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Résumé

Cette thèse p orte sur le calcul des amplitudes d'hélicités de la leptopro duction di�ractive

exclusive du méson � dans la limite de Regge p erturbative au-delà du twist dominant. La

compréhension de ce pro cessus et autres pro cessus exclusifs en terme d'intéractions entre

les constituents fondamentaux de la QCD, constitue un enjeu ma jeur p our comprendre la

structure des hadrons. L'appro che suivie par le mo dèle présenté ici est basée d'une part sur

la kT � factorisation à p etits x , c'est-à-dire dans la limite des hautes énergies dans le centre

de masse W �
p

s et d'autre part sur la factorisation colinéaire du méson � dans la limite

des hautes virtualités Q du photon virtuel intéragissant avec le nucléon.

Dans l'appro che de la kT � factorisation, l'amplitude est scindée en deux pièces principales,

le facteur d'impact corresp ondant à la transition du photon virtuel au méson � ( 
 � (� 
 ) !

� (� � ) ) et le facteur d'impact du nucleon cible. Ces deux facteurs d'impacts intéragissent

par l'échange d'un p oméron dans la voie t qui contient toute la dép endence en énergie du

pro cessus. Le p oméron est décrit à l'ordre dominant par l'échange de deux gluons et à l'ordre

dominant en ln(1=x) avec x � Q2=W2
par l'échange d'une échelle de gluons dans le voie t .

La haute virtualité du photon justi�e l'application de la QCD p erturbative p our calculer

le facteur d'impact 
 � (� 
 ) ! � (� � ) en utilisant la factorisation colinéaire p our séparer les

contributions dominantes au twist 2 et au twist 3. Cette appro che a été employée par

Ginzburg, Pan�l et Serb o en 1985 p our calculer les termes de twist 2 des facteurs d'impacts

des transitions où le photon virtuel est p olarisé soit longitudinalement soit transversalement

et où le méson � est p olarisé longitudinalement. Ces transitions sont dénotées resp ectivement

" 
 �
L ! � L " et " 
 �

T ! � L ". L'appro che a ensuite été p oussée au twist 3 en 2010 par Anikin,

Ivanov, Pire, Szymanowski et Wallon, p our obtenir le terme de twist 3 du facteur d'impact de

la transition " 
 �
T ! � T " où le photon virtuel et le méson � sont p olarisés transversalement.

Ces résultats sont invariants de jauge et font apparaître les ditributions d'amplitudes du

méson � paramétrisant la pro duction du méson à partir des états de Fo ck intermédiaires

quark-antiquark et quark-antiquark-gluon.

Dans cette thèse nous présentons un premier mo dèle se basant sur ces résultats p our les

facteurs d'impacts, p our décrire les rapp orts d'amplitudes d'hélicités asso ciés à ce pro cessus

en utilisant un mo dèle phénoménologique p our le facteur d'impact du nucléon cible. On utilise

aussi un mo dèle p our les distributions d'amplitudes du méson � basé sur le développ ement

conforme de celles-ci. Les résultats de ce mo dèle sont ensuite comparés aux données de

HERA et nous discutons les résultats obtenus.

Une seconde appro che est présentée où les facteurs d'impacts aux twist 2 et 3 des tran-

sitions 
 �
L ! � L et 
 �

T ! � T sont redérivés dans la représentation des paramètres d'impacts.

On montre que ces résultats sont équivalents à ceux obtenus dans l'appro che dans l'espace

des impulsions et p ermettent d'avoir une image en terme des con�gurations de dip ôles de

couleurs contenues dans l'état partonique intermédaire de la transition 
 � ! � . Les ampli-

tudes d'hélicités ainsi obtenues se décomp osent en une convolution entre le recouvrement des

fonctions d'onde du photon virtuel et du méson � calculé dans l'approximation colinéaire,



avec l'amplitude d'intéraction d'un dip ôle de couleur avec le nucléon cible. Cette dernière

amplitude est universelle et déterminée à partir d'autres pro cessus tels que le pro cessus de

di�usion profondément inélastique. Nous obtenons ainsi une expression p our les amplitudes

d'hélicités où nous p ouvons combiner des mo dèles d'amplitude de di�usion dip ôle-nucléon

avec le recouvrement des fonctions d'onde issus des calculs de factorisation colinéaire aux

twists 2 et 3. Nous présentons les prédictions, comparées aux données de HERA, p our les

sections e�caces p olarisées de la pro duction di�ractive exclusive du méson � obtenues à

partir des amplitudes d'hélicités. Les prédictions sont en accord avec les données p our des

virtualités sup érieures à 5-7 GeV

2
. Nous présentons une analyse de ces résultats, notamment

nous discutons le rôle des corrections de twists sup érieurs et nous comparons nos résultats

avec des recouvrements de fonctions d'onde obtenus par d'autres mo dèles existants.

Mots-clefs: Pro cessus exclusifs, Chromo dynamique Quantique p erturbative, Ampli-

tudes d'hélicités, Factorisation colinéaire, kT � factorisation, Dip ôles de couleurs.



Abstract

This thesis, entitled "Hard exclusive pro cesses b eyond the leading twist", deals with the

computation of the helicity amplitudes of the exclusive di�ractive � � meson leptopro duction

in the p erturbative Regge limit b eyond the leading twist. The understanding of such exclusive

pro cesses in terms of the elementary constituents of QCD is a serious challenge to understand

the hadronic structure. The approach we follow here, �rst relies on the kT � factorization in

the small � x regime, i.e. when there is a high energy W �
p

s in the center of mass of

the photon-proton system. It secondly relies on the collinear factorization scheme for large

virtualities Q of the photon, to factorize the � � meson soft part of the pro cess.

Within the kT � factorization approach, the amplitude splits in two main pieces, the


 � (� 
 ) ! � (� � ) impact factor, with � 
 and � � the p olarizations of the virtual photon and

the � � meson, and the nucleon impact factor. The impact factors are interacting with the

exchange of a p omeron in the t� channel which corresp onds to the exchange of two t� channel

gluons at leading order and a ladder of gluons at leading log(1/x) order, with x � Q2=W2
.

At high virtualities of the photon, the p erturbative QCD techniques are justi�ed to com-

pute the 
 � (� 
 ) ! � (� � ) impact factor using the collinear factorization scheme to get the

twist 2 and twist 3 terms. This approach was �rst used in 1985 by Ginzburg, Pan�l and

Serb o to compute the twist 2 
 �
L ! � L and 
 �

T ! � L impact factors. In 2010 the twist 3

term of the 
 �
T ! � T impact factor was derived by Anikin, Ivanov, Pire, Szymanowski and

Wallon. The results obtained are gauge invariant and they involve the twist 2 and twist 3

distribution amplitudes of the � � meson that parameterize the meson pro duction from the

quark antiquark and the quark antiquark gluon intermediate Fo ck states.

In this thesis we present a mo del based on these impact factor results to get predictions

for the ratios of helicity amplitudes asso ciated to the � � meson di�ractive leptopro duction

using a phenomenological mo del for the proton impact factor. We also use a mo del for

the distribution amplitudes based on the conformal expansion. The predictions are then

compared to HERA data and we discuss the results of this approach.

A second approach is presented where the twist 2 and twist 3 impact factors are derived

in the impact parameter representation. We show that the results are equivalent to the

ones obtained in the momentum space representation. The results in impact parameter

representation give information ab out the dip ole con�guration content of the intermediate

state involved in the 
 � ! � impact factors. As a result of this approach, the helicity

amplitudes factorize as the convolution of two parts, the �rst one is the overlap of the virtual

photon and the � -meson wave functions computed in the collinear approximation and the

second one is the dip ole-target scattering amplitude. The dip ole-target scattering amplitude

is well determined on other pro cesses such as deep inelastic scattering pro cesses. Combining a

mo del for the dip ole cross-section with the results obtained within the collinear factorization

scheme for the overlap of the wave functions, we get a mo del for helicity amplitudes and the

longitudinal and transverse p olarized cross-sections. We compare our predictions to HERA

data and get a go o d agreement for virtualities of the photon larger than Q2 � 5 � 7 GeV

2
.



We discuss the results, in particular the role of higher twist corrections and we compare our

results with the overlaps of wave functions obtained from other mo dels that exist within the

color dip ole picture.

Keywords: Exclusive pro cesses, Perturbative quantum chromo dynamics, Helicity am-

plitudes, Collinear factorization, kT � factorization, Color dip oles.
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Intro duction

Inclusive pro cesses, such as the deep inelastic scattering (DIS) pro cesses have provided a

lot of information ab out the nature of strong interactions and the nucleon structure. These

pro cesses �rst describ ed by the naive parton mo del prop osed by Feynman and Bjorken [1, 2]

to explain the approximate Bjorken scaling observed at SLAC in late 60's, allowed to disen-

tangle the hadronic structure as made of elementary asymptotically free constituents called

"partons". The mysterious facts that in a strongly b ound hadronic state the partons are

acting like free and the fact that quarks without their color degrees of freedom are violating

the Pauli exclusion principle were solved with the apparition of the quantum chromo dynam-

ics (QCD) to describ e the strong interactions. Indeed, QCD which is a non-ab elian gauge

quantum �eld theory based on the SU(3) color group, is an asymptotically free theory given

the numb er of �avors we know, as demonstrated in 1973 by Wilczek, Politzer and Gross

[3, 4, 5]. This is due to the non-ab elian character of QCD and the running of � s is very well

repro duced by the data.

Another imp ortant feature of QCD is the con�nement of quarks and gluons into colorless

hadronic states which makes the direct observation of partons as external particles imp ossible.

The exp erimental evidence for gluons at PETRA in 1979 comes from 3-jet events, due to an

energetic gluon radiation q�q ! q�qg in the hard sub-pro cess e� e+ ! q�q. The con�nement of

the emitted quark antiquark and gluon leads to the observation of 3-jet events. These events

are also used to determined the coupling constant of the strong interaction � s .

Many techniques exist to study the QCD prop erties. The p erturbative QCD (pQCD)

approach is one of them and it relies on the factorization of a pro cess into a hard part where

large energy scales are involved and a soft part involving the long distance dynamics of the

partons inside the hadrons. The presence of a hard scale Q in the collision is needed to justify

the p erturbative expansion in � s(Q) of the hard part and the factorization into hard and soft

pieces. Under kinematic assumptions, one can derive pQCD evolution equations such as the

Dokshitzer-Grib ov-Lipatov-Altarelli-Parisi (DGLAP), Efremov-Radyushkin-Bro dsky-Lepage

(ERBL) or Balitsky-Fadin-Kuraev-Lipatov (BFKL) equations, for the soft parts but pQCD

cannot provide information of non-p ertubative asp ects of soft parts. Other techniques can

supply information on non-p erturbative quantities such as lattice QCD, e�ective �eld theories

or QCD sum rules techniques.

Inclusive pro cesses have also provided a deep understanding of the structure of the hadrons

and the partonic distribution functions (PDFs), which are known on a wide kinematic range.

They have b een the testing ground of theoretical innovations such as the op erator pro duct

expansion (OPE) formalism �rst intro duced in particle physics by Wilson in the 70's [6] and

then applied to DIS [7, 4]. However inclusive pro cess observables give only information on

the forward kinematics where there is no momentum transfered in t� channel. With the

increasing improvement of the exp eriments, the measurements on exclusive pro cesses, where

one is interesting to a sp eci�c �nal state, have b egun to bring additional information on the

hadronic structure. For example, the generalized parton distributions (GPDs) parameterizing



the nucleon in the non-forward limit have to take into account not only the x dep endence

of the partonic distributions but also the skewness dep endence. The exclusive pro cesses

such as the di�ractive pro duction of vector mesons, or the deep virtual Compton scattering

(DVCS) have b een studied for more than 25 years and are still the sub ject of many studies

and exp eriments. For our purp ose, we should name more particularly the HERA collider

collab orations H1 and ZEUS as they have provided data for very small values of x and

mo derate Q2
, which is the kinematic region of interest in this thesis. The low � x physics is

an interesting limit of QCD. Alternative approaches from the usual collinear factorization

scheme are based on kT � factorization, such as the dip ole mo dels by Nikolaev, Zakharov [8, 9]

and Mueller [10, 11] or the CGC formalism [12, 13, 14, 15, 16, 17]. Such approaches are used

to understand the transition from a diluted to a dense partonic system due to the emission

of gluons by Bremsstrahlung which takes place in the small � x limit. This transition p oses

the interesting question of saturation e�ects inside the hadrons.

In this thesis we develop ed a mo del for the di�ractive � � meson pro duction in the p er-

turbative Regge limit, i.e. at small x and at high enough Q2
to use pQCD techniques. This

approach will b e presented in chapter 2 and chapter 3, while the �rst chapter will b e devoted

to intro duce the main to ols of this treatment on a DIS pro cess.

In the chapter 1, we will intro duce basics of di�erent techniques that are used in this thesis.

We will present the kT � factorization on the simplest examples to explain how the amplitudes

can b e factorized in the high energy limit, in sub-pro cesses called "impact factors". Next,

after a brief general intro duction to DIS, we will fo cus on a DIS pro cess to show how these

impact factors can b e interpreted in the language of dip ole mo dels. This p ermits us to discuss

the imp ortance and di�erent ways of incorp oration into the dip ole mo del of saturation e�ects.

In the chapter 2, we will present the Light-Cone Collinear Factorization (LCCF) scheme

b eyond the leading twist and its application to the computation of the impact factor � 
 � (� 
 )! � (� � )

of the transition of the virtual photon of helicity � 
 into a � � meson of helicity � � . In this

approach, the soft part asso ciated to the pro duction of the � � meson is parameterized by the

distribution amplitudes (DAs) of the � � meson. We will discuss the energy scale dep endence

of the DAs and the QCD sum rule technique to get non-p erturbative parameters that enters

the DAs. Finally we will present a phenomenological mo del to get predictions on helicity

amplitudes of the di�ractive � � meson pro duction at HERA. This mo del will naturally lead

us to the next chapter topic.

In the chapter 3, we will connect the impact factor � 
 � (
 )! � � �
obtained in the previous

chapter in the collinear approximation, to the color dip ole picture. From this result, one can

get phenomenological mo dels by combining our results for the impact factors with dip ole

mo dels that are already known from DIS analysis and that contains the x� dep endence

of the helicity amplitudes. These dip ole mo dels include the saturation dynamics of the

nucleon target. We compare the predictions of the p olarized cross-sections of the � � meson

electropro duction with HERA data and discuss our results.

In the chapters 2 and 3, some parts are based on our own contributions like the phe-

nomenological mo del [18] at the end of the chapter 2, and the chapter 3 which is based on



the studies [19] and [20].





Chapter 1

High energy QCD

In this chapter we present basics of the concepts and to ols necessary to tackle the phe-

nomenology of hadronic reactions in the small � x physics.

After an intro duction on the Regge theory and the p omeron tra jectory sec. 1.1, we explain

on the quark-quark scattering the kT � factorization pro cedure, �rst in the case of one gluon

exchanged in t� channel and then in the case of a color singlet exchange (two gluon exchange)

in sec. 1.2. We show how the impact factors emerge from this picture and brie�y discuss the

resummation at leading log(1/x) of the gluon ladder exchange in the t� channel.

We present some basics of DIS pro cess in sec. 1.3, and show how the amplitude can b e

factorized in the dip ole picture into the photon wave functions and the dip ole cross-section.

We present �nally di�erent mo dels of dip ole cross-section that include the saturation e�ects,

as well as the equations that governs the energy dep endence of the dip ole cross-section in the

diluted and dense regimes.

1.1 Intro duction

1.1.1 Postulates and consequences

Before QCD was applied to describ e the strong interactions, physicists relied on the basic

p ostulates of the Lorentz invariance, the unitarity and the analyticity of the S-matrix in

order to get information on the hadronic scattering.

Lorentz invariance of the S� matrix implies that the S� matrix element corresp onding to

the pro cess

a(pA ; � A ) + b(pB ; � B ) ! c(pC ; � C ) + d(pD ; � D ) ; (1.1)

can b e expressed in terms of Lorentz invariant quantities such as the Mandelstam variables

and the masses of the particles. For the particular case of the pro cess (1.1) where two

particles in the initial state give two particles in the �nal state, the scattering amplitude

can b e expressed in terms of the Mandelstam variables s = ( pA + pB )2
, t = ( pA � pC )2

and

u = ( pA � pD )2
which satisfy

s + t + u =
X

i

m2
i ; (1.2)

5
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where mi denotes the mass of the particle i .

The unitarity condition of the S� matrix

SyS = SSy = 1 ; (1.3)

expresses the fact that the probability for an initial state to give any �nal state is equal to

one. Let us consider an in- state jai and an out- state jbi which are resp ectively states of free

particles at the times t ! �1 and t ! 1 . The corresp onding S-matrix element is

Sab = hbj ai : (1.4)

Let us intro duce now the T� matrix element such as S = 1+ iT , and the scattering amplitude

A ab and the cross-section � ab asso ciated to this pro cess,

Sab = � ab + iTab = � ab + i(2� )4� 4(
X

a

pa �
X

b

pb)A ab : (1.5)

The cross-section � ab of the event a ! b is related to the probability of this event to happ en,

it is then prop ortional to the square of the scattering amplitude,

� ab =
1
F

Z
d� b jA abj

2 ; (1.6)

with F the �ux factor and � b the phase space of the n� b o dy particles of the b �nal state.

The �ux factor in the case of the pro cess (1.1) is given by

F = 2
q

� (s; m2
A ; m2

B ) (1.7)

where � (s; m2
A ; m2

B ) is the standard kinematic variable,

� (s; m2
A ; m2

B ) =
�
s � (mA + mB )2

� �
s � (mA � mB )2

�
: (1.8)

The expression (1.7) for the �ux factor remains true for the pro duction of n particles in the

�nal state from a two-particle initial state. Note that in the large s limit where the masses

can b e neglected compared to s, the �ux factor is just F = 2s.

The unitarity condition of the S� matrix (1.3) implies then the following condition on the

T� matrix elements

X

c

(� ac + iTac)
�

� cb � iT y
cb

�
= � ab

i
�

T y
ab � Tab

�
=

X

c

TacT
y
cb ; (1.9)

where c is any physical state, i.e. the particles of this state are on the mass-shell. In terms

of the scattering amplitudes, using the fact that

2i I m A ab = A ab � A y
ab ; (1.10)
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the relation (1.9) reads

2I m A ab = (2 � )4� 4(
X

a

pa �
X

b

pb)
X

c

A acA
y
cb : (1.11)

This relation has very imp ortant consequences as it leads to the Cutkosky rules c.f. sec. 1.1.3

and, in the sp ecial case where one put identical in- and out- states, it leads to the optical

theorem. The theorem reads

2I m A aa(s; t = 0) = (2 � )4� 4(
X

a

pa �
X

b

pb)
X

c

jA acj
2 : (1.12)

As a consequence of the optical theorem, the total cross-section � tot , asso ciated to the pro cess

" a ! any physical state", is given up to a co e�cient by the imaginary part of the amplitude

A aa(s; t = 0) ,

2I m A aa(s; t = 0) = F � tot : (1.13)

The third p ostulate is the analyticity of the S� matrix elements, meaning that the

S� matrix is an analytical function of the Lorentz invariants seen as complex variables. An-

alyticity has b een shown to b e a consequence of the causality, which prevents two regions

separated by a space-like distance to in�uence on each other. Some consequences of the

analyticity are:

� the crossing symmetry of the scattering amplitudes,

� the disp ersion relations which allows to get the real part of the amplitude from the

imaginary part.

The crossing symmetry in the case of the two to two particle pro cess (1.1) reads

A a+�c! �b+ d(s; t) = A a+ b! c+ d(t; s) (1.14)

A a+ �d! �b+ c(s; u) = A a+ b! c+ d(u; s) (1.15)

where

�b, �c and

�d are the antiparticles asso ciated to b, c and d. In the case where I m A(s; t)

falls to zero when z ! 1 , the disp ersion relation which relates the amplitude to its imaginary

part is obtained by deforming the integration contour which surround the cuts,

A(s; t) =
1
�

Z 1

s+
th

ds0 I m A(s0; t)
s0 � s

+
1
�

Z s�
th

�1
ds0 I m A(s0; t)

s0 � s
; (1.16)

where sth +
and sth �

are the thresholds of particle pro duction along the real p ositive and real

negative axis. If the asymptotic b ehavior of the integrand when jsj ! 1 is not falling fast

enough then the disp ersion relation (1.16) is not valid and should b e replaced by a subtracted

disp ersion relation where the integrand is divided by as many factors (s0� s0) as it is necessary
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to ensure the convergence of the integrand with s0 an arbitrary p oint. For the addition of

one of the factor s0 � s0 , the subtracted disp ersion relation reads

A(s; t) = A (s0; t) +
(s � s0)

�

Z 1

s+
th

ds0 I m A(s0; t)
(s0 � s)(s0 � s0)

(1.17)

+
s � s0

�

Z s�
th

�1
ds0 I m A(s0; t)

(s0 � s)(s0 � s0)
:

Note that these relations require the knowledge of the asymptotic b ehavior of the scattering

amplitudes which is the sub ject of the Regge theory.

These so-called "b o otstrap" relations, that relate the imaginary part of the amplitude to

the amplitude itself and to the sum of pro duct of other amplitudes due to the analyticity

and unitarity p ostulates, are obtained without for now sp ecifying the underlying quantum

�eld theory and are very general considerations.

1.1.2 Regge tra jectories and the p omeron intercept

In the high energy limit s ! 1 with �xed t , called the Regge limit, the asymptotic b ehavior

of the amplitude of the pro cess

a + b ! c + d ; (1.18)

is connected to the angular momentum l of the particle exchanged in s� channel of the crossed

channel pro cess,

a + �c ! �b+ d : (1.19)

The partial wave expansion of the amplitude of the crossed pro cess (1.19),

A a+�c! �b+ d(s; t) =
X

l=0

(2l + 1) al (s)Pl (1 + 2
t
s

) ; (1.20)

allows to decouple the contribution given by elementary particle of angular momentum l and

mass M exchanged in the s� channel. The crossing symmetry implies that for the pro cess

a+ b ! c+ d where the role of the Mandelstam variables are exchanged, s $ t , the amplitude

is essentially given by the resonance and takes the form,

A ab! cd(s; t = M 2) = A a�c! �bd(t = M 2; s) (1.21)

= A l (t)Pl (1 + 2
s
t
) =

Ga�c(t)G�bd(t)
t � M 2

(� t + ( � 1)l )Pl (1 + 2s=t) ;

where � t is the signature which is 1 for crossing even amplitudes and � 1 for crossing o dd

amplitudes, Ga�c(t) is the vertex of the particle exchanged in the t� channel with the external

particles. The pro cess t = M 2
is not in the physical region of the s� channel and in eq. (1.21)

an analytical continuation of the Legendre p olynomials in the physical region of the pro cess

(1.18) allows to derive the asymptotic b ehavior of the amplitude of the pro cess,

A a+ b! c+ d(s; t) =
gac(t)gbd(t)

t � M 2
sl : (1.22)
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Note that the fact that the vertices Gij do not dep end on s at high energy is an universal

feature that we will see also when describing the impact factor approach in kT � factorization

scheme. The amplitude dep ends on s only through the particles exchanged in t� channel.

