
HAL Id: tel-00855281
https://theses.hal.science/tel-00855281

Submitted on 29 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hard exclusive processes beyond the leading twist
Adrien Besse

To cite this version:
Adrien Besse. Hard exclusive processes beyond the leading twist. Other [cond-mat.other]. Université
Paris Sud - Paris XI; National centre for nuclear research (Otwock-Świerk), 2013. English. �NNT :
2013PA112106�. �tel-00855281�

https://theses.hal.science/tel-00855281
https://hal.archives-ouvertes.fr


THÈSE

Présentée pour obtenir

LE GRADE DE DOCTEUR EN SCIENCES

DE L'UNIVERSITÉ PARIS-SUD XI

en otutelle ave le

NATIONAL CENTRE FOR NUCLEAR RESEARCH

Spéialité: Physique théorique

par

Adrien BESSE

soutenue publiquement le Mardi 02 juillet 2013

Réations dures exlusives au twist sous-dominant

Direteurs de thèse: Leh SZYMANOWSKI

Samuel WALLON

Composition du jury

Président du jury: Dr. Damir BECIREVIC

Rapporteurs: Pr. Krzysztof GOLEC-BIERNAT

Dr. Stéphane MUNIER

Examinateurs: Pr. Krzysztof KUREK

Dr. Laurent SCHOEFFEL



Thèse préparée au

Département de Physique d'Orsay,

Laboratoire de Physique Théorique

(UMR 8627),

Bât. 210, Université Paris-Sud 11,

91405 Orsay Cedex



Résumé

Cette thèse porte sur le alul des amplitudes d'héliités de la leptoprodution di�rative

exlusive du méson ρ dans la limite de Regge perturbative au-delà du twist dominant. La

ompréhension de e proessus et autres proessus exlusifs en terme d'intérations entre

les onstituents fondamentaux de la QCD, onstitue un enjeu majeur pour omprendre la

struture des hadrons. L'approhe suivie par le modèle présenté ii est basée d'une part sur

la kT−fatorisation à petits x, 'est-à-dire dans la limite des hautes énergies dans le entre

de masse W ∼ √
s et d'autre part sur la fatorisation olinéaire du méson ρ dans la limite

des hautes virtualités Q du photon virtuel intéragissant ave le nuléon.

Dans l'approhe de la kT−fatorisation, l'amplitude est sindée en deux pièes prinipales,

le fateur d'impat orrespondant à la transition du photon virtuel au méson ρ (γ∗(λγ) →
ρ(λρ)) et le fateur d'impat du nuleon ible. Ces deux fateurs d'impats intéragissent

par l'éhange d'un poméron dans la voie t qui ontient toute la dépendene en énergie du

proessus. Le poméron est dérit à l'ordre dominant par l'éhange de deux gluons et à l'ordre

dominant en ln(1/x) ave x ∼ Q2/W 2
par l'éhange d'une éhelle de gluons dans le voie t.

La haute virtualité du photon justi�e l'appliation de la QCD perturbative pour aluler

le fateur d'impat γ∗(λγ) → ρ(λρ) en utilisant la fatorisation olinéaire pour séparer les

ontributions dominantes au twist 2 et au twist 3. Cette approhe a été employée par

Ginzburg, Pan�l et Serbo en 1985 pour aluler les termes de twist 2 des fateurs d'impats

des transitions où le photon virtuel est polarisé soit longitudinalement soit transversalement

et où le méson ρ est polarisé longitudinalement. Ces transitions sont dénotées respetivement

"γ∗L → ρL" et "γ∗T → ρL". L'approhe a ensuite été poussée au twist 3 en 2010 par Anikin,

Ivanov, Pire, Szymanowski et Wallon, pour obtenir le terme de twist 3 du fateur d'impat de

la transition "γ∗T → ρT " où le photon virtuel et le méson ρ sont polarisés transversalement.

Ces résultats sont invariants de jauge et font apparaître les ditributions d'amplitudes du

méson ρ paramétrisant la prodution du méson à partir des états de Fok intermédiaires

quark-antiquark et quark-antiquark-gluon.

Dans ette thèse nous présentons un premier modèle se basant sur es résultats pour les

fateurs d'impats, pour dérire les rapports d'amplitudes d'héliités assoiés à e proessus

en utilisant un modèle phénoménologique pour le fateur d'impat du nuléon ible. On utilise

aussi un modèle pour les distributions d'amplitudes du méson ρ basé sur le développement

onforme de elles-i. Les résultats de e modèle sont ensuite omparés aux données de

HERA et nous disutons les résultats obtenus.

Une seonde approhe est présentée où les fateurs d'impats aux twist 2 et 3 des tran-

sitions γ∗L → ρL et γ∗T → ρT sont redérivés dans la représentation des paramètres d'impats.

On montre que es résultats sont équivalents à eux obtenus dans l'approhe dans l'espae

des impulsions et permettent d'avoir une image en terme des on�gurations de dip�les de

ouleurs ontenues dans l'état partonique intermédaire de la transition γ∗ → ρ. Les ampli-

tudes d'héliités ainsi obtenues se déomposent en une onvolution entre le reouvrement des

fontions d'onde du photon virtuel et du méson ρ alulé dans l'approximation olinéaire,



ave l'amplitude d'intération d'un dip�le de ouleur ave le nuléon ible. Cette dernière

amplitude est universelle et déterminée à partir d'autres proessus tels que le proessus de

di�usion profondément inélastique. Nous obtenons ainsi une expression pour les amplitudes

d'héliités où nous pouvons ombiner des modèles d'amplitude de di�usion dip�le-nuléon

ave le reouvrement des fontions d'onde issus des aluls de fatorisation olinéaire aux

twists 2 et 3. Nous présentons les préditions, omparées aux données de HERA, pour les

setions e�aes polarisées de la prodution di�rative exlusive du méson ρ obtenues à

partir des amplitudes d'héliités. Les préditions sont en aord ave les données pour des

virtualités supérieures à 5-7 GeV

2
. Nous présentons une analyse de es résultats, notamment

nous disutons le r�le des orretions de twists supérieurs et nous omparons nos résultats

ave des reouvrements de fontions d'onde obtenus par d'autres modèles existants.

Mots-lefs: Proessus exlusifs, Chromodynamique Quantique perturbative, Ampli-

tudes d'héliités, Fatorisation olinéaire, kT−fatorisation, Dip�les de ouleurs.



Abstrat

This thesis, entitled "Hard exlusive proesses beyond the leading twist", deals with the

omputation of the heliity amplitudes of the exlusive di�rative ρ−meson leptoprodution

in the perturbative Regge limit beyond the leading twist. The understanding of suh exlusive

proesses in terms of the elementary onstituents of QCD is a serious hallenge to understand

the hadroni struture. The approah we follow here, �rst relies on the kT−fatorization in

the small−x regime, i.e. when there is a high energy W ∼ √
s in the enter of mass of

the photon-proton system. It seondly relies on the ollinear fatorization sheme for large

virtualities Q of the photon, to fatorize the ρ−meson soft part of the proess.

Within the kT−fatorization approah, the amplitude splits in two main piees, the

γ∗(λγ) → ρ(λρ) impat fator, with λγ and λρ the polarizations of the virtual photon and

the ρ−meson, and the nuleon impat fator. The impat fators are interating with the

exhange of a pomeron in the t−hannel whih orresponds to the exhange of two t−hannel
gluons at leading order and a ladder of gluons at leading log(1/x) order, with x ∼ Q2/W 2

.

At high virtualities of the photon, the perturbative QCD tehniques are justi�ed to om-

pute the γ∗(λγ) → ρ(λρ) impat fator using the ollinear fatorization sheme to get the

twist 2 and twist 3 terms. This approah was �rst used in 1985 by Ginzburg, Pan�l and

Serbo to ompute the twist 2 γ∗L → ρL and γ∗T → ρL impat fators. In 2010 the twist 3

term of the γ∗T → ρT impat fator was derived by Anikin, Ivanov, Pire, Szymanowski and

Wallon. The results obtained are gauge invariant and they involve the twist 2 and twist 3

distribution amplitudes of the ρ−meson that parameterize the meson prodution from the

quark antiquark and the quark antiquark gluon intermediate Fok states.

In this thesis we present a model based on these impat fator results to get preditions

for the ratios of heliity amplitudes assoiated to the ρ−meson di�rative leptoprodution

using a phenomenologial model for the proton impat fator. We also use a model for

the distribution amplitudes based on the onformal expansion. The preditions are then

ompared to HERA data and we disuss the results of this approah.

