P. Alivisatos, The use of nanocrystals in biological detection, Nature Biotechnology, vol.22, issue.1, pp.47-52, 2004.
DOI : 10.1038/nbt927

M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel et al., New Synthesis of Nanosized Niobium Oxides and Lithium Niobate Particles and Their Characterization by XPS Analysis, Journal of Nanoscience and Nanotechnology, vol.9, issue.8, pp.4780-4785, 2009.
DOI : 10.1166/jnn.2009.1087

]. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan et al., Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media, Journal of Biomedical Optics, vol.14, issue.1, pp.10503-10508, 2009.
DOI : 10.1117/1.3081544

S. Basiruddin, A. Saha, N. Pradhan, R. Nikhil, and . Jana, Advances in Coating Chemistry in Deriving Soluble Functional Nanoparticle, The Journal of Physical Chemistry C, vol.114, issue.25, pp.11009-11017, 2010.
DOI : 10.1021/jp100844d

]. R. Bersohn, Y. Pao, and H. L. Frisch, Double???Quantum Light Scattering by Molecules, The Journal of Chemical Physics, vol.45, issue.9, 1966.
DOI : 10.1063/1.1728092

D. John, H. Bierlein, and . Vanherzeele, Potassium titanyl phosphate : properties and new applications, Journal of the Optical Society of America B, vol.6, issue.4, pp.622-633, 1989.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le-dantec, J. Extermann et al., Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy, Applied Physics B, vol.429, issue.3, pp.399-403, 2007.
DOI : 10.1007/s00340-007-2612-z

URL : https://hal.archives-ouvertes.fr/hal-00960216

L. Bonacina, Nonlinear Nanomedecine: Harmonic Nanoparticles toward Targeted Diagnosis and Therapy, Molecular Pharmaceutics, vol.10, issue.3, pp.783-792, 2012.
DOI : 10.1021/mp300523e

R. W. Boyd, Nonlinear Optics, 1992.

S. Brasselet and J. Zyss, Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media, Journal of the Optical Society of America B, vol.15, issue.1, pp.257-288, 1998.
DOI : 10.1364/JOSAB.15.000257

S. Brasselet, V. Le-floc-'h, F. Treussart, and J. Zyss, Diagnostics of the Crystalline Nature of Single Organic Nanocrystals by Nonlinear Microscopy, Situ Diagnostics of the Crystalline Nature of Single Organic Nanocrystals by Nonlinear Microscopy, p.207401, 2004.
DOI : 10.1103/PhysRevLett.92.207401

S. Brasselet and J. Zyss, Nano-crystals for quadratic nonlinear imaging : characterization and applications, Y. Masuda, editeur, Nanocrystals, chapitre 11, pp.249-270, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00540511

J. Paul, . Campagnola, M. Leslie, and . Loew, Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms, Nature biotechnology, vol.21, issue.11, pp.1356-60, 2003.

G. Catalan and J. F. Scott, Physics and Applications of Bismuth Ferrite, Advanced Materials, vol.10, issue.2, pp.2463-2485, 2009.
DOI : 10.1002/adma.200802849

Y. Chang, H. Lee, K. Chen, C. Chang, D. Tsai et al., Mass production and dynamic imaging of fluorescent nanodiamonds, Nature Nanotechnology, vol.127, issue.5, pp.284-288, 2008.
DOI : 10.1038/nnano.2008.99

K. Dev, A. J. Chatterjee, Y. Rufaihah, and . Zhang, Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals, Biomaterials, vol.29, issue.7, pp.937-943, 2008.

H. Chen, Y. Zhang, and Y. Lu, Nanoscale potassium niobate crystal structure and phase transition, Nanoscale Research Letters, vol.6, issue.1, pp.1-6, 2011.
DOI : 10.1016/j.jeurceramsoc.2007.02.070

URL : http://doi.org/10.1186/1556-276x-6-530

G. Ciofani, . Danti, . Moscato, . Albertazzi, . Dalessandro et al., Preparation of stable dispersion of barium titanate nanoparticles: Potential applications in biomedicine, Colloids and Surfaces B: Biointerfaces, vol.76, issue.2, pp.535-543, 2010.
DOI : 10.1016/j.colsurfb.2009.12.015

