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Introduction

1. The aims of the dissertation. The present disserta-
tion aims at studying the notion of independence in connection
with modal logic. It attempts to provide basically two sorts of
contributions: systematical and logical.

The systematical contribution of the present dissertation
is the definition of an independence-friendly version of any
basic modal logic, analogously to the way in which the
independence-friendly (IF) first-order logic of Jaakko Hintikka
and Gabriel Sandu is a version of traditional first-order logic.

In the framework offered by the thesis, it is natural to draw
a distinction between two types of independence manifest in
modal logic — logical and relational. With the IF modal-logical
apparatus at our disposal, we are then able to address the sys-
tematical linguistic question of the existence of tenses as opera-
tors in natural languages. I will argue that there are irreducible
instances of tenses as operators in English, whence the idea of
the operator-like nature of tenses — severely criticized in con-
temporary linguistic literature — cannot be totally dismissed.
Furthermore, and on a more particular level, it will be shown
how a certain interpretation (the so-called ‘backwards-looking

! For IF first-order logic, see e.g. Hintikka & Sandu (1989), Sandu
(1989), Hintikka (1996), Hintikka & Sandu (1996). For a short presenta-
tion, see Sect. 1.1 of the present thesis.

9



10 Introduction

operators’ interpretation) of the language of IF modal logic in
fact overcomes many, but not all, of the problems traditionally
attributed to the very idea of tenses as operators.

The logical contribution of the present dissertation is a num-
ber of theorems comparing the relative expressive powers of IF
modal logic and basic modal logic relative to different classes of
modal structures. IF temporal logics (or, as we will call them,
IF tense logics) are studied as special cases of modal logics. Fur-
ther, the translatability of IF modal logic into usual first-order
logic is proven. It is also shown how making a small change in
the syntax of IF modal logic results in an extended IF modal
logic that can no longer be translated into usual first-order
logic, but can express some genuine second-order properties of
modal structures.

2. Different notions of independence in modal logic.
For a given class prop of propositional atoms, the well-formed
formulae of basic modal logic of k modality types (or MLIk])
are given by the rule:

pi=p|lpleVy|end ]| Cie) | Oi(e)

where p € prop, and i < k. “Modality type” is simply a term
for a collection of modal operators that make use of the same
accessibility relation in their semantics. Interest in mixing dis-
tinct modality types is abundant in philosophically motivated
logics: consider, for instance, temporality and knowledge, tem-
porality and necessity, belief and normative obligation, or mul-
tiagent epistemic logic. In the present thesis I discern the basic
two modalities for each modality type ¢ < k: &; and 0J;.

A k-ary modal structure M is a tuple (D, Ry, ..., Rx_1,b),
where the R; are binary relations (accessibility relations) on
the non-empty domain D, and b assigns a subset of D for each
propositional atom. It is possible to give semantics to MLIk]
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by associating a semantical game between two players (Abélard,
Héloise) with each triple (¢, M, d), consisting of a formula ¢ €
ML[k|, a modal structure M and a point d from the domain of
M. The class of all plays (or histories) of G(p, M, d) is defined
by the following game rules:

o If o € {p,—p}, no move is made. If p = p and d € h(p),
orif ¢ = —p and d ¢ h(p), then Héloise wins the play and
Abélard loses. Otherwise Abélard wins and Héloise loses.

o If o = (ONY) [resp. ¢ = (0V )], then Abélard picks out
a conjunct x € {0,1¢} [resp. Héloise picks out a disjunct
x € {0,v}], and the play goes on as G(x, M,d).

o Let i < k. If ¢ = O;(¥) [resp. ¢ = <i(¥)], then
Abélard [resp. Héloise] picks out, if possible, a state d’
with R;(d,d’); and the play continues as G(i, M, d’). If,
however, such a choice is not possible (i.e. if d is R;-
maximal), then Héloise [resp. Abélard] wins and Abélard
[resp. Héloise] loses.

The plays can be viewed as finite sequences

((@07 aU)? (@17 al)? R (‘pn—h an—l))

of positions, starting with the initial position (¢, d) = (yo, agp),
and moving on by transitions (y;, a;) — (@i+1, ai+1) made in
accordance with the above game rules. A strategy of a player in
game G(¢p, M, d) is a function specifying a move for this player
in any situation in which, according to the rules of the game, it
is his or her turn to move. A strategy of a player is a winning
strategy (w.s.) in game G(p, M,d), if the player in question
wins any play of the game following this strategy.

Truth and falsity for ML[k] formulae are then defined game-
theoretically as follows:
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e M Elrg ¢ld] < there exists a w.s. for Héloise in
G(p, M, d).

o M Eqpg ¢ld] <= there exists a w.s. for Abélard in
G(p, M, d).

In the present dissertation I define a logic I have termed
IF modal logic of k modality types, or IFML[k]. Its novelty as
compared with ML[k] is that formulae of the form

Oiy1-+-0i, 1 n-1(Oipy /W)

are also allowed, where:
e ¢ € ML[K|.

e Every O, ; (j := 1,...,n) is either Oy ; or [J;; ; with
ij < k.

e WC[l,n—1].

Being familiar with basic modal logic might in fact lead one
to wonder whether it is even possible to define IF modal logic.
The evaluation of modal operators in basic modal logic is local:
such evaluation involves a transition from a state s to a state s’
along a given accessibility relation; and the alternative acces-
sible states s’ are determined by previous transitions (if any)
leading to s. In other words, the class of states s’ accessible
from a fixed state s is always the same, no matter which tran-
sitions are made to reach the state s. Therefore it might seem
difficult to see where to pose the requirement of independence,
as the earlier transitions are in any case irrelevant as regards
the possibility of any particular transition s — s’ proceeding
from s.
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The first person to have formulated an IF modal logic was
Julian Bradfield in his paper “Independence: Logics and Con-
currency” (2000). In his joint work with Sibylle Froschle,
“Independence-Friendly Modal Logic and True Concurrency”
(2002), the authors provide another formulation of IF modal
logic. Bradfield explicitly recognized the apparent problem just
described (cf. 2002, p. 104). His tactics in implementing the
idea of logical independence in a modal-logical setting is to re-
quire that logically independent transitions be concurrent (pro-
cessed in parallel).

We will consider three alternative semantics to the language
of IFML [k], which differ in the way they interpret the slash
sign “/”: wuniformity interpretation (UNI), ‘backwards-looking
operators’ interpretation (BLO) and algebraic interpretation
(ALG).

The uniformity interpretation aims at being a very straight-
forward modal-logical analogue of the IF first-order logic of
Hintikka and Sandu: it makes use of semantical games, and im-
plements the notion of independence by imposing appropriate
conditions of uniformity on winning strategies. Nothing corre-
sponding to the relation of concurrency between transitions —
used by Bradfield for defining his IF modal logic — is employed
in its formulation. In Section 1.3 Bradfield’s formulations of IF
modal logic are discussed, and some basic differences and simi-
larities between his approach and that of this thesis are pointed
out.

Under UNI interpretation, the intuitive reading of the ex-
pression (<&; /W) is: “there is a state s, such that R;(s,—1, Sn),
independently of the states s; with j € W.”

The intuitive reading of (O;, /W) is analogous. A seman-
tical game corresponding to any of the new formulae
O1...0,-1(0, /W) is provided by stipulating that the game
rule for (&;,/W) and (O;,,/W) is precisely the same as the
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game rule of ML[k] games for ©; resp. ;. The novelty in the
semantics will be a condition imposed on strategies that can
count as winning. This condition is that of uniformity. The
following example illustrates what is at stake.

Example 1 (Uniformity Interpretation) Consider the formula
¥ = 01(C2/{1})T and the unary pointed modal structures
(M, a) resp. (N,a) depicted in Figure 1. (T stands for verum,
i.e. an atom true everywhere.)

d d1 d2

FiGURrE 1

In both games G(¢, M, a) and G(¢», N, a), Abélard begins
by choosing a successor x € {b, ¢} to a, whereafter it is Héloise’s
turn to pick out a successor y to xz. Héloise’s strategy f for
choosing y = f(z) is said to be {1}-uniform, if

f(0) = f(c),

i.e. if the value of f is the same regardless of the choice for x by
Abélard. Strategy f is said to be a w.s. for Héloise in a game
corresponding to v, if f is {1}-uniform, and no matter what
the move = € {b, c} made by Abélard to interpret [y is, f gives
a successor to z (at which T is true).

Hence there is a w.s. for Héloise in G(ip, M, a), because
there is a common successor to both b and ¢, namely d. By
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contrast, there is no w.s. for her in G(¢,N,a), because in
the structure A there is no common successor to b and c. In
this game Abélard also lacks a w.s., since there is no move x
available to him after which Héloise could not move to some
successor of . The fact that neither of the players has a w.s.
is expressed by saying that the game is non-determined.

Under BLO interpretation, the independence indication
“/W?”, appearing as in (O,,/W), is understood as referring back
to an earlier round in a play of the relevant semantical game.
Then the element a; that was introduced in that round by one
of the players will be the element relative to which the choice
ay interpreting (O, /W) is made. Hence this element a, must
satisfy R(a;,ay,), where R is the accessibility relation associ-
ated with the operator O,,. This is in contrast to both the case
of basic modal logic and UNI interpretation of IF modal logic,
where the element a,, interpreting the operator O,, indexed with
n must always satisfy R(an,—1,an), i.e. be made relative to the
element introduced in the immediately preceding round. The
following example serves to illustrate BLO semantics.

Example 2 (Backwards-Looking Operators) Consider the for-
mula ¢ = 0;(¢2/{1})p and the unary pointed modal struc-
tures (M, a) resp. (N, a) depicted in Figure 2.

p -p -p -p
b c b c
a a
M N

FIGURE 2

Under BLO interpretation the independence indication in
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an expression “(O,/W)” refers to a unique earlier position in
a play, namely the position identified by the number

i:=max({0,1,...,n— 1}\W).

Now in both games G(¢, M,a) and G(¢, N, a), Abélard first
chooses a successor x; € {b,c} to a. Thereafter it is Héloise’s
turn to pick out an element x5 satisfying the following:

R(x0,22),

where zg := a and the index 0 is obtained as maz({0, 1}\{1}).
A winning strategy for Héloise in a game corresponding to 1
is simply any strategy that gives an element xo at which p is
true and that can be obtained from a along R, no matter what
move Abélard makes to interpret [J;.

Clearly in both G(¢, M,a) and G(1), N, a), the existence
of Héloise’s w.s. does not depend on Abélard’s moves, since
Héloise’s choice must be made along R starting from a and
not from a point chosen by her opponent. There is now a w.s.
for Héloise in G(ip, M, a), because R(a,b) and p is true at b.
And there is no w.s. for her in the game G(v¢, N, a) because
neither of the choices (b and c) available to her satisfies p in
the structure N. In this game Abélard has trivially a w.s.,
which consists of his simply making some move, i.e. choosing
for instance b to interpret [1;. W

In BLO interpretation no uniformity conditions are im-
posed on strategies of the players of this game. The sense of
“independence” induced by this interpretation is obtained by
constraining the moves available to a player when he or she is
making a move, and not by constraining the strategies, as is
the case with UNI interpretation.? BLO interpretation of IF

2 The distinction between these two possible ways of interpreting the
independence indication — constraints on moves and constraints on strate-
gies — is due to Prof. Gabriel Sandu (personal communication).
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modal logic will turn out to be useful when discussing natural
language tenses later in Chapter 5. In fact, BLO interpre-
tation implements the notion of relational independence, not
functional independence, the properly logical notion. However,
as will be argued in Chapter 5, the sense of independence rel-
evant in considering the operator status of natural language
tenses — the sense in which an interpretation of one tense may
be independent of that of another — is precisely the relational
one.

Under ALG interpretation, the role of the independence
indication “/W?” is to indicate ‘subtraction’. The algebraic in-
terpretation is defined only for IF tense logic, evaluated over
what we will call algebraic models

M = (T’ <7 b? O)?

where < is a linear order on 7" and (7', 0) is an Abelian group.
By its syntax IF tense logic is the IF version of Priorean tense
logic with universal and existential operators for both future
(F resp. G) and past (P resp. H). Technically, IF tense logic
is just IFMLJ2] in whose semantics the operators P and H
employ the converse of the accessibility relation by means of
which the semantics of F' and G is given.

Truth under ALG interpretation is defined by recursion
on the complexity of IF tense-logical formulae. The clause for
formulae of the form O; ...O0,-1(0,/W)y, in the special case
of the additive group (R, +) of the reals, is as follows:

MEO;...04-1(0,/W)p[t] <=
Q... Qn: M plt+ Zie{l,...,n}('ri) — 2iew (i),

where each @; is one of the relativized quantifiers (3z; > 0),
(Vz; > 0), (3z; < 0) or (Va; < 0) — depending on whether the
operator O; is F;, G;, P; or H;, respectively. The semantics for
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an arbitrary Abelian group (7, 0) is slightly more complicated
and will be given in Section 4.2. The example below serves to
illustrate what the algebraic interpretation amounts to.

Example 3 (Algebraic Interpretation) Consider the formula
Y = Gi(P2/{1})p and the pointed algebraic models (M, 0)
resp. (N, 0) depicted in Figure 3, in which the circles indicate
the unique point (—1 resp. 0) at which the respective model
makes the propositional atom p true.

e e

-3 -2-1 0 1 -2 -1 0 1 2
M N

FIGURE 3

The formula ¢ is true in M at 0, since indeed for every
r1 > 0 there is ro < 0 such that pis true at (04r1+ro—r1) = 7.
For all 1, —1 can be chosen as r9. By contrast, v is false in N
at 0, because there is 1 > 0 such that for all ro < 0, p is false
at (04 r1 +rg —ry) = ro. In fact, any positive real number is
such an rq; p is false at all 1o < 0. W

The algebraic interpretation can be seen to incorporate the
effects of the other two interpretations in one maneuver. In it,
the relational sense of independence as implemented by BLO
interpretation, and the logical sense as implemented by UNI
interpretation, are tied together: the semantic effects of these
two interpretations always appear simultaneously.

3. The logical results. If £ and £’ are modal logics (IF or
not) and K is a class of modal structures on which the semantics
of these logics is defined, it is said that £ is embeddable in L'
over K (symbolically £ <x L), if for each formula ¢ € L there
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exists a formula ¢, € L' such that for all M € K and all
d € dom(M),

@ is true in M at d iff 1), is true in M at d.

If £ is embeddable in £" over K but not wvice versa, it is said
that £’ has greater expressive power than £ over K (in symbols
L < L'). If L is embeddable in £" and vice versa, then it is said
that they have the same expressive power over K (symbolically
L=xL).

The main logical results of the present thesis can be sum-
marized as follows. Concerning the interpretations BLO and
ALG, we have:

e [1] BLO does not yield IFMLI[k| extra expressive power
over ML[k]. By contrast, under BLO the two logics have
the same expressive power relative to the class of all k-ary
modal structures.

e [2] Relative to ALG, basic tense logic TL[1] and IF tense
logic IFTL[1] have the same expressive power over the
class of all algebraic models.

For the rest of the results, UNI interpretation of IFMLI[k]| is
employed.

e [3] The expressive power of IFMLIk] is greater than that
of ML[k] over the class Cj, of arbitrary k-ary modal struc-
tures: for all £ > 1, ML[k] <¢, IFML[k].

e [4] Over the class LO of unary linear temporal structures,
the tense logics IFTL[1] and TL[1] have the same expres-
sive power: TL[l] =0 IFTL[1]. Likewise the modal
logics IFML[1] and ML[1] coincide relative to the class
of all unary linear modal structures.
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e [5] By contrast, relative to the class LO[k,n] of all k-
ary modal structures of whose k accessibility relations n
are linear orders (n > 2), IFML[k] has a greater expres-
sive power than ML[k]: for all n > 2 and for all k£ > n,
we have ML[k] <po[x,) IFML[k]. An analogous result
holds true for IFTL[k], TL[k] and the class of all k-ary
temporal structures with at least 2 linear orders corre-
sponding to distinct temporal modality types.

The first result mentioned under [5] says that result [4] cannot
be generalized from the class of unary linear temporal struc-
tures — which are all binary modal structures whose linear ac-
cessibility relations are each other’s converses — to the class
of all binary linear modal structures. The second result under
[5] says that the coincidence result of [4] between IFTL[k] and
TL[k] is proper to kK = 1 and does not generalize to any k > 2.

e [6] Further, I show that IFML[k] can be translated into
traditional first-order logic. Hence the well-known fact
that basic modal logic ML[k] has a standard translation
into first-order logic generalizes to the class IFML[k].

e [7] I define Eztended IF modal logic of k modality types,
or EIFMLIk|, which allows modal operators to be inde-
pendent of propositional connectives (conjunctions, dis-
junctions), and show that this logic is not translatable
into first-order logic but can express properties of struc-
tures that are not first-order definable (e.g. having even
cardinality).

The results from [1] to [7] are to be found in the thesis under
the following names:



Introduction 21

1. Theorem 4.1.5
2. Theorem 4.2.7
3. Theorem 3.4.4
4. Theorem 3.4.11 and Theorem 3.4.12
5. Theorem 3.4.13
6. Theorem 3.2.4

7. Theorem 3.3.9

4. Wider theoretical relevance. In the fifth and last
chapter of the present thesis I point out that the tools em-
ployed to discuss independence in modal logic — offered by the
different interpretations of IF modal logic — prove to be useful
for the systematical study of the notion of operator in con-
nection with the semantics of tenses in natural languages. It
will be shown that there are in natural languages instances of
tenses as operators. More specifically, it will be argued that the
critics of natural language tense operators have not sufficiently
appreciated the conceptual difference between the two types of
(in)dependence manifest in tense logic — logical and relational.
BLO interpretation of IF tense logic is an illustration of how
to speak of these two types of (in)dependence within one and
the same formalism.

There is a tradition stemming from Prior (1967) of con-
struing natural language tenses as sentential operators. Most
contemporary linguists (e.g. Eng, Hornstein, Kamp) oppose,
in one way or another, construing tenses as operators. On the
other hand, not much would be required to show that tenses
really are indispensable in linguistics. In fact, it would suffice
that the interpretation of one tense could be logically (func-
tionally) dependent on the interpretation of another tense in
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an English sentence — analogously to the way in which the in-
terpretation of the quantifier 3y is dependent on the interpreta-
tion of the quantifier Vz in a formula of the form Vz3yy. If no
such functional dependencies ever occur with tenses, then their
sole role is to introduce times, and they may as well be taken
for pronominal expressions, or for adverbs (which act only rel-
atively locally). But if such dependency can occur, then there
are cases where tenses in fact behave as operators.

The aim of this thesis is of course mot to argue that all
linguistically relevant features of tenses can be accounted for
by taking them to be operators, only that some such features
must be explained in this way. In Chapter 5 it will be argued
that such functional dependencies are expressible by using plain
English sentences. A case in point is a sentence like

(1) Harry has not realized he has not called Debbie.

The times that interpret the present perfect tenses of “has re-
alized” and “has called” are, in evaluation, both chosen to be
earlier than the time of speech (indexicality). This fact would
be expressed in the traditional scope theory of tense by saying
that both instances of past tense have in (1) ‘wide scope’ (or,
‘matrix scope’). But in fact, the time of Harry’s calling Debbie
is, according to (1), functionally dependent on the past time
chosen to interpret “has realized”. More technically, according
to (1) for every past time ¢ < NOW (from some contextu-
ally understood interval) there is a scenario compatible with
all that Harry realizes, and a time ¢’ < NOW such that Harry
calls Debbie at ¢’ in that scenario. Hence the dependence of ¢/
on t according to (1) is functional.

The proper logical notion of scope (‘priority scope’) is not
concerned with relational conditions that objects introduced in
the evaluation of these operators must satisfy, but rather with
expressing logical priorities. Precisely when one operator lies
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in the priority scope of another, the latter is logically prior
to the former; in other words, the evaluation of the former is
functionally dependent on the evaluation of the latter. The
logical notion of scope is essentially operative in (1), while the
sentence does not say anything about the temporal relation
(in terms of the relation earlier than) between the times ¢ and
t'. The sentence (1) is an example of where a tense (that of
“has called”) lies in the priority scope of another tense (that of
“has realized”, which is to say, notably, that the tense of “has
realized” behaves as an operator.

It will be argued in Chapter 5 that an important part of
the criticism targeted against tenses-as-operators in the litera-
ture is in fact a critique of the particular way in which tense
operators appear in basic tense logic — which is not represen-
tative of what tense operators in general are, as witnessed by
BLO interpretation of IF tense logic. The basic tense-logical
setting makes it possible to confuse the question of temporal
relations among the times which serve to interpret tenses, with
the proper logical relations (functional dependencies) between
such times interpreting tenses. These two contextually mani-
festing aspects of tenses always go together in basic tense logic,
whereby contingent features of tense operators are easily per-
ceived wrongly as being essential if basic tense logic is relied
upon as a standard. By contrast, looking at the critique of
tense operators from the vantage point of IF tense logic makes
a clearer assessment of the conceptual situation possible.






Chapter 1

Preliminaries

We begin by briefly presenting the IF first-order logic of Hin-
tikka and Sandu, discussing how to treat logical independence
in a modal-logical setting, and surveying the work of Julian
Bradfield, who is the first to have defined an IF modal logic.
The present chapter is devoted to these preliminary considera-
tions.

1.1 Logical Priority and First-Order
Logic

Let us consider a formulation of first-order logic (FO) employ-
ing the existential quantifier (3z) and the universal quantifier
(Vz), the binary Boolean connectives disjunction (V) and con-
junction (A), and atomic negation (—) which is a unary Boolean
connective applicable only to atomic formulae.! For a given vo-

! Since the formulae of FO given under any formulation have a negation
normal form (i.e. for any such formula there exists a logically equivalent
FO formula in which the negation sign only occurs in front of atomic sub-
formulae), the proposed way of considering FO formulae is not restrictive
from the point of view of expressive power. For the corresponding fact as

25
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cabulary 7 consisting of relation symbols with specified arities,
the well-formed formulae of first-order logic of this vocabulary
7 (or, FO []) are given by the rule:

(,DZ:Ri(iUl,...,.’L'n)’_‘Ri(.%'l,...,l'n)‘(p\/lﬂhp/\?ﬁ’

| Gaw)e | (Var)p,

where R; € 7 is of arity n < w. The semantics to FO|r] can
be given by defining for each formula ¢ € FO[r]| a semantical
game G(p,M,y) between two players (Héloise and Abélard)
relative to a first-order 7-structure M and a variable
assignment 7y : {x1,x2,...} — dom(M). The class of all plays
of G(p,M,y) is defined by the following game rules:

o If p € {R;(T),R;(T)}, then no move is made. Héloise
wins the play if ¢ = R;(ZT) and M, = ¢, or ¢ = = R;(T)
and M,~ ¥ ¢. Otherwise Abélard wins the play.

e If p =1V, Héloise picks out a disjunct 6 € {1, x}, and
the play goes on as with G(6,M 7).

o If ¢ = ¢ A x, Abélard picks out a conjunct 6 € {9, x},
and the play goes on as with G(0 ,M,v).

o If ¢ = (Jxy)y, Héloise picks out an individual a €
dom (M), and the play goes on as with G (¢, M Y[z /a]).?

o If o = (Vay)y, Abélard picks out an individual a €
dom(M)), and the play goes on as with G(, M [z /al).

A strategy for a player is a function that provides a reply
to that player in all plays for which it is his or her turn to

regards basic modal logic, see Fact 2.2.1 below.
2 ylzi/a] is an assignment obtained from ~ by replacing the pair
(zk,v(zk)) of v by the pair (xg,a).
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move. A strategy provides a move at a stage in a play of a
game G(p,M,v) as a function of all moves made earlier in that
play. A strategy of a player is a winning strategy (w.s.) in game
G(¢,M,7), if the player in question wins any play of the game
following this strategy. In particular, the truth and falsity of
an FO sentence @ is defined as follows:

e The sentence ¢ is true in the model M, if for every
variable assignment ~ there exists a w.s. for Héloise in

G(p,M ).

e The sentence ¢ is false in the model M, if for every
variable assignment + there exists a w.s. for Abélard in

G(e,M,y).

It is not difficult to show that this game-theoretical truth-
definition agrees with the standard definition of the truth of an
FO sentence (which is by recursion on the complexity of the
formula).> The satisfiability and non-satisfiability of an FO
formula ¢ in a model M by the assignment v are definable as
the existence of a w.s. for Héloise resp. Abélard in the game
G(p,M,y).

Now the rules of formation of traditional first-order logic —
historically due to Frege, Russell and Whitehead — determine a
particular, syntactically given relation of logical priority among
logical operators, i.e. quantifiers and Boolean connectives. A
quantifier Qx € {3z, Vz} bears logical priority precisely to all
logical operators occurring in the subformula ¢ of any formula
of the form (Qx)y. Likewise, a binary Boolean connective o €
{V, A} is logically prior to precisely all logical operators occur-
ring in either of the subformulae ¢ and ¥ of any formula of the

3 To establish the direction from the standard to the game-theoretical
semantics, Aziom of Choice is required, if the domain of the model is
infinite.
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form ¢ o 1. The atomic negation — bears logical priority to
precisely all logical operators occurring in the subformula ¢ to
which it is applied — but there are no such operators, as it is
only applied to atomic formulae. The relation of logical priority,
thus defined by syntactic means, has the properties of irreflex-
wity, asymmetry and transitivity. The relation is certainly not
connected: for instance, the occurrences of the quantifiers Jz
and Vy in the formula

(3z)p vV (VY)Y

are not related by logical priority in the sense defined above,
but are incomparable with respect to this relation. Observe,
however, the left-linearity: if operators (quantifiers or proposi-
tional connectives) O and Oz are logically prior to an operator
O, then O; and Oy are necessarily comparable with respect to
logical priority.

The relation of logical priority can indeed easily be read
from the syntactic tree of any FO formula ¢. First, identify the
nodes of the tree with the ‘outmost forms’ of the subformulae
of i, such a form being by stipulation either some of the logical
operators or an atomic formula. Then, simply enough, if and
only if a node O is not an atomic formula and is a successor
of a node O in the syntactic tree, we see that O’ is logically
prior to O. Particularly, in the case of FO there is no way
in which a non-atomic node could escape from being logically
subordinate to any of its predecessor nodes, or, equivalently,
no way in which an operator could escape from being logically
prior to each of the non-atomic nodes succeeding it.

There is clearly something contingent about the notion of
logical priority characterized above. The built-in relation of
logical priority of FO is left-linear: in particular the set of
operators logically prior to a given operator is ordered linearly
by the relation of logical priority. The intuitive semantic import
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of this fact is that whatever has been achieved in the evaluation
of a formula up to a given stage can in no way be annulled any
longer, but the evaluation inevitably proceeds progressively on
the basis of the history of evaluation produced by then.

The prejudice of the left-linearity of the relation of logical
priority — inherent in the first-order logic of Frege and Russell
— was challenged for the first time in the theory of branch-
ing quantifiers (Henkin quantifiers).® The IF first-order logic
of Hintikka and Sandu admits full freedom in explicitly indi-
cating in linear notation the logical priorities among logically
active expressions in first-order formulae. Because Hintikka
holds that requiring any specific properties of the relation of
logical priority is theoretically unfounded (see e.g. Hintikka
1996, Ch. 3), it is his view that IF first-order logic is the first-
order logic — the logic of quantifiers — and the traditional, re-
ceived, first-order logic is what really should be identified by a
qualification, be that qualification “dependence-handicapped”,
“independence-challenged”, “ordinary” or just “traditional”.’
From the combinatorial viewpoint, it is hard to disagree with
him.

Let the logical priorities among the operators Oy, ..., Op—1
be fixed, and let O be a new operator.® Think of these n opera-
tors as being distributed over nodes of a tree in some fixed way.
Now, why should it not be possible to consider all of the combi-
natorially possible 2" ~! ways in which O may relate, in terms of
logical priority, to the operators from the set {O1,...,0,-1},
instead of prejudging that precisely one such way is the only
one possible? In FO, the relative position of O with respect to

4 Henkin quantifiers were introduced in Henkin (1961). Classical papers
on Henkin quantifiers include Walkoe (1970), Enderton (1970) and Barwise
(1979).

® For the terminology, cf. e.g. Hintikka (2002), p. 408.

5 These need not be n — 1 distinct operator types; it suffices that they
are distinct occurrences of operators.
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the operators O1,...,0,_1 in the syntactic tree of a formula
containing all these operators uniquely determines which of the
operators Oq,...,0O,_1 bear logical priority to O and which do
not. There is no room for variation, given the position of O in
the tree. Conceptually, however, it would be perfectly possible
to dissociate the relation of logical priority and that of being
a subformula under the formation rules of FO: one might in-
dicate for each node the other nodes to which this is logically
subordinate — completely independently of the subformula re-
lation. (This is a reasonable way of expressing things for the
purpose of illustration. Once the idea behind IF logic is suffi-
ciently appreciated, it might be more natural to forget about
the formation rules of FO altogether, and define formulae of IF
first-order logic as relational structures ¢ = (N, R), where N
would be a set of occurrences of logical operators and atomic
formulae of ¢, and R a relation of logical priority among them,
whence the relation of logical priority and the subformula rela-
tion would in effect be reconnected.”)

Generally, then, for logical operators Og,...,0On_1
there would exist (2"!)" possible mutual relations of logical
priority. In the case where the operators Oy,...,0,_1 are by
the standards of FO linearly ordered with respect to logical
priority as Op < ... < Op_1, allowing only a relaxing of the
priority requirements (but not the bringing in of more priori-

" Logical formulae are typically understood as strings of symbols, and
e.g. a Henkin quantifier formulae H¢p can be thought of as consisting of a
matrix (the Henkin prefix H) concatenated with a string (the first-order
formula ¢). On the other hand, Henkin prefixes can naturally be defined
as structures where a dependency relation is specified between existential
and universal variables; see Walkoe (1970), Krynicki & Mostowski (1995).
The non-wellfounded modal logic studied by Prof. Lauri Hella (personal
communication) is an example of a logic which could not even be defined
without thinking of its formulae as structures. This logic allows loops in
the relation of logical priority.
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ties), there would exist 20-2%.....2"~! combinatorially possible
patterns among the Oy, ..., O,_1 operators, instead of one, viz.
that given by Op < ... < Op_1.

Above, we have treated logical priority as a syntactically
given relation, which in the case of FO goes together with the
subformula relation, but which can generally be separated from
it. The semantic content of logical priority is as follows. Pre-
cisely when an operator O is logically prior to another, O’, the
evaluation of O is dependent on the evaluation of the operator
O. Seen from the viewpoint of the game-theoretical semantics,
this means that the strategy function of the player making a
move corresponding to O" employs as one of its arguments the
move that has previously been made for the operator O. By
contrast, the absence of logical priority of O over O’ means that
the evaluation of O’ is made independently — ‘in ignorance’ —
of the result of the evaluation of O. The move for O’ must not
depend on the move corresponding to O.

IF first-order logic breaks the connection between the sub-
formula relation and the relation of logical priority, and allows
an operator to be logically prior to an arbitrary subset of opera-
tors appearing in the corresponding subformulae. IF first-order
logic of vocabulary 7 (or, IF[r]) can be defined as the closure
of atomic and negated atomic FO [r] formulae under the oper-
ations

(@) /W

(ii) Vv /W

(iii) Van/W

(iv) Fzn /W,

where for some subset {i1, ..., } of natural numbers, W is the
set {x;,,...,x;, } of individual variables; and in (iii) and (iv) it
is further required that n ¢ {i1,...,i}.
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The set Free(p) of free variables of an IF[r] formula ¢ is
defined recursively by:

R(xiy, -y ai)) = {igs s wi ) =

o N\ /W ) = Free(p) U Free(¢)) UW =
oV /W 1)

= (Free(e)\{za}) UW =

An IF[7] formula ¢ is a sentence of IF[r|, if Free(y) is
empty. The class of IF first-order logical sentences is the frag-
ment of IF[7] that Hintikka and Sandu have considered in their
work on IF logic. Their semantics for this fragment is not com-
positional. Wilfrid Hodges (1997 [a], [b]) and Jouko V&&n&nen
(2002) have presented a compositional semantics for the whole
of IF[r].® This general semantics will not be discussed here.
The basic idea in the semantics for IF[7] sentences is that in a
relevant semantical game Héloise must specify her strategy (in
order for it to be a w.s.) so that when choosing the move, say,
for 3z, /W, she “does not know” the choices that have been
made corresponding to the variables in W earlier in the game.
The same holds for Abélard’s strategy. The appropriate sense
of “does not know” is captured by the way winning strategies
for the respective players are defined. The following example
illustrates the semantics.

Example 1.1.1 Fiz the vocabulary as 7 = {R}, where R is a
quaternary relation symbol, and let M = (D,RM) be a first-
order structure. Then consider the IF[T] sentence

o VaodzVaedas/{xo, 21} R(z0, 21, T2, 23).

8 For a discussion on compositionality and IF logic, see Hintikka and
Sandu (2001).
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For each expression for which according to the game rules it is
Héloise’s turn to mowve, a strategy function for Héloise in the
game G(o,M,D) is given. The function fs,, : D — D corre-
sponding to Jx1 gives an element of the domain depending on
the preceding game history, which consists simply of
one choice by Abélard from the domain. The func-
tion  fazy/{zoe1} ¢ D3 — D which corresponds to 3xs/{xo, 1},
likewise gives a value from D depending on the preceding game
history, which now is a 3-tuple of elements instead of a single
element from D. A strategy for Héloise is a set of strategy func-
tions, one for each expression for which it is her turn to move.
Hence Héloise’s strategy here is the set {f3zy, fazs/{woa1} )

A strategy function fa,, /(zo,2,} 8 {0,1}-uniform if its value
only depends on arguments that do not correspond to inter-
preting the variables xg,x1; more exactly, if for all 3-tuples
(a(), ai, ag), (bo, b1, bQ) e D3 fO?” which ag = by,

fﬂxg/{:ro,:pl}(a07 ai, a2) = fﬂ:pg/{mo,xl}(bﬂa b1, b2)

Hence whatever values the arguments corresponding to the in-
dices 0 and 1 get, whenever the third argument is the same in
two argument sequences, the value of the strategy function must
be the same as well.

A winning strategy for Héloise in the game G(p,M,D) is a
set of strategy functions {faz,, fazs/{wo,z1} ) Where the function
faes /20,01y 18 {0,1}-uniform, and for all Abélard’s choices ag
and ay interpreting the variables xy resp. w9, we have

(M, ag,a1,a2,a3) = R(zo, z1, 22, x3),

where a1 = faz, (ao) and as = fap;/{z0,0:} (00,01, a2). Consider
then the following concrete cases, () and (3).

() If RM = {(a,b,b,a),(b,a,b,b)}, there is no w.s. for
Héloise in G(p,M,0). For if she had a w.s., it would contain
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a {0,1}-uniform strategy function f corresponding to the ex-
pression 3xs/{xo,z1}, satisfying f(a,b,b) = f(b,a,b). If this
value was not b, Abélard could interpret xg as b and make sure
Héloise loses. But if it was b, Abélard could interpret xo as a
and again make sure that Héloise does not win.

(8) If RM := {(a,b,b,a), (b,a,b,a)}, let f(a) = b and f (b) =
a. And further, let g(a,b,b) = g(b,a,b) = a. Then the set
{f, g} is clearly a w.s. for Héloise. A

1.2 Logical Priority and IF Modal Logic

An operator’s being independent of other operators corresponds
game-theoretically to an appropriate player’s imperfect infor-
mation concerning moves made earlier in the course of a play
of a semantical game. A move for a quantifier 3z/W; or a
disjunction V/W; appearing in a formula of IF|[7] is made ‘in
ignorance’ of moves corresponding to the quantifiers identified
by the indices in the set W;. This can be modeled by means of
the W;-uniformity of a strategy function. Unlike in the case of
IF first-order logic, the idea of a move made in ignorance be-
comes potentially ambiguous in the modal-logical setting, there
being various types of ignorance.

Expressed game-theoretically, it is possible, for example, to
know that the choice of an individual has been made from a
particular (proper) subclass of the universe of discourse without
knowing which individual has been chosen (weak ignorance).
On the other hand, one might fail to know both the specific
class from which the choice is made and the individual chosen
(strong ignorance). In the latter case it is only known that
the choice is made from the universe of discourse — from the
domain of the model considered. In IF first-order logic the
distinction between these two types of ignorance would become
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crucial if bounded quantification was taken seriously, that is, if
quantifiers always went together with a subclass of the domain
from which the values of the quantified variable would have to
be chosen.

An essential feature that serves to distinguish modal logic
from first-order logic is that modal logic is ‘guarded’ so that all
choices mandated by modal operators in an evaluation game
are made along a relation specified for that operator; more
exactly, a chosen state s’ must satisfy R(s,s’), where s is the
most recently attained state and R is given by the semantics of
the modal operator being considered.

Under the uniformity interpretation of IF modal logic, as
briefly sketched above in the Introduction (Paragraph 2), re-
sorting to weak ignorance is what comes out naturally: it is
natural to think that the constitution of a considered modal-
logical formula is anyway known to the players of a semantical
game — and hence the relations along which the choices are
made in the evaluation of that formula up to any given stage
are known also. Weak ignorance is only ignorance about the
particular choices made along such relations. From the point of
view of modal logic, strong ignorance would practically mean
losing sight of the accessibility relations altogether, or, to put
it another way, acting as if all accessibility relations in fact
equalled the universal relation, dom(M) x dom(M). To illus-
trate, assume I had to choose a time point earlier than a time
point chosen by you, but without knowing which particular
time point you chose. We could think of my task as that of
winning a play of a two-player game. I would win a play of this
game if I managed to choose a time ¢’ which indeed was earlier
than the time ¢ chosen by you, otherwise you would win. Now
what would count as a winning strategy for me in this game —
what would be the recipe for me to win irrespective of what you
did? Well, as the game is described above, I can have no win-
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ning strategy at all, for such a strategy would have to propose
a particular, constant time ¢’ as my reply for each and every
time chosen by you; but it is obvious that you would beat this
strategy of mine by letting your choice be any time t satisfying
t < t’, a choice you could perfectly well make. In other words,
if your choice was not bounded — if I was ‘strongly ignorant’ of
your choice — I could not conceivably have a winning strategy
in the game.

However, things would be different if your choice was
bounded. Let us assume that you would have to choose a future
time, a time ¢ later than the specified present time tq (¢ > t).
This would change my odds of winning dramatically: indeed,
I would end up having a winning strategy in this new game.
My strategy would consist of choosing the present time or any
earlier one: a time t’ satisfying ¢’ < ty. For, no matter which
future time you would care to pick out, my choice t' would
certainly be earlier than that. In the latter game I would only
be ‘weakly ignorant’ of your choice — knowing a proper subset
of the domain from which you make your choice — which is
indeed what allows me to have a winning strategy in the game.

Unary modal operators are by their semantics bounded quan-
tifiers. It is well known that formulae of basic modal logic
can be translated into FO:? if R; is the accessibility relation
in terms of which the semantics of the operator <&; resp. [;
is given, and if ST,(y¢) is a first-order translation (so-called
standard translation) of the modal formula ¢, then the modal
formulae ©;(¢) and O;(p) are respectively translated by the
first-order formulae

Ely(Rz(xa y) N STx/y((p))
and
Vy(Ri(:c,y) - STz/y(@))a

9 For the so-called standard translation, see Sect. 2.1 below.
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where “R;” is a binary relation symbol interpreted as the re-
lation R;, and “ST,,, ()" stands for the result of having first
changed, if necessary, variables in ST, (¢) so that y will be free
for = in the resulting formula,'® and having then substituted y
for x in that resulting formula. So the quantifiers in terms of
which the semantics of modal operators is given, are actually
bounded quantifiers: the set in which the quantified variable
ranges is the set of states accessible from a given state accord-
ing to a particular accessibility relation. If the state relative
to which, say, a subformula of the form <;(¢) being evaluated
is s, and the accessibility relation associated with the operator
O is Ry, then the range of the (existential) quantifier in terms
of which the semantics of <; is given, is bounded to the set
{s' : Ri(s,s)}.

It is the two-fold nature of modal operators — semanti-
cally bounded quantifiers without syntactically given variables
— that will be responsible for the particular way in which we
define IF modal logic under its uniformity interpretation. Their
nature as bounded quantifiers will introduce the possibility of
weak ignorance in the sense explained above. However, their
lacking of syntactically manifest variables will, on the other
hand, make it uninteresting to try utilizing the idea of strong
ignorance in connection with them. To appreciate the latter
point, consider evaluating the formula

Y = |:|1<>2/{1}—|—

relative to a structure M and a state s — interpreting the in-
dependence indication “/{1}” as declaring that <9 is ‘strongly
independent’ of [;. Hence the formula ¢ would be true at s iff
either no move along R is possible from s, or else a state s” can
be chosen so that for any s’ from the domain of M, R(s',s")

10 A variable x is free for a variable y in a formula ¢, if y does not occur
free in the binding scope of any quantifier Qx which appears in .
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holds. In other words, ¢ evaluated locally would serve
to state quite a global property of M, namely that

e s is R-maximal or the relation R has a maximum.!!

In the case of IF first-order logic, strong ignorance is the
natural sense of independence and weak ignorance would only
make sense if quantifiers were explicitly bounded. But since
modal operators are semantically just bounded quantifiers, the
situation is reversed in modal logic: weak ignorance is natural
and strong ignorance is its extremely robust special case, where
independence becomes so strong that not only the moves, but
also the relations along which these moves are made, become
completely invisible to the player moving for an independent
operator.

Offering a particular way in which the slash symbol “/” is
to be interpreted in semantics is one of the tasks that any for-
mulation of any IF logic faces. Its intended interpretation is
that it should express logical independence, or that it should
serve to remove certain logical priorities to which an operator
otherwise would be subjected. But there is no reason why other
readings of this symbol could not be investigated. In particu-
lar, taking it anyway to stand for some sort of ‘independence’,
different interpretations of the slash sign “/” might manage to
capture some interesting notions of independence other than
that of logical independence. While in Section 2.3 below I de-
fine in detail the uniformity interpretation of IFMLIk|, being
intended to capture the sense of logical independence expressed
by the slash sign “/”, in Chapter 4 I will in fact provide two ad-
ditional ways to interpret it, which I call the ‘backwards-looking

' We say here that y is R-maximal, if there is no z such that R(z,y),
and that z is a maximum of R, if for all z, R(z,y). (This definition requires
that an R-maximal element z does not satisfy R(z, x), and that a maximum
z of R indeed satisfies R(z,x).)
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operators’ interpretation and the algebraic interpretation of IF
modal logic. The former of these alternative semantics proves
useful in Chapter 5, where we investigate the need for tense
operators in linguistics.

For logical subordination (viz. the converse of the rela-
tion of logical priority), we may use the term “functional de-
pendence”; synonymously we might speak of “informational
dependence”. And we could employ the term “informational
independence” to denote the absence of logical subordination.

The term “scope” is customarily used where I have chosen
to speak of logical priority. Instead of saying that an operator
O bears logical priority over an operator O’, we could say that
the operator O’ lies in the priority scope of O. In the special
case of quantifiers, there is a conceptually distinct notion to
be considered, namely the notion Hintikka has distinguished
from that of priority scope by speaking of binding scope (see
Hintikka, 1997, esp. pp. 515-8). ‘Being in priority scope of’ is
a relation between an operator (such as a quantifier) and other
operators; while ‘being in binding scope of” is a relation between
a quantifier and a set of occurrences of a wvariable. Hintikka
has stressed, in agreement with his basic insight underlying the
combinatorial freedom that must go together with IF logic, that
these two types of scope — priority scope and binding scope —
can also in fact be exemplified separately: there is no reason in
principle why a quantifier could not for instance bind a variable
which does not occur in the priority scope of this quantifier.
Priority scopes of operators (e.g. of quantifiers) determine the
relations of functional dependency between values chosen when
interpreting these operators. By contrast, an occurrence of a
variable, z, bound by a quantifier (Qz) serves to ‘refer back’ to a
previously determined value of the variable. This value — being
available once it has been specified — does mot conceptually
presuppose that the variable will appear within the priority
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scope of the quantifier (Qz) whose evaluation has introduced
the value in question. Examples of formulae in which the two
notions appear distinct would be:!?

(1) Fz[{A(x)] — B(x)}
(2) O[Vz{A(z)] — B(x)}

(3) Vz(A(x) V Jy/VzB(zx,y)).

In formulae (1) and (2), the curly brackets {,} indicate binding
scope, and the square brackets [,] mark priority scope. For-
mulae (1) and (2) are ill-formed in the usual formulations of
first-order logic (IF or not), but they still are understandable
and serve to make the point. Observe that in formula (3) —
which is well-formed in IF first-order logic — the slash notation
appearing in Jy/Vx serves to remove the logical priority that
the universal quantifier V& would otherwise have over the exis-
tential quantifier dy. As a result, the occurrence of the variable
x in the subformula B(x,y) is in the binding scope of Vx, while
the priority scope of the quantifier Vo does not extend to the
subformula Jy/VaB(z,y).

The present thesis is interested in propositional modal logic
in which syntactically manifested binding of a variable can-
not occur; we will therefore not discuss binding scope at more
length.

Be it noted that while logical priorities are of course syn-
tactically manifested in any formalism worth the name of logic,
they indicate important semantic properties. It is indeed possi-
ble to speak of changing the relation of logical priority already
before deciding how to present this syntactically, as is clear

2 Formula (2) is mentioned by Hintikka and Sandu (1989); it goes back
to Kaplan (1973, p. 504). Together with this formula, formula (1) appears
in Hintikka (1997).
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when one considers for instance the usual formalism of FO. In
it, the syntactically given subformula-relation and the relation
of logical priority go together, but thinking of changing the lat-
ter does not presuppose a pre-existing idea of how to indicate
this syntactically. Hintikka (2002 [b], p. 405) in effect points
out that the semantics of independent quantifiers is actually
easier to master than their syntax.

1.3 The Independence-Friendly Modal
Logic of Julian Bradfield

The first person to have defined and studied an IF modal logic
was the British computer scientist Julian Bradfield, in his paper
“Independence: Logics and Concurrency” from the year 2000.
In his joint paper with Sibylle Froschle, “Independence-Friendly
Modal Logic and True Concurrency” (2002), a semantics dif-
fering from the one given in Bradfield (2000) is provided to
IF modal logic (IFML), and IFML equivalence between mod-
els is investigated by comparison to known equivalences from
concurrency theory.