A seond approah is presented where the twist 2 and twist 3 impat fators are derived

in the impat parameter representation. We show that the results are equivalent to the

ones obtained in the momentum spae representation. The results in impat parameter

representation give information about the dipole on�guration ontent of the intermediate

state involved in the γ∗ → ρ impat fators. As a result of this approah, the heliity

amplitudes fatorize as the onvolution of two parts, the �rst one is the overlap of the virtual

photon and the ρ-meson wave funtions omputed in the ollinear approximation and the

seond one is the dipole-target sattering amplitude. The dipole-target sattering amplitude

is well determined on other proesses suh as deep inelasti sattering proesses. Combining a

model for the dipole ross-setion with the results obtained within the ollinear fatorization

sheme for the overlap of the wave funtions, we get a model for heliity amplitudes and the

longitudinal and transverse polarized ross-setions. We ompare our preditions to HERA

data and get a good agreement for virtualities of the photon larger than Q2 ∼ 5 − 7 GeV

2
.



We disuss the results, in partiular the role of higher twist orretions and we ompare our

results with the overlaps of wave funtions obtained from other models that exist within the

olor dipole piture.

Keywords: Exlusive proesses, Perturbative quantum hromodynamis, Heliity am-

plitudes, Collinear fatorization, kT−fatorization, Color dipoles.
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Introdution

Inlusive proesses, suh as the deep inelasti sattering (DIS) proesses have provided a

lot of information about the nature of strong interations and the nuleon struture. These

proesses �rst desribed by the naive parton model proposed by Feynman and Bjorken [1, 2℄

to explain the approximate Bjorken saling observed at SLAC in late 60's, allowed to disen-

tangle the hadroni struture as made of elementary asymptotially free onstituents alled

"partons". The mysterious fats that in a strongly bound hadroni state the partons are

ating like free and the fat that quarks without their olor degrees of freedom are violating

the Pauli exlusion priniple were solved with the apparition of the quantum hromodynam-

is (QCD) to desribe the strong interations. Indeed, QCD whih is a non-abelian gauge

quantum �eld theory based on the SU(3) olor group, is an asymptotially free theory given

the number of �avors we know, as demonstrated in 1973 by Wilzek, Politzer and Gross

[3, 4, 5℄. This is due to the non-abelian harater of QCD and the running of αs is very well

reprodued by the data.

Another important feature of QCD is the on�nement of quarks and gluons into olorless

hadroni states whih makes the diret observation of partons as external partiles impossible.

The experimental evidene for gluons at PETRA in 1979 omes from 3-jet events, due to an

energeti gluon radiation qq̄ → qq̄g in the hard sub-proess e−e+ → qq̄. The on�nement of

the emitted quark antiquark and gluon leads to the observation of 3-jet events. These events

are also used to determined the oupling onstant of the strong interation αs.

Many tehniques exist to study the QCD properties. The perturbative QCD (pQCD)

approah is one of them and it relies on the fatorization of a proess into a hard part where

large energy sales are involved and a soft part involving the long distane dynamis of the

partons inside the hadrons. The presene of a hard sale Q in the ollision is needed to justify

the perturbative expansion in αs(Q) of the hard part and the fatorization into hard and soft

piees. Under kinemati assumptions, one an derive pQCD evolution equations suh as the

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP), Efremov-Radyushkin-Brodsky-Lepage

(ERBL) or Balitsky-Fadin-Kuraev-Lipatov (BFKL) equations, for the soft parts but pQCD

annot provide information of non-pertubative aspets of soft parts. Other tehniques an

supply information on non-perturbative quantities suh as lattie QCD, e�etive �eld theories

or QCD sum rules tehniques.

Inlusive proesses have also provided a deep understanding of the struture of the hadrons

and the partoni distribution funtions (PDFs), whih are known on a wide kinemati range.

They have been the testing ground of theoretial innovations suh as the operator produt

expansion (OPE) formalism �rst introdued in partile physis by Wilson in the 70's [6℄ and

then applied to DIS [7, 4℄. However inlusive proess observables give only information on

the forward kinematis where there is no momentum transfered in t−hannel. With the

inreasing improvement of the experiments, the measurements on exlusive proesses, where

one is interesting to a spei� �nal state, have begun to bring additional information on the

hadroni struture. For example, the generalized parton distributions (GPDs) parameterizing



the nuleon in the non-forward limit have to take into aount not only the x dependene

of the partoni distributions but also the skewness dependene. The exlusive proesses

suh as the di�rative prodution of vetor mesons, or the deep virtual Compton sattering

(DVCS) have been studied for more than 25 years and are still the subjet of many studies

and experiments. For our purpose, we should name more partiularly the HERA ollider

ollaborations H1 and ZEUS as they have provided data for very small values of x and

moderate Q2
, whih is the kinemati region of interest in this thesis. The low−x physis is

an interesting limit of QCD. Alternative approahes from the usual ollinear fatorization

sheme are based on kT−fatorization, suh as the dipole models by Nikolaev, Zakharov [8, 9℄

and Mueller [10, 11℄ or the CGC formalism [12, 13, 14, 15, 16, 17℄. Suh approahes are used

to understand the transition from a diluted to a dense partoni system due to the emission

of gluons by Bremsstrahlung whih takes plae in the small−x limit. This transition poses

the interesting question of saturation e�ets inside the hadrons.

In this thesis we developed a model for the di�rative ρ−meson prodution in the per-

turbative Regge limit, i.e. at small x and at high enough Q2
to use pQCD tehniques. This

approah will be presented in hapter 2 and hapter 3, while the �rst hapter will be devoted

to introdue the main tools of this treatment on a DIS proess.

In the hapter 1, we will introdue basis of di�erent tehniques that are used in this thesis.

We will present the kT−fatorization on the simplest examples to explain how the amplitudes

an be fatorized in the high energy limit, in sub-proesses alled "impat fators". Next,

after a brief general introdution to DIS, we will fous on a DIS proess to show how these

impat fators an be interpreted in the language of dipole models. This permits us to disuss

the importane and di�erent ways of inorporation into the dipole model of saturation e�ets.

In the hapter 2, we will present the Light-Cone Collinear Fatorization (LCCF) sheme

beyond the leading twist and its appliation to the omputation of the impat fatorΦγ∗(λγ )→ρ(λρ)

of the transition of the virtual photon of heliity λγ into a ρ−meson of heliity λρ. In this

approah, the soft part assoiated to the prodution of the ρ−meson is parameterized by the

distribution amplitudes (DAs) of the ρ−meson. We will disuss the energy sale dependene

of the DAs and the QCD sum rule tehnique to get non-perturbative parameters that enters

the DAs. Finally we will present a phenomenologial model to get preditions on heliity

amplitudes of the di�rative ρ−meson prodution at HERA. This model will naturally lead

us to the next hapter topi.

In the hapter 3, we will onnet the impat fator Φγ∗(γ)→ρλρ
obtained in the previous

hapter in the ollinear approximation, to the olor dipole piture. From this result, one an

get phenomenologial models by ombining our results for the impat fators with dipole

models that are already known from DIS analysis and that ontains the x−dependene
of the heliity amplitudes. These dipole models inlude the saturation dynamis of the

nuleon target. We ompare the preditions of the polarized ross-setions of the ρ−meson

eletroprodution with HERA data and disuss our results.

In the hapters 2 and 3, some parts are based on our own ontributions like the phe-

nomenologial model [18℄ at the end of the hapter 2, and the hapter 3 whih is based on



the studies [19℄ and [20℄.





Chapter 1

High energy QCD

In this hapter we present basis of the onepts and tools neessary to takle the phe-

nomenology of hadroni reations in the small−x physis.

After an introdution on the Regge theory and the pomeron trajetory se. 1.1, we explain

on the quark-quark sattering the kT−fatorization proedure, �rst in the ase of one gluon

exhanged in t−hannel and then in the ase of a olor singlet exhange (two gluon exhange)

in se. 1.2. We show how the impat fators emerge from this piture and brie�y disuss the

resummation at leading log(1/x) of the gluon ladder exhange in the t−hannel.
We present some basis of DIS proess in se. 1.3, and show how the amplitude an be

fatorized in the dipole piture into the photon wave funtions and the dipole ross-setion.