This asymptotic b ehavior violates the unitarity of the theory. Indeed it was proven long

ago by Froissart [21] using unitarity and partial wave expansion that hadronic cross-sections

has to increase slower than ln2(s) ,

� tot < A ln2(s) ;

with A � 60 mb. This is equivalent to b ound the asymptotic amplitudes by,

A(s; t) < s ln2(s) ;

which from (1.22) is clearly violated for l > 1.

The way to solve this problem is to use the Sommerfeld-Watson integral transformation

to express the partial wave expansion. The p ole structure in the complex variable l of the

partial wave amplitude A l (t) = A(l; t ) will then �x the complex angular momentum of the

resonance. The resonance angular momentum given by the p ole � R (t) of maximal real value

will dominate the asymptotic p ower b ehavior of the amplitude, this p ole is called the Regge

p ole and the e�ective "resonance" asso ciated to this p ole, of complex angular momentum

l = � R (t) is called reggeon. The underlying assumption is that p oles are simple p oles, but

in practice logarithms app earing in the p erturbation theory can gives branch cuts. The p ole

� R(t) is a Regge tra jectory and � R(0) the reggeon intercept. The tra jectories l = � R(t) are

universal ob jects that only dep ends on the quantum numb ers of the particle exchanged in

t� channel.

For t < 0, the t� dep endence of the Regge p ole can b e exp erimentally obtained by �tting

the energy dep endence of the s� channel amplitudes. As explained ab ove, the reggeon can b e

seen as resonances at t = M 2
of angular momentum l . The idea of so-called Chew Frautschi

plots was then to show the masses of known resonances �; !; � � � , as a function of their angular

momentum. It turns out that the data are aligned on straight-lines and by extrap olating to

the physical region t < 0, the straight-lines give a relatively go o d descriptions of the data

obtained from exp eriments, leading to linear Regge tra jectories

� R(t = M 2) = � R (0) + � 0
R t :

The Regge theory allows to complete the b o otstrap relation as it allows to obtain the

asymptotic b ehavior of the amplitude.

Using the optical theorem, the s� p ower like dep endence of the total cross-section is

� tot / I m A(s; t = 0) / s� R (t=0) � 1 : (1.23)

It was demonstrated by Pomeranchuk that the cross-section vanishes asymptotically in the

case where there is a charge exchange in the t� channel. A Regge tra jectory with � R (0) > 1

corresp onds then to a reggeon that carries the vacuum quantum numb ers and which is called
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the "p omeron" (for a p edagogical review on the p omeron in QCD see [22]). The p omeron

intercept is denoted � P (0) . Donnachie and Landsho� [23] have prop osed a �t of the total

cross-sections for pp and p�p collisions as

� tot = Xs � + Y s� � ;

where the �rst term can b e interpreted as the exchange of a p omeron while the second term

corresp onds to the exchange of a reggeon. The b est �ts were

� pp
tot = 21:7s0:08 + 56:1s� 0:45 ;

� p�p
tot = 21:7s0:08 + 98:4s� 0:45 :

These �ts highlights the fact that the p omeron couplings to the antiproton and the proton

are the same which is due to the fact that the p omeron carries vacuum quantum numb ers.

The value � = 0:45, corresp onds to the Regge tra jectory close to the one given by the linear

�ts of Chew Frautschi plots based on the sp ectrum of f �; ! � � � g resonances.

The p omeron intercept � P (0) = 1 :08 violates the unitarity b ound from the Froissart

theorem but one can show that with this value of the p omeron intercept, the violation o ccurs

only at the Planck scale.

The quark and gluon content of the p omeron can b e studied in di�ractive disso ciation

pro cesses where for example in ep collision, the p omeron is seen like a parton of the proton

that interacts with the electron to give any �nal state X. This reaction is analogous to deep

inelastic scattering where the p omeron replaces the proton which allows to study its partonic

content.

1.1.3 Cutkosky rules

In the case of QED or QCD one can check that the imaginary part of an amplitude A(s; t)

arises when a virtual particle go es on-shell due to the i� term in the propagator denominators

p2 + i� . Branch cuts app ear for s real such as s > s0 with s0 the threshold where a physical

state can b e pro duced. Due to analyticity we have the relations

ReA(s + i�; t ) = ReA(s � i�; t ) ; (1.24)

I m A(s + i�; t ) = �I m A(s � i�; t ) ; (1.25)

the discontinuity of the amplitude around the branch cut along the real axis reads

D isc sA(s; t) = Lim � ! 0(A (s + i�; t ) � A (s � i�; t )) = 2 i I m A(s + i�; t ) : (1.26)

It can b e shown that the discontinuity of the amplitude can b e obtained by replacing in the

propagators

1
p2 + i�

! � 2i�� (p2 � m2) � (p0) : (1.27)

The � (p0) ensures that the particle has p ositive energy, i.e. is a physical particle. For any

diagram the discontinuity can b e directly obtained by following the so-called "Cutkosky

rules" [24],
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1. the diagrams must b e cut in all p ossible ways such that the cut propagators can b e put

on shell simultaneously,

2. the cut propagators are replaced following eq. (1.27),

3. the discontinuity is given by the sum of all the cut diagrams.

We will use these rules in the following parts in order to get the imaginary part of the

amplitudes by computing their discontinuities with the Cutkosky rules.

1.2 Scattering amplitudes in the Regge limit

In this section, we intro duce the approximations to get the dominant contribution of the

amplitudes in the p erturbative Regge limit, using the fact that in this limit s=jtj is very

large. We �rst consider the quark-quark scattering amplitude with one gluon exchange in

the t� channel to show the kinematics of the dominant contribution in p owers of 1=s. Then we

compute the quark-quark amplitude of a color singlet exchange in t� channel involving a two

gluon exchange in t� channel. This example is particularly relevant for hadronic pro cesses

in the p erturbative Regge limit, as the color singlet exchange dominates the colorless states

scattering. We �nally show how the amplitude can b e factorized into the so-called "impact

factors" and the t� channel gluons Green function. Note that the approach presented in this

section, is based on Feynman gauge calculations and the calculations b eyond the Born order

approximation would b e di�erent within another gauge. Of course, the �nal results for gauge

invariant quantities are gauge indep endent.

1.2.1 The color o ctet exchange

At leading order the scattering of two quarks in QCD is given by the tree diagram shown in

�g. 1.1, where a gluon carrying the color charge a is exchanged b etween the two quarks. We

will assume that a hard scale justi�es the use of pQCD for example jt j � � 2
QCD and the fact

that s � j tj .

PSfrag replacements

pA � p1

pB � p2

�a

Figure 1.1: Quark-quark scattering amplitude at the tree level with an o ctet exchange in

t� channel.

We denote resp ectively pA and pB the momenta of the upp er quark and lower quark and

mA , mB their masses. The Mandelstam variable SAB = ( pA + pB )2
is large by assumption and
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we can neglect the masses of the quarks and then assume that their momenta pA and pB are

very close to two light-like vectors p1 and p2 of opp osite directions such as SAB � s = 2p1 � p2 ,

where s is the large scale. We can expand pA and pB on this Sudakov basis as,

pA = p1 +
m2

A

s
p2 ; pB = p2 +

m2
B

s
p1 ;

SAB = ( pA + pB )2 = m2
B + m2

A + 2pA � pB � 2p1 � p2 = s :

The momentum of the gluon exchanged in t� channel can also b e decomp osed on this basis

as,

� = �p 1 + �p 2 + k? : (1.28)

It is conventional to use a two-dimensional euclidean vector, that we underline ( x ), to replace

the Minkowskian transverse vector x? , such as x2
? = � x2

. We will use this convention all

along the manuscript.

Assuming that the particles are on the mass-shell (we neglect now the masses of the

quarks), one has the two following conditions,

(pA � �) 2 = 0 (1.29)

(pB + �) 2 = 0 (1.30)

which lead to

� (1 � � )� +
� 2

?

s
= 0 ; (1.31)

(1 + � )� +
� 2

?

s
= 0 : (1.32)

Substituting in eq. (1.32) the expression of � by,

� =
� 2

?

s(1 � � )
; (1.33)

leads to a second order equation in � ,

� 2 � � �
� 2

?

s
= 0 : (1.34)

The two couples of solutions for � and � up to �rst order in

� 2
?

s are,

� = 1 +
� 2

?

s
; � = � 1; (1.35)

and

� = �
� 2

?

s
; � =

� 2
?

s
: (1.36)

The �rst couple of solutions is not relevant as it would imply that t = � 2 � � s, which

violates our �rst assumption s � � t . The second couple of solution gives,

� = �
� 2

?

s
p1 +

� 2
?

s
p2 + � ? : (1.37)
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We get then that t = � 2 � � 2
? = � � 2

. Note that it justi�es a p osteriori that � 2
? =s � t=s

can b e neglected.

We will now intro duce another approximation to simplify the vertex expression, called

the eikonal approximation. The upp er vertex gives the contribution,

igur (p1 � �) 
 � ta
ij us(p1) ; (1.38)

where we put explicitly the spinor indices r , s, of the Dirac spinors. The spinor ur (p1 � �)

dep ends on the vector p1 � � which is approximately equal to p1 as j� j � j � j � j � 2
? j =s � 1.

Thus, the upp er vertex simpli�es as,

igur (p1)
 � ta
ij us(p1) = 2 igp�

1 � r;s ta
i;j ; (1.39)

where we have used the Gordon identity,

ur (p0)
 � us(p) =
1

2m
�ur (p0) (( p0� + p� ) + i� �� (p0 � p)� ) us(p) ; (1.40)

with m the mass of the fermion and

� �� =
i
2

[
 � ; 
 � ] ; (1.41)

for p0 = p = p1 , and the normalizations of the spinors ur (p)us(p) = 2 m� r;s . This approx-

imation is known as the "eikonal approximation" and can b e used as long as a soft gauge

particle is exchanged. Finally, using for the lower vertex the same approximation one gets

for the scattering amplitude,

iM = ig2(2p�
1)

g��

� 2
(2p�

2)� r 1 ;s1 � r 2 ;s2 t
a
ij ta

kl

= i8�� s
s
t
� r 1 ;s1 � r 2 ;s2 t

a
ij ta

kl : (1.42)

Note that the upp er and lower vertices are resp ectively prop ortional to p�
1 and p�

2 , thus if we

decomp ose the metric tensor into the following tensor comp onents

g�� =
2
s

p2� p1� +
2
s

p1� p2� + g?
�� ; (1.43)

only the comp onent

2
s p2� p1� gives a non-vanishing contribution. As the metric tensor is

coming from the sum over the p olarizations of the propagator of the gluon, this comp onent

can b e seen as the tensor pro duct of the so-called "non-sense" p olarizations,

" up

� =

r
2
s

p2� ; " down

� =

r
2
s

p1� ; (1.44)

such as g�� can b e replaced due to the eikonal approximation by " up

� " down

� .Now the amplitude

M reads

iM =
� i
� 2

(ig)2
�
u� 0(p1)=" up ta

ij u� (p1)
� �

u� 0(p2)=" down ta
kl u� (p2)

�
: (1.45)
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(a) (b)

PSfrag replacements

k1 k2

p1

p2

+

Figure 1.2: Diagrams of the singlet exchange at Born order.

1.2.2 The singlet color exchange in t� channel

In di�ractive pro cesses the quantum numb ers exchanged in t� channel are those of the vacuum

and consequently, we have to consider a singlet color exchange in t� channel. Let us consider

the color singlet exchange on the quark-quark scattering amplitude.

A color singlet exchange in t� channel involves at least two gluons. At Born order, the

scattering of two quarks is given by the two diagrams shown in �g. 1.2. These two diagrams

are related by crossing symmetry. Let us de�ne � = k1 � k2 the momentum exchanged in

t� channel. The diagram (b) can b e obtained from diagram (a) results, up to the color factor

that are di�erent by

A (b)(s; t; u) = A (a)(u; t; s) � A (a)(� s; t; s) ; (1.46)

where we use for the last equality, the fact that at large s and �xed t ,

s � � u :

The color factor for a singlet exchange of the diagrams (a) and (b) are equal and given by

(tatb) ij
� ij

N
(tatb)kl

� kl

N
=

1
N 2

�
� ab

2

� �
� ab

2

�
=

N 2 � 1
4N 2

: (1.47)

Let us compute the imaginary part of the diagram (a) by using the Cutkosky rules,

I m A =
1
2

N 2 � 1
4N 2

Z
d� Cut.

2 A tree (k1)A tree y(� k2 = � � k1) : (1.48)

In �g. 1.3 the cut of the fermionic line of diagram (a) is represented by the dashed line.

The color factors are put apart of the amplitude A tree

. The expression of A tree (k) is given

by (1.42),

A tree (k) = � 8�� s
s
k2 : (1.49)

The integral measure d� Cut.

2 on the phase space is given by,

Z
d� Cut.

2 =
Z

d4l1
(2� )4

d4l2
(2� )4

(2� )� (l2
1)(2� )� (l2

2) (2� )4� (4) (p1 + p2 � l1 � l2)

=
Z

d4k1

(2� )4
d4l2 (2� )� ((p1 + k1)2)(2� )� (l2

2)� (4) (p2 � l2 � k1)

=
Z

d4k1

(2� )2
� ((p1 + k1)2)� ((p2 � k1)2) ; (1.50)

(1.51)
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PSfrag replacements

k1 k2

p1

p2

l1

l2

A tree (k1) A tree y(� k2)

Figure 1.3: Cut of the diagram (a).

where in the second line we have shifted the momentum l1 by the k1 = l1 � p1 . The mass

shell conditions l2
1 = 0 and l2

2 = 0 b eing imp osed by the Dirac factors. Using the Sudakov

decomp osition of the momentum k1 ,

k1 = � 1 p1 + � 1 p2 + k1? ; (1.52)

d� 2 reads,

Z
d� Cut.

2 =
s
2

Z
d� 1d� 1d2k1?

(2� )2
� (�s (1 + � ) � k2

1)� (� �s (1 � � ) � k2
1) : (1.53)

The factor s=2 comes from the Jacobian of the co ordinate transformation from k1 = ( k0
1;~k1)

to k1 = ( �; �; k 1? ) with p1 � p2 = s=2.

The imaginary part of the amplitude reads

I m A (a) =
N 2 � 1

4N 2

1
2

s
2

Z
d� 1d� 1d2k1?

(2� )2
� (�s (1 + � ) � k2

1)� (� �s (1 � � ) � k2
1)

� (� 8�� s s)2 1
k2

1 k2
2

(1.54)

=
N 2 � 1

4N 2
16� 2� 2

ss
Z

d2k1

(2� )2

1
k2

1 k2
2

; (1.55)

where k2 = k1 � � .

A full computation of the amplitude at one lo op would lead to terms prop ortional to

ln(s=t) = ln( s=jtj) � i� , where the imaginary contribution to the full amplitude arises from

the factor � i� . Keeping this in mind, we see that we can get the real part of the amplitude

by replacing � i� ! ln(s=jtj) in our result,

ReA (a) = �
N 2 � 1

4N 2
16�� 2

s
s
t

ln(
s
jtj

)
Z

d2k1

(2� )2

� � 2

k2
1 (k1 � �) 2

: (1.56)

Using the crossing symmetry relation (1.46) the full amplitude at one lo op of the diagram

(b) is

A (b) = �
N 2 � 1

4N 2
16�� 2

s
� s
t

ln(
� s
t

)
Z

d2k1

(2� )2

� � 2

k2
1 (k1 � �) 2

: (1.57)
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Note that there is no contribution to the imaginary part as � s=t > 0, which is consistent that

the diagram b do es not contribute to the discontinuity, it is only necessary for convergence in

the s complex plane. The expression (1.57) is the opp osite of the real part of the contribution

of the diagram (a). Consequently the real parts of the two diagrams cancel and only the

imaginary part of diagram (a) remains at the end,

A (a)+( b) = I m A (a) : (1.58)

Note that this cancellation is due to the fact that the color factors are the same for the

diagrams (a) and (b), as we are interesting here in a color singlet exchange. It is not the case

for a color o ctet exchange where the real parts are not canceling each other.

1.2.3 Impact factor representation of the quark-quark scattering

amplitude

We will intro duce here the kT � factorization scheme [25, 26, 27, 28, 29, 30, 31] which is valid

in the p erturbative Regge limit where the amplitude is factorized into an upp er and a lower

so-called impact factors that exchange at Born level two t� channel gluons in a singlet color

state.

Let us show on the particular example of the scattering of two quarks in the forward limit

� = 0 , k1 = k and k2 = k , the pro cedure of kT � factorization.

(a1) (b1)

(a2) (b2)

PSfrag replacements

k1 k2

k2 k1

Figure 1.4: Diagrams of the singlet exchange.

In �g. 1.4 are shown four diagrams which when they are summed corresp onds to twice the

amplitude at the Born level of the singlet exchange, A = 1
2(A (a1) + A (b1) + A (a2) + A (b2)) . The

factor 1=2 prevent from overcounting the diagram contributions due to the lo op-integration
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where we integrate over all con�gurations of the momenta k1 , k2 . The amplitude of the

diagram (a1), putting apart the color factor

N 2 � 1
4N 2 reads

iA (a1) =
s
2

Z
d�d�d 2k

(2� )4

�
u(p1)ig
 � i (=p1 + =k)

(p1 + k)2 + i�
ig
 � u(p1)

�

up

�
�

u(p2) ig
 � i (=p2 � =k)
(p2 � k)2 + i�

ig
 � u(p2)
�

down

� ig��

k2 + i�
� ig��

k2 + i�
; (1.59)

where "up" and "down" subscripts identify the upp er and lower parts of the diagram (a1)

�g. 1.2. Now using the eikonal approximation, we can replace

g�� !
2
s

pup

2� pdown

1� ; (1.60)

and we can approximate k = �p 1 + �p 2 + k? by

k up = �p 2 + k? ; k down = �p 1 + k? ; (1.61)

as the p1 (resp. p2 ) comp onent is negligible compared to one in the upp er (resp. lower) part

of the diagram. We also approximate k2 = � k2
. After these simpli�cations we get,

iA (a1) =
s
2

Z
d�d�d 2k

(2� )4

�
2i (ig)2

s
u(p1)

=p2=p1=p2

�s � k2 + i�
u(p1)

�

up

�
�

2i (ig)2

s
u(p2)

=p1=p2=p1

� �s � k2 + i�
u(p2)

�

down

i
k2

i
k2 : (1.62)

Using the Cli�ord algebra of the Dirac matrix f 
 � ; 
 � g = 2g��
, and the fact that p1 and p2

are light-cone vectors we have

u(p1)=p2=p1=p2u(p1) = su(p1)=p2u(p1) = s2 ; (1.63)

where we have for the last equality used the Gordon identity and the normalization of the

spinors. The amplitude reads now,

iA (a1) =
s
2

Z
d2k

(2� )2

� 1
(k2)2

�

 

2i (ig)2
Z

d�
2�

1

� � k2

s + i�

!

up

�

 

2i (ig)2
Z

d�
2�

1

� � � k2

s + i�

!

down

: (1.64)

Let us rewrite this result as

iA (a1) =
s
2

Z
d2k

(2� )2

� 1
(k2)2

� Z
d�
2�

� (�; k )
�

up

� Z
d�
2�

� (� �; � k)
�

down

; (1.65)

with

� (x; ` ) =
2i (ig)2

x � `2

s + i�
: (1.66)
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The contributions of the diagrams (b1), (a2) and (b2), are obtained by changing the signs of

k in the propagators leading to

iA (b1) =
s
2

Z
d2k

(2� )2

� 1
(k2)2

� Z
d�
2�

� (� �; � k)
�

up

� Z
d�
2�

� (� �; � k)
�

down

; (1.67)

iA (a2) =
s
2

Z
d2k

(2� )2

� 1
(k2)2

� Z
d�
2�

� (� �; � k)
�

up

� Z
d�
2�

� (�; k )
�

down

; (1.68)

iA (b2) =
s
2

Z
d2k

(2� )2

� 1
(k2)2

� Z
d�
2�

� (�; k )
�

up

� Z
d�
2�

� (�; k )
�

down

: (1.69)

The total contribution reads

iA =
s
2

Z
d2k

(2� )2

� 1
(k2)2

� 2 (1.70)

�
1
2

� Z
d�
2�

(� (�; k ) + � (� �; � k))
�

up

�
1
2

� Z
d�
2�

(� (�; k ) + � (� �; � k))
�

down

;

where the factor

1
2 are symmetrically inserted in front of the upp er and lower parts of the

pro cess. As we know that iA = 1
2(A (a1) + A (a2) + + A (b1) + A (b2)) b ecause of the fact we

have considered twice more diagrams than it was necessary, we have a global factor

�
1
2

�
up

�
�

1
2

�
down

� 2 = 1
2 where the extra factor 2 has b een put in the t� channel gluon propagator

part of the amplitude. This factor 2 is coming from the fact that there are two p ossibilities to

combine the indices of the g�� g�� of the propagator and g�� g�� , in other words this factor is

absorb ed in the 4� p oint green function of the t� channel gluons. As we to ok care of keeping

the co e�cient that b elong resp ectively to the upp er and lower part of the pro cess, we see

that eq. (1.70) can b e represented as in �g. 1.5.

Lo oking at the integrands of eq. (1.70) is also now clear that the integrals over � and �

converge,

� (a1)
up

(�; k ) + � (a1)
up

(� �; � k) �
1
� 2

: (1.71)

The contributions of all the diagrams are necessary to prove the convergence of the integrals

over � .

We cho ose to integrate over the contour C�
in the � � and � � complex planes shown in

�g. 1.6, the integral

1
2

� Z

C�

d�
2�

(� (�; k ) + � (� �; � k))
�

1
2

� Z

C�

d�
2�

(� (�; k ) + � (� �; � k))
�

=
1
4

Z

C�

d�
2�

� (�; k )
Z

C�

d�
2�

� (�; k ) =
1
4

(2i (ig)2)2(� i )( � i ) = (4 �� s)2 : (1.72)

After restoring the color factor, we get the same result than in the direct computation with

the Cutkosky rules eq. (1.54)

I m A =
N 2 � 1

4N 2
16� 2� 2

ss
Z

d2k1

(2� )2

1
(k2)2

: (1.73)
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Figure 1.5: Decomp osition of the total amplitude and combinatorial factors.
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Going back to eq. (1.70) we see that the amplitude reads

A =
is
2

Z
d2k

(2� )2

2
(k2)2

� ab
up

(k)� ab
down

(k) ; (1.74)

= is
Z

d2k
(2� )2

1
(k2)2

� ab
up

(k)� ab
down

(k) ; (1.75)

with,

� ab
up

(k) =
� ab

2N
1
2

Z
d�
2�

(� (�; k ) + � (� �; � k)) (1.76)

=
1
2

Z
d�
2�

" NS

� " NS

� S��
q(p1)g(k1 ;a)! q(p1)g(k2 ;b)(�; k ) ; (1.77)

the so-called impact factor for the upp er part of the pro cess, where S��
q(p1 )g(k1 ;a)! q(p1 )g(k2 ;b)(�; k )

is the S� matrix element of the upp er sub-pro cess where the quark couples with gluons with

"non-sense" p olarizations " NS

as de�ned in eq. (1.44) due to eikonal approximation.