The purpose of Bradfield’s studies was to investigate how
the logical notion of independence — as this appears in IF logics
— relates to ‘independence’ in the sense prominent in computer
science, namely the relation of concurrency given as a compo-
nent in a model (transition system), specifying certain transi-
tions as ‘concurrent’ (being processed in parallel). Bradfield’s
IF modal logic turns out to be much more expressive than the
IFML[k] we are going to study. His logic is actually designed
for defining second-order properties (and notably it expresses
the Henkin quantifier), whereas I will prove further below that
IFML [k] can be translated into a fragment of traditional first-
order logic.
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In Bradfield (2000) a logic termed Henkin modal logic is
defined. This logic extends basic modal logic (having certain
given basic actions) with concurrent modalities

each Qg(Af) (7 :==1,...,m) being one of the modal operators
[Ag | or <Ai ) , where Ag is one of the previously specified basic
actions, or the ‘idle action’ L. (The basic actions simply corre-
spond to distinct accessibility relations of a traditional modal
structure, and the idle action corresponds to the identity rela-
tion.) The semantics of these concurrent modalities uses ‘dis-
tributed system models’ ||f:1n P;, which are parallel compo-
sitions of n components P;. Here S is a synchronization relation
that relates a basic action a with an n-tuple (a1, ..., a,) of ba-
sic actions (some or all of which may be idle) in such a way
that
1921w P2y, P if and only if

:=1,...,n 7

P X op (i:=1,...,n) and S(ai,...,an,a).

)

Hence the synchronization relation serves to ‘collect’ local tran-
sitions P; 5 P! into global ones, namely into transitions
H‘E:L.A.,n B = ngl,...,n lDi/'

Now, for example, the semantics of the following concur-
rent modality (a so-called Henkin modality) of length m := 2,
relative to a 2-component system model Py || P, is:

P|I° P = {jjég;i ¢ if and only if

ElflEIngal S Al,Pll Vag € AQ,PQI:

filar) € By, P and fo(az) € Ba, P and

fi ®f:
(P1|[SPy) “202 (py) S py) MR (pyis prry
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where a := a1 ®ag and b := fi(a1) ® fo(ag) satisfy: S(ay, ag,a)
and S(fi(aq), fo(a2),b). (The modal Henkin prefix is an op-
tional notation for the 2-composition

®3:=1,2Q; (A7) QF (A7),
where Q{(A}) = [41], Q7(A]) = (B1) , Q3(43) = [A], and
Q3(43) = (B2).)

The paper of Bradfield and Froschle (2002) provides a se-
mantics for IF modal logic by explicitly giving the relation of
concurrency as a primitive in the model; this is in contrast
to concurrency being indirectly defined via local transitions, as
done in Bradfield (2000). A transition system with concurrency
(or, TSC) is defined by specifying a set S of states, a set L of
labels, a ternary transition relation — C S x L x S, a binary
concurrency relation C C — X — between —-transitions, and
an initial state sop. In addition, a relation < between transi-
tions having the same label is defined, which is further used
for defining a relation ~ which groups transitions into ‘events’.
(For the exact definition of a TSC, see Bradfield and Froschle,
2002, pp. 105-6.) Now the semantics for a formula of IF modal
logic is defined in terms of a model-checking game of imperfect
information between Héloise and Abélard on a TSC. A posi-
tion in such a game is a pair consisting of a tagged run p and
a subformula ¥, denoted as p - W. Tagged runs are sequences

ao an—1
S0 — — Sn,
@0 An—1

where the «; are distinct tags. (These tags correspond to dis-
tinct indices identifying occurrences of modal operators in the
syntax of IFML[k].) In particular, the game rule for formulae
of the form

<b>ﬁ/a1,...,o¢m \Ij7
to be read “there is a b-transition, independently of the choices
made in the modalities tagged by the «a;, such that ¥”, is this:
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At
ag an—1
S0 a—g e an—_>1 Sn F <b>5/ai1,-~-7aim\1/’

Héloise chooses a transition s, % t that is concurrent with all

transitions
Qa; .
J .
Si; o si,(Ji=1,...,m),
J

and the new position is

a an—1 b
S0 % ... 5 s, > tH U,
Qo Qn—1 J6]

Hence this game rule makes use of ‘independence as given by
the model’, i.e. the relation of concurrency. By contrast, the
logical notion of independence is introduced by means of a con-
dition that will be imposed on a strategy of Héloise, in order
for it to count as winning. This condition is that of uniformity.
Héloise’s strategy f is now said to be uniform if the values of
f at ()-positions are uniform in the sense that in a position

ay

S0 —0> st an—_>1 Sn ): <b>/6/06i17---7aim\117

the transition s, by provided by f satisfies that if

so 2% S s (D) s/an, e, ¥

is any other position such that j ¢ {i1,...,ip} =

aj / aj / . ..
(sj — sj+1) ~ (sj — siiq), then f provides a transition

(s = 1) ~ (50 = 1),

In other words, f must map tagged runs whose constituent
transitions — with the possible exception of those referred to
by 41,...,%;, — are pairwise in the same events, to the same
event.
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Hence what makes the model-checking game for the IF
modal logic of Bradfield and Fréschle (2002) a game of imper-
fect information is the additional condition of uniformity that
Héloise’s strategy must satisfy in order to be winning. On the
other hand, the relation of concurrency — ‘the computer scien-
tist’s notion of independence’ — is made use of when defining
the game rule for slashed modal formulae, i.e. formulae to
which one wishes to give a semantics involving a choice log-
ically independent of certain earlier choices, this desideratum
then being met via the condition of uniformity on Héloise’s
winning strategies.

Indeed, a basic observation by Bradfield in defining his IF
modal logic was that on the face of it, it does not make much
sense to speak of independent choices in a modal-logical setting,
because “in a standard transition system semantics for modal
logic, the choices available at a modality are determined by the
choices made in earlier modalities” (2002, p. 104). His solution
to this difficulty is what simultaneously makes IF modal logic
interesting from a computer scientist’s point of view, namely,
taking the modalities that are declared logically independent
of each other as satisfying some condition that makes these
modalities in an appropriate sense ‘independent’ of each other
— and Bradfield takes precisely concurrency between transi-
tions (made along relevant modalities) to be such a condition.

IFMLk] — evaluated under its uniformity interpretation
— has a much more modest expressive power than the Henkin
modal logic of Bradfield (2000) or the IF modal logic of Brad-
field and Froschle (2002). Indeed, it turns out that TFMLk]
is translatable into traditional first-order logic, while the lat-
ter logics most certainly are not. (This follows from the fact
that the Henkin quantifier is not first-order definable.) On
the other hand, it will be shown that IFML[k| already has a
greater expressive power than ML[k]. Furthermore, the ex-
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istence of IFMLIk] shows that it is not, after all, impossible
to turn basic modal logic into an IF modal logic without im-
posing some additional conditions, such as concurrency, on the
relevant modalities. On the contrary: there is nothing in the
modal structures that will be used for evaluating IFML[k| that
does not already exist in the case of basic modal logic. Only
one notion of independence is operative in IFML[k|, namely
the logical one, implemented by means of imposing a unifor-
mity constraint on Héloise’s winning strategies in the semanti-
cal games used for evaluating IFML[k| formulae.

In fact, once the game-theoretical approach to semantics
is adopted, the logical notion of independence does make per-
fect sense in a modal-logical setting: yes, the choices available
at a modality are determined by the choices made for earlier
modalities, but in the presence of ignorance as to which partic-
ular choices some of those earlier ones were, the choice at hand
is to be made logically independently of those earlier choices,
in such a way that the choice will be possible no matter what
those earlier choices in fact were. Nothing more is required for
independence to make sense. And such independent choices can
be modeled in a game-theoretical setting, as game histories can
always be made use of in the semantics. Bradfield and Froschle
(2002, p. 116) claim to have shown that “a modal version of
the Hintikka-Sandu independence-friendly logic...naturally re-
quires true concurrent models.” However, the sole definition of
the IFMLIk] that we will study in the present thesis shows
that if their claim is taken at the face value, it is false. Concur-
rency is not required, since IF modal logic can be defined with-
out resorting to anything but logical independence interpreted
via the uniformity condition on winning strategies. This is, of
course, not to say that studying the interplay of concurrency
and logical independency would lack interest. It just means
that introducing ‘independence in the model’ in the form of a
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relation such as concurrency is not conceptually necessary for
defining a variant of IF modal logic.






Chapter 2

IF Modal Logic and

its Uniformity
Interpretation

In the present chapter we define and study the IFMLI[k] log-
ics. For k < w, IFMLIE]| is called IF modal logic of k modality
types. One of the actual challenges related to the work at hand
is providing the means for studying arbitrary relations of logi-
cal priority among modal operators. For this purpose we will
make use of the game-theoretical notion of informational inde-
pendence. First, the language of IF modal logic (or IFMLIk])
is specified as an extension of the language of basic modal logic
MLIk]. Then a semantics for IFMLI[] is presented in detail
in Section 2.3. The semantics given will be referred to as the
uniformity interpretation of IFMLIk], as distinguished from
other interpretations of the language of IFML[k] that will be
introduced and studied in Chapter 4.

49
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2.1 Basic Modal Logic

We begin by giving a detailed description of the syntax and se-
mantics of basic modal logic ML[k] of k modality types, already
outlined in the Introduction above. Throughout the present
thesis we deal exclusively with propositional modal logic; there
is no reason for explicitly qualifying the considered modal logics
as propositional.

Let a countable class prop of propositional atoms be given,
and let & < w. The syntax for basic modal logic ML[k] of k
modality types is given by the following rule:

pi=p|lploeVY|ony | Oie) | Oie),

where p € prop, and ¢ < k. By the syntax, the negation sign
— may appear in front of propositional atoms only.!

For all ©+ < k, the operators <;, [; are called modal opera-
tors. The operators ©; and [J; are said to be the duals of each
other.? The operators having a common index i < k are said to
be of the same modality type, and for any ¢ # j, operators from
{<©;,0;} and operators from {<;,0;} are of distinct modality
types. Hence the notion of modality type is given syntactically.
Modality type is to be contrasted with modality simpliciter.
All distinct members of {<;,0;};<x are operators for mutu-
ally distinct modalities. Different occurrences (tokens) of the
operators are distinguished by making use of double indexing.
For instance, we write <;, to mark a particular occurrence,
identified by the index n < w, of the modal operator &; — an
operator which is by definition of the modality type 3.

We will mainly be interested in the number of the modality
types — not in the Eigenart of the modalities (i.e. knowledge,

! See Fact 2.1.1 below for closing the class ML[k] under negation.
2 In general, we will denote the dual of an operator O; by (0;)?. Hence
(©)* =0; (0)* = ©. Further, ((0)")?* = O always.
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temporality, logical possibility, provability, and so on). So we
simply use the notation ML[k] — where k is the number of the
modality types that the logic employs — to refer to these logics.

An exception to the exclusive interest in the number of
modality types involved is the case of tense logic. We define
basic tense logic of k temporal modality types, or TL[k], to
be syntactically ML[2k]. By convention, the notation for the
modal operators with an index 7 < k is chosen to be kept as <y,
0J;; the rest — those with an index ¢ + k (with ¢ < k) — being
then symbolized as <& L and 0, ! (instead of being written as
Ciyr and Oipy).

The semantics for basic modal logic ML[k] of k£ modality
types is given in terms of k-ary modal structures, i.e. structures

M= (D,Ry,...,Rr_1,h),
where:
e D is a non-empty set;
e for each ¢ < k, R; is a binary relation on D;

e ) is a function from prop to the power set of D.

The set D is said to be the domain of M; in symbols D =
dom(M). The relations R; (i < k) are the accessibility relations
of M. And the function b : prop — Pow(D) is the assignment
function of M. The elements of D are the indices relative to
which the truth-conditions of ML[k] formulae will be defined.?

If M =(D,Ry,...,Ri_1,h) is a k-ary modal structure, we
say that the relational structure (D, Ry, ..., Rx_1) is its frame.

3 Here we always have only two modalities (<, ) in each modality
type. Observe, however, that the notion of modality type would naturally
admit of generalization, taking any number of operators whose semantics is
defined in terms of a fixed accessibility relation to be of the same modality

type.
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If d € dom(M) and M is a k-ary modal structure, the structure
(M, d) is termed a pointed k-ary modal structure. A pointed
modal structure is hence simply a modal structure with a des-
ignated element. The evaluation of modal-logical formulae is
in effect formulated in terms of such pointed modal structures.

We write M ET ¢[d] to make the judgment that the for-
mula ¢ € MLI[k] is true in M at d, and we write M =~ ¢[d]
to say that ¢ € ML[k| is not true in M at d. The semantic
clauses for formulae of ML[k] are:

o M =" pld] <= d € b(p)
o M [T —pld] <= d ¢ b(p)
o M =" oV ld] <= for some 0 € {p, ¢} M =+ 0[d]
o M " oA <= for every 0 € {p,0}: M = 60[d]
For cach modality type i < k:
o M E=F Oi(p)[d] <= for some ¢ € D with R;(d, c):
M ET ¢[d]
o M =+ Oi(p)[d] < for every ¢ € D with R;(d, c):
M ET ¢[d.

ML[0] evaluated over degenerate modal structures ({do}, h)
is simply Propositional Logic.

It is easy to check that the above recursively defined seman-
tics to ML[k] and the game-theoretical semantics sketched for
it above in the Introduction (Paragraph 2), coincide:*

o M ET pld] <= M Elpg old]

4 In general, the directions from left (the recursive definition) to right
(the GTS definition) require Aziom of Choice.
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o« M~ pld] == M g old) ®

From the viewpoint of expressive power it is not a restriction
that the negation sign (=) can only appear as prefixed to a
propositional atom in ML[k| formulae:

Fact 2.1.1 Let MIL[k, -] be the class of formulae obtained from
ML[k] by closing it under negation. The semantics to this logic
is obtained from that of MLIk] by having available the recursive
clause

M ET —pld] <= M ET ¢[d].

We say that a formula ¢ of MLI[k,—| is in negation normal
form, if ¢ is in particular (by syntactical criteria) a formula of
ML[k]. Hence such a ¢ contains appearances of the negation
sign (7), at most in front of propositional atoms. In fact, it is
easy to define a syntactic transformation

nnf : ML[k, -] — ML[k]

mapping each formula ¢ of ML[k, -] to a formula nnf(p) in
negation normal form, in such a way that the transformation
preserves truth: for every formula ¢ € ML[k,—] and every
pointed modal structure (M,d):

MET pld] <= M =" nnf(p)[d). ®

We may observe that the semantics for ML[k| could well
be defined more generally than above, by allowing evaluation
relative to tuples of elements from a specified Cartesian prod-
uct Do x ... x Dy, —1 with 1 < N < k. Then for each (bi-
nary) accessibility relation R; a component D ; of the Carte-
sian product would have to be associated by some surjection
m:{0,....,k —1} — {0,..., N —1}. A more flexible seman-
tics such as this would be useful for many applications. For
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instance, if we wished to consider two modality types such as
physical necessity and temporality, we would probably find it
desirable to have one co-ordinate for possible worlds and an-
other for time in our semantics. On the other hand, in mul-
tiagent epistemic logic,? for example, k would equal the num-
ber of the agents while the value of the parameter N would
be 1, since the formulae would be evaluated relative to single
possible worlds. In the present thesis we do not consider many-
dimensional modal logics, but in effect stay with the dimension
N = 1.

The semantics of basic tense logic TL[k] = ML [2k] employs
2k-ary modal structures

M = (D, Ry,...,Ro_1,h)

with the characteristic features that: (i) for each i < k, the
relation R;j is the converse of the relation R;; (ii) the acces-
sibility relations are irreflexive partial orders, in other words
irreflexive and transitive binary relations. The motivation for
the restriction (i) is that the inverse of an operator O (which by
definition always exists in a tense logic) must make use of the
converse of precisely the accessibility relation associated with
O. The feature (ii) is required, because at least irreflexivity and
transitivity are thought of as essential to the temporal ‘earlier
than’ relation.

2k-ary modal structures M satisfying the above conditions
(i) and (ii) are termed k-ary temporal structures. By contrast,
we will call 2k-ary modal structures meeting requirement (i)
but not requirement (ii) quasi-temporal structures.

For any k-ary modal structure M = (D, Ry, ..., Ri_1,b),
there is a corresponding first-order structure, obtained as fol-
lows. If (p; : i < k) is an enumeration of the class prop of

® Such as the one studied in Fagin, Halpern, Moses and Vardi (1996).
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propositional atoms (k < w), let 7:= {Ro,...,Rp—1} U {Pi}ick
be a vocabulary, where the R; are binary and the P; unary.
Then for each i < k, interpret the relation symbol R; by the
accessibility relation R;. For each unary relation symbol P;, its
interpretation is taken to be h(p;). Then define:

MFO .= (D, Ry, ..., Ri_1,{b(pi) tick)-

We associate with each ML[k] formula ¢ a formula ST, (p)
of FO[r] with precisely one free variable, z. If x and y are
individual variables, and ST (y) is a first-order formula, let us
agree on writing ST, /,, () for the result of having first changed,
if necessary, variables in ST, (¢) so that y will be free for x in
the resulting formula, and having then substituted y for = in
that resulting formula. Then define:®

e If p; € prop, then ST,(p;) = P;(x); and

T:(=pj) = —Pj().
o STy (V) = STy (p) V STu(¢).
o STu(p A1) = STe(p) N ST ().
o ST:(Ci(p)) = Fy(Riz,y) A STy ()
o ST:(Qilp) = Vy(Ri(x,y) — ST ()

We say that the first-order formula ST, (¢) is the standard
translation of the ML[k] formula . That the operation ST,
really induces a translation of ML[k] to FO[7] is expressed in
the following result:

% ITmplication (—) is used via its definition in terms of negation (=) and
disjunction:
(p =)= —p V.
For the definition of standard translation we may in fact assume that the
antecedent ¢ of an implication is always an atomic first-order formula.
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Proposition 2.1.2 For all ¢ € MLIK], all M =
(D, Ry, ...,Rik_1,b) and all d € dom(M), we have:

M = gld] <= for all v with y(z) = d : (MFO,~) = ST,(p).

Proof. Easy induction on the complexity of the ML[k]
formula . =

Remark 2.1.3 The above clauses for STy(<Ci(e)) and
ST,(O; () could be replaced by the following clauses without
changing the truth of Proposition 2.1.2:

o ST:(Cip) = Fy(Ri(x, y) Aw(z =y A STo(9))).

o STy(Ti(p)) = Vy(Ri(z,y) — Fz(x = y A STy (0))).

Making use of the variant of the definition for standard trans-
lation hence obtained, changing variables (required by the defi-
nition of the operation ST, /y) would be avoided. Furthermore,
this alternative definition for standard translation establishes
that the formulae in the class

STe(ML[K]) := {ST:(¢) : » € ML[k]}

can all be written with two variables: the total number of free
and bound variables that is sufficient for writing down, up to
logical equivalence, the formulae of the class ST, (ML[k]) equals
two.

It is easily seen that the requisite number is precisely two;
one variable (obviously) does not suffice. To see how this is
strictly proven, define first-order structures M and N as fol-
lows. The domain of M is {a,b,c}, and that of N is {a’, V', }.
The unary predicate P is interpreted as {c} in M, and as {da’}
in N. The binary predicate R is interpreted as {(b,c)} in M,
and as {(V/,)} in N. (See Figure 4 below.)
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a b c
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a' v d
FIGURE 4

Now, it is possible to show that the first-order {P,R}-
structures (M, b) and (N,b') satisfy the same first-order for-
mulae written with precisely one variable (be its occurrences
free or bound). This is established by showing that for all
m < w, Duplicator has a winning strategy in the pebble game
GL (M,b,N V'), played with precisely one pebble for m rounds.”
In fact, such a winning strategy is constituted by the following
rules for Duplicator:

e reply to b by b’ and wvice versa;
e reply to ¢ by @' and wvice versa;

e reply to a by ¢ and wvice versa.

On the other hand, however, the first-order formula

ST (O(p)) = Vy(R(z,y) — P(y)),

which is written with two variables, does distinguish the struc-
tures (M, b) and (N, V'), being true in the former but false in
the latter. Because this formula is in the class ST,(ML[k]),
we may conclude that precisely two variables are needed for
writing down all standard translations of ML[k] formulae.

7 For a definition of a pebble game, and the requisite characterization
of FO’®-equivalence up to quantifier rank at most m of structures (M, a)
and (N, b) in terms of a pebble game G%,(M, @ N, b), see e.g. Ebbinghaus
& Flum (1999, pp. 49-50).
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2.2 The Language of IF Modal Logic

A modification of the syntax of ML[k] will now be given, yield-
ing a syntax for a logic that presents a wider range of combina-
torially possible patterns of logical priority between modal op-
erators than ML[k]. The resulting formalism will be referred
to as IFMLI[k|, or independence-friendly (IF) modal logic of
k modality types. 1 have chosen to use the above terminology
despite the fact that only a much more general logic would
fully merit the name — this IFMLIk] being only a fragment of
such a general IF modal logic. The restriction to the particular
fragment IFMLIk] given here is, however, motivated by our in-
terest in expressive power: already this fragment has a greater
expressive power than ML[k| over arbitrary modal structures,
as we will see in Section 3.4. The EIFMLIk] logic, briefly
discussed in Section 3.3, is one possible formulation of a more
general IF modal logic, and is still ‘ideologically’ on a par with
IFMLIk] since it implements independence simply by means
of the uniformity condition imposed on winning strategies.
The convention of using subscripts j < w for indexing the
modal operators adopted above in connection with ML[k] (these
operators being already indexed once by their modality type
i < k) will be extended to the syntax of IFMLIk]. IF modal
logic of k modality types, or IFMLI[k], is simply defined by:

IFML[k] :=
ML[/{] U {01 ... Onfl(On/W)QO TP e ML[k;],n > 1},
where:

e for all j € {1,...,n}, O; is one of the modal operators
4,5, Uiyj for some @ < k.

e W is a (possibly empty) subset of the interval [1,n — 1]
of natural numbers.
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Hence in addition to all ML[k] formulae, strings obtained by
prefixing a finite block O;...0,-1(0,/W) to a formula of
ML[k] are also formulae of IFMLI[k|. Notice that for n := 1,
the sequence O;...0,_1 is empty, and because the interval
[1,n — 1] = [1,0] is then empty, (O1/W )y can only be a for-
mula if W = &. For any n > 1, [1,n — 1] is non-empty and so
may be W.

Remark 2.2.1 The class of well-formed formulae of IF modal
logic of k modality types could be defined more generally as
follows. We could first generate a class L* of incomplete IF
modal-logical formulae from propositional atoms and their nega-
tions by the rules of closure under conjunction (A), disjunction
(V), and application of any of the modal operators <; ;/W and
O, ;/W (i <k arbitrary; j otherwise arbitrary but the same j
would be allowed to appear as an index only once in any one for-
mula), W being empty or any finite set of natural numbers. The
set Free(yp) of free indices of an L* formula ¢ would then be
defined recursively by stipulating that if ¢ is a (negated) propo-
sitional atom, Free(yp) is empty, Free(p A ) = Free(p) U
Free(y) = Free(p V ¢), and finally, Free(O;;/Wy) =
(Free(p)\{j}) UW. Then by stipulation the class L of (com-
plete) formulae of the “general IF modal logic of k modality
types” would be the class of those L* formulae ¢ for which
Free(y) is empty.

If the set W of indices referred to by operators O; j/W in
a formula ¢ € L is taken as identifying precisely those oc-
currences of operators in ¢ of which O; /W is independent
— 0;,;/W being then dependent on all other operators in the
formula (no matter where these other operators are syntacti-
cally situated in the formula) — then the class L would be able
to present all patterns of logical priority among occurrences of
modal operators <;, U; that can be obtained by relaxing the pri-
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ority scope relations of MLIk]. If we wished to totally relax the
relations of logical priority involved, we should allow even con-
Junctions and disjunctions to be independent of other operators,
and allow modal operators to be independent of these Boolean
connectives. The present thesis mostly adheres to the defini-
tion of IFMLIk] given above. An exception is the Extended IF
Modal Logic (or EIFMLI[k]) that we briefly examine in Section
3.3. 1

Observe that not only is IFML[k] incapable of presenting
many possible patterns of independence among modal opera-
tors, when it comes to possible dependencies that can occur
among modal operators in our syntax for IFML[k], it is ob-
served that mutual dependencies are not among them. In con-
nection with IF logic (modal or not) it is to be borne in mind
that, not only arbitrary independencies, but also arbitrary de-
pendencies, must be expressible in the most general formulation
of the IF logic in question. (Cf. here esp. Hintikka 2002 [a],
Hintikka 2002 [b].)

IF tense logic of k temporal modality types, or IFTLI[k],
is defined to be IFML[2k] with the same stipulations about
notation as were introduced above in connection with basic
tense logic TL[k] = ML|2k].

We define the class of proper substrings of an IFMLI[k| for-
mula by defining recursively the set Sub(y) for strings ¢ includ-
ing all IFML[k] formulae, but not all of which are formulae
of this logic.® The clauses for (negated) propositional atoms
and Boolean connectives are standard: for an atom p € prop,
Sub(p) = Sub(—p) is empty, and Sub(p A ) = Sub(p V ¢) =

8 Here, we cannot simply define the class of subformulae of IFML[k],
since substrings O; ... 0,-1(0,/W)¢ — which we wish to always have in
the class Sub(p) — are by the syntax not formulae of IFML [k], if W is
not contained in {i,...,n — 1}.
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{@, v}USub(p)USub(y)). W C {1,...,n—1}and 1 < i < n,
we define:

Sub(Ol e On_l(On/W)(p> =
{Oi-i-l e On_l(On/W)go}USub(OiH e On_l(On/W)tp).

Finally, by stipulation the string FAIL is in Sub(y) for all ¢ €
IFMLIk]. The strings in Sub(p) N IFML[k] are subformulae
of ¢.

2.3 Uniformity Interpretation of IF
Modal Logic

We shall define a semantics for IFML[k], to be referred to as
its uniformity interpretation. As the name already indicates,
the basic idea is to interpret independence — indicated syntac-
tically by means of the slash-notation — semantically in terms
of the constraint of uniformity imposed on winning strategies
of the players in the semantical games associated with formu-
lac of IFMLIk]. Hence the slash sign “/” functions here as a
(winning) strategy constraining device.
We associate a semantical game

GA(‘PvMad) = <{V> 3}7H7 Z,P, {UVaUEI}7 {IV>IEI}>

in extensive normal form with each triple (¢, M, d) consisting
of a formula ¢ of IFMLI[k|, a k-ary modal structure M =
(D, Ro,...,Ri_1,h), and an element d € D. Positions in this
game are pairs (1, a) from the set

A= (Sub(p) U{p}) x (dom(M) U {}).

The object * goes together with the substring FAIL; the pair
(FAIL,x) is a position that can be chosen in situations where
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there was otherwise no choice complying with the game rules
available. The game G 4(¢, M, d) is a game between two play-
ers, Héloise (or 3) and Abélard (or V). The players are said
to be opponents of each other. The set H of plays (or, his-
tories) of Ga(p, M,d) is a set of finite sequences of positions
(1,a), defined recursively (on the subformula structure of )
as follows:

e (p,d)€eH.

e If the last position in h € H is (# V 1, a), then h™(0,a) €
H and h™(,a) € H.2 Tt is Héloise who makes a choice
from {(0,a), (v,a)} to extend h. We write P(h) = 3 to
indicate that the move corresponding to the history A is
made by d.

e The case where the last position in h € H is (0 A, a) is
defined analogously, the only difference being that here it
is Abélard who makes the choice: P(h) =V.

For i < k:

e If the last position in A € H is from

{((Cin/W) (), a), (Cin (¥),a)},

then for all ' € dom(M) with R;(a,d’), h™(¢,d’) € H;
if no such o’ € dom(M) exists, then h™(FAIL,x) € H.
Further, P(h) = 3.

e The definitions for O, ,,/W and O;,, are like those for
Oin/W and <©; 5, except that here it is V’s turn to move.

9If h = (ai,...,am) and a € A, we write “h"a” (read: h extended by
a) to denote the sequence (a1, ..., am,a).
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All sequences in the set H are finite. The set Z of terminal
histories is defined simply as the set of maximally long histories,
i.e. sequences from H which cannot be extended by any posi-
tion so as to yield a sequence in H. By definition, then, the last
position in a terminal history has as its substring-component
a propositional atom, the negation of a propositional atom, or
the label FAIL. The function P : H\Z — {V, 3}, constructed
above simultaneously with the definition of H, will be called
the player function.

The utility functions uy and ug for the two players of the
game are maps from the class Z of terminal histories to the
values 1 (a win) and —1 (a loss) as follows. For any h € Z,
uz(h) = 1 and uy(h) = —1, if the last position of A is of the
form (p,a) and a € h(p), or is of the form (—p,a) and a ¢ h(p),
or is the position (FAIL,*) chosen by V. Otherwise uy(h) = 1
and ug(h) = —1.

The information partitions Iy and I3 for the two players
still need to be defined. For an arbitrary history
h = ((¢0,a0),--,(Ym,am)), we call the sequence pri(h)=
(©0,- - ¢m) its left projection, and the sequence prao(h) =
(ag, ..., ap) its right projection. If (so, ..., sp) is any sequence
and i < n, we write (sq, ..., sp)[i] for its member s;. Now the
sets P~1({3}) and P~!({V}) are partitioned into equivalence
classes under the following equivalence relations ~3 and ~v,
respectively.

oh1N3h2<:>

(for some ay,a2 € dom(M), the last position in hy is
((Cin/W)(0),a1) and the last position in hg is
((Cin/W)(0) ,a2); and pri(hi) = pri(he); and for all
J & W, pralha) [j] = pra(ha) [j]) or

(h1 = ho and its last position is of the form (i, a) for
some ¢ € {Ci, (0),(0 V x)} and a € dom(M)).
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The condition under which hy ~vy hs holds is similar to the
condition for ~3 and is obtained from it by replacing the oc-
currences of the symbols “O” and “V” by the symbols “01” and
“A”, respectively. The promised partitions of P~1({3}) and
P~1({V}) then are:

Is={[h]~y : h € H\Z} and Iy = {[h]~, : h € H\Z}.

The sets I3 and Iy themselves are called information partitions,
and their members (i.e. the cells of these partitions) are called
information sets.

The definition of the semantical game

GA(907M7d) = ({V7E|}7H> Z, P, {UV,UEI}7 {[v,13}>

in its extensive form has now been completed. By definition it
is a zero-sum game: for all h € Z, uz(h) +uy(h) = 0. In partic-
ular, it is a win-loss game in the sense that it is a zero-sum game
satisfying u;(h) € {—1,1} for all j € {3,V}, h € Z. Moreover,
Ga(p, M,d) is a game of imperfect information. (For a dis-
cussion on the properties of the information partitions of these
semantical games, as compared with information partitions of
games of imperfect information typically encountered in game
theory, see Subsect. 2.3.1 below.)

With information partitions the idea intuitively is that his-
tories in the same cell of the information partition of the player
j € {3,V} are indistinguishable for this player. Unless there is
some way of ruling out a subset of such an information set as
histories that definitely cannot have been reached in the course
of a play of the game (cf. Subsect . 2.3.1), any move j makes
after one history belonging to this set, j must be able to make
after any history from this set, in order for j’s strategy for
making these moves to be winning: j’s winning strategy has
to agree on all these histories. To get a better grasp of these
partitions, let us take an example.
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Example 2.3.1 Let M =({0,1,2,3,4}, <, ) be a modal struc-
ture, where < is the ordering of the natural numbers 0,1,2,3,4
by magnitude, the assignment b being arbitrary. Consider the
formulae:

(a) Y = |:|1<>2<>3/{1}p.
(b) '¢ = |:|1<>2<>3/{2}p.

Up to indicating the relevant information partitions, the exten-
sive form of both semantical games, Ga(p, M,0) and
Ga(, M,0), is depicted as in Figure 5.

FIGURE 5

In the figure, the histories of length 2 are listed as hq,...,h7.
Now in the case of formula (a), the information partition for
Heéloise contains, in addition to four singletons each consisting
of a history of length 1, the following cells whose members are
histories of length 2:

{h1},{h2,ha},{h3, hs, he} and {h7}.

In the same cell are those histories of length 2 that have their
last member in common. By contrast, in the case of formula
(b), the cells of Héloise’s information partition consisting of
histories of length 2 are these:

{hl, hz, hg}, {h4, h5}, {hﬁ} cmd {h7}
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Here the histories in the same cell share their second member
(i.e. the first member chosen after the initial position

(4,0)). ®

To make use of the games G 4(p, M, d) in defining a seman-
tics for IFML[k], we need the notion of strategy of a player.
A strategy of the player j € {3,V} is simply any function

fi: PTH({5}) — A

Observe that strategies are not components in the extensive
form of a semantical game. If h € H is a history on which a
strategy f; is defined, we say that the move f;(h) given by the
strategy is legal, if h™fj(h) € H, i.e. when the extension to h
determined by f; remains inside the set H of histories of the
relevant game. Otherwise the move is said to be illegal.

The following terminology is employed. If s, s; and s9 are
sequences such that s = s;7s9, then s; is said to be an initial
segment of s. If sy is non-empty, s is a proper initial segment
of s. When S is a set of sequences, we write CI(S) for the
closure of S under forming initial segments, i.e. for the set of
initial segments of members of S.

A strategy f; of the player j is a winning strategy (w.s.), if
there exists a non-empty subset W C Z of terminal histories
satisfying the following four conditions:

(a) If h € CI(W) and P(h) is j, then h™f;(h) € CL(IV).
(b) If h € CI(W) and P(h) is the opponent of j, then
for every u € A such that h™u € H, we have

h~u e CL(W).
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(c) For every h,h' € CI(W): if h,h' € T € I, then
fi(h) = f; ().

(d) Every h € W is a win for j.

Condition (a) simply says that CI(W) is closed under appli-
cations of the strategy f;, and (c) expresses the ‘uniformity
condition’ for this strategy. Condition (b) in meant to ensure
that j wins against any move of his opponent. Together these
conditions are meant to ensure that only the plays that are
“reached” given that j uses the strategy f; are relevant for its
being winning: the only plays in which the strategy f; ever
needs to be used, are those from Cl(W).

A set W C Z which thus establishes that a strategy is
winning, is called a plan of action. We say that the set W
establishes that f; is a winning strategy, or that f; is a win-
ning strategy based on W. We observe that W guarantees the
existence of a minimal (though not necessarily unique) par-
tial function from P~'({j}) to A which specifies a move for all
combinatorially possible moves of the opponent of j and always
yields a win for j.

If there exists a set W C Z satisfying conditions (a), (b) and
(¢) but not necessarily (d), we say that a corresponding strategy
fj is based on the plan of action W. But unless condition (d)
is satisfied, such a strategy is not winning.

Fact 2.3.2 No more than one of the players has a w.s. in a
game I' = Ga(p, M, d).

Proof. Assume for contradiction that strategies f3 and fy
are both winning in I'. Fix W resp. W’ as corresponding plans
of action. We show that there is a history A such that h € W
and h € W/, which yields a contradiction by condition (d).
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We construct h in steps. For the initial position a1 = (¢, d),
we trivially have that (aq) € CI(W) and (aq) € CI(W'). As-
sume then that we have reached (aq,...,aqy,) such
that  (aq,...,am,) € CU(W) and (aq,...,q,) € CI(W'). If
P((ai,...,am)) =V, then by (a), (au1,...,0m, fo(ai,...,am))
€ Cl(W'"). But then by clause (b), (a1, ..., Qm, fr(a1,...,am))
€ Cl(W). The same reasoning applies if P((a1,...,am) = 3.
Hence in a finite number of steps a terminal history
h = (a1,...,ay) is reached that is both in W and in W', and
so, by (d), h is a win for both players, which is impossible. =

Now that the plethora of requisite definitions are all
given, we can state the semantics for IFML[k]. Let
M = (D, Ry,...,Rr_1,h) be any k-ary modal structure, and
let d € D. Then:

e o € IFML[k]| is true in M at d, in symbols M T ¢[d],
iff there exists a w.s. for Héloise in G 4(p, M, d).

e ¢ € IFML[K] is false in M at d, in symbols M =" ¢[d],
iff there exists a w.s. for Abélard in G4(p, M, d).

e © € IFMLIk] is non-determined in M at d, in symbols
M L o[d], iff M ET @[d] and M E~ ¢[d].

When a formula is determined (non-determined), the cor-
responding game is likewise said to be determined
(non-determined). Further, we say that a class £ of formulae
is determined (non-determined), when every (some) ¢ € L is
determined (non-determined).

The semantics just given to IFML[k] will be referred to as
its uniformity interpretation (or, UNI).

For the subclass ML[k] of IFMLIk]| it is easily established
that the recursively defined semantics of ML[k] and the game-



2.8. Uniformity Interpretation of IF Modal Logic 69

theoretical semantics given to IFML[k] yield the same truth-
values for all formulae of ML[k].1°

For k = 0, IFML[k| and ML[k| are the same languages.
Hence, IFML[0] = ML[0] evaluated over degenerate modal
structures ({dp}, ) is indeed Propositional Logic. For k > 1,
MLIk] is a proper subclass of IFMLIk].

The formulae of IF tense logic IFTL[k] = IFML[2k] are
evaluated relative to k-ary temporal structures. (Recall that
k-ary temporal structures are by definition a subclass of all
2k-ary modal structures.)

In the present thesis we will encounter a number of ex-
amples of non-determined IFML|k] formulae, i.e. formulae ¢
€ IFMLIk] for which there exists a pointed modal structure
(M, d) such that for neither Abélard nor Héloise there exists
a winning strategy in G4(¢, M, d). Several examples will be
provided in Subsect. 2.3.2 below. Hence, in a qualified sense,
the law of excluded middle fails in IFML[k], just as it does in
IF first-order logic. What this failure in IF[r| means is that
not all instances of the schema

® Voo

” stands for dual nega-

are satisfied in all models, given that “—
tion, signifying the switch of the roles of the players in a se-
mantical game (from verifier to falsifier and vice versa).

It goes together with the game-theoretical viewpoint that
the falsity of a formula ¢ corresponds to the existence of
Abélard’s (initial falsifier’s) winning strategy in the game corre-
lated with ¢ — whence the notion of falsity is not given in terms
of contradictory negation. Contradictory negation (~) is a con-
nective that has no corresponding game rule and which can

only appear sentence-initially in IF[7] when game-theoretical

10 Proving this requires Aziom of Choice in the direction from the re-
cursive semantics to the game-theoretical semantics.
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semantics is used. Its truth-condition is given by stipulating
that a sentence ~ S is true iff S is not true, where “not” is a
contradictory negation in the metalanguage. Hence ~ S is true
iff S is false or S is non-determined. The version of tertium
non datur restricted to sentences only and formulated using
contradictory negation — i.e. the claim of the necessary truth
of instances of the schema

SV~S

— is not refuted by game-theoretical semantics. From the point
of view of game-theoretical semantics and IF logic, it is one of
the fortunate accidents of traditional first-order logic that in it,
dual negation and contradictory negation coincide.!!

The possibility of an IF logical formula being neither true
nor false — the failure of the necessity of the schema SV =S
— has nothing to do with eventual epistemic restrictions of the
human mind, or with anything tantamount to considering truth
and falsehood as somehow unevenly polarized alethic modes of
propositions. What is at stake in the failure of tertium non
datur in IF logic is a brute mathematical (esp. combinatorial)
fact about the existence of a structure not allowing a winning
strategy for either of the two players of the semantical game
associated with a formula of the form SV —S.

2.3.1 Two species of informational indepen-
dence

Above, we have defined semantics for IFMLIk| by first asso-
ciating a semantical game of imperfect information with each

11 This coincidence depends on the fact that atomic formulae are always
either true or false in the models of FO, and also on the fact that the
evaluation games for FO are games of perfect information. For a proof of
this coincidence, see Theorem 2 in Sandu (1993).
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formula of IFML[k|, and then defining the truth and false-
hood of such a formula as the existence of a winning strategy
for Héloise resp. Abélard in such a game. The notion of win-
ning strategy was defined in terms of the existence of a set W of
terminal histories called a plan of action. Hence the definition
of our semantics, and thereby eventually our interpretation of
logical independence as it appears in modal logic, appeals both
to the extensive form of a game — involving information sets —
and to a strategy (plan of action) made use of in playing such
a game.
Consider now the two cases:

(a) Modeling informational independence exclusively in terms
of extensive forms of games.

(b) Modeling informational independence by reference to strate-
gies made use of when playing games (that are given in
their extensive form).

Each of these cases leads to its own species of informational
independence:

(a’) A player being subject to imperfect information, as stan-
dardly defined in game theory.

(b’) A player being subject to a norm demanding uniform
strategic action.

Let us look at these options in more detail.

In standard game theory the player j’s imperfect informa-
tion of past histories of a game is presented by having available
in the extensive form of the game an information partition I;
of the class of those histories at which it is player j’s turn to
move, and the effect of imperfect information is brought in by
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requiring that all histories in any I € I; have the same possible
extensions,'? schematically

(x) h,h elel;, =
Ahy={a:h"a€c Hy={a:h Tac H} = A(l).
Hence if the partitions Iy and I3 in a structure
I'={Vv,3},H,Z, P,{uy,us},{lv, I5})

do not satisfy the above condition (*), the structure I is thereby
not a game of imperfect information.

Now the histories in a given cell I € I; of the information
partition I; are customarily interpreted as being indistinguish-
able to the player j. Thereby the requirement (x) receives, as
a part of modeling imperfect information, the following ratio-
nale: if, as Osborne and Rubinstein (1994, p. 201) put it, we
had A(h) # A(R'), the player j could deduce, when faced with
A(h), that the history was not h', which would contradict the
desideratum that the histories in the information set I should
be indistinguishable to j. (For all histories h, the player is
required to be aware of the set A(h) of possible choices from
which he can choose his move.)

Hence a consequence of the decision to interpret members
of an information set as indistinguishable is readily observed:
imperfect information means a strict lack of knowledge about
the route by means of which playing a game has proceeded to
a situation where it is a given player’s turn to move. He knows
what his alternatives are for the next move, and he knows a set
containing the sequence of moves actually made, but does not
know which of the histories in the set is the actual one.

Now what would be the result of interpreting the role of in-
formation sets in some other way? What if we thought of these

!2 See e.g. Osborne and Rubisntein (1994, pp. 200-1).
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histories as indeed being totally visible to the player whose turn
it is to move, and interpreted their being gathered into the same
cell of the information partition as inducing a ‘behavioral re-
striction’ for the player, instead of an epistemic blackout? A
different intuitive view on information sets might well render
the condition (%) dispensable.

There is, in fact, such a different view, and it has been con-
cretely implemented above in defining evaluation games for IF
modal logic. These games do not in general meet the condition
(%), as is easily seen.

Example 2.3.3 Consider the semantical game corresponding
to the formula

X = |:|1<>2/ {1}T

and the pointed modal structure (M,a) = (M, R, b,a) with
M = {a’b’c’d7e’f}7

R = {(CL, b)? (a, C)v (b, d): (b’ 6), (C, 6)7 (07 f)}

This structure is illustrated in Figure 6:

q false q true q false
d !
b c
a
M

FIGURE 6
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The information partition corresponding to the operator
Oo/ {1} is now {{(a,b), (a,c)}},'> while the sets of the exten-
sions of (a,b) and (a,c), respectively, are not the same:

A((a,b)) = {d, e} # {e, [} = A((a, ¢)).

Hence the semantic game associated with x does not meet the
condition (%). What is more, x is true in (M, a) by our truth-
definition, as e 1is a uniform, truth-establishing choice
for Héloise corresponding to Oof {1}. M

So the relevant notion of independence in connection with
the evaluation games for IFML[k] can be said not to be mod-
eled by imperfect information, if the above game-theoretic im-
plementation (a) is taken as a standard of what indeed counts
as imperfect information. Instead, independence is, in connec-
tion with these games, modeled by imposing a norm on actions
governed by winning strategies: the norm of uniformity. Put
differently, the requirement is that winning strategies yield ac-
tions that are universalizable.

Roughly, what the information sets do under interpretation
(b) is specify which histories must be treated as equals — what
a player does with one of them, he must be prepared to do with
the rest.!* For a concrete example of the same phenomenon,
think of actions or series of actions that can be morally or
legally punishable. They can be grouped into classes by taking
into account different parameters (e.g. under what circum-
stances, by which means and with what intention a crime, say,
was committed), but the punishment — to be legal or moral

13 Explicitly writing down the subformula components of actions is re-
frained from, whenever this may not cause confusion.

14 As will be spelled out below, this description is subject to the specifi-
cation that the only histories which matter are those that can be reached
when the specified recipe for behavior (plan of action) is followed.
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— cannot differ according to the identity of the person respon-
sible for the action in question. When judging a person, one
must act in a manner that can be made universal — so that the
result would be the same if another person had committed the
same crime. Being aware of the identity of the person who has
committed the crime does not change this fact in the least.

Here, technically, informational independence is brought
into the picture not on the level of extensive forms of games
but on the level of winning strategies used for playing these
games. (Strategies that are not winning need not respect infor-
mational independence in any way.) That is, when the player
J uses a strategy f to make a move at a history h € I € I; —
and while we may think that he can distinguish A from every
other history in I — he nevertheless must, in order to win the
play of the game, move in such a way that the same move could
be made to also extend all other histories from I that could be
reached given that j follows the strategy f. This is what the
norm concerning winning strategies dictates.

Consider the examples of evaluation games designed accord-
ing to the two ways of modeling informational independence in
connection with modal logic, (a) and (b). In both cases consider
evaluating the formulae

(i) ©1<09/{1}T in the structure (N,0) = (N, <, b,0). 1°
(ii) 0;<02/{1} T in the structure (M, a) = (M, R, b,a)
specified above.

Example 2.3.4 (“Imperfect information”) (i) Write T for the
imperfect information game associated with the formula

5 The relation < is the ordering of the set of natural numbers by mag-
nitude.
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O109/{1}T. Then Héloise’s information partition in T' con-
tains a single information set

I ={(0,n):n >0},

corresponding to the operator $Oo/{1}, and any extension m of
a history (0,n) satisfies m > n. But then, by the condition
(x), in fact A(h) = @ for all h € I. Hence there is no w.s.
for Héloise in the game, and the formula is not true under this
interpretation. In fact it is false, Abélard’s w.s. consisting of
doing precisely nothing.

(ii) Here the relevant information set is

I'= {(a7 b)v (a,c)},

and, due to the condition (x), A((a,b)) = A((a,c)) = {e}.
Hence there is a w.s. (fs) for Héloise in the correlated game,
deﬁned by putting ffl((aa b)) =e= fﬂ((a7 C)) u

Remark 2.3.5 Notice that due to the condition (x), (0,1,2),
for example, is not a history in the game corresponding to case
(i), and (a,b,d) is not a history in the game associated with
case (ii). It is not only for example that Héloise’s w.s. cannot
choose 2 to extend (0,1), but that 2 is not among the possible
choices.