We present �nally di�erent models of dipole ross-setion that inlude the saturation e�ets,

as well as the equations that governs the energy dependene of the dipole ross-setion in the

diluted and dense regimes.

1.1 Introdution

1.1.1 Postulates and onsequenes

Before QCD was applied to desribe the strong interations, physiists relied on the basi

postulates of the Lorentz invariane, the unitarity and the analytiity of the S-matrix in

order to get information on the hadroni sattering.

Lorentz invariane of the S−matrix implies that the S−matrix element orresponding to

the proess

a(pA, λA) + b(pB, λB) → c(pC , λC) + d(pD, λD) , (1.1)

an be expressed in terms of Lorentz invariant quantities suh as the Mandelstam variables

and the masses of the partiles. For the partiular ase of the proess (1.1) where two

partiles in the initial state give two partiles in the �nal state, the sattering amplitude

an be expressed in terms of the Mandelstam variables s = (pA + pB)
2
, t = (pA − pC)

2
and

u = (pA − pD)
2
whih satisfy

s+ t+ u =
∑

i

m2
i , (1.2)

5
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where mi denotes the mass of the partile i.

The unitarity ondition of the S−matrix

S†S = SS† = 1 , (1.3)

expresses the fat that the probability for an initial state to give any �nal state is equal to

one. Let us onsider an in-state |a〉 and an out-state |b〉 whih are respetively states of free

partiles at the times t→ −∞ and t→ ∞. The orresponding S-matrix element is

Sab = 〈b| a〉 . (1.4)

Let us introdue now the T−matrix element suh as S = 1+iT , and the sattering amplitude

Aab and the ross-setion σab assoiated to this proess,

Sab = δab + iTab = δab + i(2π)4δ4(
∑

a

pa −
∑

b

pb)Aab . (1.5)

The ross-setion σab of the event a→ b is related to the probability of this event to happen,

it is then proportional to the square of the sattering amplitude,

σab =
1

F

∫

dΠb |Aab|2 , (1.6)

with F the �ux fator and Πb the phase spae of the n−body partiles of the b �nal state.

The �ux fator in the ase of the proess (1.1) is given by

F = 2
√

λ(s,m2
A, m

2
B) (1.7)

where λ(s,m2
A, m

2
B) is the standard kinemati variable,

λ(s,m2
A, m

2
B) =

(

s− (mA +mB)
2
) (

s− (mA −mB)
2
)

. (1.8)

The expression (1.7) for the �ux fator remains true for the prodution of n partiles in the

�nal state from a two-partile initial state. Note that in the large s limit where the masses

an be negleted ompared to s, the �ux fator is just F = 2s.

The unitarity ondition of the S−matrix (1.3) implies then the following ondition on the

T−matrix elements

∑

c

(δac + iTac)
(

δcb − iT †cb

)

= δab

i
(

T †ab − Tab

)

=
∑

c

TacT
†
cb , (1.9)

where c is any physial state, i.e. the partiles of this state are on the mass-shell. In terms

of the sattering amplitudes, using the fat that

2iImAab = Aab −A†ab , (1.10)
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the relation (1.9) reads

2ImAab = (2π)4δ4(
∑

a

pa −
∑

b

pb)
∑

c

AacA†cb . (1.11)

This relation has very important onsequenes as it leads to the Cutkosky rules .f. se. 1.1.3

and, in the speial ase where one put idential in- and out- states, it leads to the optial

theorem. The theorem reads

2ImAaa(s, t = 0) = (2π)4δ4(
∑

a

pa −
∑

b

pb)
∑

c

|Aac|2 . (1.12)

As a onsequene of the optial theorem, the total ross-setion σtot, assoiated to the proess

"a→ any physial state", is given up to a oe�ient by the imaginary part of the amplitude

Aaa(s, t = 0),

2ImAaa(s, t = 0) = Fσtot . (1.13)

The third postulate is the analytiity of the S−matrix elements, meaning that the

S−matrix is an analytial funtion of the Lorentz invariants seen as omplex variables. An-

alytiity has been shown to be a onsequene of the ausality, whih prevents two regions

separated by a spae-like distane to in�uene on eah other. Some onsequenes of the

analytiity are:

• the rossing symmetry of the sattering amplitudes,

• the dispersion relations whih allows to get the real part of the amplitude from the

imaginary part.

The rossing symmetry in the ase of the two to two partile proess (1.1) reads

Aa+c̄→b̄+d(s, t) = Aa+b→c+d(t, s) (1.14)

Aa+d̄→b̄+c(s, u) = Aa+b→c+d(u, s) (1.15)

where b̄, c̄ and d̄ are the antipartiles assoiated to b, c and d. In the ase where ImA(s, t)

falls to zero when z → ∞, the dispersion relation whih relates the amplitude to its imaginary

part is obtained by deforming the integration ontour whih surround the uts,

A(s, t) =
1

π

∫ ∞

s+th

ds′
ImA(s′, t)

s′ − s
+

1

π

∫ s−th

−∞
ds′

ImA(s′, t)

s′ − s
, (1.16)

where sth
+
and sth

−
are the thresholds of partile prodution along the real positive and real

negative axis. If the asymptoti behavior of the integrand when |s| → ∞ is not falling fast

enough then the dispersion relation (1.16) is not valid and should be replaed by a subtrated

dispersion relation where the integrand is divided by as many fators (s′−s0) as it is neessary
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to ensure the onvergene of the integrand with s0 an arbitrary point. For the addition of

one of the fator s′ − s0, the subtrated dispersion relation reads

A(s, t) = A(s0, t) +
(s− s0)

π

∫ ∞

s+th

ds′
ImA(s′, t)

(s′ − s)(s′ − s0)
(1.17)

+
s− s0
π

∫ s−th

−∞
ds′

ImA(s′, t)

(s′ − s)(s′ − s0)
.

Note that these relations require the knowledge of the asymptoti behavior of the sattering

amplitudes whih is the subjet of the Regge theory.

These so-alled "bootstrap" relations, that relate the imaginary part of the amplitude to

the amplitude itself and to the sum of produt of other amplitudes due to the analytiity

and unitarity postulates, are obtained without for now speifying the underlying quantum

�eld theory and are very general onsiderations.

1.1.2 Regge trajetories and the pomeron interept

In the high energy limit s→ ∞ with �xed t, alled the Regge limit, the asymptoti behavior

of the amplitude of the proess

a+ b→ c+ d , (1.18)

is onneted to the angular momentum l of the partile exhanged in s−hannel of the rossed
hannel proess,

a+ c̄→ b̄+ d . (1.19)

The partial wave expansion of the amplitude of the rossed proess (1.19),

Aa+c̄→b̄+d(s, t) =
∑

l=0

(2l + 1)al(s)Pl(1 + 2
t

s
) , (1.20)

allows to deouple the ontribution given by elementary partile of angular momentum l and

mass M exhanged in the s−hannel. The rossing symmetry implies that for the proess

a+b→ c+d where the role of the Mandelstam variables are exhanged, s↔ t, the amplitude

is essentially given by the resonane and takes the form,

Aab→cd(s, t =M2) = Aac̄→b̄d(t =M2, s) (1.21)

= Al(t)Pl(1 + 2
s

t
) =

Gac̄(t)Gb̄d(t)

t−M2
(σt + (−1)l)Pl(1 + 2s/t) ,

where σt is the signature whih is 1 for rossing even amplitudes and −1 for rossing odd

amplitudes, Gac̄(t) is the vertex of the partile exhanged in the t−hannel with the external

partiles. The proess t =M2
is not in the physial region of the s−hannel and in eq. (1.21)

an analytial ontinuation of the Legendre polynomials in the physial region of the proess

(1.18) allows to derive the asymptoti behavior of the amplitude of the proess,

Aa+b→c+d(s, t) =
gac(t)gbd(t)

t−M2
sl . (1.22)
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Note that the fat that the verties Gij do not depend on s at high energy is an universal

feature that we will see also when desribing the impat fator approah in kT−fatorization
sheme. The amplitude depends on s only through the partiles exhanged in t−hannel.

This asymptoti behavior violates the unitarity of the theory. Indeed it was proven long

ago by Froissart [21℄ using unitarity and partial wave expansion that hadroni ross-setions

has to inrease slower than ln2(s),

σtot < A ln2(s) ,

with A ∼ 60 mb. This is equivalent to bound the asymptoti amplitudes by,

A(s, t) < s ln2(s) ,

whih from (1.22) is learly violated for l > 1.