G. Ciofani, L. Ricotti, C. Canale, D. Dalessandro, S. Berrettini et al., Effects of barium titanate nanoparticles on proliferation and differentiation of rat mesenchymal stem cells, Colloids and Surfaces B: Biointerfaces, vol.102, issue.0, pp.312-320, 2013.
DOI : 10.1016/j.colsurfb.2012.08.001

P. Couvreur, C. Vauthier, S. Cyvin, J. Rauch, and J. Decius, Nanotechnology: Intelligent Design to Treat Complex Disease, Pharmaceutical Research, vol.4, issue.421, pp.1417-1450, 1965.
DOI : 10.1007/s11095-006-0284-8

E. Delahaye, N. Sandeau, Y. Tao, S. Brasselet, and R. Clement, Synthesis and Second Harmonic Generation Microscopy of Nonlinear Optical Efficient Hybrid Nanoparticles Embedded in Polymer Films. Evidence for Intra- and Internanoparticles Orientational Synergy, The Journal of Physical Chemistry C, vol.113, issue.21, pp.9092-9100, 2009.
DOI : 10.1021/jp8104985

W. P. Dempsey and E. Scott, SHG nanoprobes: Advancing harmonic imaging in biology, BioEssays, vol.7, issue.77, pp.351-360, 2012.
DOI : 10.1002/bies.201100106

A. Deniset-besseau, J. Duboisset, E. Benichou, F. Hache, P. Brevet et al., Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin, Denk 90] NIR-to-NIR Two-Photon Excited CaF2 :Tm3+,Yb3+ Nanoparticles : Multifunctional Nanoprobes for Highly Penetrating Fluorescence Bio-Imaging, pp.13437-13482, 1990.
DOI : 10.1021/jp9046837

URL : https://hal.archives-ouvertes.fr/hal-00838920

P. Gregor, J. Drummen, I. Duboisset, . Russier-antoine, . Benichou et al., Single Metallic Nanoparticle Sensitivity with Hyper Rayleigh Scattering Nonlinear optical response in single alkaline niobate nanowires Nanocristaux optiquement non linéaires pour des applications en imagerie biologique : synthèse et caractérisations d'iodate de fer en microémulsions Two-photon microscopy for chemical neuroscience Biocompatible Luminescent Silicon Quantum Dots for Imaging of Cancer Cells, Fluorescent Probes and Fluorescence (Microscopy) Techniques ; Illuminating Biological and Biomedical Research. Molecules Thèse de Doctorat, pp.14067-14090, 2008.

J. Extermann, L. Bonacina, E. Cuña, C. Kasparian, Y. Mugnier et al., Nanodoublers as deep imaging markers for multi-photon microscopy, Thèse de Doctorat Advanced Microscopy Techniques II, pp.15342-15351, 2009.
DOI : 10.1364/OE.17.015342

URL : https://hal.archives-ouvertes.fr/hal-00604352

A. Folick, W. Min, C. Meng, S. Wang, . Fujino et al., Label-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) microscopy, Current Opinion in Genetics & Development, vol.21, issue.5, pp.585-590, 1961.
DOI : 10.1016/j.gde.2011.09.003

L. Gailhouste, Y. Le-grand, C. Odin, D. Guyader, B. Turlin et al., Fibrillar collagen scoring by second harmonic microscopy: A new tool in the assessment of liver fibrosis, Chapitre 5 : BIBLIOGRAPHIE [Gailhouste 10], pp.398-406, 2010.
DOI : 10.1016/j.jhep.2009.12.009

URL : https://hal.archives-ouvertes.fr/hal-00657949

. Liu, Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles, Advanced Materials, vol.19, issue.19, pp.2889-2892, 2007.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, L. Noelia, S. Bocchio et al., Nonlinear Correlation Spectroscopy (NLCS), Nano Letters, vol.12, issue.3, pp.1668-1672, 2012.
DOI : 10.1021/nl300070n

E. Gibson, O. Masihzadeh, T. Lei, D. Ammar, and M. Kahook, Multiphoton Microscopy for Ophthalmic Imaging, Journal of Ophthalmology, vol.60, issue.4, p.870879, 2011.
DOI : 10.1126/science.1165758

A. Gnach and A. Bednarkiewicz, Lanthanide-doped up-converting nanoparticles: Merits and challenges, Nano Today, vol.7, issue.6, pp.532-563, 2012.
DOI : 10.1016/j.nantod.2012.10.006

S. Gomes, C. S. Vieira, B. Diogo, . Almeida, R. Jacenir et al., CdTe and CdSe quantum dots cytotoxicity : a comparative study on microorganisms Imaging with second-harmonic radiation probes in living tissue, Grange 11] Rachel Grange, pp.11664-78, 2011.