Example 2.3.6 (“Uniform strategic actions”) (i) Put W :=
{(0,1,2)}, and define a strategy f3 by setting f3((0)) = 1,
((0,1)) = 2.

We observe that the terminal history (0,1,2) is a win for
Héloise. Hence f5 is a winning strategy based on the plan of
action W.

(ii) See Example 2.3.3 above. B
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Remark 2.3.7 Under uniformity interpretation, informational
independence rests upon the requirement that of those mowves
that can be made using a given strateqy f, any move made to
extend a history from a given information set I must also be a
legal extension for all the other histories from I that could have
been realized using f. Hence for case (i) the uniformity require-
ment is in fact vacuous, and in case (ii) a w.s. for Héloise ex-
ists, as there is a common extension, e, to (a,b) and (a,c). This
is true even if (a,b) and (a,c) do not have all their respective
possible extensions in common.

The distinction between the two ways of modeling informa-
tional independence has repercussions in the discussion about
the sorts of strategies that players are assumed to be using when
playing games. In game-theoretical literature, a pure strategy of
the player j in a game of imperfect information is any function

fi th— A(h),

associating each history from P~1({j}) with a possible exten-
sion, and respecting the information partition I; in the sense
that if h, K’ € I € I;, then fj(h) = f;(h').

By contrast, a strategy based on a plan of action W, as we
have defined this notion above, is any function

fPTH({ih) — A

for which there exists a set W of terminal histories in the cor-
related semantical game satisfying criteria (a), (b) and (c) laid
down therein. A plan of action specifies only a minimal subset
of all game histories, namely CI(W), which suffices to cover all
combinatorially possible histories that can be reached depend-
ing on the moves of the opponent. Whether a plan of action is
winning or not depends only on this set CI(W).

Ariel Rubinstein (1998, p. 66) comments on the difference
between pure strategies and plans of actions, saying that
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“[In the game-theoretic tradition, the definition of
a pure strategy| requires that the decision maker
specify his actions after histories he will not reach

if he follows the strategy.” 6

He goes on to state that:

“[t]he more natural definition of a strategy is as a
plan of action: a function that assigns an action
only to histories reached with a positive probabil-
ity.”

Plans of action, as I have defined above, precisely specify
the actions of the player only for such histories that he or she
may actually confront when applying this plan.'” Also, the way
in which we have chosen to model informational independence,
option (b) above, precisely restricts the attention to what can
happen in a play when it is fixed how the player in whose win-
ning strategy we are interested, is going to move. Uniformity
is only required relative to such histories that can be realized.

By contrast, the requirement behind the definition of pure
strategies, on the one hand, and the condition (%) imposable on
information sets, on the other, are similar in spirit. Both stem
from a globalist viewpoint on games in which the particular
strategy-governed way of playing the game is not given any
special attention: a pure strategy must specify what to do even
in situations in which one cannot end up using that strategy,
and the condition (*) requires uniform behavior in the extreme
sense that an admissible move must be possible at any history
in an information set, irrespective of any considerations of how

16 Ttalics mine.

7 Given a strategy f of the player j, it is precisely the histories whose
realizability is not ruled out by the sole fact that j employs this strategy,
which have positive probability (for 7).
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such a history might have been reached in the course of a play
of a game.

When the idea of employing a specified strategy for playing
a game is taken seriously, and if combined with the interpreta-
tion of information sets as sets of indistinguishable histories (i.e.
according to the interpretation preferred in standard game the-
ory), it would become reasonable to interpret as indistinguish-
able only the histories in such a subset Iy of a given information
set I that can be attained given that the strategy f is employed.
When this approach is not taken — as when proceeding from
interpretation (a) — interpreting histories in I as simply indis-
tinguishable means that this interpretation deliberately ignores
the strategic aspect of playing games.

In what follows, we carry on making use of interpretation
(b) of informational independence. Games will continue to be
presented as defined in their extensive forms, but in the seman-
tics we will essentially resort to the strategies (plans of action)
used for playing these games.

2.3.2 Examples of evaluations by uniformity
interpretation

For the sake of illustration, it will be shown how to evaluate, rel-
ative to the structures specified below, the following IFMLk]
formulae:

(1) ©01%02/{1}q
(2) ©01%02/{1}q
(3) Do1%02/{1}q
(4) O51%02/{1}q

(5) 00105303 /{1,2}q
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(6) Do1012/{1}¢q

For formulae (1)-(5) we have k& > 1, and for formula (6), & > 2.
For the former group of cases, k can be assumed to equal 1,
and we can drop the first member of the double indexing of the
modal operators, as this first index will be 0 for each operator.
Accordingly we write formula (1), for example, as &1<0o/{1}q.

When describing strategies below, explicit mention of sub-
formula components of histories is omitted, whenever it is pos-
sible to do so without causing confusion.

Example 2.3.8 For any modal structure M = (D, R,Y) and
any point d € D, we have:

109 /{1}q and OOq

are both true or both false in M at d.

This is seen as follows. If the set {z : there is y such that
R(d,y) and R(y, z)} is empty, both formulae are trivially false.
So assume the set is not empty, and define a strategy f for
Héloise as follows:

fld)=d f(d,d)=d",

where d' and d" are fized so that R(d,d'), R(d',d"), and if pos-
sible also d’ € h(q). Then clearly, if indeed d" € H(q), then the
set W ={(d,d’',d")} establishes that f is a w.s. for Héloise in
the game Gao($O102/{1}q, M, d), and thereby the same strategy
[ is also a w.s. for her in Go(<O<q, M, d). If, again, d" can-
not be chosen so as to satisfy q, both formulae <1<$o/{1}q and
OOq are false.

Example 2.3.9 For any model M and any point d:

O 00/ {1} g and O710q
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are both true or both false in M at d.
As in Example 2.3.8, again the independence indication has
no effect, since all moves are made by the same player (Héloise).

Example 2.3.10 Consider evaluating the IFML[1] for-
mula 01C2/{1}q in a model M = (D, R,Y) at a point d, as-
suming that R is an irreflezive partial order, i.e. an irreflexive
(antisymmetric) and transitive binary relation.

In order for there to exist a w.s. for Héloise in
Ga(O:02/{1}g, M, d), there must be an element ¢ such that
for all d', if R(d,d'), then R(d',c).

(a) If d has no R-successors (i.e. if d is an R-maximal
element), then Héloise has trivially a winning strategy. This
strategy then consists of doing precisely nothing, and is based
on the plan of action {((01<2/{1}q,d), (FAIL, %))}.

(b) If there are R-successors to d, then no winning strategy
for Héloise can exist. For contradiction, assume f is such a
strategy, and f(d,d") = c for all d' with R(d,d"). But then
there is a play in which Abélard chooses c¢ to interpret 1. (By
assumption there is d’ such that R(d,d") and R(d',c). Hence, by
transitivity of R, we have that R(d, ¢).) But then, by irreflexivity
of R, in this play c is not a legal reply for Héloise. Hence f
cannot be a w.s. for her.

On the other hand, under assumption (b) there is a w.s.
for Abélard in Go(O1<52/{1}q, M, d) if and only if there is an
R-successor d' to d such that all of its R-successors satisfy —q.
Otherwise the game is non-determined.

To sum up:

M ET D102 /{1}qld] <= M =" OL[d].
M " D1 0g/{1}gld] <= M =T OOgld].

M E 102 /{1}qld] <= M E* (0T AOOq)[d].
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Example 2.3.11 Consider evaluating the formula

O 102/{1}q

in a modal structure M = (Q, <,b) whose frame (Q, <) is the
set of the rationals ordered by their magnitude. Let us take
0 € Q as the point of evaluation. We claim:

M ET O 109/{1}4[0] <= M ET gV Oq[0].

If the right side of the equivalence holds, define a strategy f for
Héloise by:

foralld < 0: f(0,d) =c,

where ¢ > 0 is a fized rational satisfying q. The existence of at
least one such rational is guaranteed precisely by the condition
M ET gV Oql0]. But then f is a w.s. for Héloise based on
the plan of action W = {(0,d,c) : d < 0}. And if the left-hand
side holds, then the existence of a w.s. for Héloise in the game
associated with the formula 071 Oo/{1}q guarantees that there
exists a point ¢ > 0 at which q holds — whence q VvV <q is true
in M at 0.

On the other hand, the formula 07 Oq/{1}q is false, iff
there is some negative rational x such that always after x, q is
false:

M E 07 0o/{13ql0] = M = O~ Tg[0].

And finally, the formula is non-determined, iff arbitrarily near
0 on the left there are rationals at which q holds, but at 0 and
always after it q is false:

M E" 07102 /{1}q[0] <= M =1 (=g AO-q) A0 0qg[0].

Hence in this case h(q) and the set of non-negative rationals are
disjoint, and the supremum of the set {x € h(q):z < 0}
15 0.



2.8. Uniformity Interpretation of IF Modal Logic 83

Example 2.3.12 Consider evaluating the formula
00,1057 /{1,2}g

in a structure M = (Q, <,b) at the point 0 € Q. This formula
1s not true in M at 0. To see this, assume for contradiction
that there is a w.s. f for Héloise in the correlated game. Then
there is some rational ¢ such that for all sequences (0, z,y) and
(0,2',y") from her information set

I={0,z,y):0< 2,y <z}
corresponding to the operator 051/{1, 2}, the following holds:

f(oaxvy) = f(071‘,,y/) =cC

But then there is in I the sequence (0,|c| - max{c,2},¢c) and
choosing c to extend this sequence by f cannot yield a win for
Héloise (since ¢ £ c).

On the other hand, the formula is false, iff there is some
rational below which q is always false:

M E" 10,1051 /{1, 2)4[0] <= M =T o0 5g[0].

(Note that if there is some such rational, then there is such a
rational below 0.) Finally, the formula is non-determined, iff
below any rational there is a rational at which q is true:

ME' 10,1051 /{1,214[0] <= M =T O 1o (o).

Example 2.3.13 Consider the formula Oy 1<$1,2/{1}q, in which
there appear modal operators of two distinct modality types. Let
us think of evaluating the formula relative to the binary modal
structure M = (Q, <, <, ) at the point 0, given that

e < is the order of rationals by their magnitude
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e < is the linear order of the relational structure
Q<) =0>aQ,

i.e. the ordered sum of the ordered set Q=0 of non-negative
rationals and the ordered set Q<C of negative rationals
(both sets ordered by magnitude). For an illustration of
the order <, see that:

0= 1055 <3 <3<

<10 2oL <

e h(q) ={z:2>0}.

The orders < (above), < (below) can be depicted as
in Figure 7 (the box indicating zero).

—
-

0

FIGURE 7

We claim that Og1<$1,2/{1}q is not true in M at 0. Now
in order for there to be a w.s. for Héloise, there must exist a
rational ¢ such that for all d:

if 0 < d, then d < c.

However, no positive rational can be a <-successor to all pos-
itive rationals, while only (and all) negative rationals would
count as such a number c. But q is not true at any negative
rational. Hence there cannot exist a w.s. for Héloise.



2.8. Uniformity Interpretation of IF Modal Logic 85

Further, Oo,1<1,2/{1}q is also not false in M at 0. Namely,
for every d > 0, Héloise can for instance choose the number
c:=d+ 1; this choice satisfies d < ¢, and because it always is
a positive rational, it also makes q true.

From what we have noted we may conclude that the formula
is non-determined in M at 0:

M E? Oo,1<01,2/{1}4[0].






Chapter 3

The Expressive Power
of IF Modal Logic

We now move on to study the relative expressive power of IF
modal logic. In Section 2 of this chapter I will show that
IFML[k| can be translated into traditional first-order logic
(FO). On the other hand, in Section 3 it will be shown that
a variant of IF modal logic that allows modal operators inde-
pendence even from conjunctions and disjunctions (EIFMLIk],
k > 3) has genuine second-order expressive power, i.e. cannot
be translated into FO. In Section 4 the expressive powers of
IFML[k] and MLI[k| are compared relative to various classes
of modal structures. Section 1 provides some requisite basic
definitions and facts. Throughout the present chapter the umni-
formity interpretation of IFML[k] will be employed as seman-
tics.

3.1 Facts about Expressive Power

If £ and L' are modal logics (such as ML[k] and IFMLIk])
and I is a class of modal structures on which the semantics of

87
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both logics is defined, the relations
o L <y L' (L is embeddable in L' over K)

o L <x L' (L' has greater expressive power than L over K)
o L =k L' (£ and £ have the same expressive power over K)

are defined as was explained in the Introduction (Paragraph
3).! By convention, we write Cy, for the class of all k-ary modal
structures. For an arbitrary k < w, we trivially have the fol-
lowing embeddability result:

Fact 3.1.1 Owver Cy, ML[k| is embeddable in IFMLIk].

This is simply because ML[k] is literally a subclass
of IFMLIk]: any formula ¢ € ML[k] is its own translation in
IFML[k|. B

3.1.1 The determined fragment of IFML
We say that the class IFML g [k] :=

{¢ € IFML[k] : for all M € Cj, and all d € dom(M),
M ET pld] or M =" old]}

is the determined fragment of IFML[k]. The following theorem
shows that relative to the class Cy, of all k-ary modal structures,
the expressive powers of IFMLg.[k] and ML[k] are the same.

1 Ch. 4 looks at two sorts of embeddability: weak and strong. In
the present chapter we will only deal with weak embeddability, and call it
simply “embeddability”. This is in keeping with the fact that UNI inter-
pretation, on which we concentrate here, allows non-determined IFMLIk]
formulae, and so strong embeddability (the translation and the translated
having everywhere coincident truth-values) is, in general, expressly not
attainable.
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Theorem 3.1.2 IFML,[k] =c, ML[E].

Proof. All formulae of ML[k] are determined (everywhere
either true or false), and they are also (directly by syntactical
criteria) formulae of IFMLIk], so ML[k] <¢, IFMLg[k|. For
the other direction, let ¢ € IFMLyy[k], M € C; and d €
dom(M) all be arbitrary. We must find a formula 1), € ML[k],
satisfying that

there is a w.s. for 3 in G(p, M, d) <=
there is a w.s. for 3 in G(¢,, M, d).

Now if in particular ¢ € ML[k], then we may clearly take 1), to
be ¢ itself. If, again, ¢ is of the form O; ... O,—1(0,/W)x with
X € MLIk], then put ¢, := O1 ... O0,—10,x. What can be done
in greater ignorance can be done in lesser ignorance: clearly if
some f3is a w.s. for 3in G(p, M, d), the same strategy is a w.s.
for her in G(¢,, M,d). Assume then that there is no w.s. for
Jin G(p, M, d). But then, by the assumption of determinacy,
there is a w.s. for V in G(p, M, d), which is clearly also a w.s.
for him in G(¢y, M,d). This means, in turn, that
there is no w.s. for 3 in G(¢op, M, d). =

3.1.2 Bisimulations

A specific logical tool we will make use of when proving the
main results concerning the relative expressive powers
of IFMLIk] and ML[k] is bisimulation. A bisimulation is a bi-
nary relation between elements from the domains of two modal
structures. When two k-ary modal structures are bisimilar,
they make true precisely the same ML[k| formulae. It turns out
that while bisimilarity thus preserves the truth of ML[k] for-
mulae, in general the same does not hold true for all IFML|k]
formulae as some are capable of distinguishing bisimilar modal
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structures (by being true in one but not in the another), hence
the usefulness of bisimilarity for our purposes. For, if there is a
formula of a logic (£) that can distinguish models from a class
KC, but no formula of another logic (£') can do this, then it
cannot be the case that £ were embeddable in £’ over K. If we
happen to be able to establish, furthermore, that £’ is in turn
embeddable in £ over I, we have in effect shown that over K,
L has a strictly greater expressive power than £’'.

In the present subsection we discuss some basic properties
of bisimulations connected with basic modal logic. How to give
a natural definition to the relation of IFML bisimulation, i.e.
a relation that holds between pointed modal structures if and
only if they satisfy exactly the same IFML formulae, is a sep-
arate question for further research.

3.1.2.1. Bisimilarity proper

The relation of bisimulation for k-ary modal structures is de-
fined as follows.

Definition 3.1.3 Let M = (D,Ry,...,Rx_1,h) and N =
(D', Ry, ..., Ry _1,b) be k-ary modal structures. A bisimulation
between the modal structures M and N is a binary relation
=p,prC D x D', satisfying the following conditions (1), (2) and

(3)-

(1) Atomic Harmony:
d=p,p d = for allp € prop: d € h(p) <= d' € b/ (p).

(2) Zigzag Forwards: for all i < k,
d=p,p d and Ri(d,c) = 3¢ (R,(d',) and c =p p ).

(3) Zigzag Backwards: for all i < k,
d=pp d and Ri(d',d) = 3e(R;i(d,c) and c=p pr ).
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If =ppC D x D’ is a bisimulation between M and N, we
may indicate this by writing

ED,D/: M :N

A bisimilarity Bp, pr (as opposed to a bisimulation) between the
modal structures M = (D,Rg,...,Rr_1,h) and N =

(D', Rf,...,R}._1,b') is the union of all bisimulations between
M and N:
Bp p = U =p.D’ -
=p, prMEN

The pointed modal structures (M,d) and (N,d’) are said to
be bisimilar, if the pair (d,d’) is a member of the bisimilarity
BD,D’:

(d, dl) S BD,D’-

We say that the pointed modal structures (M, d) and (N, d’)
are MLIk| equivalent, if for all ¢ € ML[k],

M E" ld] <= N = ld].

The notion of IFML[k] equivalence of (M,d) and (N,d’) is
defined similarly.

Now for formulae of ML[k| the following Invariance Lemma
holds. The lemma says that bisimilarity preserves truth in
ML[] in the sense that if (d,d’) € Byom(am),dom(n), then (M, d)
and (N, d') are ML[k] equivalent.

Lemma 3.1.4 (Invariance Lemma) Let M = (D,Ry,...,
Ri—1,b) and N = (D', Ry, ..., R;._,b) be k-ary modal struc-
tures. Then for all ¢ € ML[k| and all (d,d") € D x D':

(d.d) € Bpp — (M T 9l <> N =+ ld)).
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Proof. The proof is by induction on the complexity of
the formula ¢ € ML[k|. The case for (negated) propositional
atoms, and the inductive cases for disjunction and conjunction
are completely trivial. Consider the case ¢ = <0 (i < k),
assuming inductively that ¢ satisfies the claim:

Vo € DVa' € D' : (x,2) € Bp pr =
(MET ¢ [a] = N ET pl2']).

Let then x € D, 2’ € D' be arbitrary elements satisfying (x, z")
€ Bpp. It M =T Oip[z], then there is y such that R;(z,y)
and M =T ¢[y]. But then, because (z,2’) € Bp p/, we obtain
by condition (2) of the definition of bisimulation that there
exists y' such that R(z',y’) and (y,y’) € Bp, pr. (More specif-
ically: since (z,2’) € Bp, pr, there is a bisimulation =p ps such
that (x,2') € =p pr. By the definition of bisimulation, then,
the above pair (y,y’) satisfies (y,y') € =p.p, and so belongs
to Bp,pr.) Hence, by the inductive hypothesis we further get
that N =T ©[y/], whence we may conclude that N =1 O;p[2/].
The converse implication,

N ET Qipla’] = M =T Oipla],

is shown to hold exactly similarly, using condition (3) of the
definition of bisimulation.

The inductive case for formulae of the form ¢ = ;¢ (i < k)
is proven analogously to the above case for ¢ = C;0. =

Observe that the implication in the statement of Invariance
Lemma cannot be converted: it is not the case that if pointed
modal structures (M,d) and (N,d') are indistinguishable in
terms of ML[k] formulae then (M,d) and (N,d’) are bisimi-
lar. If instead of MLIk], the infinitary modal logic MLk, oc]
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(otherwise like ML[k| but allowing the forming of infinite dis-
junctions and conjunctions) is considered, then we indeed have
an equivalence:

(x) Pointed k-ary modal structures (M, d) and (N, d')
are bisimilar <= (M, d) and (N, d’) cannot be

distinguished by an ML[k, co| formula.

Bisimilarity therefore does not characterize ML[k] equivalence
(but characterizes ML[k, co] equivalence instead). Informally
expressed, ML[k| equivalence of modal structures M and N
would be characterized by the following condition: For all nat-
ural numbers n < w, it is possible to choose n pairs from
dom(N') x dom(N) in such a way that the chosen pairs comply
with the zigzag conditions (1) and (2) of Definition 3.1.3, and
satisfy precisely the same propositional atoms from all finite
subsets of the class prop. This requires that it be possible
to choose any finite number of pairs meeting these conditions,
but leaves open the alternative that it would not be possible
to choose an infinite number of such pairs, which is essentially
what bisimilarity proper requires. It also leaves open the op-
tion that (i) there is a € dom(M) which satisfies atoms from
an infinite set S C prop, such that for all finite subsets Sg of
S there is b € dom(N) correlated with a, making all atoms of
Sp true, but (ii) no element b € dom(N) is correlated with a
so that b would satisfy all the atoms from the infinite set S.
The situation in first-order logic (FO) is analogous. First-
order structures 2 and B (written in a finite vocabulary) are
said to be elementarily equivalent when they satisfy exactly the
same first-order sentences, viz. when for all n < w, 2 and B
satisfy the same first-order sentences of quantifier rank at most
n. The elementary equivalence of 21 and ‘B is characterized
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by the condition that for all n < w, Duplicator has a winning
strategy in the n-round Ehrenfeucht-Fraissé game G, (2, B).
By contrast, the condition stating that Duplicator has a win-
ning strategy in the Ehrenfeucht-Fraissé game Goo (2, B) with
infinitely many rounds, serves to characterize the Lo, equiv-
alence? of the first-order structures 2 and B (written in an
arbitrary vocabulary), where L, is an infinitary logic, other-
wise like FO, but allowing disjunctions and conjunctions to be
formed out of sets of formulae with arbitrary cardinality.?

3.1.2.2. Bisimilarity up to a modal depth

With each formula ¢ of MLI[k|, we associate by recursion a
natural number, md(y), to be called the modal depth of :

e md(p) = 0 = md(—p).

o md(pV $) = maz{md(p), md(v)} = md(p A ).

o md(Qi(p)) = md(p) + 1 = md(Ti(p)).

The notion of modal depth of an MLI[k] formula is an exact
analogue of the usual notion of quantifier rank in first-order
logic.*

To help formulate a criterion that characterizes ML[k] equiv-
alence, we introduce a doubly relativized notion of bisimilarity:
that of (n,l)-bisimilarity, where n indicates intuitively that n
pairs of elements can be chosen from the domains of (n,l)-
bisimilar modal structures so that these pairs satisfy the zigzag
conditions (2) and (3) in the definition of bisimulation proper,

2 1.e. equivalence relative to Loow Sentences.

3 This result is known as Karp’s Theorem. For game-theoretical char-
acterizations of FO and Lo, see e.g. Ebbinghaus & Flum (1999), or
Hodges (1997 [c]).

4 For quantifier rank, see Definition 3.3.6 below.
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and [ is the size of a fixed set of propositional atoms relative to
which Atomic Harmony prevails.

We take the class prop (of a cardinality x < w) itself to
always have a canonical enumeration of the form

prop = (p; : i < K),

and given a countable ordinal [ < k, the set prop(l) is then
determined by the initial segment of the enumeration
(pi i < k) corresponding to I:

prop(l) = (p; 1 i < 1).

In particular if K = Card(prop), then prop(x) = prop. The
relation of (n,[)-bisimilarity is defined as follows:

Definition 3.1.5 Let M = (D,Rq,...,Rr_1,h) and N =
(D', Ry, ..., R, _1,b) be k-ary modal structures, and let a € D,
be D'. Ifl < Card(prop) andn is a positive integer, an (n,1)-
bisimulation between the pointed modal structures (M,a) and
(N, b) is a decreasing sequence of binary relations in D x D',

=02 ... 2=,
satisfying the following conditions (1), (2), (3) and (4).
(1) Initial co-ordination: a =y, b.
(2) Atomic harmony on prop(l): d = d =
for all p € prop(l): d € h(p) < d € §'(p).
(3) Zigzag Forwards: for alli < k and all j +1 < n:

d=j41 d and Ri(d,c) = 3¢(R)(d',d) and c =; ).
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(4) Zigzag Backwards: for alli < k and all j +1 < n:

d=j41 d and Rj(d',d) = 3e(Ri(d, c) and c =; ).

Observe that since =y is required to contain all =;
with i < n, (2) suffices for establishing Atomic Harmony at all
‘levels’

0<i<nandd=;d =
d and d’ agree on all propositional atoms from prop(l).

If a sequence (=;);<y, is an (n,[)-bisimulation between (M, a)
and (N,b), we may write

(Ej)jﬁn : (M’ CL) zn,l (N’ b)v

and say that “(M,a) and (N,b) are (n,l)-bisimilar
via (=) j<n”, or “(Zj)j<n establishes the (n,)-bisimilarity be-
tween (M, a) and (N, b)”.

By stipulation we say that structures (M, a) and (N, b) are
(n,l)-equivalent, if they satisfy exactly the same ML[k] for-
mulae of modal depth at most n involving only propositional
atoms from prop(l).

Now we have, first of all, that (n,)-bisimilarity character-
izes (n,l)-equivalence:

Proposition 3.1.6 Let (M, a) and (N,b) be arbitrary pointed
k-ary modal structures. For all n<w and for all 1<
Card(prop) we have: (M,a) and (N,b) are (n,l)-equivalent
if and only if (M, a) and (N,b) are (n,l)-bisimilar.

Proof. Cf. Proposition 2.31 of Blackburn, de Rijke &
Venema (2002), p. 75. =

All ML[k] formulae have a finite modal depth, and involve
only a finite number of propositional atoms. So structures
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(M, a) and (N, b) are ML[k| equivalent iff for all natural num-
bers n and for all natural numbers [, (M,a) and (N,b) are
(n,l)-equivalent. But then it follows by Proposition 3.1.6 that
in fact the ML[k] equivalence itself between (M, a) and (N, b)
is characterized by the condition that for all n,l < w, (M,a)
and (N, b) are (n,l)-bisimilar. This relation between pointed
modal structures might be termed bisimilarity in the finite,
whence the characterization result becomes expressible as:

Corollary 3.1.7 Let (M,a) and (N,b) be arbitrary pointed k-
ary modal structures. We have: (M, a) and (N,b) are ML[k]
equivalent if and only if (M,a) and (N, b) are bisimilar in the
finite. A

It was already suggested at the end of the previous sub-
section that bisimilarity proper is a needlessly coarse-grained
tool for simply establishing ML[k] equivalence of given pointed
modal structures (M, d) and (N, d’): the existence of a bisimu-
lation between these structures is a sufficient but not necessary
condition for MLI[k] equivalence of (M,d) and (N,d’). Now
we are in possession of the requisite tools for in effect showing
that this is so. Consider the structures depicted in Figure 8
below.®

5 Blackburn, de Rijke & Venema (2002, pp. 68-9) employ these struc-
tures to show that modal equivalence does not imply bisimilarity.
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FIGURE &

Call the structure on the left M, and the one on the right V.
Their domains are subsets of (w + 1) x w:

e dom(N) ={(n1,n2):n1=neo=0VvV1<ny<n <w}

e dom(M) = dom(N) U {(w,n) :n > 1}.

The accessibility relations R of M and R’ of N are:

e R ={((0,0),(b,1)) : b>1}U
{((byn),(byn+1)):6>1,1<n<b-—1}

o R=RU{({0,0), (w, 1)} U{({w,n), (w,n+1)):n>1}.

All propositional atoms from a given set prop are assumed
false at all points in both structures. The first co-ordinate
(b) in a point (b,n) of a domain indicates a branch, and the
second (n) indicates the distance of this point (b,n) from the
root (0,0) measured in steps from the root to the point (b, n)
along the accessibility relation. In M the branch w is infinitely
high; otherwise M is like N and has one branch for each finite
height.

Now first of all, (i) the pointed modal structures (M, (0, 0))
and (N (0,0)) are not bisimilar. Assume for contradiction that
= is a bisimulation between them. Hence there is a point (b, 1)
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€ dom(N') such that (w,1) = (b,1). But b is of some finite
height h > 1. Then there is only a finite path (b, 1)R’ ... R(b, h)
forwards along R', but an infinite path (w,1)R... R(w,h)R. ..
forwards along R — a contradiction. On the other hand, (ii)
the structures are bisimilar in the finite. This is established
by constructing an (n,!)-bisimulation between these structures
for all n,l < w. Since the structures are homogeneous relative
to the atoms, the parameter [ has no effect. It is otherwise
completely trivial how to build up a sequence witnessing the
(n,1)-bisimilarity for a given n except for the case where points
from the infinite branch in M must be correlated to some ele-
ments in N. But with the point (w, 1) correlate (n,1) (where n
is the required length of the bisimulation sequence); hence for
the remaining at most n — 1 zigzag steps, the required exten-
sions of the path from (n,1) can be constructed if successors
to (w, 1) are chosen in the opposite structure.

From (ii) it follows by Corollary 3.1.7 that (M, (0,0)) and
(N, (0,0)) are ML [1] equivalent. Since by (i) these structures
are not bisimilar, we have justified the claim that bisimilarity
is not a necessary condition for ML[1] equivalence. B

Let us then move on to consider another example, which will
serve to establish a number of facts about modal equivalences
and the variants of the notion of bisimulation considered here.
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(N, b)

FIGURE 9

In Figure 9 above, call the upper structure M and the lower
N. They have a common frame (D, R), with the domain

D ={(0,00} U{(c,2)} U{(b,h):b>1and h:=1,2};
and the accessibility relation
R = {((0,0),(b,1)) : b > 1} U{((b,1),(b,2)) : b>1} U

{((b1).e,2)) - b > 1),

So (¢, 2) in particular is the common second-generation succes-
sor of all first-generation successors of (0,0). Let (p; : i < w)
be an enumeration of the class prop, which we assume here
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to be countably infinite.® (Observe that the atom ¢ referred
to in Figure 9 is by definition among these p;.) Then define
assignments h and b’ for M resp. N as follows.

The assignment h for M:

(0,0) and all points from {(b,2) : b > 1} make all atoms

false according to b.

(c,2) makes ¢ true according to b, but all other atoms
false.
e Foralln > 1 and p € prop: (n+1,1) € h(p) <

p € {po,p2,-..,p2n}-

For all p € prop: (1,1) € h(p) <~

p €{po,p2,---,p2m, .-} = {p2n 1 n <w}.

The assignment b’ for \:

e (0,0) and (c,2) make all atoms false according to b'.

e All points from {(b,2) : b > 1} make ¢ true, but all other
atoms false according to b’.

e For all n > 1 and p € prop: (n,1) € h/(p) <

p S {p07p27 cee 7p2n}-

6 There is nothing peculiar in taking prop to be infinite. E.g. Black-
burn, de Rijke & Venema (2002, p. 10) regard, as a standard assumption,
that prop is countably infinite.
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Hence for any n > 1, the point (n + 1,1) in M resp. the
point (n,1) in N satisfies precisely the atoms whose index in
the enumeration of prop is zero or even, and not greater than
2n. Notice that these points (n+1, 1) resp. (n, 1) are indicated
in Figure 9 by the label P,. And the point (1,1) in M makes
true exactly the atoms whose index is not odd, hence an infinite
number of atoms. This point is labeled with the symbol Ps.
For simplicity write w = (0,0) = v. We can learn a good
number of facts by considering the two structures (M, w) and

(N, v).

Observation 3.1.8 The structures (M, w) and (N,v) are not
(n,w)-bisimilar for any n > 1.

REASON: Notice first that (M, w) and (N, v) are not (1,w)-
bisimilar. For consider the successor x := (1,1) of w in M, la-
beled in the picture with the symbol Py . Infinitely many propo-
sitional atoms are true at x. On the other hand, each successor
of v from N only makes true a finite number of such atoms. So
it is not possible to correlate x with any successor y of v in such
a way that x and y would make true precisely the same atoms.
A fortiori, then, (M,w) and (N ,v) are not (n,w)-bisimilar for
anyn>1. A

Observation 3.1.9 For all n,l < w: the structures (M, w)
and (N, v) are (n,l)-bisimilar.

REASON: Let n,l < w be arbitrary. We describe an (n,l)-
bisimulation between (M,w) and (N,v) as follows. Let T, =
{(w,v)}. Ifn > 1, to form T,_1, associate with the successor of
w [resp. v] labeled with Py, (m < w) the successor of v [resp. w]
with this same label. With the successor of w whose label is Py,
correlate any successor of v whose label Py, satisfies m > 1, e.g.
the label P;. (Because only the atoms {py,...,pi—1} are consid-
ered, the chosen successor will make precisely the same of these
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true as does the successor of w with the label Py,.) If n > 2, to
define Ty _o, correlate all elements of N that make q true and
are found among the second-generation successors of v, with
the unique second-generation successor of w that makes q true,
i.e. (c,2). Similarly, correlate the unique second-generation
successor (¢,2) of v making q false with all second-generation
successors of w that make q false in M. (Effect such a cor-
relation also if | is too small to make q included in the set of
atoms considered.) No further T; can be defined. As the struc-
tures (M,w) and (N,v) make by their construction precisely
the same atoms true at their roots, it is by its construction
clear that the sequence (T, Tp—1,Th—2) is a (n,1)-bisimulation

between (M, w) and (N,v). B
Directly by the above two observations we have:

Fact 3.1.10 The condition “(n,l)-bisimilar for all n,l < w”
does not imply the condition “(n,w)-bisimilar for some n > 1.

Notice the contrariness: even if for all n,l < w two structures
are (n,l)-bisimilar, it does not follow that they were (n,w)-
bisimilar for any n > 1.

Observation 3.1.11 For alln < w, the structures (M, w) and
(N, v) make true precisely the same ML[1] formulae of modal
depth at most n involving arbitrary propositional atoms.

REASON: By Proposition 3.1.6, the statement follows, if
for all n,l < w, (M,w) and (N,v) are (n,l)-bisimilar. But by
Observation 3.1.9 this is the case. B

Fact 3.1.12 Let us say that pointed k-ary modal structures
(M, d) and (M',d’) are n-equivalent, if they satisfy exactly the
same MLIk| formulae of modal depth at most n involving ar-
bitrary propositional atoms. Then we have:
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e The condition YM,d) and (M’,d") are n-equivalent”
does not imply that (M,d) and (M’,d") are (n,w)-

bisimilar.

e (M,d) and (M',d’) are n-equivalent if and only if
for alll < w, (M,d) and (M’,d’) are (n,l)-bisimilar.

The latter equivalence is by Proposition 3.1.6 and the fact that
any ML[k| formula involves only a finite number of proposi-
tional atoms. This is in contrast to the failure of the implica-
tion from n-equivalence to (n,w)-bisimilarity, which is by Ob-
servation 3.1.11 and Observation 3.1.8 — both concerning unary
modal structures. These structures can, however, easily be
turned into arbitrary k-ary structures which satisfy analogues
of Observations 3.1.8 and 3.1.11 by adding to both structures
k — 1 instances of, say, the relation {((0,0), (0,0))}.

Fact 3.1.13 The structures (M,w) and (N,v) are not
IFMLI[1] equivalent.

REAsON: The IFMLI1] formula x = 0;05/{1}q is true
in M at w, but is non-determined in AN at v. In the game
G(x,M,w) Héloise’s w.s. consists of always choosing
for Go/{1} the unique second-generation successor (c,2) of w,
which satisfies the atom ¢. By contrast, in the game G(x, N, v)
she cannot have a w.s., as there is no second-generation suc-
cessor of v that would make g true and would be a common
successor to all first-generation successors of v. However, since
for all first-generation successors (b, 1) of v there is some second-
generation successor of v making ¢ true, namely (b, 2), neither
does Abélard have a w.s. in G(x,N,v). &

The fact just noted already tells us at this point
that IFML[1] is capable of distinguishing pointed modal struc-
tures that are not distinguishable in terms of ML[1]. (The
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MLJ1] equivalence of the structures (M,w) and (N,v) fol-
lows from Observation 3.1.11.) This means that the expressive
power of IFML][1] is strictly greater than that of ML[1], since
ML[1] is trivially embeddable in IFML][1].

The issue of expressive power of IF modal logic will occupy
us throughout Chapter 3. However, the observation just made
in Fact 3.1.12 is of special interest, in that the structures (M, w)
and (N, v) are not bisimilar. They are not even (n,w)-bisimilar
for any n > 1. So from the above example we know specifically
that

e IFML[1] can distinguish ML[1] equivalent, non-bisimilar
modal structures.

In fact, we even know that

e IFMLJ[1] can distinguish ML[1] equivalent modal struc-
tures that are not (n,w)-bisimilar for any n > 1.

3.2 IF Modal Logic and First-Order Logic

We now move on to show that IFMLI[k] can be translated
into usual first-order logic (FO). By contrast, in Section 3.3 an
EIFMLIk] modal logic will be defined in which modal opera-
tors can be independent of conjunctions and disjunctions; this
logic can then be shown not to be translatable into FO.

3.2.1 Translatability of IFML into FO

It is said that an IFML[k] formula ¢ can be translated into
FO if there exists a first-order formula v, of one free variable,
written in appropriate vocabulary, such that over all pointed
k-ary modal structures (M, d), the relation

M e old] <= (MTC,d) = ¢y (o)
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holds, where MFO is the first-order structure corresponding to
M (as defined in Sect. 2.1). It will be shown that IFMLIk] —
interpreted by its uniformity interpretation — is indeed trans-
latable into FO. Hence in particular the proper resources of IF
first-order logic are not needed in the translation.

Our strategy in showing this translatability is as follows.
We first prove a lemma which will considerably simplify the
treatment of IFMLI[k| formulae of the form

Ol . On_1<0n/W)S07

where W is an arbitrary subset of the interval [1,n — 1]. The
lemma says that the set W can in fact salva veritate — or, salva
existentia strategemam vincentem Helenae — be assumed to be
the continuous segment [K + 1,n — 1] of the interval [1,n — 1],
where K = maxz([0,n — 1]\W).

We then prove two lemmata, providing second-order and
first-order translations respectively to IFMLIk] formulae of the
form

O1...0,-1(0,/{1,...,n—1})p,
whereafter the theorem we are looking for follows easily.
Lemma 3.2.1 Let W C [1,n—1], and letU = [K+1,n—1] C

W, where K ¢ W (0 < K < n—1). For all pointed k-ary
modal structures (M,d) and all ¢ € IFML[k] we have:

Héloise has a w.s. in G(O1 ...0p—1(0n/W)p, M, d) <

Héloise has a w.s. in G(O1...0,-1(0,/U)p, M, d).

Proof. The set W C[l,n—1] is uniquely presented
as a disjoint union W =V’ U U, where K ¢ W and
U = [K +1,n—1]. The statement of the lemma holds trivially
if O,, = 0, ,,. Namely, we have indeed for any V C [1,n — 1]
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that 3 has a w.s. in G(O;...0,-1(0,/V)p, M,d) <= 3 has
aw.s. in G(O1...0,-1(0,/2)p, M,d). For in either game J’s
eventual w.s. leads to a win irrespective of the move V makes
for O,,, and in both games V has the same moves he can make
for O,,.

Consider then the case O,, = <;,. The implication from
left to right is trivial: whatever can be done in greater igno-
rance can be done in lesser ignorance. So consider the converse
implication. Write

I''=G(O1...0,-1(0,/U)p, M, d);
I'*:=G(O;...0p-1(0n/W)p, M, d).

Assume that there exists a w.s. (f) for 3 in I', and define
a strategy f* for her in I'* as follows. Let I+ be the set of
the information sets corresponding to (O, /U) in I'. Then a
particular information set in It is determined by a particular
distribution of moves for the operators O;...Og: if I; and I
are information sets in I, then

IlZIQ<:>

for all (d,s1,...,sp—1) € I and all (d, s),...,s),_;) € I

»9n—1
(s1,.--8K) = (sh,..., %)

Further, let I+« be the set of the information sets corresponding
to (Op /W) in T*, and let

gf: I €l —g¢(I) =(d,s1,...,8n-1) €1

be a choice function, associating each information set I from
Ir« with such a history g¢(/) from this set I that is the result
of using f against some sequence of moves by V. (If at least
one set I € Ip+ contains an infinite number of histories con-
structible using f against some sequence of moves by V, this
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maneuver requires, in general, Aziom of Choice.) Then to de-
fine f*, proceed as follows. If h = (d, s}, ..., s,) is a history of
'™ with P(h) = 3, put:

f(h) if the length of h < K
f(da gf(I)[l]a e 7gf(I)[K]v 5?{4_17 SR Sin)
HfK<m<n-—1land[I € Ip«is
f*(h):= the information set determined
by the sequence (d, s7, ..., s})
Flgs(D) i h el
f(h) if the length of h > n

We must show that f*, thus defined, in fact legally extends all
such histories from any given I € I~ in whose construction 3
has applied f*.

Fix a set I € Ir«, and let I’ be the information set from
It determined by the prefix of the length K of the history
gf(I) = (d,s1,...,5n—1). Then let h* = (d,s},...,s5_ ) € I
be an arbitrary history (of the length n — 1, of the game I'*)
in whose construction 3 has applied f*. (In particular, h* need
not be in I'.) Assume for contradiction that f(g¢(I)) does not
legally extend h*. Now (s},...,s_;) in particular constitutes
a transition along the accessibility relations associated respec-
tively with the operators O, ..., O,_1, whereas by assumption
(s3_1,f(g9¢(I))) ¢ R, where R is the relation associated with
On.

But as I’ C I, we have s}, = sk (= g¢(I)[K]). So it is even
possible to extend the history (d,si,...,sx) with
(8%41>--+»55_1) by moving similarly along the same relations,
hence producing a history belonging to the set I’, in whose con-
struction 3 has employed f. But as f(g¢(/)) does not legally
extend this history, this move after all does not legally extend
all histories from I’ that are constructed so that 3 follows the
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strategy f. But this is a contradiction, as I’ € I, and f is a
w.s. for 3in T,

As h* was assumed to be arbitrary, we may conclude that
in fact f(gs(1)) legally extends all histories from /. m

The following lemma on a second-order translation of an
IFMLk| formula of the form O ...0,—1(Cn/[1,n — 1)) is a
straightforward consequence of the semantics of IFMLIk].

Lemma 3.2.2 Any IFML[k] formula ¢ of the form
O1...00-1(Cn/[1,n = 1])9

is translated into second-order logic by the formula ©,(xo) :=
Afy . A 3fE N, Ve (R, (0, 31) 01 ..
(Ry, (xn—2,2n-1) on—1Ry, (Tn-1, fu(x1,...,Tn-1)) A
ST, punis gy a1y ()

where:

(i) m+k=n-—1.

(i) 41 < ... < are the indices of the O-operators in
O1...0,_1.

(iii) if 71 < ... < Jm are the indices of the <-operators in
01 S On—l; then

zj = fi(@, . x5 -1)s o T = f(T1, 0 T, 1)
(iv) the quantifier 3Fumil gsserts  the existence of a

{z1,...,xn_1}-uniform function, i.e. a constant func-
tion.
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. A O = Oy
(V) fo’l"lg{]-a"'vnil}’ 0; _{ —>,Zf OZ:DZ

(vi) for each i € {1,...,n— 1}, l; < k identifies the accessi-
bility relation associated with the operator O;.

Proof. Let ¢ be an arbitrary formula of the form
O1...0,-1(Cy/[1,n—1])¢, and let M and d be arbitrary. We
show that

ME pld] & (MFO.d) = O, (xo).

(=) Supposing a w.s. f for 3 in G(p, M,d) is given, de-
fine witness functions f1,. .., fm, FUmiS for the quantifiers in the
block 3fi ... 3fm3 " by

o fr(1,. . @j1) = f(x1,..., x5,y (k:={1,...,m})
o ;Lmif(xl, ey 1) = [T, T1)
Hence in particular fﬁmf becomes a constant function, as f is
[1,n — 1]-uniform. Because f is a w.s. for 3 in G(p, M,d),
we further have that (MFO ¢) | STy )z, (1), where c is the
constant value of f4". Hence clearly (MFO d) = O, (o).
(<=) Conversely, if we have (MFO d) = O,(x),
let fi,..., fm, £2 be witness functions for the quantifiers in

df1... ElmeIf;fmf, and define a strategy f of 3 in G(p, M,d)
by putting:

® f(.’IJl, .. .,$jk_1) = fj(l’l, e ,.’L'jk_l) (k = {1, . ,m})

[ ] f(.%'l, ey xn_l) = #nif(g;l, e ,l’n_l)
Hence f in particular will give a constant value ¢ on histories
of length n — 1, and for this value ¢ we have that M [ v[c].
So we have that f is a w.s. for 3 in G(p, M,d). m
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Making use of the above lemma we immediately find a
first-order translation to IF modal-logical formulae of the form

01 e On_1(<>n/[1, n — ”)’QZ)
Lemma 3.2.3 Any IFML[k] formula ¢ of the form
O1...0,-1(Cn/[1,n —1))0

is translated into FO by the formula 0,(xo) :=

A, Qx1 ... Qrp_1(Ry, (z0,21) 01 - ..

(Ri,_, (-2, Tn—-1) op-1 R, (Tn—1,2n) N STy /s, (¥)),

where:

(Vai, —4) if Oy =00;,

(@, 00) = {(33%/\2‘) if Op =<,

Proof. Let ¢ be an arbitrary formula of the form
O1...0,-1(Cn/[1,n — 1))
and let ©,(zg) :=
Afy .. 33N, L Y, (Ry, (0, 1) 01 . ..
(R, (xn—2,Tn—1)on—1R1, (xn-1, fo(T1,. .., Tn-1)) A
STz/fx"if(xl,...,xn,l) (¥))

be its second-order translation provided by Lemma 3.2.2 above.
Let M and d be arbitrary.

Now for every k € {1,...,m}, a witness function f; of the
quantifier 3fy, in the prefix of O, (z¢) takes as its argument the
sequence of values of the variables x1, ..., 2,1, where jj, is the
index of the k-th <$-operator of the block Oy ...0,_1. Hence
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each argument of f; contains a component corresponding to
each operator in the block O1 ... Oj, _1, whence each existential
second-order quantifier 3f; has the semantic force of an exis-
tential first-order quantifier being in the syntactical scope of
precisely the first-order quantifiers corresponding to the modal
operators O ...0;,_1. Further, as funif s a constant func-
tion, this means that ©,(x¢) is equivalent to the Skolem form
of the first-order formula 6,(x¢). Hence these two formulae
in particular are logically equivalent, and therefore 6,(z) is a
first-order translation of . m

Using Lemma 3.2.3 proven above, we obtain the theorem
about the translatability of IFML[k] into FO.