The way to solve this problem is to use the Sommerfeld-Watson integral transformation

to express the partial wave expansion. The pole struture in the omplex variable l of the

partial wave amplitude Al(t) = A(l, t) will then �x the omplex angular momentum of the

resonane. The resonane angular momentum given by the pole αR(t) of maximal real value

will dominate the asymptoti power behavior of the amplitude, this pole is alled the Regge

pole and the e�etive "resonane" assoiated to this pole, of omplex angular momentum

l = αR(t) is alled reggeon. The underlying assumption is that poles are simple poles, but

in pratie logarithms appearing in the perturbation theory an gives branh uts. The pole

αR(t) is a Regge trajetory and αR(0) the reggeon interept. The trajetories l = αR(t) are

universal objets that only depends on the quantum numbers of the partile exhanged in

t−hannel.
For t < 0, the t−dependene of the Regge pole an be experimentally obtained by �tting

the energy dependene of the s−hannel amplitudes. As explained above, the reggeon an be

seen as resonanes at t =M2
of angular momentum l. The idea of so-alled Chew Frautshi

plots was then to show the masses of known resonanes ρ, ω, · · · , as a funtion of their angular
momentum. It turns out that the data are aligned on straight-lines and by extrapolating to

the physial region t < 0, the straight-lines give a relatively good desriptions of the data

obtained from experiments, leading to linear Regge trajetories

αR(t =M2) = αR(0) + α′Rt .

The Regge theory allows to omplete the bootstrap relation as it allows to obtain the

asymptoti behavior of the amplitude.

Using the optial theorem, the s−power like dependene of the total ross-setion is

σtot ∝ ImA(s, t = 0) ∝ sαR(t=0)−1 . (1.23)

It was demonstrated by Pomeranhuk that the ross-setion vanishes asymptotially in the

ase where there is a harge exhange in the t−hannel. A Regge trajetory with αR(0) > 1

orresponds then to a reggeon that arries the vauum quantum numbers and whih is alled
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the "pomeron" (for a pedagogial review on the pomeron in QCD see [22℄). The pomeron

interept is denoted αP (0). Donnahie and Landsho� [23℄ have proposed a �t of the total

ross-setions for pp and pp̄ ollisions as

σtot = Xsǫ + Y s−η ,

where the �rst term an be interpreted as the exhange of a pomeron while the seond term

orresponds to the exhange of a reggeon. The best �ts were

σpp
tot = 21.7 s0.08 + 56.1 s−0.45 ,

σpp̄
tot = 21.7 s0.08 + 98.4 s−0.45 .

These �ts highlights the fat that the pomeron ouplings to the antiproton and the proton

are the same whih is due to the fat that the pomeron arries vauum quantum numbers.

The value η = 0.45, orresponds to the Regge trajetory lose to the one given by the linear

�ts of Chew Frautshi plots based on the spetrum of {ρ, ω · · · } resonanes.

The pomeron interept αP (0) = 1.08 violates the unitarity bound from the Froissart

theorem but one an show that with this value of the pomeron interept, the violation ours

only at the Plank sale.

The quark and gluon ontent of the pomeron an be studied in di�rative dissoiation

proesses where for example in ep ollision, the pomeron is seen like a parton of the proton

that interats with the eletron to give any �nal state X. This reation is analogous to deep

inelasti sattering where the pomeron replaes the proton whih allows to study its partoni

ontent.

1.1.3 Cutkosky rules

In the ase of QED or QCD one an hek that the imaginary part of an amplitude A(s, t)

arises when a virtual partile goes on-shell due to the iǫ term in the propagator denominators

p2 + iǫ. Branh uts appear for s real suh as s > s0 with s0 the threshold where a physial

state an be produed. Due to analytiity we have the relations

ReA(s+ iǫ, t) = ReA(s− iǫ, t) , (1.24)

ImA(s+ iǫ, t) = −ImA(s− iǫ, t) , (1.25)

the disontinuity of the amplitude around the branh ut along the real axis reads

DissA(s, t) = Limǫ→0(A(s+ iǫ, t)−A(s− iǫ, t)) = 2i ImA(s+ iǫ, t) . (1.26)

It an be shown that the disontinuity of the amplitude an be obtained by replaing in the

propagators

1

p2 + iǫ
→ −2iπδ(p2 −m2) θ(p0) . (1.27)

The θ(p0) ensures that the partile has positive energy, i.e. is a physial partile. For any

diagram the disontinuity an be diretly obtained by following the so-alled "Cutkosky

rules" [24℄,
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1. the diagrams must be ut in all possible ways suh that the ut propagators an be put

on shell simultaneously,

2. the ut propagators are replaed following eq. (1.27),

3. the disontinuity is given by the sum of all the ut diagrams.

We will use these rules in the following parts in order to get the imaginary part of the

amplitudes by omputing their disontinuities with the Cutkosky rules.

1.2 Sattering amplitudes in the Regge limit

In this setion, we introdue the approximations to get the dominant ontribution of the

amplitudes in the perturbative Regge limit, using the fat that in this limit s/ |t| is very

large. We �rst onsider the quark-quark sattering amplitude with one gluon exhange in

the t−hannel to show the kinematis of the dominant ontribution in powers of 1/s. Then we

ompute the quark-quark amplitude of a olor singlet exhange in t−hannel involving a two
gluon exhange in t−hannel. This example is partiularly relevant for hadroni proesses

in the perturbative Regge limit, as the olor singlet exhange dominates the olorless states

sattering. We �nally show how the amplitude an be fatorized into the so-alled "impat

fators" and the t−hannel gluons Green funtion. Note that the approah presented in this

setion, is based on Feynman gauge alulations and the alulations beyond the Born order

approximation would be di�erent within another gauge. Of ourse, the �nal results for gauge

invariant quantities are gauge independent.

1.2.1 The olor otet exhange

At leading order the sattering of two quarks in QCD is given by the tree diagram shown in

�g. 1.1, where a gluon arrying the olor harge a is exhanged between the two quarks. We

will assume that a hard sale justi�es the use of pQCD for example |t| ≫ Λ2
QCD and the fat

that s≫ |t|.

PSfrag replaements

pA ∼ p1

pB ∼ p2

∆a

Figure 1.1: Quark-quark sattering amplitude at the tree level with an otet exhange in

t−hannel.

We denote respetively pA and pB the momenta of the upper quark and lower quark and

mA, mB their masses. The Mandelstam variable SAB = (pA+pB)
2
is large by assumption and
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we an neglet the masses of the quarks and then assume that their momenta pA and pB are

very lose to two light-like vetors p1 and p2 of opposite diretions suh as SAB ∼ s = 2p1 ·p2,
where s is the large sale. We an expand pA and pB on this Sudakov basis as,

pA = p1 +
m2

A

s
p2 , pB = p2 +

m2
B

s
p1 ,

SAB = (pA + pB)
2 = m2

B +m2
A + 2pA · pB ∼ 2p1 · p2 = s .

The momentum of the gluon exhanged in t−hannel an also be deomposed on this basis

as,

∆ = αp1 + βp2 + k⊥ . (1.28)

It is onventional to use a two-dimensional eulidean vetor, that we underline (x), to replae

the Minkowskian transverse vetor x⊥, suh as x2⊥ = −x2. We will use this onvention all

along the manusript.

Assuming that the partiles are on the mass-shell (we neglet now the masses of the

quarks), one has the two following onditions,

(pA −∆)2 = 0 (1.29)

(pB +∆)2 = 0 (1.30)

whih lead to

−(1− α)β +
∆2
⊥
s

= 0 , (1.31)

(1 + β)α+
∆2
⊥
s

= 0 . (1.32)

Substituting in eq. (1.32) the expression of β by,

β =
∆2
⊥

s(1− α)
, (1.33)

leads to a seond order equation in α,

α2 − α− ∆2
⊥
s

= 0 . (1.34)

The two ouples of solutions for α and β up to �rst order in

∆2
⊥

s
are,

α = 1 +
∆2
⊥
s
, β = −1 , (1.35)

and

α = −∆2
⊥
s
, β =

∆2
⊥
s
. (1.36)

The �rst ouple of solutions is not relevant as it would imply that t = ∆2 ∼ −s, whih
violates our �rst assumption s≫ −t. The seond ouple of solution gives,

∆ = −∆2
⊥
s
p1 +

∆2
⊥
s
p2 +∆⊥ . (1.37)
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We get then that t = ∆2 ∼ ∆2
⊥ = −∆2

. Note that it justi�es a posteriori that ∆2
⊥/s ∼ t/s

an be negleted.