Note that other conventions exist, for example in ref. [22], the impact factor is de�ned as

� [22] = 2� � Here
and the amplitude reads

A [22] = is
Z

d2k
(2� )4

� [22] � [22 ]

(k2)2
;

or in ref. [32], � [32] = 2
p

� � Here
and the amplitude reads

A [32] =
is
2

Z
d2k

(2� )3

� [32] � [32 ]

(k2)2
:

Dep ending on the conventions, the color factor

� ab

2N is included in the impact factor de�-

nition such as the color factor

N 2 � 1
4N 2 =

�
� ab

2N

�

up

�
� ab

2N

�

down

is recovered in the �nal amplitude.

Note that in the case of two quark scattering amplitude, the impact factors are constant

and equal to 4�� s . As a consequence the integral over k is infra-red divergent. We will see

that in the case where colorless particles are involved in the initial and �nal states of the

impact factor, the gauge invariance forces the impact factor to cancel, preventing thus the

infra-red divergence of the k integral.

1.2.4 The kT factorization scheme

We present how the kT � factorization pro cedure is generalized for colorless states. Let us

consider a more general pro cess where two colorless prob es scatter with an exchange of a

p omeron in t� channel,

A(p1) + B(p2) ! A0(p1 + �) + B 0(p2 � �) :

Due to the fact that we are in the high energy limit there will b e a large rapidity gap b etween

A0
and B 0

. The dominant contribution in p owers of s to the amplitude is given by an exchange
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of gluons in t -channel. Indeed the p ower b ehavior in s of the amplitude at high energy for

N particles exchanged in t� channel dep ends on the spins � i of these particles,

A / s
P

i � i � N +1 ; (1.78)

thus the leading contributions in p owers of s involves only gluons. As a general principle, in

the limit s ! 1 the eikonal approximation for gluons leads to the �nite terms that do es not

decrease as p ower of s.

One can replace the numerators of the gluon propagators by the non-sense p olarizations

thanks to the eikonal approximation in the upp er and lower blob vertices. Then one can

safely neglect the comp onent of the gluon momenta along the dominant like-cone direction

of the upp er or lower blob compared to the comp onent of the momenta of the particles of

the blobs. The amplitude factorizes then as illustrated in �g. 1.7 where � up
a and � up

b are the

s� and u� contributions to the sub-pro cesses A + g ! A0+ g. The 4-p oint Green function

of the gluons G contains the energy dep endence and as we de�ne the impact factors as the

sum of the s� and u� channel, we need to put a factor 1=2 in the de�nition of the impact

factor to avoid double counting when joining the gluonic lines as it was illustrated on the

quark�quark scattering. One should not forget also the factor 2 coming from the Jacobian

s=2 in the integral measure.
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Figure 1.7: kT � factorization of the pro cess A + B ! A0+ B 0
. The upp er and lower impact

factors are the sum of the s� and u� contributions � up(down) = 1
2(� up(down)

a + � up(down)
b ) .

The 4-p oint Green function of the gluons at Born level G reads

2
k2(k � � )2

;

where the factor 2 is due to the fact that there are two combinations to link the upp er gluons

to the lower ones as illustrated in �g. 1.5 and the amplitude reads

A = is
Z

d2k
(2� )2

1
k2(k � � )2

� ab
up

(k; k � � )� ab
down

(k; k � � ) ; (1.79)
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with

� ab
up

(k) =
1
2

Z
d�
2�

" NS

� " NS

� S��; ab
A g! A 0g(�; k ) : (1.80)

De�ning the s� channel Mandelstam variable � of the system A(pA ) + g(k1) , such as,

� = ( pA + k1)2 � �s + p2
A + k2

1 ;

we can replace the integral over � by an integral over � ,

� ab
up

(k) =
1
2s

Z
d�
2�

" NS

� " NS

� S��; ab
A g! A 0g(�; k ) : (1.81)

The impact factor is then de�ned as the integral along the contour illustrated in �g. 1.8.

This contour can b e closed on the discontinuity of the right cut along the real axis, leading

to the �nal expression

� ab
up

(k) =
1
2s

Z
d�
2�

" NS

� " NS

� D isc � S��; ab
A g! A 0g(�; k ) : (1.82)

The energy dep endence of the gluon Green function can b e worked out at the leading

log(1/x) (LLx) accuracy by resumming the amplitude in the relevant parameter � s ln(s) as

the large logarithm of s can comp ensate the small value of � s . The large ln(s) are given

at LLx in the multi-Regge kinematic where, considering A and B �ying resp ectively almost

along the light-cone vectors p1 and p2 , a ladder of gluons with momenta

ki = � i p1 + � i p2 + k? i ;

is exchanged in t� channel with the following strong ordering,

1 � � 1 � � i � � n ;

� 1 � � i � � n � 1 ;

k2
? 1 � k2

? i � s� i � i : (1.83)

In this kinematic, the ladder of gluons can b e resummed in two "reggeized" gluons which

exchange usual gluons coupling with an e�ective vertex called Lipatov vertex [33]. Using
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Mellin transformation to decouple the gluon ladder from the impact factors the amplitude

reads

A(s; t) =
is

(2� )2

Z
d2k
k2 � ab

1 (k; � � k)
Z

d2k0

k02 � ab
2 (� k0; � � + k0)

� + i 1Z

� � i 1

d!
2�i

�
s
s0

� !

G! (k; k0; � ) ; (1.84)

with the Mellin transform of the Green function G! (k; k0; � ) is governed by the Balitsky,

Fadin, Kuraev and Lipatov (BFKL) equation [34, 35, 36, 37] at LLx. The BFKL equation

in terms of the rapidity Y = ln(1 =x) reads

@
@Y

F (Y; k0) =
� sNc

2�

Z
d2kK (k0; k)F (Y; k) (1.85)

with F (Y; k; � ) the unintegrated gluon density which contains the 4-p oint gluon Green func-

tion Y� dep endence and K (k0; k) the BFKL kernel. The BFKL solution [38, 33] is of the

form

F (Y; k) � (1=x)
4N c � s

� ln(2) � s! 0 : (1.86)

This solution exhibits a value for the p omeron intercept of � P = 1 + ! 0 = 1 + 4N c � s
� ln(2)

which is slightly ab ove one, leading to the violation of the Froissart b ound as it was already

exp ected from the Donnachie and Landsho� �ts. We will see in section 1.3.4 some of the

mo dels prop osed to solve this problem of unitarity violation.

Note that the impact factors do not dep end on s and the whole s� dep endence is included

in the Green function of the gluons. This remark agrees with the discussion in part 1.1.2 on

the universality of the t� channel reggeon exchange which contains the s� dep endence of the

amplitudes.

The QCD gauge invariance and the fact that the prob es are colorless, require the cancel-

lation of the impact factors in the limits k? ! 0 or (k? � � ? ) ! 0. Indeed this is due to the

QCD Ward identities, assuming that the t� channel gluons are on-shell (which is the case in

the limit k2
? � k2 ! 0),

S
 � g! 
 � g
�� k� = S
 � g! 
 � g

�� (� � k)� = 0 : (1.87)

eq. (1.87) implies that the impact factor prop ortional to

S
 � g! 
 � g
�� " NS � " NS � =

2
s

S
 � g! 
 � g
�� p�

2p�
2 = �

2
s

S
 � g! 
 � g
�� k�

? (k? � � ? )� ;

vanishes when k? ! 0 or k? � � ? ! 0. The fact that the prob es are colorless is essential

for the QCD Ward identity used here. For example, in the quark-quark scattering, we saw

that the amplitude are not infra-red safe b ecause they do not cancel when k? ! 0, but the

quarks are not colorless prob es. Another way to see this gauge invariance requirement is

that a colorless prob e interacts with the t� channel gluons through a partonic system. For

k? of the order of the transverse size of the partonic system, the gluon can resolve the color
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charges of the partons. When k? vanishes, the transverse size resolved by the gluon b ecomes

larger than the transverse size r of the system and the color charges of the partons are then

screening each other. As the prob e is colorless, the whole partonic system is colorless and the

coupling of the gluon to this system is then vanishing as the e�ective color charge resolved

by the gluon vanishes, as illustrated in �g. 1.9.

PSfrag replacements

k ! 01=k 1=k

r

r

Figure 1.9: In the limit k ! 0, the gluon cannot resolve anymore the colored quark as its

color charge is shadowed by the color charge of the antiquark.

1.3 Deep inelastic scattering amplitude in the p erturba-

tive Regge kinematics

1.3.1 Intro duction to DIS observables

PSfrag replacements k
k0

q

p
pX

Figure 1.10: Deep inelastic scattering pro cess e� (k) + p(p) ! e� (k0) + X (pX ) summed over

all �nal states X .

We denote p, q and k the resp ective momenta of the proton, the virtual photon and the

electron. The virtuality Q of the photon is de�ned as q2 = � Q2
. Let us denote,

� S = ( k + p)2
the squared center of mass energy of the ep system,

� W = ( q+ p)2
the squared center of mass energy of the 
 � p system,

� x = Q2

2p�q = Q2

2� with � = p � q, the Bjorken variable of the pro cess, which in the parton

mo del is the fraction of proton momentum carried by the interacting parton and �=M p

the virtual photon energy in the proton rest frame.

� y = p�q
p�k the fraction of the electron energy transferred to the virtual photon in the

proton rest frame.
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In the high energy limit, (for a p edagogical b o ok on high energy QCD see Ref. [39]), s �

Q2 � (M 2
p ; � 2

QCD ) with � QCD the QCD scale and Mp the mass of the proton, the variables

x and y can b e approximated by x � Q2

W 2 and y � Q2

xs . The di�erential cross-section reads

E 0d� e� p

d3k0
=

e2

8� 2(s � M 2
p )q4

L �� W�� ; (1.88)

with E 0
and k0

the energy and the momentum of the scattered electron, L �� the leptonic part

of the pro cess asso ciated to the leptonic current and W�� the hadronic tensor asso ciated with

the interaction b etween the prob e (the virtual photon) and the hadron. Neglecting the mass

of the electron

L �� = 2( k� k0� + k� k0� � g�� k � k0): (1.89)

The tensor W�� reads

4�W �� =
X

X

Z
d� X (2� )4� (p + q � pX )

�


hp(p)j J y

� (0) jX (pX )i hX (pX )j J� (0) jp(p)i
�

spin

=
Z

d4yeiq�y


hp(p)j J y

� (y)J� (0) jp(p)i
�

spin
(1.90)

from the �rst line to the second we used �rst a translation of the matrix element

hp(p)j e� i P̂ �yei P̂ �yJ y
� (0)e� i P̂ �yei P̂ �y jX (pX )i = eiy �(pX � p) hp(p)j J y

� (y) jX (pX )i ;

and then the completeness relation

X

X

Z
d� x jX (pX )i hX (pX )j = 1 :

Due to the optical theorem, the tensor W�� is related to the imaginary part of the forward

Compton scattering amplitude T�� ( W�� = 2I mT�� ) illustrated in �g. 1.11,

4�T �� = i
Z

d4y eiy �q


hp(p)j Tf J y

� (y)J� (0)g jp(p)i
�

spin
: (1.91)

PSfrag replacements

0 y

� �

Figure 1.11: Forward Compton scattering amplitude.

The hadronic tensor cannot b e computed p erturbatively and have to b e mo deled by

parameterizing it on the relevant Lorentz structures. Using the transformations under parity
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and time reversal of the correlator and the gauge invariance conditions q� W�� = q� W�� = 0 ,

the hadronic tensor W�� can b e parameterized by two indep endent structure functions F1

and F2 such as,

W�� = � (g�� �
q� q�

q2
)F1(x; Q2)

+
1
�

(p� � q�
p � q
q2

)(p� � q�
p � q
q2

)F2(x; Q2) : (1.92)

Putting all together one �nds for the di�erential cross-section of the DIS of the proton and

the electron in the proton rest frame,

d� ep
tot

dE0d

=

� 2

4MpE 2 sin4(�=2)

�
2F1 sin2(�=2) +

M 2
p

�
F2 cos2(�=2)

�
; (1.93)

with 
 and � the solid angle and the azimuthal angle of the scattered electron and � = e2=4�

the �ne structure constant.

The parton mo del

In the so-called naive parton mo del prop osed by Feynman and Bjorken [2, 40, 1], the proton

is assumed to b e constituted of p oint-like fermionic particles called partons. Comparing the

result (1.93) with the di�erential cross-section of a spin 1=2 p oint-like particle, for example

e� � �
cross-section,

d� e� � �

dE0d

=

� 2� (1 � x)
4m� E 2 sin4(�=2)

�
sin2(�=2) +

m2
�

�
cos2(�=2)

�
; (1.94)

and assuming that a parton of mass mf and momentum pf = xf p interacts with the photon,

leads to

2F1 =
Mp

mf
� (1 � zf ) =

Mp

mf
� (1 � x=xf )

and

F2 =
mf

Mp xf
� (1 � zf ) =

mf

Mp xf
� (1 � x=xf ) = xf

Mp

mf
� (1 � x=xf ) = 2 xf F1 ;

with zf = Q2=2q� pf = x=xf . Note that � is replaced in (1.94) by � f = q� pf = xf � and in the

proton rest frame � f =� = mf =Mp . It implies that the structure functions are indep endent of

Q2
which could explain in the early exp erimental analysis at SLAC the fact that the measure

of F2 dep ends very weakly on Q2
known as the Bjorken scaling. In the parton mo del, the

hadronic tensor W�� is written as,

W�� =
X

f

Z
dxf

xf
f f (xf )W f

�� ; (1.95)

with f f the parton distribution function and W f
�� the "partonic tensor",

4�W f
�� =

Z
d4p02�� (p02)(2� )4� (xf p + q � p0)



hxf pj J y

� (y)J� (0) jxf pi
�

spin

= 2�x f � (xf � x) e2
f

�
� (g�� �

q� q�

q2
) +

2xf

�
(p� � q�

p � q
q2

)(p� � q�
p � q
q2

)
�

: (1.96)
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This leads to the expressions

F1 =
1
2

X

f

e2
f f f (x) and F2 = 2xF1(x) ; (1.97)

the second equality in (1.97) is known as the Callan-Gross relation [41], and could explain

why the data for the longitudinal structure function de�ned as FL (x) = F2(x) � 2xF1(x)

were small compared to the data of F2 . Despite of these predictions, the main problem of

the naive parton mo del is that it assumes that the partons are free inside the nucleon while

they should b e in the same time strongly interacting with each other to maintain themselves

in the hadron b ound state. This is of course explain by the asymptotic freedom in QCD, i.e.

the coupling of the partons b ecomes weak at high energy scales Q2 � � 2
QCD .

The parton picture in QCD

A hadron in the p oint of view of QCD contains �uctuations of partonic �elds of space and

time scale smaller than its hadronic size. The prob e (virtual photon) can resolve the �uc-

tuations in the hadrons that have typically larger sizes than the size of the prob e and all

smaller �uctuations only participate in the renormalization of the masses and the coupling

constants. In the in�nite momentum frame where the proton has the sp eed of light, the

Lorentz dilatation of time scales implies that the �uctuations have a long life time compared

to the time scale of the prob e and they b ehave as if they were free. From this p oint of view

we see that the numb er of �uctuations resolved by the prob e b ecomes larger and larger with

decreasing x b ecause of the emission of gluons by bremsstrahlung. The fact that the prob e

resolves more and more partons as Q2
increases is the source of the quantum corrections that

violates the Bjorken scaling. So b oth x and Q2
variations leads to quantum corrections to the

observables. The x� evolution is given by the BFKL equation in the diluted regime where the

partonic density is small and by the Balitsky-Kovchegov (BK) equation [42, 43] in the dense

regime where the partonic interactions due to their overlapping leads to non-linear evolution

equations. Both equations resum the large leading terms in � s

Rp+ dk+

k+ � � s ln(1=x) due

to the soft gluon emissions. The Q2
evolution is given by the Dokshitzer-Grib ov-Lipatov-

Altarelli-Parisi (DGLAP) equation [44, 45, 46, 47] which resums the large ln(Q2) leading

terms that app ear due to collinear singularities � s
RQ2 dk2

?
k2

?
� � s ln(Q2) .

In the Bjorken limit ( Q2 ! 1 , x �xed), the expression (1.90) of W�� , the integral is

dominated by the value of the correlator for 0 < y 2 < 1
Q2 . The way to compute these

contributions is to use the op erator pro duct expansion (OPE) on the light-cone y2 ! 0, the

OPE technique was intro duced in particle physics by Wilson in the 70's [6] and was then

applied to DIS [7, 4] and later to exclusive pro cesses [48]. It consists in expanding the pro duct

of the electromagnetic currents as

J (y)J (0)
jyj! 0
=

X

s;i

Cs;i
� 1 ��� � s

(y)O� 1 ��� � s
i (0) ; (1.98)

where the co e�cients Cs;i
� 1 ��� � s

(y) = y� 1 � � � y� s C
s;i (y2) are the Wilson co e�cients, the functions

Cs;i (y2) contain the singularities when jyj ! 0. O� 1 ��� � s
i (0) are lo cal op erators of spin s that
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have the same quantum numb ers of the l.h.s. of (1.98). By dimensional analysis, the canonical

dimension of the currents are dJ = 3 and then the Wilson co e�cients b ehave as

Cs;i (y2) � j yjds;i � s� 6 = jyjt i � 6 ; (1.99)

where ds;i is the canonical dimension of the op erator O� 1 ��� � s
i and s is the spin and t i = ds;i � s

is the twist of the op erator O� 1 ��� � s
i . Note that the di�erence b etween the OPE on the

light-cone ( y2 ! 0) and the standard OPE ( y� ! 0), is that the hierarchy of the leading

op erators is not given by the canonical dimension of the op erators but by their twists and

thus there is an in�nite set of op erators of the same twist, as the dimension of the op erators

can b e comp ensated by their spins. The singularities that drive the b ehavior of the non-lo cal

correlators are given by op erators of twist ts;i < 6 and the leading twist op erators of QCD

are of twist 2.

One can parameterize the correlators on the p ossible Lorentz structures as,



hp(p)j O � 1 ��� � s

s;i (0) jp(p)i
�

spin
= p� � � � p� s hOs;i (0)i + � � � ; (1.100)

where " � � � " stand for terms with trace. Replacing J� (y)J� (0) in the de�nition (1.90) of W��

by the OPE leads to

4�W �� =
X

s;i

hOs;i (0)i
Z

d4yeiq�y(y � p)sCs;i (y2)

=
X

s

x � s
X

i

hOs;i (0)i (� iQ2 @
@Q2

)s ~Cs;i (Q2)

�
X

s

x � s
X

i

hOs;i (0)i D s;i (Q2) ; (1.101)

with

~Cs;i (Q2) the Fourier transform of Cs;i (y2) . D s;i (Q2) scales like � (1=Q)t i � 2
, so at

leading twist the Bjorken scaling is veri�ed. The co e�cient functions D s;i (Q2) are universal

as the target dep endence is contained in the initial and �nal states of hOs;i (0)i and they are

calculable in pQCD. The structure functions take the forms

F1(x; Q2) =
X

s

x � s
X

i

hOs;i (0)i D s;i
1 (Q2) ; (1.102)

F2(x; Q2) =
X

s

x � s+1
X

i

hOs;i (0)i D s;i
2 (Q2) : (1.103)

The leading twist QCD op erators are,

O� 1 ��� � s
s;qf

= � (0)
 f � 1 @� 2 � � � @� s g (0) ; (1.104)

O� 1 ��� � s
s;g = F f � 1

� @� 2 � � � @� s� 1 F � s g� ; (1.105)

with " f� � � g " stands for the symmetrization of � 1; � � � � s indices and the subtraction of the

trace terms. Identifying the structure functions in (1.97) and (1.102, 1.103) leads to

Z
dx
x

xs(f f (x) + f �f (x)) =


Os;qf

�
; (1.106)
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which relates the Mellin moments of the PDFs to the exp ected values on the hadronic state



Os;qf

�
:

Taking the average value of O� 1 ��� � s
s;qf

and O� 1 ��� � s
s;g on quark of �avor f 0

state, one can show

that the corresp onding



Os;qf

�
= � f f 0

and hOs;gi = 0 . Identifying the structure functions in

(1.97) and (1.102, 1.103) leads to

Z
dx
x

(f f (x) + f �f (x)) =


Os;qf

�
: (1.107)

The Callan-Symanzik renormalization group equations for the correlators hJ (y)J (0)i and

hOs;i i read

�
�

@
@�

+ � (g)
@

@�s

�
hJ (y)J (0)i = 0 ; (1.108)

��
�

@
@�

+ � (� s)
@

@�s

�
� ij + 
 s;ij (� s)

�
hOs;j i = 0 ; (1.109)

with � (� s) = � 2 d� s
d� 2 and 
 s;ij the element of the anomalous dimension matrix. The running

of � s at one lo op approximation leads to

� s(Q) =
8� 2

� 0 ln(Q=� QCD )
; (1.110)

with � 0 =
11
3 N c � 2

3 n f

4� . As the structure functions do not dep end on the choice of � 2
, the

co e�cient functions satisfy

��
�

@
@�

+ � (� s)
@

@�s

�
� ij + 
 s;ij

�
D s;j = 0 ; (1.111)

The solutions of this equation is given by,

D s;i (Q=�; � s) = D s;j (Q0=�; � s(Q))

0

@
�

ln(Q=� QCD )
ln(Q0=� QCD )

� 8� 2 A ( s)
� 0

1

A

j i

:

The co e�cients A ij (s) = 
 s;ij (� )=(4�� s(� )) of the matrix A are calculable at one lo op level

from the counter terms that regularize the op erator divergence. As a consequence the scaling

violations at one lo op are resp onsible for the Bjorken scaling and the mixing b etween the

op erator exp ectation values involves the gluon op erators (�uctuations resolved when probing

with a higher sensibility),

Z
dx
x

xs
X

f

(f f (x; Q2) + f �f (x; Q2)) /

0

@
�

ln(Q=� QCD )
ln(Q0=� QCD )

� 8� 2 A
� 0

1

A

f i

hOs;i i Q0
: (1.112)

Deriving this equation with resp ect to ln(Q2) leads to

Q2 @~f f (s; Q2)
@Q2

= � 2�� s(Q)A f j (s) ~f j (s) ; (1.113)
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with

~f the Mellin moments of the PDFs. This equation is equivalent to the DGLAP equation

in x� space,

@fi (x; Q2)
@ln(Q2)

=
� s(Q2)

2�

Z 1

x

dy
y

Pij (x=y)f j (y; Q2) ; (1.114)

where the splitting functions Pij (x=y) are the Mellin moments of the elements A ij (s) ,

Z
dx
x

xsPij (x) = � 4�A ij (s) : (1.115)

Note that the eigenvectors asso ciated to the eigenvalue zero of the matrix A determine the

sum rules. These eigenvectors, which are combinations of op erators, are scale indep endent.