M. Haase and H. Schäfer, Upconverting Nanoparticles, Angewandte Chemie International Edition, vol.1, issue.49, pp.5808-5829, 2011.
DOI : 10.1002/anie.201005159

R. Hardman, G. Toxicologic, . Heesink, N. Ruiter, G. Van-hulst-et-b-bölger-rachel-grange et al., Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering [Hemmilä 05] I Hemmilä et V Laitala Progress in Lanthanides as Luminescent Probes [Hendrickx 98] Eric Hendrickx, Koen Clays et André Persoons Hyper-Rayleigh Scattering in Isotropic Solution Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle, Hsieh 10a] Chia-Lung Hsieh Barium titanate nanocrystals and nanocrystal thin films : Synthesis, ferroelectricity, and dielectric properties, pp.165-172, 1993.

Y. Yuen, C. Hui, H. Cheng, and . Chang, Nanodiamonds for optical bioimaging BIBLIOGRAPHIE [Huyskens 98] François L. Huyskens, Pierre L. Huyskens et André P. Persoons. Solvent dependence of the first hyperpolarizability of p-nitroanilines : Differences between nonspecific dipoledipole interactions and solute-solvent H-bonds Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles, Journal of Physics D : Applied Physics J. Chem. Phys. Biomaterials, vol.43, issue.30 28, pp.374021-8161, 1998.

]. J. Jackson, T. Mokari, M. Banin, U. Jacobsohn, and . Barin, Classical Electrodynamics Surface exchange effect on hyper Rayleigh scattering in CdSe nanocrystals Size-dependance of Second Harmonic Generation in CdSe Nanocrystal quantum Dots, Adsorption Applied Physics Letters Journal of Physical Chemistry B The Journal of Physical Chemistry B, vol.91, issue.104 1, pp.71922-71923, 2000.

S. Jiang and Y. Zhang, Upconversion Nanoparticle-Based FRET System for Study of siRNA in Live Cells, Langmuir, vol.26, issue.9, pp.6689-6694, 2010.
DOI : 10.1021/la904011q

V. Aliaksandr, . Kachynski, N. Andrey, M. Kuzmin, I. Nyk et al., Zinc Oxide Nanocrystals for Strain-induced effects in phase transitions in thin films of multiferroic BiFeO3 probed by optical second-harmonic generation, Nonresonant Nonlinear Optical Microscopy in Biology and Medicine. The Journal of Physical Chemistry C Journal of Materials Research, vol.112, issue.22 08, pp.10721-10724, 1996.

M. Kauranen, A. Kim, J. Jeong, J. Lee, D. H. Sung-chul-shin et al., Theory of polarization measurements of secondorder nonlinear light scattering [Kielich 68] S Kielich. DC electric field-induced optical second harmonic generation by interacting multipolar molecules Enhancement of saturation magnetization in epitaxial (111) BiFeO3 films by magnetic annealing Structural transition in epitaxially-strained BiFeO3 thin films studied by using second harmonic generation Multiphoton microscopy -a powerful tool in skin research and topical drug delivery science Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions, ZnO : Material, pp.3445-569, 1968.

K. König, Multiphoton microscopy in life sciences, Journal of Microscopy, vol.200, issue.2, pp.83-104, 2000.
DOI : 10.1046/j.1365-2818.2000.00738.x

A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez et al., Linear and nonlinear optical properties of BiFeO3 Characterization Techniques and Tabulations for Organic Non Linear Optical Materials SHG Active Fe(IO3)3 Particles : From Spherical Nanocrystals to Urchin-Like Microstructures through the Additive-Mediated Microemulsion Route Individual inorganic nanoparticles : preparation, functionalization and in vitro biomedical diagnostic applications, Lahmani 07] M. Lahmani, P. Boisseau et P. Houdy. Nanosciences : nanobiotechnologies et nanobiologie, pp.121915-5387, 1998.

R. Daniel, . Larson, R. Warren, R. M. Zipfel, . Williams et al., Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo, Ensemble and Individual Characterization of the Nonlinear Optical Properties of ZnO and BaTiO3 Nanocrystals, pp.1434-1436, 2003.