We will now introdue another approximation to simplify the vertex expression, alled

the eikonal approximation. The upper vertex gives the ontribution,

igur(p1 −∆)γµtaij us(p1) , (1.38)

where we put expliitly the spinor indies r, s, of the Dira spinors. The spinor ur(p1 −∆)

depends on the vetor p1−∆ whih is approximately equal to p1 as |β| ∼ |α| ∼ |∆2
⊥| /s≪ 1.

Thus, the upper vertex simpli�es as,

igur(p1)γ
µtaij us(p1) = 2igpµ1δr,st

a
i,j , (1.39)

where we have used the Gordon identity,

ur(p
′)γµus(p) =

1

2m
ūr(p

′) ((p′µ + pµ) + iσµν(p′ − p)ν)us(p) , (1.40)

with m the mass of the fermion and

σµν =
i

2
[γµ, γν ] , (1.41)

for p′ = p = p1, and the normalizations of the spinors ur(p)us(p) = 2mδr,s. This approx-

imation is known as the "eikonal approximation" and an be used as long as a soft gauge

partile is exhanged. Finally, using for the lower vertex the same approximation one gets

for the sattering amplitude,

iM = ig2(2pµ1)
gµν
∆2

(2pν2)δr1,s1δr2,s2t
a
ijt

a
kl

= i8παs
s

t
δr1,s1δr2,s2t

a
ijt

a
kl . (1.42)

Note that the upper and lower verties are respetively proportional to pµ1 and pν2, thus if we

deompose the metri tensor into the following tensor omponents

gµν =
2

s
p2µp1ν +

2

s
p1µp2ν + g⊥µν , (1.43)

only the omponent

2
s
p2µp1ν gives a non-vanishing ontribution. As the metri tensor is

oming from the sum over the polarizations of the propagator of the gluon, this omponent

an be seen as the tensor produt of the so-alled "non-sense" polarizations,

εupµ =

√

2

s
p2µ , εdownν =

√

2

s
p1ν , (1.44)

suh as gµν an be replaed due to the eikonal approximation by εupµ ε
down

ν .Now the amplitude

M reads

iM =
−i
∆2

(ig)2
(

uλ′(p1)/ε
uptaij uλ(p1)

) (

uλ′(p2)/ε
downtakl uλ(p2)

)

. (1.45)
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Figure 1.2: Diagrams of the singlet exhange at Born order.

1.2.2 The singlet olor exhange in t−hannel
In di�rative proesses the quantum numbers exhanged in t−hannel are those of the vauum
and onsequently, we have to onsider a singlet olor exhange in t−hannel. Let us onsider
the olor singlet exhange on the quark-quark sattering amplitude.

A olor singlet exhange in t−hannel involves at least two gluons. At Born order, the

sattering of two quarks is given by the two diagrams shown in �g. 1.2. These two diagrams

are related by rossing symmetry. Let us de�ne ∆ = k1 − k2 the momentum exhanged in

t−hannel. The diagram (b) an be obtained from diagram (a) results, up to the olor fator

that are di�erent by

A(b)(s, t, u) = A(a)(u, t, s) ≈ A(a)(−s, t, s) , (1.46)

where we use for the last equality, the fat that at large s and �xed t,

s ≈ −u .

The olor fator for a singlet exhange of the diagrams (a) and (b) are equal and given by

(tatb)ij
δij
N

(tatb)kl
δkl
N

=
1

N2

(

δab

2

)(

δab

2

)

=
N2 − 1

4N2
. (1.47)

Let us ompute the imaginary part of the diagram (a) by using the Cutkosky rules,

ImA =
1

2

N2 − 1

4N2

∫

dΠCut.

2 Atree(k1)Atree†(−k2 = ∆− k1) . (1.48)

In �g. 1.3 the ut of the fermioni line of diagram (a) is represented by the dashed line.

The olor fators are put apart of the amplitude Atree

. The expression of Atree(k) is given

by (1.42),

Atree(k) = −8παs
s

k2
. (1.49)

The integral measure dΠCut.

2 on the phase spae is given by,

∫

dΠCut.

2 =

∫

d4l1
(2π)4

d4l2
(2π)4

(2π)δ(l21)(2π)δ(l
2
2) (2π)

4δ(4)(p1 + p2 − l1 − l2)

=

∫

d4k1
(2π)4

d4l2 (2π)δ((p1 + k1)
2)(2π)δ(l22)δ

(4)(p2 − l2 − k1)

=

∫

d4k1
(2π)2

δ((p1 + k1)
2)δ((p2 − k1)

2) , (1.50)

(1.51)
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Figure 1.3: Cut of the diagram (a).

where in the seond line we have shifted the momentum l1 by the k1 = l1 − p1. The mass

shell onditions l21 = 0 and l22 = 0 being imposed by the Dira fators. Using the Sudakov

deomposition of the momentum k1,

k1 = α1 p1 + β1 p2 + k1⊥ , (1.52)

dΠ2 reads,

∫

dΠCut.

2 =
s

2

∫

dα1dβ1d
2k1⊥

(2π)2
δ(βs(1 + α)− k21)δ(−αs(1− β)− k21) . (1.53)

The fator s/2 omes from the Jaobian of the oordinate transformation from k1 = (k01,
~k1)

to k1 = (α, β, k1⊥) with p1 · p2 = s/2.

The imaginary part of the amplitude reads

ImA(a) =
N2 − 1

4N2

1

2

s

2

∫

dα1dβ1d
2k1⊥

(2π)2
δ(βs(1 + α)− k21)δ(−αs(1− β)− k21)

× (−8παs s)
2 1

k21 k
2
2

(1.54)

=
N2 − 1

4N2
16π2α2

ss

∫

d2k1
(2π)2

1

k21 k
2
2

, (1.55)

where k2 = k1 −∆.

A full omputation of the amplitude at one loop would lead to terms proportional to

ln(s/t) = ln(s/ |t|)− iπ, where the imaginary ontribution to the full amplitude arises from

the fator −iπ. Keeping this in mind, we see that we an get the real part of the amplitude

by replaing −iπ → ln(s/ |t|) in our result,

ReA(a) = −N
2 − 1

4N2
16πα2

s

s

t
ln(

s

|t|)
∫

d2k1
(2π)2

−∆2

k21 (k1 −∆)2
. (1.56)

Using the rossing symmetry relation (1.46) the full amplitude at one loop of the diagram

(b) is

A(b) = −N
2 − 1

4N2
16πα2

s

−s
t

ln(
−s
t
)

∫

d2k1
(2π)2

−∆2

k21 (k1 −∆)2
. (1.57)
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Note that there is no ontribution to the imaginary part as −s/t > 0, whih is onsistent that

the diagram b does not ontribute to the disontinuity, it is only neessary for onvergene in

the s omplex plane. The expression (1.57) is the opposite of the real part of the ontribution

of the diagram (a). Consequently the real parts of the two diagrams anel and only the

imaginary part of diagram (a) remains at the end,

A(a)+(b) = ImA(a) . (1.58)

Note that this anellation is due to the fat that the olor fators are the same for the

diagrams (a) and (b), as we are interesting here in a olor singlet exhange. It is not the ase

for a olor otet exhange where the real parts are not aneling eah other.

1.2.3 Impat fator representation of the quark-quark sattering

amplitude

We will introdue here the kT−fatorization sheme [25, 26, 27, 28, 29, 30, 31℄ whih is valid

in the perturbative Regge limit where the amplitude is fatorized into an upper and a lower

so-alled impat fators that exhange at Born level two t−hannel gluons in a singlet olor

state.

Let us show on the partiular example of the sattering of two quarks in the forward limit

∆ = 0, k1 = k and k2 = k, the proedure of kT−fatorization.

(a1) (b1)

(a2) (b2)

PSfrag replaements

k1 k2

k2 k1

Figure 1.4: Diagrams of the singlet exhange.