For example the sum rule for s = 1 implies the conservation of the numb er of partons and

for s = 2 the conservation of the longitudinal momentum carried by all the partons.

The physical picture is that the photon can resolve the parton structure inside the parton

qi . The splitting functions Pij (y) are the amplitudes of probability to get the parton j with

fraction of momentum y of the momentum of the parton from the parton i . The DGLAP

equation is currently known up to NNLO corrections [49].

1.3.2 Impact factors 
 �
L;T ! 
 �

L;T

In terms of the Lorentz invariant quantities x , y and Q2
, the di�erential cross-section (1.93)

in the in�nite momentum frame reads

d� ep
tot

dxdQ2
=

2�� 2

xQ4

�
(1 + (1 � y)2)F2(x; Q2) � y2FL (x; Q2)

�
: (1.116)

These two structure functions are closely linked to the longitudinal and transverse p olarized

cross-sections � L and � T of the pro cesses

P
X 
 �

L;T + p(p) ! X (pX ) ,

FL (x; Q2) =
Q2

4� 2�
� L (x; Q2) ; (1.117)

F2(x; Q2) =
Q2

4� 2�

�
� T (x; Q2) + � L (x; Q2)

�
: (1.118)

PSfrag replacements

� P ! P

� 
 � ! 
 �

Figure 1.12: kT � factorization of the forward Compton scattering amplitude.

We will fo cus in this part on the determination of the p olarized cross-sections � L and � T

de�ned in eqs. (1.117, 1.118) in the p erturbative Regge limit. Using the optical theorem,



CHAPTER 1. HIGH ENERGY QCD 31

the p olarized cross-sections � L;T are related to the forward Compton scattering amplitudes

A el.

L;T � A 
 �
L;T p! 
 �

L;T p(s; t = 0) ,

� L;T =
2
F

I m A el.

L;T (s) =
1
s

I m A el.

L;T : (1.119)

Using the impact factor representation for the Compton scattering amplitude, as illustrated

in �g. 1.12 we get at Born level

� L;T =
Z

d2k
(2� )2

1
(k2)2

� 
 �
L;T ! 
 �

L;T (k; Q2)� P ! P (k; M 2) ; (1.120)

where M is some non-p erturbative scale of the transverse dynamics of the partons inside the

proton.

In the region Q2 � � 2
QCD , the impact factor � 
 �

L;T ! 
 �
L;T

can b e computed within the

p erturbation theory. We will consider here the lowest order in p erturbation theory where

the photons interact with the gluons in t� channel by disso ciating in a quark anti-quark pair.

We neglect for simplicity the masses of the quark in this computation assuming Q2 � m2
f ,

where mf is the mass of a quark of �avor f .

The vectors q, l and k are decomp osed in the Sudakov basis of light-cone vectors p1 and

p2 such as,

q = p1 �
Q2

s
p2 ; (1.121)

l = yp1 + �p 2 + l? ; (1.122)

k =
� + Q2 + k2

s
p2 + k? : (1.123)

Note that we work in the in�nite momentum frame where the proton and the virtual photon

are moving resp ectively near the light-cone vectors p2 and p1 .

The longitudinal and transverse p olarization vectors of the virtual photons are

" �

L =

1
Q

(p�
1 +

Q2

s
p�

2) ; " � =
1

p
2

(0; � 1; � i; 0) : (1.124)

We de�ne the euclidean p olarization vectors in the transverse space as,

e� =
1

p
2

(� 1; � i ) : (1.125)

We use the Cutkosky rules to compute the discontinuity of the four diagrams shown in

�g. 1.13 that contribute to the impact factors.

The contribution to the impact factor of the diagram (a) for a lo op involving a quark of

electric charge e,

� 
 �
L ! 
 �

L
(a) =

1
2s

Z
d�

(2� )
D isc � A (a) (1.126)
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Figure 1.13: The four diagrams contributing to the 
 � ! 
 �
impact factors, the dashed lines

are the cut in the diagrams.

and

D isc � A (a) =
Z

d4l
(2� )2

� (l2)� (( l � q � k)2)(4�� )(4�� s) (1.127)

�
� Tr

�
="
 �

L (=l � =q)=" NS (=l � =q� =k)=" NS (=l � =q)="� 
 �

L =l
�

)

(( l � q)2)2

=
s
2

Z
dyd�d 2`

(2� )2
� (ys(� �

`2

ys
)� (�y(� � � 0))(4�� )(4�� s)

�
� Tr

�
="
 �

L (=l � =q)=" NS (=l � =q� =k)=" NS (=l � =q)="� 
 �

L =l
�

)

(( l � q)2)2

=
s
2

Z
dy d2`
(2� )2

1
ys

� (� � � 0)
�y

(4�� )(4�� s)

�
�

2Q
s

� 2 �
2
s

�
� Tr (=p2(� �y=p1)=p2(� �y=p1)=p2(� �y=p1)=p2(y=p1))

( 1
y (`2 + y�yQ2))2

= 32s�� s

Z
dy d2`� (� � � 0)

�y2y2Q2

(`2 + y�yQ2)2
; (1.128)

with � 0 = 1
y �y (` � yk)2

. Note that we use the Ward identity to simplify the computation by

rewriting the longitudinal p olarization of the virtual photon as

" 
 �

L =
1
Q

�
q+

2Q2

s
p2

�
: (1.129)

The Ward identity

q� A � = 0 ; (1.130)
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with A � such as A = " 
 � � (q)A � , allows then to get rid of the terms in q�
in the photon

p olarizations,

" 
 �

L =
1
Q

�
q� +

2Q2

s
p�

2

�
�!

2Q
s

p�
2 : (1.131)

The contribution of the diagram (a) to the impact factor reads

� 
 �
L ! 
 �

L
(a) =

8�� s

�

Z
dy d2`

�y2y2Q2

(`2 + y�yQ2)2
: (1.132)

Computing the other contributions in the case of the longitudinally p olarized photon, sum-

ming the contributions of all the �avors f of electric charge qf and including the color factor

T r(tatb) = � ab

2 involved in the color singlet exchange, the total impact factor reads

� 
 �
L ! 
 �

L =
� ab

2
8�� s

�

n fX

f

q2
f

Z
dy d2`

�
y�yQ
D(`)

�
y�yQ

D(` + k)

� 2

: (1.133)

where D(`) = `2+ � 2
with � 2 = y�y Q2+ m2

f . For completeness, we have restored in eq. (1.133)

the masses of the quarks involved in the lo op mf .

The impact factor � 
 �
T ! 
 �

T
can b e computed using the same techniques than we have

presented for � 
 �
L ! 
 �

L
. The result reads

� 
 �
T ! 
 �

T =
� ab

2
2� s�

�

n fX

f

q2
f

Z
dy d2` (1.134)

�
�

� 4y�y ei � (L(`) � L(` � k)) ( L(`) � L (` � k)) � e�
j

+ ei � e�
j (L(`) � L(` � k))2

+ m2
f ei � e�

j

�
1

D(`)
�

1
D(` + k)

� �
1

D(`)
�

1
D(` � k)

��
;

with ei and e�
j the euclidean transverse p olarization vectors of the ingoing and outgoing

photons, and

L(`) =
`

`2 + � 2
:

It is easy to check that the impact factors vanish when k2 ! 0 as a consequence of the Ward

identity as discussed in section. 1.2.4.

1.3.3 Color dip ole picture

Intro duction

The basic idea of the dip ole picture for DIS, initiated by the works of Nikolaev, Zakharov

[8, 9] and Mueller [10, 11], is that in the proton rest frame at low x , the photon disso ciates

into a partonic system that constitutes a collection of color anticolor pairs called "color

dip oles" which have a long life time compared to the time of the interaction of the partons

with the proton target. The sizes of the dip oles can then b e assumed to b e �xed during

the scattering of the partons with the nucleon target. The dip ole states parameterized in
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terms of their transverse sizes are eigenstates of the scattering op erators as the dip ole size is

preserved during the scattering with the target. The amplitude factorizes into, the overlap

of the initial 	 i and �nal 	 �
f wave functions of the virtual photon in the case of DIS, which

are the amplitude of probability to pro duce a con�guration of dip oles with �xed transverse

sizes, and the scattering amplitude T of these dip oles with the target.

The amplitude of the pro cess ip ! fp , where p is the nucleon target and i and f the

initial and �nal states, can b e written symb olically [50, 51],

A =
X

n;F n ;f � k g

Z
[d2n r k ]

Z
[dyk ]	 �

f (n; f yk ; r k ; � kg) T(F n) 	 i (n; f yk ; r k ; � kg) ; (1.135)

where n is the numb er of partons involved in the intermediate Fo ck state F n with longitudinal

fraction of momentum f zkgk=1 ::n and impact parameters f r kgk=1 ::n , of helicities f � kgk=1 ::n .

The scattering op erator T(F n ) b eing diagonal in the dip ole states formed by the partonic

system is indep endent of the initial and �nal states that have formed the dip oles and by

consequence is a universal quantity that dep ends only on the nucleon target dynamics.

The simplest case is given by the lowest intermediate Fo ck state constituted by a quark

( y; r1 ) antiquark ( �y; r2 ) pair, where the couples ( z; rk ) denotes the longitudinal fraction of

momentum and the transverse p osition (impact parameter) of the parton. Indeed the contri-

bution of higher Fo ck states due to the emission of low energy gluons are imp ortant when the

rapidity increases but they can b e absorb ed, in the large Nc limit, in the dip ole scattering

amplitude evolution governed by the BFKL evolution equation [52]. The dip ole picture for

DIS corresp onds to the diagram shown in �g. 1.14, where we denote N (x; r ; b) the imaginary

part of the (T(F 2)) , r = r 2 � r 1 is the dip ole vector and b = yr1 + �yr 2 is the impact parameter

of the dip ole, which is Fourier conjugate of the transverse momentum transfer � .

PSfrag replacements
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Figure 1.14: DIS within the color dip ole picture

Let us stress a useful analogy p ointed out by Susskind [53] b etween the parton kine-

matics and the two-b o dy problem in quantum mechanics. The Poincaré group in the in�nite

momentum frame contains a sub-group that we denote F of transformations that leave invari-

ant the hyp ersurface orthogonal to the dominant light-cone direction p1 and whose algebra

is isomorphic to the Galilean algebra of the transformations on a two-dimensional space.

Among the transformations of the sub-group F are "Galilean b o ost"-like transformations on
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the transverse space. In Ref. [53], a dictionary is established b etween the generators of the

Galilean transformations of a two-dimensional system of non-relativistic particles of masses

mi , p ositions r i and momenta ` i , and the generators of the sub-group F of the system of

particles of longitudinal fractions of momentum yi = f y; �yg, transverse impact parameters

r i = f r 1; r 2g and transverse momenta ` i = f `1; `2g. The analog of the masses m1 and m2 of

the quark and the antiquark are prop ortional to the longitudinal comp onents 2yp1 and 2�yp1

in our computation.

In the two-dimensional mechanics, the two-b o dy problem can b e simpli�ed by splitting

the system into the kinematic variables of its center of mass and of its reduced particle.

Following the ab ove analogy, we �nd that the transverse co ordinate of the "center of mass"

of the dip ole is given by b, and the vector of the reduced particle is given by r , while the

momentum of the reduced particle is,

` = �y`1 � y`2 ;

and the e�ective mass is

M =
m1m2

m1 + m2
= 2y�yp1 :

The imaginary part of the dip ole amplitude can b e related to the b� dep endent dip ole

cross-section,

d�̂
d2b

= 2N (x; r ; b) : (1.136)

In the case of DIS, the momentum exchanged in t� channel is zero which leads to the following

dip ole cross-section,

�̂ (x; r ) =
Z

d2b
d2�̂
db

= 2
Z

d2bN (r ; b; x) :

A usual assumptions is that the b� dep endence factorizes in N (x; r ; b) as,

N (x; r ; b) = T(b)N (x; r ) :

The function T(b) describ es the gluon density inside the nucleon, it can b e for example chosen

as a step function which is one inside the nucleon and zero outside, giving after integration

over b, Z
d2bN (x; r ; b) = �R 2N (x; r ) ;

where R is the radius of the nucleon. This integral over b gives then an overall normalization

to the dip ole cross-section denoted � 0 such as

�̂ (x; r ) = � 0N (x; r ) ; (1.137)

with � 0 = 2
R

d2bT(b) = 2 �R 2
.

As we will see on the particular "saturation mo del", the dip ole picture will b e also con-

venient to implement saturation e�ects as one can de�ne dense and diluted partonic systems

dep ending on the size that the dip ole can resolve compared to a so-called "saturation scale"

that emerges from the non-linear equations that govern the x� dep endence of the dip ole

scattering amplitude.
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DIS: factorization of the wave functions

Coming back to the 
 �
L;T ! 
 �

L;T impact factors eqs. (1.133, 1.134) for the DIS pro cess, we

will show that the results are consistent with the dip ole picture of �g. 1.14 once expressed in

the impact parameter representation. Let us intro duce two identities

1

,

1
`2 + � 2

=
Z

d2r
2�

eik �r K 0(�r ) ; (1.138)

`
`2 + � 2

= � i�
Z

d2r
2�

eik �r r
r

K 1(�r ) : (1.139)

where r is a vector of the transverse co ordinate space conjugated to the transverse momentum

` , r = jr j and K � (x) are the mo di�ed Bessel functions of the second kind which ob ey the

mo di�ed Bessel's equations,

x2 K 00
� (x) + x K 0

� (x) � (x2 + � 2) K � (x) = 0 :

Using these identities, we can get the following expressions for the impact factors

� 
 �
L ! 
 �

L =
� ab

2
8�� s

�

n fX

f

q2
f

Z
dy d2`

�
y�yQ
D(`)

�
y�yQ

D(` � k)

� �
y�yQ
D(`)

�
y�yQ

D(` � k)

�

=
� ab

2
8�� s

�

n fX

f

q2
f

Z
dy

Z
d2r y�yQ K 0(�r )

Z
d2r 0y�yQ K 0(�r 0)

�
�
1 � e� ik �r

� �
1 � e� ik �r 0

� Z
d2`

(2� )2
ei` �(r + r 0)

=
� ab

2
8�� s

�

n fX

f

q2
f

Z
dy

Z
d2r (y�yQ K 0(�r )) ( y�yQ K 0(�r ))

�
�
1 � e� ik �r

� �
1 � eik �r

�

=
Z

dy
Z

d2r
n fX

f

X

h;�h

�
�
� 	


 �
L

f;h �h

�
�
�
2

�
� ab

2
4�� s

N

�
1 � e� ik �r

� �
1 � eik �r

�
�

; (1.140)

where 	 
 �
L

f;h �h is the amplitude of probability for the photon to disso ciate into a quark and

an antiquark of �avor f and of resp ective helicities h and

�h and longitudinal fractions of

momentum y and �y = 1 � y , which form a color dip ole of size r . 	 
 �
L

f;h �h is the wave function

of the longitudinally p olarized virtual photon computed in the �rst order of the light-cone

p erturbation theory [54],

	 
 �
L

f;h �h(y; r; Q2) = � �h;� h
eqf

2�

r
Nc

�
(y�yQ)K 0(� jr j) : (1.141)

In eq. (1.140), the part b etween the square brackets corresp onds to the interaction of the

dip ole with the two t� channel gluons. The factorization of the amplitude into the wave

functions of the virtual photon and the dip ole interaction is valid even at low Q2
, it is only

1

Note that we got a overall minus sign in (1.139) compared to [32].
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a consequence of the high energy limit. Coming back to the expressions of the p olarized

cross-sections eq. (1.120) and replacing the impact factor of the proton by the unintegrated

gluon density F (x; k) de�ned as � P ! P =(2� )2
at Born order, the p olarized cross-sections read

� L;T =
Z

d2k
1

(k2)2
� 
 �

L;T ! 
 �
L;T (k; Q2)F (x; k) : (1.142)

Note that the gluon density g(x; Q2) is given by

g(x; Q2) =
1
�

Z Q2
d2k
k2 F (x; k) : (1.143)

Inserting the result of eq. (1.140) in the expression of the p olarized cross-sections eq. (1.142)

leads to the formula,

� L =
n fX

f

Z
dy

Z
d2r

X

h;�h

�
�
� 	


 �
L

f;h �h

�
�
�
2

�̂ (x; r ) ; (1.144)

with the dip ole cross-section

�̂ (x; r ) =
N 2 � 1

4
4�� s

N

Z
d2k

1
(k2)2

F (x; k)
�
1 � e� ik �r

� �
1 � eik �r

�
: (1.145)

Similarly the p olarized cross-section � T reads

� T =
n fX

f

Z
dy

Z
d2r

X

h;�h

�
�
� 	


 �
T

f;h �h

�
�
�
2

�̂ (x; r ) ; (1.146)

where the wave function 	 
 �
T

f;h �h of the virtual transversely p olarized photon is,

	 
 �
T (� 
 )

f;h; �h (y; r ; Q2) = � �h;� h
ieqf

2�

r
Nc

�
(y� h;� 
 + �y� h;� � 
 )

(r � e(� 
 ))
jr j

�K 1(� jr j) : (1.147)

Note that the expressions of the wave functions of the virtual photon b ecome in the non-

forward limit [32] where a momentum � is exchanged in the t� channel,

	 
 �
L

h�h(q+ �) = � �h;� h
eqf

2�

r
N
�

y�yQK 0(�r )ei �y� �r ; (1.148)

	 
 �
T

h�h (q+ �) = � �h;� h
ieqf

2�

r
N
�

(y� h;� 
 � �y� h;� � 
 )
e(� 
 ) � r

r
�K 1(�r )ei �y� �r

+ � �h;h � h� 
 mf
eqf

2�

r
N
2�

K 0(�r )ei �y� �r : (1.149)

Let us now sketch how the light-cone wave functions naturally emerge from the eikonal

limit. The eikonal limit s ! 1 can b e seen as an in�nite b o ost of the incoming and outgoing

states along their longitudinal direction z,

S�� = Lim ! !1 h� j ei!K �
U(1 ; �1 )e� i!K �

j� i ; (1.150)



CHAPTER 1. HIGH ENERGY QCD 38

with K � = � K z
the Lorentz b o ost generator along z. Splitting the S� matrix as,

U(�1 ; 1 ) = U(�1 ; � L)U(� L; L )U(L; 1 ) ; (1.151)

where U(� L; L ) contains the interactions eA� (x)J� (x) with an external p otential A � (x) for

x+ 2 [� L; L ], and inserting the in�nite b o ost along z leads to

S�� = h� j U0(+ 1 ; 0) (1.152)

� T+ f eie
R

d2x? (
R

dx+ A � (x+ ;0;x? ))(
R

dx � J + (0;x � ;x? ))g

� U0(0; �1 ) j� i ;

where U0(t1; t2) is the evolution op erator that contains only the self interaction of the �elds.

The expression (1.152) can b e pro jected on all intermediate Fo ck states j
 i and j� i as,

S�� =
X


;�

h� j U0(+ 1 ; 0) j
 i h
 j

� T+ f eie
R

d2x? (
R

dx+ A � (x+ ;0;x? ))(
R

dx � J + (0;x � ;x? ))g

� j � i h� j U0(0; �1 ) j� i ; (1.153)

with T+ the light-cone time ordered pro duct. In our case, the sums over 
 and � are restricted

to the lowest Fo ck state, i.e. a quark antiquark pair. The photon light-cone wave function

for a given intermediate state h� j containing n particles with co ordinate f yi ; r? i g is de�ned

as the amplitude of probability to get from the initial photon state at x+ = �1 the state �

at the light-cone time x+ = 0 ,

	( f yi ; r? i g) = h� j U0(0; �1 ) j� i : (1.154)

In the case � = q(p1; h)�q(p2; �h) , the Fourier transform in k? � space of light-cone wave function

of the photon 
 � (q; � 
 ) reads

~	 �
h�h(f yi ; k? i g) =

Z
d2k? i

(2� )2
e� ik ? i �r ? i h� j U0(0; �1 ) j� i ; (1.155)

which is the amplitude of a photon to split as 
 � (q; � 
 ) ! q(`1; h)�q(`2; �h) . We keep the

conventions

`1 = yp1 +
`2

ys
p2 + `? ; `2 = �yp1 +

`2

�ys
p2 � `? (1.156)

q = p1 �
Q2

s
p2 ; (1.157)

and we denote the energy E i = k�
i with k�

i =
p

s � p1 � k . We de�ne also the plus comp onent

as k+
i =

p
s � p2 � k . The light-cone wave function can b e computed in light-cone p erturbation

theory (Feynman rules can b e found in [55]). It reads

~	 �
h�h(y; `? ) =

Z 0

�1
dte� it (E 
 � E1 � E2+ i� ) 1

p
s

uh(`1)
p

y
(eq(� =�(� 
 )))

v�h(`2)p
�y

(1.158)

=
i

E 
 � E1 � E2

1
p

s
uh(`1)(eq� ab(� =�(� 
 )))v�h(`2)p

y�y
(1.159)

=
i2

p
y�y

`2 + � 2
uh(`1)(eq� ab(� =�(� 
 )))v�h(`2) : (1.160)
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Note that in the standard way to calculate Feynman diagrams, the wave function can b e

obtained by replacing the conservation of energy factor 2�� (E 
 � E1 � E2) in the expression

of the T� matrix, by the integral

Z 0

�1
dx+ e� ix + (E 
 � E1 � E2+ i� ) =

i
E 
 � E1 � E2

;

and by adding the phase space factor

1p
y �ys . This space factor

1p
y �ys should b e omitted for

external spinor �elds but as we are interested in the case when the quark antiquark pair

interacts at x+ = 0 , we keep this factor in the de�nition of the wave function.

The explicit computation of the currents �u=�v can b e done using the chiral representation

for the Dirac spinors,

uh(p) =
=p+ m

p
E + m

 
� h(p)

0

!

(1.161)

and

vh(p) =
� =p+ m
p

E + m

 
0

� � h(p)

!

; (1.162)

with � 1=2(p) = (1 ; 0) and � � 1=2 = (0 ; 1) and using the expressions (1.138) and (1.139) to

Fourier transform the results, allows to come back to the results for the photon wave function

	 � 


h�h(y; r) given by eqs. (1.141, 1.147) up to a normalization factor that dep ends on the

quantum numb ers of the quark antiquark pair.

Let us now make a brief remark on the role of the eikonal approximation in the factoriza-

tion of the photon wave functions following the derivation in Ref. [56] in "usual" Feynman

diagrams. Let us consider the diagram illustrated in �g. 1.15.

PSfrag replacements
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Figure 1.15: One part of the cut diagrams.

