDs) for images [3, 4]. We then combine scale- and rotation- invariance with robustness to
occlusions and background changes by incorporating segmentation information in the construction
of ‘segmentation-aware’ SID and SIFT descriptors [5].

For surfaces in [6] we use the same idea to construct a scale-invariant extension of Heat Kernel
Signatures [7]. Our method constructs signatures that are invariant both to isometries, namely
deformations that preserve geodesic distances, and to scale changes. In [8] we employ a geometry-
based surface charting technique to generalize shape-context [9] to surfaces, and thereby construct
meta-descriptors with increased discriminative ability.

These descriptors are validated in point matching, wide- baseline stereo and large-displacement
optical flow for images, and surface retrieval and matching for surfaces. Their implementation is
available from [10].

3.1 Dense scale-invariant image descriptors

A common problem that emerges in the computation of local descriptors is the variability of the
signal scale. The standard approach to cope with this is to use scale selection [11, 12], which
consists in estimating a characteristic scale around the few image or shape points where scale
estimation can be performed reliably. However, it is often desirable to have a scale-invariant
descriptor that can be constructed densely. One such scenario is when using a group of contour
points for recognition - ideally we should be able to estimate scale invariant features ‘on-demand’,
at any feature point. One partial remedy for edges was proposed in [13], but this still cannot be
guaranteed to work at any image point. This may be necessary for instance when establishing
dense image correspondences in the presence of scale changes.

We will argue that one can instead adapt the Fourier Transform Modulus-based image reg-
istration technique [1, 2, 14] to the construction of descriptors and thereby guarantee scale- and
rotation- invariance at any image point. We start with a brief illustration of the technique for a
one-dimensional signal and then present how it applies to image descriptors.
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Figure 3.1: Turning scaling into translations for 1D and 2D Signals: The left column demon-
strates for a 1D signal how the logarithmic transformation x′ = log(x) turns scaling into trans-
lation: the red-solid (f(x) = cos(x)) and blue-dashed (g(x) = cos(2x)) functions differ by a
scale factor of two; the transformation f ′(x) = f(log(x)) delivers f ′(x) = cos(log(x)), g′(x) =
cos(log(x)− log 2), which differ by a translation. The next columns illustrate the same effect for
2D signals. The second column shows the descriptors computed on a point before and after scal-
ing and rotating an image; the needle length indicates directional derivative magnitude. The next
two columns show the respective magnitudes across and along the ray direction, demonstrating
that image scaling and rotation is turned to a translation. The point is arbitrary (i.e. not a cor-
ner/junction/blob center), therefore scale selection around would not be reliable, or even feasible.

Scale Invariance without Scale Selection

We consider first describing a one-dimensional signal f(x), x > 0 in a manner that does not
change when the signal is scaled as f(x/a), a > 0. Using the domain transformation x′ = log(x)
we can define a new function f ′ such that

f ′(x′)
.
= f(x), where x′ = log x, (3.1)

which is what we will be referring to as the ‘logarithmically transformed’ version of f ; this is
illustrated also in the top row of Fig. 3.1. For this particular transformation, dilating f by a will
amount to translating f ′ by a constant, log a:

f ′(x′ − log(a)) = f(x/a), or, (3.2)
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meaning that we turn dilations of f to translations of f ′.
Based on this transformation, we can extract a scale-invariant quantity based on the fact that

if g(x) and G(ω) are a Fourier transform pair, g(x − c) and G(ω)e−jωc will be a transform pair
as well (by the shifting-in-time property). Defining fa(x′) = f ′(x′ − log(a)), and denoting by
Fa(ω) the Fourier Transform of fa(x) we then have:

Fa(ω) = F1(ω)e−j log(a)ω, or, (3.3)

|Fa(ω)| = |F1(ω)|. (3.4)

From Eq. 3.4 we conclude that changing a will not affect the Fourier Transform Modulus |Fa(ω)|
of fa, which can thus be used as a descriptor of f that is invariant to scaling.

As shown in the bottom row of Fig. 3.1, a 2D scaling and rotation can similarly be converted
into a translation with a log-polar transformation of the signal - and then eliminated with the
FTM technique. The principle behind this approach is commonly used in tasks involving global
transformations such as image registration [1, 2] and texture classification [14] and is broadly
known as the ’Fourier Transform Modulus’ (FTM) technique.

Scale Invariant Descriptor (SID) construction

Our main contribution consists in adapting the FTM technique to the construction of local de-
scriptors. As such, our technique has the potential to apply to scenes with local, non-rigid trans-
formations. This requires firstly a discrete formulation. We construct a descriptor around a point
x = (x1, x2) by sampling its neighborhood along K rays leaving x at equal angle increments
θk = 2πk/K, k = 0, . . . ,K − 1. Along each ray we use N points whose distances from x form
a geometric progression rn = c0a

n. The signal measurements on those points provide us with a
K ×N matrix:

h[k, n] = f [x1 + rn cos(θk), x2 + rn sin(θk)] , (3.5)

With this sampling scheme image scaling and rotation will turn into horizontal and vertical trans-
lation of h. From the time-shifting property of the Discrete-Time Fourier Transform (DTFT) we
know that if h[k, n]

F↔ H(jωk, jωn) are a DTFT pair, we will then have:

h[k − c, n− d]
F↔ H(jωk, jωn)e−j(ωkc+ωnd), (3.6)

therefore taking the absolute of the DTFT yields a scale- and rotation- invariant quantity.
One subtlety is that image scaling does not result in a cyclic permutation of the array elements,

but rather introduces new observations at fine scales and removes others at coarse scales when
usampling and vice versa for downsampling. Experimentally it turns out that scaling factors in
the order of 2 or 3 do not have noticeable effects on the descriptor’s invariance, but after that
performance starts dropping.

Apart from a discrete formulation, we also need to preprocess the image so as to (a) discount
illumination changes, (b) allow sparse sampling, and (c) allow for efficient dense computation.
For illumination invariance we had originally [3] considered using the monogenic signal [15],
but currently [4, 5] rely on Daisy-like descriptors [16] as these are simpler to compute. Namely,
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instead of the signal values, we sample the directional derivatives of the signal, along a set of
orientations offset by the current ray’s orientation (see e.g. Fig. 3.1 for the components along, and
perpendicular to the ray). For sparse sampling we showed [3] that invariance requires a ‘foveal’
smoothing pattern [17–19], using a smoothing scale that is linear in the distance from the descrip-
tor’s center. This is incorporated in the construction of Daisy and our own adaptation. Finally,
for memory- and time- efficient dense computation we combine Daisy [16] with steerable filtering
[20] and recursive Gaussian convolution [21]. This allows us to compute 136x170 descriptors for
a 700x1000 image in approximately 10 seconds [4].

Results

Starting with qualitative results, in Fig. 3.2 we show the values of the lowest frequency coefficients
of densely computed descriptors on two images related by scaling and rotation. We see that the
descriptor values are effectively invariant, despite a scaling factor in the order of 2. In the last
column we use the two points on the left image as references and ‘query’ the right one for points
having similar descriptors. We then show the similarity of ‘query’ point descriptors to the red (left)
and the green (right) reference points, which indicates the discriminative ability of the descriptor
- even though locally the structures are similar, the context helps disambiguate them.

Reference Image SID, d ∈ {1, 2, 3} SID, d ∈ {4, 5, 6} similarity(Query,Red)

Query Image SID, d ∈ {1, 2, 3} SID, d ∈ {4, 5, 6} similarity(Query,Green)

Figure 3.2: Visualization of dense SID: the location of the reference image within the query image
is indicated by the red box; the scaling transformation amounts to an area change in the order of
four. We align query descriptors after their computation, and visualize three of their dimensions
as R, G, and B channels - demonstrating that they are effectively invariant. The bottom row shows
as a hue map the similarity between query descriptors and reference points (colorful means large).

For quantitative evaluations we use the dataset, code and protocol of [22]: ground truth corre-
spondences between two images of an identical scene are used to evaluate interest point matches
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that are found based on descriptor similarities. Even though our descriptors can be computed
densely, we use the Hessian- and Harris- Laplace interest point operators of [22], in order to com-
pare with SIFT descriptors on equal grounds. We do not compare with Hessian- and Harris- affine
detectors, as our descriptors are not designed to cope with affine transformations. We refer to [4]
for a more thorough description of the evaluation procedure.

Scl.& Rot.

Similarity

0 0.5 1
0

0.5

1

k- nearest

0 0.5 1
0

0.5

1

Distance Ratio

0 0.5 1
0

0.5

1

Scl.& Rot.

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Scl.& Rot.

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Scl.& Rot.

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Affine

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Illumination

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Focus/Blur

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Compression

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 3.3: Precision-Recall curves comparing SIFT (black) to our descriptor computed with a maximal
ring size of 100-red 150-green and 200-blue pixels; solid curves are for Hessian-Laplace interest points,
dashed for Harris-Laplace. Left: scaling and rotation transformations. Right: other transformations.

In Fig. 3.3 we use all three of the evaluation measures proposed in [22] (‘similarity’, ‘k-
nearest’, ‘distance-ratio’), to compare our descriptor to SIFT. According to all three criteria our
descriptor outperforms SIFT for a broad range of scale changes; moreover, as the radius of the
descriptor shrinks, performance degrades, but gracefully. However, above a certain amount of
image scaling the results become ambiguous, with SIFT performing equally well or better, as is
the case in the first column, particularly for small radii. From several additional experiments that
we have conducted with synthetic transformations we have concluded that for area changes up to
an order of 9 (equivalently, resolution changes by a factor of 3) our approach can give results that
are at least as good as those of SIFT.

One caveat is that the dimensionality of our descriptor, as implemented in [4] is one order
of magnitude larger than SIFT, which could skew the results in our favor; in on-going work we
have reduced our descriptor’s dimensionality to 128, while maintaining an advantage over SIFT
for point matching. Still, what we believe is the main advantage of our approach is that it provides
us with densely computable scale- and rotation- invariant descriptors. Our descriptors can thus be
used for tasks such as dense image correspondence, as described next.
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(a) Input Image

⇒

(b) SIFT

⇒

(c) SSIFT (d) SIFT similarity

⇓ ⇑

(e) Soft segmentation

⇒

(f) Pixel affinity

⇒

(g) Soft gating mask (h) SSIFT similarity

Figure 3.4: Overview of our method: when extracting a SIFT descriptor around the red point in
image (a), background structures influence the descriptor entries, as shown in image (b). To deal
with this we use soft segmentation embeddings, shown as an RGB image in (e) for the first 3
dimensions of [23] to measure the probability that neighboring points belong with the descriptor’s
center, as shown in (f). Using this we construct a gating signal, shown in (g) which yields the
Segmentation-aware SIFT (SSIFT) descriptor, shown in (c). SSIFT contains effectively no mea-
surements from the background. In (d) and (h) we illustrate the similarity between the descriptor at
the red point of image (a) and descriptors computed densely in the image, using SIFT and SSIFT;
we observe that for SSIFT the similarity function is more sharply peaked around the position of
the red point, indicating its higher distinctiveness.

3.2 Segmentation-aware descriptors

A practical concern about our SID descriptors is that as we sample features at distant ‘rings’ of our
descriptor it becomes increasingly likely that the measurements will come from points belonging
to different objects, and are therefore likely to be different in new images. This problem is present
in any other descriptor, e.g. SIFT, but becomes more pronounced in SID because of the large
distance of the outer rings.

In [5] we address this problem using segmentation information to reduce the effects of occlu-
sion and background changes. As illustrated in Fig. 3.4, we incorporate segmentation information
in descriptor construction through a soft ‘gating’ mask that modulates local measurements, effec-
tively shuning those parts of the image which apparently do not belong to the same object/surface
as the descriptor’s center. This idea can be traced back to the structure-preserving filtering used in
nonlinear diffusion [24, 25], the bilateral filter [26], the segmentation-sensitive normalized convo-
lution [27], and also to the self-similarity descriptor of [28]. What is different is that (i) we use a
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Figure 3.5: Soft segmentation cues: We show as RGB maps the first three coordinates of the
embeddings provided by the normalized cut eigenvectors of [29] ‘Eigen’ (middle row) and the
PCA subspace formed in the Global boundary technique of [23] (‘SoftMask’, bottom row).

‘mid-level’ segmentation module to reason about which pixels go together, rather than relying on
low-level cues, and (ii) we combine this with SIFT/SID descriptor construction, rather than image
smoothing. This systematically increases the performance of both SID/Daisy and SIFT descriptors
on multi-layered motion estimation and wide-baseline stereo.

Soft segmentation masks

Since our goal is to use, rather than solve, segmentation we have avoided hard segmentation
schemes, which will inevitably come with errors, but rather preferred to use algorithms that do
not strongly commit to a single segmentation; we use their results to determine the affinity of a
pixel to its neighbors in a soft manner, and then incorporate it into descriptor construction.

We explore two different approaches to extracting such soft segmentations. Firstly, we use the
approach of [29], which first estimates a boundary-based affinity using the ‘intervening contour’
technique of [30], and then ‘globalizes’ these affinities by finding the eigenvectors of the relaxed
Normalized cut criterion [30]. We also use the soft segmentation masks of Leordeanu et al [23],
which are two orders of magnitude faster to compute. There the authors construct local color
models around each pixel and form a large set of figure/ground segmentations, which are then
projected to a lower dimensional subspace through PCA; this provides us with a low-dimensional
pixel embedding in a soft segmentation space. For simplicity, we refer to the eigenvector embed-
dings of [29] as ‘Eigen’, and to the soft segmentation masks of [23] as ‘SoftMask’. Fig. 3.5 shows
the first three coordinates of the ‘Eigen’/‘SoftMask’ embeddings as an RGB image. Note that the
embeddings from Gb have higher granularity, which makes them a bit more noisy, but also better
suited to capturing smaller features.
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We use these quantities to construct a soft affinity mask w[i] between a point x and every other
point on its descriptor grid, G[i](x) as a decreasing function of their embedding distance:

w[i] = exp
(
−λ‖y(x)− y(G[i](x)‖22

)
, (3.7)

where y(·) is the embedding of point ·, and λ determines the softness of the mask. Given this
mask we modify the measurements extracted around each grid point as D′[i] = w[i]D[i] where for
SID D[i] is the concatenation of oriented Gaussian derivatives at grid point i, while for SIFT D[i]

are the entries of the SIFT cell positioned at [i]. As w[i] ∈ [0, 1], this has the effect of discounting
measurements that come from the background (occluders, background objects), and ensuring that
a descriptor is mostly affected by points belonging to the same region.

Results

We evaluate the merit of our technique on large-displacement optical flow and wide baseline
stereo. We use both ‘Eigen’ and ‘SoftMask’ embeddings, and several dense descriptors: SID,
dense SIFT -DSIFT [31], and Scale-Less SIFT (SLS) [32]. We use SLS both in its original form
and a PCA variant made available by the authors: we refer to them as SLS-paper and SLS-PCA.
For SID we also consider a scale-invariant, but rotation-equivariant version, called SID-Rot; this
can be obtained by applying the FTM technique only on the scale dimension. We will use the ‘S’
prefix to indicate ‘Segmentation-aware’; for instance ‘SSID’ stands for the SID variant.

For large-displacement optical flow we use the Berkeley/JHU Motion Dataset (Moseg) [33,
34], where ground truth comes in the form of segmentation masks for roughly one every ten frames
in a video sequence. We evaluate SSID/SSID-Rot with ‘Eigen’ and ‘SoftMask’ embeddings
against DSIFT, SLS, SID and SID-Rot. To establish correspondences we use SIFT-Flow [35],
which combines dense descriptor matching with optical flow regularization. For any image pair
we use the estimated flow to register the segmentation mask in the second image to the first one,
and compute their Dice coefficient.