In �g. 1.4 are shown four diagrams whih when they are summed orresponds to twie the

amplitude at the Born level of the singlet exhange, A = 1
2
(A(a1)+A(b1)+A(a2)+A(b2)). The

fator 1/2 prevent from overounting the diagram ontributions due to the loop-integration
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where we integrate over all on�gurations of the momenta k1, k2. The amplitude of the

diagram (a1), putting apart the olor fator

N2−1
4N2 reads

iA(a1) =
s

2

∫

dαdβd2k

(2π)4

(

u(p1)igγ
µ i(/p1 + /k)

(p1 + k)2 + iǫ
igγνu(p1)

)

up

×
(

u(p2) igγ
α i(/p2 − /k)

(p2 − k)2 + iǫ
igγβu(p2)

)

down

−igµα
k2 + iǫ

−igνβ
k2 + iǫ

, (1.59)

where "up" and "down" subsripts identify the upper and lower parts of the diagram (a1)

�g. 1.2. Now using the eikonal approximation, we an replae

gµν → 2

s
pup2µp

down

1ν , (1.60)

and we an approximate k = αp1 + βp2 + k⊥ by

kup = βp2 + k⊥ , kdown = αp1 + k⊥ , (1.61)

as the p1 (resp. p2) omponent is negligible ompared to one in the upper (resp. lower) part

of the diagram. We also approximate k2 = −k2. After these simpli�ations we get,

iA(a1) =
s

2

∫

dαdβd2k

(2π)4

(

2i(ig)2

s
u(p1)

/p2/p1/p2

βs− k2 + iǫ
u(p1)

)

up

×
(

2i(ig)2

s
u(p2)

/p1/p2/p1

−αs− k2 + iǫ
u(p2)

)

down

i

k2
i

k2
. (1.62)

Using the Cli�ord algebra of the Dira matrix {γµ, γν} = 2gµν, and the fat that p1 and p2

are light-one vetors we have

u(p1)/p2/p1/p2u(p1) = su(p1)/p2u(p1) = s2 , (1.63)

where we have for the last equality used the Gordon identity and the normalization of the

spinors. The amplitude reads now,

iA(a1) =
s

2

∫

d2k

(2π)2
−1

(k2)2

×
(

2i(ig)2
∫

dβ

2π

1

β − k2

s
+ iǫ

)

up

×
(

2i(ig)2
∫

dα

2π

1

−α− k2

s
+ iǫ

)

down

. (1.64)

Let us rewrite this result as

iA(a1) =
s

2

∫

d2k

(2π)2
−1

(k2)2

(
∫

dβ

2π
φ(β, k)

)

up

(
∫

dα

2π
φ(−α,−k)

)

down

, (1.65)

with

φ(x, ℓ) =
2i(ig)2

x− ℓ2

s
+ iǫ

. (1.66)
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The ontributions of the diagrams (b1), (a2) and (b2), are obtained by hanging the signs of

k in the propagators leading to

iA(b1) =
s

2

∫

d2k

(2π)2
−1

(k2)2

(
∫

dβ

2π
φ(−β,−k)

)

up

(
∫

dα

2π
φ(−α,−k)

)

down

, (1.67)

iA(a2) =
s

2

∫

d2k

(2π)2
−1

(k2)2

(
∫

dβ

2π
φ(−β,−k)

)

up

(
∫

dα

2π
φ(α, k)

)

down

, (1.68)

iA(b2) =
s

2

∫

d2k

(2π)2
−1

(k2)2

(
∫

dβ

2π
φ(β, k)

)

up

(
∫

dα

2π
φ(α, k)

)

down

. (1.69)

The total ontribution reads

iA =
s

2

∫

d2k

(2π)2
−1

(k2)2
× 2 (1.70)

× 1

2

(
∫

dβ

2π
(φ(β, k) + φ(−β,−k))

)

up

× 1

2

(
∫

dα

2π
(φ(α, k) + φ(−α,−k))

)

down

,

where the fator

1
2
are symmetrially inserted in front of the upper and lower parts of the

proess. As we know that iA = 1
2
(A(a1) + A(a2) + +A(b1) + A(b2)) beause of the fat we

have onsidered twie more diagrams than it was neessary, we have a global fator

(

1
2

)

up

×
(

1
2

)

down

× 2 = 1
2
where the extra fator 2 has been put in the t−hannel gluon propagator

part of the amplitude. This fator 2 is oming from the fat that there are two possibilities to

ombine the indies of the gµαgνβ of the propagator and gµβgνα, in other words this fator is

absorbed in the 4−point green funtion of the t−hannel gluons. As we took are of keeping

the oe�ient that belong respetively to the upper and lower part of the proess, we see

that eq. (1.70) an be represented as in �g. 1.5.

Looking at the integrands of eq. (1.70) is also now lear that the integrals over β and α

onverge,

φ(a1)
up

(β, k) + φ(a1)
up

(−β,−k) ∼ 1

β2
. (1.71)

The ontributions of all the diagrams are neessary to prove the onvergene of the integrals

over β.

We hoose to integrate over the ontour C− in the β− and α− omplex planes shown in

�g. 1.6, the integral

1

2

(
∫

C−

dβ

2π
(φ(β, k) + φ(−β,−k))

)

1

2

(
∫

C−

dα

2π
(φ(α, k) + φ(−α,−k))

)

=
1

4

∫

C−

dβ

2π
φ(β, k)

∫

C−

dα

2π
φ(α, k) =

1

4
(2i(ig)2)2(−i)(−i) = (4παs)

2 . (1.72)

After restoring the olor fator, we get the same result than in the diret omputation with

the Cutkosky rules eq. (1.54)

ImA =
N2 − 1

4N2
16π2α2

ss

∫

d2k1
(2π)2

1

(k2)2
. (1.73)
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Figure 1.5: Deomposition of the total amplitude and ombinatorial fators.
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Going bak to eq. (1.70) we see that the amplitude reads

A =
is

2

∫

d2k

(2π)2
2

(k2)2
Φab
up

(k)Φab
down

(k) , (1.74)

= is

∫

d2k

(2π)2
1

(k2)2
Φab
up

(k)Φab
down

(k) , (1.75)

with,

Φab
up

(k) =
δab

2N

1

2

∫

dβ

2π
(φ(β, k) + φ(−β,−k)) (1.76)

=
1

2

∫

dβ

2π
εNS

µ εNS

ν Sµν
q(p1)g(k1,a)→q(p1)g(k2,b)

(β, k) , (1.77)

the so-alled impat fator for the upper part of the proess, where Sµν
q(p1)g(k1,a)→q(p1)g(k2,b)

(β, k)

is the S−matrix element of the upper sub-proess where the quark ouples with gluons with

"non-sense" polarizations εNS

as de�ned in eq. (1.44) due to eikonal approximation.

Note that other onventions exist, for example in ref. [22℄, the impat fator is de�ned as

Φ[22℄ = 2πΦHere
and the amplitude reads

A[22℄ = is

∫

d2k

(2π)4
Φ[22℄Φ[22℄

(k2)2
,

or in ref. [32℄, Φ[32℄ = 2
√
πΦHere

and the amplitude reads

A[32℄ =
is

2

∫

d2k

(2π)3
Φ[32℄Φ[32℄

(k2)2
.

Depending on the onventions, the olor fator

δab

2N
is inluded in the impat fator de�-

nition suh as the olor fator

N2−1
4N2 =

(

δab

2N

)

up

(

δab

2N

)

down

is reovered in the �nal amplitude.

Note that in the ase of two quark sattering amplitude, the impat fators are onstant

and equal to 4παs. As a onsequene the integral over k is infra-red divergent. We will see

that in the ase where olorless partiles are involved in the initial and �nal states of the

impat fator, the gauge invariane fores the impat fator to anel, preventing thus the

infra-red divergene of the k integral.

1.2.4 The kT fatorization sheme

We present how the kT−fatorization proedure is generalized for olorless states. Let us

onsider a more general proess where two olorless probes satter with an exhange of a

pomeron in t−hannel,

A(p1) +B(p2) → A′(p1 +∆) +B′(p2 −∆) .

Due to the fat that we are in the high energy limit there will be a large rapidity gap between

A′ and B′. The dominant ontribution in powers of s to the amplitude is given by an exhange
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of gluons in t-hannel. Indeed the power behavior in s of the amplitude at high energy for

N partiles exhanged in t−hannel depends on the spins σi of these partiles,

A ∝ s
∑

i σi−N+1 , (1.78)

thus the leading ontributions in powers of s involves only gluons. As a general priniple, in

the limit s→ ∞ the eikonal approximation for gluons leads to the �nite terms that does not

derease as power of s.