C. Loc-le-xuan, A. Zhou, D. Slablab, C. Chauvat, S. Tard et al., Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields, Small Applied Physics Letters, vol.4, issue.91 2, pp.1332-1338, 2007.

J. Lecoq, A. Parpaleix, E. Roussakis, M. Ducros, Y. Goulam-houssen et al., Simultaneous twophoton imaging of oxygen and blood flow in deep cerebral vessels Optimization of a dual-rotating-retarder polarimeter designed for hyper-Rayleigh scattering, Nature Medicine Journal of the Optical Society of America B, vol.17, issue.24 3, pp.893-898, 2007.

B. Levine, C. Lewinski, V. Colvin, R. Drezek, . Shuang-fang et al., In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans Nanodiamond for intracellular imaging in the microorganisms in vivo Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo, The Journal of Chemical Physics, pp.2666-2682, 1975.

J. Long, D. Simpkins, P. Rowenhorst, and . Pehrsson, Far-field Imaging of Optical Second-Harmonic Generation in Single GaN Nanowires, Nano Letters, vol.7, issue.3, pp.831-836, 2007.
DOI : 10.1021/nl0624420

K. Ma, H. Sai, and U. Wiesner, Ultrasmall Sub-10 nm Near-Infrared Fluorescent Mesoporous Silica Nanoparticles, Tracking of Murine Cardiac Stem Cells by Harmonic Nanodoublers. Small, pp.13180-13183, 2012.
DOI : 10.1021/ja3049783

P. Mahou, N. Olivier, G. Labroille, L. Duloquin, J. Sintes et al., Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos Phase content, tetragonality, and crystallite size of nanoscaled barium titanate synthesized by the catecholate process : effect of calcination temperature SHG Microscope Observations of Domain Structures of Multiferroic BiFeO3 Single Crystal, Mason 99] W.T. Mason. Fluorescent and Luminescent Probes for Biological Activity, pp.2837-2849, 1999.

L. Igor, . Medintz, . Uyeda, R. Ellen, H. Goldman et al., Quantum dot bioconjugates for imaging, labelling and sensing High Up-Conversion Efficiency of YVO4 :Yb,Er Nanoparticles in Water down to the Single-Particle Level Quantum Dots for Live Cells, Vivo Imaging, and Diagnostics. Science, pp.435-481, 2005.

N. Vadym, O. Mochalin, D. Shenderova, Y. Ho, and . Gogotsi, The properties and applications of nanodiamonds, Nature nanotechnology, vol.7, pp.11-23, 2012.

N. Mohan, C. Chen, H. Hsieh, Y. Wu, S. Huan-cheng-chang-girija et al., In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis elegans Synthesis and piezoelectric response of cubic and spherical LiNbO3 nanocrystals, Chapitre BIBLIOGRAPHIE Nano Letters RSC Advances, vol.5, issue.2 5, pp.3692-3699, 2010.

J. Moreau, C. Michel, R. Gerson, and W. James, Ferroelectric BiFeO3 X-ray and neutron diffraction study, Journal of Physics and Chemistry of Solids, vol.32, issue.6, pp.1315-1320, 1971.
DOI : 10.1016/S0022-3697(71)80189-0

L. Mugnier, M. Houf, R. El-kass, R. Le-dantec, B. Hadji et al., In Situ Crystallization and Growth Dynamics of Acentric Iron Iodate Nanocrystals in w/o Microemulsions Probed by Hyper-Rayleigh Scattering Measurements, Situ Crystallization and Growth Dynamics of Acentric Iron Iodate Nanocrystals in w/o Microemulsions Probed by Hyper-Rayleigh Scattering Measurements, pp.23-30, 2011.
DOI : 10.1021/jp105638s

URL : https://hal.archives-ouvertes.fr/hal-00596123

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally-liphardt et al., Tunable nanowire nonlinear optical probe, Nature, vol.424, issue.7148, pp.1098-1101, 2007.
DOI : 10.1038/nature05921

J. Nappa, I. Revillod, . Russier-antoine, C. Benichou, P. Jonin et al., Electric dipole origin of the second harmonic generation of small metallic particles, Physical Review B, vol.71, issue.16, p.165407, 2005.
DOI : 10.1103/PhysRevB.71.165407