Quantitative results are provided in Fig. 3.6. The first image compares the results for all
SID/SSID variants: SSID and SSID-Rot outperform their raw counterparts, SID and SID-Rot
by large, in particular for large frame displacements; furthermore, SID-Rot outperforms SID,
apparently due to the absence of strong rotation variation. The second image compares the best
results obtained from our approach against the other dense descriptors. The best overall results are
obtained by SSID-Rot with ‘SoftMask’ embeddings, followed by the same descriptor with ‘Eigen’
embeddings. The last image uses the ‘SoftMask’ embeddings in conjunction with DSIFT, using
three different SIFT scales; again, SDSIFT outperforms DSIFT across all scales, albeit with a λ in
Eq. 3.7 that may need to be set separately at different scale, as detailed in [5].

Qualitative results are shown in Fig. 3.7; there we use the estimated flow to warp the image in
the second column to the image in the first column, therefore a good registration should bring the
object in alignment with the segmentation mask. The latter is superimposed on the warped images
for visual validation. Again, SSID-Rot outperforms SID-Rot, which in turn is better than other
descriptors. Similar improvements are observed when comparing SDSIFT with DSIFT.

For wide-baseine stereo we use the dataset of [36], which contains multi-view sets of high-
resolution images with ground truth depth maps; we use the ‘fountain’ set as it contains wider

50



10+ 20+ 30+ 40+ 50+ 60+
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
v
e

rl
a

p
 (

D
ic

e
 c

o
e

ff
ic

ie
n

t)

Frame difference

Overlap (accumulated), SID/SSID descriptors

 

 

SSID−Rot, SoftMask

SSID, SoftMask

SSID−Rot, Eigen

SSID, Eigen

SID−Rot

SID

(a) SID vs. SSID

10+ 20+ 30+ 40+ 50+ 60+
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
v
e

rl
a

p
 (

D
ic

e
 c

o
e

ff
ic

ie
n

t)

Frame difference

Overlap (accumulated), all descriptors

 

 

SSID−Rot, SoftMask

SSID−Rot, Eigen

SID−Rot

SLS−paper

SLS−PCA

DSIFT

(b) All descriptors

10+ 20+ 30+ 40+ 50+ 60+
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
v
e

rl
a

p
 (

D
ic

e
 c

o
e

ff
ic

ie
n

t)

Frame difference

Overlap (accumulated), Segmentation−aware DSIFT

 

 

SDSIFT, bin size 8, λ=40
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SDSIFT, bin size 2, λ=40

DSIFT, bin size 8

DSIFT, bin size 4

DSIFT, bin size 2

(c) DSIFT vs. SDSIFT

Figure 3.6: Average DICE coefficient results on the Moseg Dataset for different descriptor set-
tings; the results are accumulated, so the first bin includes all frame pairs, the second bin includes
frame pairs with a displacement of 20 or more frames, and so on.

First image Second image DSIFT SLS-PCA SID-Rot SSID-Rot, ‘SoftMask’

Figure 3.7: Large displacement image matching using SIFT flow, for the different descriptors
considered in our work. We warp image 2 to image 1 using SIFT-Flow with different descrip-
tors. The ground truth segmentation masks of image 1 are overlaid in red; we observe that the
segmentation-aware variant SSID-Rot does best, and is better than SID-Rot.

baselines. For these kinds of image pairs occlusions become very pronounced and can hamper
any appearance-based matching algorithm. The wide-baseline stereo algorithm described in [37]
handles occlusions by using latent occlusion masks; these are updated through an iterative process
that gradually refines the depth estimates. Our main result is that we can attain performance
comparable to this iterative scheme while using a single-shot algorithm.

We use a set-up similar to that of [37], namely we discretize 3D space into k = 50 bins, we
use epipolar constraints and the range of the scene to restrict the candidate matches, and use Tree-
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Figure 3.8: Descriptor matching accuracy as a function of stereo baseline: The left image shows
accuracy for visible pixels only, and right image compares the iterative variant of Daisy to our
single-shot approach, on both visible and occluded pixels.

Right image Left image Ground truth depth Daisy, 1 iteration Daisy, 5 iterations SSID, ‘Eigen’

Figure 3.9: Daisy-based vs. SSID-based wide-baseline stereo, for two different baselines (images
from [36]): we observe that while employing a single-shot algorithm, we obtain similar, or better,
results to those of the iterative Daisy algorithm at convergence.

Reweighted Message Passing [38] to enforce piecewise smoothness. We first evaluate descriptor
accuracy only on visible pixels using the ground truth visibility maps from [36]. We use SID,
SSID, DSIFT, Daisy and SLS-PCA; for DSIFT, Daisy and SLS-PCA we align the descriptors with
the epipolar lines for rotation invariance, as in [37]. As shown in the left image of Fig. 3.8, our
segmentation-aware descriptors outperform most others, except occasionally for SLS-PCA, which
is however more than two orders of magnitude slower. In the right image of Fig. 3.8 we compare
to the full-blown, iterative Daisy stereo algorithm for 5 iterations; our SSID-based algorithm per-
forms comparably, or better than Daisy on most baselines, while being single-shot and not relying
on the calibration data to rotate patches. Figure 3.9 displays depth estimates at two baselines.

We note that our descriptors are of higher dimensionality than Daisy - we are now working
on reducing their dimensions to make the results directly commensurate. We are also considering
ways of extending these results to higher-level tasks, such as object classification, or detection.
The recent results of [39] suggest that incorporating segmentation features can largely increase
detection accuracy, we are therefore interested in examining whether segmentation-aware features
can yield a complementary increase in performance.
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3.3 Scale-invariant surface descriptors

We now describe how the idea of achieving scale-invariance without scale selection transfers to
the analysis of surfaces. A rich set of applications around non-rigid surface analysis emerge with
the growth of internet repositories of geometric data, such as Google Warehouse [40], and also the
advent of commercial depth sensors, such as Microsoft’s Kinect. Surface retrieval is challenging
because of changes in scale, orientation, non-rigid deformations, missing data, and differences in
shape formats and representations. We begin by outlining the work of [7] on Heat Kernel Signa-
tures and then describe the results of two collaborative works [4, 6] on making these descriptors
scale-invariant, and context-aware, respectively.

Heat Kernel Signatures

A well-established fact in image processing is that the Gaussian scale space of an image I(x) can
be obtained by solving the heat diffusion equation:(

∆ +
∂

∂t

)
u = 0, (3.8)

with initial condition u(x, 0) = I(x), where ∆ is the Laplacian operator; the solution u(x, t)
of this partial differential equation delivers at any point a one dimensional signature u(x, ·) that
captures multi-scale image properties around x. Heat propagation on non-Euclidean domains is
governed by a similar diffusion equation:(

∆X +
∂

∂t

)
u = 0, (3.9)

where now ∆X denotes the Laplace-Beltrami operator on the surfaceX , a Riemannian equivalent
of the Laplacian. The solution of Eq. 3.9 for a point heat distribution u0(x) = δ(x − z) is called
the heat kernel KX,t(x, z) and can be presented as [41]:

KX,t(x, z) =
∞∑
i=0

e−λitφi(x)φi(z), (3.10)

where λ0, λ1, ... ≥ 0 are eigenvalues and φ0, φ1, ... are the corresponding eigenfunctions of the
Laplace-Beltrami operator, satisfying ∆Xφi = λiφi. Approximating Eq. 3.10 with only the first
few (50) eigenpairs of the Laplace-Beltrami operator allows for an efficient computation of the
heat kernel, with negligible loss in accuracy.

Sun et al. [7] constructed the heat kernel signature (HKS) of a point x by sampling the diag-
onal of the heat kernel at a set of q time values: h = (h(t1), ..., h(tq)), where h(t) = KX,t(x,x).
The HKS captures multi-scale shape curvature information and is invariant to isometries of X , by
virtue of being intrinsic. As shown in Fig. 3.10, this means intuitively that as long the as surface
deformations do not ‘stretch’ or ‘squeeze’ X the descriptors do not change. Furthermore, since
there exist methods for Laplacian discretization on different shape representations such as meshes,
point clouds, volumes, and implicit surfaces, heat kernel descriptors are particularly versatile.
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Figure 3.10: Invariance of the first three components of the HKS (shown as R, G, and B channels, respec-
tively), for a shape undergoing isometric transformations.

Several extensions and variations of HKS have been proposed: in [42] the wave kernel signa-
ture (WKS) was proposed as a solution to the excessive sensitivity of the HKS to low-frequency
information, in [43] a generalization of HKS to a broader, and learnable, family of descriptors is
proposed, while [44] developed volumetric variants of HKS. As of today, these descriptors achieve
state-of-the-art performance in shape retrieval [45].

Scale-invariant heat kernel signatures

A notable disadvantage of heat kernel descriptors is their sensitivity to shape scaling. Given a
shapeX and its versionX ′ uniformly scaled by the factor of a, the eigenfunctions and eigenvalues
of X ′ will be given by λ′ = a−2λ, φ′ = a−1φ, so the corresponding HKS at x satisfies:

h′(t) =
∑
i≥0

e−λia
−2tφ2

i (x)a−2 = a−2h(a−2t). (3.11)

Typically, the scaling factor a is unknown a priori. Even though global shape normalization is
possible, a local method of removing scale dependence is desirable, for instance to accommodate
local scaling transformations, or large surface holes. Furthermore we would like to achieve this
densely, while only a tiny fraction of surface points allow for some reliable scale selection. In
[6] we adapt the FTM technique to the problem at hand, discarding the dependence of h on the
unknown scaling factor a; this results in a Scale-Invariant Heat Kernel Signature (SI-HKS).

For this, at each point x we sample the heat kernel scale at a geometric progression of time
intervals, denoted here with slight abuse of notation as h(τ) = h(ατ ) = hατ (x, x). In words, the
value of our new function at time τ equals the diagonal of the heat kernel at time ατ . In this setup,
the HKS of the scaled shape becomes h′(τ) = a−2h(τ + 2 logα a). We have thus constructed a
function that turns surface scaling into function translation, and multiplication by a constant. In
order to remove the dependence on the multiplicative constant a−2, we take the logarithm and then
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HKS SI-HKS

Figure 3.11: Top: three components of the HKS (left) and the proposed SI-HKS (right), rep-
resented as RGB color and shown for different shape transformations (null, isometric deforma-
tion+scale, missing part, topological transformation). Bottom: HKS (left) and SI-HKS (right)
descriptors at three points of the four shapes (different points are coded with red, green, and blue;
dashed line shows the null shape descriptor). We observe that the SI-HKS descriptors are substan-
tially more robust to the deformations and stay closer to the null shape descriptor.

the derivative with respect to the scale variable; denoting by

h̃(τ) =
d

dτ
log h(τ) (3.12)

we obtain a scale-equivariant HKS: scaling a surface by α will result in a transformation of h̃′(τ)
as h̃′(τ) = h̃(τ + 2 logα a). We are now again in the setting described in the introductory section,
and can obtain an invariant signature by taking the Fourier Transform Modulus of h̃′. Figure 3.11
shows an example of SI-HKS construction; the Laplacian is computed on a triangulated mesh of
a human shape undergoing different deformations. We observe that our scale-invariant descriptor
is almost entirely invariant to the combination of scaling and isometric bending transformations.

Results

We evaluate our descriptor in the setup of Shape Google [40], using HKS/SI-HKS to construct
global shape descriptors following the bag of features paradigm used in image retrieval [46]. First,
performing clustering in the HKS space, a geometric vocabulary consisting of representative heat
kernel signatures (“geometric words”) is constructed. Next, for each point on the shape, the HKS
is replaced by the index of the most similar geometric word in the vocabulary. Finally, the distri-
bution of geometric words on the shape is computed, resulting in a bag of features representation,
which is used for retrieval based on the L1 distance.

We use the dataset and protocol of the SHREC 2010 robust large-scale shape retrieval bench-
mark [47]. The dataset consists of 715 shapes from 13 shape classes with simulated transformation
and 456 “distractor” shapes from different classes. The query set consists of 13 shapes taken from
the dataset (null shapes), with simulated transformations of different type and strength applied to

55



Isometry Topology Holes Micro holes Scale Local scale Sampling Noise Shot noise Partial Mixed Average

HKS

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

SI-HKS

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR
T

P
R

Figure 3.12: ROC curves comparing the shape retrieval performance of bags of features based on HKS
and our SI-HKS descriptors. Examples of shape transformations classes are shown above.

them (Figure 3.12, top). Each query has only one correct corresponding null shape in the dataset.
Numerical computation aspects are detailed in [4, 6].

Table 3.1 reports the mean average precision of shape retrieval using bags of features based
on HKS and SI-HKS local descriptors. SI-HKS shows dramatic improvement (from 27.42% to
98.21% mAP and from 30.34% to 65.07%) in the scale and mixed transformations classes, re-
spectively. Overall in all transformation classes and strengths SI-HKS performs better than HKS
(90% vs. 85.00%). These results are also reflected in the Receiver-Operating-Curve (ROC) plots
of Fig. 3.12.

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 100.00 100.00 100.00 100.00 100.00
Topology 100.00 98.08 97.44 96.79 96.41
Holes 100.00 100.00 97.44 95.19 90.13
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 0.98 40.68 43.31 33.72 27.42
Local scale 100.00 100.00 98.72 89.38 80.22
Sampling 100.00 100.00 100.00 100.00 99.23
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 100.00
Partial 7.54 5.70 4.51 3.58 2.95
Mixed 53.13 55.86 47.77 37.54 30.34
Average 94.94 93.12 90.84 87.82 85.00

Strength
Transform. 1 ≤2 ≤3 ≤4 ≤5
Isometry 100.00 100.00 100.00 100.00 100.00
Topology 96.15 96.15 94.87 93.27 92.69
Holes 100.00 100.00 100.00 94.71 89.97
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 91.03 95.51 97.01 97.76 98.21
Local scale 100.00 100.00 97.44 89.38 82.08
Sampling 100.00 100.00 100.00 100.00 97.69
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 100.00
Partial 17.43 10.31 9.57 8.06 6.61
Mixed 56.47 57.44 63.59 67.47 65.07
Average 97.05 95.16 94.03 92.54 90.79

Table 3.1: Retrieval Performance (mAP in %) using HKS (left) and SI-HKS (right) local descriptors.
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ISC construction SI-HKS vs ISC + SI-HKS

Figure 3.13: The Intrinsic Shape Context (ISC) descriptor is constructed as a histogram of some
field, using an intrinsic local polar coordinate system to define the histogram bins; on the left we
show such coordinate systems on three different points; the associated descriptors are shown in the
second row. The ISC construction allows us to extract ‘meta descriptors’ on top of any existing
descriptor, such as SI-HKS. Shown in the next two columns are the normalized Euclidean dis-
tances between (i) the descriptor at a reference point on the right hand (white dot) and descriptors
computed (ii-top row) on other points of the same shape, or (iii-bottom row) a distinct shape using
the SIHKS descriptor (left) and the ISC-SIHKS (right). We observe that the introduction of spatial
context improves the discriminative ability and localization of the descriptor, while still being able
to generalize to similar structures on the dog surface.

3.4 Intrinsic Shape Context descriptors

In [8] we go beyond point signatures and develop the intrinsic shape context (ISC), a generalization
of shape contexts [9] to surfaces. Unlike spin images [48] or more recent works in this direction
[49], our ISC descriptor is invariant to isometric non-rigid surface deformations.

Our construction consists in forming a local chart around every surface point, and averaging
within the chart’s compartments a vector field, such as the HKS or SI-HKS. As shown in Fig. 3.13,
we can thereby construct meta-descriptors that improve the discriminative power of any point sig-
nature. Using systematic evaluations we have verified that introducing spatial context consistently
improves performance in matching and retrieval.