Theorem 3.2.4 Given a number k < w and a class prop, let
a vocabulary T be defined as explained in Section 2.1. Then for
all x € IFMLIK] there is 0y (xo) € FO[r] with precisely one
free variable, xq, such that for all k-ary modal structures M =
(D, Ro,...,Rk_1,h) and for all d € dom(M):

M X[d] = (MFO.d) | 0, (xy).

Proof. Let x € IFMLIk] be arbitrary. If in particular
x € ML[k], for 0, (xz¢) we may take the standard translation
STy, (x) of x. (Cf. Proposition 2.1.2.) Further, as trivially for
all M and d,

MEYO1...0, 1(0,/W)[d] <= M =T 01...0,_10,¢]d],

we have that if x is of the form O;...0,_1(0, /W), it has a
first-order translation, namely ST;,(O;...0p—10,¢). So as-
sume that y is of the form

01 e On,l(On/W)gp

By Lemma 3.2.1, we may indeed assume that W =
{1,...,n—1}. For W can, in any case, be written as a disjoint
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union W = V'U[K +1,n—1] for K := maz([0,n—1]\IW). And
assuming that we already have a first-order translation 6 (o)
for the IFMLIk| formula

Y :=0kg41...0p—1(On/[K 4+ 1,n — 1)),

we may by Lemma 3.2.1 take 6, (zg) to be the first-order trans-
lation of the IFMLIk] formula O;...Ok%. And clearly the
first-order formula

(Qx1) ... (Quk)(Riy (xo,21) 01...(Rig (TK-1,2K) OK

Oylxo/zK]))

is such a translation. *

It remains to be shown that if x is of the form
O1...0,-1(Cn/[1,n — 1)),

it can be translated into FO. But that this is so, is precisely
stated by Lemma 3.2.3. This observation completes the
proof. m

3.2.2 First-order translations of ML and
IFML

Let us consider the difference between basic modal logic and
IF modal logic by viewing the difference in their respective
translations into FO.

" Here for each j € {1,..., K}, i; < k identifies the accessibility relation
associated with the operator O;, and if ¢ is a first-order formula in which
Zo occurs free, and z ia a variable, then the notation “¢[zo/x]” stands for
the result of having first changed, if necessary, variables in ¢(zo) so that x
will be free for x¢ in the resulting formula, and having then substituted =
for xp in that resulting formula. Further, Qx; := Jx; and 0; := A, if O; =
<i 5 and Qu; := Vo, and o; = —, if O; = 0O,.
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Definition 3.2.5 An FO formula 5(z, xiy, ..., x;,; e[z, ]) ==

(Rj1 (JU, xil)ojl (Rjz (mil ) xiz) SR O B
(Rjnfl (xin72 ? xinfl) Ojnfl (R] (xinfl ? xln) OJnQD[I'Z"])) . ))

is said to be a transition if the Rj;, are binary relations, the
0j, € {N\,—} and ¢ [x;,] is a standard translation of an ML

7

formula.

If B(x,z1,...,2,) is a transition and 7 is a permutation of
the set {z1,...,x,}, write 0, for the first-order formula

Q1x1 ... Qnenf (z,7(x1),. .., 7(T0)) -

We write ‘<’ for logical equivalence between FO formulae, in
the sense of ‘satisfied in precisely the same models under the
same variable assignments’. An FO formula 0, is a translation
of an ML formula ¢, if for all M,d we have M = ¢[d] <=
(MFO.d) 6, (x).

The following fact states when a formula of the form 6, is
a translation of an ML[k| formula:

Fact 3.2.6 Let (5 (z,x1,...,2,) be any transition, and let m
be an arbitrary permutation of the set {x1,...,zn}. Then the
following conditions (i), (i1) and (iii) are equivalent:

(i) 6r is a translation of an MLI[k| formula
(ii) there is O € FO[7]| such that 0, < 0./, and
7 =1d(s )
(iii) 6 is logically equivalent to the Y 1[7] formula

df1.. .Elmexh .. .Va:lk(a:jl = fl(xl, R ,:le_l) VAN
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/\‘ij = fm($17..- 7xjm_1) - B(m,flfl,. . 'an))7

where {x1,...,xn} can be written as the disjoint union

{z1, ... o, P U{xg, . 2.1,
andly < ... <l and j1 < ... < jp,. R

That is, in order to be a translation of an ML[k] formula, the
formula

Q1z1 ... Qnrnf (z,m(z1),. .., 7m(x))

must be logically equivalent to the formula

Q121 ... Qurnf(x, 21, .., 2p) .

What is distinctive about this FO formula is that in it, the
order of the variables x1,...,x, on the path fixed by the tran-
sition 3 (z,x1,...,2,) is the same as the order of quantifiers in
the relevant quantifier prefix.

To prove that 0;’s being a translation of an ML[k| formula
implies its being logically equivalent to a formula of the form
Q3 (z,7), it would suffice to show by double induction on the
complexity of the formula ¢ € ML[k] and on the length of the
block Qz of quantifiers, that either

ST (¢) & Q3 (2,7)

or there is no transition ( (z,7(Z)) such that

ST (¢) & Quf3 (z,7(7)) .

Other statements involved in the fact are implied by well-
known facts about the relation of the Y1[7] fragment of second-
order logic and FO (Skolem forms of FO formulae), the exis-
tence of a standard translation to basic modal logic, and the
following validities of FO:
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o = (aAdJzf) « 3x(anp),
where x does not occur free in «

o = (a—Vzf) < Va(a — 3),
where x does not occur free in «.

By contrast, the next fact indicates when a formula of the
form 6, translates an IFML[k] formula:

Fact 3.2.7 Let [ (z,x1,...,2,) be any transition, and let w
be an arbitrary permutation of the set {x1,...,x,}. Then the
following conditions (i), (it) and (iii) are equivalent:

(1) Ox is a translation of an IFML[k] formula.

(ii) there is 05, € FOIr| such that 0, < 0, where for some
(possibly empty) [i,j] C {1,...,n} with Q; = 3;,

€5 Zf k=1
m(zg) =z i<k <
Tr otherwise

(iti) O is logically equivalent to the 3 1[r] formula
Jg1 ... FgmVay, ..V, (x5, = (T, .., x5-1) AL
N i = gm(T1,. 2, —1) = B(T, Ty, Tiy)),
where xy,, ..., 2y, , %, ..., xj, are exactly like in Fact 3.2.6,
and furthermore the second-order quantifier gy with

Jr = J > 1, if there is such a quantifier, asserts the

existence of a [i,j — 1]-uniform function g, = f:mf -
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In other words, a first-order translation of an IFML[k] formula
can differ from a translation of an ML[k| formula precisely

by having the corresponding permutation 7 : {z1,...,2,} —
{z1,...,x,} involve exactly one ‘circle’: for some subset [i, j] C
{1,...,n},

7T(J:‘Z) = xj,w(:r,-H) =Tjy... ,7T(.Z’j) = Tj—-1-

For proving the fact, it would again suffice to consider the direc-
tion from left to right of the first equivalence, other statements
being obvious. First one observes that if

Or = Q121 ... Quenf (z,m(21), ..., 7(Tn); ¥ [m(T0)])

is indeed a translation of an IFML[k| formula, then such a
formula looks like this:

01 ...OnQD,

where for at most one ¢ € {1,...,n}, O; := (0;/W), other-
wise the operators do not involve the slash, and ¢ € MLI[k]|.
(The transition [ determines the modality types of the rela-
tions involved in the block O ...0O,.) But then by Theorem
3.2.4 O1...0,p has a translation

lel cee Qnmnlg (:1:7 71—/(xl)a oo 777/(‘7:71); STﬂ”(azn)((p))?

where 7’ satisfies the condition mentioned in the consequent of
the implication being proven. But then 6, and 6, are in fact
logically equivalent.

The following examples illustrate the effect of being able to
impose the condition of independence (the effect of ‘IF-ing’) on
first-order logic and basic modal logic, respectively. As is well
known, the impact of [F-ing in the former case results in second-
order expressive power (IF first-order logic has the expressive
power of the Y1 [7] fragment of second-order logic), while we
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just proved in Theorem 3.2.4 that IF-ing basic modal logic does
not give the resulting logic an expressive power greater than
that of FO. Still, IF modal logic has extra expressive power as
compared with basic modal logic, as will be proven in Theorem
3.4.4 below. (Cf. also Fact 3.1.13.)

Example 3.2.8 (IF[r] = S1[7]) Let to be a constant, and let
T ={to}. Consider evaluating the IF' sentence xy, :=

Vavy3z/ {y} v/ {z, 2} [to, 2,9, 2, 0]

in an arbitrary first-order structure (M, (to,t}")), given that
¢ [to, z,y, z,v] is the formula

(z=y<—z=0v)Az#t.

Since the IF sentence 3x(x = to A xt,) (which states the domain
of its model to be infinite) is obviously equivalent to the so-
called Ehrenfeucht sentence,® which is well known not to be
FO-translatable, neither is xy, translatable into FO[r].

Let us then mimic the formula yy, of the above example in
IF modal logic.?

Example 3.2.9 (IFML on arbitrary modal structures) Con-
sider the IFML formula x :=

D1D2<>3/ {2} <>4/ {1, 3} q.

By exactly the same argument as used in the proof of Lemma
3.2.1, we see that

8 For the Ehrenfeucht sentence, see e.g. Krynicki & Mostowski (1995).

9 In fact, we employ an extended version of IFML to enable several
independence indications in one formula. On how to give precise semantics
to this logic, see Sect. 3.3 below.
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D1D2<>3/ {2} <>4/ {1,3}(] <~ D1D2<>3/ {2} <>4/ {3} q <
010203/ {2} Cugq.
Hence x has the FO equivalent

Va3zVyTu(R(tg, z) — (R(z,y) — (R(y, z) A

(R(z,v) A Q(v)))))-

It is easily seen (cf. the proof of Theorem 3.4.4) that the
formula x has no ML equivalent when evaluated over arbitrary
unary modal structures.

The evaluation of modal logic is transitional, each transition
being ‘guarded’ by an accessibility relation, and depends only
on where the previous transition led. Hence the semantics of
modal logic in particular blocks the possibility of having the
effect of the Henkin quantifier

Vrdz
Yy3dv

that is responsible for the import of the Ehrenfeucht sentence
made use of in the first example. In particular, we cannot
have the two operators ¢3/{2} and <4/ {1,3} both genuinely
independent of the indicated previous choices, precisely due to
locality.

3.3 Extended IF Modal Logic and Second-
Order Expressive Power

IFML[E], then, can be translated into FO. On the other hand,
we noticed above (Sect. 1.3) that the IF modal logic of Julian
Bradfield can express some genuine second-order properties of
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its models. The framework within which Bradfield works is
more complex than ours: Bradfield (2000) uses the synchro-
nization relation between local transitions to give content to
logical independence, and Bradfield and Froschle (2002) use
the relation of concurrency, explicitly given in a model, for this
purpose. By contrast, IFML[k] does not conceptually presup-
pose anything of its models that would not already be present
in the case of basic modal logic. Essentially only the extra
requirement of uniformity is imposed upon players’ winning
strategies. The systematical question arises: is there anything
one can do to modify IFML[k], so as to produce a logic that
still employs plain k-ary modal structures, but which is capable
of expressing second-order properties?

The answer is affirmative and is due to Dr. Tapani
Hyttinen:'® a very small change in the syntax of IFML/[k] suf-
fices, essentially just allowing modal operators to be indepen-
dent of Boolean connectives. We shall refer to this new logic
as FExtended IF modal logic, or EIFML[k]. To be more ex-
act, the formulae of EIFML[k] are modal analogues of Vaught
formulae:'! an evaluation game corresponding to EIFMLI[k]
formulae consists of two players choosing in a given order a fi-
nite number of indices and elements corresponding to conjunc-
tions/disjunctions resp. universal/existential modalities. The
moves made for the Boolean connectives by the end of a play of
the game determine a particular (negated) propositional atom,
whose truth resp. falsity then determines the winner of the
play. The logic is made IF by the fact that specified choices
for modalities must be made uniformly in order for a player to
have a winning strategy.

10 Personal communication.
' For Vaught formulae, see e.g. Hodges (1997 [c], pp. 583-5); Makkai
(1977, pp. 254-61).
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3.3.1 The Language of EIFML

The syntax is given as follows. Let a countable class prop of
propositional atoms be given, and write

+prop = prop U {-p: p € prop}.
Formulae of EIFML[k| are of the form

(Xq,...,X5)

¢En+17

where the components X; (1 < j < n) of the prefix
(X1,...,X,) and the matriz formulae ©;,,,are as follows. Each
of the X; is one of the following:

(i) Vier;, where I; is a finite (non-empty) set.
(ii) A er;, where I; is a finite (non-empty) set.

(iii) o(jo)/W/j, where i; = (i, : Xp = V,A and k < j),
VV]' - [1,j — 1], and R;j S {Ro,...,Rk_l}.

(iv) O(R?)/W;, where i; = (ix : Xp = V,A and k < j),
g
W; C [1,7 — 1], and R{j € {Ro,...,Rx_1}.

The matrix formulae ©;,,, are (negated) propositional atoms,
i.e. members of prop, where

int1 = (i, : Xk = V,A and k < n).

The idea is (as will become clear when the semantics is given)
that for an expression X; of the form (iii) and (iv), the se-
quence i; of all earlier choices corresponding to disjunctions
and conjunctions determines an accessibility relation R;j, and
once choices have been made for all expressions in the prefix, a
unique matrix formula is determined again by the sequence of
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all earlier choices for disjunctions and conjunctions. Therefore
we require that for each expression X; of the forms (iii) and
(iv), there is a function

R x(I: X =V,ANand k < j) — {Ro,...,Rp—1}

giving the relation corresponding to the index vectors i;, and
that likewise there is a function

w: xX{Ip: Xp=V,A and k < n) — tprop

specifying the matrix formulae. A degenerate case of a Carte-
sian product is the Cartesian product of the empty sequence of
sets, which contains precisely one element, namely the empty

sequence:
If n =0, then X;<,I; = {0}.

Thereby the functions R’/ and ¢ are never empty (and so for-
mulae involving no conjunctions or disjunctions are also well

defined).

It is possible to obtain propositional logic, basic modal logic
(ML[k]) and IF modal logic (IFML[k]) all as versions of
EIFML[E]. This involves taking all index sets as two-element
sets {L,R}, defining matrix formulae ¢; —generally for sub-
sequences of vectors 7,411 = (ip : Xx = V,A and k < n), and
likewise defining the functions R’ corresponding to the expres-
sions O(jo) J/W; and D(jo) /W as partial functions.

Syntax for Extended IF tense logic EIFTLI[k] is obtained as
EIFML|2k], where in particular the relations corresponding to
the expressions O(jo) J/W; and D(jo) /W are from the class

{Ro,...,Re—1, Ryt R

instead of being from an arbitrary class { Ry, ..., Rox—1} of 2k
accessibility relations.
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We move on to give semantics to EIFML[k]. When doing

so, the following notation is used: if (ag,...,a,) is a sequence
and i < n, we write (ag,...,ay)[i] for its member a;.
Semantics

First of all, for (negated) propositional atoms we agree on the
following notation: if f is the assignment function of a modal
structure M, we write

° ch l:—i- p[d]” fOI' “d c b(p)n;
o« M T pld]” for “d ¢ h(p)".

Now with each formula ¢ = (X1,..., Xpn)p; | € EIFMLIK]
and each pointed k-ary modal structure (M, d), we associate a
semantical game

Ga(y, M,a0) = ({V,3}, H, Z, P, {uy, uz}, {Iv, I3})

in extensive normal form. It is a game between two players,
Vbelard and Jloise. The game is played on the set

A= U{Ik : X =V,A and k < n}Udom(M) U {x}T

of actions.?

Histories (or plays) are sequences of length at
most n consisting of the initial position and at most n consec-
utive moves. The set H of all histories is defined recursively as

follows:

o (ap) € H

12 When defining the game, we take * to be an object that is neither in
the domain nor in any of the index sets involved. If A is a set, A is the
set of non-empty strings over elements of A. The set of non-empty strings
over {*} with at most n members would in fact suffice here, where n is the
number of expressions X; in the prefix of .
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o If (ap,...,a;-1) € H (j < n)and X; = A (resp. X; =
V), then Vbelard (Jloise) picks out an index i; € I; and
(ao, ce ,aj_1,ij) € H.

o If (ag,...,a;_1) € H (j < n) and X; = O(R])/W;
. b
(resp. X; = O(RL)/W,), then Vbelard (Jloise) picks out,
ij
if possible, an element d; such that

Rg ((I, dj)a

j
where
a = (ag,ai,...,aj—1)max{k : k < j and
(X =<,00r k=0)}],
and
(ag,...,aj-1,d;) € H.

Otherwise, he (resp. she) picks out a sequence (x,...,*)
of (n —j) 4+ 1 occurrences of the object x, and
(ao,...,aj_1,*,...,*) € H.

Whenever (ag,...,aj—1) is a history (j < n) for which it
is Vbelard who makes the choice, we put P(ao,...,a;—1) =V,
and when it is Jloise who makes the choice, P(ay,...,aj-1) =
3. Observe that by the above rules, if (ag,...,aj-1,%,...,%) is
a history, it is necessarily of length n, and its longest proper
initial segment that moreover is a history, is (ao, ..., a;—1).

The set Z of terminal histories is the subset of H consisting
of histories of length n. Hence Z contains precisely those his-
tories from H which cannot be extended by any move so as to
yield a sequence in H. The utility functions ug: Z — {1, —1},
uy : Z — {1, —1} for the two players are defined as follows:
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e uz(ap,...,ap) = 1 and uy(ag,...,a,) = —1, if either
an, = * and Vbelard has chosen a,,, or else

MET ¢;  lam],
where
m :=maz{k:k <nand (X =<",00r k=0)},
int1 = {ix : Xx = V,A and k < n).

It is then said that Jloise wins (and Vbelard loses) the
play (ag,...,an), or that this play is a win for her (and
a loss for him).

e Otherwise uy(ag, ...,a,) =1 and uz(ag,...,a,) = —1.

The information partitions I3 and Iy for the two players
still need to be defined. The sets P~({3}) and P~({V}) are
partitioned into equivalence classes under the following equiv-

alence relations ~3 and ~vy, respectively. If h = (ag,...,a;-1)
and h' = (ag, . ..,a;_,) are histories (j — 1 <n), put:
h~3 b <=

(X, = O(Rg'j)/wj and for all k € [1,7 — 1]\W :
ap = a)) or [X; =V and h = A/].
dloise’s information partition I3 then is the set
I5 ={[h]~y : h € H\Z}.

Vbelard’s information partition Iy is defined analogously. The
cells of information partitions are called information sets.

The definition of the semantical game G (¢, M, ap) in its
extensive form has been completed. By definition it is a zero-
sum game, and it is a game of imperfect information.
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A strategy of the player j € {3,V} in the game G 4 (¢, M, d)
is any function

fi - P7Y{5}) — A

The strategy f; is a winning strategy (w.s.) if there exists a
subset W C Z of terminal histories satisfying the following
four conditions:

(a) If h e CI(W) and P(h) is j, then h™fj(h) € CI(W).

(b) If h € CI(W) and P(h) is the opponent of j, then for
every a € A such that h"a € H, h"a € CI(W).

(c) For every h,h/ € Cl(W): if h,h' € 1 € I, then fj(h) =
fi(h').
(d) Every h € W is a win for j.

Such a set W C Z is called a plan of action. We say that W
establishes that f; is a winning strategy, or that f; is a winning
strategy based on W. It is easy to verify that there cannot exist
a w.s. for both players:

Fact 3.3.1 At most one of the players has a w.s. in a game
GA(QOa Ma d)

Proof. See the proof of Fact 2.3.2. m

The semantics of EIFML[k], then, is simply this. If (M, d)
is a pointed k-ary modal structure and ¢ € EIFML[k], then:

o MET ¢[d <
there exists a w.s. for Jloise in G4(p, M, d).
e ME™ pld <

there exists a w.s. for Vbelard in G4 (¢, M, d).
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o ML p[d] <= M ET p[d] and M E~ p[d].

Extended IF tense logic EIFTL[k] = EIFML[2k] is evalu-
ated relative to k-ary temporal structures instead of arbitrary
2k-ary modal structures.

For an illustration of the semantics, consider the two exam-
ples below.

Example 3.3.2 Define relations Ry and R, as follows:
Ry ={(0,n) :n is even}; R, ={(0,n):n is prime}.
Then consider evaluating the EIFML[2] formula

X = Niyepopy O (R /{1 i

in the modal structure M = (N,Ry,R,,h) at 0, given that
h(q) = {3}, and px = q¢ = ¢,. We claim that there is no
w.s. for Aloise in Ga(x, M,0). For, in order for Jloise to have
a w.s. f3, there must be a number ¢ € N such that

R)(0,c) and R,(0,c).

Let then f3(\) = fa(p) = c¢. But by the definition of the relations
Ry and R,, c is then both even and prime. Hence, in fact,
¢ = 2. But then f5 is not winning, since 2 ¢ {3} = bh(q).

On the other hand, there is a w.s. for Ybelard in the game
Ga(x, M,0). For let him choose iy = \. All points x that are
Ry-accessible from 0 are now even. But h(q) = {3} and 3 is
not even. So o) = q is false at any such x. Hence x is false in

M at 0.

Example 3.3.3 Write NT, N°U*"  and N°% for the set of pos-
itive, even and odd natural numbers, respectively, and define a
relation < as follows:

< = ({0} x N*) U (N ¢ {w}) U (N°% x {w + 1}).
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Then consider evaluating the EIFML[1] formula

X = 0(R}) Vieprpy O(RE) {1} s,
in the modal structure M = (w+2,<,h) at 0, given that bh(q) =
{w}, and o\ = q, vp = 7q, Ry = Ry = R, = <. Define a
function f3 as follows:

f5(0,m) = {)\ if n is even

p otherwise

P = {2 e
w+1 if 19 =p
Let W = {(0,n, f5(n), fa(n,i2)) : n € Nt iy € {\,p}}. We
claim that in the game Ga(x, M,0), f3 is a w.s. for Floise,
based on the plan of action W. To see this, notice first that the
information sets corresponding to the expression O(R?)/{1}
are

{(0,n,)) :n € N"} and {(0,n,p) : n € NT}.
Now f5 agrees on these sets: for any n,n’ € NT:
00,n,0) =w = f3(0,n', \);
and
f(0,n,p) =w+ 1= f5(0,7, p).

To see that f5 always yields a win for loise, observe that if n
is even, then

n<w= fa(O,n, )\) = fEI(Oame(O:n))-

And M =T py[w], since ox = q and h(q) = {w}. And if n is
odd, then

n<w+l= fﬂ(oanvp) = fﬂ(ovnafﬂ(()?n))‘

And M E' pplw+1], as ¢, = ¢ and w + 1 ¢ {w} = b(q).
Hence f5 is in fact a w.s. for loise in the game Ga(x, M,0).
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3.3.2 EIFML and second-order expressive
power

It will now be proven that Extended IF modal logic is not trans-
latable into FO, but can instead express second-order proper-
ties of modal structures.

Of course the claim will not thereby be made that EIFML
would ‘have a greater expressive power’ than FO. For this
would mean not only showing there are properties that are ex-
pressible in EIFML but not in FO (this much we are going to
do), but crucially also that EIFML is expressively complete rel-
ative to FO (over all k-ary modal structures) in the sense that
for every first-order formula ¢ of one free variable, written in
an appropriate vocabulary, there is a formula x,, of EIFMLk]
such that for all pointed k-ary modal structures (M, d):

M E xpld] = (MFC,d) [ p(x).

Hans Kamp (1968) proved that his propositional modal logic of
two binary connectives Until and Since is indeed in this sense
expressively complete relative to FO, over the particular class
of unary modal structures whose accessibility relation is any
Dedekind-complete linear order (i.e. a linear order satisfying
the completeness axiom of the reals). In the present thesis the
question is left open of the exact relation between the expres-
sive powers of EIFML and the relevant fragment of FO, con-
sisting of formulae with exactly one free variable written in a
vocabulary with k binary relation symbols and countably many
unary ones. Instead, then, we content ourselves with showing
negatively that EIFML is not translatable into FO.

For the purpose of the proof, we state Ehrenfeucht’s theo-
rem, which says that the equivalence of two first-order struc-
tures up to a quantifier rank n is characterized by the existence
of a winning strategy for Duplicator in the Ehrenfeucht-Fraissé
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game of n rounds. In order to state the theorem, the three
following definitions are needed.

Definition 3.3.4 (Partial isomorphism) Let T be a vocabulary
containing no constant symbols or function symbols. Let M
and N be first-order T-structures, and let f be a function whose
domain is included in dom(M) and whose range is included in
dom(N). The function [ is said to be a partial isomorphism
from M to N if: (i) f is injective, and (it) for every n-ary R
€71 and all ay,...,a, € dom(f):

(M,ay,...,an) E R(x1,...,2,) <=

(NS f(a1),..., f(an)) E R(z1,. .., xy).

The set of partial isomorphisms from M to N is denoted by
“Part(M,N)”.

Definition 3.3.5 (Ehrenfeucht-Fraissé game) Let M and N
be first-order T-structures, let @ = (a1,...,as) € dom(M)?,
b= (b1,...,bs) € dom(N)®, and let n < w. The Ehrenfeucht-
Fraissé game (EF game)

EF,(M,a,N,b)

between two players, Spoiler and Duplicator, has the following
rules. In the course of a play, Spoiler and Duplicator must
both make n moves. The players take turns. In his i-th move,
Spoiler selects a structure (M or N') and an element of the
domain of this structure. If Spoiler chooses an element e; in
M, then Duplicator in her i-th move must choose an element
fi in N (Similarly, if Spoiler chooses an element f; in N,
then Duplicator in her i-th move has to answer by choosing an
element e; in M.)
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After n moves, n choices have been made from dom(M),
and equally many choices have been made from dom(N'). We
stipulate that the notation

661...enl—>5f1...fn
stands for the set
{(aib) s 1<i<s}U{(es fi):1<i<n}.

We say that Duplicator wins a play, if @y ...e, +— bf1 ... fn €
Part(M,N). Otherwise, Spoiler wins the play. We say that
there is a winning strategy (w.s.)  for Duplicator in
EF,(M,a,N,b) if she can, against any moves made by Spoiler,
make her moves in such a way that she wins the corresponding
play.

Definition 3.3.6 The quantifier rank qr(y) of a first-order
formula ¢ of a vocabulary T = {R;}i<y is defined as follows:

o qgr(Ri(z1,...,2)) =0

o qr(Fzip) = qr(p) + 1 = qr(Vaip)

Proposition 3.3.7 (FEhrenfeucht’s Theorem) Let M and N be
first-order T-structures, @ = (ay,...,as) € dom(M)* and b =
(b1,...,bs) € dom(N)*. Further, let n < w be arbitrary. The
following are equivalent:

(i) There is a w.s. for Duplicator in EF,(M,a,N,b).

(ii) For every first-order formula ©(T) of quantifier rank at
most n, with free variables among {x1,...,xs}:
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(M,3) | ¢(@) = (N,b) = ¢(T).

Proof. See, for example, the proof of Theorem 2.2.8. in
Ebbinghaus & Flum (1999, pp. 18-9). =

Structures (M, @) and (N, b) that satisfy precisely the same
first-order formulae ¢(%) of quantifier rank at most n can be
said to be “n-equivalent.”

It will now be shown that EIFML is not translatable into
FO. We prove this specifically for the number k = 3 of acces-
sibility relations, from which the result trivially follows for all
EIFML[k] with & > 3. We do not prove what happens in the
case k = 2, but conjecture that EIFML[2] is not translatable
into FO, and we informally describe a proof to the effect that,
by contrast, EIFML[1] in fact is translatable into FO.

3.3.2.1 Idea of the proof of the non-translatability of
EIFML into FO

Let n < w, and consider a modal structure M,, involving three
accessibility relations, R, P, and @,,. The domain of the struc-
ture consists of:

e A circle C,, = {ci1,...,c,} formed by the relation P,:
P,(c1,c2) and ...and P,(cp—1,¢,) and Py(cp, c1).

e Three points 0, a and b outside of C,,.

From the point 0 one can move along R,, to any point inside the
circle. Further, from any point x within the circle one can get
to a and b along R, to x itself along J,,, and to the immediate
P,-successor of x.

Now consider the following game, played on the structure

(an 0):
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(a) V chooses any point z from the circle C,,.
(b) d labels the point hence chosen as black or white.

(¢) V chooses a relation, P, or @,, and then makes a move
from x along the relation he chose, ending up at
a point y.

(d) Finally, 3 chooses either a or b along R,,.

But, crucially, when making her choice, 3 is informed only of
the following:

(d.i) the color she herself gave to z (but she is not informed
of the point z itself);

(d.ii) the point y.
Finally it is stipulated that 3 wins iff:

e she chose a, and V employed @,,, or

e she chose b, and V employed P,,.

Now because of the restriction regarding the information
that 9 has at her disposal when choosing a or b, 3 can only
win if she can paint the circle C, in black and white in such
a way that the colors of points z and y reveal whether V has
moved forward by P,, or stood still employing (),,. But this is
obviously possible precisely when the circle C), is of even size.

It is not difficult to show, by an argument employing
Ehrenfeucht-Fraissé games, that there is no first-order formula
which could, for all n < w, distinguish the models correspond-
ing to the modal structures (My,0) and (My41,0). However,
there is an EIFML formula that does the job: the instructions
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for defining the above game can be incorporated into such a
formula,

D(Ré) \/iQE{)\,p} /\de{)\,p}D(nglg)Q(R?Q’Lg)/{]" 3}80i2i3

(see the proof below for details). The crucial thing here is
that by requiring the existential modality’s independence of a
conjunction, we in effect are requiring that 3 loses sight of the
accessibility relation along which her opponent makes his move

corresponding to CJ(R? . ). In the game at hand, she can only

1217
have a winning strate;;; if she can nevertheless always infer
which relation V in fact employed. And such an inference is not
possible for odd circles C),, as in them some P,-adjacent points
necessarily receive the same color — whence the fact that points
x and y have the same color does not guarantee that y has been
obtained from x along @), unlike in the even case. It should be
noted that in plain IF modal logic (IFML [k]) the players are
always fully informed about the accessibility relations involved

in the moves.

3.3.2.2 The proof of the non-translatability
Lemma 3.3.8 EIFML[3] is not translatable into FO.

Proof. Let a,b be distinct, fixed negative integers, and
let prop = {s}. For each natural number n, define a modal
structure

Mn - (DnaRnapnaan hn)
by setting:
e D,={0,1,...,n} U {a,b}.
e R, = {(O,I‘) 1<z STL} U ({Lan} X {aab})

e P,={(z,z+1): 1<z <n}U{(n1)}
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FiGURrE 10

Given the modal structure M,, = (D,,, Ry, Py, Qn, by), let
7 := {R,P,Q,S} be a vocabulary, where R, P, Q are binary
and S is unary. Then there corresponds to M, a first-order
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T-structure,
M};O = (Dn-; R?‘w Pn7 Q’na hn(8)>7

where the unary relation h,(s) interprets the predicate S, and
the binary relations R,, P, and @, interpret respectively the
predicates R, P and Q.

Then consider evaluating the EIFML[3] formula

X = D(Ré) vize{/\,p} /\ige{/\,p}D(R?Qig)o(R?Qig)/{jL? 3}¢12Z37
relative to modal structures M,, (n < w), given that:
. R(}) =R,

L[ Qnifis=\
. Ri2i3_{ P, ifig=p
e For all ig,i3 € {\, p}: R?, =R,

1213

. S if i2 = i3

® Piia = { —s if iy # i3
Observe that the formula y does not depend on the number n:
for every n < w the expressions D(Ré) and O(R?Qis) speak of
the accessibility relation of the modality type 0 of the structure
M,, (i.e. R,), and in each case the function associated with
the expression D(Rfm) yields the relation of modality type 1
or 2 (P, resp. Q) for the same vectors isi3 of indices in both
cases. It is therefore always one and the same formula, and only
the interpretations of its constituent expressions vary with the
structure M,, of the evaluation.

We move on to prove a series of three claims:

(1) For every even N < w: My T x[0].

(2) For every odd N < w: My E° x[0].
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(3) For all n < w, and for all first-order formulae ¢(x) of one
free variable, with quantifier rank at most n + 1:

(M52,0) = p(z) <= (M521,0) o).
CLAIM 1. If N < w is even, then y is true in My at 0.

Proof of Claim 1: Let N be an arbitrary even number.
Define a function f5 as follows:

A if x is even
[ ] fa(o,.%') = {

p otherwise

o a if y is even
L fﬂ(o)x72277’37y) = {

b otherwise

We show that f5 is a w.s. for Jloise in G 4(x, My, 0), being
based on the plan of action W =

{(Oax7f3(07$)7i37yaf3(07x7f3(07m)7i3ay)>:
R(0,x) and i3 € {\, p} and R fa(O x)zg(x,y)}.

The union of the information sets I(ig,y) corresponding to

the expression O(R? . )/{1,3} is this:

1213

Uzgyl( UZQ y{(o x Z277/37 ) R(O,Jf) and
is € {\ p} and R, ()}

Sequences of the following forms cannot in fact appear in the
intersection of any set 1(i, y) with CI(W):

e (0,z,A, p,y) and (0,z, p, \,y), where y is even.
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e (0,z,\ A, y) and (0,z, p, p,y),'> where y is odd.

This is seen as follows.

(i) Assume (0,z, A, p,y) € Cl(W), where y is even. Because
A is chosen as f5(0, z), x must be even. But y satisfies R‘;\p(m, Y),
andRﬁp = Py, whencey = z+1 (ifx < N)ory =1 (if x = N).
So y is not even.

(ii) Assume (0,z,p, \,y) € CIl(W), where y is even. Then
x must be odd. On the other hand, y satisfies Rf»\(a:,y), and

Rﬁ)\ = @n, so x = y. Thus y is not even.

(iii) Assume (0,2, A, A\, y) € Cl(W), where y is odd. Hence
z is even, and y satisfies R}, (z,y) for R}, = Qn. So z =y,
whereby ¥ is not odd.

(iv) Assume (0, z, p, p,y) € CI(W), where y is odd. Hence x
is odd. On the other hand, y satisfies Rﬁp(:c, y), and Rﬁp = Py.
Hence y =z + 1 (since z < N), and so y is not odd.

Note: Case (iv) is special as compared with the rest of
the cases in that it would not be generally valid if the circle
formed by the relation Py (N < w) consisted of an odd number
of elements, and not of an even number as here. (Here there
are N elements in the circle.) We could have x and y both
odd, still satisfying Py (x,y), without contradiction: namely, y
could be 1 and x could be N, where by assumption N would be
odd! This is not possible if N is even, for if x is odd it cannot
be the maximum of the set {1,..., N}, and so x is related by
Py tox +1.

Now, due to the fact that in the present case we have a
P-circle of an even size (N), all of the above four sequences are
known not to appear in the intersections I(i2, y) N CI(W), and

13 As will be subsequently observed, the sequence (0, z, p, p,y) 4s indeed
possible when the set dom(M)\{0, a, b} is of odd size. This fact is crucial
for the whole of the present proof.
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hence we know that sequences of precisely the following four
forms appear in (mutually disjoint) sets 1(iz,y) N CI(W):

Case (a): (0,z,\, A, y) and (0, z, p, p,y), where y is even.

Case (08): (0,z, A, p,y) and (0, x, p, \,y), where y is odd.

To show that the function f5 is winning for dloise, we show
that it agrees on the sets I(i2,y) N CI(W), and that it always
yields a win for her.

Case (a): Assume y is even, and let (0,x1,1i2,173,7),
(0,2, 12,14,y) € I(iz,y) N CL(W) be arbitrary. From what was
just observed, here iy = i3 = 4. But as y is even, directly by
the definition of the function f5 we have

f5(0, 1, d2,42,y) = a = f5(0, 22, 42,i2,¥).

Hence f5 agrees on the set I(i2,y) N CI(W). But the matrix for-
mula corresponding to both terminal histories (0, 21, i2, 92, y, a)
and (0,x9,i2,12,y,a) is @i, = s, and a € hy(s). Hence
My ET piyiylal. That is, in the case () every history from
W that is obtained by f5 from a history in I(iz,y) N CL(W) is
a win for Jloise.

Case (#): Assume y is odd, and let (0,z1,i2,13,Y),
(0,29, 19,14,y) € I(ia,y) N CI(W) be arbitrary. By the earlier
observation the pairs (ig,3), (i2,45) are (not necessarily dis-
tinct) elements of the set {(\, p), (p, \)}. As y is odd, directly
by the definition of the function f5 we have

f3(0, 21,2, i3,y) = b = 5(0, 22, 12,15, Y).

Hence f5 agrees on the set I(i2,y) N CI(W). But the matrix for-
mula corresponding to both terminal histories (0, z1, 2,43, ¥, b)
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and (0, x2,12,1%5,y,b) IS @iy, = s = Pinit, and b ¢ {a} =
hn(s). Hence

My EY iyigb] and My ET @4y [0].

But this means that in the case () every history from W that
is obtainable by f5 from a history in I(ig,y) N CI(W) is a win
for Jloise.

As the cases («) and () exhaust the intersection

Ui,y 1(i2,y) N CLUW),

we may conclude that f5 really is a w.s. for dloise based on the
plan of action W. We have thus shown that the formula y is
true in My at 0. (H)

CLAIM 2. If N < w is odd, then x is non-determined in
My at 0.

Proof of Claim 2. Let N be an arbitrary odd number.
We show first that if there is a w.s. f5 for Jloise in the game
Ga(x, Mn,0), then this strategy must map Py-adjacent ele-
ments to distinct ‘colors’ from {\, p}:

PN(x7y) - fg(O,l’) 7éf3|(07y)

Assume for contradiction that f5 is a w.s. for Jloise such that
for some dy,dy € Dy with PN(dl, dQ)i fg(o,dl) = fg(o,dg). We
may assume that f5(0,d;) = f5(0,d2) = A\. (The option that
f3(0,d1) = f5(0,d2) = p can be dealt with similarly.) Consider
the following two alternative histories h and h’ of the game
Galx, Mn,0):

o h= (07 d17 )\7 |2 d2)

(here d; and do satisfy R‘}\p(dl, d2), and R‘}\p = Py)
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L4 h/ = (07d27)‘7 >‘7d2)

(here do satisfies R}, (d2,ds), and R, = Qn)

These histories belong to the same information set I(\, da) cor-
responding to the expression O(R?Qis)/{l,?)}. Because f5 is a
w.s., it must in particular agree on I(\,ds2), and so

fﬂ(oa d17 )\7 P d2) = f3(07 d27 )\7 )\7 d2>

Let us write ¢ := f5(h) = f5(h’). In order for f3 to be a w.s.,
both Ah™c and h'~c¢ must be wins for Jloise. Now the matrix
formula corresponding to h is ¢y, = —s, and the matrix formula
corresponding to A’ is ¢xn = s. On the other hand, hy(s) =
{a}. Hence it is not the case that

Mn ET oapld and My E* oad.

So f5 cannot be a w.s. for Jloise. We may conclude that indeed
any w.s. f3 for dloise satisfies the following: for all z,y €
{1,..., N},

PN(x7y) = fg(O,(IZ) #fﬂ(()?y)

Assume then that there is in fact a w.s. g3 for dloise
in Ga(x,Mn,0). Hence if N = 1, then ¢3(0,1) # g3(0,1).
And if N > 1, then

93(07 1) 7é 93(07N - 1) 7é 93(07N) 7& gH(Oa 1)

Here, because g3 is a w.s., necessarily g3(0,z) € {\, p} for all
xz € {1l,...,N}. But then g3(0,1) = g3(0, N), and so g3(0,1) #
93(0,1). As this is impossible, we may conclude there is no w.s.
for Jloise in G4 (x, Mn,0), and so x is not true in My at 0.
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Neither is there a w.s. for Vbelard in the game G 4(x, Mx,0).
For, define a strategy f5 for Jloise as follows: for all z, f5(0,x) =
A, and
a ifig = A

fa(ouxa >‘7i3)y) = {

b otherwise

But because

My ET panla] and My =T @),[0],

Jloise wins every individual play of G 4(x, M, 0) following the
strategy f3. (f5 is not a winning strategy, as it does not agree
on the relevant information sets.) A fortiori, then, there is no
w.s. for Vbelard in the game G4 (x, Mn,0), and x is not false
in My at 0.

Hence the formula x is in fact non-determined in
My at 0. (W)

We proceed to show that for every natural number n, the
first-order counterparts of the pointed modal structures Man
and Man 1 are ‘(n+1)-equivalent’. More exactly, the following
is shown.

CLAIM 3. The first-order structures (MEP 0) and
(MES, |, 0) satisfy precisely the same first-order formulae of one
free variable with quantifier rank at most n+1, i.e. for all p(x)
with ¢r(¢) <n+ 1:

(M52,0) = p(z) == (M51,0) | p(2).

Proof of Claim 3. We show that Duplicator has a w.s. in
the Ehrefeucht-Fraissé game

EF,+1(M52,0, M52, 1,0).

By FEhrenfeucht’s Theorem this will, then, establish the state-
ment of the claim.
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To make the describing of Duplicator’s strategy easier, let
us define “directed distance” in the set {1,...,k} (k < w) as
the following function § : {1,...,k}?> — {0,...,k —1}: 14

_Jy—= ifx<y
6(x’y)_{(k:—z)+y ify <z

Hence directed distance § in the subset {1,...,n} of the do-
main of a modal structure M,, (n < w) measures the minimum
amount of steps from = to y along the ‘circular’ relation P,.

We describe a strategy for Duplicator by the following set
of recipes:

e Reply to any « € {0,a,b} by z itself, irrespective of
whether it comes from Dan or Daon .

e If none of the players has yet chosen from {1,...,2"} C
Don, and k is Spoiler’s first choice from there, reply by
k itself.

e If none of the players has yet chosen from {1,...,2"+1} C
Don 1, and k is Spoiler’s first choice from there, reply by
k itself, if k < 2"; if however k = 2" + 1, then reply by
AL

For the rest of Spoiler’s choices, do as follows:

e If the previous pair of choices from {1,...,2"} x
{1,...,2" 4+ 1} was (m,m'), and Spoiler now chooses k €

1 By its definition & satisfies that (x = y iff §(x,y) = 0) and it satisfies
the triangle inequality; but it does not satisfy the symmetry 0(z,y) =
6(y,z). (The only instance of symmetry that holds is §(%,k) = d(k, &)
when k is even.) This is, of course, in keeping with its being a “directed”
distance function.
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{1,...,2"} C Dgn, reply by the unique element k' €
{1,...,2" + 1} C Dgn satisfying the two conditions

{ min{d(m, k), 5(k,m)} = min{d(m/, k'), 6(k',m’)}
o(m/ k') = d(m, k) or §(K',m') = do(k,m)

The upper condition requires that &’ be chosen so that its
directed distance from m’ (in some order) equals the min-
imum directed distance between m and k. This does not
yet determine k', as the required min{d(m,k),d(k,m)}
steps could be taken either along Pni; or its converse.
To make k' unique, we further require what is stated in
the lower condition, namely that &’ be reached from m/
in these minimal amount of steps by moving in the di-
rection of Pynyq iff k is similarly reached from m by go-
ing in the direction of Pon. Notice that because the size
of Don is one greater than that of Dan, we have that
if §(m/ k") = 6(m, k), then 6(K',m’) = 6(k,m) + 1 #
d(k,m).

We claim that the strategy thus described is a w.s. for
Duplicator in EF,,11(ME9.0, Mg&l, 0). To see this, let

(0,a1,...,an+1) € DYF? and (0,b1,...,byy1) € DOF2

be arbitrary (n + 2)-sequences constructed by playing the EF
game 1 + 1 rounds, assuming that Duplicator has followed the
strategy described above. We must show that the relation

p: (0,(11,. ~7an+l) = (07b17‘ . 'abn-i-l)

is a partial isomorphism from MEO to MES,,. Write dom(p) :=
{0,a1,...,an4+1}; Tng(p) :={0,b1,...,bpt1}.

(i) p is a function: Directly by the definition of p, if ¢ €
dom(p), there is d € rng(p) such that p(c,d) holds: (c,d) is



3.3. Extended IF Modal Logic and Second-Order 145

either (0,0) or else (a;, b;) for some 7. We still must check that if
p(c, b;) and p(c, bj), then b; = bj. But given Duplicator’s above
strategy, a maximally quick way for Spoiler to force Duplicator
to choose distinct elements b; # b; for one and the same ¢ €
Don in a play of the relevant EF game is clearly to pick out
successively from Donyq the elements

AN Lt N L L

The respective sequence of replays by Duplicator from Dan then
is
20 ol . gn—l gn 90

Hence the first n+1 choices by Duplicator respect functionality,
whereas if the (n+2)-th round was still played, 2° would end up
being a reply to both 2° and 2"+1, and the respective sequences
would no longer serve to define a function. But as the plays of
the EF game are of length n+ 1, Duplicator can always survive
n + 1 rounds correlating any given move of Spoiler with only
one reply of her own. But then p in particular is a function.

(ii) p is an injection: Because the above-described strategy
for Duplicator is used in constructing p, we have that if ¢ €
{0,a,b},

ple,z) = z=c

Elements from {1,...,2"} are not related by p to any of the
elements from {0, a, b}, so in order to see that p is an injection,
it suffices to establish that any distinct a;,a; € {1,...,2"} N
dom(p) satisfy p(a;) # p(a;). But due to Duplicator’s strategy,
indeed for all arguments a;, a; we have:

e min{d(a;,a;),0(aj,a;)} =
min{d(p(ai), p(a;)), d(p(a;), plai))}

® 0(p(ai),p(az)) = 0(ai,a;) or 6(p(a;),p(ai)) = é(a;, a;).
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But this implies that p is an injection: the directed distance
between the arguments is reproduced on the side of values of
p.

(iii) It is trivial that the satisfaction of the unary predi-
cate S (which is satisfied precisely by a in both structures) is
preserved under p. The rule for moves within {1,...,2"} resp.
{1,...,2" + 1} is so formulated that preservation of the satis-
faction of the binary predicate P under the function p is trivial
as well. Further (because p is an injective function),

<M§9,ai,a]~) EQ(r,y) <= a=a;€{l,...,2"} =
pla;) = pla;) € {1,...,2" + 1} <
<M§78-17p(ai)7p(aj)> ): Q(-’IJ,Z/)

Finally, consider the binary predicate R. Let a; € dom(p)
be arbitrary. Then:

(MEO 0,a;) E R(z,y) <= a; € {1,...,2"} <=
pla;) €{1,...,2" + 1} <~
(MES1,p(0), p(a:)) = Rz, y).