The diagram gives the contribution,

A = � e
u(h)(`1)="(� )(q)=̀a=" NS v( �h)(`2)

`2
a + i�

(1.163)

= e
y

`2 + y�yQ2
u(h)(`1)="(� )(q)=̀a=" NS v( �h)(`2) ; (1.164)
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where

`1 = yp1 +
`2

ys
p2 + `? ; `2 = �yp1 +

`2

�ys
p2 � `? ; (1.165)

q = p1 �
Q2

s
p2 ; k =

� + Q2 + k2

s
p2 + k? ; (1.166)

`a = `1 � q = � �yp1 +
`2 + yQ2

ys
p2 + `? : (1.167)

Due to the eikonal approximation in the gluonic vertex, the p olarization of the t -channel

gluon is along p2 . We can then safely change in the numerator `a ! `a + �p 2 , with � an

arbitrary numb er as

(=̀a + �=p 2)=p2 = =̀a=p2 ;

to change in the numerator `a ! ~̀
a with

~̀
a on the mass shell,

~̀
a = � �yp1 �

`2

�ys
p2 + `? = � `2 :

Then we can rewrite

=̀a !
X

~h

v(~h)(`2)�v(~h)(`2) ;

to get a factorized form of the amplitude,

A =
X

~h

y

 

e
u(h)(`1)="(� )(q)v(~h)(`2)

`2 + y�yQ2

!

�v(~h)(`2)=" NS v( �h)(`2) (1.168)

=
s

(2� )2

X

~h

~	

 �

�

h;� ~h
(y; `) � ~h;�h : (1.169)

1.3.4 Mo dels for the dip ole target interactions

Under the assumption that the b� parameter dep endence of the dip ole scattering amplitude

factorizes, we saw that the dip ole cross-section reads

�̂ (x; r ) = � 0N (x; r ) � � 0 N (Y; r) ; (1.170)

with Y the rapidity Y = ln(1 =x) . Note that the assumption that the b dep endence factor-

izes, even though used in most of dip ole mo dels, is not supp orted by the data on exclusive

di�ractive pro cesses at HERA.

The dip ole cross-section �̂ (x; r ) involves the dynamics of the gluons inside the proton.

At small � x one can exp ect saturation e�ects which app ear when the partonic density of the

nucleon b ecomes large. In the in�nite momentum frame, we can interpret saturation e�ects

as the saturation of the numb er of gluons of transverse size 1=Q in the wave function of the

nucleon target. This growth of the gluon density could b e resp onsible for a unitarity problem

(violation of the Froissart b ound by the hard QCD p omeron exchange) of the theory but

we can exp ect that at some p oint the numb er of gluons stops growing, i.e. saturates, due
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Figure 1.16: Saturation and diluted regimes.

to recombinations of the partons following the idea of Grib ov, Levin and Ryskin [57]. Two

regimes can b e then de�ned as illustrated in �g. 1.16, the diluted regime where the nucleon

is not saturated by the partons and the saturation regime where the gluon transverse areas

start to overlap. The so-called critical line b etween the two regimes is given by Q2 = Q2
s(x) ,

with Q2
s(x) the inverse transverse area where the probability to �nd more than one gluon is

of order one.

To take into account these saturation e�ects inside the proton, a �rst saturation mo del

was intro duced by Golec-Biernat and Wüstho� in 1998, where the dip ole cross-section is

parameterized by a Gaussian ansatz which saturates at a value � 0 ,

�̂ (x; r ) = � 0

�
1 � exp

�
�

r 2

4R2
0(x)

��
; (1.171)

where R0(x) is the saturation radius

R2
0(x) =

1
GeV

2

�
x
x0

� �

; (1.172)

and the saturation regime is given for

Q2 .
1

R2
0(x)

� Q2
s(x) : (1.173)

The success of this mo del was to describ e all the contemp orary HERA data [58, 59, 60, 61]

for inclusive as well as di�ractive cross-sections. The main feature of this mo del [62] is that it

provides a dip ole cross-section that gives back the p omeron tra jectory in the diluted regime

1=Q << R 0(x) ,

F2 � x � � ;
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while for dense partonic systems 1=Q >> R 0(x) the Froissart condition is recovered,

F2 � Q2� 0 ln(1=x) :

In the limit r ! 0 the dip ole cross-section vanishes like �̂ (x; r ) � r 2
, this is known as the

prop erty of "color transparency" [63, 64] due to the screening of the quark and the antiquark

colors when the r ! 0. Note that the Taylor expansion of eq. (1.145) around r = 0 shows this

b ehavior of the dip ole cross-section. To make contact with the photopro duction regime, it is

customary [65] to make the following mo di�cation in the de�nition of the Bjorken variable x

x ! x
�

1 +
4m2

f

Q2

�
=

Q2

W 2 + Q2

�
1 +

4m2
f

Q2

�
���!
Q2 ! 0

4m2
f

W 2
; (1.174)

where mf is an e�ective quark mass which dep ends on the �avor f and of the mo del used to

�t the data. The values of the b est �t parameters of the original saturation mo del are shown

in tab. 1.1. Note that the inclusion of the charm contribution, with mc = 1:5 GeV has also

b een p erformed in Ref. [65]. In �g. 1.17 are compared the �ts with and without mass mf to

HERA data.

Fits � 0 (mb) � x0

No charm 23.03 0.288 3:04� 10� 4

With charm 29.12 0.277 0:41� 10� 4

Table 1.1: Values of the parameters entering the GBW dip ole cross-section.

Another imp ortant feature of the saturation mo del which is well repro duced by the data

is the geometric scaling [66]. The geometric scaling can b e seen as a consequence of the

scaling of the dip ole cross-section in the variable r̂ = r=R0(x) . As wave functions scale in

rQ = r̂QR 0(x) , one can show that after integration over r̂ , the cross-section do es not dep end

on Q2
and x but on a single scaling variable � = Q2R2

0(x) . In �g. 1.18 the data for � 
 � p
tot

versus � , are all lying on the same line, showing clearly that the variables Q2
and x are

not indep endent variables. It was shown that the geometric scaling still holds in the diluted

regime in the region governed by the BFKL equation up to Q2 � Q4
s=� 2

QCD [67].

With the increasing precision of data [68, 69, 70], the original saturation mo del failed to

describ e the new set of data, as it has b een checked in Ref. [71] but it inspired many studies

[72, 71, 73, 74, 75, 76, 77]. A way to improve the large Q2
b ehavior of the old GBW mo del,

is inspired from the connection at large Q2
b etween the gluon density g(x; � 2) and the dip ole

cross-section [78],

�̂ (x; r ) =
� 2

3
r 2� s xg(x; C=r2) ; (1.175)

with xg(x; � 2) driven by the DGLAP evolution. The mo del prop osed in Ref. [71] by Bartels,

Golec-Biernat and Kowalski for the dip ole cross-section is,

�̂ (x; r ) = � 0

�
1 � exp

�
�

� 2r 2� s(� 2
g)xg(x; � 2

g)

3� 0

��
; (1.176)
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Figure 1.17: The saturation mo del compared to H1 and ZEUS data, [62]. The solid and

dotted lines are resp ectively the results with mf = 140 MeV and mf = 0 .

where the scale � 2
g = C

r 2 + � 2
0 . The gluon density g(x; � 2

g) evolves with the LO-DGLAP

equation, neglecting the quark distributions as we are in the low x regime, and ob eys the

initial condition at Q2
0 = 1 GeV

2

xg(x; Q2
0) = Agx � � g (1 � x)5:6 : (1.177)

Two sets of the parameters f mf ; Ag; � g; C; � 2
0g were found to give a go o d description of the

DIS data as shown in the table 1.2.

Fits mf (GeV) Ag � 0 (mb) � g C � 2
0 (GeV

2
) � 2=Ndf

1 0.14 1.20 23.0 0.28 0.26 0.52 1.17

2 0 13.71 23.8 -0.41 11.10 1.00 0.97

Table 1.2: Values of the parameters entering the BGBK dip ole cross-section.

The extension of this mo del with b� parameter dep endence "b-sat" mo del [74, 76], for

non-forward scattering amplitudes, reads

N (x; r; b) = 1 � exp(�
� 2

2Nc
r 2� s(� 2

g)xg(x; � 2)T(b)) ; (1.178)

where the proton shap e in the transverse plane T(b) is assumed to have a Gaussian shap e.

This mo del assumes that multiple dip oles scatter indep endently and the mo dels based on this
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Figure 1.18: Exhibition of the geometric scaling by HERA data [66].

assumption, using the kind of parameterization of the dip ole cross-section as in eq. (1.178),

are referred as Glaub er-Mueller mo dels. Exclusive pro cesses in the high energy limit o�er a

go o d opp ortunity to prob e the gluon density shap e T(b) in the hadrons. The results obtained

with a Gaussian shap e from the electropro duction of vector mesons at HERA, give the valueq
hbi 2 = 0:56 fm which is slightly smaller than the proton radius charge 0:87 fm.

The saturation scale Qs at the energies of HERA collider is of the order Qs(x) � 1 GeV

which allows a p erturbative treatment of the evolution equations of the dip ole scattering

amplitude. In the diluted regime, the scattering amplitude is driven by the BFKL equation

in the regime Q2
s < Q 2 < Q 4

s=� 2
QCD [67]. In the saturation regime, the recombinations of

gluons are resp onsible for non-linear terms in the evolution equations that describ e the small- x

evolution of the hadronic wave function. In the color glass condensate (CGC) formalism, the

JIMWLK equation, based on the study of renormalization (a la Wilson) group equation for

Wilson line correlators gives the gluon density evolution in dense partonic regime accounting

for saturation e�ects. The JIMWLK equation is equivalent in principle to an in�nite set of
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coupled equations on correlators of Wilson lines known as the Balitsky hierarchy. This is

due to the fact that one needs to average over the target con�gurations during the collisions,

leading then to coupled equations b etween di�erent Wilson line correlators. In the large

Nc� limit, this set of in�nite coupled equations involves only dip ole op erators T and under

the assumption that hT Ti � h Ti 2
, the evolution equation on hTi is given by the BK equation

on N � T the forward dip ole scattering amplitude which reads at LO in the impact parameter

space,

@N (Y; r12)
@Y

=
� sNc

2� 2

Z
d2r0?

r 2
12

r 2
10r

2
02

(1.179)

� (N (Y; r01) + N (Y; r02) � N (Y; r12) � N (Y; r01)N (Y; r02)) ;

with r ij = jr i ? � r j ? j . In the CGC formalism, it was shown [79] that in the weakly coupled

regime ( N (Y; r) � 1), one gets back the BFKL equation,

@N (Y; r12)
@Y

=
� sNc

2� 2

Z
d2r0?

r 2
12

r 2
10r

2
02

(N (Y; r01) + N (Y; r02) � N (Y; r12)) ; (1.180)

which is the linearized version of the BK-equation where the quadratic term

N (Y; r01)N (Y; r02) is neglected as the partonic density is small. Note that the BFKL equation

leads to unb ound solutions related to the gluon density and resp onsible for the violation of

the unitarity while the BK equation leads to b ound solutions.

A parameterization for the dip ole scattering amplitude known as the CGC mo del [73]

comes from an approximation of the solution to the LO-BFKL equation in the vicinity of the

saturation regime. The LO-BFKL solution using the Mellin moments representation of the

dip ole scattering amplitude reads

N (Y; r) =
Z

C

d

2i�

�
r 2Q2

0

� 

eh(Y )� (
 ) ~N0(
 ) =

Z

C

d

2i�

exp(h(Y)� (
 ) � 
� ) ~N0(
 ) ; (1.181)

where

h(Y) =
� s(Qs(Y))Nc

�
Y ; � = ln(1 =r2Q2

0) ;

� (
 ) = 2  (1) �  (
 ) �  (1 � 
 ); with  (
 ) =
d ln �( 
 )

d

;

with � the Euler function. The integral over 
 is evaluated by using the saddle p oint approx-

imation expanding to the second order around the saturation saddle p oint 
 0(Y) = �=h (Y) .

This leads to a solution of the form,

N (Y; r) � N 0 exp
�

� 
 s(� � � s) �
R s

2� 00(
 s)� s
(� � � s)2

�
(1.182)

where � s(Y) = ln( Q2
s(Y)=Q2

0) and R s = � s(Y )=h(Y) . One �nds back the geometric scaling

when the �rst term " 
 s(� � � s) " dominates for � � � s . The second term which is analogous

to a di�usion term violates the geometric scaling.
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Note that an analogy exists b etween the BK equation and the equation in reaction-

di�usion pro cesses in statistical physics governed by the equation of Fisher, Kolmogorov,

Petrov and Piscounov (FKPP),

@tN = @2
z N + N � N 2 : (1.183)

This analogy found by Munier and Peschanski [80, 81, 82, 83] by rescaling the BK equation

[84] for the quantity

N (Y; k) =
Z

d2r?

2�r 2
?

N (Y; r? )eik ? �r ? ;

was used in order to get information on the universal prop erties of the BK solutions which

are related to traveling wave solutions.

The CGC mo del assumes that the approximated solution is of order N (Y; r) = N0 � 1

when r = 1=Qs , in order to take into account the vicinity with the saturation regime. The

solution in the forward limit prop osed by Iancu, Itakura and Munier in Ref. [73] is,

N (x; r ) = N0

�
rQ s

2

� (2(
 s + ln(2 =rQ s )
9:9� ln(1 =x ) ))

if rQ s � 2 ;

= 1 � exp(� a ln2(brQs)) if rQ s � 2 : (1.184)

where 
 s is the saddle p oint in the vicinity of the saturation regime. The solution for rQ s � 2

corresp onds to the functional form of solutions exp ected from BK- equation and the a and b

are determined in order that there is no discontinuity of N (x; r ) and its derivative. This mo del

was extended to include the impact parameter b dep endence in order to describ e the exclusive

di�ractive pro cesses at HERA. The �rst extension by Marquet, Peschanski and Soyez [85],

includes the b dep endence through the saturation scale, Q2
s(Y;� ) = Q2

0(1 + c� 2)e�Y
, and

a multiplicative non-p erturbative form factor f (� ) = e� B � 2
, with t = � � 2

. A second

approach called the "b-CGC" mo del in Ref. [76] by Kowalski, Motyka and Watt, consists

only in replacing

Qs(x; b) = Qs(x)
�

e� b2

2B CGC

� 1
2
 s

:

Recently, the dip ole scattering amplitude has b een worked out by numerical resolution of

the BK equation with running coupling correction, the rcBK equation [86, 87], taking di�erent

initial conditions close to the GBW saturation mo del and to the McLerran-Venugopalan (MV)

mo del [88]. We will denote these numerical solutions for the dip ole scattering amplitudes

as the Albacete-Armesto-Milhano-Quiroga-Salgado (AAMQS)-mo del. Indeed the solution of

LO-BK do es not work so well as it predicts a growth of the saturation scale way to fast when

rapidity is increasing [67, 89]. It was shown [90, 91] that the main correction that allows to

solve the discrepancy b etween the predictions and the data is the running coupling correction

of the kernel of the BK- equation.
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The rcBK equation reads

@N (Y; r12)
@Y

= (1.185)

Z
d2r0?

Nc� s(r 2
12)

2� 2

�
r 2

12

r 2
01r

2
02

+
1

r 2
01

�
� s(r 2

01)
� s(r 2

02)
� 1

�
+

1
r 2

02

�
� s(r 2

02)
� s(r 2

01)
� 1

��

� fN (Y; r01) + N (Y; r02) � N (Y; r12) � N (Y; r01)N (Y; r02)g :

The coupling constant in the evolution kernel of the rcBK equation (1.185) dep ends on the

numb er of active quark �avors nf ,

� s;n f (r 2) =
4�

� 0;n f ln
�

4C2

r 2 � 2
n f

� ; (1.186)

where � 0;n f = 11 � 2
3nf , � n f is the QCD scale and C is one of the free parameters of the

mo del. The scales � n f are determined by the matching condition � s;n f � 1(r 2
?) = � s;n f (r 2

?) at

r 2
? = 4C2=m2

f and an exp erimental value of � s . The coupling constant is frozen to a value

� f r � 1 that it cannot exceed to avoid infra-red divergences.

The initial conditions are inspired by the GBW mo del N GBW (Y0; r ) and the MV mo del

N MV (Y0; r ) reads

N GBW (Y0; r ) = � GBW
0

�
1 � exp

�
�

�
r 2Q2

s 0

4

� 
 ��
; (1.187)

N MV (Y0; r ) = � MV
0

�
1 � exp

�
�

�
r 2Q2

s 0

4

� 


ln
�

r
� 3

+ e
���

; (1.188)

with Y0 the rapidity that corresp onds to x0 = 0:01, Qs 0 the initial saturation scale at x = x0

and 
 the anomalous dimension. The free parameters involved in the AAMQS mo del are

�tted on the structure function F2(x; Q2) and the x� dep endence is completely driven by the

rcBK equation.

The solutions for the dip ole cross-sections are given with and without the heavy quarks

charm and b eauty contributions. For further use in chap. 3 we denote the solutions as follows,

� AAMQS set (a), with the initial condition given by (1.187) a la GBW, with the con-

tribution of light quarks ( u; d; s) only,

� AAMQS set (e), with the initial condition given by (1.188) a la MV, with the contri-

bution of light quarks ( u; d; s) only,

� AAMQS set (b), with the initial condition given by (1.187) a la GBW, with the con-

tribution of light and heavy quarks ( u; d; s; c; b),

� AAMQS set (f ), with the initial condition given by (1.188) a la MV, with the contri-

bution of light and heavy quarks ( u; d; s; c; b).
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Figure 1.19: Comparison of the results for the reduced cross-section � r with the data, �gure

from ref. [87]. In (a) the results are obtained with the GBW initial condition and only the

contribution of light quarks. In (b), the contribution of heavy quarks charm and b eauty is

included.

It turns out that the results are very weakly dep endent on the choice of the initial conditions

and one can restrict its choice to the sets (a) and (b). The p olarized cross-sections read

� 
 � p
L;T ; set(a)

= � 0

X

f=u,d,s

Z
d2r

Z
dy

�
�
� 	


 �
L;T

f (y; r; Q; mf ; ef )
�
�
�
2

N l. (x; r ) ; (1.189)

� 
 � p
L;T; set(b)

= � l:
0

X

f=u,d,s

Z
d2r

Z
dy

�
�
� 	


 �
L;T

f (y; r ; Q; mf ; ef )
�
�
�
2

N l. (x; r )

+ � h:
0

X

f=c,b

Z
d2r

Z
dy

�
�
� 	


 �
L;T

f (y; r; Q; mf ; ef )
�
�
�
2

N h. (x; r ) : (1.190)

where � l:
0 N l. (x; r ) and � h:

0 N h. (x; r ) are resp ectively the dip ole cross-section contributions of

light and heavy quarks.

We present in tabs. 1.3 and 1.4 values of the parameters of the �ts obtained in ref. [87].

Fits Q2
s0 � 0 (mb) 
 C � 2=Ndf

(a) 0.241 32.357 0.971 2.46 1.226

(e) 0.165 32.895 1.135 2.52 1.171

Table 1.3: Values of the parameters entering the AAMQS sets (a) and (e) dip ole cross-

sections.

Another kind of dip ole cross-sections mo dels [92, 93] exist based on the Regge theory,

where the universal tra jectories of hard and soft p omerons are �tted from HERA data. The

hard p omeron exchange is involved for small dip ole size r < r 0 and the soft p omeron exchange

for large dip ole size r > r 1 . The so-called FS04 mo del parameterizes the dip ole cross-section
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Fits Q2
s0 Q(c;b) 2

s0 � l :
0 (mb) � h:

0 (mb) 
 
 (c;b) C � 2=Ndf

(b) 0.2386 0.2329 35.465 18.430 1.263 0.883 3.902 1.231

(f ) 0.1687 0.1417 35.449 19.066 1.369 1.035 4.079 1.244

Table 1.4: Values of the parameters entering the AAMQS sets (b) and (f ) dip ole cross-

sections.

as,

�̂ (x; r ) = AH r 2 x � � H
if r < r 0 (1.191)

= AS x � � S
if r > r 1 ; (1.192)

combining the color transparency b ehavior for small r with the soft p omeron exchange b ehav-

ior at large r . A linear interp olation is p erformed in the region of intermediate r ( r0 < r < r 1 ).

An improved version of the FS04 Regge mo del was prop osed to include saturation e�ects by

allowing the parameter r0 to vary in order that the dip ole cross-section satis�es the condition,

� (x; r 0)=� (x; r 1) = f ; (1.193)

where the parameter f is �tted.

A general remark ab out the amplitudes of the exclusive di�ractive pro cesses computed

within the dip ole mo del approach, is that two kinds of corrections can b e taken into account

in these treatments. The �rst one is a correction due to the non-zero skewness involved in

the pro cess. At small x , the skewness � is of the order � � x
2 and it was shown that the e�ect

of the skewness result in a multiplicative factor Rg in front of the gluon density [94],

Rg(� ) =
22� +3

p
�

�( � + 5=2)
�( � + 4)

; with � �
@ln xg(x; � 2)

@ln(1=x)
: (1.194)

The second one is that in the high energy limit, the imaginary part of the amplitude dominates

the real part but one can evaluate the real part by using disp ersion techniques. The ratio of

the real and imaginary parts of the amplitude A reads

� = ReA=I m A = tan( ��= 2) ; with � �
@ln A

@ln(1=x)
:
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Chapter 2

Light-Cone Collinear Factorization

applied to the � � meson pro duction

2.1 Intro duction

2.1.1 Di�ractive exclusive vector electropro duction

In the chap. 1 we have intro duced the kT � factorization scheme that holds in the high energy

limit s � j tj . In this context, we intro duced the concept of hard p omeron exchange in

hadronic pro cesses and we presented color dip ole mo dels that include the idea of partonic

density saturation that could restore the unitarity of the theory.

PSfrag replacements

p p0

e�
, k e�

, k0

� , p�

W 2

� Q2

t

Figure 2.1: The di�ractive electropro duction of the � � meson and Lorentz invariant kinematic

variables.

The two forthcoming chapters are devoted to the study of helicity amplitudes of the

di�ractive leptopro duction of the � � meson in the high energy limit illustrated in �g. 2.1,


 � (q; � 
 )p(pp) ! � (p� ; � � )p(p0
p) ;

with � 
 and � � the p olarizations of the virtual photon and the � � meson.

51
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The di�ractive vector meson pro duction (DVMP) at HERA as well as the deeply virtual

Compton scattering (DVCS) are excellent pro cesses to prob e the hadronic content in pQCD

regime. Contrary to inclusive pro cesses, exclusive pro cesses allows to get information on

additional degrees of freedom such as the skewness dep endence or the transverse distributions

of gluons at small � x inside the nucleon target.

A pro of of the factorization theorem for the electropro duction of vector mesons was given

by Collins, Frankfurt and Strikman in [95]. This theorem states that the leading twist

amplitude is given by,

A =
X

i;j

�
f i=p 
 H ij 
 � V

j

�
�

+ p ower suppressed terms : (2.1)

where the three main amplitude pieces are, f i=p the distribution function of the parton i

inside the hadron p (transversity distribution if transversely p olarized vector meson), H ij

the hard scattering amplitude and � V
j the light cone wave function of the vector meson.