Intrinsic Shape Context Construction

We start by describing the original Shape Context (SC) descriptor in a formulation that will serve
as a stepping stone for its generalization to surfaces. The Shape Context descriptor describes a
field I(x), x ∈ R2 around a point xi by averaging I over a grid formed by Nθ angular and Nρ
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radial bins centered at xi. This results in a Nρ ×Nθ-dimensional descriptor:

Sρ,θ(xi) =

∫
R2 πρ,θ(x)I(x)dx∫

R2 πρ,θ(x)dx
, (3.13)

where πρ,θ = πρπθ denotes the membership function of angular bin θ and radial bin ρ,

πρ(x) =

{
1 ‖x− xi‖2 ∈ Rρ,
0 else,

, πθ(x) =

{
1 ∠(x− xi) ∈ Rθ
0 else,

(3.14)

withRρ, Rθ denoting the supports of the radial and angular bins centered around ρ, θ, respectively.
Thus Sρ,θ is the average of I(x) over the bin ρ, θ; the hard binning can be replaced by soft binning
using probabilistic membership functions, which amounts to forming a weighted average.

There are certain technical challenges involved in extending this scheme to surfaces, involving
(i) the development of robust numerical schemes for charting with angular and radial coordinates,
(ii) the averaging of a field that is defined over a discretized surface, and (iii) the orientation am-
biguity that arises in the construction of local coordinate systems on surfaces. We have addressed
these in [8], as we briefly review below.

For surface charting around a point we ‘shoot’ and then track geodesics going outwards from
vertex xi. These provide us with the counterpart of rays in a log-polar mapping, i.e., they are
surface loci with constant intrinsic angular coordinate. The set of directions in which rays are being
shot is established by partitioning the 1-ring neighborhood of xi into segments of equal angle.
These directions are propagated using the unfolding technique of [50] which tracks a geodesic
along adjacent triangles as depicted in the right image of Fig. 3.14.

We recover the surface counterpart of circles by computing geodesic distances between the
point xi and all surface points xj using the fast marching method (FMM) [51]. We can then
recover equidistant points as r-level sets of the function dX(xi, x) = r, where we denote by
dX : X ×X → R+ the geodesic distance function, measuring the length of the shortest path on
the mesh between any pair of vertices.

In order to average a field over radial and angular surface bins, we develop intrinsic equivalents
to the definitions in Eq. 3.13. In particular the ISC descriptor Sρ,θ(xi) at point xi is given by

Sρ,θ(xi) =

∫
X πρ,θ(x)I(x)dµX(x)∫
X πρ,θ(x)dµX(x)

, dµX(x) =
1

3

∑
xi,xj∈N1(x)

(xi,xj)∈E

area(x, xi, xj) (3.15)

where dµX(x) is the local area element, equal to one third the area of the 1-ring neighborhood
of x, and πρ,θ = πρπθ, as previously, denotes the membership function of intrinsic angular bin
θ and intrinsic radial bin ρ. As detailed in [8], to compute πρ and πθ intrinsically we estimate
geodesic distances to the radial-polar grid elements using the Fast Marching Method; instead of
thresholding, we turn these distances into soft membership functions, thereby ensuring robustness
to irregular surface sampling schemes.

Finally, we eliminate the rotation ambiguity that shows up during descriptor construction; in
particular, our method for constructing Sρ,θ, could equally well result in Sρ,θ+c mod 2π, if the first
ray was chosen with another offset, c. For this we use again the FTM technique and obtain an
invariant quantity by taking the absolute of the Fourier transform of Sρ,θ along θ.
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Figure 3.14: Geometric computations involved in the construction of ISC. Left: ‘Outward shoot-
ing’ creation of the intrinsic polar grid: we regularly sample a set of directions around a point
and use them to initialize trajectories on the surface; these serve as the ‘rays’ of our intrinsic grid.
Middle: The creation of a regular intrinsic angular chart at surface point xi involves mapping its
1-ring onto the plane by using a uniform angle scaling factor, dividing the plane into equal angular
segments, and mapping them back onto the 1-ring. Right: unfolding-based propagation of direc-
tion from 1-ring triangle: The green triangle adjacent to the 1-ring triangle is mapped to the plane
of the latter, shown dashed, on the top right. The 1-ring triangle’s direction (red line) is continued
in the green triangle until it hits an edge. This is repeated for the next adjacent triangle (blue, on
the bottom row), and continued until the resulting polyline’s length reaches some threshold.

Experimental results

We have experimented with ISC based on HKS [7] and SIHKS [6] dense descriptors, as detailed
in [8]. Starting with some qualitative results, the right part of Figure 3.13 visualizes the distance
maps computed in the descriptor space from a reference point on the human shape to the rest of
the points on that shape, as well as to the points of the dog shape. Two phenomena are clearly
visible: First, using the same base descriptor (SIHKS) the ISC gives significantly better feature
localization, in the sense that the distance grows fast as one moves away from the reference point.
Second, the ISC exhibits better discriminative ability by assigning higher relative distances to the
points of the distinct dog shape, while the raw SIHKS confuses between the reference point and
some points on the dog’s paws.

The performance of our descriptor was evaluated quantitatively on the SHREC’10 robust cor-
respondence benchmark [52]. Figures 3.15–3.16 show the cumulative matching scores (CMC) of
the raw HKS and SIHKS descriptors and the ISC descriptors based on them. 1000 points were
sampled from each shape using farthest point sampling. Points from the transformed shape were
matched to the null shape and ordered using the L2 distance between the corresponding descrip-
tors. A CMC curve shows the percentage of feature points that had correct match among the
first k candidate matches; we note that the first 20 matches capture a substantial amount of correct
matches, often higher than 50%. The use of spatial contexts consistently improves the descriptor
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Figure 3.15: Cumulative matching score curves (CMC) averaged over all types of shape transfor-
mations for (a) different descriptors, (b) the ISC-SIHKS descriptor and different types of shape
transformations, (c) the full-blown ISC-SIHKS descriptor versus using only the DC components.
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Figure 3.16: CMC curves of different shape descriptors broken down by different types of shape
transformations.

performance under all transformations, on the average by over 10%. Moreover, the use of exclu-
sively the DC components of the Fourier Transform -i.e. the result of averaging over orientations-
harms performance when compared to using the full-blown descriptor.
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Chapter 4

Learning Shape Models for Objects and Actions

The task considered in this chapter is to develop object/action models after observing a set of
training examples that do not contain any hand-segmented structures; instead we use only weak
annotations that come in the form of bounding boxes. We further assume that we have a front-end
system that can turn an image, or a video, into a set of geometric primitives, such as contours or
point trajectories respectively.

We address three tasks, pursued in [1–3] respectively: (a) bringing a training set of images
into registration through non-rigid, class-specific transformation models; this allows us to con-
struct a ‘template’ for our category and makes subsequent tasks easier by establishing a common,
deformation-free ‘template’ domain (b) discriminative training of hierarchical shape-based mod-
els; we use end-to-end training to score candidate image-based object instantiations and (c) dis-
criminative training of a fully-connected part-based model for action recognition; we thereby elicit
relative motion information through pairs of part trajectories and jointly recognize and localize ac-
tions in videos.

Our results demonstrate that by using a shape-based representation we not only deliver a deci-
sion about the presence of an object, but also support it by visual evidence coming in the form of
contours/trajectories. This allows for a more detailed interpretation, or ‘parsing’ of the input.

4.1 Learning object deformation models

Modeling deformations within a category can simplify subsequent learning tasks by factoring out
the effects of intra-class shape variability. This idea underlies several works that explicitly [4–6] or
implicitly [7, 8] establish correspondences among images in a training set. In our work [1] we build

Figure 4.1: Typical images from our training set. Our method can handle substantial amounts of
occlusion and does not require manual segmentation annotations.
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on the deformable template paradigm and consider that object instances are obtained by deforming
a prototypical object, or ‘template’, through deformation fields modeled by simple parametric
models. Given an observed image I(x) and a template T (x) we assume that a deformation field
S : R2 → R2 maps every template point x to an image point S(x) so that:

I(S(x)) ' T (x). (4.1)

There are two broad classes of deformable template models: first, Active Appearance Models
(AAMs) [9, 10] model deformations as expansions on a category-specific basis, S1 . . .SN :

S(x; s) = (Gx(x; s),Gy(x; s))
.
=

N∑
i=1

siSi(x), (4.2)

where s are image-specific expansion coefficients. Second, piecewise-linear, or part-based, defor-
mation models break the deformation field into regions, and account for translation [7, 11–13],
scaling, rotation and translation [14], or affine transformations [14, 15] using a separate linear
model per region. For instance in [14] in the coordinate system determined by the ith region the
template point x = (x, y) is mapped to the image point x′ = (x′, y′) as:[

x′

y′

]
=

[
sxi cos(θi) −syi sin(θi)
sxi sin(θi) syi cos(θi)

] [
x− xi
y − yi

]
=

[
1 0 x y 0 0
0 1 0 0 x y

]
Pi, (4.3)

where (sxi , s
y
i ), θi, and (xi, yi) are the scaling, rotation and translation parameters respectively,

while Pi, is used for an equivalent, linear parameterization of the deformation.
When learning such models without landmarks there are two different types of unknowns:

first, the model parameters (S, T for AAMs), which determine the possible deformations and
appearance of the object category and, second, the deformation variables (s for AAMs), which
specify the particular transformation needed to model the individual training samples. To tackle
this problem we apply the EM algorithm [16], using the M-step to estimate model parameters and
the E-step to find the latent deformation variables.

Learning Active Appearance Models

If we know the AAM parameters, T (x) and {Si(x) : i = 1, ..., NS}, we can fit an AAM to an
input I by minimizing a least squares criterion E(s) with respect to the expansion coefficients s:

E(s) =
∑
x

(I(S(x; s))− T (x))2 , S(x; s) =

N∑
i=1

siSi(x) (4.4)

AAMs commonly account for appearance variability by using linear models in the expression of
T ; but we omit this since we use shape-based features. The criterion in Eq. 4.4 is nonlinear in s,
but iterative algorithms [9] can deliver good solutions when properly initialized.

However, as we do not know the model parameters, T ,S, we need to resort to an EM-based
scheme to jointly estimate all unknowns. Omitting intermediate steps [1, 17] that make the link
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Initial After contour-aligned Mean Shift

Figure 4.2: Illustration of the contour alignment used for shape basis initialization: Left: super-
imposed edge contours from the whole car training set, as aligned by the previous AAM learning
iteration. Right: same points, after 6 iterations of contour-aligned Mean-Shift procedure described
in the text.

with EM, we phrase the task as optimizing the following criterion:

N∑
µ=1

∑
x

[Iµ(G(x; sµ))− T (x)]2 + λ
∑
j

(sµj )2

 , (4.5)

where {Iµ}, µ = 1 . . . N is our training set and our unknowns consist of the model parameters
T (x), {Si(x) : i = 1, ..., NS} and the image-specific coefficients associated to every image,
{sµ}, µ = 1 . . . N ; λ determines the penalty for large expansion coefficients, and is set manually.

This criterion can be understood as a log-likelihood expression [1] or a data coding cost [18].
Even though it is non-convex and can have many local minima, we can continuously decrease it
with alternating minimization. In particular, minimizing over T yields

T (x) =
1

N

N∑
µ=1

Iµ(G(x; sµ)), (4.6)

which updates the template to be the average of the registered input images. Minimizing over s
is done using standard AAM fitting [9]. Minimizing over S can be done with steepest descent;
taking the derivative with respect to the i-th basis element at location x, say Sx,i(x), yields

∂E

∂Sx,i(x)
=

N∑
µ=1

sµi
∂I

∂x

∣∣∣∣
Gµ

[Iµ(G(x; sµ))− Tµ(x)] , (4.7)

where ∂I
∂x

∣∣
Gµ denotes the derivative of I along dimension x after warping I to the template grid

using G(x; sµ); an analogous expression is used for the y coordinate.
One technical concern is that local spatial contractions and expansions in the estimated defor-

mation fields can make template features shrink, or even disappear, leading to trivial minima of
Eq. 4.5. We therefore require that template contours are only ‘transported’, i.e. are not shrunk or
dilated, in the direction perpendicular to their orientation. This can be formulated as a problem of
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(a) No registration (b) Affine registration (c) AAM registration (d) Contours

Figure 4.3: We illustrate registration results by averaging the edges (black) and ridges (red) of the
training set after registration; sharper structures suggest better registration. The contours in (d) are
extracted from (c) by non-maximum suppression followed by hysteresis thresholding.

calculus of variations, which leads to an elliptic partial differential equation, detailed in [1]; the
solution we used consisted in an iterative update-projection scheme to ensure that the computed
deformation bases satisfy this ‘transport’ constraint.

We follow a greedy procedure, introducing basis elements iteratively, starting from a ‘null’
model including affine transformations and then gradually adding deformation modes, which are
in turn refined by the alternating optimization scheme outlined above. What turned out to be non-
trivial was the initialization of the basis elements. Upon convergence of the previous round of
registration we gather the positions and orientations of points from all training images into a set
{(xi, yi, θi)}, i = 1 . . .K, which we used to construct a nonparametric density in x, y, θ. As in
Mean-Shift [19], we find peaks of this density by letting each point move to a position of higher
density, but restrict each point to only move along its orientation θ. We call this variant a ‘contour-
aligned Mean Shift’, as it prevents the contraction of curves to points, and results in a set of thin
contours, as shown in Fig. 4.2. This provides us with an estimate of the additional deformation
that should be applied per image; the new basis element is formed as the first eigenvector found
by applying PCA, as in [10].

Learning piecewise linear deformation models

We have also explored the use of a similar, EM-type approach to learn piecewise-linear, part-
based deformation models for articulated objects. After AAM learning we used Mean Shift on
the registered symmetry maps to initialize the part locations and treated the parameters of the
resulting local deformation models as nodes on a tree-structured graph. We then solved the E-step
using approximate inference on this graph with Non-parametric Belief Propagation [20], while
also using efficient computational techniques to accelerate the estimation of unary terms. These
models turned out to be more appropriate for articulated models, like cows or horses, but were
also substantially harder to work with and improve due to the approximate and slow inference.

Results

Our main interest has been to apply our framework to real, noisy, unsegmented images and see
whether shape information can be extracted without manual annotation. We demonstrate learning
results for cars from the UIUC dataset [21] and the ETHZ shape classes (apples, bottles, giraffes,
mugs and swans) [22]; indicative examples of the images used for training are shown in Fig. 4.1.
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In Fig. 4.3 we visualize the different models by averaging the ridge (red) and edge (black) maps
of the training set at different steps of registration. The improvement in registration can be seen
by comparing the null model results Fig. 4.3(b) with the ones of the learned AAM in Fig. 4.3(c).
The learned model aligns the training images better, as shown by the cleaner average contours
obtained after averaging. The contours shown in Fig. 4.3(d) are obtained using nonmaximum
suppression followed by hysteresis thresholding. In Fig. 4.4 we show similar results for the ETHZ
shape dataset [22], indicating again that while starting from a set of unregistered images we can
extract boundary and symmetry information for the whole category.
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Figure 4.4: AAM registration results for the ETHZ shape dataset.

Finally, in Fig. 4.5 we show some results from on-going work on treating also the viewpoint
associated with each image as a discrete latent variable. We optimize with respect to this discrete
variable during AAM training, which automatically discovers view-specific models, or appearance
clusters, such as the one- and two- floor buses. We have obtained similar results for other mostly
rigid object classes, but for highly deformable categories, such as cats our approach currently
fails. Interestingly, [23] have recently shown that minimal human annotation can be used to learn
3D active appearance models for highly non-rigid categories, making it conceivable that by some
EM-based framework one can fully automate the learning pipeline of 3D deformable models.

Regarding the learning of piecewise-linear deformable models, some indicative results are
shown in Fig. 4.6; in quantitative evaluations the results we obtained had turned out to be system-
atically better than those that we had attained with AAMs, validating that part-based models may
be better for complex, articulated deformations. However, as the implementation of this system
was too complicated to extend to object detection in cluttered images, we then turned in [2, 24,
25] to hierarchical models; these both made the inference task tractable and the shape-based rep-
resentation easier to formulate and tune in a discriminative manner, as described in the following
section.
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Figure 4.5: Unsupervised view-specific AAM learning results on the PASCAL dataset; the models
are shown as the average images and edge/ridge maps associated to each cluster after registration.