Further, recall that if ¢ € {a, b}, then p(c) = ¢. Hence:
(MEO a;,¢) = R(z,y) <= c € {a,b} —=

<M]2?78_1,p(ai),p(c)> ': R(ZC, y)'

We may conclude that a w.s. exists for Duplicator in the

game
EFn-i—l(M]QE;?v 07 Mg"qua 0)

By Ehrenfeucht’s Theorem we conclude that (MEC, 0) and
<M§79+1,O> satisfy precisely the same first-order formulae of
one free variable with quantifier rank at most n + 1. (H)
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We have thus proven:

(1) For all even N <w : My =7 x[0].
(2) For all odd N < w: My E° x[0].

(3) For all n < w : (ME9.0) and (MES,,0) are ‘(n + 1)-
equivalent’.

We go on to derive the statement of Lemma 3.3.8. Still
writing x for the EIFML[3] formula

D(qu)) \/ize{A,p} /\ise{)\,p}D(Ri%)O(‘R%ig)/{]‘7 3}90712137

assume for contradiction that there indeed exists a first-order
formula ¢, () such that for all modal structures M and for all

d € dom(M):
MET x[d] <= (MTC,d) | o (@).

By Claim 3 we know that for all n < w, the structures (M9 0)
and (MES ,,0) are ‘(n + 1)-equivalent.” Write then r for the
quantifier rank of ¢,. Hence, by Claim 3, in particular the
structures

<M§707 0> and <M]2?7(—)Ha 0>

satisfy precisely the same first-order formulae of quantifier rank
at most r 4+ 1. But since ¢r(¢y) =r < r+ 1, we have

(x)  (M32,0) F py(z) = (M5F1,0) F oy (2).

Now on the one hand, since by assumption ¢, (z) is a transla-
tion of y, we have in particular

{ Mor =T X[0] <= (MEP,0) |= ¢y () ;
Mory1 EF X[0] = (M52, 0) = oy ().
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Hence by (x):
Mor E1 X[0] <= Maoriq =T x[0].

But on the other hand, by Claim 1 and Claim 2 we know that
if r > 0, then

MQT ):+ X[O] but M2T+1 #_;,_ X[O],
and if » = 0, then
MQT #4» X[O] but M2r+1 ):+ X[O]

Hence, whichever natural number r is, we reach a contradic-
tion. So we may conclude that the EIFML[3] formula x has
no translation into FO. This finishes the proof of Lemma
3.3.8. m

We thus trivially obtain the following general result:

Theorem 3.3.9 For cvery k > 3, there exists no translation
of EIFMLIk] into FO.

Proof. The result follows immediately from Lemma
338 =

For the value k := 1, there is only one accessibility relation
in the models relative to which EIFMLIk] is evaluated. There-
fore only one relation in particular can be associated with an
expression of the form O(Rg )/Wj, and whether or not a set

W; contains indices of some conjunctions (A, ez, ) makes no se-
mantic difference. For, if corresponding to one index i € I
it is possible to choose b so that R(a,b), this is possible for
all indices i € I. It would be different if there were several
relations, for then the relevant relation could be different for
different indices. Making this observation explicit, it would be



3.4. IF Modal Logic and Basic Modal Logic 149

possible to show that in fact EIFMLI1] is translatable into
FO.

By contrast, we conjecture that for the value k := 2,
EIFML[k] cannot be given a first-order translation, but in fact
EIFML][2| already has some second-order expressive power.
Providing a proof to this claim will be left for another occasion.

3.4 IF Modal Logic and Basic Modal
Logic

In the present section the expressive powers of IF modal logic
(IFML[k]) and its traditional sibling (ML[k]) are compared
with respect to certain classes of modal structures. The relative
expressive powers of IF tense logic (IFTL[k]) and basic tense
logic (TL[k]) are also considered.'®

More specifically, it is shown that for arbitrary k-ary modal
structures and all £ > 1, IFML[k] is strictly more expressive
than ML[k] (Theorem 3.4.4). An analogous result is shown to
hold for TL[k] and IFTL[k] relative to genuine k-ary temporal
structures (Lemma 3.4.8).

Further, it is proven that for £ = 1, over the class of k-ary
linear temporal structures, IFTL[k] and TL [k] have the same
expressive power (Lemma 3.4.11). From the proof of this result
it immediately follows that the expressive powers of IFML][1]
and ML[1] indeed coincide relative to unary linear modal struc-
tures (Lemma 3.4.12).

In Lemma 3.4.13.(i) it is shown that for £ > n > 2 and for
k-ary modal structures of whose accessibility relations n are
linear, IFMLJ[k] is strictly more expressive than ML[k]. This
shows that Lemma 3.4.12 cannot be generalized beyond k =1,
and that in Lemma 3.4.11 the class of unary linear temporal

5 The results of Subsect. 3.4 have appeared in Tulenheimo (2003).
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structures cannot be replaced by the class of all binary modal
structures linear in both dimensions. Lemma 3.4.13.(ii) shows
that Lemma 3.4.11 is not generalizable to any k& > 1.

3.4.1 Arbitrary k-ary structures

It will be proven here that over the class of all unary modal
structures, IF modal logic with one modality type (i.e.
IFML[1]) is indeed strictly more expressive than basic modal
logic with one modality type (i.e. ML[1]). In particular, the
proof for this claim will establish that IFML[1] is capable of
distinguishing such unary modal structures M and N which
have mutually isomorphic frames and which cannot be distin-
guished by any ML[1] formula, and so is capable of distinguish-
ing genuine properties of models as opposed to mere properties
of frames.

An analogous result regarding the relationship of Priorean
tense logic (or TL[1]) and IF tense logic (or IFTL[1]) will be
established as well.

Write C; for the class of all unary modal structures. Observe
that as noticed in Fact 3.1.1, MLJ1] is anyway embeddable in
IFMLI1] over C;. Hence, to show that in fact

MLI[1] <¢, IFMLI1],

we need only to find modal structures M,N € C; and points
a € dom(M), b € dom(N) such that:

e for each ML[1] formula o, M E1 ¢[a] <= N ET ¢[b],

and

e (M,a) and (N,b) can be distinguished by an IFML[1]

formula.
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In particular, for the purpose of simply proving that ML[1] <¢,
IFMLI1], we need not require that the frames of M and N be
isomorphic. Actually, the structures M* and N*, described
next, serve to establish the claim.

Example 3.4.1 We say that the relation R in a modal struc-
ture (D, R, ) is weakly confluent at the point d € D, if there
exists ¢ € D such that for all d € D: R(d,d) = R(d',c).'6
We observe that for any modal structure M = (D, R,b) and
any d € D,

M =T 0102/{1}(q V ~q)[d] <= R is weakly confluent at d.

Write x := 0109/{1}(qV—q). The implication holds from right
to left: define a strategy f for Héloise by putting f(d,d') := ¢
for all R-successors d' of d, where ¢ is a point (given by the
weak confluence of R) satisfying R(d',¢) for all d" with R(d,d’).
Obviously f, then, is winning in the game associated with x.
The implication also holds from left to right: letting f be a w.s.
for Héloise in the game associated with x, there is a point c
such that ¢ = f(d,d) for all R-successors d' of d. But this
means that R is weakly confluent.
Then put M* := (M, R,Y), and N* := (N, R, /), where:

16 Weak confluence is in contrast to confluence simpliciter. Let R be
a binary relation on D, d € D. Then confluence of R at d and weak
confluence of R at d are defined by the following first-order conditions:

Confluence:

((D, R),d) |=Vz[3y(R(z,y) A R(y, 2)) — Vy(R(z,y) — R(y,2))]

Weak confluence:
(D, R),d) = 32Vy(R(z,y) — R(y, 2))-

Confluence simpliciter at a point is characterized in basic modal logic by
the wvalidity of the formula COp — OOp, i.e. the truth of this formula at
d in all modal structures based on the frame (D, R).
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M={1,....5}; N={1,...,4}
R=1{(1,2),(1,3),(2,4),(3,5),(1,4),(1,5)} U

{(z,x) 12 € M}
R ={(1,2),(1,3),(2,4),(3,4),(1,4)} U{(z,z) : 2 € N}
b(e) = {2,3,4,5};  b'(¢) ={2,3,4}

Since the domains M and N are not equipotent, the frames
(M, R) and (N, R') of the structures M* and N* are of course
not isomorphic. The structures can be depicted as in Figure 11
below. While it is not indicated in the figure, all elements in the
domains of these models are related to themselves (reflexivity).

M* N*
FiGurE 11

It is easy to see that the relation

{(1,1),(2,2),(3,3),(4,4), (5,4)}

is a bisimulation between the structures M* and N*. So in
particular the pointed modal structures (M*,1) and (N*,1) are
not distinguished by an ML[1] formula (by Invariance Lemma).
On the other hand, the IFML[1] formula

D1 O2/{1}Hg V ~q)
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is true in N* at 1 (R is weakly confluent at 1)
but non-determined in M* at 1 (R is not weakly confluent at
1, however for all R-successors x of 1 there is an R-successor
y of ).

Hence weak confluence is a property of points in frames that
is characterizable in IFMLI[1], but formulae of ML[1] cannot
distinguish points that are weakly confluent from points that are
not. The latter fact can be expressed in another way by saying
that weak confluence is a property that is not preserved under
bisimulations, as just seen. M

Example 3.4.2  Define temporal  structures M* =
(M,R,R™1,b), and N* := (N, R, R'~1, 1) as follows:

M ={a,b1, b, 1,2} (5 distinct elements)
N={dV,d,d} (4 distinct elements)
R={(a,z): x# a} U{(b1, 1), (b2, c2)}

R =A{(d",z) sz #d}U{(,c1), (V' c3)}
b(T)=M, b (T)=N.

Hence R and R’ in particular are irreflezive and transitive re-
lations. (See Figure 12 below for a picture of M* and N*.)

a (&) i ch
b/
by bo
a a’
M* N*

FIGURE 12
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The temporal structures M* and N* are bisimilar, as is
witnessed by the relation

{(a,a")} U{(bs,0") s i€ {1,2}} U{(es,c)) 24,5 € {1,2}}.

The pointed temporal structures (M*,a) and (N*,a’) are there-
fore not distinguished by any formula of TL[1] = ML[2]. On
the other hand, they are distinguished by the formula ¢ of
IFTL([1] = IFML[2],

@ = 010p051/{2}T.

This formula is non-determined in M* at a. [Héloise does not
have a w.s., since there is no legal uniform reply available: no
choice would legally extend both histories (a,b1,c1), (a,ba,c2).
Abélard has none either, since Héloise has some legal reply in
both cases.] On the other hand, the formula is true in N* at a'.
[Héloise can choose the element b’ as a legal extension for both
histories (a', 0, ¢c)), (a/,V/,ch).] B

By Fact 3.1.1 we know that ML[k] <c, IFMLI[k], for all
k < w. Hence Example 3.4.1 above already suffices to establish
the claim that
ML[1] <¢, IFML[1],

and Example 3.4.2 is enough to guarantee that
TL[1] <7 IFTLI1],

where 77 is the class of all unary temporal structures. However,
we can do better than resort to the observation above: we
can prove the claim of the strictly greater expressive power
of IFMLI1] as compared with that of ML[1] by using unary
modal structures with isomorphic frames, as suggested above.
The same can be done in the case of tense logics of one temporal
modality type.
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Lemma 3.4.3 Qwer the class C1 of all unary modal structures,
IFMLI[1] is strictly more expressive than ML[1]. In particu-
lar, there are pointed modal structures (M*,m) and (N*,n)
having isomorphic frames and being MLI[1] equivalent but not
IFML[1] equivalent.

Proof. Construct unary modal structures M and M’ as
follows. Put M = (M, R,H) and M’ = (M’', R',§’), where

M= M"={a,b,c,d,e, f} (6 distinct elements)
R =R ={(a,b),(a,c), (b,d), (b,e),(c,€), (c, f)}
b(q) ={e}, b'(q) ={d, f}.

These modal structures are illustrated in Figure 13 below.

q false g true ¢ false ¢ true q false ¢ true
d f d f

EQ
<

FIGURE 13

We observe:

(1) The frame of M is the same as the frame of M’, so the
frames are isomorphic via the identity map idy; : M —
M.

(2) Write x :=0y1<0,2/{1}¢q. We have that
M =" x[a] but M' =7 x[a].

The formula x is non-determined in M’ at a: Héloise
does not have a w.s., since there is no reply available to
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(3)
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her that would legally extend both of the histories (a, b)
and (a,c) and at which ¢ would be true. Neither does
Abélard have a w.s., since Héloise has some reply making
q true in both cases, a reply which is not the same in the
two cases. On the other hand, y is true in M at a: the
point e is a legal extension to both (a,b) and (a,c), and
q is true in M at e.

Hence the pointed modal structures (M, a) and (M’ a)
are not IFML[1] equivalent.

It is easy to check that the relation = :=

{(a,a), (b,b), (¢, ), (b,¢), (¢, ), (d, €), (f,€), (e, d), (e, )}

is a bisimulation between the modal structures M and
M. In fact, it is even seen that the relation = is a bisim-
ulation between the unary temporal structures

M* = (M, R,R™",p) and M"* = (M',R/,R"".1) ,

obtained from the unary modal structures M = (M, R, b)
and M’ = (M’', R', ') simply by adding to the respective
unary modal structure the converse of its accessibility
relation as another accessibility relation. (This fact will
be used when deducing Corollary 3.4.6 below.)

Since in particular a = a, we have by Invariance Lemma
that the modal structures (M, a) and (M’, a) are ML[1]
equivalent, and that the temporal structures (M™, a) and
(M'*,a) are TL[1] equivalent.

Now, by (2), (3) and Fact 3.3.1, IFML][1] is strictly more ex-
pressive than ML[1] over the class C; of all unary modal struc-
tures. And (1), (2) and (3) together establish that there are
unary modal structures M* and N* with isomorphic frames,
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and points m and n in the respective domains, such that
(M*,;m) and (N*,n) are ML[1] equivalent but not IFML][1]
equivalent. This completes the proof of Lemma 3.4.3. m

Lemma 3.4.3 has the straightforward consequence that for
any positive k < w, IFMLIk] is strictly more expressive than
ML[k] over the class Cj of arbitrary k-ary modal structures.
Namely, since the formula (;<$5/{1}g employed in the proof
of this lemma can be written in IFML[1], it can a fortiori
be written in any IFML[k], & > 1. Then simply replace the
unary modal structures M = (M, R,h) and M’ = (M', R, '),
utilized in the above proof, by the k-ary modal structures

M* = (MaRa‘SQv"'aSkah):
M* =(M' R',S5,...,S..0),

where the new relations S;, S} are otherwise arbitrary binary
relations on M = M’, but they satisfy S; = S, (i := 2,...,k).
(Another possibility in view of our purpose would be to put
Sp=...=8,=Rand Sy =... =5, = R'.) Hence M* and
M** will automatically be bisimilar (because M and M’ are),
and it follows that (M*, a) and (M**, a) are ML[k] equivalent,
while these pointed modal structures are not IFML[k] equiv-
alent — as they are distinguished by the formula ;<o /{1}g.
Hence we have:

Theorem 3.4.4 For any positive k < w,
ML[k] <¢, IFML[k]. B

We may notice that unlike the respective accessibility rela-
tions R and R’ of the modal structures M and M’ made use of
in the proof of Lemma 3.4.3, the relations R of M* and R’ of
N* employed in Example 3.4.1 above are transitive. In fact, the
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latter two relations are reflexive, antisymmetric and transitive,
viz. reflexive partial orders. Hence, writing PO for the sub-
class of C; consisting of precisely those unary modal structures
whose frames are reflexive partial orders, we have by Example
3.4.1:

Corollary 3.4.5 ML[1| <po IFML[1]. B

Let us say that a k-ary modal structure M is a partial or-
der in n dimensions, if M has n < k accessibility relations
which are reflexive partial orders, and let us adopt the conven-
tion of writing PO[k, n| for the class of k-ary modal structures
which are partial orders in n dimensions. Then Corollary 3.4.5
trivially implies that for all K > 1 and all n € {1,...,k},

ML[k] <pojn IFMLIA].

Let then 7}, be the class of all k-ary temporal structures, i.e.
2k-ary modal structures

M = (D,Ry,...,Ror_1,h)

with the characteristic features that: (i) for each i < k, the
relation R;y is the converse of the relation R;, and (ii) each R;
is irreflexive and transitive. Recall that those modal structures
that meet condition (i) but not (ii) we have agreed (in Sect.
2.1) to call quasi-temporal structures.

Now if we do not require the properties of irreflexivity and
transitivity of temporal accessibility relations (which, however,
is customary), then we get a tense-logical analogue of Theorem
3.4.4 for free, due to our proof of Lemma 3.4.3 above. Directly
by Theorem 3.4.4 we have, of course, that for all positive k < w,
IFTL[k] = IFML[2F] is strictly more expressive than TL[k] =
ML[2E] over the class Cy, of all 2k-ary modal structures. But
we can do better. By the above proof of Lemma 3.4.3, we can
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indeed show the same even for the proper subclass QT}. of Cop,
which consists of all quasi-temporal structures.

Corollary 3.4.6 For any positive k < w, let QT} be the class
of quasi-temporal structures from Ty. Then we have:

TL[k] <7, IFTLIK].

Proof. The statement of the theorem will trivially follow,
if we manage to establish this statement for the value £ = 1.
To do so, it suffices to show that there are ML[2] equivalent,
but IFML|[2] distinguishable, pointed modal structures (N, ¢),
(N, d) with NN € QTy. (Hence N and N’ are required to
be quasi-temporal structures and not just any binary modal
structures.)

Let M = (M,R,h) and M’ = (M, R',}’) be the unary
modal structures defined in the proof of Lemma 3.4.3. Then the
structures M = (M, R, R™',p) and M'T = (M',R', R'~1, 1),
obtained from M and M’ by adding to these the converses of
their accessibility relations, are in the class Q77. But the rela-
tion = defined in the proof of Lemma 3.4.3 is in fact a bisim-
ulation between the binary modal structures M™ and M'T,
as noticed when proving this lemma. As well, the formula
[0;09/{1}q is true in M™ at a, but non-determined in M'"
at a. Hence the statement follows. m

The above observation is tense-logical in a rather abstract
sense, in which a modal logic is taken for a tense logic on the
sole basis that this logic is never able to speak of an acces-
sibility relation without also being able to speak of its con-
verse. However, it is possible to construct even genuine tem-
poral structures (structures whose accessibility relations are ir-
reflexive partial orders) — with isomorphic frames, moreover —
in such a way that they establish that IFTL[k] has a greater
expressive power than TLI[k].
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Lemma 3.4.7 There are pointed temporal structures (M, s)
and (N, s') with isomorphic frames which are TL[1] equivalent
but not IFTL[1] equivalent.

Proof. Let (C1,<1) be the set of positive rationals ordered
by magnitude. Write Cy := C; x {0}, and let (C2,<2) be
an isomorphic copy of (C1,<7). Finally, let ¢,¢1,t2 be three
irrational numbers. Define a frame (D, R) as follows:

o D ::QUCQU{t,tl,tQ}
e R:=<U[Qx{t1}] U [(Q\C1) x (CoU{t2})] U <o U
[Co x {2} U{(t, 1), (L, t2) }

where QQ stands for the set of all rational numbers, and < for
their order by magnitude. Finally, let prop = {¢}, and define
assignments h and b’ by setting:

e h(g) ={1,1},  b'(¢q) ={0}

where 1 is the image of 1 under a fixed isomorphism that estab-
lishes the isomorphism between (C1,<;) and (Cs, <2). Figure
14 illustrates the temporal structures M = (D, R, R~!,b) and
N =(D,R,R71).
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31 2} 131 )
q true q true
1 1
0 0 q true
M N
Ficure 14

The relation R is clearly irreflexive and transitive. Observe
that in the structures the ‘times’ t1 and t9 are both in the future
of t (and are mutually R-incomparable). Further, each of the
times t1 and t9 has a past that branches into two: one branch
contains only the time ¢, while the other branch is infinite.
Furthermore, the infinite pasts of ¢; and ¢ meet at the rational
number 0, which itself has a unique past.

The structures M and N are genuine temporal structures.
They also have a common frame (D, R, R™!), and so a fortiori
their frames are isomorphic. Furthermore, the temporal struc-
tures in question are bisimilar, as is witnessed by the relation

{0 U{tr. t2} x {t1,t2}] U {(1,0),(1,0)} U
[{x:l <1x <ytyor 1 <9 x <9 tQ}X
{l’:0<1$<1t1 or0<2m<2t2}] U

Hr:z<ilorz<gl} x{x:x<50}].
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Hence the pointed temporal structures (M, t) and (N, t) cannot
be distinguished by any TL[1] formula. On the other hand, the
IFTL[1] formula

@ =010, /{1}q

serves to distinguish the structures. Namely, ¢ is non-
determined in M at ¢, because Héloise can choose a past time
at which ¢ holds, but only depending on Abélard’s future choice
of t1 resp. to: for t1 she must pick out 1 and for o the element
1" # 1. But ¢ is true in N at ¢: independently of whether
Abélard chooses ty or to, Héloise can pick out 0, which makes ¢
true. Hence we may conclude that IFTL[1] is more expressive
than TL[1] over the class of all unary temporal structures. m

From Lemma 3.4.7 we directly obtain the general result:

Theorem 3.4.8 For any positive k < w,

TL[k] <7, IFTL[k]. B

3.4.2 Tense logic and wunary linear struc-
tures

We move on to consider unary modal structures with linear
frames, i.e. frames whose accessibility relation is antisymmet-
ric, transitive and connected: in short, a linear order. Further-
more, we will assume throughout that the relation is irreflexive.

Let us first establish some terminology. We say that a k-
ary modal structure M is linear in n dimensions, if M has
n < k accessibility relations which are linear orders. A k-ary
temporal structure is said to be linear in n dimensions, if it
has 2n < 2k accessibility relations which are linear orders. We
adopt the convention of writing LO[k,n] for the class of k-
ary modal structures linear in n dimensions. By stipulation we
write LO[k] := LOJk, k]. The class of k-ary temporal structures
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linear in n dimensions are denoted by writing LOyepmp|k, n], and
we stipulate that LO¢emp[k] := LOemplk, k.

We write TL := TL[1], IFTL := IFTL [1], and LO :=
LO¢emp[l]. By a typical tense-logical convention, we write F,
P, G and H for the operators <&, &~!, O and 07!, respectively.
We call the logic IFTL simply IF tense logic, and TL basic
tense logic.\”

Given a linear frame (7T, <), we say that a point ¢t € T is
dense to the right, if t is not <-maximal, and for all ¢’ > ¢t
there is s such that ¢t < s < t/. The meaning of “dense to the
left” is analogously defined. Further, if there exists an element
t’ > t such that

(Vs)(t < s = t' <),

we say t' is the immediate successor of t. (Because < is anti-
symmetric, such a t' is unique when it exists.) What it means
for a point to have an immediate predecessor is analogously
defined.

Recall the definition of transition from Definition 3.2.5: an
FO formula B(x, x;,, ..., zi,; ¢[zi,]) ==

(le (1‘, Liy ) 0jy (Rjz ('r’il ) xiz) <o Ojpo
(Rjn—l ("rin—Q’ xin—l ) Ojn—l (Rjn (xin—l ’ ‘7;7177,) Ojncp[xln])) ° ))

is a transition when the R;, are binary relations (j; < k), the
0j, € {A,—}, and ¢[z;,] is a standard translation of an ML[k]
formula.

For the purposes of the proof below, recall that by the syn-
tax of TL, the negation sign (—) can only appear as prefixed to
a propositional atom in formulae of this logic. However,

7 In fact, TL coincides with Priorean tense logic, to be introduced in
Sect. 4.2.
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by Fact 2.1.1 this is not a restriction from the viewpoint of
expressive power, as every formula of TL[—] has an equivalent
(its megation normal form) in the class TL. Below, we allow
writing - when ¢ is an arbitrary TL formula. By stipula-
tion we then take the string “—¢” to stand for the TL formula
nn f(-p).

We now proceed to prove that relative to unary linear tem-
poral structures, the expressive powers of TL and IFTL coin-
cide. To do this, we first prove a lemma concerning the first-
order translations of IFTL formulae — as these were provided
by Theorem 3.2.4 above. This lemma in fact takes care of ev-
erything that is not completely trivial in the proof of the coin-
cidence theorem. It will further follow from the proof that the
modal logics ML[1] and IFML[1] of one modality type have
the same expressive power over the class LO[1] of unary linear
modal structures (Theorem 3.4.12 below).

Lemma 3.4.9 For any n < w, any Q1,...,Q, € {3,V}, and
any transition 3 involving no other binary relation symbols than
< and >, the formula

JyQrz1 ... Quanf (zo, ..., Tn, y; ¢ [y])

has the property () of being equivalent over linear orders'® to
a standard translation of a TL formula.

Proof. We prove the claim by induction on the length n of
the block Q121 ... Qnry. If o = ST, (1)), we write by convention
Y = ¢*. And if ¢ and 0 are FO[r] formulae, we write ¢ <
0 to say that these formulae are satisfied in precisely the same
T-structures.

For the base case, n := 0, we have:

18 That is, equivalent over the models M¥© where M is a unary, linearly
ordered temporal structure.
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FyQ121 ... Qoo (0, - -, T, Yi @ [y]) =
B (zo, y; ¢ [y]) €

{Fyly <zoANely]), Iy >z0 Ny} =
{STo (P (7)), ST (F (#7))}

Assume inductively that for a fixed n < w, any formula of
the form

Q11 ... Quanf (o, -, Tn, Y5 ¢ [Y])
has the property (x), and let x :=
Q121 - . Qn1Tn+18 (205 - -+, Tnt1, Y3 ¢ [Y])
be arbitrary. Then y is logically equivalent to the formula
JyQiz1 ... Qnrn(Ri(xo,21) 01 - ..
Ry (Tn-1,%n) 0n Qui1Zn+1(Rnt1(Tn, Tnt1) Ont1
Roy2(Tnt1,9) A plyl))-
Now consider the subformula ¢ :=

Qn—l—lxn—i-l(Rn—&—l(xnal'n—&-l) On+1 Rn+2(l‘n+17y) A [y]))

We notice that ¢ can in different cases (which are jointly ex-
haustive of the combinatorial possibilities) be written as fol-
lows:

(1) It <Rn+17Rn+2> = <<7 <>a then

(La) Fx(zp <z A (x <yAely])), if Qny1 =3
(1) T (),

ifz, = mazx(dom(M)) and Qp41 =V
(1.c) L(zy) otherwise

0=
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(2.) If (Rpt1, Rng2) = (<, >), then

(2.0) (wn # maz(dom(M)) £3) A 8l3],
if Qry1 =3
¢ =9 (2.) T(zn),
ifx, = max(dom(M)) and Qpni1 =V
((2.¢) y <an A ¢y] otherwise

(3.) If (Rnt1, Rny2) = (>, <), then

(3.0) (an # min(dom(M)) £y) A 8l
if Qny1 =3
¢ =1 (3.5) T(zn),
if 2, = min(dom(M)) and Qpni1 =V
(3.c)y >z, A ¢ly] otherwise

(4) It <Rn+17Rn+2> = <>7 >>7 then

(4.0) 3u(en > A (2> ) A Gy]), if Quys =3
(4D) T(zn),

if 2, = min(dom(M)) and Qi1 =V
(4.c) L(x,) otherwise

0=

Hence in the respective cases the formula x can be written
in a way which, directly by inductive hypothesis, implies that
it has the property (*). Let us write Qz := Q121 ... QnTn.

(1.a) Consider first the case that the formula y has the form

Ey@Rl(:co,xl) o1 ...
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(Rn(xn—laxn) On Elx(xn <z AT <YA (P[y])))

Consider further the following formula 6y :

JyQz(R1(wg, 1) 01 ... (Rp(2p_1,70) 0p
(xn <y A@lyl) V (0 <y A ST, (F(p* AG=p*) A
—FFp*))).

X is seen to be equivalent to #; as follows. Let yg =
fay(()) be provided by Héloise’s winning strategy f in
Ga(x, M,t). Then if yq is either dense to the left, or is
not the greatest y with ¢ [y], the strategy f induces a w.s.
g, for Héloise in the game G 4(61, M,t): g; chooses the
leftmost disjunct in the subformula ¢ :=

(zn <yAoly)) V
(xn <y NST (F(p* NG=p*) AN=FFp*)),

and is otherwise like f. On the other hand, if there is an
immediate predecessor (yp—1) to yo and yo is the greatest
y with ¢[y], then f induces a w.s. g, in G4(01, M,t) as
follows:

* 9r3y(()) =5 —1
o IfQ; =3;(i:=1,...,n),then g, 0,2, (T) = fQ,2,(T)
e g, chooses the right disjunct of ¢

e For the quantifier corresponding to F) g, gives yg

Conversely, from a w.s. g for Héloise in the game
Ga(01, M,t), a ws. f for her in G(x) is obtained in an
analogous manner.

Consider further the following formula 65:
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IyQx(Ry(20,21) 0
(@n <y Aely])))V
FyQz(Ri(xo,z1) 01 - .. (Ru(Tn—1,Zn) On

(xn <Yy ASTY(F(p* NG=p*) N =FFp*)))).

1--- (Rn(mn—laxn) On
R

Then it is seen that there is a w.s. for Héloise
in GA(01, M,t) iff there is a w.s. for her in G 4(62, M, t).
For we may assume that to interpret Jy, Héloise’s w.s. in
the former game always picks out, if possible, the greatest
y with ¢ [y], provided this y has an immediate predeces-
sor: if this is possible, she thereby already arranges that
she will choose the right disjunct in ¢; if this is not pos-
sible, she will choose the left disjunct. Hence the choice
of disjunct can already be made in the beginning of the
game, yielding a w.s. for her in G 4(02, M, t). The other
direction is immediate. Hence, by induction hypothesis,
X is seen to have the property ().

(1.b) In this case,
X € Qz(Ri(z0,71) 01 ... Ro(Tn_1,70) 0n T (xy)).
Hence y is trivially in the set {STy,(¢) : ¢ € TL}.
(1.c) In this case,
X & Qz(Ri(wo,21) 01 ... Ry(Tn_1,70) 0n L(z)).
Again, x has, trivially, a translation in TL.
(2.a) In this case we clearly have:

X € (ST, (F(T) Ap*) A QeRy(x0,21) 01 - ..
(Rn<xn—17$n) On, (STxn(F(T))))

As, moreover
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Fy(STy(F(T) A ") &
ST (P(F(T) A ")V (F(T) Ap*) V F(F(T) Ag™)),

the formula y has the property ().
(2.b) Exactly as case (1.b).

(2.c) Clearly the following equivalences now hold:

Y &

JyQx (R (w0, 1) 01 - .. (Ru(Tn_1,7n) 0n

((y <zn Aply]) v plzn]))) &

JyQx (R (w0, 1) 01 . . .

(Bn(2n-1,2n) on(y < zn A@ly]))) V
Qx(Ry(xg,71) 01 ... (Rp(2p_1,70n) opplas])).

In the last formula the right disjunct has the property (x)
trivially, while the left disjunct has the property (%) by
inductive hypothesis.

The subcases (3.a-c) and (4.a-c) are analogous to the cases
(2.a-c) and (1.a-c), respectively. m

Now notice that as IFTL formulae are really formulae of
IFML [2], we already know by Theorem 3.2.4 that they are
translatable into FO. Such a first-order translation is not, how-
ever, generally equivalent to the standard translation of any
basic modal-logical formula, as shown by Theorem 3.4.4. By
the above lemma, however, such an equivalence always pre-
cisely pertains in the special case of IFTL evaluated over linear
frames. The following example contrasts with Example 3.2.9
above.
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Example 3.4.10 Consider evaluating the (E)IFTL formula
X = G1G2P3/ {2} Fy/{1,3} q relative to the class LO of all
unary linear temporal structures. x is true in a pointed modal
structure iff the formula G1GoPs/ {2} Fy q is true therein. And
it 1s easily seen that relative to LO, the FO equivalent

VedzVyFu(to <z — (x <y — (y>2A (2 <vAQ(V)))))
of x can be written as
VedzFu(tg < © — [z # max(dom(M)) —

x>z (z<vAQW))]),

and x is equivalent to the TL formula
G(GLV (PFqV Fq)). 1

Now, using Lemma 3.4.9 the coincidence theorem readily
follows:

Theorem 3.4.11 IFTL =10 TL.

Proof. TL is trivially embeddable in IFTL over any class
of structures, therefore over LO in particular. To show embed-
dability in the other direction, let x € IFTL be arbitrary. The
result follows trivially, if y € TL N IFTL. Suppose then, that
x is of the form

O1...0n-1(0n/W) ¢,

where ¢ € TL and W C [1,n — 1]. If in particular O, €
{Gy, Hy}, we trivially have that for all M,t:

M ET x[t] <= M =T 01 ...0p_10,]t]

and hence x is translated in TL. If, again, O,, € {F,,, P,}, by
Lemma 3.2.1 we may, without loss of generality, assume that
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in fact W = {1,...,n—1} (cf. the proof of Theorem 3.2.4).
Then by Lemma 3.2.3, x is translated into FO by the formula

Ox(z0) :=

JyQz1 ... Qrp_1(Ry, (o, 21) 01 ...

(Ri, y (Tn—2,Tn—1) 0p—1 R, (Tn-1,y) A STm/y(S"))a

where:
(Qui; 1) := { (Fai, A) if O; = ©;

and [; < k identifies the accessibility relation (<, >) associated
with the operator O;. Thus, by Lemma 3.4.9 above, x has a
translation into TL. =

As a further coincidence result, we have that the expressive
powers of the modal (as opposed to temporal) logics of one
modality type, ML[1] and IFMLJ[1], coincide over unary linear
modal structures.

Theorem 3.4.12 MLI[1] =g IFMLI[1].

Proof. Trivially ML[1] <y, IFMLI[1]. For the other
direction, it suffices to consider formulae of the form
O1...0,-1(¢n/[1,n — 1))y, the other cases being trivial. But
cases (1) and (4) of Lemma 3.4.9 guarantee that there is an
ML([1] translation for any IFMLJ[1] formula of this form. m

3.4.3 Modal structures linear in two di-
mensions

We now proceed to show that over the class LO[2] of binary
modal structures linear in both dimensions (i.e. whose two ac-
cessibility relations are linear orders), IF modal logic with two
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modality types is strictly more expressive than the correspond-
ing basic modal logic with two modality types. A similar result
is shown to hold for tense logic as well.

We may observe that on the one hand, Theorem 3.4.11
proven above shows that IFML[2] does not have more expres-
sive power than ML[2] over the subclass LOyemp[l] = LO of
LOJ2] consisting of such binary modal structures linear in both
dimensions whose two accessibility relations are converses of
each other (i.e. over unary linear temporal structures). On
the other hand, by Theorem 3.4.4 we know that IFMLI[2]| has
a greater expressive power than ML[2] over arbitrary binary
modal structures. The case we now move on to below is hence
an intermediate one.

LO Cc LO[2] C G,y

is of course a chain of proper inclusions, and thereby Theorems
3.4.4 and 3.4.11 do not suffice for deciding the question whether
the relation

holds or not. The following theorem implies that in
fact IFML[2] is more expressive than ML[2] already relative
to the class LO[2]. More generally, the theorem states that the
equalities

ML[k] =rojk,n IFML[k]
TL[k] =LOyemplk:n] IFTL[k]

which by Theorem 3.4.11 resp. Theorem 3.4.12 are established
for the value k = n = 1, cannot be generalized to any values
k >n > 2. We proceed to prove:

Theorem 3.4.13 For all n > 2 and for all k > n, we have:

(i) ML[K] <po[k,n) IFMLI[k].
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(ZZ) TL[k)] <L0temp[k7n] IFTL[k]

Proof. We shall show that each of the claims (i) and (ii)
holds for the values k£ := 2 and n := 2. The results then trivially
generalize to all k > n > 2. Now let M = (D, <o, <1,b)
and M’ = (D', <{,<},b’) be binary modal structures whose
components are given as follows.

e D is the set of rational numbers, and <y = <7 is the order
of rationals by magnitude.

Let then C = D x {0}, and let (C, <7, <]) be an isomorphic
copy of (D, <g,<1). By construction C N D = &. Then put:

e D =DuUC
o < :=<oU<dUDxOQO)
e < =<3U<{U(CxD)

Finally, assume for simplicity that prop = {T} and put h(T) =
D and b'(T) = D'. The structures M and M’ can be depicted
as in Figure 15 below.

|

FIGURE 15

It is clear that the relation D x D’ is a bisimulation between M
and M’. Then fix points ( € D and £ € D' N C. It follows by
Invariance Lemma that the pointed modal structures (M,()
and (M',§) cannot be distinguished by any formula of ML[2].
But we observe that the IFML[2] formula Oy <1 2/{1}T is
true in M’ at & (Héloise can choose for ¢1 9 any £’ € D' N D,
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as any such &” will be a </-successor of any possible ¢ with
€ <( & chosen by Abélard). On the other hand this formula
is non-determined in M at ¢ (not true, since no " € D is a
<1-successor to all ¢! € D with ¢ <g ¢’; not false, as for all ’
€ D there is some ¢” € D such that ¢ <o ¢’ <1 ¢"). Tt follows
that IFML]2| is not embeddable in ML[2]. Claim (i) of the
theorem is proved for the value k := 2 by appealing to Fact
3.1.1. Hence, trivially, the generalized claim (i) follows.

Then observe that as both <y and <y are irreflexive and
transitive relations, the structures

-1 _-1
M+: (Da <07<1><0 7<1 7[])
and
-1 -1
MT = (D, <), <, < <)

are temporal structures. But the relation D x D’ is certainly a
bisimulation even between the binary temporal structures M™
and M'T. Hence (M™,{) and (M'" £) are TL[2] equivalent but
can, of course, be distinguished by the formula Oy ;< 2/{1}T.
Hence claim (ii) follows. m



Chapter 4

Alternative
Interpretations of IF

Modal Logic

In Chapter 3 we studied the language of IFML[k], using as its
semantics its uniformity interpretation, introduced in Chapter
2. In the present chapter we will consider two alternative inter-
pretations of this language, to be called the ‘backwards-looking
operators’ interpretation and the algebraic interpretation of IF
modal logic, respectively. These semantics essentially provide
alternative interpretations of the slash sign “/” of IFMLIk].
The ‘backwards-looking operators’ interpretation (BLO) is
designed to provide a semantics for IFML[k| on arbi-
trary k-ary modal structures. It means interpreting the slash
sign “/” as a device for constraining moves of the players of
a semantical game, instead of imposing restrictions on their
winning strategies, as the uniformity interpretation does. The
algebraic interpretation (ALG) is of a more special character:
it is only meant for evaluating IF tense logic relative to unary
linear temporal structures equipped with a commutative group

175



176 4. Alternative Interpretations of IF Modal Logic

operation. This interpretation treats the slash as indicating
‘subtraction’.

In the concluding chapter of the present thesis (Ch. 5), the
semantic mechanism behind BLO interpretation is shown to be
useful in connection with natural language analysis. Algebraic
interpretation, in turn, gives a very concrete and robust sense
to ‘independence’. In fact, this interpretation essentially comes
down to erasing the operators referred to in the independence
indication “/W?”. It may be noted that it would be perfectly
possible to investigate languages where there are several differ-
ent types of slash signs available — e.g. /un1, /BLO, /ALG —
each type of slash having a semantics of its own. We do not,
however, examine such ‘multi-slash’ languages here.

4.1 Backwards-Looking Operators

Let us proceed to define the ‘backwards-looking operators’ in-
terpretation of IFML[k], and to study its expressive power.
We associate a semantical game

GA((,O,M,d) = <{V,3},H, Z, P, {UV7UH}>

in extensive normal form with each triple (¢, M,d) consist-
ing of a formula ¢ of IFML[k], a k-ary modal structure M =
(D, Ro,...,Rk_1,h) and apoint d € D. This game is one of per-
fect information and hence contains no information partitions.
(Or, equivalently, the respective information sets are singletons,
each history belonging to an information set of its own.) The
game is otherwise defined exactly as the respective game made
use of in defining the UNI interpretation of IFMLIk] above,
except for the following difference in the definition of the class
H of histories.

The clauses for (<;,/W) and (O;,/W) in the recursive
definition of the set H of plays (or, histories) of G (¢, M,d)
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are these:

e If the last position in h € H is of the form
((Cin/W) ¥, an1),
find the element!
b := pra(h)[maxz({0,1,...,n — 1}\W)].

Then for all o € dom(M) with R;(b,a’) we have
h™(¢,a’) € H; if no such o exists in dom(M), then
h™(FAIL,*) € H. Further, P(h) = 3.

e The definition for OJ; ,,/TV is the same as that for <; , /W
except that here it is V’s turn to move.

Remark 4.1.1 Hence the evaluation of i /W (resp. O; /W)
1s relative to the element that the evaluation of the operator
with the index max({0,1,...,n — 1}\W) + 1 has introduced,
or else is relative to the initial point of evaluation (ag := d).
This is in fact the key point of BLO semantics, allowing more
choices for “relational dependence” than does the semantics of
basic modal logic: in the latter, the evaluation of an operator
O is always relative to the state introduced by the evaluation of
the (unique) modal operator in whose scope O immediately lies.
Here the evaluation may happen relative to the state introduced
by any logically superordinate modal operator.

A strategy of the player j € {3,V} in G4(p, M,d) is any
function from finite sequences of positions to positions. A strat-
egy f; of the player j is a winning strategy (w.s.), if there exists
a subset W C Z of terminal histories satisfying the following
three conditions:

! Observe that as W is a subset of [I,n — 1] and hence always 0 ¢ W,
the difference set {0,1,...,n — 1}\W is never empty.
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(a) If h € CI(W) and P(h) is j, then h™f;(h) € CI(W).

(b) If h € CI(W) and P(h) is the opponent of j, then for
every u € A such that h~u € H, h"u € Cl(W).

(c) Every h € W is a win for j.

A set W C Z which thus establishes that a strategy f; is
winning, is called a plan of action. We say that f; is a winning
strategy based on W. Observe that unlike the case of UNI
interpretation, there is of course no uniformity constraint im-
posed here upon f5. This is naturally in keeping with the fact
that BLO games are games of perfect information, while the
games by means of which the UNI interpretation was given,
were games of imperfect information.

In terms of the games Ga(p, M,d) we then define truth
resp. falsity:

o M Ef o pld <

there exists a w.s. for Héloise in G4(p, M, d).
o M50 ¢ld —=

there exists a w.s. for Abélard in G 4(¢, M, d).

In Corollary 4.1.8 below, it is proven that the logic IFML][k]
is determined, i.e. in all k-ary modal structures M and at all
points d € dom(M) any formula ¢ of IFMLIk] is in the above
sense either true or false. This result is only to be expected, be-
cause by a well-known theorem of von Neumann & Morgenstern
(1944) every two-player zero-sum game of perfect information
is determined.?

2 Cf. von Neumann & Morgenstern (1944), Ch. 15, esp. Sect. 15.6,
where it is proven that every zero-sum two-player game of perfect informa-
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It is obvious that the semantics for a formula ¢ € MLIk],
given in terms of the semantical game G4(p, M, d) as above,
coincides with the recursive semantics for ML[k] given in Sec-
tion 2.1: if o € MLIk], then

M ET old] <= M = eld].

We now move on to prove that under BLO interpretation,
IFML[k] is not more expressive than ML[k]. This will estab-
lish that BLO interpretation does not yield to the slash sign
“/” a meaning which would serve to distinguish the expressive
powers of IFML[k] and ML[k].

Remark 4.1.2 In accordance with our earlier decision
(Sect. 2.1), we restrict our attention in the present thesis exclu-
sively to one-dimensional semantics. However, it should be ob-
served here that the semantic mechanism of backwards-looking
could well be made use of in connection with many-dimensional
modal logics. Providing and studying the BLO semantics
of many-dimensional IF modal logic might be especially natu-
ral in view of analyzing natural language discourse involving
both tense and modalities. And in fact there is a natural def-
ition of many-dimensional IF modal logic under which this
logic can be shown to have a greater expressive power than the
corresponding many-dimensional basic modal logic.> Proving
this is not difficult, but remains outside the scope of the present
thesis. (Basically it suffices to define an appropriate notion of
bisimulation, and construct bisimilar models of which one does

tion is “strictly determined”. The property “strictly determined” implies
determinacy in the sense relevant here, i.e. it implies that in any such game
one of the players has a winning strategy. See Appendiz B of the present
thesis for details.

3 This semantics requires that the transitions be made componentwise.
Hence when a move in time-dimension is made, for example, the co-ordinate
for possible worlds remains the same.
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and the other does not make the English sentence “John be-
lreved that Mary will turn up” true, given that “will” is read
indezically.)

4.1.1 The expressive power of IFML under
BLO

It will first be shown that the languages ML[k] and IFMLIk]
have the same expressive power over the class Cp of all k-
ary modal structures in the sense that these languages are
weakly embeddable to each other relative to Cp: if L£,L' €
{MLI[k],IFML[k|}, £ # L', for each p € L there is ¢ € L’
such that for all M € C;, and all d € dom(M):

M ):ELO pld] = M ):ELO Y[d].

Only then do we proceed to prove that IFMLIk] is determined
relative to Cx under BLO interpretation, which finally helps us
to infer that indeed ML[k] and IFML[k] are strongly embed-
dable to each other: for every formula ¢ € IFML[k] there is
a formula 1) € MLIk] such that for all M € C; and all d €
dom(M):

(M ):ELO vld] and M |=§Lo Y[d]) or

(M EgLo ¢ld] and M =5 o ¥[d]);

the direction from MLI[k] to IFML[k| being trivial.

We write L for falsum and T for verum. Letting (M,d)
be an arbitrary pointed modal structure, we first observe the
following:

o M ’:Jr O1.. .OnflJ_[d] <~
for some ¢ € {1,...,n — 1} up to which Héloise is able
to make her moves (if any) without choosing (FAIL, %), it
is Abélard’s turn to move, and he is forced to reply by
(FAIL, x).
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o M ):+ 01 . ..On_1T[d] <~
for all i € {1,...,n — 1}, the player whose turn it is to

move is able to reply by a move other than (FAIL,x), or
else M =1 Oy...0,-11]d].

Lemma 4.1.3 Assume ¢ € ML[E|, and let n > 1. For all

jged{l,...,n}, let O;j € {Cy;,0;5} for some i < k. Then for
all pointed k-ary modal structures (M, d) we have:

ME 001 Op1(On/{L,... .0 — 1})pld] =
M ):J'_ (01 ..Op_1L vV (Ongo ANOp... On_lT))[d].