. Nava-10-]-rubeng, W. Nava, . Li, . Andrewe, A. Gelman et al., Two-photon microscopy in pulmonary research, Seminars in Immunopathology, vol.461, issue.549???552, pp.297-304, 2010.
DOI : 10.1007/s00281-010-0209-9

M. Nyk, R. Kumar, Y. Tymish, . Ohulchanskyy, J. Earl et al., Doped Fluoride Nanophosphors, Nano Letters, vol.8, issue.11, pp.3834-3838, 2005.
DOI : 10.1021/nl802223f

R. Ostroverkhov, K. Petschek, and . Singer, Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering, Journal of the Optical Society of America B, vol.17, issue.9, 2000.
DOI : 10.1364/JOSAB.17.001531

H. Ow, R. Daniel, M. Larson, . Srivastava, A. Barbara et al., Bright and Stable Core???Shell Fluorescent Silica Nanoparticles, Nano Letters, vol.5, issue.1, pp.113-117, 2005.
DOI : 10.1021/nl0482478

J. Maloney, D. Wu, E. Scott, and . Fraser, Second harmonic generating (SHG) nanoprobes for in vivo imaging, Proceedings of the National Academy of Sciences of the United States of America, pp.14535-14575, 2010.

T. Park, C. Georgia, . Papaefthymiou, J. Arthur, Y. Viescas et al., solid solution nanostructures, Physical Review B, vol.82, issue.2, p.24431, 2010.
DOI : 10.1103/PhysRevB.82.024431

I. Pavlova, R. Kelly, . Hume, A. Stephanie, . Yazinski et al., Multiphoton microscopy as a diagnostic imaging modality for lung cancer [Perry 12] SethW. Perry, RyanM. Burke et EdwardB. Brown. Two-Photon and Second Harmonic Microscopy in Clinical and Translational Cancer Research, SPIE Proceedings, pp.756917-756918, 2010.

D. Petrov, G. A. Santos, C. Pereira, M. De, and . Donega, Size and Band-gap dependences of the First Hyperpolarizability of Cd(x)Zn(1-x)S Nanocrystals, Journal of Physical Chemistry B, vol.106, 2002.

Y. Pu, R. Grange, C. Hsieh, and D. Psaltis, Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation, Physical Review Letters, vol.104, issue.20, pp.1-4, 2010.
DOI : 10.1103/PhysRevLett.104.207402

T. Rameshwar, S. Samal, S. Lee, S. Kim, J. Cho et al., Determination of the Size of Water-Soluble Nanoparticles and Quantum Dots by Field-Flow Fractionation, Journal of Nanoscience and Nanotechnology, vol.6, issue.8, pp.2461-2467, 2006.
DOI : 10.1166/jnn.2006.544

M. Genger, S. Grabolle, R. Cavaliere-jaricot, T. Nitschke, and . Nann, Quantum dots versus organic dyes as fluorescent labels, Nature Methods, vol.5, issue.9, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00798911

G. Revillod, Diffusion hyper Rayleigh des assemblages moléculaires, Thèse de Doctorat, 2006.

G. Revillod, J. Duboisset, I. Russier-antoine, E. Benichou, G. Bachelier et al., Multipolar Contributions to the Second Harmonic Response from Mixed DiA???SDS Molecular Aggregates, The Journal of Physical Chemistry C, vol.112, issue.7, pp.2716-2723, 2008.
DOI : 10.1021/jp0754132

S. Roke and G. Gonella, Nonlinear Light Scattering and Spectroscopy of Particles and Droplets in Liquids, Annual Review of Physical Chemistry, vol.63, issue.1, pp.353-378, 2012.
DOI : 10.1146/annurev-physchem-032511-143748

S. Roy, K. Chandra, R. Dixit, . Woolley, D. Brian et al., Novel Multiparametric Approach to Elucidate the Surface Amine-Silanization Reaction Profile on Fluorescent Silica Nanoparticles, Langmuir, vol.26, issue.23, pp.18125-18159, 2010.
DOI : 10.1021/la103212d

H. Ruda and . Shik, Nonlinear optical phenomena in nanowires, Journal of Applied Physics, vol.101, issue.3, pp.34312-34314, 2007.
DOI : 10.1063/1.2434971