Figure 4.6: Matching results on horses and cows. For visualization only we have manually de-
lineated the parts on the ‘template’ domain; the model parameters are learned with EM, and the
image-specific deformations are estimated using Nonparametric Belief Propagation.

4.2 Learning hierarchical shape models

The problem of learning hierarchical models has gathered increased attention over the last years,
as described in Section 1.2, based on arguments about their generalization ability, computational
efficiency and representational power. Starting from [24] and continuing in [2] we have developed
hierarchical shape models that start by grouping edge and ridge segments (‘tokens’) into contours,

70



Parts
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Contours

Tokens

(a) Object Model (b) Image Tokens (c) Parse Tree (d) Parsed Object

Figure 4.7: Hierarchical models and object parsing: we consider detecting objects by recursively
grouping simple tokens (straight edge and ridge segments) extracted from the image. This amounts
to building a parse tree that indicates how image tokens are composed to form objects. The
leaves of this tree (‘terminals’) are edge/ridge tokens, and the color-coded nodes correspond to
intermediate object structures; the root of the tree is the object, shown in (d).

then to parts, and finally to objects, as illustrated in Fig. 4.7. Such models provide extended spatial
support for an object hypothesis by establishing relationships between image and model contours -
this can make other tasks, such as segmentation, or grasping, easier. Furthermore, our hierarchical
representation makes it possible to detect objects efficiently by using theA∗ algorithm. We discuss
the learning of such models in this section, and the efficient detection aspects in the following
chapter.

In the following we will first describe how we recover the structure of these models in a data-
driven manner, by building on the AAM learning work described above. We will then describe how
one can estimate the parameters of such models in a discriminative setting, to improve performance
on object detection tasks. We have applied our models to shape-based detection on the ETHZ
dataset and obtained results that were the state-of-the-art at the time of publication.

Structure discovery

As in Section 4.1, we assume that we are provided with a small set of images (in the range of
20 to 50) that contain occlusions, noise, or illumination variations, while other than the object’s
bounding box we do not require manually-segmented features or landmarks. Our task is to recover
a description of the object category in terms of a hierarchy of edge segments, contours, and parts.

Our starting point is the symmetry- and boundary-based description of our category that is
provided to us by AAM learning. We exploit the geometric nature of this description to recover
possible object parts in a data-driven manner. In particular, we first turn the boundary and sym-
metry contours into a set of short straight segments, and treat each as a node in a weighted graph
as shown in Fig. 4.8, where the weights are determined based on contour continuity and sym-
metry. The graph is segmented into strongly connected components using Affinity Propagation,
[26], which as shown in Fig. 4.8 and Fig. 4.9 typically delivers visually plausible parts that often
correspond to semantic structures, such as handles, heads, and wheels.

In several cases the discovered parts are far from perfect; for instance, for all dataset splits the
magenta group on the swan column has no semantic interpretation, but is rather a ‘leftover’ of the
Affinity Propagation grouping. However, this decomposition only serves as an initialization for
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Figure 4.8: Part discovery through pairwise clustering: first the object contours are broken into
straight segments, which are seen as nodes on a graph. Ridges are shown as ellipses whose width
is proportional to the scale of the ridge. Nodes are connected with edges based on continuity and
parallelism. The affinity among nodes is estimated using statistical and geometric information.
The object parts shown on the left are obtained using Affinity Propagation.

our shape model, while its score function is then trained discriminatively in an end-to-end manner,
as we now describe.

Discriminative model training

Having established the structure of our model, we now turn to learning its parameters; for this we
first specify the form of its score function. We use a tree-structured graphical model with nodes
i ∈ V and edges (i, j) ∈ E; each node is connected to a single parent pa(i) at the level above,
and several children nodes ch(i) at the level below. The graph has three levels – root node Vr,
object parts Vp, and object contours Vc, while the contour nodes are connected to edge and ridge
tokens, which serve as our observations I. The position and scale of each node i is encoded in a
pose vector si. The probability of an object configuration S = (s1, . . . , sN ) can be expressed by
an exponential form:

P (S) =
1

Z[λ]
exp

(
−
∑
i∈V

φi(si, spa(i))

)
, φi(s1, s2) = −λi logP (s1|s2) (4.8)

For a Bayesian network we would have λi = 1, ∀i and Z = 1; but in our case we will learn the
λ parameters discriminatively, and will ignore the partition function Z. The P (si|spa(i)) terms
describe the distribution of a child’s pose given the pose of its parent, and are set to normal distri-
butions for simplicity. The expression in Eq. 4.8 acts like a prior distribution over configurations.

We further relate the pose of an object contour si to a group of image tokens hi in terms of an
observation potential, ψi(Ihi , si), that lends itself to efficient computation using ‘integral angles’,
as detailed in [2]. This potential is used to express our model’s data-fidelity term in terms of the
contour poses, the image tokens, and the assignment variables as follows:

P (I|S,H) =
1

Z
exp

(∑
i∈Vc

−ψi(Ihi , si)

)
. (4.9)

We indicate missing parts at any level of the hierarchy with a binary variable yi for every node i;
when a node is missing we enforce its descendants to be missing as well and replace every related
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Figure 4.9: Object parts delivered by our method for the ETHZ shape categories, for five different
training set splits: boundaries and symmetry axes belonging to the same object part are shown
with the same color. Please see in color.
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Figure 4.10: Positive and negative bags used by Multiple-Instance Learning (MIL) for the ‘car’
shape model: for each training image we compute a set of object instantiations, visualized as a
part-level labelling of the image tokens. Through MIL we learn a classifier that accepts at least
one instantiation per positive image and rejects all instantiations of a negative image.

summand with a ‘missing’ potential function φ0
j = − logP (yj = 0). Combining terms we have:

P (I,S,H,y) = P (I|S,H,y)P (S,H,y) ∝ exp(−C(I,S,H,y)), where

C(I,S,H,y) =
∑

i∈{Vp,Vc}

(
yiφi(si, spa(i)) + (1− yi)φ

0
i

)
+
∑
i∈Vc

yiψi(Ihi , si). (4.10)

Equation 4.10 expresses the cost of a candidate configuration (S,H,y) as a sum of terms that may
not necessarily be commensurate; for instance in [2] we determine a parametric expression for ψi
that facilitates easy computation, but the parameters are not easy to learn probabilistically. We
therefore phrase the learning problem as one of finding a weighting of the summands in Eq. 4.10
that guarantees good detection performance, so that the cost in Eq. 4.10 will be low on shapes
belonging to the object category, and high on negatives.

Our training problem is non-standard, as we do not know the correct object configurations;
so even at training time we do not know the features that our score function should be using.
We only know that for a positive image at least one configuration should be positive, while all
configurations composed from a negative image should be negative. This can be addressed using
Multiple Instance Learning (MIL) [27] by treating the correct object configuration as a latent
variable, and forming a ‘bag of features’ per training image, as shown in Fig. 4.10: from each
image we can form a set (‘bag’) of features, corresponding to all possible object instantiations.
We want to train a classifier that will label at least one instance as positive for a positive image,
and all instances as negative for a negative image.

We already considered MIL in Section 2.1 for the treatment of orientation and scale ambiguity
when learning boundary and symmetry classifiers. What distinguishes our case now is that we are
dealing with a substantially larger set of hidden variables, corresponding to all possible ways of
parsing an image – in Fig. 4.10 we show only a small fraction of these possible ways. As detailed in
[2, 25], we combine the Deterministic Annealing MIL of [28] with an iterative algorithm, similar
to that of [8], to gradually acquire new instances and expand the positive and negative bags of the
training set. As shown in Fig. 4.11 this process gradually improves the score function by learning
to discriminate among car and car-like structures from the background, and yielding after several
iterations a score function that is sharply peaked around the actual location of the car.
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Figure 4.11: Improvement of the parsing cost function for cars: initially (middle) our model
mistakes parallel structures for cars, giving low cost to the street region lying to the left of the car.
After six iterations of MIL training (right), the cost function indicates more sharply the location
of the car.

Results

We validate our method using the UIUC car [21] and the ETHZ shape classes [22]. For all classes
we use common parameters and settings during both training and detection. For cars we use 50
images to learn the contours and object parts, and 300 positive and negative images for discrimi-
native training. For the ETHZ classes we use the evaluation protocol in [5]: for each category we
use half of its images for training, and the remaining images from that category, and all images of
other categories, for testing; we present results averaged over 5 different splits. As negatives we
use 300 images from the Caltech background images of [29].

We first show qualitative results of object parsing on these datasets in Fig. 4.12. We observe
that our algorithm can deal with real images containing substantial clutter; for example, in the car
images only a small fraction of the image tokens is used to build the object.

In Fig. 4.13 we report quantitative results on these benchmarks. On the top-left plot we see
that our results on the UIUC dataset compare favorably to those of [30, 31], who use sparse im-
age representations, while our Recall at Equal-Error-Rate (when precision equals recall) is 98%
percent, equal to the one reported by Fidler et. al. in [35] with an edge-based representation. In
the next plots we report results on the ETHZ dataset and compare to the boundary-based works of
Ferrari et. al. [32, 33] and the region-based works Gu et. al. [34]. We plot the recall of our de-
tector (ratio of detected objects) versus the number of false-positives-per-image (FPPI), averaged
over the whole dataset and averaged over the 5 trials; we consider a bounding box as correct if its
intersection-over-union with a ground truth bounding box is larger than 0.5. Our method outper-
forms the shape-based methods of Ferrari et. al. [32, 33], while comparing to the region-based
method of Gu et. al. [34] we see that our method performs better on mugs and swans, equally
well on bottles, slightly worse on apples and systematically worse on giraffes. This difference in
performance is to some extent expected: our method can accurately model the outline of objects,
which is distinctive for the categories where it performs well, while the regional cues used in [34]
can more naturally capture the texture of giraffes.
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Figure 4.12: Parsing results: For each image we show object instantiations that are classified
as positive by our inference algorithm. We show the parse results at the object part-level, using
color to indicate the object part to which a token is assigned; but please note that our algorithm
establishes a finer, contour-level relation.
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Figure 4.13: First plot: benchmark results on the UIUC dataset; we compare to the sparse, part-
based approaches of Fergus [30] et. al. and Leibe et. al. [31]. Next five plots: Benchmark results
on the ETHZ classes: comparisons with Ferrari et. al. [32, 33], and Gu et. al. [34].

4.3 Learning mid-level models of actions in videos

In [3] we apply several of the ideas developed in the previous two sections to understanding actions
in videos; our goal is to address not only action recognition (“What action?”), as is common in the
current literature, but also localization (“Where in the video?”), by ‘parsing’ a video into action
parts. This suggests applying an analogous procedure of breaking up the input signal into ‘mid-
level’ components through some generic front-end processing, and then learning a score function
that guides the assembly of such components into model-based action interpretations.

For this, at the low level we decompose a video into a set of groups of moving points, and
summarize each such group by descriptors that capture intensity, motion and appearance statistics.
The quality of a candidate instantiation is expressed as the energy of a fully-connected MRF with
nodes corresponding to action parts and labels indicating the group-part assignments. During
training this score function is learned discriminatively, using Multiple Instance Learning to treat
the association of ‘groups’ with ‘parts’ as a latent variable. During testing we use TRW-S [36]
to efficiently match our model to a video. Our results indicate that apart from having competitive
classification performance, our model establishes spatio-temporal part relationships that support
more fine-grained decision tasks, such as action localization.
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Figure 4.14: Examples of trajectory groups; each group has a distinct color.

Grouping-based video representation and features

Our front-end breaks a video into trajectory groups by combining ideas from tracklets [37, 38] and
trajectory grouping [39]. Namely, after first extracting dense point trajectories we group theme
based on pairwise similarity. For two trajectories {xa[t]}Tat=τa and {xb[t]}Tbt=τb that coexist over an
interval [τ1, τ2] and are spatially close we define a distance of the form:

d(a, b) =

(
max

t∈[τ1,τ2]
|xa[t]− xb[t]|2

)(
1

τ2 − τ1

τ2∑
t=τ1

|ẋa[t]− ẋb[t]|2

)
. (4.11)

The first term is the spatial distance of the trajectory points and the second is the distance of
the point velocity estimates. These distances are used to compute a trajectory affinity matrix
w(a, b) = exp(−d(a, b)) between all trajectory pairs, which is then used as input to a hierarchical
clustering algorithm [40]. Some trajectory groups formed in this way are illustrated in Fig. 4.14.
Even though many segments may not be semantically meaningful, we can practically always re-
cover at least some segments that lie within a single object and move along with it.

For unary terms we associate with each such group k a statistical descriptor hk formed by
concatenating Histogram of Gradient (HoG), Histogram of optical Flow (HoF) [41] and Histogram
of Motion Boundaries (HoMB) [38] descriptors. We do this efficiently by quantizing trajectory
positions on a regular grid where feature extraction operations are efficiently performed in batch
mode. We complement this statistical descriptor with a descriptor of the mean group trajectory
gk[t], defined as the mean active tracklet position at any time instance. We thus associate each
group k as a pair Gk = {hk, gk}. Finally, at the coarsest level we form a simple bag-of-words
(BoW) representation, ho, of all groups within the video. Consequently, a video S is described as
the collection of the groups in combination with the histogram h0: S = {ho, {Gk}Nk=1}.

For pairs of groups that coexist in time we also measure how their relative position evolves
over time. We do this statistically by forming a histogram of relative trajectory motions, mea-
suring first how the horizontal and vertical differences of two mean trajectories evolve, and then
forming a joint histogram through a soft binning operation. This scheme avoids explicit decisions
about the temporal structure of low-level data, in a manner similar to how SIFT avoids grouping
by using histograms of gradients. We construct this histogram in a scale-sensitive manner to ac-
commodate potential changes in video resolution; namely we construct different pairwise features
ψ(gpi , gpj , σ) for different values of scale σ, and let the inference algorithm pick the right σ.
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Figure 4.15: Pairs of group trajectories (left) and their corresponding pairwise descriptors (right).

Grouping-based action model

Our model measures the quality of a presumed action configuration in terms of an MRF score; in
particular we use a fully connected graph G = (V,E), with each node i ∈ V encoding a part and
each edge (i, j) ∈ E encoding pairwise relations between parts. An additional isolated node F
represents the video as a whole. Given a video x that has been decomposed into N clusters, we
consider a vector of discrete latent variables P = [p1, . . . , p|V |], with pi ∈ {1, . . . , N} associating
each node i with one of the N trajectory clusters. We also treat scale as a latent scale variable, σ,
allowing us to chose the pairwise term scale that is most appropriate to the video at hand.

The score of a set of latent variables, z = (P, σ) under an action model is given by:

scorew(z, S) = 〈w0, h0〉+

|V |∑
i=1

〈wi, hpi〉+

|V |∑
i=1

|V |∑
j=i+1

〈wi,j , ψ(gpi , gpj , σ)〉 (4.12)

where w = {w0, wi, wi,j}, i, j ∈ {1, . . . , N} are the model parameters, and hpi andψ(gpi , gpj , σ)
are the unary and pairwise features corresponding to the particular choice of latent variables. If
the model parameters are known, optimizing with respect to z = (P, s) can be done efficiently
using approximate inference; Tree-Reweighted Message Passing (TRW-S) [36] converges in less
than a second, and in most cases the duality gap is zero.

Coming to learning w, we face again a Multiple Instance Learning problem: for positive
images we should have scorew(z, Sp) > 0 for at least one z, while for negatives we should
have scorew(z, Sn) < 0 for all z. We use a ranking-based training criterion, which gave notably
improved results, in consistency with [42]. For initialization we set the pairwise weights wi,j to
zero; we initialize the weights for the unary terms wi by setting each wi equal to the center of a
cluster produced by running K-means on the set of vectors hk belonging to positive examples.