The parameter � is the renormalization-factorization scale which should b e chosen of the

order of the virtuality Q of the photon in order to compute the co e�cient function H ij using

p erturbative theory at a �nite order of the expansion. It was also shown by p ower counting

argument that the pro duction from a transversely p olarized virtual photon is suppressed by

1=Q compared to the pro duction from a longitudinal photon.

The DVMP has b een the sub ject of many exp eriments. The pioneering exp eriments on

small � x di�ractive muo-pro duction of vector mesons were analyzed on deuterium, calcium

and carb on targets down to x � 5:10� 3
by the NMC collab oration [96] and on proton target

down to x � 2:10� 4
by the E665 collab oration [97], for a wide range of virtualities. The HERA

collab orations ZEUS and H1 have provided very precise data with resp ectively integrated

luminosity of 120 pb

� 1
and 51 pb

� 1
on the spin density matrix elements of the di�ractive � 0

and � mesons pro duction in a small � x , for a wide range of energies W in the center of mass


 � p and photon virtualities Q. The recent analysis provided by ZEUS in 2007 [98] and by H1

in 2009 [99] are a motivating exp erimental background to investigate the helicity amplitudes

of the vector meson pro duction at small � x . These analysis sup ersede the former analysis

already p erformed by these collab orations in late 90's [100, 101, 102]. The data of H1 and

ZEUS are precious to access such imp ortant universal quantities as the p omeron tra jectory,

through the energy dep endence and the t� dep endence of the di�erential cross-section. One

usually uses ansatz for the vector meson wave functions based on the dip ole con�guration

inside the vector meson constituted by the valence quarks. The data allows to investigate

the factorization pro cedure as well as the content of the � � meson wave function.

The DVMP was also analyzed by HERMES [103, 104, 105], JLab [106] and COMPASS

[107] in other kinematic range of lower energies in the center of mass, i.e. higher x , essential

to understand the pQCD approaches based on collinear factorization and GPDs.

There are many mo dels derived from mostly three theoretical approaches (we will not

make here a review of all the mo dels). Two of the approaches are equivalent approaches, the

kT � factorization approach and the color dip ole approach, the third is the collinear factoriza-

tion approach. As we saw in the chap. 1, kT -factorization allows to regroup the particles into
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sub-pro cesses involving the incoming and outgoing particles of approximately same rapidities

leading to two impact factors exchanging reggeized gluons which resum the gluons exchanged

in t� channel. In the case of the DVMP the helicity amplitudes as illustrated in �g. 2.2 read,

T� V � 
 / is
Z

d2k?

k4
?

�

 �

� 
 ! V� V F (x; k? ) ; (2.2)

with F (x; k? ) the unintegrated gluon density.
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Figure 2.2: kT � factorization of the DVMP.

The energy dep endence of the pro cess is then given by the BFKL evolution for the unin-

tegrated gluons density known at LLx [34, 35, 36, 37] and NLLx [108, 109, 110, 111].

This approach needs a mo del for the proton impact factor at Born order or a mo del for

the unintegrated gluon density of the nucleon target. It is the approach we will use in the

second part of this chapter to get a mo del for the helicity amplitude T� � � 
 . Let us describ e

some of the applications of this approach.

Martin, Ryskin and Teubner (MRT) [112] have p ointed out that the di�ractive � � meson

pro duction data from HERA indicates that it should b e treated within pQCD. They prop osed

a mo del based on the parton-hadron duality, to express the � � meson pro duction cross-section

as

� 
 � p! �p � 0:9
X

q= u;d

Z
dM 2 d� 
 � p! (q�q)p

dM 2
; (2.3)

with M 2
the invariant mass of the q�q system. Using kT � factorization approach and a gluon

density ansatz xg(x; Q2) � x � � (Q2)

, with 
 the e�ective anomalous dimension of the gluon

density, leads to the ratio of p olarized cross-sections

� L

� T
=

Q2

M 2

�




 + 1

� 2

: (2.4)

More recent mo dels based on the kT -factorization and mo del of gluon density exist, e.g. the

mo del from Ivanov, Nikolaev and Savin [113], which allows predictions for all spin density

matrix elements for the electropro duction of � � meson.



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE

� � MESON PRODUCTION 54

PSfrag replacements


 � V = � 0; �; � � �

PP

N (x; r ; b)

r

Figure 2.3: DVMP within the color dip ole picture.

The color dip ole approach of DVMP illustrated in �g. 2.3, is equivalent to the kT � factorization

scheme but in impact parameter space where the convolution of the wave functions of the

initial pro jectile and �nal state can b e factorized even at low Q2
, from the dip ole target

scattering amplitude. Like in the kT � factorization scheme the dip ole target cross-section

has to b e mo deled and contains the x� dep endence of the pro cess. This x� dep endence is

linked to the b ehavior the gluon density xg(x; Q2) � x � �
. The amplitude takes the form

T� � � 
 =
Z 1

0
dy

Z
d2r

�
	 � �

� �
	 


� 


�
(y; r) A (q�q)p! (q�q)p0(x; r ) ; (2.5)

where y and r are resp ectively the fraction of longitudinal momentum and the transverse

size of the dip ole. In the previous chapter we have already mentioned some of the mo dels

that exist for the dip ole cross-section. Note that another typ e of approach exists based

on the generalized vector dominance to get the DVMP amplitudes, see e.g. [114] where

predictions are made for the ratios of helicity amplitudes. The � � meson wave functions are

unknown but many mo dels have b een prop osed. Some of them assume the factorization of the

transverse degrees of freedom from the longitudinal ones. For example the mo del of Dosch,

Gousset, Kulzinger and Pirner (DGKP) mo del [115], where the transverse size dep endence

is assumed to b e indep endent from y and to have a Gaussian shap e. Other mo dels, for

example the Nemchik, Nikolaev, Predazzi and Zakharov (NNPZ) mo del [116, 117, 113] or

mo dels prop osed by Forshaw, Sandap en and Shaw [118, 119, 120], assume a dynamics of the

constituent quark antiquark pair that is in agreement with the size of the meson suggested by

sp ectroscopic mo dels in the rest frame of the meson.The light-cone meson wave functions are

then obtained by applying a "relativization pro cedure" which allows to get their expressions

in the in�nite momentum frame. In general the dynamics of the q�q pair assumed in the rest

frame is given by an harmonic oscillator p otential for the large distance dynamics and the

short distance dynamics is driven by a Coulombic p otential term.

Another approach close to the MRT mo del, based on the kT � factorization scheme in the

impact parameter space, is followed in ref. [121] by Ivanov and Kirschner to factorize the

wave functions of the virtual photon and the vector meson. The vector meson wave function

and the dip ole scattering amplitude are then expanded around small dip ole size and the

end-p oint divergences when y ! f 0; 1g are regularized by the scale dep endence of the gluon
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density. This mo del allows to get predictions for the full set of helicity amplitudes.

PSfrag replacements

GPD


 �
V = � 0

, � , � � �

p

p'

SVH

xp2 x0p2

Figure 2.4: Leading hand bag diagrams in the collinear factorization approach.

The collinear factorization approach initiated in [122, 123] by Bro dsky, Frankfurt, Gunion,

Ko epf, Mueller and Strikman, based on the collinear factorization scheme eq. (2.1) [95, 124]

where the amplitude is factorized as illustrated in �g. 2.4 into GPDs, distributions amplitudes

(DAs) of the � � meson and a hard pro cess calculable using pQCD.

The longitudinally p olarized amplitude reads

T00 /
Z

dy
Z

dxf i (x; x0)H ij (y; x; x0)	 V
j (y) ; (2.6)

with y the usual fraction of photon longitudinal momentum carried by one of the quark,

f i (x; x0) represents GPDs, which are the probability to �nd the parton i inside the proton

that carries x fraction of its longitudinal momentum and comes back inside the proton with

the fraction x0
. GPDs are a generalization of PDF to the non-forward limit x 6= x0

allowing

to take into account skewness e�ects. H ij is the hard sub-pro cess where the parton i gives

a parton j that hadronizes into the meson with integrated wave function 	 V
j . The collinear

factorization scheme have b een improved to remove end-p oint singularities that app ear for

the transversely p olarized cross-section using Sudakov factors [125], which allows to overcome

end-p oint singularity problems, and has b een applied to � -electropro duction through the

VGG mo del [126] and the Kroll and Goloskokov mo del [127, 128, 129]. In practice the

end-p oint singularities are regularized by keeping the transverse momenta of the q�q pair that

forms the vector meson and by assuming that they are distributed by a Gaussian distribution

that prevents large dip ole size con�gurations. Note that this approach is valid not only in

the large energy limit but also for W � Q. The GPDs are not known and have to b e mo deled

starting from the PDFs forms and implementing the skewness and t� dep endencies.

2.1.2 The underlying ideas of our approach

In the approach presented b elow, we use at a �rst level the kT � factorization to factorize the


 � (� 
 ) ! � (� � ) impact factor in the amplitude. Using the fact that the virtuality of the

photon is large, we can apply the collinear factorization scheme to factorize the soft part

asso ciated to the � � meson pro duction from the partons pro duced in the hard part. Note

that the notion of twist here is de�ned as the twist of the op erators involved in the (q�q) ! �

and (q�qg) ! � meson pro duction and not in the sense of the twist of the op erators of the
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 � p ! �p amplitude. This approach was p erformed a long time ago by Ginzburg, Pan�l and

Serb o [130] up to twist 2 for the 
 �
L ! � L and 
 �

T ! � L transitions and was recently derived

by Anikin, Ivanov, Pire, Szymanowski and Wallon [131] for the 
 �
T ! � T transition up to

twist 3 in the forward limit. The presence of the k? of the t� channel gluons, regularizes the

end-p oint divergences as it gives a �nite size of the order r � 1=k? to the q�q pair. The quark

and the antiquark, after the interaction with the t� channel gluons, are �ying collinearly and

hadronize into a � � meson. A little deviation from the collinear direction aligned on the

� � meson momentum will give higher twist corrections and we will present how to take into

account these higher twist corrections up to twist 3.

The chapter can b e divided in two parts. The �rst part is the description of the so-called

light-cone collinear factorization (LCCF) pro cedure [132, 133, 134], inspired from the initial

Ellis�Furmanski�Petronzio (EFP) factorization [135, 136, 137, 138, 139, 140], generalized for

exclusive pro cesses. This factorization scheme uses the Taylor expansion of the hard part

around the dominant light-cone direction in the light cone gauge to get the higher twist

contributions. We will present the LCCF on the calculation of the impact factors 
 � ! � ,

following the approach of Ref. [131]. This approach b eing gauge invariant, a connection b e-

tween the LCCF results and the results obtained within another approach called the covariant

collinear factorization (CCF) approach can b e established. The relations b etween the CCF

DAs and the LCCF DAs were derived in [131]. A mo del develop ed by Ball, Braun, Koike

and Tanaka in [141, 142], based on the conformal symmetry of the non-lo cal correlators in

the CCF approach, is then used to get a mo del for the LCCF DAs.

In the second part of the chapter we will present a mo del [18] using an impact factor

mo del [143] for the proton, based on the results of the �rst part. At the end we compare the

predictions to HERA data.

2.2 Light-cone collinear factorization up to twist 3 accu-

racy

2.2.1 Soft parts and hard parts

We consider the S� matrix element of the leptopro duction of the � � meson involving a hard

part where a highly virtual photon disso ciates into the constituent partons involved in the

� � meson �nal state wave function and a soft part which describ es the hadronization of these

partons into the � � meson. Up to twist 3, one needs to consider the two ( q�q) and three ( q�qg)

parton intermediate Fo ck states and we will denote resp ectively A q�q and A q�qg the asso ciated

amplitudes. The partons interact at Born order with two t� channel gluons with non-sense

p olarizations as illustrated in �g. 2.5.

The main idea is to separate the pro cess into the hard sub-pro cess involving the small

distance physics that can b e treated in the pQCD approach and the soft sub-pro cess involving

the long distance interactions b etween the partons in the hadronic state. The hard sub-
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Figure 2.5: 2- and 3-parton correlators attached to a hard scattering amplitude in the sp eci�c

case of the 
 � ! � impact factor, where vertical lines are hard t� channel gluons in the color

singlet state.

pro cess corresp onds to the Feynman diagrams where the partons are propagating the hard

scale which is the virtuality of the photon Q, this hard part is then related to the photon

vertex. The soft part of the pro cess cannot b e describ ed in terms of free �eld op erators due

to the interactions with other partons in the non-p erturbative regime, and one ends up with

soft parts expressed in terms of interacting �elds in the Heisenb erg picture op erators. In

order to get gauge invariant op erators in the soft parts, one needs also to include the gluonic

radiations into the �nal state due to the motion of the partons, which in practice results in

the presence of Wilson lines linking the co ordinates of the partonic �elds.

The amplitudes read

iA q�q =
Z

d4`1

(2� )4
Tr (Hq�q(`) Sq�q(`)) ; (2.7)

iA q�qg =
Z

d4`1

(2� )4

d4`g

(2� )4
Tr

�
H �

q�qg(`1; `g) Sq�qg � (`1; `g)
�

; (2.8)

where we explicitly put the integral over `1 and `g , the momenta of the quark and the gluon

involved in the lo ops. The hard parts of these pro cesses are denoted with Hq�q and H �
q�qg and

the soft parts by Sq�q and Sq�qg � . The traces are over spinor and color indices of the hard and

soft parts. More explicitly the soft parts are given by the Fourier transforms of the non-lo cal

correlators of the partonic �elds

1

b etween the vacuum and the � � meson states

S(`) =
Z

d4z


� (p� )

�
� (0)[0; z] � (z)

�
� 0

�
� 2

F
e� i` �z ; (2.9)

S� (`1; `g) =
Z

d4z1 d4zg e� i` g �zg � i` 1 �z1

�


� (p� )

�
� (0)[0; zg]gAT

� (zg)[zg; z1] � (z1)
�
� 0

�
� 2

F
; (2.10)

where the brackets are Wilson lines de�ned by the path-ordered pro duct

[z1; z2] � P exp
�

ig
Z 1

0
dt (z1 � z2)� A � (t z1 + (1 � t) z2)

�
:

In the following parts we will omit to write Wilson lines in the correlators, we will see that

they reduce to a factor one in a sp eci�c axial gauge in which we will cho ose to work. The

1

The �avor of the q�q pairs involved in the � 0� meson wave function

�
� � 0

�
= 1p

2
(j �uui �

�
� �dd

�
) , is restored

by considering a �avorless q�q pair of electric charge

ep
2

. The �elds

� and  here are then asso ciated to a

�avorless q�q pair with an electric charge

ep
2

.
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scale � F is the factorization scale under which the internal momenta of the partons inside

the hadron are integrated over. This scale allows to separate the large distance physics inside

the hadron from the small distance physics.

The hard sub-pro cess is describ ed by Feynman diagrams shown in �g. 2.7 for the q�q

intermediate state amplitude, and in �gs. 2.8, 2.9 and 2.10, for resp ectively the "ab elian",

the "non-ab elian with one triple gluon vertex" and the "non-ab elian with two triple gluons

vertices" diagrams for the q�qg intermediate state amplitude. Let us emphasize the fact that

in all these diagrams the external partonic legs are amputated.

Let us illustrate how one can decomp ose the amplitude into in one hand the Fourier

transform of a space co ordinate correlator and on the other hand the usual momentum space

representation amplitude given by Feynman diagrams. We cho ose a very simple example;

the amplitude of a photon decaying into a q�q pair, as shown in �g. 2.6.
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Figure 2.6: 
 ! q�q, decomp osition in two pieces of the amplitude.

The amplitude can b e written as follows,

iA = h̀ 1; s; `2; r j � ie
Z

d4z � (z) =A(z) (z) jq; � i

= " � (q; � ) h̀ 1; s; `2; r j � ie
Z

d4z � s(z)
 �
sr  r (z) j0i

= ( � ie="(q; � )) rs

Z
d4z h̀ 1; s; `2; r j � s(z) r (z) j0i : (2.11)

In the last line we see that the amplitude reads as the trace of a hard part (� ie="(q; � )) rs

amputated of the external q�q external legs, multiplied by the lo cal correlator

Z
d4z h̀ 1; s; `2; r j � s(z) r (z) j0i :

In this simple example, the correlator is lo cal as it involves only one vertex and it reduces

to �us(`1)vr (`2) as the �nal state is a q�q state contrary to our case where the �nal state is a

hadronic state with complicated interactions b etween the external �elds. The eqs. (2.7) and

(2.8) are obtained in the same way, the �nal correlators cannot b e calculated within pQCD

and have to b e parameterized as we will see later after applying the light-cone collinear

factorization pro cedure which allows to fully separate the hard parts from the soft parts which

are still linked by color, spinor indices and the 4-momentum integrals over the intermediate

parton momenta.
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2.2.2 Factorization of the spinor indices

Let us intro duce very helpful identities called Fierz identity in the spinor space, which is a

decomp osition on the basis of the sixteen Dirac matrices

2

� S � �
V � ��

T � �
A � P

I 
 � � �� = i
2[
 � ; 
 � ] 
 5
 � i 
 5

We denote the inverse of the Dirac matrix

� � � (� � )� 1 : (2.12)

The inverse matrix are explicitly given by

(
 � )� 1 = 
 � � � V � ; (� �� )� 1 = � �� � � T �� ;

(
 5
 � )� 1 = 
 � 
 5 � � A� ; (i
 5)� 1 = � i
 5 � � � 1
P :

(2.13)

The Fierz identity in spinor space reads

� b�b � a�a =
1
4

� � �b�a � �
ab : (2.14)

Any matrix of the spinor space can b e decomp osed as

X = x � � � =
1
4

� � Tr ( X � � ) =
1
4

� � Tr ( X � � ) ; (2.15)

2

The convention taken is 
 5 = i 
 0 
 1 
 2 
 3:
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Figure 2.8: The 12 �Ab elian� (i.e. without triple gluon vertex) typ e contributions from the

hard scattering amplitude attached to the 3-parton correlators for the 
 � ! � impact factor.

based on the identity,

Tr � � � � = 4� �
� : (2.16)

The Fierz identity can b e illustrated as in �g. 2.11. We use this identity to factorize the
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hard scattering amplitude attached to the 3-parton correlators, for the 
 � ! � impact factor.

spinor indices of the hard and soft parts,

Tr (H S) = H ij Sij = H rs � ir � js Sij =
1
4

X

�

H rs Sij � �
rs � � ij

=
1
4

X

�

Tr (H � � ) (S� � ) : (2.17)
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Figure 2.11: Fierz identity in spinor space.

In our case, a minus sign comes from the Wick theorem, one has to commute the spinor

�elds,

�h  r
� si =

1
4

h� 
 �  i 
 �
rs +

1
4

h� 
 5
 �  i (
 � 
 5)rs + � � � (2.18)

where we have put explicitly the spinor indices r and s of the fermionic �elds.

Note that the spinor indices factorization only involves the fermionic �elds, and conse-

quently the Fierz decomp osition go es the same way for the q�q and the q�qg intermediate

states.

2.2.3 Factorization of the color indices

The Fierz identity can b e also derived in color space. Assuming the normalization of the

generators t

Tr ( ta tb) =
1
2

� ab ; (2.19)

one can show the Fierz identity for the generators of SU(Nc) ,

ta
ij ta

k` =
1
2

�
� i` � jk �

1
Nc

� ij � k`

�
; (2.20)

which graphically reads

PSfrag replacements

i

j k

`

=
1
2

0

@

PSfrag replacements

i

j k

`

�
1

Nc

PSfrag replacements

i

j k

` 1

A : (2.21)

In the case of the q�q exchange, we can use this identity as

PSfrag replacements

i

j k

`

= 2

PSfrag replacements

i

j k

`

+
1

Nc

PSfrag replacements

i

j k

`

; (2.22)

with i , j are the hard part indices and k , l are soft part indices. Then we see that the �rst

term of the r.h.s. will give zero once pro jected on a color singlet state b ecause of the gluon

coupling to the fermionic �elds involved in the soft part. Hence the trace over the color

indices of the hard and soft part can b e written as

Tr (Hq�q Sq�q) =
1

Nc
Tr (Hq�q) Tr (Sq�q) :

The normalization of the q�qg singlet state in color space is 2=(N 2
c � 1) leading to the factorized

expression

Tr (Hq�qg Sq�qg) =
2

N 2
c � 1

Tr (Hq�qg) Tr (Sq�qg) ;

for the q�qg amplitude.
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2.2.4 Factorization in the momentum space around the light cone

direction p

The amplitude iA q�q after factorization of the spinor and color indices

3

reads

iA q�q = �
1
4

X

f � g

Z
d4`

(2� )4
Tr (Hq�q(`)� � ) S� �

q�q (`) ; (2.23)

iA q�qg = �
1
4

X

f � g

Z
d4`1

(2� )4

Z
d4`g

(2� )4
Tr

�
H �

q�qg(`1; `g)� �
�

S� �
q�qg � (`1; `g) ; (2.24)

with

S� �
q�q (`) �

Z
d4z



� (p� )

�
� � (z)� �  (0)

�
� 0

�
e� i` �z ; (2.25)

S� �
q�qg � (`1; `g) �

Z
d4z1 d4zg



� (p� )

�
� � (z1) g� � AT

� (zg) (0)
�
� 0

�
e� i` 1 �z1 � i` g �zg :

(2.26)

The factorization in momentum space around the dominant light cone vector requires that

we de�ne a basis of light-cone vectors on which the partonic momenta can b e decomp osed in

order then to Taylor expand the hard part around the dominant light cone vector. We de�ne

then two light like vectors p and n , which satisfy p� n = 1 and such as p is the dominant light

cone direction, p and n are denoted usually the "plus" and "minus" light cone vectors. The

dominant light cone direction in our case is given naturally by the direction of the � � meson

p� = p +
m2

�

2
n twist 3= p ;

as the mass term of the vector meson leads to kinematic twist corrections starting at twist 4

which is b eyond the scop e of this study. Note that the choice of the light cone vector n is not

unique. The amplitude at the end should not dep end on the particular choice of this vector

and this will give additional constrains on the DAs as we will see in the section 2.4.2.

The momenta of the quark `1 and the antiquark `2 in the two-parton amplitude are

decomp osed as

`1 = yp+ � 1n + `? and `2 = �yp+ � 2n � `? : (2.27)

Following [144, 138], in this approach the partons are on the mass-shell leading to

� 1 =
`2

2y
and � 2 =

`2

2�y
;

For the three-parton amplitude, the quark `1 , antiquark `2 and gluon `g momenta are

decomp osed as

`1 = y1p + � 1n + `1 ? ; (2.28)

`2 = �y2p + � 2n + `2 ? ; (2.29)

`g = ygp + � gn + `g? : (2.30)

3

The Fierz co e�cients from color space factorization 1=Nc and 2=(N 2
c � 1) are implicitly put in the hard

part expressions for conciness of the formulas.
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the momentum conservation and the on-shellness of the partons, imply that

yg = y2 � y1 ; `g? = � (`1? + `2? ) ; 2(� 1 + � 2 + � g) =
`2

1

y1
+

`2
2

�y2
+

`2
g

yg
:

We decomp ose the Fourier conjugate in co ordinate space zi of the momentum ` i as

zi = 
 i p + � i n + zi ? :

Let us fo cus on the two-parton contribution. The leading twist contribution to the am-

plitude is given by assuming that the quark and the antiquark are �ying collinearly to the

direction of the � � meson

Hq�q(`1) � Hq�q(y; � 1; `? ) � Hq�q(y) ; (2.31)

which corresp ond to the zero order term of the Taylor expansion of the hard part around the

dominant light cone direction p.