One an replae the numerators of the gluon propagators by the non-sense polarizations

thanks to the eikonal approximation in the upper and lower blob verties. Then one an

safely neglet the omponent of the gluon momenta along the dominant like-one diretion

of the upper or lower blob ompared to the omponent of the momenta of the partiles of

the blobs. The amplitude fatorizes then as illustrated in �g. 1.7 where Φup
a and Φup

b are the

s− and u−ontributions to the sub-proesses A + g → A′ + g. The 4-point Green funtion

of the gluons G ontains the energy dependene and as we de�ne the impat fators as the

sum of the s− and u− hannel, we need to put a fator 1/2 in the de�nition of the impat

fator to avoid double ounting when joining the gluoni lines as it was illustrated on the

quark�quark sattering. One should not forget also the fator 2 oming from the Jaobian

s/2 in the integral measure.
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Figure 1.7: kT−fatorization of the proess A + B → A′ + B′. The upper and lower impat

fators are the sum of the s− and u−ontributions Φup(down) = 1
2
(Φ

up(down)
a + Φ

up(down)
b ).

The 4-point Green funtion of the gluons at Born level G reads

2

k2(k −∆)2
,

where the fator 2 is due to the fat that there are two ombinations to link the upper gluons

to the lower ones as illustrated in �g. 1.5 and the amplitude reads

A = is

∫

d2k

(2π)2
1

k2(k −∆)2
Φab
up

(k, k −∆)Φab
down

(k, k −∆) , (1.79)
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with

Φab
up

(k) =
1

2

∫

dβ

2π
εNS

µ εNS

ν Sµν, ab
A g→A′ g(β, k) . (1.80)

De�ning the s−hannel Mandelstam variable κ of the system A(pA) + g(k1), suh as,

κ = (pA + k1)
2 ≡ βs+ p2A + k21 ,

we an replae the integral over β by an integral over κ,

Φab
up

(k) =
1

2s

∫

dκ

2π
εNS

µ εNS

ν Sµν, ab
A g→A′ g(κ, k) . (1.81)

The impat fator is then de�ned as the integral along the ontour illustrated in �g. 1.8.

This ontour an be losed on the disontinuity of the right ut along the real axis, leading

to the �nal expression

Φab
up

(k) =
1

2s

∫

dκ

2π
εNS

µ εNS

ν DisκSµν, ab
A g→A′ g(κ, k) . (1.82)

The energy dependene of the gluon Green funtion an be worked out at the leading

log(1/x) (LLx) auray by resumming the amplitude in the relevant parameter αs ln(s) as

the large logarithm of s an ompensate the small value of αs. The large ln(s) are given

at LLx in the multi-Regge kinemati where, onsidering A and B �ying respetively almost

along the light-one vetors p1 and p2, a ladder of gluons with momenta

ki = αip1 + βip2 + k⊥i ,

is exhanged in t−hannel with the following strong ordering,

1 ≫ α1 ≫ αi ≫ αn ,

β1 ≪ βi ≪ βn ≪ 1 ,

k2⊥1 ∼ k2⊥i ∼ sαiβi . (1.83)

In this kinemati, the ladder of gluons an be resummed in two "reggeized" gluons whih

exhange usual gluons oupling with an e�etive vertex alled Lipatov vertex [33℄. Using
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Mellin transformation to deouple the gluon ladder from the impat fators the amplitude

reads

A(s, t) =
is

(2π)2

∫

d2k

k2
Φab

1 (k, ∆− k)

∫

d2k′

k′2
Φab

2 (−k′, −∆+ k′)

δ+i∞
∫

δ−i∞

dω

2πi

(

s

s0

)ω

Gω(k, k
′,∆) , (1.84)

with the Mellin transform of the Green funtion Gω(k, k
′,∆) is governed by the Balitsky,

Fadin, Kuraev and Lipatov (BFKL) equation [34, 35, 36, 37℄ at LLx. The BFKL equation

in terms of the rapidity Y = ln(1/x) reads

∂

∂Y
F(Y, k′) =

αsNc

2π

∫

d2kK(k′, k)F(Y, k) (1.85)

with F(Y, k,∆) the unintegrated gluon density whih ontains the 4-point gluon Green fun-

tion Y−dependene and K(k′, k) the BFKL kernel. The BFKL solution [38, 33℄ is of the

form

F(Y, k) ∼ (1/x)
4Ncαs

π
ln(2) ∼ sω0 . (1.86)

This solution exhibits a value for the pomeron interept of αP = 1 + ω0 = 1 + 4Ncαs

π
ln(2)

whih is slightly above one, leading to the violation of the Froissart bound as it was already

expeted from the Donnahie and Landsho� �ts. We will see in setion 1.3.4 some of the

models proposed to solve this problem of unitarity violation.

Note that the impat fators do not depend on s and the whole s−dependene is inluded
in the Green funtion of the gluons. This remark agrees with the disussion in part 1.1.2 on

the universality of the t−hannel reggeon exhange whih ontains the s−dependene of the
amplitudes.

The QCD gauge invariane and the fat that the probes are olorless, require the anel-

lation of the impat fators in the limits k⊥ → 0 or (k⊥−∆⊥) → 0. Indeed this is due to the

QCD Ward identities, assuming that the t−hannel gluons are on-shell (whih is the ase in

the limit k2⊥ ≈ k2 → 0),

Sγ∗g→γ∗g
µν kµ = Sγ∗g→γ∗g

µν (∆− k)ν = 0 . (1.87)

eq. (1.87) implies that the impat fator proportional to

Sγ∗g→γ∗g
µν εNSµεNSν =

2

s
Sγ∗g→γ∗g
µν pµ2p

ν
2 = −2

s
Sγ∗g→γ∗g
µν kµ⊥(k⊥ −∆⊥)

ν ,

vanishes when k⊥ → 0 or k⊥ − ∆⊥ → 0. The fat that the probes are olorless is essential

for the QCD Ward identity used here. For example, in the quark-quark sattering, we saw

that the amplitude are not infra-red safe beause they do not anel when k⊥ → 0, but the

quarks are not olorless probes. Another way to see this gauge invariane requirement is

that a olorless probe interats with the t−hannel gluons through a partoni system. For

k⊥ of the order of the transverse size of the partoni system, the gluon an resolve the olor
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harges of the partons. When k⊥ vanishes, the transverse size resolved by the gluon beomes

larger than the transverse size r of the system and the olor harges of the partons are then

sreening eah other. As the probe is olorless, the whole partoni system is olorless and the

oupling of the gluon to this system is then vanishing as the e�etive olor harge resolved

by the gluon vanishes, as illustrated in �g. 1.9.

PSfrag replaements
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Figure 1.9: In the limit k → 0, the gluon annot resolve anymore the olored quark as its

olor harge is shadowed by the olor harge of the antiquark.

1.3 Deep inelasti sattering amplitude in the perturba-

tive Regge kinematis

1.3.1 Introdution to DIS observables

PSfrag replaements k
k′

q

p
pX

Figure 1.10: Deep inelasti sattering proess e−(k) + p(p) → e−(k′) +X(pX) summed over

all �nal states X .

We denote p, q and k the respetive momenta of the proton, the virtual photon and the

eletron. The virtuality Q of the photon is de�ned as q2 = −Q2
. Let us denote,

• S = (k + p)2 the squared enter of mass energy of the ep system,

• W = (q + p)2 the squared enter of mass energy of the γ∗p system,

• x = Q2

2p·q = Q2

2ν
with ν = p · q, the Bjorken variable of the proess, whih in the parton

model is the fration of proton momentum arried by the interating parton and ν/Mp

the virtual photon energy in the proton rest frame.

• y = p·q
p·k the fration of the eletron energy transferred to the virtual photon in the

proton rest frame.
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In the high energy limit, (for a pedagogial book on high energy QCD see Ref. [39℄), s ≫
Q2 ≫ (M2

p ,Λ
2
QCD) with ΛQCD the QCD sale and Mp the mass of the proton, the variables

x and y an be approximated by x ≈ Q2

W 2 and y ≈ Q2

xs
. The di�erential ross-setion reads

E ′
dσe−p

d3k′
=

e2

8π2(s−M2
p )q

4
LµνWµν , (1.88)

with E ′ and k′ the energy and the momentum of the sattered eletron, Lµν the leptoni part

of the proess assoiated to the leptoni urrent and Wµν the hadroni tensor assoiated with

the interation between the probe (the virtual photon) and the hadron. Negleting the mass

of the eletron

Lµν = 2(kµk′ν + kνk′µ − gµνk · k′). (1.89)

The tensor Wµν reads

4πWµν =
∑

X

∫

dΠX(2π)
4δ(p+ q − pX)

×
〈

〈p(p)| J†ν(0) |X(pX)〉 〈X(pX)| Jµ(0) |p(p)〉
〉

spin

=

∫

d4yeiq·y
〈

〈p(p)| J†ν(y)Jµ(0) |p(p)〉
〉

spin
(1.90)

from the �rst line to the seond we used �rst a translation of the matrix element

〈p(p)| e−iP̂ ·yeiP̂ ·yJ†ν(0)e−iP̂ ·yeiP̂ ·y |X(pX)〉 = eiy·(pX−p) 〈p(p)| J†ν(y) |X(pX)〉 ,

and then the ompleteness relation

∑

X

∫

dΠx |X(pX)〉 〈X(pX)| = 1 .