Proof. The result is immediate from the semantics of the
operator (O, /{1,...,n—1}). =

Lemma 4.1.4 Assume ¢ € MLIk], and let n > 1. Let W C
[1,n — 1] be given. Now write W as the disjoint union W =
VUV, where

V=[K+1n—1 and V' C[1,K — 1]

for K such that 0 < K <n—1and K ¢ W. (Such a K is
uniquely determined.) Then for all pointed k-ary modal struc-
tures (M, d) we have

MEL 001...0,-1(0,/W)pld] <=
M Lo O1 ... 0n1(On/V)ld].
Proof. Notice that by the definition of K,
maz({0,1,...,n—1}\W) = K = maz({0,1,...,n — 1}\V).

The result then obviously follows. m
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Theorem 4.1.5 Let the language IFMLI[k| be interpreted by
BLO interpretation. Then the expressive powers of ML[k] and
IFML[k] are the same over the class Cy of arbitrary k-ary
modal structures.

Proof. Trivially ML[k] is weakly embeddable to IFMLk]
over C. For the other direction, let ¢ € IFML [k], M € Cy,
and d € dom(M) all be arbitrary. We must find a
formula 1, € MLI[k], satisfying that

M ’:ELO pld] = M ’:ELO Yold].

Now if in particular ¢ € ML[k], then we may clearly take 1,
to be ¢ itself. Assume, then, that ¢ is of the form
O1...0,-1(0,/W)x with x € ML[k]. The set W C [1,n — 1]
can be written as W = V' UV, where V = [K + 1,n — 1] and
V' C[1,K —1] for a unique K with 0 < K <n—-1, K ¢ W.
Hence, by Lemma 4.1.4, we have that

M ELL O1-..0p1(0y/W)pld] <
M EL o O1...0k0k 41 ... On1(0, /[K+1,n—1])p)[d].
But now, by Lemma 4.1.3, we may conclude that
M ELo O1...OkOk41 ...
On-1(On/[K + 1,n = 1])p)[d] <=
M Efio O1...Ox(Oky1 ...

Op_1LV (Ongo ANOgqq... On,l‘l‘))[d]
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Hence we can choose 1), :=
O1... OK(OK—H co.Op_1L Vv (Ongp ANOgyq... OnflT)).
Hereby the proof is completed. m

Definition 4.1.6 We define recursively for every IFML[k]
formula ¢ its dual A(p) as follows:

e A(p) = —p and A(-p) =p
° Alp A1) =Alp) VA(Y)

o Alp Vi) =Alp) NA(Y)

o A(Cip) =iA(p)

o A((Ci/W)ep) = (Li/W)A(p)
o A(Oip) = ©iA(p)

o A((@i/W)p) = (Ci/W)A(p)

Derivatively the operators <; and [J; are said to be duals
of each other, symbolically

[ ] (Oz)d = Dz
o (0)% =<5

Given a block Oy ... Oy, of operators, we write (O . ..O,,)? for
the block of their duals:

(O1...0m) = (01)%...(0n)%
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Corollary 4.1.7 IFMLIk| is determined relative to BLO in-
terpretation.

Proof. Let ¢ € IFMLIk], M € C;, and d € dom(M) all be
arbitrary. If ¢ € ML[k], there is nothing to prove, as it is well
known that ML[k] is determined. In particular, it is known
that ¢ € MLIk] is not true in M at d iff A(p) is true in
M at d.

Consider then the case that ¢ = O;...0p,—1(0,/W)x with
x € MLk]. Assume M ¥ o ¢[d]. We wish to show that then,
positively, M =5 o ¢[d]. Now by the proof of Theorem 4.1.5,
we have for the ML[k] formula ¢, :=

O;... OK(OK+1 ..Op_1 LV (OnX A OK_|_1 ... On,lT))

that M ET ¢,[d]. Hence, by the aforementioned basic fact
about ML[k], we have that M =1 A(¢,)[d].
Then consider the formula

A(@) = (01 .0, 1)*((0)/W)A(x) € IFMLK.

Assume for contradiction that A(p) is not true in M at d.
Then we have for its ML[k] translation

Vagp) = (Or.. 'OK)d((OKH e On71)dJ_ V
(0n)*A(X) A (O 41 - .. Op—r)4T))

(which is provided by the proof of Theorem 4.1.5) that
MET YA [d], and so M =T A(pa(y))[d]. Therefore both of
the two formulae A(t,) and A(1a(,)) are true in M at d:

° A(ww) = (01 e OK)d((OK_H ce On_l)dT VAN

(On)?A(X) V (Ok41 - - On1)L));
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® A(a(p) =01...0k(Ok41---Op1T A
(OnxVOg41...0n-11)).

Now since A(1pa(,) is true in M at d,
O1...05k((Og41...0,1T ANOpx) V
(Ok41---0p1TAOk41...0p-11))

is also true in M at d, and hence so is
A(A(y)) =
O1...0xk((Og41-.. 0y 1 TAORX)VOky1...0p_11).

Thus both A(A(vy)) = v, and A(t),) are true in M at d,
which is impossible (by the aforementioned basic fact about
MLIk]). We may conclude that A(y) is true in M at d.

Any w.s. of Héloise in Ga(A(p), M,d) is a w.s. of Abélard
in Ga(p, M,d). So M =510 ¢ld]. =

Corollary 4.1.8 IFML[k| and ML[k] are strongly embeddable
to each other over the class Cy, of all k-ary modal structures rel-
ative to BLO interpretation of IFML[k].

Proof. If ¢ € ML[k], it is its own translation in IFML[k].
So suppose ¢ € IFML[k], and let M € C and d € dom(M)
both be arbitrary. Theorem 4.1.5 guarantees that there is a
formula 1, € MLI[k] such that

M )ZELO pld] = M )ZELO Yyld].

But this means, in view of the determinacy of ML[k]| and Corol-
lary 4.1.7, that the following holds:

M Egro ¢ld] == M E o ¢ld <=
MEL o Vold] <= M 5o Ypld).
This completes the proof. =
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4.2 Algebraic Interpretation of IF Tense
Logic

Here we will give an alternative semantics for IFTL[1], to be
called its algebraic interpretation (ALG). Theorem 4.2.7 be-
low will show that under this interpretation, IFTL[1] and its
traditional counterpart TL[1] (i.e. Priorean tense logic of past
and future) have the same expressive power over the class A4
of all linear temporal structures equipped with a commutative
group operation.

4.2.1 Priorean tense logic

By the definition given in Section 2.1, the basic tense logic
TL[1] is syntactically the basic modal logic ML[2] of two modal-
ity types, with operators written as <&, 0, &~1, 07!, Its seman-
tics being relative to unary temporal structures, this logic is in
fact what can be termed Priorean tense logic (or PTL).* In
PTL, the symbols F, G, P, H are customarily used for the op-
erators &, 0, &~ 07!, respectively, and the same convention
is adopted when discussing TL[1], as well as when considering
the corresponding IF tense logic, IFTL[1]. Furthermore, the
number (1) of temporal modality types is not mentioned in this
connection; only the name “IFTL” for the IF counterpart of
PTL is used.

So the formulae of PTL are generated from a class prop
of propositional atoms and negations of propositional atoms by
the rules of closure under conjunction (A), disjunction (V), and
application of any of the (unary) tense operators F, G, P, H.
The semantics for PTL is defined in terms of temporal struc-

4 This is the basic tense logic of past and future considered by Prior,
see e.g. Prior (1967, pp. 34-8). In present-day literature, this logic is often
referred to simply as Propositional Temporal Logic.
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tures M = (T, R, ), where T is a non-empty domain, R is an
irreflexive and transitive binary relation on 7', and b is a func-
tion assigning a subset of T' to each propositional atom from
prop. (Explicitly indicating the converse of R in the structure
is refrained from when discussing PTL.) The formulae of PTL
are evaluated relative to points ¢ € T'. The semantics for PTL
is obtained from the definition of ML[k] semantics given in Sec-
tion 2.1. We may simply refer to the semantics thus obtained
as the standard semantics of PTL.

We call IFTL[1] simply IF tense logic. Hence we notice
that IF tense logic is the class

PTLU{O;...0,—1(0n/W)p:p € PTL,n > 1}

where:

e for all j € {1,...,n}, O; is one of the tense operators
F;,G;, P, H;. 5

e WC[l,n—1].
4.2.2 The intuitive import of algebraic interpreta-
tion: a special case
Any set T equipped with an operation o : T'x T — T is a
group, if
(1) o is associative, i.e. for all x,y,z € T,
xo(yoz)=(roy)oz;

(2) there is e € T such that for all x € T,
(eox)=(roe)=c¢;

5 j is here an index identifying an occurrence of an operator from
{F,G,P,H}.
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(3) for all x € T, there exists ! € T such that

(zozx™H=(@lox)=e.

An element e € T given by (2) is necessarily unique, and is
called the identity element of the group (T,0). Also, for any
x € T in a group there necessarily exists precisely one element
x~! € T as provided by (3). For a given x, this 27!
the inverse of x. Further, if the operation o is commutative,

is called
ie. if
(4) forallz,y € T, (xoy) = (y 0 x),

then the group (7, 0) is said to be Abelian.
Now consider the structure

M = (R7 <7 h? +)’

where (R,+) is the additive Abelian group of the reals and
(R, <,b) is a unary temporal structure, (R, <) being the or-
der of the reals by magnitude. We call the structure M an
arithmetic model of IF tense logic. (With the terminology of
Subsect. 4.2.3 below it will be an instance of a general algebraic
model.)

We fix for each occurrence of a tense operator O; (this oc-
currence being identified by the subscript i) a unique relativized
(metalanguage) quantifier @; := Q(O;) as follows:

° Q(E) = (31‘2' > 0)
e Q(Gy) == (Vz; > 0)
e QP):=(3x; <0)

o Q(H;) := (Ya; < 0)
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Let M = (R, <,h,4) be as above. Relative to such a par-
ticular model, the algebraic interpretation of IFTL is defined
as follows.

o M Efplt] <=t €h(p)
o M ES —plt] <=t ¢h(p)
o MEL (0 AY)[t] <= M EL olt] and M X ¢[t]

e The clause for disjunction (V) is analogous to that for
conjunction.

o M} F(p)[t] < there is ' > 0 such that

M oft + ¢
e ML G(p)[t] <= forallt/ > 0: M =} o[t +1].
e M =1 P(p)[t] <= there is t' < 0 such that

MEL olt+1].
o M EH H(p)[t] <= forall ' < 0: M} o[t +].
Finally, for the proper IFTL formulae, we put:
e MELO1...0,_1(0n/W)p[t] <=

Q- Qu: MEL @lt +Yicqi (i) = Xiew (i)

The letter “A” in the subscript of the symbol “=" simply stands
for algebraic.

Example 4.2.1 Let us consider the arithmetical models M =
(R, <,b,4) and N = (R, <,b’,+), where in particular b(p) =
{=1} and H/'(p) = {0} (see Figure 16).
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{E} R . @ .

-1 0 0
M N

FI1GURE 16

Then consider evaluating the formula ¢ = G1(P2/{1})p in
(M., 0) resp. (N,0). Now 1 is true in M at 0, since indeed
for every positive real number r there is a negative real number
s such that p is true at (0 +r+s—r) =s. Forallr, s can
be chosen to be —1. By contrast, 1 is false in N at 0, because
there is a real number v > 0 such that for all reals s < 0, p is
false at (0+7r+s—r) =s. In fact, any positive real number is
such an r; p is false at all s < 0.

The following results, concerning the expressive power of

IFTL, hold.

Fact 4.2.2 Let M = (R,<,b,+) be an arithmetic model of
IFTL, and put N = (R,<,h). The standard and algebraic

semantics coincide for PTL on arithmetical models, i.e. for
all p € PTL and all t € R,

N ET olt] <= M E4 olt].

Proof. See below the proof for the general -case
of M = (T,<,h,0), where (T,0) is any Abelian group
(Lemma 4.2.6). m

In the following theorem it is shown that IFTL and PTL
are weakly embeddable in each other over arithmetical models.

Theorem 4.2.3 Let M = (R, <,bh,+) be an arithmetic model
of IFTL. PTL and IFTL have the same expressive power
relative to M in the sense that for each formula ¢ € PTL
(resp. ¢ € IFTL) there is a formula ¢ € IFTL (resp. ¢ €
PTL) such that for all t € R, M 4 o[t] iff M =L pt].
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Proof. Because PTL is a subclass of IFTL, it is trivial
that PTL is embeddable in IFTL. (By Fact 4.2.2 the algebraic
semantics can be used for both logics.)

Let then ¢ € IFTL and ¢t € R be arbitrary. If in partic-
ular ¢ € PTL, there is nothing to prove, as ¢ counts as its
own translation. So suppose that ¢ = O;1...0,_1(0,/W)x
for some y € PTL. Let 41,...,i. be the list of the
elements of {1,...,n — 1}\W in their order by magnitude.
(Here ¢ = 0 iff Card(W) = 0.) Then, by definition,

Oil---OiC

is the sequence of operators obtained from the sequence
O1 ...0p_1 by erasing from it all operators O; with ¢ € W and
keeping intact the relative order of the remaining operators
(namely those O; with i € {1,...,n — 1}\W). We claim that
the PTL formula

Y =0y ...0;,0nx
is a required translation for (. Indeed, trivially
ME} olt] =
Q1 Qn: M EL X+, my (@) =Y iew (2i)] <= °
Qir - Qi Qu: MEL X[+ Yicqr, ()] =
MES O, ...0;, Onxlt].
Hence the proof is completed. m

IFTL and PTL are even strongly embeddable in each other
over arithmetic models, as will be witnessed by Corollary 4.2.9
below.

6 This equivalence is not generally valid but holds here because (R, <)
has no extrema. See the proof of Theorem 4.2.7 below for details concerning
the general case.
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Remark 4.2.4 We observe that ALG interpretation gives the
same semantic effect as simultaneously requiring independence
in the sense of BLO interpretation ( “independence concerning
accessibility relations”) and independence in the sense of UNI
interpretation (logical independence, or freedom of specified pri-
ority scopes). In effect, this interpretation, on arithmetic mod-
els, means simply removing altogether those operators that are
referred to by the independence indication.

Let us move on to consider the evaluation on general alge-
braic models.

4.2.3 General algebraic interpretation

We say that a structure M is a general algebraic model of IF
tense logic, if

M = (T7 <7 h’ 0)’
where:
e (T,<) is a non-empty linear order;
e (T,<,b) is a unary temporal structure;

e (T,0) is an Abelian group.

We write A for the class of all general algebraic models of
IFTL. For all t € T, define

o FUT,:={t':(tot)>t};

o PAST,:={t':(tot) <t}
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We observe the following.

Fact 4.2.5 For arbitrary t,t' € T we have:
(a) t <t < thereis an s € FUT; such thatt' = (t 0 s).

(b) t/ <t <= thereis an s € PAST; such thatt' = (t o s).

Proof. (a) (=) Assume t<t. Now ¢t =
(totHot)=(to(ttot)). Hence (t7! ot) € FUT;.
(«<=) Assume there is an s € FUT; such that ' = (¢t 0 s). But
s € FUT; means that t < (t o s). Hence t < t’. Case (b) is
proven similarly. m

The semantics fixes for each occurrence of a tense operator
O; a unique relativized (metalanguage) quantifier Q; = Q(O;).
The definition essentially depends on the index ¢ < w by which
the operator token O; is identified.

o Q(F) := (3a; € FUT,, )
° @(Gi) = (VLL’Z € FUTxi—l)
° Q(Pl) = (3.%’1 € PASTxlfl)

o Q(H;) := (Vx; € PAST,, )

The general algebraic interpretation of IFTL is then given
relative to general algebraic models as follows.

e The clauses for (negated) propositional atoms as well as
those for conjunction and disjunction are defined just as
above in the special case of the models (R, <, b, +).

o M 1 F(p)[t] <= there is ¢’ € FUT, such that

MES ¢lt o ]
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M EL G(o)[t] <= for every t' € FUT;, M =} ¢[t o t'].

M E] P(p)[t] < there is t' € PAST; such that

MES ¢lt o t).

M =1 H(p)[t] < for every t' € PAST;,
MEL ¢lt o t'].

ML 01 ... 0n_1(On/W)glt] <=
Q1...Qn: t =z and

M ER o[t 0 Oieqn,..ny(2i) 0 Osew (1) 7

We now prove some basic properties of the expressive power
of IFTL under the general ALG interpretation.

Lemma 4.2.6 Let M = (T,<,h,0) be a general algebraic
model of IFTL, and put N' = (T, <,h). The standard and the
general algebraic semantics coincide for PTL, i.e. for all p €
PTL and alit € T: N E} o[t] <= M ] o[t].

Proof. The lemma is proven by induction on the com-
plexity of the PTL formula . It suffices to consider the
cases for formulae of the forms F, P, GG, H, as the other cases
are immediate. So assume inductively that for all ¢t € T:
N ELelt] <= M ES olt].

Let t € T be arbitrary. Now if N' =} F(¢)[t], then there is
t' >t such that N E} ¢[t'], and so, by the inductive
hypothesis, M =% ¢[t/]. But then M E} F(p)[t], because
there is s € FUT; such that ' = (¢ o s). Namely,

7 The generalized notation Oie 1 (x;) has the following obvious meaning:
for a finite set I of indices, let i1, ..., 4% be the list of its elements in a fixed
order. Assuming that an element z; for each i € I is defined, O;er () is
identified by definition with the following element: (((zi;, 0 i,)...)0 Z4,).
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(to( ot™h)) =t >t

and so (' ot~ !) € FUT,. Hence we may take s = ( o t™!). In
the other direction, if M =1 F()[t], then there is s € FUT;
such that M =} ¢[tos]. So, by the inductive hypothesis,
N =} ¢ltos]. But then N =} F(p)[t], since (t 0 s) > . (This,
again, is because s € FUT;.) The cases for G, P, H are dealt
with similarly. =

Letting M € A and t € dom(M) be arbitrary, we recall
from Subsection 4.1.1 the following facts that are most conve-
niently expressed in game-theoretical terms:

e M = Op...0,-11]t] < for some i € {1,...,n — 1}
up to which Héloise is able to make her moves (if any)
without failing to choose, it is Abélard ’s turn to move,
and he’s forced to fail in choosing.

e MEO;...0,1T[t] <= for all i € {1,...,n — 1}, the
player whose turn it is to move is able to reply without
failing to choose, or else M |= Oy ...0,_1L]t].

We proceed to prove the following theorem of bidirectional
weak embeddability:

Theorem 4.2.7 PTL and IFTL have the same expressive
power relative to the class A of all general algebraic models
of IFTL.

Proof. There is nothing to prove concerning the direction
from PTL to IFTL. It will now be shown that IFTL is em-
beddable in PTL over the class A. Let ¢ € IFTL,
M e A and t € T all be arbitrary. The only case that really
needs to be checked is the case for ¢ = O;...0,-1(0,/W)x
where x € PTL, because the result is trivial for the subclass
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PTL of IFTL. Let then i1, ...,%. be the list of the elements of
{1,...,n — 1}\W in their order by magnitude. We claim that
the PTL formula

P = (01 ...Op_1L Vv (011 ... OicOnX ANOqp... On_1T))

is a required translation for ¢.

Observe that this general translation ¢ is slightly more com-
plex than the formula Oy, ... O;, Oy X, shown above in Theorem
4.2.3 to be a translation of O; ... 0,_1(0, /W) relative to the
models M = (R, <, h,+). The reason is that the frame (R, <)
of such models M has by definition no extrema (no minimum,
no maximum). On the other hand, for linear orders, it is pre-
cisely the extrema that potentially cause a situation where one
of the players of a relevant semantical game cannot make a
choice. Hence in general — when nothing special is assumed
of the frame (7, <) of the algebraic model except for its being
linear — the translation must, when it comes to the size of the
domain of the model, be precisely as demanding as the formula
being translated. This would not generally be the case if the
plain O;, ... 0; O,x was offered as a translation in the general
case as well. For linear orders with at least one end-point (out
of the two possible), such a ‘translation’ would then not always
be correct.

We have:

ME} ¢lt] =
Q1...Qn: t =29 and

M EL X[t 0 Oieq,. ny(xi) 0 Ojew (z;1)] <=8

8 By associativity and commutativity of o.
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@Q1...Qpn: t =20 and

MEL X[t 0 Oieqr, . npw ()] <=7
(Q1...Qn: t =120 and M =} L[t]) or
(Q1...Qn: t=1z9 and M =1 T[t]) and
Qi Qi Qn:t=m;_1 and

MEL X[t 0 Oicqr, oy (21)]) =
MEL(O1...0p1 LV

(Oi1 .. OiCOnX A 01 e On_lT))[ﬂ.

This completes the proof. m

From the last lines of the proof, notice that it is not possible
to erase the metalanguage quantifiers Q; with i € W from the
block @1 ...Q, and obtain

Qiy -+ Qi Qu: M EL X[t 0 Oieqrnpw ()]

as a statement equivalent to M 7 ¢[t]. Even though these
quantifiers bind no metalanguage variable in the metalanguage
expression

(t 0 Ozeqa,..npw (i),

they serve to assert something concerning the model, because
they are relativized quantifiers. They make assertions about
how times can be chosen in relation to other times (in terms of
the relation appearing in the relativizing clause of these quan-
tifiers). A very simple example is provided by the formula

¥ Here the metalanguage quantifiers with indices in W bind vacuously.
But as they are relativized quantifiers, they cannot simply be erased.
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Py F5/{1}p evaluated at the minimum of the domain of the
algebraic model M = (w, <,h,+). The formula P F5/{1}p is
true in M at 0 iff

(Jz1 < 0)(Fz2 > 0): M EY pl0 + 21 + 29 — 21].

Accordingly, the formula Py F5/{1}p is not true in M at 0,
because there is no natural number smaller than 0, unlike what
the truth-condition of the formula P; F»/{1}p however requires.
On the other hand, the judgment

(32 > 0): M =] p[0 + 2]

is perfectly true, provided that h(p)\{0} # @.

We say that a formula ¢ € IFTL is false in M at t under
the algebraic interpretation, if the dual A(p) of ¢ satisfies the
following:

M4 AP)IE-

(Dual is understood in the sense of Definition 4.1.7 above.) We

write
M, olt]

to indicate the falsehood of ¢ in this sense. Now, using The-
orem 4.2.7, it is a straightforward task to prove the following
analogues of Corollaries 4.1.8 and 4.1.9.

Corollary 4.2.8 IFTL is determined relative to the algebraic
interpretation, i.e. for all p € IFTL, all M € A and all t €
dom(M), either M = ¢[t] or else M = ¢[t]. R
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Corollary 4.2.9 IFTL and PTL are strongly embeddable to
each other over the class A of all algebraic models relative to
ALG interpretation of IFTL, i.e. for every formula ¢ € IFTL
(resp. ¢ € PTL) there is a formula ¢ € PTL (resp. 9 €
IFTL) such that for all M € A and all t € dom(M):

(M B} ol and M 5 41) or

(M 3 olf] and M =3 0[1). m






Chapter 5

Tense Operators and
Linguistic Theorizing
about Tense

In Section 2.1 above we have adopted the convention of viewing
tense logic as a special sort of modal logic. More specifically, a
basic modal logic MLIk| (resp. an IF modal logic IFML[k]) is
considered to be a temporal logic when (i) each modal operator
O has an inverse O~! interpreted by means of the converse R~!
of the accessibility relation R in terms of which the semantics
of O is given, and (ii) all accessibility relations employed by
the semantics of the logic have the properties irreflexivity and
transitivity, which are held as minimal assumptions about the
nature of the relation Farlier than among points in time.
Various logics have been formulated in the literature under
the heading “temporal logics”, not all of which are tense logics
in the sense given above: by no means have all of these log-
ics been special cases of basic modal logics ML[k]. The logics
studied by Kamp (1968), Gabbay (1981), Halpern and Shoham
(1986), Venema (1990), and Moszkowski (1986, 1994) are all

201



202 5. Tense Operators and Linguistic Theorizing

cases in point. The logic of the binary connectives Until and
Since of Kamp (1968) is not an instance of any modal logic
ML[k], as all modal connectives in ML[k| are unary. In gen-
eral, the tense logics with d-dimensional n-ary connectives of
Gabbay (1981) are potentially much richer semantically than
MLIk] (and of course their formulae cannot be written syntac-
tically in any ML[k] for n > 2). Halpern and Shoham (1986)
define an interval tense logic, whose expressive power is studied
by Venema (1990). The logics ML[k]| with k& > 2 evaluated over
modal structures of dimension 2 may indeed be seen as interval
logics. However, the natural way of presenting the semantics for
the interval logic of Halpern and Shoham requires defining the
accessibility relations as 4-ary and not binary, as is done with
ML[2]. Changing ML[k] so that it can instantiate Halpern and
Shoham’s logic would not be difficult: since the modal connec-
tives of this logic are in any case unary, changing the definition
of the accessibility relations would suffice. Moszkowski’s Inter-
val Tense Logic also uses intervals in its semantics. His logic is,
however, definitely far from ML[k]: it has quantifiers, a binary
modal operator chop (;) and the unary operator chop-star (*).
In particular, a formula ¢* says of an interval that it has a finite
partition into such subintervals that ¢ holds at each of them.
This operator * is thus not even first-order definable.!

In order to call a logic temporal, it is indeed perfectly suf-
ficient that the structures employed as its models have proper-
ties that are structurally similar to possible properties of time.
A structural property customarily associated with time is lin-
earity. On the other hand, it would not be particularly far
removed to model (experienced) time by means of a branching
time structure (a tree), where the branches in the direction of
the future represent alternative future continuations of a fixed

! For a logic reminiscent of Moszkowski’s Interval Tense Logic, cf. Hella
& Tulenheimo (2003, in progress).
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past. A variety of other properties may be considered, such
as discreteness, density, Dedekind-completeness, the existence
or non-existence of extrema, well-orderedness, and cyclicity.?
From the viewpoint of tense logic it is not necessary to fix once
and for all a particular class of temporal structures that would
then be studied.

In the present thesis we have understood the syntax of tem-
poral logics in the narrow sense defined above, and will continue
to do so. This type of temporal logics has a very close con-
nection to Priorean tense logic (cf. Subsect. 4.2.1), so close
indeed that ML|[2] with the operators <, 00, ¢~ and O~ (or,
more colloquially, F', G, P and H), evaluated relative to binary
modal structures M = (D, R, R~ b), actually coincides with
PTL.

5.1 The Character of Prior’s Tense-Logic

Arthur Prior (1914-1969) is generally viewed as the founding
father of modern temporal logic. In Past, Present and Future
(pp. 1, 8-10) he mentions John N. Findlay as a person who
could be regarded as the initiator of what was to become tense
logic.3 Prior refers specifically to Findlay’s article “Time: A

2 For the definitions of these properties of relations, see Appendiz A.
For literature related to studying different temporal structures, see Gab-
bay, Hodkinson & Reynolds (1994); for cyclical time, see esp. Reynolds
(1994). For a short discussion on different “conceptualizations” of time in
connection with tense logic, see Gamut (1991, pp. 35-7). Gamut points
out that for tense logic, it is natural to proceed by choosing semantics —
fixing a temporal structure — and only then go on to study the syntactic
principles (such as the validity of formulae) the semantics gives rise to.
This is in contradistinction to the case of modal logic of alethic modalities,
where our understanding primarily pertains to valid schemata, and not to
the relations between possible worlds.

3 According to @hrstrgm & Hasle (1995, p. 167), in 1934 Findlay was
Prior’s teacher in logic and ethics, at Otago University in Dunedin, New
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Treatment of Some Puzzles”, published in 1941 in the Aus-
tralasian Journal of Psychology and Philosophy, where Findlay
points out (p. 233) that our linguistic conventions regarding
tenses are so well worked out that ingredients exist for a cal-
culus of tenses. He suggests (footnote 17, p. 233) that such
a calculus should indeed have been included in the develop-
ment of the modal logics of his time.* Prior mentions (1967,
p. 10) that to the best of his knowledge, he himself was, in
the early 1950s, the first to actually attempt to produce a cal-
culus of tenses of the type Findlay had meant. Historically,
temporal notions have been a source for logical studies at least
since Aristotle’s famous ‘Sea Battle’ passage in De interpreta-
tione 9. Characters appearing in this tradition are Diodorus
Cronus (a Megarian logician active around 300 B.C.), Thomas
Aquinas (1225-1274), Paul of Venice (c. 1368-1429), Jean Buri-
dan (c. 1300-1358) and William of Ockham (c. 1285-1347).5
Prior himself was well informed about the history of logic; he
was particularly interested in Aristotle, Diodorus Cronus and
the scholastic philosophers.

Prior used the term “tense-logic” (spelled thus) as a general
term designating all the various systems of temporal logic that
might be designed for purposes of representing temporal dis-
course logically. All of the tense-logical systems he formulated

Zealand.

4 The development of modern modal logic can be seen as having started
with the work of Clarence Irving Lewis on strict implication, published as
Chapter V of his A Survey of Symbolic Logic (1918). Apparently Lewis
felt he was rather alone in his interest of modal notions in logic. He ends
the chapter on strict implication with (p. 339): “We shall not further
prolong a tedious discussion by any special plea for the ‘propriety’ of strict
implication as against material implication and formal implication. Anyone
who has read through so much technical and uninteresting matter has
demonstrated his right and his ability to draw his own conclusions.”

5 For a simple overview of the logic of temporal notions during antiquity
and the Middle Ages, see Part 1 in Qhrstrgm & Hasle (1995).
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shared one basic insight, namely the particular way in which
he chose to deal with time in logic: treating temporality as it
appears in natural language by means of operators in logic.

The different systems of tense logic that Prior formulated
were typically motivated by philosophical or other ‘real-life’
concerns. They were not systems of logic for their own sake,
but on the contrary Prior’s intention was to employ tense logics
as tools for analyzing the use of language involving temporality,
for characterizing phenomena and defining notions involving
time. In Past, Present and Future Prior discusses, for example,
the so-called Master Argument of Diodorus Cronus,® and the
seeming incompatibility of foreknowledge and indeterminism,
and he considers how to characterize structural properties of
time such as circularity, discreteness, density and Dedekind-
completeness by tense-logical means.

Prior’s approach to tense logic is axiomatic (proof-
theoretic). A particular tense-logical system is defined by laying
down its axioms, and its study thereafter consists of deducing
theorems from these axioms. The semantics employed is an
intuitively understood semantics, not a formal one along the
lines of contemporary model-theoretic semantics. Of course,
semantics still has a crucial role for Prior, since he is primarily
interested in what tense-logical formulae serve to say or repre-

5 The Master Argument states that the following three propositions
cannot all be true: (i) Every proposition true about the past is necessary;
(ii) An impossible proposition cannot follow from (or after) a possible one;
(iii) There is a proposition which is possible, but which neither is nor will
be true. Diodorus himself thought that (iii) was false, and that (i) and (ii)
were true. To properly reconstruct the argument, one would have to decide
how “proposition” in (ii) is to be understood, and whether in (iii) “follows”
is to be read logically or temporally. For an introductory discussion of the
Master Argument, see Qhrstrgm & Hasle (1995, pp. 15-32). For further
discussion, see Mates (1953), Geach (1955) and Prior (1967, esp. pp. 17,
32-5).
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sent, not in the formulae themselves as syntactic objects.

Prior was very explicit about the relative nature of systems
of tense logic; he was not constructing the ‘ultimate logic of
tenses’, but various alternative tense-logical formalisms. He
writes (1967, p. 59):

“The logician must be rather like a lawyer — not
in ... [the sense of] reasoning less rigorously than a
mathematician — but in the sense that he is there
to give the metaphysician, perhaps even the physi-
cist, the tense-logic that he wants, provided that
it be consistent. He must tell his client what the
consequences of a given choice will be ... and what
alternatives are open to him; but I doubt whether
he can, qua logician, do more. We must develop, in
fact, alternative tense-logics, rather like alternative
geometries.”

Hence his views agree with the way axiom systems are naturally
viewed in modern mathematics: any consistent set of axioms
is a proper subject of study, whose interest is proportionate to
the properties of the models it has.”

The theoretical background on the basis of which Prior
made his choice of introducing temporality to logic via opera-
tors, instead of any other mechanism, as well as the theoretical
meaning and import of this choice for Prior himself, are by no
means self-evident from the logical systems that he formulated,
or, for that matter, from the present-day expositions of propo-
sitional temporal logic that can be read in textbooks on modal
logic. But Prior had his reasons for his preference for operators.

7 Hence there is no prejudice to choose our axioms so that a previously
known piece of reality will become a model — perhaps up to isomorphism
a unique model — of these axioms.
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Actually, his motivation was a rather sophisticated, philosoph-
ical one. The way he formulated his tense-logic was thus by no
means arbitrarily chosen. It is of some interest — systematical
as well as historical — to briefly sketch how Prior’s thoughts
on this subject arose. It turns out that it was the particular
way in which Prior came to understand the character of tempo-
ral sentences that is ultimately responsible for the form Prior’s
tense-logic was to take: having initially thought that all token-
reflexivity must be removed from natural language temporal
sentences to make them possible objects of logical study, Prior
came to think of sentences whose distinct occurrences may have
distinct truth-values as capable of complete meaning.

5.1.1 Two types of temporal sentences

In what follows, we shall consider utterances (tokens) of sen-
tences as primary truth-bearers. Sentences are seen as types,
admitting of indefinitely many ‘realizations’, namely tokens or
utterances of these sentences. For instance, the sentence “It
rains” uttered on December 1, 2002, in Helsinki, and the sen-
tence “It rains” uttered on June 1, 1900, in London, constitute
two utterances of the same sentence.

Indicative sentences may be divided into two disjoint classes
according to whether the statement that can be made by utter-
ing such a sentence is or is not fully determined without having
specified its context of utterance. Those whose assertive force is
determined may be termed eternal sentences, and those whose
utterances vary in the statement they make according to the
context, we may here simply term non-eternal. Hence, for ex-
ample, the sentence “It rains on June 1, 1900, in the immediate
vicinity of Sacre Ceeur in Paris” is eternal (given that “rains”
is construed as atemporal), while the sentences “It rains” and
“I am here now” are not. All utterances of an eternal sen-
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tence have the same truth-value, while distinct occurrences of
a non-eternal sentence may vary in truth-value. (The latter is
not necessarily the case with non-eternal sentences, however,
as witnessed by sentences like “I am here now” or “I exist”.)
W. V. O. Quine (1908-2000) points out on various occasions
that any indicative sentence can be eternalized, i.e. made eter-
nal by objectively indicating persons, times and places spoken
of in the sentence, and cancelling the tenses of the verbs oc-
curring therein (see e.g. (1960), esp. pp. 193-5, 208; (1970),
pp. 13-4). In particular, any actual utterance of a non-eternal
sentence of course serves to determine specific values for its
context-dependent parameters.

Let us move on to consider instances of eternal and non-
eternal sentences, and whether such sentences specify the rele-
vant time-parameters absolutely, or leave them for the context
to specify. Consider sentences of the following two types:

(1) p (now),

(2) p at to,

where ‘p’ represents an indicative sentence of some natural lan-
guage. Further, (1) involves the word ‘now’ tacitly or explicitly;
in (2), to is a time-point specified independently of the moment
the sentence is uttered.® For simplicity we may assume here
that there appears no indexical references to places or persons
in either type of sentence. In both (1) and (2) the sentence
represented by ‘p’ may contain any tenses.

Sentences of type (1) are token-reflexive. By the terminol-
ogy introduced above, they are non-eternal sentences: what
they state is sensitive to the time of their utterance. By con-
trast, sentences of type (2) are tied to a chronology, i.e. to

8 Hintikka discusses these two types of sentences in his book Time and
Necessity (1973, Ch. 8), in connection with his investigation into Aristotle’s
‘Sea Battle’ passage in De Int. 9.
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a time scale whose ordering is available absolutely, instead of
being given by reference to a particular perceptual situation or
in some other perspectival way. Hence in the above terminol-
ogy these sentences are eternal sentences (up to their possibly
containing tenses of verbs).

As instances of temporal sentences of these two types, we
may consider sentences

(1') Socrates is speaking (now)

(2") Socrates is speaking at noon, December 1, 400 B.C.

The utterance of (1') may well be false at dawn, December 1,
400 B.C., while its utterance might be true at noon the same
day. It is not necessary that the distinct utterances of a sen-
tence of type (1) have the same truth-value. On the other hand,
if some utterance of (2') is true, all its utterances are true. This
is precisely because this sentence speaks of an individual, ab-
solutely (non-perspectively) specified time. What sentence (2')
states is completely indifferent to the context of its utterance;
the fact that something happened or did not happen at a given
time, or that something is or is not true at a given time, is it-
self omnitemporally true. In (2'), the objective time-reference
temporally anchors the evaluation of the constituent sentence
‘Socrates is speaking’ in such a way that the time of utterance
of the resulting complex, (2’), becomes completely immaterial
to the truth or falsehood of that utterance.

Observe, however, that if a sentence of type (2) involves
tenses, generally there are past or future times at which its
utterance results in an ungrammatical sentence.’ For example,
unless it is accepted that ‘is’ in (2') be construed as atemporal,
(2') is grammatical only when uttered on December 1,

¥ Hintikka (1973) takes up this objection on p. 152 when discussing the
distinction between sentences of type (1) and type (2).
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400 B.C. Before that date we should really utter “Socrates will
be speaking at noon, December 1, 400 B.C.”, and after that date
the grammatical formulation would be “Socrates was speaking
at noon, December 1, 400 B.C.” — instead of (2').

The distinction between sentences of types (1) and (2) is
most easily appreciated by construing the verb forms in type
(2) sentences as atemporal. Otherwise, the existence of a differ-
ence between these types of sentences can in any case be seen
from the fact that the grammaticality vs. ungrammaticality of
sentences of type (2) varies with time, whereas it is truth vs.
falsity of sentences of type (1) that varies with time.

The distinction between sentences of the above types (1)
and (2) proves to be important for Prior’s formulation of tense
logic. Prior (1967, pp. 15-6) writes that for him, before 1949,

“it was not only correct but also ‘traditional’ to
think of propositions as incomplete, and not ready
for accurate logical treatment, until all time-
references had been so filled in that we had some-
thing that was either unalterably true or unalter-
ably false.”

We are not going to discuss here the potential metaphys-
ical connotations related to Prior’s use of the word “proposi-
tion”, but simply take him to be concerned about finding the
proper object of study for a logic of temporal discourse. Such
objects might reasonably be eternal sentences, or sentences of
type (2).1° In the above quote Prior expresses that he had
thought that precisely eternal sentences — which as such do

10" Strictly speaking, Prior’s quote only requires that the sentences he
used to think of as proper objects of a logic of temporality be devoid of
temporally indexical expressions (and of tenses of the verbs); he does not
discusse the possibility that they involve indexical references to places and
persons.
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not contain contextual references to times — would count as
proper objects of a logical study of temporal language.

In 1949 Prior read P. T. Geach’s critical notice in Mind
concerning Julius Rudolph Weinberg’s book on the thought of
Nicolaus de Ultricuria (c. 1300-1350). There, Geach (p. 244)
points out (as the only major flaw in Weinberg’s understanding
of his subject due specifically to the six hundred years of history
separating them) that

“[sJuch expressions as ‘at time ¢’ ... are out of place
in expounding scholastic views of time and motion.
For a scholastic, ‘Socrates is sitting’ is a complete
proposition, enuntiabile, which is sometimes true,
sometimes false; not an incomplete expression re-
quiring a further phrase like ‘at time ¢’ to make it
into an assertion.”

As observed by Prior (1967, p. 17), Geach (1955, p. 144)
repeats this comment relating to the classical view on proposi-
tions when reviewing Benson Mates’s book, Stoic Logic (1953),
saying:

“..1it is quite unhistorical of [Mates| to write:
“Diodorus usually predicates necessity of what are
in effect propositional functions. ... Consider the
function ‘Socrates dies at ¢’ 7 (p. 39). The Sto-
ics neither had a pair of terms answering to the
Peano-Russell distinction between a proposition
and a propositional function, nor gave any example
that could suitably be translated by an expression
like “Socrates dies at t.” ... Moreover, to introduce
this distinction would spoil the Stoics’ examples in
propositional logic. For they held, e.g., that
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“If Dion is alive, then Dion is breath-
ing; but Dion is alive; therefore Dion is
breathing”

was of the form “if p, then ¢; but p; therefore ¢.”
But this form is not to be found in:

“For any t, if Dion is alive at ¢, then Dion
is breathing at ¢; but Dion is alive now;
therefore Dion is breathing now.”

May not the Stoics well have thought that,
though the truth-value of “Dion is alive” changes at
Dion’s death, the sentence still expresses the same
complete meaning (lecton)? Arguments that might
be produced against this view of propositions are
not sufficient evidence that the Stoics did not hold
it.”

Here Geach wishes to point out that historically it has
not been thought that sentences with time-references explicitly
filled out — eternal sentences, sentences of type (2) — would
serve to express complete sentential meanings. By contrast, it
can be thought that tensed sentences like “Dion is alive” do in
effect express such complete meanings (lecta), as Geach sug-
gests the Stoics in fact had thought. Sentences in the same
spirit as “Dion is alive” would even be “Dion was alive” and
“Dion is going to be alive tomorrow”, in general non-eternal
sentences containing no explicit references to absolutely speci-
fied times.

Geach resorts to the notion of proposition in his comments,
but as to the purely linguistic object of the study of temporal
logic, what could we learn of options, from what he says? If
not eternal sentences, then on the basis of Geach’s view what
could be the proper linguistic items for our logical study? The
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nearest linguistic analogue to a proposition corresponding to
a sentence S would actually be a function specifying for any
context ¢ of utterance of S the truth condition of S relative
to c. Namely, whatever a lecton correlated with a non-eternal
sentence S precisely is, it must, in any event, serve to determine
for all occurrences of .S the statement that the occurrence serves
to make.!!

This would mean, then, that sentences of type (2), or eter-
nal sentences, do not have the privilege of possessing ‘complete
meaning’ in a reasonable sense. By contrast, sentences of type
(1) possess such a meaning, despite the fact that distinct oc-
currences of these latter sentences may serve to make distinct
statements. So these sentences as well may be taken as full-
fledged objects of logical study. As Geach points out, the Sto-
ics and scholastics went even further, and preferred studying
sentences without explicit references to times.

Prior (1967, p. 16) describes the effect Geach’s remark
(1949) had on him:

“Geach’s remark sent me to the sources. The
‘Socrates is sitting’ example was not only in the
scholastics but in Aristotle, who says that ‘state-
ments and opinions’ vary in their truth and false-
hood with the times at which they are made or held,
just as concrete things have different qualities at dif-
ferent times.”

The moral Prior drew from Geach’s remarks was quite rad-
ical. He decided to start working exclusively on sentences of
type (1), i.e. the token-reflexive temporal sentences Geach had

11 Speaking of complete sentential meanings as functions from contexts
to truth-conditions is certainly anachronistic from the Stoics’ viewpoint,
but does not prevent the description from being accurate.
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explained as possessing a complete meaning even though what
they assert varies contextually.

It is illuminating to realize that the shift in Prior’s under-
standing of what sort of sentences admit of complete meaning
(or, the shift in his understanding of the notion of proposi-
tion) — influenced by Geach — made him formulate tense logic
in the way he did. The same approach is still repeated time
and again in at least most contemporary studies on temporal
logic conducted under the general heading of modal logic. Due
to Prior’s newly acquired understanding of sentences having a
complete meaning, he thought tense logic should not be for-
mulated for sentences with explicit references to times on an
objective chronology. By contrast, he decided instead to for-
mulate his calculus in terms of tenses — formalized as operators.

5.1.2 The idea of tenses as operators

It is characteristic of Prior’s tense-logical formulae that syntac-
tically they are devoid of any mechanism of referring to times.
By contrast, one could easily imagine using first-order logic to
speak about time, making use of individual variables having
time-points as their values. Prior’s way of dealing with tempo-
ral discourse is decidedly not the latter.

The insistence of any Priorean system to refrain from ex-
plicitly speaking of times leads to a variety of problems when
one seriously attempts to make use of such a system in the anal-
ysis of natural language.'?> From a more principal viewpoint,
a relevant difference between Prior’s tense logic and first-order
logic is as follows. If (Qz)¢p is a first-order formula, the quanti-
fier Qx binds all appearances of the quantified variable, x, that

2 'Such problems — related, among other things, to natural language ex-
pressions explicitly referring to, or quantifying over, times — are discussed
e.g. in Kamp & Reyle (1993, pp. 491-8, 611-89).
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occur free in the formula . Semantically this means that when
evaluating the formula (Qx)¢, once the variable x gets a value
in the interpretation of the quantifier )z, all occurrences of x
that are free in ¢ thereby get the same value in that evaluation.
Hence the mechanism of binding, as this appears in first-order
logic, allows making use of a value — once fixed to a quanti-
fied variable x in an evaluation — arbitrarily many times in the
binding scope of the corresponding quantifier Qx. This is not
the case in PTL. Consider, for instance, the existential future
tense formula F'¢ in PTL, with the first-order translation

Jzq(zo < 1 A STxo/:pl (¥)),

where ST, (p) is the standard translation of the PTL formula
. One way of grasping the semantical effect of the operator F
is by observing that the ‘bounded quantifier’

E|£L’1({L‘0 <xT1AN.. )

binds the free occurrences of z1 in ST/, (), but crucially
this formula ST,/ (¢) cannot have such free occurrences of
x1 in arbitrary locations — by no means can it be an arbitrary
first-order formula with one free variable, x1. The bounded
quantifiers that can appear in FO translations of PTL formu-
lae are of the forms

Jz;(R(zi—1,2;) A ...) and Va;(R(xi—1, ;) — ...),

where R € {<,>}. And in fact all free occurrences of
in ST, /., (¢) are necessarily outside the binding scopes of
all bounded quantifiers appearing in ST,/ (¢); further, x
can only appear in the bounding clause(s) “R(z;—1,x;)” of the
quantifier(s) immediately logically subordinate to the quantifier

3%1(%0 < xT1 AN .. )
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Concretely, these severe restrictions on the binding effects
of tense operators mean that at most two states need to be con-
sidered at any step in the evaluation of a tense-logical formula,
and that such states are precisely those where one is reached
along an accessibility relation from the other. Formally this
is seen directly from the fact (see Remark 2.1.3) that the first-
order translations of PTL formulae can be written with a total
of two variables (free and bound). At a stage in an evaluation
game for first-order logic, by contrast, a player must in general
take into account assignments

rgrH—— ag,...,Tp —— ag

for all variables xq, ..., x; interpreted at previous stages in the
relevant play of the game. There are no restrictions to the
positions in which variables can appear in formulae of first-
order logic, and in particular any subformula not yet evaluated
may contain all of these variables. By contrast, the semantics of
PTL, and of basic modal logics in general, is characteristically
in terms of local transitions — the moves in evaluation games
are only concerned with two states at a time.