The contributions in each order in 1=Q, are given by the Taylor expansion of the hard

part around the dominant light cone direction p [144, 138]. Up to twist 3, this expansion

can b e interpreted as the emission from the hard part of a q�q pair with a very small relative

transverse momentum justifying the Taylor expansion around the collinear direction. The

relevant terms of the Taylor expansion up to twist 3 are

H � �

q�q (`1) = H � �

q�q (y) + H �; � �

q�q (y) (`1 � yp)� + � � �
twist 3

� H � �

q�q (y) + H �; � �

q�q (y) `1? � : (2.32)

where, for conciseness, we use the notations

H � �

q�q � Tr (Hq�q� � ) ; H �; � �

q�q �
@

@1̀�
Tr (Hq�q� � ) :

The term of n-th order of this Taylor expansion reads

@n

@1̀� 1 � � � @1̀� n

Tr (Hq�q� � ) (`1 � yp)� 1 � � � (`1 � yp)� n ;

where (`1 � yp)� 1 � � � (`1 � yp)� n acting on the soft part, will give transverse derivatives of

the correlator, leading to the moments of the wave function of the hadron. Note that the

insertions of transverse gluons and transverse derivatives ( (`1 � yp)� 1 � `1? � 1 ) increase the

twist of the op erators in the soft part.

We will treat separately the convolutions of the two terms of the last line of eq. (2.32)

with the soft part. The �rst term (zero-th order of the Taylor expansion) is

iA (0)
q�q = �

1
4

Z
dy
2�

H � �

q�q (y)
Z

d� 1

2�
d`?

(2� )2

Z
d
d�dz ? e� i (y� + � 1 
 + `? �z? )

� h � (p)j � (
p + �n + z? ) � �  (0)j0i

= �
1
4

Z
dy H � �

q�q (y)
Z

d�
2�

e� iy� h� (p)j � (�n ) � �  (0)j0i � 2
F

: (2.33)
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In eq. (2.33), the subscript � 2
F is the factorization scale up to which the �uctuations in the

transverse momentum space are integrated,

h� (p)j � (�n ) � �  (0)j0i � 2
F

�
Z

`2
? � � 2

F

d`? dz?

(2� )2
e� i` ? �z? h� (p)j � (�n + z? ) � �  (0)j0i : (2.34)

Let us give now a more precise interpretation of the presence of this cut-o� on the trans-

verse momenta. In the rest frame of the meson, its size is of order � � 1
0 in all directions with

� 0 � m� , and in this frame a cut-o� at � � 1
F � Q� 1

GeV allows to get most of the internal

dynamics which is not resolved by the system of partons. In the rest frame of the partons

created by the virtual photon and propagating with the hard scale Q, the partonic system

has a typical spatial extension of the order Q� 1
. The b o ost to go from the meson rest frame

to the partonic system rest frame induces a contraction of the longitudinal size of the meson

by a factor Q=� 0 , leading to a longitudinal size of the order of Q� 1
. Hence we see that the

�uctuations along the longitudinal size can b e always resolved even for very large virtualities,

while the �uctuations in the transverse direction are not b o osted and remains of the order

� � 1
0 . Thus these transverse �uctuations are part on the long distance dynamics of the meson

and have to b e integrated over up to the scale � F � Q. Cho osing the renormalization scale

to b e equal to the factorization scale, the dep endence of the DAs on the scale � F is given by

the renormalization equations of the op erators in the correlators.

Note that for the case of the q�q pair intermediate state, the transverse size of the pair is

of the order

p
y�yQ instead of Q due to the fact that the photon is split in two constituents.

In a symmetric jet con�guration ( y � 1=2), a reasonable choice for � F is

� F =
p

hy�yQ2i �
Q
2

:

For aligned jet con�gurations ( y � 0 or �y � 0) which are exp ected to dominate the trans-

versely p olarized � � meson pro duction, this choice has to b e justi�ed dep ending on the av-

erage values of y and �y given by the distribution of dip oles, i.e. the overlaps of the wave

functions of the transverse virtual photon and the � � meson.

After the momentum factorization, the op erators in the correlation functions are a pro duct

of �elds on the light cone direction n , z2 = ( �n )2 = 0 . Restoring the Wilson line, the gauge

invariant correlator reads

h� (p)j � (�n )[�n; 0] � �  (0)j0i : (2.35)

We cho ose to work in the light-cone gauge A � n = 0 which allows to simplify the Wilson line

to a factor one

[�n; 0] � P exp
�

ig
Z 1

0
dt � n � A � (t � )

�
= 1 :

The second term of the Taylor expansion (2.32), i.e. the �rst order in `? of the Taylor
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expansion, reads

iA (1)
q�q = �

1
4

Z
dy
2�

H �; � �

q�q (y)
Z

d� 1

2�

Z
d`?

(2� )2
`? �

Z
d
 d� dz ?

� e� i (y� + � 1 
 + `? �z? )h� (p)j � (
p + �n + z? ) � �  (0)j0i

= �
1
4

Z
dy H �; � �

q�q (y)
Z

d�
2�

e� iy�

�
Z

dz?

Z
d`?

(2� )2
`? � e� i` ? �z? h� (p)j � (�n + z? ) � �  (0)j0i : (2.36)

We must now get rid of the factor `? and this is done by replacing `? ! i@=@z? acting on

the exp(� i` ? � z? ) and then doing an integration by parts,

iA (1)
q�q = �

1
4

Z
dy H �; � �

q�q (y)
Z

d�
2�

e� iy�
Z

d`?

(2� )2
dz?

�
i@? � e� i` ? �z?

�

� h � (p)j � (�n + z? ) � �  (0)j0i

=
i
4

Z
dy H �; � �

q�q (y)
Z

d�
2�

e� iy�
Z

d`?

(2� )2

Z
dz? e� i` ? �z?

�
@

@z? �
h� (p)j � (
p + �n + z? ) � �  (0)j0i

=
i
4

Z
dy H �; � �

q�q (y)
Z

d�
2�

e� i�y @
@z? �

h� (p)j � (�n ) � �  (0)j0i � 2
F

: (2.37)

The transverse derivative of the non-lo cal correlator can b e put inside as an op erator acting

on the fermionic �elds,

@
@z? �

h� (p)j � (�n + 0 ? ) � �  (0)j0i � 2
F

= �h � (p)j � (�n + 0 ? ) � �

 !

@?
�  (0)j0i � 2

F
; (2.38)

with

 !

@?
� = 1

2(
�!

@?
� �

 �

@?
� ) . So �nally,

iA (1)
q�q =

� 1
4

Z
dy H �; � �

q�q (y)
Z

d�
2�

e� i�y h� (p)j � (�n ) � � i
 !

@?
�  (0)j0i � 2

F
: (2.39)

The collinear factorization in the momentum space is now achieved for the two-parton am-

plitude up to twist 3 as the hard and soft part are now only related by the integral over

y . The result for the two-parton contribution is then given by the sum of A (0)
q�q and A (1)

q�q as

illustrated in �g. 2.12.

PSfrag replacements

�

`
H (`) S(`) !

PSfrag replacements

�
H (y)

yp
S(y)

� �
+

PSfrag replacements

�

`
H � (y) S?

� (y)

� �

Figure 2.12: Factorization of 2-parton contributions in the example of the 
 � ! � impact

factor.

The derivative term of the hard part H �; � �

q�q (y) in the expression of A (1)
q�q can b e computed

using the following identity,

PSfrag replacements

@
@p�

=

ppp 
 �

where

PSfrag replacements

p
=

1
m � =p� i�

:
(2.40)
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The hard part H �; � �

q�q (y) corresp onds then to the computation of the 12 diagrams shown in

�g. 2.13. Indeed the derivative of each of the 6 diagrams of �g. 2.7 involves the sum of the

derivatives of each propagators of the diagram leading to

@
@�̀

0

B
B
@PSfrag replacements

� �

1

C
C
A =

PSfrag replacements


 �

� �
+

PSfrag replacements


 �

� �
: (2.41)

where the dashed lines are only here to indicate with resp ect to which propagator we are

deriving.

PSfrag replacements

y

� �y

PSfrag replacements PSfrag replacements PSfrag replacements

(a1) (a2) (b1) (b2)

PSfrag replacements PSfrag replacements

PSfrag replacements PSfrag replacements

(c1) (c2) (d1) (d2)

PSfrag replacements PSfrag replacements

PSfrag replacements PSfrag replacements

(e1) (e2) (f1) (f2)

Figure 2.13: The 12 contributions arising from the �rst derivative of the 6 hard diagrams

attached to the 2-parton correlators, which contribute to the 
 � ! � impact factor, with

momentum �ux of external line, along p1 direction.

At the twist 3 level, we need to consider also the non-minimal parton con�guration where

there is an additional gluon. Contrary to a covariant gauge treatment, the choice of the axial

light-cone gauge ( n � A = 0 ) allows to get rid of the longitudinal comp onent of the gluon

p olarization.
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We now fo cus on the q�qg intermediate state amplitude. In the case of three-parton

exchange contribution, only the zero-th order of the Taylor expansion of the hard part is

needed up to twist 3 with a transversely p olarized gluon,

iA q�qg = �
1
4

Z
dy1 d� 1 d2`1?

(2� )4

Z
dyg d� g d2`g?

(2� )4

Z
d
 1 d� 1 d2z1?

Z
d
 g d� g d2zg?

� H �; � �

q�qg (y1; yg) h� (p)j � (z1) � � gA?
� (zg) (0)j0i e� i` 1 �z1e� i` g �zg

= �
1
4

Z
dy1

Z
dyg H �; � �

q�qg (y1; yg)

�
Z

d� 1 d� g

(2� )2
e� iy 1 � 1 e� iy g � g h� (p)j � (� 1n) � � gA?

� (� gn) (0)j0i � 2
F

; (2.42)

where we denote T r(H �
q�qg � � ) = H �; � �

q�qg . The factorization for the three-parton contribution

is illustrated in �g. 2.14.

PSfrag replacements

�
H �

q�qg(`1; `g) Sq�qg� �!

PSfrag replacements

�
H �; � �

q�qg (y1; yg) S� �
q�qg�

� �

Figure 2.14: Factorization of 3-parton contributions in the example of the 
 � ! � impact

factor.

Note that the sum of the �rst order term of the Taylor expansion in @?
for the q�q

intermediate state contribution given by eq. (2.39) and the q�qg intermediate state contribution

given by eq. (2.42), corresp onds to the �rst order term of a Taylor expansion with resp ect

to the transverse covariant derivative D ?
� (z) = @?

� � igA?
� (z) of the hard part around the

dominant light-cone direction, it reads

iA (1)
qD �q =

� 1
4

Z
dy1

Z
dyg H �; � �

q�qg (y1; yg)
Z

d� 1

2�
e� i� 1y1

Z
d� g

2�
e� i� g yg

(2.43)

�h � (p)j � (� 1n) � � i
 !

D ?
� (� g)  (0)j0i � 2

F
:

2.3 Parameterizing the vacuum to rho-meson matrix el-

ements

The goal of this part is to parameterize the vacuum to � � meson matrix elements that app ear

in eqs. (2.33), (2.39) and (2.42) and contains the twist 2 and twist 3 contributions to the


 � g ! � g amplitude. We will �rst intro duce the notion of DA, then we will show how

considering the quantum numb ers of the � � meson state, the equations of motion (EOMs) of

QCD and another condition called n� indep endence, allows to restrict ourselves to a minimal

set of DAs. We �nally describ e how one can �nd explicit expressions for these DAs using

conformal expansion, renormalization equations and QCD sum rules techniques.
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2.3.1 Light-cone wave functions and distribution amplitudes

Let us intro duce the lowest Fo ck state light-cone wave function of the � � meson 	 (� � )
h�h (y; `) and

its connection with the DAs. Note that in our notation the usual "+" and "-" comp onents of a

vector z = � zp1+ 
p 2+ z? are resp ectively given by pro jecting on p2 and p1 , z+ p
s � z�p2 = � z

and z� p
s � z � p1 = 
 .

The wave function in momentum space is the Fourier transform of the Bethe-Salp eter

wave function of p ositive energy at the �xed light-cone time z+ � 
 = 0 . This ob ject is

the amplitude of probability to �nd a q�q pair with resp ective helicities h and

�h , fractions of

longitudinal momentum y and �y , and transverse momenta ` and � ` , in the � � meson state.

Following the conventions of [120], the mo de expansion of the quark �eld with z laying on

the light-cone direction z = �n is

 (�n ) =
Z

dyd2`
(2� )3 (2y)

X

h

[u(h)(y; `)b̂h(y; `) e� iy� + v(h)(y; `)d̂y
h(y; `) eiy� ] : (2.44)

The � � meson state is de�ned at lowest order of the Fo ck expansion by

j� (p� ; � � )i =
p

4�N c

X

h;�h

Z
dyd2`?

(2� )3
p

(2y)(2�y)
	 � �

h;�h(y; `)b̂y
h(y; `)d̂y

�h(�y; � `) j0i ; (2.45)

where the anticommutation relations at equal light-cone time ( z+ � 
 ) are,

n
b̂y

h(y; `); b̂h0(y0; `0)
o


 =0
= (2 � )3� (y � y0)� (2) (` � `0) (2yp)� h;h : (2.46)

Assuming that the q�q state saturates the � � meson state, then the probability Pq�q to �nd a

q�q in the � � meson state is one, leading to the normalization condition [55, 145]

Pq�q =
X

h;�h

Z
dy

Z
d2r

�
�
� 	

� �

h;�h(y; r)
�
�
�
2

= 1 ; (2.47)

with 	 � �

h;�h(y; r) the Fourier transform in the transverse space, r is the transverse size of the

q�q pair. Considering the electronic decay of the � � meson in terms of the wave functions of

a virtual photon 	 � 


h;�h , and of the � � meson gives the additional relation [115, 145]

ef � m� (e�

 � e� ) =

X

h;~h

Z
dy

Z
d2r 	 � �

h;~h
(y; r)	 � 


h;~h
(y; r) : (2.48)

The vacuum to � � meson matrix elements that are involved in A (0)
are

h� (p; � � )j � (�n ) � �  (0)j0i =
p

4�N c

X

h�h

Z
dyd2`

(2� )3
p

(2y)(2�y)
eiy�

	 � � �

h;�h (y; `)[�u(h)(y; `) � � v( �h)(y; � `)] : (2.49)
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By de�nition, the DAs parameterize the Fourier transforms of the vacuum to � � meson

matrix elements. We can write as a generic de�nition of the DA ' i (y; � F ) ,

m� f � ' i (y; � 2
F ) =

Z
d�
2�

e� iy� h� (p)j � (�n ) (L � �)  (0)j0i � 2
F

=
p

4�N c

X

h�h

Z `2<� 2
F d2`

(2� )3
p

(2y)(2�y)
eiy�

� 	 � (� � )
h; �h (y; `)[�u(h)(y; `) L � � v( �h)(y; � `)] ; (2.50)

with L � the relevant Lorentz structure asso ciated to ' i on which is pro jected the correlator.

The wave function is not known but it is customary to parameterize it as a spinor part S� �

h�h

which is similar to the coupling to the q�q pair to a photon, and a scalar part � � � which has

to b e mo deled and which is constrained by the relations (2.47, 2.48). In this case the wave

function takes the form

	 (� � )
h�h =

r
Nc

4�
S� �

h�h � � � ; (2.51)

with S� �

h�h = �uh(y; `)=e(� � )v�h(�y; � `) . The computation of the DA with the wave function de�ned

in (2.51) leads to interpret the DAs in the asymptotic limit � 2
F ! 1 as the moments of the

scalar function � � � (y; `) in the transverse momentum space.

2.3.2 Lorentz decomp osition and parity analysis

We will now investigate the set of DAs we need to parameterize the matrix elements of the

twist 2 and twist 3 op erators.

The role of chirality conservation

We �rst restrict the sum over the � �
matrices to the sum of 
 �

and 
 � 
 5 as they are chirality-

conserving matrices. Indeed, as we have neglected the quark masses, the conservation of

helicity implies then the conservation of the chirality in the QED and QCD vertices. The

conservation of chirality at each vertices of the hard part and the fact that the quantum

numb er exchanged in t� channel are those of the vacuum, i.e. chiral even, imp ose that the

� �
matrices must b e chiral even. One can readily check that the chirality-violating matrices

like 1; � �� ; � � � are giving vanishing contributions in the two t� channel gluon approximation.

The consequence of the chirality conserving condition is that the chiral o dd DAs [142] such as

the leading twist DA for a transversely vector meson or the twist 3 DAs for a longitudinally

p olarized meson, decouple from the hard parts. As a consequence, the twist expansion starts

at twist 3 for the pro duction of a � T and the next term of the twist expansion for the

pro duction of a � L is of twist 4. Let us give an exhaustive list of the Fourier transforms of

the vacuum to � � meson matrix elements that we have to parameterize given the two chiral
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even structure f 
 � ; 
 5
 � g,

S
 �
q�q (y; � 2

F ) �
Z

d�
2�

e� i�y h� (p)j � (�n ) 
 �  (0)j0i � 2
F

; (2.52)

S
 5 
 �
q�q (y; � 2

F ) �
Z

d�
2�

e� i�y h� (p)j � (�n ) 
 5
 �  (0)j0i � 2
F

; (2.53)

S
 � ;?
q�q (y; � 2

F ) �
Z

d�
2�

e� i�y h� (p)j � (�n ) 
 � i
 !

@?
�  (0)j0i � 2

F
; (2.54)

S
 5 
 � ;?
q�q (y; � 2

F ) �
Z

d�
2�

e� i�y h� (p)j � (�n ) 
 5
 � i
 !

@?
�  (0)j0i � 2

F
; (2.55)

S
 � ;�
q�qg (y1; y2; � 2

F ) �
Z

d� 1

2�
e� i� 1y1

Z
d� g

2�
e� i� g (y2 � y1 )

�h � (p)j � (� 1n) 
 � gA?
� (� gn) (0)j0i � 2

F
; (2.56)

S
 5 
 � ;�
q�qg (y1; y2; � 2

F ) �
Z

d� 1

2�
e� i� 1y1

Z
d� g

2�
e� i� g (y2 � y1 )

�h � (p)j � (� 1n) 
 5
 � gA?
� (� gn) (0)j0i � 2

F
: (2.57)

Decomp osition on Lorentz structures

The idea is to decomp ose on Lorentz structures the non-lo cal correlators and to keep the

structures which will give contributions up to a given twist. The Lorentz structures have to

b e built from the relevant momenta p, n and the p olarization of the outgoing � � meson e�
. To

understand which are the relevant Lorentz structures to keep up to a given twist, let us give

a p ower counting argument in the in�nite momentum frame where p � Q ! 1 . We directly

see in this frame that the scalar pro duct p � n = 1 implies that n � 1
Q and e�

? � 1. This

scaling of the momenta, gives the p ower b ehavior in 1=Q for each term of the decomp osition.

The twist 2 O(1) and twist 3 O(1=Q) Lorentz structures that we can build are then,

(n � e� )p� =
1

m�
p� � Q ) Twist 2, longitudinal p olarization, (vector) ; (2.58)

(n � p)e�
? � = e�

? � � 1 ) Twist 3, transverse p olarization, (vector) ; (2.59)

R�
? � � 1 ) Twist 3, transverse p olarization, (2.60)

(axial vector) ;

where

4

R�
? � � " ���
 e� �

? p� n
 :

Other Lorentz structures exist but they can b e expressed in terms of these ones or they are of

twist 4 like for example (p � e� )n� � 1
Q . We see from the p ower counting that the correlators

with two Lorentz indices asso ciated to the pro duction of a transversely p olarized � � meson

can b e only,

p� e�
? � ) Twist 3, transverse p olarization, (vector) ; (2.61)

p� R�
? � ) Twist 3, transverse p olarization, (axial vector) : (2.62)

4

The convention taken for the Levi-Civita tensor is "0123 = � "0123 = 1 .
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Note that another way to p erform the p ower counting in twist [146] is to decomp ose the

�elds in their " + " and " � " comp onents, which are also called go o d and bad comp onents,

leading to the de�nitions of quasipartonic op erators (only constituted of " + " �elds) and non-

quasipartonic op erators containing " � " comp onents. For spinor �elds of dimension d and spin

s, these comp onents corresp ond to the spin pro jection of the �eld  ,  + = � +  � 1
2 
 � 
 +  

has spin s = 1=2 and  � = � �  � 1
2 
 + 
 �  has spin s = � 1=2, with � � the spin pro jection

op erators. The conformal spin of the primary �eld  , j = d+ s
2 and its so-called collinear

twist t = d � s, are di�erent for  + and  � comp onents which have resp ectively twist 1

and 2. To illustrate the twist counting of the op erators, let us fo cus on the op erator

� 
 �  .

The quasipartonic op erator

� + 
 +  + is a leading twist op erator while

� + 
 ?  � + � � 
 ?  + is

a twist 3 op erator and

� � 
 �  � is a twist 4 op erator. The role of the conformal spin of the

op erators will b e discussed in section 2.5.

Let us now fo cus on the parameterization of the S
 �
q�q , which a priori involves three unknown

functions ' 1(y) , ' 3(y) and ~' A (y) ,

S
 �
q�q =

Z
d�
2�

e� i�y h� (p)j � (�n ) 
 �  (0)j0i (2.63)

= m� f �

�
' 1(y) (e� � n)p� + i ~' A (y) R�

? � + ' 3(y) (p � n)e�
?

�
: (2.64)

The normalization m� f � contains the information on the large distance physics. The decay

constant f � is de�ned as

h0j � (0)
 �  (0) j� (p; � )i = m� f � e�
� ; (2.65)

and it has b een measured: f � � 200 MeV.

In practice one has to de�ne non-p erturbative coupling constants ( f V
3;� ; � � � ) in order that

the DAs have prop er normalizations. We will see in section 2.6 the determination of such

non p erturbative inputs, using QCD sum rules techniques. Let us now investigate how the

parity analysis will constrain the set of unknown functions, on the particular case of S
 �
q�q .

Parity constraints

Under parity, the light cone vectors p, n and e�
? transform as

P �
� p� = n� ; P �

� n� = p� ; P �
� e�

� (� ~p; � ) = � e�
� (~p; � ) ; (2.66)

and the op erator

� (z)
 �  (0) transforms as

� (z)
 �  (0) �! P �
�

� (P �
� z� )
 �  (0) ; (2.67)

where P = diag (1; � 1; � 1; � 1) is the parity matrix on the Lorentz vector representation.