Results

We validate our model on the Hollywood1 Human Action (HOHA) [41] and UCF-Sport [43]
datasets. HOHA contains 430 videos and is most challenging, including substantial camera mo-
tion, rapid scene changes, clutter, and complex activities that involve actor and object interactions
(e.g. ‘get out of car’, ‘pick up phone’, or ‘kiss’). The UCF-Sports dataset consists of 150 sports
videos captured in more constrained environments from sports broadcasts, and include actions
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Sit down Sit down Sit down Sit down Stand up

Stand up Stand up Hug person Hug person Hand shake

Horse riding Horse riding Lifting Lifting Swing side

Figure 4.16: Sample frames from different video sequences of the test sets of the HOHA dataset
(first two rows) and the UCF-Sports dataset (third row). Colored trajectories represent selected
trajectory groups identified by our algorithm (color encodes part assignment), while white dots
show trajectories that were not selected as parts. In cyan we show the ground-truth bounding
boxes, which are used to assess localization accuracy.

such as ‘weight-lifting’ and ‘swinging-bench’, which however still pose challenges due to large
displacements, clutter, and intra-class variability. Bounding boxes enclosing the person of interest
at each frame were available for the UCF dataset while for HOHA we gathered these on our own.

Starting with qualitative results, we show in Fig. 4.16, and more extensively in [44] some
action parsing results of our algorithm on the HOHA and UCF datasets; we note that our algorithm
not only provides an action label for a video, but also indicates the spatio-temporal support of the
action. Trajectory groups selected by our algorithm typically lie within the manually annotated
bounding boxes (in cyan) which suggests that our method selects meaningful groups as parts.

To quantify this claim, we measure a localization score defined as the ratio of selected contours
that have substantial overlap with the ground-truth bounding box(es):

O(D,L) =
1

|V | · T

|V |∑
i=1

T∑
t=1

[
|Di,t ∩ Lt|
|Di,t|

≥ θ], (4.13)

where Lt is the set of points inside the annotated bounding box, [·] indicates if · is true, Di,t is the
set of points belonging to the selected trajectory group, and θ is a threshold. Fig. 4.17 illustrates
the average localization score across the test videos of each action as a function of θ, as well as
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Figure 4.17: Localization scores for the trajectory groups selected by our algorithm as a function
of the overlap threshold (θ) for the HOHA dataset (left) and the UCF-Sports dataset (right).

Table 4.1: Performance comparison on HOHA dataset.

Class Our Model
Laptev et al. [41] Yeffet et al. Raptis et al. Matikainen et al. Kläser et al. Sun et al. [45] Shandong et al.

Single Combined [46] [37] [47] [48] TTD TTD-SIFT [49]
BoW BoW BoW Combined Combined BoW

Answer phone 29.5% 26.7% 32.1% 35.1% 26.7% 35.0% 18.6% 48.3%
Get out of car 51.0% 22.5% 41.5% 32.0% 28.1% 7.7% 22.6% 42.3%
Hand shake 35.4% 23.7% 32.3% 33.8% 18.9% 5.3% 11.8% 46.2%
Hug person 30.8% 34.9% 40.6% 28.3% 25.0% 23.5% 19.8% N/A N/A 49.3%

Kiss 58.4% 52.0% 53.3% 57.6% 51.5% 42.9% 47.0% 63.6%
Sit down 38.4% 37.8% 38.6% 36.2% 23.8% 13.6% 32.5% 47.5%

Sit up 18.9% 15.2% 18.2% 13.1% 23.9% 11.1% 7.0% 35.1%
Stand up 58.0% 45.4% 50.5% 58.3% 59.1% 42.9% 38.0% 47.3%

MAP 40.1% 32.9% 38.4% 36.8% 32.1% 22.8% 24.7% 30.3% 44.9% 47.6%

the mean localization score across all actions of the two datasets. For θ = 0.5 we get average
localization scores of 48.4% and 47.3% for HOHA and UCF-Sports, respectively.

Turning to action classification results, in Table 4.1 we compare the average precision (AP)
of other state-of-the-art techniques to that of our approach on the HOHA dataset. When using
a baseline that includes only our BoW video representation coupled with an SVM with RBF χ2

kernel, we obtain a mean AP of 33.4%; adding the pairwise terms drives the performance up to
the reported mean AP of 40.1% (a more detailed analysis of the contributions of each aspect of
our model is contained in [3]). Our approach is competitive with most schemes and performs
better than [41] who use similar low-level features (HoG, HoF). The performance of our method
is lower than the multi-kernel learning (MKL) approach of [45] and the recent work of [49], but
our scheme could be extended to incorporate the features of [49] or be combined with MKL
to improve classification performance. These aspects are in a sense orthogonal to the ability to
localize actions, which is one of the main assets of our model.

For the UCF-Sports dataset, the mean per-class classification accuracies are summarized in
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Method BoW Our Model Lan et al. [50]
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Figure 4.18: UCF-Sports dataset results: the top row shows per-class classification accuracy, and
the bottom row reports mean per-class classification accuracies.

Fig. 4.18; again, we notice a significant improvement over the bag-of-words baseline in most
actions, and attain a substantially higher mean accuracy than [50].
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Chapter 5

Efficient Optimization of Shape-based Models

In this chapter we develop efficient optimization algorithms for inference with deformable, shape-
based models; the main asset of these algorithms is that we either do not compromise accuracy at
all, or at least can control the tradeoff between efficiency and accuracy. Another appealing aspect
is that the idea of combining ‘bottom-up’ and ‘top-down’ computation translates into concrete
aspects of these algorithms.

We start in Section 5.1 with our work [1–3] on accelerating detection with deformable part
models (DPMs) [4–6] using Branch-and-Bound; in the best case this reduces the complexity of
the ‘part combination’ stage of DPMs from linear to logarithmic in the number of pixels. We also
alleviate the ‘part computation’ bottleneck by constructing efficient probabilistic upper bounds to
the part scores, which we then combine with both Branch-and-Bound and the DPM cascades of [6].
We then present A∗ parsing for the hierarchical models of Section 4.2 [7, 8], which again involves
using score bounds to avoid unnecessary bottom-up computation. We conclude with our work [9]
on parsing building facades with shape grammars that can recursively produce an arbitrary number
of structures, such as floors, or windows. We use Reinforcement Learning to deal with structure
variation and describe how to use bottom-up information to accelerate top-down grammar fitting.

5.1 Branch-and-Bound for Deformable Part Models

Our approach is based on the observation that an object detector should score high only on a small
part of the image domain, presumably where the objects are contained. This is illustrated in the
first two images of Fig. 5.1: in (a) we show the detection delivered by the DPM-based bicycle
detector of [6] and in (b) its score S(x) evaluated over the whole image domain. The part of the
image that scores above a conservative threshold of −1 is encircled by a black contour in (b),
which is indeed only a tiny image fraction. Based on this observation we can speed up detection
by avoiding to exactly evaluate S(x) at positions where its anticipated score is low.

Branch-and-Bound (BB) is an optimization algorithm that does exactly this: the ‘anticipated
score’ of S(x) in X is computed in terms of an upper bound, S(X), which is then used to guide
search. We can use BB to find arg maxx S(x) with the following scheme: we start from an interval
containing all possible object locations, and then iteratively (a) split in two (‘branch’) the currently
explored interval and (b) bound the resulting intervals before deciding where to move next. We
stop when X is a singleton, which is guaranteed to be the strongest location. The operation of BB
is illustrated in Fig. 5.1 (c), where we show as heat maps the upper bounds of the intervals visited
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(a) Input & Detection result (b) Detector score, S(x) (c) Intervals & bounds used by BB
to find {argmaxx S(x)}

Figure 5.1: Motivation for Branch-and-Bound based detection: instead of evaluating the DPM
classifier’s score exhaustively at all image locations (b), our method, shown in (c) devotes compu-
tational resources to promising intervals, as assessed by upper bounding the DPM score.

by our algorithm until convergence. Fine-grained image parts correspond to image locations that
seem promising and are thus explored more. Coarse-grained parts have smaller upper bounds, and
are thus not refined. We note that unlike pruning-based works [6, 10–13], our method does not
sacrifice accuracy and is provably exact [2].

Bounding the DPM score function

As outlined in Section 5.1, DPMs use a score function that exploits both appearance and geometric
information for detection; a configuration x = (x0, . . . , xP ) is scored as follows:

M(x)
.
=

P∑
p=0

mp(xp, x0) =
P∑
p=0

〈wp, H(xp)〉︸ ︷︷ ︸
Up(xp)

+− (xp − x0 − µp)T Ip (xp − x0 − µp)︸ ︷︷ ︸
Bp(xp,x0)

, (5.1)

where the unary term Up(xp) scores the image observations H(xp) under the appearance model
of node p, and the pairwise term Bp(xp, x0) enforces that the relative pose xp − x0 of parts p and
0 stay close to µp; in particular Ip = diag(Hp, Vp), with Hp > 0, Vp > 0.

To score a putative object location x we maximize over all configurations that place the root
at x; this gives a score in the form of a sum of ‘message’ functions, mp(x):

S(x)
.
= max

x:x0=x
M(x) =

P∑
p=0

max
x′

(
Up(x

′) +Bp(x
′, x)]

)
︸ ︷︷ ︸

mp(x)

. (5.2)

Branch-and-Bound requires an upper bound S(X) to the DPM score S(x) within an interval X:

max
x∈X

S(x) ≤ S(X). (5.3)

In order to construct this bound we use the following inequality:

max
x∈X

f(x) + g(x) ≤ max
x∈X

f(x) + max
x∈X

g(x). (5.4)
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According to Eq. 5.2 we have S(x) =
∑

pmp(x), so applying this inequality gives:

max
x∈X

S(x) ≤
∑
p

max
x∈X

mp(x). (5.5)

This means that we can separately bound the individual part contributions over X , say by mp(X),
and construct a valid bound S(X) of our score function by adding up the resulting bounds:

max
x∈X

S(x)≤
∑
p

max
x∈X

mp(x)≤
∑
p

mp(X)
.
=S(X). (5.6)

To bound in turn maxx∈X mp(x) we apply Eq. 5.4 using the definition of mp(x) in Eq. 5.2:

max
x∈X

m(x)= max
(x,x′)∈(X×X′)

U(x′) +B(x′, x) ≤ max
x′∈X′

U(x′) + max
(x,x′)∈(X×X′)

B(x′, x)
.
= m(X),(5.7)

where we have dropped the p subscript for simplicity. Naively computing the term on the inequal-
ity’s left hand side would require |X| · |X ′| operations, with | · | denoting cardinality; but the right
hand side term is composed of two easily computable terms: the first can be computed on a binary
tree with fine-to-coarse optimization and the second term can be analytically evaluated for any
pair of rectangular domains X,X ′ in a constant number of operations [3].

Having demonstrated how to bound the score efficiently, we now turn to controlling the
bound’s tightness; to do this we can break the domains X and X ′ into smaller subdomains over
which the relaxations in Eq. 5.6 and Eq. 5.7 are not too loose - in the limit, for singletons, the
bound equals the score. But as the intervals become smaller, their number increases. There is thus
a tradeoff between the bound’s tightness and the number of operations required to compute it.

To keep the latter under control, we employ a ‘Dual Recursion’ algorithm inspired by the Dual
Trees of [14], which amounts to starting from coarse part and root intervals, and refining them
simultaneously. In [2] we prove that one can use conservative pruning, ensuring that we get exact
results while keeping the computation tractable. This pruning scheme is empirically shown to
keep the number of operations roughly independent of the interval’s resolution. As these ideas
were also present, but formulated in a different setting in [14], we call our method Dual Tree
Branch-and-Bound (DTBB).

By the binary search nature of Branch-and-Bound in the best case we can find the best-scoring
position in O(P logN) time, where P is the number of parts and N the number of pixels; sim-
ilarly, detecting all objects above a threshold can be done in O(MP logN) iterations, where M
is the number of objects above threshold. For low values of M this can be much smaller than the
O(PN) complexity of [15, 16]. This is also empirically validated by the results presented later.

Probabilistic bounds for the part scores

Having described how to accelerate the part combination stage of DPMs, the remaining bottleneck
is the computation of the part scores, Up(x) = 〈H(x), wp〉. For a 6× 6 part filter, this involves 36
smaller inner products between 32-dimensional HOG cells and their respective weight vectors:

s[x] =
∑
y

〈wy,hx+y〉, (5.8)
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(a) Input image (b) Exact part score, s[x] (c) Lookup-based approximation, ŝ[x]

(d) Approximation variance m[x] (e) Lower bound, pe = .05 (f) Upper bound, pe = .05

Figure 5.2: Illustration of part score approximation and bounding: our goal is to rapidly bound
the value of the part score s[x] shown in (b). The bound we propose in Eq. 5.12 is formed in
terms of two quantities, the lookup-based approximation ŝ[x] of Eq. 5.11, shown in (c) and the
approximation error variance,mx of Eq. 5.13, shown in (d). These two are combined as in Eq. 5.14
to form an interval that contains the actual value with a certain probability of error pe. The values
of the lower and upper bounds for pe = 0.5 are visualized in (e) and (f) respectively.

where y ∈ [0, 5] × [0, 5] so we have more than 1000 multiplications and summations per x. A
simple method of accelerating this operation is to use vector quantization, as in [17]; this involves
an offline stage where we construct a codebook C = {C1, . . . , CK} for h and then form an array:

Π[k, y] = 〈Ck,wy〉, (5.9)

of precomputed scores. To approximate Eq. 5.8 at test time, we first vector quantize every HOG
cell hx, obtaining I[x] = argmink d(Ck,hx), and then exchange the 36 · 32 multiplications and
summations of Eq. 5.8 with 36 lookup and summation operations as follows:

〈hx+y,wy〉 ' 〈CI[x+y],wy〉 = Π[I[x+ y], y] (5.10)

s[x] ' ŝ[x] =
∑
y

Π[I[x+ y], y]. (5.11)

This approximation could in principle result in a 32-fold acceleration, but in practice cache misses
reduce it to being only 5- to 10- fold.
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Our contribution lies in alleviating the drop in performance incurred by this approximation,
reported in [17] and also validated by our results. For this, we propose to avoid taking ŝ at face
value, but rather to work with an interval of values that contains s with high probability. For this
we treat the approximation error e[x]

.
= s[x]−ŝ[x] as a random variable and construct probabilistic

upper and lower bounds to s[x] in terms of ŝ[x]. We do this by using Chebyshev’s inequality [18],
which ensures that a zero-mean random variable X with second moment V = E{X2} satisfies:

P (|X| > α) ≤ V

α2
. (5.12)

This means that with probability larger than V/α2, X will be contained in [−α, α], or equivalently
X will be contained in [−

√
V/pe,

√
V/pe] with probability of error smaller than pe.

Coming to our case, as detailed in [3], we can estimate the second moment of e[x] as

m[x] =
∑
y

1

32
‖ex+y‖2‖wy‖2, (5.13)

where ex is the L2 norm of the quantization error at x and ‖wy‖ the L2 norm of the weight vector
corresponding to cell y. The ‖w‖ terms can be precomputed, while computing the ‖e‖ terms is
amortized, i.e. done once per image, and then reused by all objects and parts. This means that
practically we can estimate m[x] with 36 multiplication-summations per position x.

Having at our disposal the lookup-based estimate ŝ[x] and the second moment m[x] of the
approximation error, we can now form probabilistic upper and lower bounds to s[x]: since e[x] =
s[x]− ŝ[x], according to Chebyshev’s inequality s[x] will be bounded between:

ŝ[x]−

√
m[x]

pe
≤ s[x] ≤ ŝ[x] +

√
m[x]

pe
, (5.14)

with probability 1 − pe. We can understand this bound as constructing a ‘buffer’ around ŝ[x]
to make up for the approximations involved; the width of this buffer depends on the magnitude
of the approximations, captured by m, and how conservative we want to be, determined by the
probability of error, pe. In Fig. 5.2 we show all of the quantities involved in Eq. 5.14 for pe = 0.05;
we have empirically verified that this bound is valid across a broad range of values of pe.