Simply put, tense operators are quantifiers semantically,
but not syntactically, as they lack syntactically manifest vari-
ables.'® This fundamental difference between modal logics and
abstract logics (such as FO) makes the question of trying to
express fragments of abstract logics by means of a modal logic
— i.e. the question of expressive completeness of a modal logic

13 This can be seen precisely as a major motivation for the Hybrid Logic
of Patrick Blackburn and his associates: in this logic, specific symbols
called ‘nominals’ in a sense do the job of individual variables. (Nominals are
really propositional atoms that are by definition true at precisely one state,
i.e. they are a kind of global unique description.) For a short introduction
to Hybrid Logic, see e.g. Blackburn & Tzakova (2000); Blackburn, de Rijke
& Venema (2002, pp. 434-45).
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with respect to an abstract logic — a challenging one.!?

From what we noted in the previous subsection directly
above, we are now in a position to understand the reasons for
Prior’s insistence on not wishing to mention times in his formal-
ism. It is not at all accidental that he formulated his logic in
a manner which from the beginning ruled out the possibility of
referring explicitly to times from an absolute time scale. Prior
himself describes, in Past, Present and Future (1967, p. 17)
how he came to think about his particular choice for formal-
ism. In the following excerpt he refers to Benson Mates’s Stoic
Logic (1953), in which Mates discusses, among other things,
Diodorus Cronus’s views on alethic modalities.

“Mates, in attempting to formalize the thought of
Diodorus, made free use of expressions like ‘p at
time t’. (Geach [1955], reviewing Stoic Logic...
naturally did not miss this, and amplified his re-
marks on Weinberg); I wondered if it could be done
some other way, and tried writing F'p for ‘It will be
that p’, by analogy with the usual modal Mp for ‘It
could be that p’.”

Prior continues by explaining how his motivation at that
point — at a stage where no tense logic as yet existed — was
not only to fill in the gaps in the Diodorean Master Argument
(to which Mates’s 1949 article “Diodorean Implication” had
already drawn his attention) but also something much more
general. He wanted to know the particular system of modal
logic that the Diodorean definition of possibility, necessity and
impossibility would yield (i.e. the definition of possible as that
which is or will be true, necessary as that which both is and

4 For studies in expressive completeness of modal logics, cf. e.g. Kamp
(1968), Gabbay (1981), Venema (1990), Hodkinson (1994), Hella & Tulen-
heimo (2003).
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always will be true, and impossible as that which both is and
always will be false). Prior (1967, p. 17) closes his description
of the opening act in the development of tense logic:

“Definitions [such as the Diodorean ones for modal-
ities] alone, however, yield nothing at all; to get a
logic of the possible from its definition in terms of
future, one must also have a logic of futurity. The
construction, or at least the adumbration, of a cal-
culus of tenses could not wait much longer.”

In view of the quotes just made, it hardly remains doubtful
that Geach’s point in his notes (1949, 1955) about the his-
torically accurate understanding of sentences expressing ‘com-
plete meanings’ had initiated an important change in Prior’s
thinking: Prior became interested in sentences whose distinct
occurrences may serve to make distinct statements, sentences
containing no explicit reference to times on an absolute time
scale. He decided to base the logical treatment of temporality
on tenses — formalized as operators — instead of thinking in
terms of sentences of the type ‘p at time ¢’.

Prior thereby adopted an internal view on temporality, a
viewpoint on time from within. The British philosopher John
McTaggart Ellis McTaggart (1866-1925) is well known for hav-
ing pointed out that there are two ways of viewing temporal
order: time as forming (i) an A-series, and time as forming
(ii) a B-series. McTaggart explains that the A-series is the or-
der of positions in time as past, present and future, whereas the
B-series is the order of positions in time as earlier or later (Mc-
Taggart, 1968 [a], pp. 9-10; McTaggart, 1968 [b], pp. 110-1).
As Geach (1979, p. 90) and C. D. Broad (1976 [b], pp. 289-91)
both separately point out, it is also useful to make a distinction
between A-characteristics and B-characteristics.'® Being past,

15 Not least because the terminology thus yielded is more rigorous than
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being present, being future, being yesterday and being ten years
ago are A-characteristics: they are all characteristics (qualities
or relations) that can only be ascribed to entities from a fixed
point of view which is taken to be the present. By contrast,
being earlier than some event or being later than some event,
lasting an hour and being ten years apart in birthdays are B-
characteristics: possessing such characteristics is not relative
to any fixed now-point. The idea behind the distinctions is
obvious: the A-series and A-characteristics are indexical and
perspectival by nature, while the B-series and B-characteristics
are absolute.

Hence we see that the way in which Prior decided to con-
sider time for the purposes of his formalism was indeed from
the vantage point of McTaggart’s A-series. The alternative he
chose to reject would have been an external, sub specie aeter-
nitatis conception of time, i.e. the one according to McTag-
gart’s B-series. Descriptions in terms of the B-series would
have been naturally carried out in first-order logic. The option
Prior chose was the modal-logical one — the view describing
first-order structures from within.

From the logical point of view, it is indeed illustrative to
think of the choice between the A-series conception of time

the talk about a series, notably in the case of the A-series. As Geach
(1976, p. 90) puts it: “[A]s McTaggart presents this idea [of an A-series]
it is not at all clear why he speaks of a series, or what is supposed to
be the ordering relation of the series.” Obviously pastness, presentness
and futurity only partition the class of temporal positions in three slices
(PAST, {now}, FUT) but do not order it to any extent. McTaggart’s own
wording, however, recognizes quantitative variations in pastness and futu-
rity (see e.g. 1968 [a], p. 10), and the order McTaggart means is obtained
by first separately ordering the past slice and future slice according to their
decreasing degree of pastness resp. increasing degree of futurity, and then
defining the desired order as the ‘ordered sum’ of (PAST, <), ({now}, @)
and (FUT, <). This maneuver of course requires that the A-characteristics
of being past (resp. future) to a greater degree be available.
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vs. the B-series conception as leading to a logical treatment
in terms of tense logic resp. first-order logic, in such a way
that in both cases we are talking about the same sort of struc-
tures (namely, first-order structures with an arbitrary number
of unary predicates and one binary predicate). In the first-order
logical setting we have a God’s eye view on the structure: with
one glimpse we are able to detect it from without and express
connections between the remotest parts of this structure by
first-order formulae. By contrast, the tense-logical viewpoint
puts us in a particular location in this structure, and we are
never allowed to ascend out of the structure to see a picture of
the whole: instead, we must move within it and only make use
of local resources, so to speak. The B-series view allows for the
full machinery of describing time as a given totality, while the
A-series view restricts our possibilities to perspectively given
resources.'® Be it noted that if one would wish to carry out
time-references — perspectival time-references — under the A-
series view, there would be no conceptual problems involved.
At stake, would be precisely the perspectival mode of identifi-
cation, the one employed in indexical (deictic) reference. This
option is not available in the system of PTL we are discussing,
but could be incorporated in it.!”

Prior meant to consider type (1) sentences, i.e. sentences
of the type “p now”, and leave it to the context to take care
of temporal specification. Truth was thereby temporally rela-
tivized: two non-simultaneous utterances of one and the same
sentence could differ in truth-value. The idea is that an occur-

16 For a characterization of modal logic as providing an internal view-
point on first-order structures, contrasted with the external point of view
offered by first-order logic, see Blackburn, de Rijke & Venema (2002, esp.
pp. xii-xiii).

17 In fact, introducing nominals as in Hybrid Logic can be seen as pre-
cisely such an incorporation.
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rence of a tense operator shifts the temporal context attained
in an evaluation process so that relative to the resulting new
context, a token-reflexive “p now” is evaluated, where, by def-
inition, “now” refers to the most recent context formed. More
formally, under this construal, e.g. for a future tense sentence
Fyp, we have:

Fo now) is truelt] <= there is a time t' later than ¢t
®

such that (¢ now) is true[t'].

To sum up, Prior — influenced by Geach’s comments on tem-
poral sentences capable of complete meaning — formulated his
tense-logic so that it does not make use of explicit time-reference
relative to an absolute time scale. Instead, temporality is repre-
sented in his logic by operators, which mimic tenses of natural
language sentences; more generally, operators can be seen as a
logical means of dealing with temporal token-reflexivity. The
semantics of tense operators is essentially connected to the fact
that the sentences under consideration yield differing temporal
statements (and, in general, differing truth-values) depending
on when they are uttered. Prior’s work can naturally be seen
as modal-logical by nature, but it was by no means self-evident
— as his own, above-cited considerations concerning the na-
ture of ‘temporal propositions’ make clear — that temporality
found its way into Prior’s writings as a phenomenon studied by
modal-logical means.

5.2 Operators vs. Quantifiers

We observed above in Subsection 5.1.2 that the basic dissimilar-
ity between first-order quantifiers and modal operators is pre-
cisely in their respective ability or disability to serve as bases for
repeated use of an individual once introduced in the evaluation
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process. An individual interpreting a quantified variable can
be referred to indefinitely in the binding scope of a quantifier;
but when one state is reached from another in accordance with
the semantics of a modal operator, there no longer remains a
mechanism for referring back to the former.

There is also an important similarity between quantifiers
and modal operators. In fact, the semantics of operators shares
the two-fold semantic character of quantifiers — the two features
of quantifiers that Hintikka has stressed in so many words in
his recent writings. One of these features is that quantifiers
range over a class of values, and the other stems from what
different combinations of logical priorities among quantifiers
serve to express, namely functional dependencies between the
values of the variables associated with these quantifiers. (See
e.g. Hintikka, 1996, Ch. 3; Hintikka, 2002 [b]; Hintikka &
Sandu, 1996.)

In the usual formulation of first-order logic, the class over
which quantifiers range — i.e. the class of individuals employed
for interpreting quantified variables — is the whole domain of
the model employed. In a perfect analogy, we can say that a
modal operator O ranges over a class of values, namely the class
of those objects (states, worlds, times) that are possible choices,
in a semantical game, for the player whose move is mandated
by the operator O in question. The range of a modal operator
in a modal-logical formula is more strictly connected to the
location of that operator in the formula than is the range of a
quantifier in a first-order formula. For instance, if the formula

L1 Ool30u ¢
is evaluated in a modal structure M = (D, R, ) at d, then

OJ; ranges in the set {z; : R(d, z1)}
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and

g ranges in the set U {z2: R(x1,22)}.
R(d,z1)

By the sorts of ranges that modal operators then have, modal
operators are reminiscent of bounded quantifiers in a suitable
formulation of first-order logic. In first-order logic, employing
such bounded quantifiers would mean restricting the class of
values from which the value of the quantified variable, associ-
ated with a given quantifier, can be picked out.'®

The other feature of quantifiers is perhaps less obvious, or at
least has not historically been recognized with the same vigor
with which the ‘ranging over’ feature has been observed. As
Hintikka has time and again pointed out, the real gist of quan-
tifiers cannot be fully appreciated when quantifiers are consid-
ered in isolation from each other. The interplay of quantifiers
allows expressing functional dependencies between the quanti-
fied variables. For instance, a formula

(1) Va3y S[x, y]

serves to make the claim that a witness individual b for y can
be chosen as a function of a value a of x in such a way that
the choice satisfies S[a, b]. This is precisely what the equivalent
second-order Skolem-form of (1) says:

(2) 3fva S[z, f(x)].

8 In bounded quantification, quantifiers are assumed to be of the form
(Qz € S) and the value of z must be chosen from the subset S of the
domain. A language-relative formulation of such boundedness is obtained
by considering quantifiers of the form (Qz : ), where ¢ is a formula of the
abstract logic considered (e.g. of FO) in which z occurs free. The choice
a for x in the evaluation then has to satisfy (M,a) | ¢(z). (Whether
additional free variables are allowed in ¢ has to be settled separately.)
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The functional dependencies among variables are in effect
expressed in first-order logic by the relative ordering of the
priority scopes of quantifiers binding these variables. In tradi-
tional first-order logic (FO) the priority scope relation becomes
necessarily asymmetric and transitive (cf. Sect. 2.1 above).
But obviously there are conceivable functional dependencies
which cannot be expressed by such scope patterns, and in any
event it would seem to be systematically advantageous to allow
arbitrary combinatorially possible patterns of logical priority
among the quantifiers in first-order formulae. When this idea
of arbitrary patterns of priority scopes is incorporated into first-
order logic, the result is the IF first-order logic of Hintikka and
Sandu. For instance a Henkin quantifier formula

Vrdy
(3> VZEIU R[%Z/y 27 U]

which is not expressible in FO, can be expressed in IF first-
order logic as

(4) VaVz3y/{z}Fv/{z,y} Rlz,y, z,v].

Observe that as the only reasonable criterion for a logic
being first-order is that its quantifiers range over individuals
only, (3) = (4) in particular is a perfectly good instance of a
first-order formula — despite the fact that it has no equivalent
in FO. Its second-order equivalent Skolem-form is:

(5) fdgVaVz(Rlzx, f(x, 2), z,9(x, 2, f(x, 2))]| A
Va2V ([x =o' — f(x,2) = f(o,2)] A
[(z = 2" = g(x, 2, f(x,2)) = g(2', 2, f(2, 2))]).

Now it is as true of modal operators as it is of quantifiers
that an essential part of their semantics is constituted by their
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interplay with other logical operators. This interplay is medi-
ated by the relative priority scopes among operators, and the
way in which priority scopes appear in traditional modal logic
(in ML[E]) is equally restrictive from a general point of view
as is the way in which relative patterns of logical priorities are
manifested in FO. To enable expressing a wider range of pat-
terns of relative priority scopes among modal operators than
can be expressed by ML[k], we have defined the modal log-
ics IFML[k] and their uniformity interpretation. So the lesson
we have learned from the formulation of IF first-order logic —
that the way in which the priority scopes of quantifiers relate
to each other is a key constituent of their semantics — is gen-
eralizable as such to the case of modal logic, and the IF modal
logics (IFML[k]) we have formulated offer a technical tool for
investigating the import of this semantic feature in the case of
modal logic.

5.3 Critique of Tense Operators in Lin-
guistics

We now pose the following two questions, and will endeavor to
answer them in the light of the modal-logical tools now at our
disposal:

QUESTION 1: Are there instances of natural language
tenses acting logically as operators?

QUESTION 2: Considering the problems of PTL in an-
alyzing natural language temporal discourse, is there a
natural way of overcoming these problems by making only
small ‘ideological’ changes to Prior’s formalism?

Our aim in the present section is to show that the an-
swer to Question 1 is affirmative, notwithstanding comments
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to the contrary by many contemporary linguists, and that the
‘backwards-looking operators’ interpretation of IF tense logic
provides a viable tool for showing how to effect a small change
in PTL, so that the resulting logic is able to cope with many
problems that PTL itself cannot deal with. One such change
is the possibility of formally distinguishing between functional
and relational dependence in tense logic: an operator is func-
tionally dependent on another when lying in the latter’s pri-
ority scope, while the interpretation t' of an operator O’ is
relationally dependent on the interpretation ¢ of a syntactically
superordinate operator O, when t’ is according to the seman-
tics of the logic obtained from ¢ along the accessibility relation
associated with O.

Now whatever the properties are of tense logics in describing
temporal structures — however good, however bad — this does
not by itself in any way serve to make a linguistically relevant
connection between tense logics and natural language tempo-
ral discourse. Both formal temporal logics and fragments of a
natural language (say, English) involving temporal expressions
in fact make statements concerning time. It is even probable
that at least some of the things that can be said by such a frag-
ment of English can be captured in a given temporal logic,
and that at least a part of the formulae of the temporal logic
can be given a natural reading in English. Insofar as only the
things expressed interest us — not the means of expressing them
— we may of course treat in particular a given fragment of a
natural language by means of a formal logic of our choice. Tra-
ditional first-order logic surely expresses most of the temporal
properties that the man (or woman) in the street manages to
formulate in the course of an everyday discourse — and IF first-

19« Captured” in the sense that for each sentence of that fragment of
English there is a formula of the temporal logic in question that expresses
the truth-condition of that English sentence.
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order logic can do much more. If for some reason and for some
purpose of expression not even the latter would suffice, the class
of abstract logics will not be exhausted: the choice of formalism
remains free.

Linguists, however, by definition are interested in the means
of expressing things. Accordingly, in order for a temporal logic
to be interesting to a linguist, this logic would have to have a
closer — a syntactic — connection to natural language, in addi-
tion to being able to capture the truth-conditions of sentences
in a fragment of natural language temporal discourse.

For the purposes of our discussion, a crucial factor about
PTL is that its syntax contains operators, by means of which
the temporal content of the formulae of this logic is expressed.
Insofar as PTL is applied to natural languages, it treats natu-
ral language tenses as operators. Admittedly, PTL treats any
other natural language temporal constructions, that it is able
to treat at all, likewise by means of operators (e.g. temporal
adverbs such as “always”), but theoretically the most contro-
versial — and genetically the most original — aspect of PTL is
that it deals with natural language tensed sentences by means
of operators. So a crucial criterion for PTL’s usefulness in
linguistics — or indeed for the usefulness of any logic utilizing
the idea of tenses as operators — would be that natural lan-
guage tenses in fact act as operators. For if they do not, the
‘isomorphism’ between natural language itself and its putative
presentation in terms of PTL (or the like) — which is needed
for a linguistic analysis — is hopelessly missing.

In fact, PTL and the idea of tenses as operators is not
currently popular in linguistics. A good number of renowned
linguists very clearly oppose construing tenses as operators.
Among the fiercest critics are:2° Miirvet Eng (1986, 1987), Nor-
bert Hornstein (1981, 1990), Hans Kamp & Uwe Reyle (1993),

20 The order of the names is alphabetical.
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as well as Barbara Partee (1973, 1984). There, unanimity is
found as regards the insufficiency of PTL. Other critics who
view the Priorean approach to natural language tense as unmo-
tivated or otherwise problematic include?! Johan van Benthem
(1977), David Dowty (1982), Alessandra Giorgi & Fabio Pianesi
(1997), as well as Hans Kamp (1971).

I will now move on to discuss the critique of tenses as op-
erators put forward by Norbert Hornstein. A near-complete
survey and discussion of the state of the art in the linguistics of
tense is impossible within the confines of this thesis, therefore
our attention will focus on one particular linguist. I have chosen
to discuss Hornstein, as his arguments bring out many issues
that make it easier to understand why linguists oppose tense
operators in the first place. We will eventually see more clearly
what linguists really wish to reject, when rejecting tenses as

operators.22

5.3.1 Hornstein’s background

Hornstein’s critique of tenses as operators is presented in his
book As Time Goes By (1990). However, this is already antic-
ipated in his survey article “The Study of Meaning in Natural
Language: Three Approaches to Tense” from 1981.

The framework within which Hornstein writes is influenced
in particular by Hans Reichenbach’s (1891-1953) views on nat-
ural language tense and in general by Noam Chomsky’s theory
of language.

In his Elements of Symbolic Logic (1947) Reichenbach pre-
sented a short, original account of tense phenomena in natural
language, and it is this account that Hornstein (1990) elab-

21 Again in alphabetical order.
22 1 am indebted to Mr. Atle Grgnn for his very useful remarks and
criticisms on an earlier draft of Sect. 5.3.
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orates upon in a very detailed fashion. Reichenbach’s basic
insight was to characterize tenses, as they in fact appear in
natural languages, in terms of three temporal parameters S, E
and R — or point of speech, point of event and point of ref-
erence. Given a tensed sentence, the parameter S represents
the time of utterance of the sentence. E corresponds to the
temporal position, relative to S, of the event spoken of by the
sentence. (Hence E does not represent a particular, identified
point of time in the same way S does.) The role of the point
R is perhaps prima facie the least easy to grasp, but by the
same token its introduction to the theory is usually held to be
quite an original idea from Reichenbach. R is customarily said
to mediate the relationship between S and E; it represents a
further relative temporal position, one whose temporal relation
is determined with respect to both S and E. Its intuitive import
is to be a ‘point of view’ or ‘vantage point’ on the relation be-
tween S and E; semantically its importance and reality equals
theirs.?? A Reichenbachian tense consists of a specification, in
terms of the relations earlier than (<) and contemporaneous-
ness (=), of the relative positions of the points S and E on the
one hand, and the points R and E on the other.?* Formally,
then, a Reichenbachian tense becomes a relational structure

({S7E7 R}7 <7 :))
which determines for both of the pairs (S,R) and (R,E) precisely

23 Hintikka (1982, p. 10) suggests that Reichenbach’s “mythical reference
time” is uncalled for if a game-theoretical approach to natural language
semantics is assumed.

24 The Reichenbachian idea can be formulated in a variety of slightly
differing ways. The most obvious would be to take a Reichenbachian tense
as any quintuple (4, X, B, Y, C), where (A, B, C) is any permutation of the
three-element set {S,E,R}, and X and Y are both binary relations from
the set {<,=}. Hence a maximum of 24 = 3-2-2-2-1 such tenses is yielded.
The formulation presented in the text above is the one Hornstein prefers.
For a discussion, see Hornstein (1990), esp. pp. 87-90, 108-11.
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one of the relations <, > or = as the relation whose member
the pair is. (The relations <, > and = will hence be disjoint
and jointly exhaustive of the set {(S,R), (R,E)}.) To reiterate,
it must be realized that while in a given speech situation S is
fixed as the moment of speech, E and R actually indicate gener-
alizations, much like an existential quantification of a variable
does in a formula of first-order logic: their theoretical role is to
mark a temporal position relative to S, not a fixed location on
a time scale.

For the purposes of our discussion here, we need not dwell
on the particulars of Reichenbach’s views on tense, or on the
details of the neo-Reichenbachian theory of natural language
tenses put forward by Hornstein (1990). The reasons Horn-
stein gives for his dismissal of tenses as operators (ibidem, esp.
pp. 142-6, pp. 166-8) are largely independent of his particular
theory of tense. It is only when he presents his positive view
of the nature of tenses — a view according to which tenses are
adverbs (ibidem, esp. pp. 168-79) — that he actually resorts
to the general neo-Reichenbachian framework within which he
works.

We now move on to consider whether the grounds on which
Hornstein wishes to discard tenses as operators in linguistic
theorizing are as conclusive as he takes them to be. We have
just seen above, in Section 5.1, how Prior was led to formalize
tenses as operators in his logic of tenses. Genetically, it is really
the Priorean view that Hornstein opposes.?®

It is a separate question how Prior himself would have re-
acted to Hornstein’s positive neo-Reichenbachian account of
the nature of tenses — for at least considering them as ad-
verbs is not to make temporal sentences into eternal ones in
the sense of tying them once and for all to an absolute time

25 Hornstein (1990, footnote 30, p. 223) explicitly mentions Prior’s cen-
tral role in theories categorizing tenses as operators.
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scale, which was ultimately what Prior wanted to avoid in his
formalism. On the other hand, Prior (1967, pp. 12-5) indeed
criticizes Reichenbach’s ideas on natural language tense by in-
dicating that the Reichenbachian trichotomy is unfortunate, as
Reichenbach’s theory should, says Prior, for systematical rea-
sons really allow any number of reference points, whence ulti-
mately the sharp distinction between the point of speech and
the point(s) of reference would become unnecessary and mis-
leading. It is Prior’s opinion that due to the impossibility of
generalizing Reichenbach’s account, Reichenbach’s theory had
in fact been more of a hindrance than a help in formulating a
logic of tenses (ibidem, p. 13).

Whatever one’s taste for the Reichenbachian theory of tense
is or may be, there still exists the systematical issue of tenses
as operators, and I will argue that the basic idea of tenses as
operators cannot be refuted as easily as Hornstein makes us
believe. Of course, at this point we have to be clear in our
use of terminology, to avoid tilting at windmills. The crucial
word here is “operator”. And more generally, it is of crucial
importance to be clear about what one’s logic of time or theory
of tenses is designed for. There are at least three viewpoints
on logical approaches to temporal discourse, which might be
dubbed (in want of better terminology) as (i) logic-internal,
(ii) descriptive, and (iii) linguistic.

Understood logic-internally, a logic such as PTL is a po-
tential object for mathematical study and presupposes nothing
whatsoever about anything empirical. In particular, its being
called a logic of tenses can be understood purely heuristically,
and no discoveries about, say, features of natural language verbs
bear any conceivable relevance to its status as a logical formal-
ism.

As a matter of fact, it is obvious that Arthur Prior did
not intend his tense-logic exclusively for mathematical use, but
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also wished to employ its expressive resources for studying real-
life claims and inferences involving temporality. His objects of
study included the Diodorean Master Argument and Aristotle’s
‘Sea Battle’ passage in De Interpretatione 9. Such intended
cases of application naturally move the focus from the logic-
internal view of PTL to its descriptive function. In the de-
scriptive approach the empirical attracts some interest. Char-
acteristically, what is important under this approach are the
things expressed and expressible — not the particular way of
doing this. That is, from the solely descriptive vantage point
we would be happy to be able to present the future perfect
sentence

(1) John will have met Mary
for example, by means of Priorean tense operators as
(2) FP(John meets Mary),

while at the same time being absolutely convinced that natural
language tenses — such as those represented by the auxiliary
“will” and the present perfect tense of “have met” — can in no
conceivable way be understood as operators. For, if capturing
the truth-condition of sentence (1) — its content, what it states
— is what interests us, it is of no relevance that the syntac-
tic components F' and P (which are operators) in the logical
formula correspond to nothing with the same character in the
natural language sentence (as by assumption the tenses in the
sentence would not be correctly analyzed as operators). All the
same, a logical formula may have the same descriptive capacity
as a natural language sentence.

It is only in what I proposed to call the linguistic view of
the logic of temporality where the overall correspondence of
the logic employed and natural language is required. Under
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the linguistic viewpoint, what is at stake is finding something
like the logic of natural language. Characteristically, then, it
is not only the things expressed that interest us, but that the
syntax of the logic should allow presenting the actual ‘logical
form’ of the natural language sentences. The idea would be
that if the tenses of verbs are for instance presented by means of
entities of category C in the logical analysis, these very tenses
of verbs really are themselves of category C. It would not
be accepted under this viewpoint that tenses in fact were, for
example, adverbs but still were treated as operators, and not
as adverbs, in the formal analysis.

Hornstein is interested precisely in a linguistic theory of
tenses. He is not building up a logic of temporal discourse at
all, but the logical counterpart of his theoretical account in
terms of Reichenbachian tenses would certainly be an account
where there would have to prevail an ‘isomorphism’ between the
logic used for analyzing and the natural language analyzed, i.e.
his viewpoint on logic would be ‘linguistic’ in the sense specified
above. Now even if Hornstein’s own positive account of tenses
was right — in fact, as an empirical linguistic theory, his theory
of tenses very elegantly treats the data he has chosen to consider
— the systematical reasons he offers for rejecting ‘operator’ as
the correct categorization of natural language tenses are not,
so I will argue, satisfactory. Interestingly from the viewpoint of
the present thesis, it is precisely the deepened understanding
of the nature of tense operators — made easier to attain by the
availability of the different possible interpretations of IF modal
and IF tense logics — that provides us with the requisite tools
for pinpointing certain inaccuracies in Hornstein’s argument
against tenses as operators.
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5.3.2 Hornstein’s argument and a counter-
argument in brief

Hornstein wants to show that natural language tenses are not
operators. His tactics are as follows. He bases his argument on
assuming that tense operators act like quantifiers, more specif-
ically he takes quantifiers as ‘canonical instances’ of operators
(see e.g. (1990) pp. 144-6, 166; (1981) pp. 124, 127, and esp.
pp. 139-40, 145). Secondly, he detects a property of configu-
rations of quantifiers that natural language tenses do not ex-
emplify. He then concludes that tenses cannot be quantifiers,
from which it follows by his basic premise that tenses cannot
be operators either.
He gives essentially the following argument:

[1] Operators and quantifiers have all relevant properties in
common.

[2] There is a structural property P that tenses do not possess
but quantifiers do.

.. Tenses are not operators.

Premise [1] is merely definitional to Hornstein: he assimilates
tense operators to temporal quantifiers, thereby looking upon
them explicitly from the perspective of first-order logic. Strictly
speaking, this view of tense operators is different from that
found in PTL, since in the latter, tense operators, semantically,
are without a doubt quantifiers, but expressly lack syntactically
manifest variables. Hornstein wishes to make tense operators
‘semantically transparent’, and when discussing Hornstein’s ar-
gument below, I shall also treat them as quantifiers.

The structural property P that Hornstein thinks of in
premise [2] is the great freedom in which quantifiers can af-
fect the interpretation of other quantifiers. This can happen,
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on the one hand, via the relations of logical priority among
quantifiers. For instance, in order for the sentence

(3) Va3y S[x, y]

to be true, it must be possible to choose the value of y as a
function of the value of z; in this sense the universal quantifier
Vx affects the interpretation of the existential quantifier Jy.
On the other hand, a quantifier can have a more modest effect
on the interpretation of another quantifier. For example, the
formula

(4) Fz(z <t Ady(y <z A Qy)))

is satisfied in a model only if the value of the quantified variable
y can be chosen to be earlier than the value of the quantified
variable z. The fact that the bounding clause of the ‘bounded
quantifier’

Jyly<zA...)

involves the free variable x, results in the interpretation of this
quantifier being affected by the superordinate quantifier 3x. No
functional dependence of y on x is at stake, but in order for the
formula to be satisfied, the value of y must satisfy a condition
involving a value of x, and in this, completely different sense,
the value of y is dependent on that of x.

Hornstein takes operators to be bounded quantifiers. For
instance, the past tense operator PAST, is in effect the rela-
tivized quantifier

dr(x <xoA...).

Generally, tense operators always involve a relational condition
in terms of a temporal relation (such as earlier than). Logi-
cally, the fundamental factor about any operator is its priority
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scope, and the real import of such priority scopes comes to the
fore as a structural property of the configurations of operators.
Precisely when an operator is logically prior to another, the
latter receives its semantical interpretation as a function of the
interpretation of the former. This corresponds to the kind of
dependence manifested among quantifiers in sentence (3) above.
The dependence of the type exemplified by the above formula
(4) is not logical at all. In this formula, all that is at stake is
a rule regulating a ‘context-shift’: the value of the variable y
must be attained along the relation > from the value of . This
is not a logical requirement but a relational one, expressed in
terms of a relational atomic formula “x > y”.

I will argue that Hornstein fails to make a clear distinction
between relevant temporal and logical relations involved in con-
figurations of tense operators. When evaluating tense-logical
formulae — or natural language sentences involving tenses —
we choose times (or temporal intervals) relative to other times
(or intervals). But for this we do not really need a logic at all.
The real power of logic comes into play when such choices —
be they relative to times as in tense logic, relative to possible
worlds as in modal logic, or not relative to any context as in
first-order logic — are functionally dependent on other choices,
made earlier in the evaluation. Now Hornstein correctly criti-
cizes PTL for not being able to deal with a sufficiently large
variety of patterns of context-shifts in terms of temporal re-
lations, but accuses logic — the practice of presenting tenses
logically as operators — for what in fact is the fault of the con-
ceptually distinct matter of how a particular logic, i.e. PTL
or a version of it formulated in terms of temporal quantifiers,
presents ‘context-shift’ in its formalism. I will show that BLO
interpretation of IF tense logic (IFTL) serves to illustrate that
these two features can well be kept apart.

These considerations attempt, then, to show that the par-
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ticular reasons Hornstein offers for dismissing the idea of tenses
as operators are not conclusive. I wish to go even further, how-
ever. In Subsection 5.3.4 below I will go on to argue that there
are examples of natural language sentences that serve to express
functional dependencies between interpretations of natural lan-
guage tenses. Because operators are entities among which, by
definition, the relation of logical priority only can hold, these
natural language examples require operators of some shape or
form for their analysis. Of course, this is not to say that oper-
ators are a universal solution to all linguistic problems of tense
and temporality, but it does aim at showing that operators can-
not be totally dispensed with in linguistics. And already this is
a strong rebuttal of Hornstein’s position, as well as the position
of any other linguist claiming to be able to do without tense
operators altogether.

I will now proceed to discuss Hornstein’s line of thought in
more detail, beginning with premise [2] sketched above.

5.3.3 Quantifiers vs. tenses

Before we commence, a word of warning is in order. Through-
out the following discussion, the tense-logical formalism em-
ployed is linguistically simplistic in treating temporal events as
temporally indivisible wholes and in its evaluation of tensed
clauses as always being relative to individual time-points. A
linguistically more realistic approach would recognize intervals
and their subintervals in addition to time-points, events spoken
of could have a duration, and clauses could be evaluated rela-
tive to intervals. In refraining from the use of intervals in our
formalism, we make it impossible in particular to deal with as-
pectual features of verbs. However, the critique Hornstein aims
at operators is explicitly intended to apply already at the level
of temporal events that are not further temporally analyzed; in
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As Time Goes By Hornstein wishes to leave out any aspectual
considerations.?%
Premise [2] actually involves three distinct conceptual com-

ponents:

e an empirical observation: the interpretive interactions be-
tween natural language tenses are severely restricted,

e the assumption that in the tense-logical approach these
interpretive dependencies are presented by the priority
scopes of quantifiers,

e the observation that there is great freedom in the forming
of possible patterns of priority scopes of quantifiers.

As to the first component, the following rules (I) and (II)
regulate interpretation of syntactically embedded English
tenses.

(I) Embedded tenses can always be interpreted indexically, viz.
as anchored to the moment of speech, no matter how deep
in a complex clause they are to be found.

As examples of this phenomenon, Hornstein (1990, p. 166)
gives the sentences (5) and (6).

(5) John heard that Mary said that Bill denied that Fred

is in New York.

26 Hornstein (1990, p. 9) writes: “Tense and aspect are no doubt in-
timately related, and interact quite extensively. However, I will assume
that they form separate modules rather than a single inclusive system.
Tenses ... locate the events that sentences represent in time. This is to
be contrasted with the internal ‘temporal contour’ of the event, which is
specified within the aspectual system. Assuming that this widely respected
distinction between tense and aspect is tenable, I will concentrate on the
former.”
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(6) John said that Bill saw the man that is at the next

table.

According to the most natural reading of (5), Fred is in New
York at the moment of utterance of (5); the two intervening
clauses after the past tense matrix clause, both involving a past
tense verb, make no difference to the interpretation of “is” as
anchored to the moment of speech. Similarly, in (6) a past
tense matrix clause is followed by a past tense clause and a
noun phrase; nonetheless according to (6) the man spoken of is

currently, when (6) is uttered, at a nearby table.

(IT) The possibilities for interpreting a tense are polarized: if
a tense is not interpreted indexically, it must be inter-
preted relative to the interpretation of the tense that im-
mediately precedes it syntactically. More exactly, this

interpretive restriction manifests itself as follows:2”

(i) A tense in an embedded clause can only be temporally de-
pendent on the tense of the clause under which it is im-
mediately embedded.

(ii) A tense within a relative clause, regardless of how deeply
embedded the relative clause is, is never temporally de-
pendent on any other tense. In other words, it is always
temporally interpreted relative to the moment of speech.

For an example of (i), consider the interpretation of “was”
in the sentence

(7) Fred knew that John said that Mary was pregnant.

27 Cases (i) and (ii) are stated here as given by Hornstein (1990, p. 166).
For more details about case (i), see ibidem pp. 142-6; for case (ii), see pp.
138-42.
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As an instance of a sequence-of-tense structure, the sen-
tence suggests Mary being pregnant at the moment of John’s
saying so: “was” is read as a morphological variant of “is” and
interpreted as anchored to the event time with which “said” is
associated. In the terminology of Eng (1987) such a reading of
“was” is its simultaneous reading, since the temporal interpre-
tation of “was” is identical to the time at which John’s saying
takes place. In particular, it is not possible to interpret “is”
as being anchored to the time of Fred’s knowing.?® Hence (7)
would have the paraphrase

(8) Fred knew that John said “Mary is pregnant”.

Sentence (7) also has what Eng (1987) calls its shifted interpre-
tation — where “was” is evaluated as a past tense with respect
to John’s statement — which is paraphrasable as

(9) Fred knew that John said “Mary was pregnant”.

All the same, “was” is interpreted as being interpretively (tem-
porally) dependent on the time that the evaluation process
gives when interpreting the tense of the verb form “said” in
the clause under which the clause “Mary was pregnant” is im-
mediately embedded.?”

Examples in which rule (ii) is operative, would be (10) and
(11), given by Hornstein (1990, p. 138).

28 Of course, if “said” itself is given a simultancous reading (which is a
very natural possibility), then the time to which “is” gets anchored is the
time of Fred’s past knowing, but from the point of view of the theory of
tense interactions this is accidental.

2% The usage by Enc (1987, see esp. p. 635) of the term “shifted read-
ing” must not be confused with Hornstein’s way of employing the word
“shifted”: Hornstein occasionally uses the term “shifted interpretation” of
the sequence-of-tense reading — that is, of the phenomenon for which Eng
uses the term “simultaneous reading” (see 1990, p. 121). When I have to
make a terminological choice in the text, I stay with En¢’s terminology.



5.3. Critique of Tense Operators in Linguistics 241

(10) We spoke to the man who was crying.

(11) John insulted the man who is walking toward us.

In both cases the tense of the relative clause must be inter-
preted with respect to the moment of speech. No sequence-of-
tense phenomenon is at stake, and indeed the very words in-
dicating past tense resp. present tense (aspectual) progressive
— “was crying” and “is walking” (instead of any morphological
variants of these) — are to be evaluated with respect to the
utterance time. As a consequence, (10) indicates that in the
past we spoke and that a certain man was crying, but as to the
temporal relations of these two past events (10) does not assert
anything specific and leaves the relation undetermined (given
our convention of treating events here as temporally indivis-
ible).3Y In turn, uttering (11) reports John having insulted a
man before the moment of utterance, and says that the walking
of the man in question is contemporaneous with the moment
of utterance. Hence, even though a sequence-of-tense struc-
ture is not at stake here either, it so happens that the relative
temporal order of the events spoken of can be deduced: “in-
sulted” evaluated now makes insulting past, while “is walking”
interpreted now has walking taking place presently.

The first conceptual component of premise [2] in Hornstein’s
argument consists, then, of an empirical observation about se-
mantical tense interactions in natural language (or, at least,
in a natural language such as English). It sets limits to what
an accurate description of, or an account for, natural language
tense phenomena should accomplish. In particular, it says what

30 Here the inability to recognize temporal relations between the two
past events would be removed if the (unrealistic) assumption that events
are point-like was given up. Namely, the progressive aspect of “crying” in
(10) shows that the interval of our speaking to the man was included in
the larger interval of the man’s crying.
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tenses are not capable of. Arbitrary interpretive dependencies
between tenses in complex sentences cannot occur, but all in-
terpretation of tenses is either indexical or else complies with
the aforementioned rule (IL.i) regulating the temporal interpre-
tation of tensed embedded clauses.

We may notice that the third conceptual component of
premise [2] is relatively obvious: a great variety of logical prior-
ities among quantifiers can be represented by well-formed for-
mulae of FO. (An even greater, in fact, full, variety of such
priority scope patterns could of course be presented by means
of IF first-order logic, but for Hornstein’s purposes FO is al-
ready quite sufficient.)

Let us move on to consider the second conceptual compo-
nent of premise [2], which I stated above to be a theoretical
assumption concerning how to represent tense interaction logi-
cally: by means of priority scopes of quantifiers.

5.3.3.1. Formal counterpart to interpretive de-
pendency

Basically, construing tenses as operators is an attempted move
from pretheoretical to theoretical. Among the pretheoretical
ideas to which one thereby would like to find a logical coun-
terpart is the idea of interpretive dependencies between tenses.
In tense logics such as PTL these interpretive dependencies
are simply presented by priority scope relations between tem-
poral quantifiers (tense operators) — to the extent they can be
presented at all. Hornstein (1990) shows that in approaches re-
sorting to temporal quantifiers, many ungrammatical English
sentences receive a logical rendering. And since there is no sys-
tematical way of ruling out such logical forms of ungrammatical
sentences from the overall stock of logical forms of tensed En-
glish sentences allowed by patterns of priority scopes among
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temporal quantifiers, the very construal of tenses as quantifiers
becomes questionable. Or so Hornstein wishes to argue.

Before commenting further on Hornstein’s argument, I will
show that admitting the fact that interpretive dependencies
between tenses are not a matter of relative priority scopes of
temporal quantifiers, does not necessitate giving up the idea of
tenses as operators. Interpretive dependencies are a matter of
temporal relations between times interpreting tenses, instead of
being a matter of logical priority between operators.

In As Time Goes By, Hornstein asks us (p. 144) to conceive
of three temporal quantifiers P,, Pres, and F,. These quan-
tifiers are bounded quantifiers; if for example P, is written so
that it becomes semantically transparent, we see that it is the
bounded quantifier

(Fx:z < x5).

Hornstein points out that some natural language tensed sen-
tences are easily presented by employing such quantifiers. Cases
in point are sentences such as (12) and (13).

(12) John said that Mary was pregnant.
(13) John said that Mary is pregnant.

The verb form “was” in (12) is given a sequence-of-tense read-
ing, and in (13) “is” appears indexically. The truth-conditions
of these sentences can be captured by (14) resp. (15):

14) P,|John says at x | Pres,|Mary pregnant at y
y y Yy preg

(15) Pres,[ P;[John says at x [Mary pregnant at yl]].

Here, then, the interpretive (temporal) dependencies between
tenses are indeed reflected in the respective scope orderings
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of the quantifiers P, and Pres,. But it should be noted that
the interpretive dependencies at stake here are essentially con-
nected to temporal relations between the times involved in the
evaluation, while it is more of a contingency from the viewpoint
of the phenomenon in question that here the way of presenting
the interpretive dependencies matches the way of expressing
logical dependencies between quantifiers. To appreciate this
fact, consider the following formula expressed in a version of IF
tense logic interpreted under its BLO semantics, henceforth
referred to as IFTL (BLO):

(16) Pl[John says at x [Presz/BLo{l} Mary

pregnant at yl|].

The semantics of the operator Pres%/BLo{l} in (16) is the
following: if in a play of the correlated semantical game the
history (ag,a1) is already formed (ag = o being the point of
evaluation, and a; the interpretation of z), the variable y is
given the value

az = (ao, a1)[maz ({0, 1}\{1})] = (ao, a1)[0] = ao.

Hence we see that (16) formalizes precisely the same state-
ment as (15), but unlike the latter, in (16) the relative order
of the priority scopes of the quantifiers P, and Pres, is ex-
actly the same as in formula (14). So it is not, after all, the
relative priority scope order that is essential to presenting in-
terpretive dependencies. What is important is how times in
evaluation are chosen in relation to other times. Typical for-
malisms of temporal logic are unable to separate the proper ef-
fects of bounded quantifiers (functional dependencies expressed
via priority scopes) from mechanisms for context-shift. But if
they can be distinguished within a formalism construing tenses
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as bounded quantifiers, the possible problems that some par-
ticular operator-based system may have in presenting temporal
context-shifts are not sufficient grounds for claiming that tenses
are not operators.

On the subject of interpretative relations among operators,
Hornstein (1990, p. 143) writes:

“[IInterpretive dependency is reflected in scope re-
lations [of operators, e.g. of quantifiers]. Thus, if
the interpretation of one operator depends on the
interpretation of a second operator, the first must
be in the scope of the second. Similarly, if the inter-
pretation of a given operator is independent of the
interpretation of another operator, the first must be
outside the scope of this second. In sum: Interpre-
tive facts have syntactic consequences of a rather
particular sort within scope theory.”

This quote is an expression of Hornstein’s observation that
on operator-based approaches to tense (or to anything else, for
that matter), interpretive dependencies between operators are
presented by the relative scope order between these operators.
As witnessed above by formalization (16), it is, however, per-
fectly possible to present the interpretive independency of the
present tense of “is” from the past tense in “said” in sentence
(13) so that while the formalization renders tenses as quanti-
fiers, the analysis of the interpretive independence is definitely
not a matter of scope order. The relevant notion of interpretive
dependency, then, is not essentially a matter of scope relations,
in other words, not a matter of functional dependencies.

A temporal quantifier is by its semantics a relativized quan-
tifier; for instance the past tense quantifier P, is essentially of
the form (Jz : < y). Put very simply, the issue of interpretive
dependence concerns the value of the variable y appearing in
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this quantifier. The question is: how is the time (given as a
value of y) determined, relative to which the value of z is to be
chosen. Whatever the particular answer is, or can be, depends
on the particular logic employed, but in every case the tense
formalized by P, = (Jz : < y) is ‘interpretively dependent’ on
that very tense which provides a value for the free variable y in
(3x : © < y). This is what interpretive dependency means. As
we saw in the above example (16), it is possible to formulate a
logic, namely IFTL (BLO), where a quantified variable can be
related to a time which is not introduced by the immediately
superordinate quantifier, the latter being, by contrast, the gen-
eral mechanism of PTL and the temporal logic considered by
Hornstein.

What is essential to interpretive dependency is not rela-
tive priority scopes, but what might be termed context-shift.
From the viewpoint of these interpretive dependencies, all that
is at stake in the evaluation of complex sentences involving em-
bedded tenses (enumerated by the numbers 1,...,n), is the
construction of a sequence

(tO)tlv cee )tn)a

where for each t; # ¢y there is a relation p; € {<,>,=} and a
number j; < ¢ such that the condition

(tj; i) € ps

is satisfied. As an empirical fact — by the rules (I) and (II)
mentioned in the beginning of Subsection 5.3.3 — the number
j; must always be either 0 or else ¢ — 1. Of course the semantics
of tenses is not exhausted in a construction of such a sequence,
but the description of their interpretive dependencies in fact is.

It is of some interest to notice that in the notation Horn-
stein uses for discussing the operator-based approach in his
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survey article from the year 1981, he makes free use of first-
order quantifiers (3z,Vx), and introduces expressions P@) and
F@) with a free variable, . He calls these expressions “tense
operators”. Then, for instance, a formula JzP®)q says the
same as the usual PTL formula Pgq or the first-order formula
Jz(x < toAQ(x)). As we have seen above, in As Time Goes By
Hornstein assimilates tense operators into quantifiers, i.e. there
he treats operators for what they are worth from the viewpoint
of first-order logic. By contrast, the ‘operators’ P(*) and F®)
of the 1981 paper are really binary atomic formulae

T < xg and T > xg,

i.e. they are the respective bounding clauses characteristic of
the tenses in question. Calling binary predicates “operators”
is certainly not in the spirit of what operators are in logic.
In fact, it could not be more clearly illustrated that the tense
operators of Hornstein (1981) are really vehicles of context-shift
— designed for expressing interpretive dependencies — and have
absolutely nothing to do with the logical notion of operator.