E. Antoine, . Benichou, C. Bachelier, P. Jonin, and . Brevet, Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles, The Journal of Physical Chemistry C, vol.111, issue.26, pp.9044-9048, 2007.
DOI : 10.1021/jp0675025

N. Sandeau, . Le-xuan, C. Chauvat, J. Zhou, D. Roch et al., Defocused imaging of second harmonic generation from a single nanocrystal, Optics Express, vol.15, issue.24, pp.12-20, 2007.
DOI : 10.1364/OE.15.016051

URL : https://hal.archives-ouvertes.fr/hal-00438981

B. Santos, G. A. Pereira, and D. Petrov-et-c-de-mello-donega, First hyperpolarizability of CdS nanoparticles studied by hyper-Rayleigh scattering, Optics Communications, vol.178, issue.1-3, pp.187-192, 2000.
DOI : 10.1016/S0030-4018(00)00614-3

M. Amanda, S. A. Schrand, C. Hens, A. Olga, and . Shenderova, Nanodiamond Particles : Properties and Perspectives for Bioapplications, Critical Reviews in Solid State and Materials Sciences, vol.34, issue.12, pp.18-74, 2009.

D. Segets, L. M. Tomalino, and . Peukert, Real-Time Monitoring of the Nucleation and Growth of ZnO Nanoparticles Using an Optical Hyper-Rayleigh Scattering Method, The Journal of Physical Chemistry C, vol.113, issue.28, pp.11995-12001, 2009.
DOI : 10.1021/jp9009965

T. Serdiuk, S. Alekseev, V. Lysenko, . Skryshevsky, and . Géloën, Charge-driven selective localization of fluorescent nanoparticles in live cells, Nanotechnology, vol.23, issue.31, p.315101, 2012.
DOI : 10.1088/0957-4484/23/31/315101

Y. Shen, J. Swiatkiewicz, and J. Winiarz, Second-harmonic and sum-frequency imaging of organic nanocrystals with photon scanning tunneling microscope, Applied Physics Letters, vol.77, issue.19, pp.2946-2948, 2000.
DOI : 10.1063/1.1322629

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, Absolute scale of second-order nonlinear-optical coefficients, Journal of the Optical Society of America B, vol.14, issue.9, pp.2268-2294, 1997.
DOI : 10.1364/JOSAB.14.002268

M. David, W. Shotton, A. Sibbett, C. Lagatsky, and . Brown, Confocal scanning optical microscopy and its applications for biological specimens The development and application of femtosecond laser systems, Journal of Cell Science Optics Express, vol.94, issue.20 7, pp.175-206, 1989.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann et al., Harmonic Nanocrystals for Biolabeling: A Survey of Optical Properties and Biocompatibility, ACS Nano, vol.6, issue.3, pp.2542-2549, 2012.
DOI : 10.1021/nn204990n

URL : https://hal.archives-ouvertes.fr/hal-00688092

W. Supatto, V. Thai, D. Truong, E. Débarre, and . Beaurepaire, Advances in multiphoton microscopy for imaging embryos, Current Opinion in Genetics & Development, vol.21, issue.5, pp.538-548, 2011.
DOI : 10.1016/j.gde.2011.08.003

URL : https://hal.archives-ouvertes.fr/hal-00803777

R. Terhune, P. Maker, and C. Savage, Measurements of Nonlinear Light Scattering, Physical Review Letters, vol.14, issue.17, pp.681-684, 1965.
DOI : 10.1103/PhysRevLett.14.681

L. Tong and J. Cheng, Label-free imaging through nonlinear optical signals, Materials Today, vol.14, issue.6, pp.264-273, 2011.
DOI : 10.1016/S1369-7021(11)70141-9

URL : http://doi.org/10.1016/s1369-7021(11)70141-9

F. Treussart, E. Botzung-appert, N. Ha-duong, A. Ibanez, J. Roch et al., Second Harmonic Generation and Fluorescence of CMONS Dye Nanocrystals Grown in a Sol-Gel Thin Film, ChemPhysChem, vol.7, issue.7, pp.757-760, 2003.
DOI : 10.1002/cphc.200300681

]. B. Urban, P. Neogi, K. Senthilkumar, S. K. Rajpurohit, P. Jagadeeshwaran et al., Bioimaging Using the Optimized Nonlinear Optical Properties of ZnO Nanoparticles, IEEE Journal of Selected Topics in Quantum Electronics, vol.18, issue.4, pp.1451-1456, 2012.
DOI : 10.1109/JSTQE.2012.2184793