The pro ofs are quite straightforward except for the transformation of e�
� where one needs to

b o ost by L �
� (p) the vector in the rest frame of the � � meson where ~p= ~0,

e� (Pp; � ) = L �
� (Pp)e� (~0; � ) = P �

� L �
� (p)P �

� e� (~0; � ) = �P �
� e� (p; � ) ; (2.68)
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where we use the fact that in the rest frame

P �
� e� (~0; � ) = � e� (~0; � ) ;

as e0(~0; � ) = 0 .

Inserting the identity 1 = P Py
b etween the op erator and the states, the matrix element

transforms as

h� (p; � )j P Py � (z)
 �  (0)P Py j0i = � � P �
� h� (Pp; � )j � (Pz)
 �  (0) j0i ; (2.69)

with � � = � 1 the intrinsic parity of the � � state. This equality in terms of DAs reads

Z
dy

�
' 1(y)(e� (~p; � ) � n)p� + ' 3(y)e�

? (p; � ) + i ~' A (y)R�
? �

�
eiyp �z

= � � P �
�

Z
dy eiy (P p)�(P z) (' 1(y) (e�

� (Pp; � )(Pn)� ) (Pp)� + ' 3(y)e�
? � (Pp; � )

+ i ~' A (y)" ���
 e� �
? (Pp; � ) (Pp)� Pn


�
: (2.70)

The �rst term that multiplies ' 1(y) , simpli�es as

� � P �
� P �

� p� (e�
� (Pp; � )P �

� n� ) = � � p� (�P �
� e�

� (p; � )p� )

= � � � (e�
� (p; � ) � n)p� : (2.71)

The term multiplying ' 3(y) simpli�es as

� � P �
� e�

? � (Pp; � ) = � � � P �
� P �

� e�
? � (p; � ) = � � � e�

? � (p; � ) (2.72)

and �nally the term multiplying ~' A (y) reads

� � P �
� " ���
 e� �

? (Pp; � ) P �
� p� P �

� n�

= � � � P �
� " ���
 P �

� e� �
? (Pp; � ) P �

� p� P �
� n�

= � � �

�
" ���
 P �

� P �
� P �

� P 

�

�
e� �

? (p; � )p� n�

= � � � det (P)" ���� e� �
? (p; � )p� n�

= � � " ���� e� �
? (p; � )p� n� ; (2.73)

where we use the fact that P �
� = P �

� , " ���
 P �
� P �

� P �
� P 


� = det (P)" ���� by de�nition of the

determinant, and det (P) = � 1. The relation given in eq. (2.70) leads to

Z
dy

�
' 1(y)(e� � n)p� + ' 3(y)e�

? (p; � ) + i ~' A (y)R�
? �

�
eiyp �z

(2.74)

=
Z

dy
�
' 1(y)(e� � n)p� + ' 3(y)e�

? (p; � ) � i ~' A (y)R�
? �

�
eiyp �z :

The conditions given by the parity analysis are then

' 1(y) = ' 1(y) ; ' 3(y) = ' 3(y) ; ~' A (y) = � ~' A (y) ) ~' A (y) = 0 : (2.75)
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C-parity constraints

The transformation under C-parity of the op erator

� (z)
 �  (0) is

Cy � (z)
 �  (0)C = � � (0)
 �  (z) :

The correlator reads

h� (p; � )j CCy � (z)
 �  (0)CCy j0i = � � c
� h� (p; � )j � (0)
 �  (z) j0i

= � � c
� h� (p; � )j ei P̂ Ẑ e� i P̂ Ẑ � (0)ei P̂ Ẑ e� i P̂ Ẑ 
 �  (z)ei P̂ Ẑ e� i P̂ Ẑ j0i

= � � c
� h� (p; � )j ei P̂ Ẑ � (� z)
 �  (0)e� i P̂ Ẑ j0i ; (2.76)

where we have inserted the translation op erators e� i P̂ Ẑ
. The intrinsic C-parity of the

� 0� meson is � c
� = � 1. The vacuum state is invariant under translation while the � � meson

state gives the eigenvalue exp(ip � z) . We get then the equality

h� (p; � )j CCy � (z)
 �  (0)CCy j0i = � � c
� eip �z h� (p; � )j � (� z)
 �  (0) j0i : (2.77)

Parameterizing the correlator in terms of the ' 1(y) and ' 3(y) gives the relation

m� f �

Z
dyeiyp �z[' 1(y)(e� � n)p� + ' 3(y)e�

? ] = � � � eip �zm� f �

�
Z

dye� iyp �z[' 1(y)(e� � n)p� + ' 3(y)e�
? ] : (2.78)

Changing the integration variable y by ~y = 1 � y , leads to

m� f �

Z
dyeiyp �z[' 1(y)(e� � n)p� + ' 3(y)e�

? ]

= m� f �

Z
d~yei ~yp�z[' 1(1 � ~y)(e� � n)p� + ' 3(1 � ~y)e�

? ] : (2.79)

We can now identify the di�erent terms, and the constraints given by the C-parity transfor-

mation of the correlator are

' 1(y) = ' 1(1 � y) and ' 3(y) = ' 3(1 � y) : (2.80)

Time reversal constraints

The � � meson state transforms under T� parity as

T j� (p; � )i = � �
� (� 1)1� � j� (Pp; � � )i : (2.81)

One can prove also the relation

e�
� (Pp; � � ) = ( � 1)1+ � P �

� e� (p; � ) ; (2.82)

which will b e useful in the transformations. The op erator

� (z)
 �  (0) transforms under time

reversal as,

T � 1 � (z)
 �  (0)T = P �
�

� (�P z)
 �  (0) :
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The correlator after inserting the op erators T T � 1
reads

h� (p; � )j T T � 1 � (z)
 �  (0)T T � 1 j0i

= � � (� 1)1� �
�
h� (Pp; � � )j � (�P z)P �

� 
 �  (0) j0i
� �

= � � (� 1)1� �

� Z
dye� iy (P p)�(P n) [' 1(y)(e� (Pp; � � ) � Pn)P �

� (Pp)�

+ ' 3(y)P �
� e�

? � (Pp; � � )]
� �

: (2.83)

The fact that the correlator is conjugated is due to the fact that time reversal exchanges the

in � state with the out� state. The scalar pro duct e� (Pp; � � ) � Pn simpli�es,

e� (Pp; � � ) � Pn = ( � 1)1+ � (Pe(p; � )) � (Pn) = ( � 1)1+ � e(p; � ) � n :

We get then,

= � � (� 1)1� �

� Z
dye� iy (P p)�(P n) [' 1(y)(e� (Pp; � � ) � Pn)P �

� (Pp)�

+ ' 3(y)P �
� e�

? � (Pp; � � )]
� �

= � � (� 1)2

� Z
dye� iyp �n [' 1(y)(e(p; � ) � n)p� + ' 3(y)e? � (p; � )]

� �

= � �

Z
dyeiyp �n [' �

1(y)(e� (p; � ) � n)p� + ' �
3(y)e�

? � (p; � )] : (2.84)

By identi�cation we have the following relations

' �
1(y) = ' 1(y) ; ' �

3(y) = ' 3(y) ; (2.85)

which show that the DAs are real functions.

The full set of distribution amplitudes

The same pro cedure can b e applied to the other correlators and one �nds at the end that the

parameterization of the correlators involves two DAs ( ' 1 , ' 3 ) for the S
 �
q�q (y; � F ) , one ( ' A )

for the axial vector correlator S
 5 
 �
q�q , one for the vector ( ' T

1 ) and axial vector ( ' T
A ) correlators

with transverse derivative, and one for the vector ( B ) and for the axial vector ( D ) correlators

with three partons,

S
 �
q�q (y; � 2

F ) = m� f � [' 1(y; � 2
F ) (e� � n) p� + ' 3(y; � 2

F ) e�
? � ]; (2.86)

S
 5 
 �
q�q (y; � 2

F ) = m� f � i ' A (y; � 2
F ) R�

? � ; (2.87)

S
 � ;?
q�q (y; � 2

F ) = m� f � ' T
1 (y; � 2

F ) p� e�
? � ; (2.88)

S
 5 
 � ;?
q�q (y; � 2

F ) = im � f � ' T
A (y; � 2

F ) p� R�
? � ; (2.89)

S
 � ;�
q�qg (y1; y2; � 2

F ) = m� f � � V
3� (� 2

F ) B (y1; y2; � 2
F ) p� e�

? � ; (2.90)

S
 5 
 � ;�
q�qg (y1; y2; � 2

F ) = m� f � � A
3� (� 2

F ) i D (y1; y2; � 2
F ) p� R�

? � ; (2.91)

where � V
3� (� 2

F ) and � A
3� (� 2

F ) are dimensionless coupling constants:

� V
3� (� 2

F ) =
f V

3� (� 2
F )

f �
; � A

3� (� 2
F ) =

f A
3� (� 2

F )

f �
: (2.92)
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We remind that, for the q�qg amplitude, the quark, the antiquark and the gluon fractions of

longitudinal momentum are resp ectively denoted y1 , �y2 = 1 � y2 and yg , and verify the relation

y1 + �y2 + yg = 1 . Note that for the q�qg DAs B and D , the gluon fraction of momentum is

p ositive 0 � yg � 1 which constrains the integral over y1 and y2 by the condition y1 � y2 � 1,

Z 1

0
dy1

Z 1

0
dy2 �!

Z 1

0
dy2

Z y2

0
dy1 :

The constraints obtained from the parity relations are,

' 1(y) = ' 1(�y) ; ' 3(y) = ' 3(�y) ; ' A (y) = � ' A (� �y)

' T
1 (y) = � ' T

1 (�y) ; ' T
A (y) = ' T

A (�y)

B(y1; y2) = � B(�y2; �y1) ; D(y1; y2) = D(�y2; �y1) :

Inserting in eqs. (2.33), (2.39), (2.96) the previous parameterization of the correlators and

using the shorthand notations,

H � � a�
q�q (y) � H � �

q�q (y) a� ; H b;� � a�
q�q (y) � H �; � �

q�q (y) a� b� ;

H b;� � a�
q�qg (y1; y2) � H �; � �

q�q (y1; y2) a� b� ;

we get the convolutions

iA (0)
q�q = �

m� f �

4

Z
dy H=p

q�q(y)' 1(y; � 2
F ) (e�

� � n) ; (2.93)

for a longitudinally p olarized � � meson,

iA (0)
q�q = �

m� f �

4

Z
dy

h
H

=e�
�T

q�q (y)' 3(y; � 2
F ) + i H

=R�
? 
 5

q�q (y)' A (y; � 2
F )

i
; (2.94)

iA (1)
q�q = �

m� f �

4

Z
dy [H

e�
�T ;=p

q�q (y)' T
1 (y; � 2

F ) + iH R �
? ;=p
 5

q�q (y) ' T
A (y; � 2

F )] ; (2.95)

for the two-parton contributions and

iA q�qg = �
m� f �

4

Z
dy1dy2 [H

e�
�T ;=p

q�qg (y1; y2)� V
3 (� 2

F ) B (y1; y2; � 2
F )

+ H R �
? ;=p
 5

q�qg (y1; y2) � A
3 (� 2

F ) i D (y1; y2; � 2
F )] ; (2.96)

for the three-parton contribution of the transversely p olarized � � meson. The DAs satisfy

the normalization conditions

Z 1

0
dy ' 1(y) = 1 ;

Z 1

0
dy ' 3(y) = 1 ;

Z 1

0
dy (y � �y)' A (y) =

1
2

; (2.97)

by de�nition of the asso ciated coupling constants.
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2.4 Reduction to a minimal set of DAs

The set of DAs de�ned ab ove is over-complete, �rst the DAs are related by the EOMs of

QCD (sec. 2.4.1) [138] and second their parameterizations dep end on an arbitrary vector n

and the amplitude has to b e invariant under the transformations that preserve p � n = 1

and n2 = 0 , leading to additional relations among DAs (sec. 2.4.2). These relations can b e

solved and lead to two sets of indep endent solutions (sec. 2.4.3), the �rst set corresp onds to

the so-called Wandzura-Wilczek (WW) solutions [147] f ' W W
3 ; ' W W

A ; ' T W W
1 ; ' T W W

A g which

only dep end on ' 1 the leading twist two-parton DA and the second set of solutions are called

"genuine" solutions f ' gen
3 ; ' gen

A ; ' T gen
1 ; ' T gen

A g, they dep end only on the twist 3 three-parton

DAs. The genuine twist 3 solutions can b e interpreted as the higher Fo ck state contribution

to the amplitude. The relations b etween the DAs have b een derived indep endently of the

hard sub-pro cess in [142] in the covariant approach using exact op erators identities that relate

the non-lo cal op erators [148, 149]. We will follow here the approach of [131]. In the last part

(sec. 2.155) we show how the three indep endent DAs f ' 1; B; D g and the analogous DAs of

Ref. [142] f � k; V; Ag in the covariant approach, are related, as it was shown in Ref. [131].

2.4.1 DA relations from the equations of motion of QCD

The Dirac equation on the spinor �elds allows to derive relations b etween the DAs. Let us

insert the Dirac equation inside the correlator



 r (0) � s(z)

�
, where r and s are the spinor

indices of the �elds, such as D
i =~D x

ur  r (x) � s(z)
E

x=0
= 0 ; (2.98)

with

~D x
r is the covariant derivative with resp ect to the co ordinate x . Another constraint can

b e similarly obtained by acting on

� (z) ,

D
 r (0) � r (z)i =

 
D

z

st

E
= 0 : (2.99)

Let �rst fo cus on the

~@r part of the covariant derivative, and split it into its longitudinal

comp onent

~@L and its transverse comp onent

~@? . Then the Fourier transform of the correlator

reads Z
d4ze� iyp �z� i �yp�x

�D
i~=@

x

L  (x) � (z)
E

+
D

i~=@
x

?  (x) � (z)
E�

x=0
: (2.100)

The �rst term of eq. 2.100 involving the longitudinal derivative can b e simpli�ed as

Z
d4ze� iyp �z� i �yp�x

D
i~=@

x

L  (x) � (z)
E

x=0

= � �y=p
Z

d4ze� iyp �z� i �yp�x


 (x) � (z)

�
x=0

: (2.101)

The result of eq. (2.101) is obtained by �rst translating the correlator by � z, then p erforming

an integration by part and translating back by + z the correlator. Using the Fierz identity

� h ' r �' si =
1
4

(h�'
 � ' i 
 �
rs + h�'
 5
 � ' i (
 � 
 5)rs ) ; (2.102)
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and the parametrization of the correlators given in eqs.(2.86, 2.87), the contribution of the

longitudinal derivative reads

m� f �

4
�y(=p=e�? ' 3(y; � 2

F )+ i=p =R�
? 
 5' A (y; � 2

F )) = �
im � f �

4
�y� p;e�

?

�
' 3(y; � 2

F ) + ' A (y; � 2
F )

�
; (2.103)

where in the r.h.s.

� p;e�
?

=
i
2

[=p; =e�? ] :

The longitudinal derivative contribution is then

Z
d4ze� iyp �z� i �yp�x

D
i~=@

x

L  (x) � (z)
E

x=0

=
� im � f �

4
� p;e�

?

�
�y' 3(y; � 2

F ) + �y' A (y; � 2
F )

�
: (2.104)

The contribution from the transverse derivative @x
?

Z
d4ze� iyp �z� i �yp�x

D
i~=@

x

?  (x) � (z)
E

x=0
; (2.105)

is directly parameterized by DAs of eqs. (2.88, 2.89) after using the Fierz identity. The

transverse derivative contribution reads

Z
d4ze� iyp �z� i �yp�x

D
i~=@

x

?  (x) � (z)
E

x=0

=
m� f �

4
(=p' T

1 (y) + i=p =R�
? 
 5' T

A (y)) (2.106)

= � i
m� f �

4
� p;e�

?

�
' T

1 (y; � 2
F ) + ' T

A (y; � 2
F )

�
: (2.107)

Adding the two contributions, the derivative term @of the covariant derivative D reads

Z
d4ze� iyp �z� i �yp�x

�D
i~=@

x

L  (x) � (z)
E

+
D

i~=@
x

?  (x) � (z)
E�

x=0
(2.108)

= � i
m� f �

4
� p;e�

?

�
�y' 3(y; � 2

F ) + �y' A (y; � 2
F ) + ' T

1 (y; � 2
F ) + ' T

A (y; � 2
F )

�
:

The interaction term with the gluon �eld of the covariant derivative reads

Z
d4ze� iyp �z



g =A(0)  (0) � (z)

�
; (2.109)

which after using the Fierz identity, reads

Z
d4ze� iyp �z



g =A? (0)  (0) � (z)

�

= �
1
4


 �

Z
d4ze� iyp �z

�
 � (z) 
 � g A? � (0) (0)
�


 �

+

 � (z) 
 5
 � g A? � (0) (0)

�

 � 
 5

�
: (2.110)

Using the parameterization eqs.(2.90, 2.91), we get

Z
d4ze� iyp �z



g =A? (0)  (0) � (z)

�

=
m� f �

4

Z 1

y1

dy2

�
� V

3 B(y1; y2)=p=e�? + i� A
3 D(y1; y2)=p =R�

? 
 5

�

= � i
m� f �

4
� p;e�

?

Z 1

y1

dy2[� V
3 B(y1; y2) + � A

3 D(y1; y2)] : (2.111)
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We �nally obtain that the Dirac equation inserted in the correlator as

Z
d4ze� iyp �z

D
=~D(0)  (0) � (z)

E
= 0 ; (2.112)

leads to

�y' 3(y; � 2
F ) + �y' A (y; � 2

F ) + ' T
1 (y; � 2

F ) + ' T
A (y; � 2

F )

= �
Z 1

y1

dy2

�
� V

3 (� 2
F )B (y1; y2; � 2

F ) + � A
3 (� 2

F )D(y1; y2; � 2
F )

�
: (2.113)

The second equation given by the Dirac equation applied to the second fermionic �eld

gives the following condition,

y' 3(y; � 2
F ) � y' A (y; � 2

F ) � ' T
1 (y; � 2

F ) + ' T
A (y; � 2

F )

= �
Z 1

y1

dy2

�
� � V

3 (� 2
F )B (y1; y2; � 2

F ) + � A
3 (� 2

F )D(y1; y2; � 2
F )

�
: (2.114)

Finally we see that the EOMs of QCD lead to two relations on the DAs, mixing the twist 2

and twist 3 DAs.

2.4.2 Equations from the n� indep endence condition

The basis of light cone vector chosen to p erform the expansion of the hard part around

the dominant light cone direction p, is not unique as n is not �xed by a physical direction.

The amplitude should then b e indep endent of this arbitrary choice, leading to an additional

set of equations on the DAs which is indep endent of the asso ciated hard scattering ampli-

tude, as it relies on Ward identities. We will see that separating the axial vector from the

vector contributions of the amplitudes and demanding the n� indep endence of these contri-

butions, one can simplify these conditions thanks to the Ward identities. At the end, the

n� indep endence conditions are the convolutions of a common hard part (involving only the

quark and antiquark pair exchange) with the following combinations of DAs

d' T
1

dy
(y; � 2

F ) + ' 1(y; � 2
F ) � ' 3(y; � 2

F )

+ � V
3 (� 2

F )
Z 1

0
dy2

B(y; y2) + B(y2; y)
y2 � y

= 0 ; (2.115)

for the vector contribution and

d' T
A

dy
(y; � 2

F ) � ' A (y; � 2
F ) +

� A
3 (� 2

F )
Z 1

0
dy2

D(y; y2) + D(y2; y)
y2 � y

= 0 ; (2.116)

for the axial vector contribution.

The conditions that we require to get a Sudakov basis on the vector n are,
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� n is light-like,

� p � n = 1 .

Starting from a basis of reference with a �xed light-cone reference vector n0
satisfying these

conditions, we can decomp ose on this basis any vector n satisfying the same conditions as

n� = �
n2

?

2
p� + n�

0 + n�
? :

Hence only the transverse degrees of freedom parameterize the n� vectors and the n� indep endence

of the amplitude reads

d
dn�

?

A = 0 : (2.117)

The total derivative can b e written as

d
dn�

?

A =
@n�

@n�?

@
@n�

+
@(e� � n)

@n�?

@
@(e� � n)

A

= [ � n? � p� + g�
? � ]

@A
@n�

+ e�
?

@A
@(e� � n)

= 0 ; (2.118)

as the amplitude dep endence on n is partially due to the parameterization of the p olarization

e�
. The n� indep endence condition applies separately for the vector A vector

and the axial

vector A axial

parts of the amplitudes, due to their di�erent parity prop erties. The dep endence

on n of A vector

and A axial

comes resp ectively from the factor e� � n as

e�
T = e� � (e� � n)p� ;

and R�
? � = " �e �

? pn where the vector n can only b e contracted with p so that the dep endence

is in p � n then,

@n�

n�
?

dA axial

dn�
= 0 )

@A axial

@n�?
= 0 ; (2.119)

dA vector

dn�
?

= 0 )
@A vector

@(e� � n? )
= 0 : (2.120)

The equation of n� indep endence of the vector amplitude A vector

(2.120) involves the terms

prop ortional to ' 1 , ' 3 , ' T
1 and B . The asso ciated Fierz structure closing the spinor indices

of the partonic �elds of the hard "vector" scattering is 
 � . The term prop ortional to ' 1 reads

diagrammatically as,

@
@(e� � n)

A (0)
q�q = �

m� f �

4
@

@(e� � n)

Z
dy' 1(y)(e� � n)

PSfrag replacements

=p

= �
m� f �

4

Z
dy' 1(y)

PSfrag replacements

=p : (2.121)
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The term in ' 3 is

@
@(e� � n)

A (1) ;' 3
q�q = �

m� f �

4
@

@(e� � n)

Z
dy' 3(y)(e�

� � (e� � n)p� )

PSfrag replacements


 �

=
m� f �

4

Z
dy' 3(y)

PSfrag replacements

=p : (2.122)

The term in ' T
1 involves the derivative of the hard part H �;
 �

q�q , which formally reads

@
@(e� � n)

�
�

m� f �

4

Z
dyHe� � (e� �n)p;=p

q�q (y)' T
1 (y; � 2

F )
�

(2.123)
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0
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1
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4

Z
dy

0

B
B
@

PSfrag replacements

=p

1

C
C
A

d
dy

' T
1 (y; � 2

F ) ; (2.124)

where we used the following Ward identity in the collinear limit [150],

p�

PSfrag replacements

y1 p y2 p
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=

1
y2 � y1

2

6
6
6
4

PSfrag replacements

(y2 � y1)p

y2 p
�

PSfrag replacements

y1 p

(y2 � y1) p
3

7
7
7
5

: (2.125)

We see that it is some kind of integration by part in order that the derivative acting on the

hard part �nally acts on the DA.

One can show that the three-parton contribution to eq. (2.120) that will mix with the

previous terms is asso ciated to the ab elian diagrams of �g. 2.8. These diagrams have the




































































































































































































