We have integrated this bound with both our Branch-and-Bound approach and the Cascade-
DPMs of [6]; in both cases the bounds are used in a preliminary stage that ‘shortlists’ promising
positions. Our algorithm eventually computes the inner product in Eq. 5.8, but sparingly, only
around shortlisted positions. This can be understood as using a coarse bottom-up processing (up-
per bound) to ‘activate’ object hypotheses in a first stage; in a second stage these shortlisted hy-
potheses provide top-down based guidance about where to perform some more time-demanding
bottom-up computations (inner product). As demonstrated by our results, this bottom-up/top-
down computation scheme can result in substantial computational savings with no impact on de-
tection accuracy.

Results

In our experimental validation we use the same models as [6, 19] and do not address learning; our
concern is therefore only the exactness and speed of the optimization.
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Figure 5.3: Acceleration of the ‘part combination’ stage using our Branch-and-Bound scheme
versus Generalized Distance Transforms [15] on images from the Pascal dataset: (a) Single-object
speedup for different thresholds (b) Multi-object speedup, for different numbers of classes (c)
Multi-object speedup, for different numbers of retrieved objects.

Starting with the validation of the Branch-and-Bound algorithm that uses the exact part scores,
the results we get after part combination are identical to those of [19] other than differences due to
floating/double point arithmetic. We therefore do not provide any detection performance curves,
but only timing results.

As a first experiment we consider the standard detection scenario where we want to find all ob-
jects in an image having score above a certain threshold. We show in Fig. 5.3 (a) how the threshold
of our detector affects the speedup we obtain: for 1200 images we calculate the acceleration of our
BB-based algorithm over the Generalized Distance Transform (GDT)-based baseline of [15], and
then sort the resulting accelerations to produce smooth curves - so images are ranked by accelera-
tion. We observe that for a conservative threshold, θ = −1 or θ = −.8, the speedup is moderate,
but as we become less conservative the acceleration can become 10-fold, or even 20-fold.

As a second application we consider the problem of identifying the ‘dominant’ object present
in the image, i.e. the category that gives the largest score. In plots Fig. 5.3 (b),(c) we show
results on the Pascal dataset using a similar format as in (a). We compare the time that would be
required by GDT to perform detection of all 20 categories considered in Pascal, to that of BB-based
search over both positions an categories. In (b) we show the acceleration attained for finding the
single-best result as the number of objects (M) increases; we see that for more categories the gains
increase, indicating that the cost of our algorithm grows sublinearly in categories. The justification
for this is that if many categories are involved, it becomes more likely that one of them will have
a high score, ‘pop-up’ and terminate search. In (c) we show how the ‘k’ in ‘k-best’ affects the
speedup. For small values of k the gains are more pronounced, and can be more than 100-fold.

Turning to the evaluation of part bounds, there is a certain slack due to the probabilistic nature
of the bound, so we need to explore the impact that this may have on object detection accuracy. In
Fig. 5.4 we provide precision-recall plots for bicycle detection, for both Branch-and-Bound and
cascaded detection (similar results are obtained for all classes). In all cases ‘exact’ refers to results
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Figure 5.4: Precision-Recall curves for bicycle detection using branch-and-bound (left) and cas-
caded detection (right) with our lookup-based bounds. Having a small probability of error, pe,
ensures that we get virtually identical results to the exact, convolution-based method.

Exact (non-cascade) Detection
GDTs DTBB pe = 0.05 pe = 0.01

Part terms 2.35 ± 0.77 1.69 ± 0.18 0.69 ± 0.03 0.69 ± 0.06
θ = −0.5 0.60 ± 0.05 0.21 ± 0.06 0.47 ± 0.11 1.04 ± 0.25
Sum 2.95 ± 0.82 1.90 ± 0.23 1.17 ± 0.12 1.74 ± 0.32
θ = −0.7 0.60 ± 0.05 0.42 ± 0.10 1.00 ± 0.23 2.33 ± 0.65
Sum 2.95 ± 0.82 2.10 ± 0.24 1.70 ± 0.27 3.00 ± 0.71
θ = −1.0 0.60 ± 0.05 1.31 ± 0.31 3.80 ± 0.90 9.40 ± 2.70
Sum 2.95 ± 0.82 3.00 ± 0.42 4.50 ± 1.02 10.01 ± 2.82

Cascade Detection
GDTs C-DPM pe = 0.05 pe = 0.01

θ = −0.5 8.95 ± 0.82 0.56 ± 0.07 0.19 ± 0.03 0.23 ± 0.04
θ = −0.7 8.95 ± 0.82 0.72 ± 0.09 0.29 ± 0.04 0.36 ± 0.06
θ = −1.0 8.95 ± 0.82 1.04 ± 0.16 0.51 ± 0.10 1.07 ± 0.29

Table 5.1: Means and standard deviation timings, in seconds, of the considered approaches. GDT
stands for distance transforms, BB for Dual Tree Branch-and-Bound, CSC for cascade, and LU-
{1,5} for lookup-based bounds with pe = .01 and pe = .05 respectively.

obtained with the implementation of [19]. On the left plot we compare the performance of our
lookup-based variant of Branch-and-Bound for different values of pe; we observe that for small
values of pe the performance is identical with that of [19], but with larger values of pe performance
decreases. This validates the need for incorporating uncertainty in lookup-based approximations.

On the right side we compare the performance of the PCA-based cascade of [6] with our
lookup-based variant. We observe that performance drops significantly if we use the ‘raw’ lookup-
based estimate of the part scores without the related upper and lower bounds. However, when using
bounding intervals to accommodate the ‘slack’ due to the approximation error, our performance
becomes again identical to that of [19].

Coming to computational efficiency, in Table I we provide timings gathered from 1000 images
of the PASCAL VOC dataset and averaged over all 20 categories. The first row indicates the time
spent to compute part scores by the different methods, and the following rows indicate detection
times. We observe that our lookup-based approximations are faster both for DTBB and Cascade
Detection for moderate values of the threshold θ; in particular for θ = −.7, or θ = −.5 the
lookup-based variant of cascades requires approximately half the time of PCA-based cascade, and
1/30 of GDT-based detection. We also note that some more time is spent in the second stage
when we use the lookup-based bounds, than when we use exact scores. This is the price we pay
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Figure 5.5: From A∗ search to A∗ parsing: (a) A∗ search combines the cost-so-far (dark line) with
a heuristic estimate (dashed line) of the cost-to-go (green line). In (b) we view a structure as having
bonds that gather their constituents one at a time, and formulate the composition of a structure as
climbing to the top of a Hasse diagram. This allows us to construct heuristics for parsing by means
of structure coarsening, shown in (c): the task of assembling a structure is ‘relaxed’ by considering
any structure that contains a single part as completed.

for using the optimistic score estimates delivered by the upper bounds, which ‘trick’ our algorithm
into exploring more positions than necessary. This however turns out to still be faster, when
considering the overall computation time.

5.2 A∗ for hierarchical object models

Having presented efficient algorithms for detection with the star-shaped graphical models of [5]
we now turn to detecting objects using the hierarchical, tree-structured models presented in Sec-
tion 4.2. Detection with such models amounts to building a parse tree, as shown in Fig. 4.7(b)
that starts from edge/ridge tokens and finally leads to the whole object.

There is a huge number of candidate parse trees, the vast majority of which will have low
scores. In order to control the problem’s complexity in [7, 8] we exploit the object’s hierarchical
representation to develop an hierarchicalA∗ algorithm. We first use our model to quickly compute
score bounds, based on which we construct the heuristics required by A∗ - in turn these help us
identify a few promising areas, on which more computation is then devoted. This amounts to a
coarse-to-fine scheme similar to that of the previous section, but now the coarsening/bounding is
also over structures, rather than only over spatial locations.
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(a) Input (b) Cost, coarsened problem (c) Cost, fine-level problem

Figure 5.6: Cost function for the coarsened problem (left) and the original problem (right); low
costs are red and high costs are blue. Please see in color.

Heuristics for parsing

An example that helps describe A∗ search is shown in Fig. 5.5(a): an agent wants to exit a maze
by following the path of shortest length, say L. Using Dijkstra’s algorithm amounts to exploring
states with a priority equal to their geodesic distance from the start C(ν), and will visit all states
{ν : C(ν) ≤ L}. Instead of prioritizing states based only on their ‘cost so far’, A∗ [20, 21] uses
instead a priority equal to C(ν) + h(ν), where h is called a heuristic and provides an estimate
of the ‘cost to go’. A heuristic is admissible if it provides a lower bound of the cost to go; this
is guaranteed to lead to the optimal solution after visiting the -smaller- set of states {ν : C(ν) +
h(ν) ≤ L}. Admissible heuristics can be obtained from problem relaxations: for our example this
could amount to replacing the geodesic distance with an L1 or L2 distance.

The counterparts to Dijkstra and A∗ in parsing are Knuth’s Lightest Derivation (KLD) and
Hierarchical A∗ Lightest Derivation (HALD) [22], respectively, while an earlier work on A∗ for
natural language parsing was [23]. KLD prioritizes intermediate structures based on their instanti-
ation cost, while HALD prioritizes intermediate structures based on the sum of their instantiation
and heuristic costs. The HALD algorithm was originally applied to contour grouping, where the
heuristic costs were obtained by spatial coarsening of the image domain. In our object parsing
work we introduce a different way of constructing heuristics which can be understood as a form
of ‘structure coarsening’.

For this, we work with composition rules where each structure acquires its constituents ‘one-
at-a-time’, a scheme corresponding to the Greibach normal form [24]. This introduces a par-
tial ordering among structures which can be described with a Hasse diagram [25], as shown in
Fig. 5.5(b) for a 3-part structure: boxes correspond to structures, for two connected structures the
one lying above has more elements, and composing a structure amounts to following a path from
the minimum to the maximum element of the graph.

Each transition on this diagram comes at a price, namely the contribution of the acquired
structure to the overall score function being optimized. Finding the optimal structure amounts to
searching for the shortest path to the diagram’s top; the notion of ‘structure coarsening’ that we
introduce amounts to saying that a structure has been fully parsed if one of its constituent is present
- the costs for the remaining constituents are replaced by their minimal values. We can interpret
this as collapsing the topmost nodes of a Hasse diagram into a single one, as shown in Fig. 5.5(c).
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Figure 5.7: A∗ Parsing of a car: Initially (left) the car is coarsely parsed using Knuth’s Lightest
Derivation. The coarsening consists in considering that each car part needs only a single contour.
Once a car is thus parsed its parsing is ‘rolled back’, and generates contexts for parsing at the finer
level. This blows-up a single coarse-level node into a full-blown subtree at the fine level. The parse
trees indicate the number of low-, mid-, and high- level structures (orange,blue/green/red,black)
that are involved in the coarse- and fine-level composition procedure.

Hierarchical object parsing

The coarsening scheme described above provides us with the means of solving the object parsing
problem with A∗ . Instead of parsing an object entirely from the bottom-up, we can first only
roughly detect it by coarsening certain layers of the hierarchy, and then use these results to guide
detection at a finer level. The first, ‘bottom-up’ step can quickly rule out a big portion of the
image, and then provide a heuristic function that gives ‘top-down’ guidance about where more
computational resources should be spent.

To illustrate the relationship between the coarse- and fine- level costs, in Fig. 5.6 we show as
a heat map the cost function at both levels. We efficiently compute the cost in the middle, which
provides us with a lower bound for the cost on the right. We then refine the computation at those
locations where the coarse cost falls below a conservative threshold. This ensures that we will not
be wasting resources to form an object from the ‘bottom-up’ at a fine-level if we do not have some
‘top-down’ evidence from the coarse level score that it is worth doing so.

To describe how the algorithm works we use the illustration in Fig. 5.7; a more technical
description is available in [7, 8]. We consider detecting a car structure composed of an engine,
cabin and trunk structures, which are in turn composed of multiple contours. Initially we simplify
the parsing problem by coarsening the object part level of the hierarchy. For example for the
engine structure, we consider that it is complete when we have found one of its contours, e.g. the
hood; the same applies to the cabin and trunk parts. In this way we first compute a coarse parse of
the object, where each part is composed from one contour. We then backtrack to the intermediate
structures formed during coarse detection, and provide them with a heuristic function, equaling a
lower bound of their cost-to-go. The availability of a heuristic activates a more detailed parse at
the fine level; for example, as shown on the right of Fig. 5.7, the context for the ‘back’ structure
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Coarse-level detection

Fine-level detection, using coarse-level guidance

Fine-level detection, without guidance

Figure 5.8: The top-two rows demonstrate the Coarse-to-Fine detection scheme, which is con-
trasted to the plain, Fine-Level detection scheme of the bottom row. At the coarse level a small set
of candidate object locations is quickly identified; these locations guide search at the fine level,
acting like top-down guidance. Instead, when doing Fine-level Parsing without guidance (bot-
tom row) a detailed parse of the object’s parts is performed in several background locations, e.g.
around trees. This wastes computation resources on locations which end up being useless.

initiates its fine-level composition, expanding a single node of the coarse parse to a whole subtree.
In Fig. 5.8 we illustrate the computational gain due to this scheme on an image containing

a substantial amount of clutter. At the coarse level we coarsen the part level, so we find a few
structures per part - we show their centers as dots. We do not coarsen the object level, namely we
require all parts to be present, which reduces the candidate objects as shown in the top right corner
of Fig. 5.8. Starting from these ‘shortlisted’ object hypotheses, we backtrack to the lower levels
and focus on the image areas likely to contain an object. We now build full-blown object parts
with multiple contours, which leads to a single object instantiation being above threshold.

By contrast, as shown in the bottom row of Fig. 5.8 purely bottom-up fine-level detection
is ‘short sighted’. By trying to form all object parts at full detail from the beginning, it wastes
computational resources. This is evident from the large number of individual object parts formed
on the background - the final solution is the same, but takes longer to compute.

5.3 Reinforcement learning for facade parsing

The models that we have been working with so far have a fixed number of parts; this is a common
assumption in object detection, but does not fully explore the potential of recursive, grammatical
representations for vision. In [9, 26] we explore a full-blown parsing task for the problem of facade
interpretation: as shown in Fig. 5.9 our goal is to partition a rectified facade into semantic classes
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Input m(x,y,shop) m(x,y,roof) m(x,y,wall) m(x,y,win) c(x,y) m(x,y,c(x,y))

Figure 5.9: Illustration of the objective function: the first four rows are heat maps of the pixel-
wise merit functions for each terminal class (shop/roof/wall/window). The penultimate row is a
candidate labeling (color-coded), and the last row is a combination of the merits, ‘multiplexed’
according to c. Our goal is to maximize

∑
x,ym(x, y, c(x, y)) with respect to c(x, y).

such as ‘wall’, ‘window’, ‘balcony’ or ‘roof’. This is a problem of practical importance for the
semantic interpretation of large image datasets in commercial urban map applications, but is also
theoretically interesting, as it involves fitting models that accommodate structure variation.

We develop our ideas around shape grammars (SG’s) [27–29], which were used earlier for
building interpretation using either heuristic bottom-up computation [30] or Monte Carlo opti-
mization [31]. Instead, we use Reinforcement Learning (RL) [32] to efficiently solve the parsing
problem: we apply established RL techniques such as Hierarchical RL and state aggregation to
our problem and develop a novel method to exploit image-based information during optimization,
which allows us to use bottom-up guidance while being resilient to potential front-end failures.

This method has delivered state-of-the-art results in a fraction of the time required by [31],
and has been validated under diverse imaging conditions; our implementation is available at [33].

Facade parsing and Shape Grammars

We first phrase the facade interpretation task as one of optimizing a merit function, and then turn
to constraining the space of solutions in an architecturally meaningful way.

We consider that we have a function m(x, y, c) ∈ [0, 1] that indicates the score obtained
for labelling pixel x, y as having class c - for instance in columns 2-5 of Fig. 5.9 we show the
pixel-wise class posteriors of random forest classifiers for different classes. Our goal is to find a
labelling c(x, y) that maximizes the cumulative merit

∑
x,ym(x, y, c(x, y)). This is similar to the

semantic segmentation task [34], but in our case the labeling needs to not only be smooth, but also
architecturally meaningful.