J. ?uli?-viskota, P. William, . Dempsey, E. Scott, P. Fraser et al., Surface functionalization of barium titanate SHG nanoprobes for in vivo imaging in zebrafish, Nature Protocols, vol.3, issue.9, pp.1618-1633, 2012.
DOI : 10.1016/S0006-3495(01)76173-5

C. Verbiest, . Samyn, R. Wolff, and . Persoons, Investigations of the Hyperpolarizability in Organic Molecules from Dipolar to Octopolar Systems, Journal of the American Chemical Society, vol.116, issue.20, pp.9320-9323, 1994.
DOI : 10.1021/ja00099a058

T. Verbiest, K. Clays, and . Rodriguez, Second-order Nonlinear Optical Characterisation Techniques. An introduction, 2009.
DOI : 10.1201/9781420070736

T. Vo-dinh, R. Barry, and . Masters, Biomedical Photonics Handbook, Journal of Biomedical Optics, vol.9, issue.5, pp.1110-1111, 2004.
DOI : 10.1117/1.1776177

M. Volk and . Wöhlecke, Lithium Niobate : Defects, Photorefraction and Ferroelectric Switching, 2009.
DOI : 10.1007/978-3-540-70766-0

S. Kammer, T. Legros, . Hofmann, H. Erik, K. Larsen et al., Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation, TrAC Trends in Analytical Chemistry, vol.30, issue.3, pp.425-436, 2011.
DOI : 10.1016/j.trac.2010.11.012

Y. Wang and . Borguet, Second harmonic generation from the surface of centrosymmetric particles in bulk solution, Chemical Physics Letters, vol.259, issue.1-2, pp.15-20, 1996.
DOI : 10.1016/0009-2614(96)00707-5

G. K. Wang, . Wong, B. John, and . Ketterson, Redetermination of second-order susceptibility of zinc oxide single crystals, Applied Optics, vol.40, issue.30, pp.5436-5438, 2001.
DOI : 10.1364/AO.40.005436

J. Wang, J. Neaton, . Zheng, S. Nagarajan, . Ogale et al., Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures, Science, vol.299, issue.5613, pp.1719-1722, 2003.
DOI : 10.1126/science.1080615

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran et al., Non-Blinking Semiconductor Nanocrystals, Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, pp.686-695, 2009.
DOI : 10.1364/LS.2009.LSTuJ4

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, Upconversion nanoparticles in biological labeling, imaging, and therapy, The Analyst, vol.18, issue.8, pp.1839-54, 2010.
DOI : 10.1016/j.nano.2009.11.004

R. Weis, T. Gaylord, . Lithium-niobate-shoshana, M. Winter, D. Zielinski et al., The Second Order Nonlinear Susceptibility of Quantum Confined Semiconductors -A Single Dot Study Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties, Xia 08] Tian Xia, pp.191-203, 1985.

C. Elsa, Y. Yan, . Liu, B. Kenneth, and . Eisenthal, New Method for Determination of Surface Potential of Microscopic Particles by Second Harmonic Generation, The Journal of Physical Chemistry B, vol.102, issue.33, pp.6331-6336, 1998.

V. , Y. , and V. Voronkova, Ferroelectric Phase Transitions and Properties of Crystals of the KTiOPO4 Family, physica status solidi, vol.93, issue.2, pp.665-668, 1986.

]. Yi, N. Tancrez, R. Clément, I. Ledoux-rak, and J. Zyss, Organic-MPS3 nanocomposites with large second-order nonlinear optical response, Journal of Luminescence, vol.110, issue.4, pp.389-395, 2004.
DOI : 10.1016/j.jlumin.2004.08.037

H. Yokota, R. Haumont, J. Kiat, H. Matsuura, and Y. Uesu, Second harmonic generation microscopic observations of a multiferroic BiFeO3 single crystal, Applied Physics Letters, vol.95, issue.8, p.82904, 2009.
DOI : 10.1063/1.3212729

S. Yu, M. Kang, H. Chang, K. Chen, and Y. Yu, Bright Fluorescent Nanodiamonds:?? No Photobleaching and Low Cytotoxicity, Journal of the American Chemical Society, vol.127, issue.50, pp.17604-17609, 2005.
DOI : 10.1021/ja0567081