5.3.3.2. The overrepresentativeness of tense logic

Hornstein’s attack on tenses as quantifier-like expressions is
based on the fact that by means of quantifiers it is possible
to represent indefinitely many patterns of interpretive depen-
dencies between tenses that correspond to ungrammatical nat-
ural language sentences. He wishes to ask that since real-life
tenses in English, for example, cannot do much of what quan-
tifiers and operators typically can do, why should they ever
be regarded as operators? That is, he points out that quan-
tifiers give an overrepresentative tool for representing natural
language tenses.
Let us consider two examples.
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Example 1 Consider the pair of schemata:

(17) Presy|[ Py[...at z...[...at y...[F.[...at z...]]]]]

(18) Py[...at x...[ Presy[...at y...[F.[...at z...]]]]].

In a tense-logical approach based on PTL, these would be taken
as providing logical forms to the following sentences, respec-
tively:

(19) *John said that Harry believes that Fred would be
here.
(20) John said that Harry believed that Fred would be

here.

Schema (17) is a perfectly well-formed formula in the lan-
guage of temporal quantifiers, but the English sentence (19)
whose logical form it gives is ungrammatical® The explica-
tion of the ungrammaticality is that the morphological variant
“would” of “will” indicates the presence of a sequence-of-tense
construction. Such a morphological variation can only occur
under a past tense clause or in a string of similarly varied mor-
phological forms with a simultaneous reading. Still, “would” is
embedded under an indexically interpreted present-tense form
of “believe”. (For more details about sentence (19)’s unaccept-
ability, see Hornstein, 1990, pp. 137-8.)

Sentence (20), by contrast, is grammatical. The only differ-
ence between (19) and (20) is that in the latter the present tense

» 32

of “believe””¢ is interpretively dependent on the past tense of

3! Hornstein (1990, p. 144) uses the schema when arguing against the
‘operatorhood’ of tenses.
32 1.e. the simultaneous reading of the past tense of “believe”.
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“say”, whereas in the former this interpretive dependency does
not hold, and the present tense of “believe” is interpreted as
anchored to the moment of speech (indexically).

If scope order was the correct logical counterpart of the
pretheoretically understood interpretive dependency, then, as
regards the tense-logical approach, we could say that (19) and
(20) differ only in the scope order of their temporal quantifiers,
the relevant scope orders being respectively

Pres, <P, <F, and P, <Pres, <F,,

as indicated by schemata (17) and (18). This is the way in
which Hornstein interprets the tense-logical approach, and ac-
cordingly he suggests that the tenses-as-operators view is not
credible, because supposing that tenses really were operators,
it would be odd if simply putting such operators in a different
order produced an ungrammatical sentence out of a grammati-
cal one. And this is precisely what happens with sentences (19)
and (20).

I argued in the previous subsection that instead of the pri-
ority scope order among temporal quantifiers, the real issue in
connection with interpretive dependence is that times in the
evaluation of tensed sentences are chosen in relation to times
already chosen in that evaluation. And for a given temporal
quantifier, the scope pattern of which it partakes does not have
to determine the ‘context’ relative to which the quantifier is
interpreted. In tense logics like PTL the scope pattern in fact
precisely determines the context, but in my IFTL (BLO) this
is not the case. The difference between sentences (19) and
(20) can, from the more general perspective provided by IFTL
(BLO), be described by writing down, to begin with, the rel-
evant relational dependencies in an arbitrary evaluation (play
of a semantical game):
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o now > t1, now = tg, ta < t3 [evaluating (19)]

o now > ty, t1 = tg, ty < t3 [evaluating (20)]

Accordingly, the logical form of (19) becomes expressible using
a variant of IFTL (BLO) as

(21) PL[...at ... | Presz/BLo{l}[. ..at y...

[F3[...at z...]]]]].

The fact that interpretive dependence corresponds to a rela-
tional context-shift rather than scope order of temporal quanti-
fiers, does not, however, change the basic source of Hornstein’s
complaint, namely, the fact that the formal machinery em-
ployed can produce logical forms of ungrammatical sentences.
Here the reason for such overrepresentativeness of the formal
machinery is as follows. Given that Qx is a temporal quantifier
and that the quantifiers logically prior to Qx are Q1,...,Qn—_1,
there are n different ways to determine the time relative to
which the value of x is chosen: it can be either the ‘time of
speech’ gy, or the time given as an interpretation of any of the
quantifiers Q; (1 < i <mn —1). All other choices except ty and
the interpretation of Q),,—1 always contradict the empirical rules
(i) and (ii) about tense interactions (presented above in the be-
ginning of Subsect. 5.3.3), and as the ungrammatical sentence
(19) directly above demonstrates, it is even possible to adhere
to these rules — always choosing relatively either the moment
of speech or the immediately previous choice — and still end
up formalizing an ungrammatical sentence.
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Example 2 Consider the following pair of sentences:

(22) John said that Frank would believe that Sam will
be in London.
(23) John said that Frank would believe that Sam would

be in London.

Their respective logical forms are provided by the schemata

(24) Py[...at 2...[Fy ...at y...[ F? /BLo{1,2}[ ..

at z...]]]],
(25) Py[...at @...[Fy...at y...[F.[...at z...]]]].

The difference in meaning between (22) and (23) is due to
the temporal interpretation of the respective words “will” and
“would” indicating the future tense within an embedded clause.
In (22) the indexical future tense of “will be” is anchored to the
moment of speech.

By contrast, in (23) the future tense of “would be” has
simultaneous reading (proper to sequence-of-tense structures).
In an evaluation of sentence (23), to what time (t3) will the
interpretation of this second occurrence of “would” in (23) be
anchored? Omne might perhaps conceive of two temporal posi-
tions as such anchors:

[i] the time t5 by which the (simultaneous) reading of “would
believe” is interpreted, which must satisfy:

now >t < to
(t; being the interpretation of “said”);

[ii] the time (¢1) introduced by the interpretation of “said”.
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Option [i] gives the natural — and in particular, a gram-
matical — reading of sentence (23). Option [ii], though by
itself intelligible from a systematical viewpoint, produces an
ungrammatical reading of (23). Namely, this reading would
not comply with the rule stating that a tense in an embed-
ded clause can only be interpretively (temporally) dependent
on the tense of the clause under which it is immediately embed-
ded: the tense of “would be” is immediately embedded under
the tense of “would believe” and is only mediately subordinate
to the tense of “said” of the matrix clause.

Once again, there are no problems in providing a formal-
ization to the unwelcome, ungrammatical reading of (23); the

IFTL (BLO) formula

(26) PL[...at ...] Fg. ccaty...[F3 /BLo{2}[..

at z...]]]]

does the job.

Now, both examples 1 and 2 above attest to the fact that our
logical machinery — be it a traditional tense logic like PTL with
its presentation of interpretive dependencies in terms of scope
relations, or IFTL (BLO) that deals with interpretive depen-
dency on the model ‘times chosen in relation to other times’
— is overrepresentative of linguistic reality. Either approach
is able to produce well-formed formulae that are logical forms
of ungrammatical sentences. Then, Hornstein insists, if tenses
were operators, and tense interactions accordingly were essen-
tially interactions between operators, the property of grammat-
icality of sentences would be left unaccounted for: why would
some patterns of operators yield logical forms of grammatical
sentences, and others not?

Should, then, the mechanism itself that provides the logi-
cal forms of relevant English tensed sentences really also offer
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a criterion for the grammaticality of such sentences? Could
not the tense operators of, say, IFTL provide a correct means
of producing the logical forms — it being a condition of some
other level that bans certain ‘forms’ as ungrammatical? A seri-
ous answer to this question may vary depending on the vantage
point adopted. For instance, such theoretical overrepresenta-
tion of which Hornstein accuses the operator-based approaches
to tense is certainly less of a problem if only a description of
the logical forms of natural language tensed sentences is called
for, but it would be more problematic if the apparatus used
for the description should possess some ‘psychological reality’
in the sense that it should make it comprehensible how a child
learns to use tensed language. (In fact the latter is explicitly
among Hornstein’s desiderata.®® However, this is an area we
cannot touch upon in the present thesis.)

The simplest conceivable defence for tenses as operators is
to show that we clearly cannot dispense with operators when
analyzing tenses, because there are tensed sentences whose log-
ical forms cannot be presented without operators. This is in fact
exactly what I am going to do. I will show in Subsection 5.3.4
that certain English sentences express functional dependencies
between interpretations of tenses, which means precisely that
the relation of logical priority is at stake. And the terms of
that relation are by definition operators.

33 See esp. pp. 1-7, 82-7, 188-96 in Hornstein (1990). Hornstein points
out (p. 2) that a linguistic theory is to be evaluated not only in terms
of how many sentences it handles correctly, but also in terms of how well
it addresses the “logical problem of language acquisition”: how is it even
possible that children come to master their native languages, given the
many-faceted poverty of the linguistic stimulus? (Linguistic input is finite
and is in terms of sentential utterances instead of well-formed sentences,
and it seems impossible that the acquisition of grammatical principles pro-
ducing complex sentences with properties diverging from those of simple
ones would be data-driven.)
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5.3.4 A criterion for the operatorhood of
tenses

We have seen above how Hornstein attempts to show in As
Time Goes By that tenses are not operators, and that in essence
the correct way of accounting for interpretive dependencies be-
tween tenses is not by resorting to their relative scope order.

Hornstein (1990, footnote 26, p. 222) recognizes the crucial
role of Prior (1967) in all scope theories of tense. And in fact,
to the extent that it can present interpretive dependencies be-
tween tenses at all, PTL does so precisely in terms of the scope
order between tense operators. A divergent conception on the
nature of tense is the view treating tenses as pronominal, or
as referential expressions. Such a view is advocated notably by
Partee (1973) and Eng (1986, 1987). In Hornstein’s opinion the
pronominal theory is less obviously inadequate than the scope
theory. Still, he points out problems that this view on tense
encounters given that certain of his basic observations are cor-
rect. (Cf. Hornstein, 1990, pp. 186-7, footnote 32, p. 223.)
Hornstein’s own understanding of tenses is that tenses are ad-
verbs. He characterizes adverbs by saying (ibidem, pp. 188-9):
“Adverbs ‘modify’ and ‘specify’. They do not bind. They do
not have scopes. Their domains of interpretive efficacy are not
scope domains, nor are they binding domains. Their domains
are much more restricted. The interpretive reach of a tense
element is the domain it governs.” Under both the pronominal
view and the adverbial view, tenses are expressly much more
local and isolated as to their semantic effects than tenses under
a ‘scope theoretic’ view.

The crucial test for deciding whether or not tenses can, after
all, behave like operators, is to check if functional dependencies
may exist between interpretations of tenses. If they do, then
their effects are not ultimately only local, and can only be ac-
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counted for by means of the notion of priority scope. If not,
then in the final analysis there is no reason to assume that the
tenses were operators.

Hornstein (1990) lists the following as potential tenses:3!

present (sing), past (sang), future (will sing),
present perfect (has sung), past perfect (had sung),
future perfect (will have sung), distant future (will
be going to sing), future in past (was [going] to
sing), prozimate future (is about to sing).

For simplicity, verbs whose semantics is in terms of momen-
tary events will henceforth be referred to as verbs of category
C1, in short, C verbs, while verbs expressing ongoing activi-
ties or states will be referred to as verbs of category Co, or Co
verbs.3® Hence for instance the verbs to finish, to open and to
pay are C verbs: accordingly

finishing a job, opening a window, paying the rent

all are momentary events. By contrast, to stay, to walk and to
build are Co verbs:

staying in Paris, walking home and building a house

34 In his neo-Reichenbachian theory, Hornstein is able to present sys-
tematical reasons why the list is precisely this, but we cannot discuss the
reasons here.

35 A more fine-grained analysis of the verbs falling under the categories
Ci1 and C could of course be accomplished. Such an analysis could e.g.
be based on the tripartite division among what Comrie (1978, p. 13) calls
“situations”: states, events and processes. States are static, i.e. continue
as before unless changed; events and processes are dynamic, i.e. require a
continuous input of energy in order to go on. Events are dynamic situations
viewed as complete wholes (perfectively), whereas processes are viewed in
progress, from within (imperfectively).
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are all enduring events. A more exact criterion for a verb’s be-
ing of category CY is the subinterval property: if I is an interval
relative to which an event expressed by a Cs verb takes place,
this event takes place also relative to all non-empty subinter-
vals of I. A concrete example goes as follows: assume that the
sentence “Marie stays in Paris” is true relative to an interval
I. If I is the interval from the 1st of June 2002 to the 15th
of August 2004, then “Marie stays in Paris” must be true in
particular on the 10th of July 2003.

Now tenses of C' verbs are, logically speaking, interpreted
by means of existential quantifiers, while the interpretation of
tenses of Cy verbs is in general ambiguous between the universal
and the existential reading (cf. e.g. Hintikka, 1982, pp. 9-10).
Relevant tenses are any of the nine listed above. Consider the
following examples:

(27) Mary opened the window.

(28) Mary will open the window.

(29) Marie stayed in Paris (last summer).
(30)

30) Marie will stay in Paris (next summer).

According to (27), there is a past time such that at that
time, Mary opens the window; similarly, (28) says that at some
future time Mary opens the window. The verb to open is of
category C1, and the respective tenses are interpreted existen-
tially. Also, they could not be read universally. For example,
(27) cannot possibly be interpreted as saying that relative to all
moments in an extended past interval, Mary opens the window.

By contrast, (29) can be read as saying that during the
whole of last summer Marie stayed in Paris (universal reading),
but also as saying that there was a time last summer when
Marie stayed in Paris (existential reading). The case of (30)
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is analogous. Game-theoretically the ambiguity between these
interpretations is characterized as a difference in the player who
makes a choice to interpret the tense of a Cs verb. For instance
if (30) is interpreted universally, it is Abélard (Falsifier) who
chooses a future time (among the times that make up the next
year) to interpret the past tense of “stayed”; in the case of the
existential interpretation the relevant choice is made by Héloise
(Verifier).

All nine tenses listed above admit of an ‘existential read-
ing’: as tenses of C; verbs, this is, moreover, the only option,
but even as tenses of Cy verbs such an existential reading is
possible. On the face of it, it might be tempting to think
that there are no ‘universal tenses’ in natural language, i.e.
that there are no tense expressions — grammaticalized expres-
sions imprinted in the verb forms — that would semantically
correspond to universal quantifications in the way that all of
the aforementioned types of natural language tense can corre-
spond to existential quantifications. This appearance, however,
is mistaken, as shown by the existence of the universal reading
of tenses of Cy verbs.

Admittedly the universal reading of a Cy verb tense tends
to call for a specification of the period to which the univer-
sality pertains — an interval or frame within which the event
expressed takes place. If we overhear a conversation where a
speaker utters: “Marie stayed in Paris”, we may reasonably
assume that the overall context specifies such a period, and
that the specification is known to both the speaker and the ad-
dressee. Frame specification arguably is not, however, essential
to the possibility of universal readings of Cy verb tenses. For
instance, in Genesis 1:236 we read: “And the earth was without
form, and void.” The verb form “was” is an instance of a state
verb, whose simple past tense is to be construed universally.

36 The Holy Bible, King James Version.



258 5. Tense Operators and Linguistic Theorizing

And here a further specification for a time period is obviously
not presupposed.

I will now move on to present my argument in favor of the
need for operators in the analysis of natural language tensed
sentences. The argument can be presented briefly as follows.
There are in fact at least two sources (indicated in (i) and (ii)
below) that can be used for generating sentences that express
functional dependencies between interpretations of tenses.

(i) Exclusively employing verbs with existentially read
tenses and negation. (We would get the same effect by exclu-
sively employing verbs with universally construed tenses.) If T}
is a tense with an existential interpretation, we may form the

” whose interpretation is

complex expression “not: Ty: not...
universal. Letting, then, another existentially read tense T3 be
in a syntactically embedded position relative to the clause in

which the expression “not: Ti: not...” appears, the structure

2

not: Ty: not...(Ty...)

is yielded. There the interpretation of 75 will be functionally
dependent on the interpretation of T7.

(ii) Having C; verbs combined with Cs verbs in one and
the same sentence. Forming a complex sentence exemplifying
the structure

T ...(Ty...),

where 17 is a universally interpreted tense of a Cy verb, and
T5 is a tense of a Cy verb (hence existentially interpreted), we
obtain a sentence according to which the interpretation of 75
is functionally dependent on the interpretation of 77.

The relevance of constructions (i) and (ii) to our primary
concern is as follows: That a tense is functionally dependent
on another means that the latter is logically prior to the for-
mer. But the terms of the relation of logical priority are none
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other than operators. Hence there are natural language tensed
sentences in which a tense appears as an operator.

Let us consider these two options in more detail.

5.3.4.1. Functional dependencies by negation

We need to have dual negation at our disposal in the fragment
of English we are going to consider. If S is an English sentence
and “—” stands for dual negation, we have:

=S is true <= S is false <= there exists a winning

strategy for Falsifier in the semantical game G(S).

In general, natural language negation behaves rather like

b

contradictory negation. Given that “~” stands for contradic-

tory negation, we have for a sentence S that

~ S is true <= S is not true <= .S is true, or there

exists for neither Verifier nor Falsifier a w.s. in G(5).

Even though the contradictory negation — and not the dual
negation — is the favored negation of our Sprachlogik, it be-
haves precisely like dual negation in any fragment of English
that is formalizable in FO. Accordingly, for any natural lan-
guage sentence that can be formalized in FO by a formula
whose atomic constituents are either true or false in the mod-
els employed, we may construe the appearances of negation as
instances of dual negation. (Observe that the formalization
need not be a sentence of FO; e.g. the first-order counterparts
of modal-logical formalizations of natural language sentences
are actually formulae of one free variable.)

Formally, there exists for each English tense T its dual T,
satisfying:
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o Td = —|T_|

[ ] T = —|Td_|

For instance, for the simple future tense in English there cor-
responds as its dual the construction

not [will] not. ..

which has for C; verbs the semantic force of “always in the fu-
ture”. It must be observed that neither the above construction,
nor the locution “always in the future”, is itself a tense. The
latter is an English phrase that happens to have the semantics
of the dual of the simple future tense in connection with Cy
verbs.

Despite the abstract and to some extent artificial flavor of
duals of tenses, it is an incontestable fact that the existence of
dual negation induces such duals for English tenses — insofar as
dual negation is applicable in appropriate positions in English
tensed sentences.

Consider the following sentences (31) and (32):

(31) Harry knew that Debbie would not admit that she
would not become a nowvelist.
(32) John knew that Sally would not admit that she had

not turned off the stove.

To capture what these sentences serve to assert, let us em-
ploy epistemic tense logic. (Obviously we are not claiming to
thereby give the logical forms of the sentences. Claiming so
would beg the question of finding out whether or not tenses as
operators exist.)
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The notation is: G stands for the dual of F'; [K], is read “c
knows that”; [A]. is read “c admits that”; (A). is the dual of
[A].. We may safely take all occurrences of negation in (31) and
(32) to be instances of dual negation since (i), we can assume
that Debbie’s becoming a novelist/Sally’s turning off the stove
are determined propositions (i.e. they are true or false in every
world at each time) and (ii), the sentences (31) and (32) clearly
admit of formalization in FO. We take all three verbs to admit,
to become and to turn off to be Cy verbs. (These verbs do not
possess the subinterval property.) Clearly, negation has priority
over the past perfect in “had not”.

The schemata (33) and (34) both capture the truth-
condition of (31):

(33) P[K]Harry—F[A] Debbie—F' (she becomes a novelist)

(34) P[K|HarryG(A) Debbic F'(she becomes a novelist).

Similarly, sentence (32) has the equivalent formal representa-
tions (35) and (36):

(35) P[K] john—F[A]saiy—~P(she turns off the stove)
(36) P[K]johnG(A)SaiiyP(she turns off the stove).
Schema (34) shows that sentence (31) states the following:
(%) for some t* < now there exists a function
[ Wharry X {5158 >t} = Wpeppie X T
such that for all (u,t) € dom(f), the value f(u,t) =
(u',t') satisfies: ¢’ > ¢ (and v is R _accessible

from u) and Debbie becomes a novelist in v’ at ¢'.
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Hence we see that in (31), the interpretation of the future tense
of “would become” is functionally dependent on the interpreta-
tion of the future tense of “would admit”. Game-theoretically
expressed, the consequence of the appearances of the negation
in the sentence is that the interpretation of “would admit” is
chosen by Abélard, while “would become”, appearing in the
deepest embedded clause, is interpreted by Héloise. This ex-
plains the functional dependence.

Completely analogously, schema (36) reveals that sentence
(32) involves the functional dependence of the interpretation of
“had turned off” on the interpretation of “would admit”.

In order to discuss the next example, we must observe in
passing the following fact about the interaction of negation with
the present perfect of a C7 verb in English. When evaluating
for instance the sentence

(37) I have not turned off the stove,

the negation applies first, and only then is a past time chosen
[-P]. Equivalently, then, (37) says that at all past times —
typically from some contextually provided interval, stretching
to the moment of speech — the sentence

(38) I am not turning off the stove

is true. Hintikka (1982, pp. 8-9) points out that while the
truth-conditions for the simple past sentence (39) and the present
perfect sentence (40)

(39) I turned off the stove

(40) I have turned off the stove

are exactly the same, the truth-conditions of their negations are
not the same. He calls attention to the fact that the difference
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is (partly) a matter of scope order. Namely, in the evaluation
of

(41) I did not turn off the stove,

the negation applies only after a past time has been chosen
[P—], while in the evaluation of (37) the order of negation and
the choice of a past time was precisely the reverse. There is of
course another relevant difference, discussed by Partee (1973)
from whom the very example (41) stems: namely, sentence
(41) does not in the first instance communicate that there is
some past time at which “I am not turning off the stove” is
true, but implies that some such past time is contextually given.
Accordingly, (41) is a statement about a particular past time
— at that time “I am not turning off the stove” is true. Partee
employs sentence (41) in her argument attempting to show that
tenses are pronominal.

Now to obtain still a third illustration of how English sen-
tences can get involved in expressing functional dependencies
between interpretations of tenses, consider sentence (42):

(42) Harry has not realized he has not called Debbie.

Here, notably, both occurrences of “has” — namely those in
“has not realized” and “has not called” — are indexical in the
sense that their interpretation introduces a past time relative
to the utterance time of the sentence. Both verbs to realize and
to call are to be read as instances of C; verbs, i.e. they both
refer to momentary events (the momentary act of something
becoming clear to a person resp. the act of making a phone
call). From the above observations we recall that in connection
with a C verb, negation has priority over the present perfect.

The schemata (43) and (44) written in epistemic IF tense
logic (interpreted by BLO semantics), then, both capture the
truth-condition of (42):
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(43) —Pi[realizes]|parry—P/Bro{1}(he
calls Debbie)

(44) Hi(realizes)Harry2/BLo{1}(he calls Debbie).

We cannot state the truth-condition in traditional epistemic
tense logic,3” because the embedded past tense (esp. present
perfect) clause “he has not called Debbie” must be evaluated
relative to the moment of speech — it has in (42) neither a si-
multaneous reading (Harry has not realized: “ I am not dialing
Debbie’s number”) nor a shifted reading (Harry has not real-
ized: “I did not dial Debbie’s number”). Once again it must be
borne in mind that the schemata (43) and (44) are here just
to explicate the truth-condition of (42), and I am not claim-
ing that either of them would represent its logical form in a
linguistically relevant sense. Whether or not one of them does
so is another matter, but if we were to claim that (43) or (44)
provides such a logical form — while arguing for the necessity
of construing at least some appearances of tenses as operators
— we would be assuming what we are trying to prove; for these
schemata definitely employ operators to represent tenses.

We observe, then, that sentence (42) states the following:

(xx) there exists a function
f{t:t <now} — Wrarry x {t:t < now}
such that for all ¢ < now, the value f(t) = (u, s)

satisfies: s < now (and w is compatible with all that

Harry actually realizes) and Harry calls Debbie in u at s.

37 Unless we strengthen it with the (two-dimensional) NOW operator
of Kamp (1971), or something analogous.
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That is, in (42) the indexical interpretation of the past tense
of “has called” is functionally dependent on the indexical inter-
pretation of the past tense of “has realized”.

It is to be noted that both past times in the interpreta-
tion are — being indexical — actually interpreted relative to
the moment of speech, whereby the tense of “has called” in
particular is not interpretively dependent (in the sense in which
this locution has been used in the present subsection) on the
tense of “has realized”. As sentence (42) demonstrates, this
does not stop the interpretation of the former tense from being
functionally dependent on the interpretation of the latter.

By the same token, sentence (42) is one more illustration
of the fact that interpretive dependence cannot be a matter
of scope relations. For if that was the case, a tense could not
fail to be interpretively dependent on another while still being
functionally so.

The above schema

(44) Hy (realizes)garry P2 /BLO{1}(he calls Debbie)

has, then, the same truth-condition as schema (43), and both
serve to capture what the English sentence

(42) Harry has not realized he has not called Debbie

asserts. If one would wish to translate (44) back to English
respecting the syntactic structure of this IFTL formula, one
would obtain something like

(45) It has always been compatible with all that Harry
realizes that he has called Debbie.

While (45), then, says the same as (42), there is from the
viewpoint of the theory of tense an important difference be-
tween these sentences: (42) is entirely in terms of verb tenses,
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while (45) makes essential use of the temporal adverb “always”.
Because our aim using the examples in this subsection is to
show that interpretations of tenses can give rise to functional
dependencies, sentences such as (45) are not of interest to us.
Sentence (45) does, of course, express a functional dependency,
too. For it says that the interpretation of the tense of “has
called” is functionally dependent on the interpretation of the
adverb “always”. But this would not suffice to establish that
there are functional dependencies between tenses.

5.3.4.2. Combining C; verbs and (5 verbs

I suggested above that alongside the use of negation in con-
nection with tenses of C; verbs, there is another way to force
functional dependencies to the fore between interpretations of
natural language tenses, and this would be by combining in an
appropriate way tenses of C; verbs with tenses of Cy verbs.
Concretely, consider the sentence

(46) John believed yesterday that Laura would turn up.

Here to believe is a Cy verb (it has subinterval property), while
to turn up expresses a momentary event and is a Cq verb.

In (46) we have the temporal frame adverbial “yesterday”,
which indicates that the interval relative to which John’s be-
lieving is considered consists of yesterday. In fact, then, if we
employ temporal quantifiers to capture the truth-condition of
(46), we may present the past tense of “believed” in the matrix
clause by the bounded quantifier

(Qy : y < = A YESTERDAY(y)),

where YESTERDAY is simply a unary predicate interpreted as the
set of times that make up the calendar day preceding the day
to which the time of utterance of (46) belongs.
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As we observed further above, tenses of C5 verbs can be in-
terpreted universally. That the simple past of “believed” is read
universally in (46), means that John is taken to believe during
the whole of yesterday that Laura would turn up. This corre-
sponds to specifying the above relativized quantifier by setting
Q :=V. If the tense was read existentially, the statement would
just be that at some point yesterday, John believed that Laura
would turn up. This, then, would mean setting ) := 3.

Let us consider the universal reading of the tense of “be-
lieved” in sentence (46). The truth-condition of the reading
thus obtained is captured by the following formula of epistemic
temporal predicate logic employing bounded quantifiers:

(47) (Vt1 : t1 < to A YESTERDAY[t;]) (Vw : w compatible
with all that John actually knows)(3ts : to > t1)
(Laura turns uplte,w]).

The same would be captured in propositional epistemic tense
logic by the formula:

(48) H(yesterday — [B]jonnF'(Laura turns up)),

where the propositional atom yesterday has the same inter-
pretation as the predicate YESTERDAY above in schema (47).
Hence it is seen that the reading of (46) under consideration
asserts the existence of such a function f that if £ < now is any
time from yesterday and w is compatible with all that John
believes, then

f(t,w) > t, and Laura turns up at f(¢,w) in w.

That is, according to sentence (46), the interpretation of the
simple future in “would turn up” is functionally dependent on
the interpretation of the simple past in “believed”.
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The conclusions reached in Subsection 5.3.4 can be summed
up as follows:

(A) There are instances of natural language tenses acting as
logical operators.

(B) BLO interpretation of IF tense logic is clearly more
adequate than PTL as a logic of temporal discourse, while
differing from it only in incorporating a slight conceptual
generalization of a mechanism already present in PTL.

We are now in a position to say that tense operators are
unavoidable in linguistics. For, we have just seen that there
are sentences in natural languages (such as English) that ex-
press functional dependencies between the interpretations of
the tenses they contain. That functional dependencies exist
between interpretations of tenses means that one tense is logi-
cally prior to another. And the terms of the relation of logical
priority are operators.

It should be noted that the truth of (A) in no way presup-
poses the existence of any particular logical formalism, partic-
ularly not the one referred to in (B), or the ‘backwards-looking
operators’ interpretation of IF tense logic. The truth of (A) is
observed as soon as the notion of priority scope and its con-
ceptual unrelatedness to interpretive dependency (or what we
called relational dependency) are understood.

On the other hand, once the difference between the two
types of dependency — functional and relational — is grasped,
it becomes natural to incorporate them in one and the same
logic so that they need not go hand in hand as they do in
PTL — whereby the BLO interpretation of IF tense logic is
obtained. This logic is otherwise like PTL, but has the built-in
capacity to avoid the problems to which PTL unavoidably is
driven by the sole fact of not being able to separate the logical
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phenomenon of dependence (functional dependence) from the
interpretive (or relational) one.

It must be stressed that the result formulated in (A) does
not involve any claim to the effect that the whole sphere of
tenses and temporal expressions in linguistics can be dealt with
exclusively in terms of operators. I claim only to have provided
an argument to the effect that there are natural language sen-
tences in which tenses appear as operators. In particular, only
complex clauses were considered in which the relevant tenses
were syntactically embedded one under the other. Temporal
adverbs, and expressions directly referring to or quantifying
over times were not considered at all. As well, we did not
study tenses other than the present, simple past, simple future,
present perfect and past perfect. And we worked under the
grossly simplifying idealization that the semantics of tenses is,
throughout, in terms of time-points, instead of often having
recourse to temporal intervals. But irrespective of whatever
overall theory of tense one might formulate, it will not be a
matter of free decision whether some tenses must be presented
as operators (i.e. whether there are instances of tenses that
act as operators in logical forms of English sentences contain-
ing these tenses). Some must — this is what the examples here
have shown. There are instances, then, of tenses as operators.

A general conclusion arising from our considerations related
to natural language tense is that semantic interactions of logi-
cally active expressions must never be underestimated. There is
no general reason why the semantic properties of an expression
should be restricted to those that it has in isolation. Notably,
configurations of logically active expressions can have proper-
ties that could not be manifested if those expressions were con-
sidered simply on their own. The sentences (31), (32), (42)
and (46) are illustrative examples of this phenomenon. If all
appearances of negation were removed in (31), (32) and (42),
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no functional dependencies would be expressed. Introducing
negation — a species of logically active expression — into these
sentences changes the scene: the configuration of appearances
of negation that serves to express duality makes one of the
tenses in each of these sentences have universal force, thereby
making the operator-nature of a tense visible. What is at stake
in (46) is the logical interaction of tenses of two verbs hav-
ing respectively different readings — universal and existential.
Structural properties decidedly can indicate semantic effects of
expressions that would not be visible if these expressions were
viewed in isolation.
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Some Properties of
Binary Relations

Any subset R C D x D is a binary relation on the set D.
Whenever (z,y) € R, we say that y is an R-successor of x,
and indicate this by writing R(z,y). We write dom(R) for the
set {x : JyR(x,y)} and rng(R) for the set {y : JzR(x,y)}.
The properties of binary relations mentioned in this thesis are
defined below, where throughout, “R” stands for a binary re-
lation.

o Reflexivity
(D, R) = VaR(x, z)
o [rreflexivity
(D, R) = Vz—R(zx,x)
o Antisymmetry
(D, R) E VaVy((z # y AR(z,y)) — ~R(y, 7))
o Transitivity

(D, R) = VaVyVz((R(z,y) A R(y, 2)) — R(z, 2))

271
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o Partial order

R is a partial order of D if R is antisymmetric and transitive
on D.

o Temporal frame

A pair (D, R) is a temporal frame if R is an irreflexive and
transitive relation on D. Observe that R is thus any irreflexive
partial order on D.

o (Connectedness
(D, R) E VaVy(R(z,y) VR(y,z) V& = y)
o Comparability

Elements z,y € D are said to be R-comparable if R(z,y) or
R(y,z) or x = y. If 2,y € D are not R-comparable, they
are said to be R-incomparable. Observe that R is therefore
connected iff all elements z,y € D are R-comparable.

o Linearity
R is a linear order of D if it is a connected partial order of D.
e Local linearity

R is locally linear on D if for all z € D, the sets {y : R(z,y)}
and {y : R(y,z)} are linearly ordered by R.

o Discreteness
If S is a binary predicate on D, write ®(S) for the formula
Vavy[(S(z,y) Ax # y) —
Fyo(z # yo A S(z,40) A (Yo =y V S(yo, y)) A
Vz[(S(z,2) AS(z,50)) — (2 =2V 2z =yo)])]-
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Then R is discrete on D if the formula
dR) A PR
is true in (D, R).
e Density

R is dense on D, if the formula
Vavyl(z #y A R(z,y)) —
3z(z ¢ {z,y} A R(z,2) A R(2,9))]
is true in (D, R).
e Upper bound, lower bound, supremum, infimum
Let C C Dandde D.

(a) If for all z € C: R(x,d), then d is said to be an R-upper
bound of C.

(b) If for all z € C: R(d,x), then d is said to be an R-lower
bound of C.

(c) If d = inf{d’ : d’ is an R-upper bound of C}, then d is an
R-supremum of C.

(d) Similarly, if d = sup{d’ : d’' is an R-lower bound of C},
then d is said to be an R-infimum of C.

e Dedekind-completeness

A pair (D, R) is Dedekind-complete if every non-empty subset
of D which has an R-upper bound has an R-supremum.
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e Mazimal and minimal element; mazimum and minimum
Let d € dom(R).

(a) If there is no x # d such that R(d, z), d is an R-maximal
element of D.

(b) If there is no x # d such that R(x,d), d is an R-minimal
element of D.

(c) If for all x € D: R(z,d) or x = d, then d is an R-
mazimum of D.

In other words, d is an R-mazimum, whenever d is R-
mazrimal and all R-maximal elements of D are
R-comparable.

(d) If for all x € D: R(d,z) or x = d, then d € D is an
R-minimum of D.

An element is an R-minimum precisely when it is R-minimal
and all R-minimal elements of D are R-comparable.

o Well-orderedness

R is a well-order if R is linear and every non-empty subset of
dom(R) has an R-minimum.

For instance, the order < of real numbers by their mag-
nitude is not a well-order: this order is linear, but e.g. the
infimum /2 of the set C' = {x : 22 > 2} is not the minimum
of C. The set C' has no minimum. Also the order of the set
Z of integers by magnitude is not a well-order, because the set
Z is its own non-empty subset and has no minimum. On the
other hand, any finite subset of reals ordered by magnitude
is a well-order, and so is the order by magnitude of natural
numbers.
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o Cyclicity!

R is cyclical if R is anti-symmetric, connected, locally linear
and, furthermore, non-transitive in the sense that the formula

Jr3y3z(R(z,y) AR(y, z) AR(z, 7))
is true in (D, R).
o Tree

A structure (D,R) is a tree if R is a partial order, for all z € D,
the elements of the set {y : R(y,x)} are R-comparable, and
there exists an R-minimum of D (the root of the tree).

! This definition is given in Reynolds (1994).






Appendix B

Determinacy and
Zero-sum Two-player
Games of Perfect
Information

In John von Neumann and Oskar Morgenstern’s Theory of
Games and Economic Behavior (Ch. 15 esp. Sect. 15.6) it
is proven:

Theorem B.1 FEvery zero-sum two-player game of perfect in-
formation is strictly determined.

The relevant definitions behind the theorem can be given as
follows. First, given any set X of finite sequences, let us agree
on writing is(X) :=

{h : for some 2z € X and some non-empty h',h"h' = z}.

Hence is(X) is the set of proper initial segments of members
of X.

277
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Definition B.2 A two-player zero-sum game I' in extensive
form is a tuple
(Zv Pa v, {Ilv 12}))

where

e 7 is a set of finite sequences

o P:4s(Z) — {1,2} is a function, associating each proper
initial segment of Z with one of the players

e v:/Z — R s a function specifying the outcomes
for Player 1

e I; (i :=1,2) is a partition of the set P~1({i}).

The game is a zero-sum game, i.e. the outcome of every se-
quence z € Z for Player 2 is the number —v(z). The game
is one of perfect information if the members of both partitions
I; are all singletons. This means that when a player makes a
choice at a sequence h € is(Z), the player is fully informed
about the earlier moves in the play of the game, i.e. of the
members of the sequence h.

Definition B.3 A two-player zero-sum game I' in normalized
form is a tuple

(/817527’%)7

where the (; are any ordinals, and k is two-place function as-
sociating a real number with each pair (11,72) € (1 X P2. The
choices available to Player 1 are the ordinals smaller than 31,
and the choices available to Player 2 are the ordinals smaller
than By. A play of the game consists of Player 1 choosing an
ordinal 71 < (1 and Player 2 choosing an ordinal 7o < fs;
each player makes his choice in complete ignorance of the other
player’s choice. The outcome of the play (m1,m2) for Player
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1 is the real number k(11,72), and for Player 2 the number
—K(T1,72).

Von Neumann & Morgenstern (1944) only consider cases
where 31, B2 are finite.

Observation B.4 If '™ = (Z, P,v,{I1,I2}) is a game in ex-
tensive form, the set of strategies for Playeri:= 1,2 is F(i) :=

{f :dom(f) = P71({i}) and always ™ f(h) € is(Z)U Z}.

If the cardinalities of the sets F'(1) and F(2) are respectively o
and 7y, then by letting /1 := a and [y := v, we can (by Aziom
of Choice) enumerate the F(i) as

{fj7<Bi}.

There is then a one-one correspondence between pairs of strate-
gies (f,g) € F(1) x F(2) and elements z € Z. Defining then

fO’I“ all (7’1,7’2) € (1 X Ba:
K(T1,T2) 1=
v(“the member of Z determined by fr, and fr,”),

we have obtained a game I' = (1, B2, k) in normalized form,
satisfying:

the outcome of Player i in I'* for the z € Z determined
by fr, and f-, is the same as (=)
the outcome of Player i in T for (71,72).

Definition B.5 The game in normalized form is strictly de-
termined if the following condition holds:

Max; Min., k(11,m2) = Min,Max,, r(11,72).
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Intuitively this condition means that the outcome of the play
would be the same if Player 2 found out the choice 7 of Player
1 and if the choice 75 of Player 2 was found out by Player 1.

Definition B.6 The game in extensive form with the two pos-
sible outcomes 1 and —1 is said to be determined if one of the
players has a strategy that yields him the outcome 1 against any
sequence of moves by the other player.

Proposition B.7 Let k : f1 X fo — {—1,1} be any function.
(Hence the [; may be of any cardinality.) Then the following
holds:

Max: Min., k(ti,m) = Min., Maz, x(Ti,72).

Proof. ! Write v; := Max,, Min,, k(t,7), and vy :=
Min.,Maz,, r(T1,72). Assume for contradiction that vy # vs.
Hence either v1 = 1 and vy = —1, or vice versa. Consider the
former case first.

(1.1) Because v; = 1, there is 71 such that for all 7o:
k(11,72) = 1. Let o1 be some such 7.
(1.2) Since vy = —1, there is 79 such that for all 7i:

k(11,72) = —1. Choose oy to be such 7.

But now, by (1.2) we have k(o1,02) = —1. And by (1.1) we
have that x(o1,09) = 1. This is impossible.

Consider then the latter case: v1 = —1 and vy = 1.
(2.1) We have v; = —1 iff for all 7; there is 72 such that
k(11,72) = —1. But the latter condition means that there

exists a function f such that for all 7:

! For the proof, cf. von Neumann & Morgenstern (1944), pp. 97-8.
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Maz; Mingy k(T, f(7)) = —1.

Hence:
—1=Mazx;Min, k(1,0) =

= Max;Mingy k(7, f(7)) = Maz; x(7, f(7)).

A fortiori, then, by the last equality:
MingMaz; k(T,9(7)) < Maz; Mingy (7, f(7)).
Now
Mingk(t,9(1)) = Mingk(r,0).
Consequently
Mazx,Ming k(7,9(7)) = Maz.Mins k(T,0).
Hence:
MingMax; k(7,9(7)) < Max;Ming x(1,9(7)) = —1.

(2.2) On the other hand, because vy = 1, we have:
1= Min,Max; k(T1,72) =
= MingMax, k(1,9(7)) < Max;Ming k(7,9(7)) =
—- 1.

A contradiction.

Hence the proof is completed. =
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Theorem B.8 Fvery 2-player zero-sum game of perfect infor-
mation with outcomes in the set {1,—1} is determined.

Proof. Let I'" be any 2-player zero-sum game of perfect
information with outcomes in {1,—1}, and let I' = (1, B2, k)
be the corresponding game in normalized form. If the value

Maz. Min,, k(ti,7) = Min, Max,, k(11,72) =1,

then there exists a w.s. for Player 1, and any 7 such that
Min., k(11,72) =1

counts as such a strategy. Otherwise

Max: Min,, k(11,72) = Min, Max;, k(11,72)=—1,
and there exists a w.s. for Player 2; any 7 such that

Max;, k(m1,72) =—1

being such a strategy. m

The result of von Neumann and Morgenstern (the above
Theorem B.1) allows any payoffs, i.e. allows the range of k to
be any subset of reals. Its proof would be more difficult than
that of Theorem B.8. On the other hand, the present result is
more general in that it does not restrict the size of the domain
of k in any way, as 81 and (2 may be any ordinals.



Summary

In the present thesis I have defined a modification of the lan-
guage ML of basic modal logic: IF modal logic. Three seman-
tics have been offered for IFML — interpretations in terms
of uniformity of winning strategies, backwards-looking opera-
tors and linear temporal structures equipped with a commuta-
tive group operation. The issue of the expressive power of IF
modal logic compared with basic modal logic has been explored
in connection with each interpretation, and it has been shown
that while interpreting independence as logical independence
— in uniformity semantics — does in general give IFML extra
expressive power over ML, the expressive resources of IFML
under the other two interpretations in fact coincide with the
resources of ML. The ‘backwards-looking operators’ interpre-
tation turned out to be useful, however, when discussing the

notion of tense operator from the linguistic point of view.?

The uniformity interpretation (UNI) of IF modal logic is
a straightforward analogue of the IF first-order logic of Jaakko
Hintikka and Gabriel Sandu (1989): logical independence is
implemented by the condition of uniformity on players’ win-
ning strategies in semantical games. The models employed by

2 And, as was noted above in Ch. 4 (Remark 4.1.2), a many-dimensional
BLO interpretation of IF modal logic would indeed make it more expressive
than the corresponding many-dimensional version of basic modal logic.
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IFML are precisely the same as the models of basic modal
logic. Julian Bradfield, who was the first to define a version
of IF modal logic (Bradfield 2000; Bradfield & Froschle 2002),
has proceeded from the conviction that an extra relation be-
tween transitions — whose intuitive interpretation is that these
transitions are ‘independent’ of each other — is needed before
one can make sense of logical independence in connection with
modal logic. A more straightforward approach along the lines
of IF first-order logic has not seemed possible, because the tran-
sitional semantics of modal logic makes the evaluation essen-
tially local: whenever a state s is reached in the evaluation
game, the available moves in the game do not depend on the
history that led to s — the available moves depend only on
s itself. Therefore it may seem that there is no room for in-
dependence here. Bradfield (2002) has taken the relation of
concurrency between transitions as a primitive in his models.
The condition requiring that a move x in an evaluation game be
logically independent of specified earlier moves is implemented
in his work by requiring that (i) the move x be concurrent with
the specified earlier moves, and (ii) a strategy of the relevant
player can only be winning if it gives the move = uniformly
with respect to those same earlier moves. However, the UNI
interpretation of IF modal logic presented in this thesis estab-
lishes that no additional ingredients in the models of the logic
are needed for defining IF modal logic: uniformity constraint
on winning strategies suffices.

The main logical results of the thesis are as follows:

e IFML has a strictly greater expressive power than ML
over the class of all k-ary modal structures.

o [F tense logic and basic tense logic have the same expres-
sive power relative to unary temporal structures with a
linear accessibility relation. An analogous result holds
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true for IF modal logic, basic modal logic and unary
modal structures.

e When evaluated relative to modal (temporal) structures
with at least two linear accessibility relations, IF modal
(tense) logic has a strictly greater expressive power than
basic modal (tense) logic.

e IFML has a translation into FO.

e A modification of IF modal logic (dubbed EIFML) al-
lowing modal operators to be independent even from con-
junctions and disjunctions cannot be translated into FO.

The concluding chapter (Ch. 5) of the present thesis pro-
vided an example of the theoretical relevance of the IF modal-
logical framework, in its capacity to allow a broadened vista
over modal logic. In the case at hand, a relevant modification
of basic modal logic was shown to result from the ‘backwards-
looking operators’ interpretation of IF modal logic. I discussed
the linguistic critique of the operator-based view on natural
language tenses, and, by making use of the ‘backwards-looking
operators’ interpretation of IFTL, it was shown how one can
systematically distinguish two aspects of ‘tense operators’ —
one concerning logical relations (patterns of operators express-
ing functional dependencies), the other pertaining to temporal
relations (how times are chosen in relation to other times when
interpreting a sentence). Basic tense logic cannot make a dis-
tinction between these two features. I argued that while the
critique against tenses as operators correctly points out that
the operator-based approach leads to an overflow in possible
logical forms of temporal sentences (many ungrammatical sen-
tences receive a putative logical form), it fails by insisting that
this is a reason for rejecting tenses as operators. The over-
representativeness of tense logic as a source of logical forms of
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tensed sentences arises from possible patterns of temporal re-
lations (earlier than, contemporaneousness) between times (i.e.
between values associated with tense operators in evaluation).
This, however, justifies giving up tense operators only if there
appear no functional dependencies between tenses, that is to
say, if the logical aspect just mentioned is never realized in
natural language. Further, I showed that there are English
sentences which serve to express functional dependencies be-
tween interpretations of tenses. This means, then, that there
are instances of tenses as operators. While this does not claim
to be a universal solution to the body of linguistic problems
relating to tense, this does aim to be a rebuttal of the position
in linguistics which attempts to dispense with tense operators
altogether.
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