To phrase this constraint we use the shape grammar (SG) [27–29] shape modeling framework.
Adapting SGs to our setting, we call ‘shape’ a rectangular domain c(x, y, w, h) where c is the type
(e.g. ‘d’ for door, ‘w’ for wall), (x, y) the position, and (w, h) the width and height. Terminal
shapes relate to the image observations, while non-terminals only relate to compositions of termi-
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Parent Children Split
Axiom(W,H) Facade(0,0,W,H) None
Facade(0,Y,W,H) Floor(0,Y,W,h) Y:h

Fa-Wall(0,Y+h,W,H-h)
Fa-Wall(0,Y,W,H) Wall(0,Y,W,h) Y:h

Facade(0,Y+h,W,H-h)
Floor(X,Y,W,H) Wall(X,Y,w,H) X:w
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Fl-Win(X,Y,W,H) Window(X,Y,w,H) X:w
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Figure 5.10: A toy 2D split grammar (left) and a shape generated by it (right). Walls and windows
are terminals; filling their domain with their color gives the facade on the right.

nals, or other non-terminals. A shape grammar also involves a set of replacement rules to break up
a non-terminal into non-terminals and/or terminals. In our ‘Binary Split Grammar’ (BSG) variant
each rule splits a shape along a single dimension and into at most two shapes. For instance a rule
can break up a facade as follows:

fa(X,Y,W,H) −→
H:h,fl

fl(X,Y,W, h)fa(X,Y + h,W,H − h),

meaning that we take a shape of type fa(cade), and split it along the H(eight) dimension into a
fl(oor) of height h and a remainder of type fa(cade); the support of the original facade equals the
union of the supports of the symbols on the right. Finally an ‘axiom’ shape appears only on the
left side of a rule; a tree rooted at an axiom with terminals at all leaves is called a ‘derivation tree’.

We demonstrate in Fig. 5.10 a small BSG for facades. We denote in color the grammar termi-
nals for walls and windows. The split direction alternates per layer, while the grammar enforces
a certain alteration of shapes within each direction; namely the ‘Fa-Wall’ and ‘Fl-Win’ shapes
indicate that the decomposition is half-done, and require the next shape to be of a complementary
type. On the right side we show a shape derived by applying some of the grammar rules, as well
as the respective derivation tree; we can thus see our grammar as a generative model for a variety
of facades, obtained by using different rule parameters.

Coming to the inverse problem of fitting a SG model to a given image, if we define the ‘merit’
of terminal cA(x, y, w, h) as:

M(cA(x, y, w, h)) =
x+w∑
x′=x

y+h∑
y′=y

m(x′, y′, cA) (5.15)

and express the merit of a non-terminal recursively as the sum of its descendants’ merits, the
objective laid out in the beginning amounts to the merit of the ‘axiom’ shape. We thus face a
problem of picking the set of grammar rules that maximizes the merit of the axiom; this is a
challenging optimization problem, as we have an unknown a priori number of rules, each rule
comes with continuous parameters, and the merit is defined recursively for non-terminals. This
led us to the Reinforcement Learning-based formulation that is outlined below.
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Reinforcement Learning and bottom-up guidance of shape parsing

We view parsing as the work of an agent (or, algorithm) that starts with a tree containing only the
axiom shape at its root and iteratively applies rules to nodes of the tree until obtaining a derivation
tree. The agent collects ‘rewards’ at each step and aims at maximizing its cumulative reward.

At any point in time the currently entertained derivation is called the ‘state’ s of the agent,
and the rule being applied is called the ‘action’, a. We consider that the agent follows a policy
π(s, a) = p(a|s), indicating the probability with which action a is chosen at state s. The action-
value function Qπ(s, a) indicates the anticipated cumulative reward for picking action a at state s,
and then following the policy π afterwards; this can be expressed by Bellman’s recursion:

Q(s, a) = R(s, a) +
∑
a′

π(s′, a)Q(s′, a′), (5.16)

where R(s, a) is the reward obtained for taking action a at s, s′ is the state subsequent to taking
action a at s, and the summation on the right is marginalizing over the subsequent actions, a′; s′

and R(s, a) may also be random, and require marginalization, but we omit this for simplicity.
Reinforcement Learning uses several iterations (‘episodes’) to improve π(s, a) by estimating

π(s, a) simultaneously with Qπ(s, a) and gradually finding a policy π that leads to large values of
Qπ(s, a). In particular, an ε-greedy policy can be determined from the merit function as follows:

π(s, a) = (1− ε)δ(a, a∗s) + εU(a), a∗s = argmaxaQ(s, a), (5.17)

where a∗s is the apparently best action, based on the currently entertained Q(s, a) and U(a) is a
uniform distribution on actions; namely we ‘exploit’ the gathered knowledge Q(s, a) with prob-
ability 1 − ε and ‘explore’ new options with probability ε. The parameter ε is decreased over
different runs of the algorithm, gradually compounding the gathered knowledge. As the agent is
executing its task we can update Q(s, a) ‘on the fly’, according to the Q-learning update:

∆Q(s, a) = α[R(s, a) + max
a′

Q(s′, a′)−Q(s, a)] (5.18)

where α is a learning rate. This brings closer a previous estimate of Q(s, a) with the more up-
to-date estimate, R(s, a) + maxa′ Q(s′, a′). Repeatedly applying Eq. 5.18 for several runs while
slowly decreasing ε and α results in an optimal policy [32].

At an intuitive level the advantage of RL compared to Dynamic Programming is that RL does
not explore all state-action combinations, but rather samples some promising ones per iteration;
and unlike a naive Monte Carlo estimation of Q(s, a) by sampling, the update in Eq. 5.18 ex-
ploits the problem structure and modifies Q(s, a) at each step, leading to fast convergence. These
comparisons are more thoroughly articulated in [32].

In our work we use RL to tackle several problems of shape grammar parsing, involving the
hierarchical definition of the rewards for non-terminals, for which we use Hierarchical RL [35],
and the enforcement of symmetry across floors, for which we used state aggregation [36] to tie
together the policy functions of different floors. We refer to [9, 26] for a thorough presentation
and focus instead on incorporating bottom-up guidance in shape parsing.

According to Eq. 5.17, at any stage our agent will ‘explore’ an action at random with proba-
bility ε; this allows it to globally optimize its policy by getting ‘unstuck’ from early errors. But
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Figure 5.11: Image-based guidance and Q-learning: the image gradient guides action exploration,
by proposing to ‘break’ shapes at strong intensity discontinuities. This accelerates Q-learning over
the ‘agnostic’ ε-greedy baseline, as can be seen in the average return-per-episode plots on the right.

instead of having an ‘uninformed’ uniform distribution on actions, we can instead use image-based
cues to suggest good actions. For instance when splitting a floor into windows and walls, taking
action a at position x will place the next boundary at x + a. Since the appearance of walls and
windows is supposed to be different, we can anticipate that the horizontal image gradient will be
strong at x+a, and use the image gradient to favor those actions a that will lead to such positions.

As illustrated in Fig. 5.11 we develop such a scheme by accumulating horizontal gradients ver-
tically (left) and vertical gradients horizontally (right). These histograms are transformed through
a softmax function to construct a proposal distribution that steers our agent’s action exploration:
instead of the ‘agnostic’ ε-greedy policy in Eq. 5.17, we use a data-driven policy of the form:

π(s, a) = (1− ε)da∗(a) + εP (a;x), P (a;x) =
eh(x+a)∑
a′ e

h(x+a′)
, (5.19)

where h is the cumulative gradient signal. When operating in ‘exploration’ mode our agent will
now use image guidance to check locations around boundaries more frequently; however we do
not compromise the convergence of the algorithm, as π(s, a) stays above zero for all actions.
Empirically, as we can see on Fig. 5.11 we observe that the image-driven strategy results in a
significant speed-up over the plain and ‘uninformed’ ε-greedy search. We anticipate that this
scheme can apply to other vision problems in a manner similar to Data-Driven MCMC [37].

Results

For evaluation we use the facade benchmarks in [31] and [9], where ground-truth segmentations
into ‘window’, ‘wall’, ‘balcony’, ‘door’, ‘roof’, ‘sky’, and ‘shop’ regions are provided for 10 and
84 Parisian building facades respectively. All facades follow the Haussmann architecture rules,
making it easy to formulate a binary shape grammar (BSG) for the task at hand.

As in [31] we use Random Forests to recover the pixel-wise merit functions and consider the
same optimization problem with them - any differences in performance can thus be attributed to the
optimization algorithm. As can be seen from the confusion matrices in Fig. 5.12, our method gives
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Figure 5.12: Confusion matrices on the datasets of [31] and [9]; the left column compares to [31].

Figure 5.13: Parisian facade parsing with a binary shape grammar for Haussmann architecture.

typically better results on the same benchmarks; however the results of our method are delivered
in a fraction of the time: [31] need around 106 iterations and 10 minutes to converge, whereas the
RL-based approach only needs 2000 iterations and 30 seconds. As shown in Fig. 5.13, apart from
some minor geometrical mistakes, the delivered buildings interpretations are mostly plausible.

In the top row of Fig. 5.14 we apply our parsing method to skyscrapers; the difficulty of these
examples lies in the -unknown- number of decisions the agent must take to perform a segmenta-
tion; we see that our algorithm manages to correctly parse these buildings. To further illustrate
the flexibility of our method, in the rightmost example we parse the input facade with a BSG that
enforces an alternation of two kinds of floors. In the bottom row of Fig. 5.14 we provide examples
of occlusions and lightings that are correctly handled by the proposed framework. We observe that
the algorithm ‘hallucinates’ windows behind the occlusions, due to the model’s bias for symmetry.

In Fig. 5.15 and Fig. 5.16 we demonstrate parsing results based on another merit function
inspired from Grab-cut [38]. As shown in Fig. 5.15, the user manually selects on the image some
examples of terminal elements and we fit a Gaussian Mixture Model (GMM) per terminal type,
each made of 3 Gaussian kernels. The GMM-based class posteriors are then used to define the
pixel-wise merit functions. The results show that we can easily combine architectural shape priors
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Figure 5.14: The top row demonstrates our algorithm’s ability to deal with a large and unknown
number of floors, and the bottom row its robustness to poor illumination and to occlusions.

with user annotation, which could prove useful in the development of procedural models for large-
scale city datasets.

As an illustration of how this can be done, we note that we can easily construct 3D building
models by turning the 2D inferred grammar rules into 3D variants and manually adding a depth
value per terminal type. In Fig. 5.17 for instance we apply this approach on some Haussmannian
buildings, and render novel 3D views from different viewpoints and illuminations; such results
have previously been demonstrated for generic natural images e.g. in [39]; what is a main advan-
tage of our method is the granularity and precision at which this task is solved by employing a
strong prior model for the shapes being analyzed.
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Figure 5.15: Grab-Cut -based facade parsing: we show, from left to right the original image, the
user’s brush strokes used to train a GMM classifier a pixel-wise segmentation using the learned
GMMs, and the optimal parse delivered by our algorithm.

Figure 5.16: Grab-cut parsing results on buildings with classic architectures from Barcelona and
Budapest and a modern building in Paris.

Figure 5.17: Image-based modeling: we turn a 2D rule sequence estimated from an image into a
3D sequence by manually adding depth values, and texture-map the input image to the 3D model.
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Chapter 6

Future Research
I looked, and, behold, a new world! There stood before me, visibly incorporate, all that
I had before inferred, conjectured, [.] a beautiful harmonious something - for which I
had no words; but you, my readers in Spaceland, would call it the surface of the sphere.

– Flatland Edwin A. Abbott

This thesis presents methods to reliably extract, describe, model and detect shape in natural
images, by combining techniques from machine learning and optimization. The motivation for
these works is the understanding that shape- and more generally, grouping- based representations
can go all the way from image features to objects, thereby facilitating a proper coupling of bottom-
up and top-down processing for fast detection. What emerges from the developments described in
this work is that we can indeed do this, whether in deterministic optimization, such as Branch-and-
Bound, or in stochastic optimization, such as Reinforcement Learning. Looking deeper into such
connections and means of exploiting them for scalable detection is a primary research priority for
the near future, since it is a problem of both theoretical and practical interest.

One aspect which seems central to scaling up this approach to 3D recognition and large-scale
object detection is the development of appropriate mid-level representations. As outlined in Sec-
tion 1.2 this is a problem that has received increased interest lately, and in on-going work we have
also integrated such ideas in Branch-and-Bound detection in the 2D case. So far the use of shared
parts in 3D has been pursued through voting in 3D category detection [1, 2], while the current 3D
extensions of DPMs are mostly view-based [3–5] and do no yet implement part sharing.

We anticipate that questions pertaining to part sharing in 3D will be addressed most success-
fully by relying on explicit 3D representations. On the one hand depth sensors, such as Microsoft’s
Kinect, are now cheap enough to bring surface modeling and matching into the mainstream of
computer vision - so these advances may be directly exploitable at test time for detection. On
the other hand, even if we do not use depth information at test time, having 3D information can
simplify the modeling task during training.

One of the most promising advances in this direction is illustrated in the results of [6] shown in
Fig. 6.1. The figure on the left illustrates how the correspondence problem for 3D data can exploit
information that is lost due to the effects of 2D projection: when seen as 2D images the two shapes
differ dramatically, but in 3D the correspondence problem becomes substantially more clear-cut,
and therefore more refined notions of consistency can be conceived and enforced. Furthermore,
as illustrated in Fig. 6.1(b), addressing the problem of co-segmenting/registering data on a 3D
surface database brings us much closer to the construction of shared mid-level parts, in the vein
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(a) Consistent surface registra-
tion

(b) Surface co-segmentation

Figure 6.1: 3D surface registration and model building, from [6]: (a) shows the 3D correspon-
dences used to establish geometric consistenty among two different shapes, in a manner that al-
lows one-to-many correspondences; (b) shows in color the results of co-segmenting a large dataset
of surfaces.

of generalized cylinders/geon/ribbon representations [7–9] pursued in the earliest days of vision.
What was missing from research in that era was the 3D information about the scenes - so they
were facing a much harder task, with very limited tools.

Currently we have the necessary 3D information at hand from range sensors, we have rigorous
tools exist to describe surfaces, laid out in our chapter on invariant descriptors, we know how
to train statistical models for deformable objects and we also know how to detect such objects
efficiently. In on-going work with collaborators we have started exploring combinations of such
aspects, namely (i) the use of surface analysis tools to match surfaces from depth sensors (ii)
using branch-and-bound for efficient inference in 3D space and (iii) groupwise-registration to
build statistical 3D surface models. In the coming years we intend to pursue a tighter integration
of these different directions for scalable 3D object recognition.
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8th semester course, École Centrale Paris.
11 lectures - 22 teaching hours, attended by 20-30 students annually.
The course covers techniques for image analysis (Filterbanks, Scale-Space and Partial Differential
Equations), energy minimization (Calclulus of Variations and Curve Evolution, Markov Random
Fields), and category modeling (Active Appearance Models, Deformable Part Models, Bag-of-
Words models). Applications include image denoising, inpainting, feature detection, texture anal-
ysis, image segmentation, motion estimation, object detection and tracking.

PhD Student Supervision

Haithem Boussaid, École Centrale Paris (2010-)
Co-advised with Nikos Paragios.
Topic: Learning deformable models for medical image analysis.

Stavros Tsogkas, École Centrale Paris (2011-)
Topic: Shape-based optimization for object category detection.

Olivier Teboul, École Centrale Paris (2008-2011)
Co-advised with Nikos Paragios.
Topic: Reinforcement learning-based parsing of building facades with shape grammars.

Eduard Trulls, Universitad Polytecnica de Catalunia (2012-)
Advisors: Francesc Moreno and Alberto Sanfeliu.
Topic: Dense segmentation-aware descriptors for matching and recognition.