J. Yu, H. Baek, S. Chung, and . Choi, Effects of physicochemical properties of zinc oxide nanoparticles on cellular uptake, Journal of Physics: Conference Series, vol.304, issue.1, p.12007, 2011.
DOI : 10.1088/1742-6596/304/1/012007

Y. Zhang, X. Wang, D. Fu, J. Cheng, Y. Shen et al., Second-order optical nonlinearity study of CdS nanoparticles via hyper-Rayleigh scattering, Journal of Physics and Chemistry of Solids, vol.62, issue.5, pp.903-906, 2001.
DOI : 10.1016/S0022-3697(00)00249-3

R. Warren, R. M. Zipfel, . Williams, W. Watt, and . Webb, Nonlinear magic : multiphoton microscopy in the biosciences, Nature biotechnology, vol.21, issue.11, pp.1369-77, 2003.

J. Zyss and J. Oudar, Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units, Physical Review A, vol.26, issue.4, pp.2028-2048, 1982.
DOI : 10.1103/PhysRevA.26.2028

]. Zyss, T. C. Van, C. Dhenaut, and I. Ledoux, Harmonic rayleigh scattering from nonlinear octupolar molecular media: the case of crystal violet, Chemical Physics, vol.177, issue.1, pp.281-296, 1993.
DOI : 10.1016/0301-0104(93)80196-G

. Comparaison-de-la-fluorescence......., en rouge) et de la GSH (en bleu) sous excitation laser continue En haut : image d'une culture cellulaire marquée par des particules GSH (a) en début d'excitation, (b) après 10 min d'excitation laser intense. En bas : évolution de la fluorescence et de la GSH en fonction du temps, p.20

B. Flexibilité-en-longueur-d-'onde-des-marqueurs, C. , and D. , En haut : spectres d'excitation laser à différentes longueurs d'onde (A) 720 nm nm et (D) 970 nm et spectres d'émission GSH correspondants En bas : images de cellules HTB-182 avec agent de contraste fluorescent (en rouge) exposés à des nanocristaux GSH (en bleu) La ligne du bas correspond aux mêmes images avec uniquement le signal de GSH

.. Détection-de-marqueurs-gsh-en-profondeur, détection de marqueurs (ou SHRIMPS, acronyme anglais pour Second Harmonic Radiation IMaging ProbeS) de 300 nm sous une épaisseur de 120 µm d'un tissu de queue de souris

.. Fonctionnalisation-et-marquage-spécifique, 25 1.14 (a) Principe de la silanisation et (b) schéma décrivant le dépôt d'APTES en fonction du temps, p.26

G. Marquage and . De-thrombocytes......, (a) échantillon de sang en lumière blanche, (b) en lumière blanche et détection GSH et (c) GSH uniquement, p.32

G. Marquage and A. De-cellules-végétales, (a) et (b) Marqueurs GSH présents dans les germes. (c) Marqueurs dans une pousse, p.33

G. Marquage and . Vivo, a) système expérimental (la souris est endormie) et (b) imagerie GSH dans une queue de souris dans les deux plans (XY) et (XZ, p.33

H. Intensités and I. , en rouge) et I Z (en bleu) en fonction de la polarisation incidente ? pour une solution de pNA, p.43

H. Intensité and L. En-fonction-de, concentration (a) de la suspension de KNbO 3 et (b) de la solution de pNA, p.69

.. De-zno, Exemple d'instabilité du signal HRS au cours d'une mesure en polarisation d'une suspension, p.73

3. Fe and 1. , En encart) Diagramme DRX (Co, K?) des nanopoudres obtenues par centrifugation des échantillons A, B, C et D. F représente le diagramme de référence (ICSD 154674) de l'iodate de fer, Evolution du signal HRS en fonction du temps pour une microémulsion à W=6, [AOT]=0,2 M, [IO ? 3 ]=0,3 M et, p.97

U. Absorbance, une suspension de BFO. (b) Comportement exponentiel de l'intensité HRS en fonction de la concentration, p.112

<. Comparaison-des and >. , Les tailles en intensité obtenues par DLS sont respectivement de 218 nm, 191 nm, 445 nm et 420 nm pour les suspensions de KNbO 3 , LiNbO 3 A, LiNbO 3 B et KTP. Les distributions considérées sont de type log-normale, p.84