Michalis Raptis, University of California at Los Angeles (2009-2011)
Advisor: Stefano Soatto.
Topic: Mid-level video models for action recognition and localization.

Master and Intern Student Supervision

Siddhartha Chandra, École Centrale Paris (2011)
Topic: Descriptor matching for RGB-D data.
Co-advised with Pawan Kumar.

Stavros Tsogkas, École Centrale Paris (2011)
Topic: Learning symmetry detection.
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Ishan Misra, École Centrale Paris (2012)
Topic: Groupwise shape-from-shading.

Aman Bindal, École Centrale Paris (2009)
Topic: Real-time jingle detection in video streams.

Thesis Committees

Anastasios Roussos, National Technical University of Athens (2010)
Topic: Nonlinear Diffusion in Computer Vision and Statistical Shape Models, with Applications
in Image Analysis of Articulators of Voiced and Signed Speech.

Olivier Teboul, École Centrale Paris (2011)
Topic: Shape Grammar Parsing: Application to Image-based Modeling.

Christos Pappas, University of Ioannina (on-going)
Topic: Scene Recognition and Semantic Segmentation.

Research Funding

FP7 ICT-9 Project RECONFIG (2013-2016)
Cognitive, Decentralized Coordination of Heterogeneous Multi-Robot Systems via Reconfigurable
Task Planning.
Joint research project with KTH (Sweden), U. Aalto (Finland), NTUA (Greece)
Our goal is to use 3D object understanding and localization as a medium for multi-agent coordi-
nation and collaboration.
Funding: 400K Euros for ECP, 2.300K Euros total.

FP7 ICT-9 Project MOBOT (2013-2016)
Intelligent Active MObility Assistance RoBOT integrating Multimodal Sensory Processing, Proac-
tive Autonomy and Adaptive Interaction.
Joint research project with TU Munich, U. Heidelberg (Germany), Accrea (Poland), NTUA-ICCS,
ILSP (Greece)
Our goal is to equip robotic walking assistants with 3D pose estimation and action recognition
capabilities to enable the proactive assistance of elderly users with walking disabilities.
Funding: 300K Euros for INRIA, 3.100K Euros total.

ANR-JCJC HiCoRe (2010-2014)
HIerarchical COmpositional REpresentations for computer vision.
Joung Researcher Award of the French National Research Foundation
Our goal is to develop computational mechanisms for inference and learning in hierarchical,
shape-based object representations.
Funding: 168K Euros for ECP.
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Distinctions and Awards

Reviewer award, IEEE Conference on Computer Vision and Pattern Recognition, 2013.

Reviewer award, International Conference on Computer Vision, 2009.

Bodossaki foundation scholarship as a graduate student.

Obtained in 4 years the 5-year NTUA M. Eng. Degree, ranking in the top 2%.

Paris Kanellakis award for highest ranking student in the Computer Science major.

National scholarship foundation awards as an undergraduate.

Academic Service

Associate Editor
Image and Video Computing Journal (2011-).

Journal Reviewer
International Journal of Computer Vision (2009-).
IEEE Transactions on Pattern Analysis and Machine Intelligence (2006-).
IEEE Transactions on Image Processing (2006-).
IEEE Transactions on Systems, Man and Cybernetics, B (2011).
IEEE Transactions on Neural Networks (2010).
Computer Vision and Image Understanding (2008-).
Image and Video Computing Journal (2010).
Computer Speech and Language (2009).
EURASIP Journal of Image and Video Processing (2012).
Machine Vision and Applications (2013).

Program Chair
IEEE Workshop on Perceptual Organization in Computer Vision (POCV), 2012.

Area Chair
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2012.

Program Committee
Int’l. Conf. on Computer Vision (ICCV) 2007, 2009, 2011, 2013.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2009, 2010, 2011, 2013.
European Conf. on Computer Vision (ECCV) 2010.
Asian Conf. on Computer Vision (ACCV) 2009, 2010, 2012.
Int’l. Conf. on Artificial Intelligence and Statistics (AISTATS) 2011.
Int’l. Conf. on Energy Minimization Methods in Computer Vision and Pattern Recognition
(EMMCVPR) 2007, 2009, 2011, 2013.
Int’l. Workshop on Vision, Modeling and Visualization, 2013.
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ACCV Workshop on Detection and Tracking in Challenging Environments, 2012.
Int’l. Workshop on Stochastic Image Grammars 2009, 2011.
IEEE Workshop on Perceptual Organization in Computer Vision (POCV), 2010.
Int’l Symposium on Visual Computing, 2009, 2010, 2011.
Indian Conference on Vision Graphics and Image Processing (ICVGIP), 2008, 2010.

Grant Reviewer
European Union, ERC awards, 2010.
Swiss National Science Foundation, 2013.

Invited Presentations and Academic Visits

July 2013 UCLA, IPAM summer school on computer vision
June 2013 Stony Brook University
April 2013 USI Lugano, visiting faculty (with Prof. M. Bronstein)
April 2013 Zuse Institute Berlin, Graphics Seminar
July 2012 JHU Summer School on Human Language Technology

“Towards a Detailed Understanding of Visual Scenes”
collaboration project with the University of Oxford, Chicago, and Oulu

June 2012 Carnegie Mellon University
June 2012 École Normale Superieure/Willow Group
June 2012 National Technical University of Athens
July 2011 ETH, Visual Computing Lunch
July 2011 USI Lugano, visiting faculty (with Prof. M. Bronstein)
June 2011 CVPR workshop on Symmetry Detection from Real World Images
January 2011 Oxford University, Visual Geometry Group
June 2010 UCLA, Center for Image and Vision Sciences
Aprin 2009 National Technical University of Athens
September 2008 UCLA, Image Processing Seminar
June 2008 UC Irvine, Artificial Intelligence Seminar
May 2008 École Centrale Paris
April 2008 Berkeley, Computer Vision Group
April 2008 Caltech, Computational Vision Lab
March 2008 Rutgers University, Dept. of Computer Science
March 2008 University of Pennsylvania, GRASP Laboratory
February 2008 Johns Hopkins University, Center for Imaging Science
February 2008 Stony Brook University, Image Analysis Lab
June 2007 Lotus Hill Institute
October 2005 UCLA, Center for Image and Vision Sciences
June 2003 INRIA Sophia-Antipolis, Odyssée Group

117



Software Releases

Dual-Tree Branch-and-Bound for Deformable Part Models.
http://vision.mas.ecp.fr/Personnel/iasonas/dpms.html
Fractional Programming Grouping.
http://vision.mas.ecp.fr/Personnel/iasonas/contours.html
Dense Segmentation-Aware Descriptors (E. Trulls).
http://www.iri.upc.edu/people/etrulls/#code
Dense Scale-Invariant Descriptors for images and surfaces (with M. Bronstein).
http://vision.mas.ecp.fr/Personnel/iasonas/descriptors.html
Learning-based symmetry detection, code and benchmark ( S. Tsogkas).
http://www.centrale-ponts.fr/personnel/tsogkas/code.html
Mid-level representations for action recognition, code and benchmark (M. Raptis).
http://vision.ucla.edu/˜raptis/action_parts.html
Facade Parsing with Reinforcement Learning, code and benchmark (O. Teboul et. al.).
http://vision.mas.ecp.fr/Personnel/teboul/grapesPage/index.php
Modulation Features for Texture Analysis (with G. Evangelopoulos).
http://cvsp.cs.ntua.gr/software/texture/
Scale-Invariant Edges and Ridges.
http://vision.mas.ecp.fr/Personnel/iasonas/sketch.html

Personal

Date of Birth: 8th January 1980.
Languages: Greek, English, French, German.
Affiliations: IEEE Member, Technical Chamber of Greece.
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Publications

Journal articles

1 O. Teboul, I. Kokkinos, S. Loic, P. Katsourakis and N. Paragios, “Parsing Facades with Shape
Grammars and Reinforcement Learning.”, IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, Vol. 35(7), pp. 1744-1756, 2013.

2 I. Kokkinos and A. Yuille, “Inference and Learning with Hierarchical Shape Models.”, Interna-
tional Journal of Computer Vision , Vol. 92(2), pp. 201-225, 2011.

3 I. Kokkinos and P. Maragos, “Synergy Between Image Segmentation and Object Recognition Us-
ing the Expectation Maximization Algorithm.”, IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 31(8), pp. 1486-1501, 2009.

4 I. Kokkinos, G. Evangelopoulos and P. Maragos, “Texture Analysis and Segmentation Using Mod-
ulation Features, Generative Models and Weighted Curve Evolution.”, IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. 31(1), pp. 142-157, 2009.

5 I. Kokkinos, R. Deriche, O. Faugeras and P. Maragos, “Computational Analysis and Learning for
a Biologically Motivated Model of Boundary Detection.”, Neurocomputing, Vol. 71(10-12), pp.
1798-1812, 2008.

6 I. Kokkinos and P. Maragos, “Nonlinear Speech Analysis Using Models for Chaotic Systems.”,
IEEE Trans. on Speech and Audio Processing, Vol. 13(6), pp. 1098-1109, 2005.

Double-blind, peer-reviewed conference articles (acceptance rate 20-30%)

7 E. Trulls, I. Kokkinos, A. Sanfeliu and F. Moreno, “Dense Segmentation-Aware Descriptors” In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2013.

8 S. Tsogkas and I. Kokkinos, “Learning-based Symmetry Detection in Natural Images” In Proc.
European Conf. on Computer Vision (ECCV), 2012.

9 I. Kokkinos, M. Bronstein, R. Littman and A. Bronstein “Intrinsic Shape Context Descriptors for
Deformable Shapes” In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2012.

10 M. Raptis, I. Kokkinos, S. Soatto “Discovering Discriminative Action Parts from Mid-Level Video
Representations” In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2012.

11 I. Kokkinos, “Rapid Deformable Object Detection using Dual Tree Branch and Bound” In Proc.
Neural Information Processing Systems (NIPS), 2011.

12 O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios, “Shape Grammar Parsing
via Reinforcement Learning” In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2011.
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13 I. Kokkinos, “Boundary Detection using F-measure, Filter- and Feature Boost.”, In Proc. Euro-
pean Conference in Computer Vision (ECCV), 2010.

14 I. Kokkinos, “Highly Accurate Boundary Detection and Grouping.”, In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2010.

15 M. Bronstein and I. Kokkinos, “Scale-invariant heat kernel signatures for non-rigid shape recog-
nition.”, In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2010.

16 I. Kokkinos and A. Yuille, “HOP: Hierarchical Object Parsing.”, In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2009.

17 I. Kokkinos and A. Yuille, “Scale Invariance without Scale Selection.”, In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2008.

18 I. Kokkinos and A. Yuille, “Unsupervised Learning of Object Deformation Models.”, In Proc.
IEEE Int’l. Conf. on Computer Vision (ICCV), 2007.

19 I. Kokkinos, P. Maragos and A. Yuille, “Bottom-Up and Top-Down Object Detection Using Primal
Sketch Features and Graphical Models.”, In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2006.

20 I. Kokkinos and P. Maragos, “An Expectation Maximization Approach to the Synergy Between
Image Segmentation and Object Categorization.”, In Proc. IEEE Int’l. Conf. on Computer Vision
(ICCV), 2005.

21 I. Kokkinos, R. Deriche, P. Maragos and O. Faugeras, “A Biologically Motivated and Computa-
tionally Tractable Model of Low- and Mid- Level Vision Tasks.”, In Proc. European Conference
on Computer Vision (ECCV), 2004.

Double-blind, peer-reviewed conference and workshop articles

22 H. Boussaid, I. Kokkinos, and N. Paragios “Rapid Mode Estimation for 3D MRI Brain Tumor Seg-
mentation ”, Energy Minimization Methods in Computer Vision and Pattern Recognition (EMM-
CVPR), 2013.

23 I. Kokkinos, “Bounding Part Scores for Rapid Detection with Deformable Part Models ”, Proc.
Workshop on Parts and Attributes, in conjunction with ECCV, 2012.

24 H. Boussaid, S.Kadoury, I. Kokkinos, J.-Y. Lazennec, G. Zheng, N. Paragios, “3D Model-based
Reconstruction of the Proximal Femur from Low-dose Biplanar X-Ray Images”, Proc. British
Machine Vision Conference (BMVC), 2011.

25 A. M. Bronstein, M. M. Bronstein, B. Bustos, U. Castellani, M. Crisani, B. Falcidieno, L. J.
Guibas, I. Kokkinos, V. Murino, M. Ovsjanikov, G. Patan, I. Sipiran, M. Spagnuolo, J. Sun,
“SHREC 2010: robust feature detection and description benchmark.”, Proc. EUROGRAPHICS
Workshop on 3D Object Retrieval (3DOR), 2010.
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26 A. M. Bronstein, M. M. Bronstein, U. Castellani, B. Falcidieno, A. Fusiello, A. Godil, L. J. Guibas,
I. Kokkinos, Z. Lian, M. Ovsjanikov, G. Patan, M. Spagnuolo, R. Toldo, “SHREC 2010: robust
large-scale shape retrieval benchmark.”, Proc. EUROGRAPHICS Workshop on 3D Object Re-
trieval (3DOR), 2010.

27 I. Kokkinos and A. Yuille, “Inference and Learning with Hierarchical Compositional Models.”,
In Proc. 1st Int’l. Workshop on Stochastic Image Grammars, in conjunction with CVPR 2009.

28 I. Kokkinos and P. Maragos, “A Detection-Theoretic Approach to Texture and Edge Discrimina-
tion.”, In Proc. 4th Int’l. Workshop on Texture Analysis and Synthesis, in conjunction with ICCV
2005.

29 G. Evangelopoulos, I. Kokkinos and P. Maragos, “Advances in Variational Image Segmentation
using AM-FM models: Regularized Demodulation and Probabilistic Cue Integration.”, In Proc.
3rd IEEE Variational and Level-Set Methods (VLSM) Workshop, in conjunction with ICCV 2005.

30 I. Kokkinos, G. Evangelopoulos and P. Maragos, “Advances in Texture Analysis: Energy Domi-
nant Component & Multiple Hypothesis Testing.”, In Proc. IEEE Int’l. Conf. on Image Processing
(ICIP), 2004.

31 I. Kokkinos, G. Evangelopoulos and P. Maragos, “Modulation-Feature based Textured Image Seg-
menation Using Curve Evolution.”, In Proc. IEEE Int’l. Conf. on Image Processing (ICIP), 2004.

32 V. Pitsikalis, I. Kokkinos and P. Maragos, “Nonlinear Analysis of Speech Signals: Generalized
Dimensions and Lyapunov Exponents.”, In Proc. European Conference on Speech Communication
and Technology (EUROSPEECH), 2003.

33 P. Maragos, A. Dimakis and I. Kokkinos. “Some Advances in Nonlinear Speech Modeling Using
Modulations Fractals and Chaos.” In Proc. IEEE Int’l. Conf. on Digital Signal Processing, 2002.

Theses and reports

34 I. Kokkinos, M. Bronstein and A. Yuille. Dense Scale-Invariant Descriptors for Images and Sur-
faces, INRIA Research Report RR-7914, 2012.

35 I. Kokkinos. Rapid Deformable Object Detection using Bounding-based Techniques, INRIA Re-
search Report RR-7940, 2012.

36 I.Kokkinos, R.Deriche, Olivier Faugeras and P.Maragos, Towards Bridging the Gap Between Bio-
logical and Computational Segmentation, INRIA Research Report RR-6317, 2007.

37 I. Kokkinos. Synergy between Image Segmentation and Object Recognition using Geometrical
and Statistical Computer Vision Techniques, Ph.D. Thesis, School of Electrical and Computer
Engineering, National Technical University of Athens, 2006.

38 I. Kokkinos. Nonlinear Speech Processing Using Models for Chaotic Systems, Diploma Thesis,
School of Electrical and Computer Engineering, National Technical University of Athens, 2001.
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