Due to the optial theorem, the tensor Wµν is related to the imaginary part of the forward

Compton sattering amplitude Tµν (Wµν = 2ImTµν) illustrated in �g. 1.11,

4πTµν = i

∫

d4y eiy·q
〈

〈p(p)|T{J†ν(y)Jµ(0)} |p(p)〉
〉

spin
. (1.91)

PSfrag replaements
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Figure 1.11: Forward Compton sattering amplitude.

The hadroni tensor annot be omputed perturbatively and have to be modeled by

parameterizing it on the relevant Lorentz strutures. Using the transformations under parity



CHAPTER 1. HIGH ENERGY QCD 26

and time reversal of the orrelator and the gauge invariane onditions qµWµν = qνWµν = 0,

the hadroni tensor Wµν an be parameterized by two independent struture funtions F1

and F2 suh as,

Wµν = −(gµν −
qµqν
q2

)F1(x,Q
2)

+
1

ν
(pµ − qµ

p · q
q2

)(pν − qν
p · q
q2

)F2(x,Q
2) . (1.92)

Putting all together one �nds for the di�erential ross-setion of the DIS of the proton and

the eletron in the proton rest frame,

dσep
tot

dE ′dΩ
=

α2

4MpE2 sin4(θ/2)

(

2F1 sin
2(θ/2) +

M2
p

ν
F2 cos

2(θ/2)

)

, (1.93)

with Ω and θ the solid angle and the azimuthal angle of the sattered eletron and α = e2/4π

the �ne struture onstant.

The parton model

In the so-alled naive parton model proposed by Feynman and Bjorken [2, 40, 1℄, the proton

is assumed to be onstituted of point-like fermioni partiles alled partons. Comparing the

result (1.93) with the di�erential ross-setion of a spin 1/2 point-like partile, for example

e−µ− ross-setion,

dσe−µ−

dE ′dΩ
=

α2δ(1− x)

4mµE2 sin4(θ/2)

(

sin2(θ/2) +
m2

µ

ν
cos2(θ/2)

)

, (1.94)

and assuming that a parton of mass mf and momentum pf = xfp interats with the photon,

leads to

2F1 =
Mp

mf
δ(1− zf ) =

Mp

mf
δ(1− x/xf )

and

F2 =
mf

Mp xf
δ(1− zf ) =

mf

Mp xf
δ(1− x/xf ) = xf

Mp

mf

δ(1− x/xf ) = 2xfF1 ,

with zf = Q2/2q ·pf = x/xf . Note that ν is replaed in (1.94) by νf = q ·pf = xfν and in the

proton rest frame νf/ν = mf/Mp. It implies that the struture funtions are independent of

Q2
whih ould explain in the early experimental analysis at SLAC the fat that the measure

of F2 depends very weakly on Q2
known as the Bjorken saling. In the parton model, the

hadroni tensor Wµν is written as,

Wµν =
∑

f

∫

dxf
xf

ff(xf )W
f
µν , (1.95)

with ff the parton distribution funtion and W f
µν the "partoni tensor",

4πW f
µν =

∫

d4p′2πδ(p′2)(2π)4δ(xfp+ q − p′)
〈

〈xfp| J†ν(y)Jµ(0) |xfp〉
〉

spin

= 2πxfδ(xf − x) e2f

(

−(gµν −
qµqν
q2

) +
2xf
ν

(pµ − qµ
p · q
q2

)(pν − qν
p · q
q2

)

)

. (1.96)
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This leads to the expressions

F1 =
1

2

∑

f

e2fff(x) and F2 = 2xF1(x) , (1.97)

the seond equality in (1.97) is known as the Callan-Gross relation [41℄, and ould explain

why the data for the longitudinal struture funtion de�ned as FL(x) = F2(x) − 2xF1(x)

were small ompared to the data of F2. Despite of these preditions, the main problem of

the naive parton model is that it assumes that the partons are free inside the nuleon while

they should be in the same time strongly interating with eah other to maintain themselves

in the hadron bound state. This is of ourse explain by the asymptoti freedom in QCD, i.e.

the oupling of the partons beomes weak at high energy sales Q2 ≫ Λ2
QCD.

The parton piture in QCD

A hadron in the point of view of QCD ontains �utuations of partoni �elds of spae and

time sale smaller than its hadroni size. The probe (virtual photon) an resolve the �u-

tuations in the hadrons that have typially larger sizes than the size of the probe and all

smaller �utuations only partiipate in the renormalization of the masses and the oupling

onstants. In the in�nite momentum frame where the proton has the speed of light, the

Lorentz dilatation of time sales implies that the �utuations have a long life time ompared

to the time sale of the probe and they behave as if they were free. From this point of view

we see that the number of �utuations resolved by the probe beomes larger and larger with

dereasing x beause of the emission of gluons by bremsstrahlung. The fat that the probe

resolves more and more partons as Q2
inreases is the soure of the quantum orretions that

violates the Bjorken saling. So both x and Q2
variations leads to quantum orretions to the

observables. The x−evolution is given by the BFKL equation in the diluted regime where the

partoni density is small and by the Balitsky-Kovhegov (BK) equation [42, 43℄ in the dense

regime where the partoni interations due to their overlapping leads to non-linear evolution

equations. Both equations resum the large leading terms in αs

∫ p+ dk+

k+
∼ αs ln(1/x) due

to the soft gluon emissions. The Q2
evolution is given by the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) equation [44, 45, 46, 47℄ whih resums the large ln(Q2) leading

terms that appear due to ollinear singularities αs

∫ Q2 dk2⊥
k2⊥

∼ αs ln(Q
2).

In the Bjorken limit (Q2 → ∞, x �xed), the expression (1.90) of Wµν , the integral is

dominated by the value of the orrelator for 0 < y2 < 1
Q2 . The way to ompute these

ontributions is to use the operator produt expansion (OPE) on the light-one y2 → 0, the

OPE tehnique was introdued in partile physis by Wilson in the 70's [6℄ and was then

applied to DIS [7, 4℄ and later to exlusive proesses [48℄. It onsists in expanding the produt

of the eletromagneti urrents as

J(y)J(0)
|y|→0
=
∑

s,i

Cs,i
µ1···µs

(y)Oµ1···µs

i (0) , (1.98)

where the oe�ients Cs,i
µ1···µs

(y) = yµ1 · · · yµsC
s,i(y2) are the Wilson oe�ients, the funtions

Cs,i(y2) ontain the singularities when |y| → 0. Oµ1···µs

i (0) are loal operators of spin s that
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have the same quantum numbers of the l.h.s. of (1.98). By dimensional analysis, the anonial

dimension of the urrents are dJ = 3 and then the Wilson oe�ients behave as

Cs,i(y2) ∼ |y|ds,i−s−6 = |y|ti−6 , (1.99)

where ds,i is the anonial dimension of the operator Oµ1···µs

i and s is the spin and ti = ds,i−s
is the twist of the operator Oµ1···µs

i . Note that the di�erene between the OPE on the

light-one (y2 → 0) and the standard OPE (yµ → 0), is that the hierarhy of the leading

operators is not given by the anonial dimension of the operators but by their twists and

thus there is an in�nite set of operators of the same twist, as the dimension of the operators

an be ompensated by their spins. The singularities that drive the behavior of the non-loal

orrelators are given by operators of twist ts,i < 6 and the leading twist operators of QCD

are of twist 2.

One an parameterize the orrelators on the possible Lorentz strutures as,

〈

〈p(p)| Oµ1···µs

s,i (0) |p(p)〉
〉

spin
= pµ · · · pµs 〈Os,i(0)〉+ · · · , (1.100)

where "· · ·" stand for terms with trae. Replaing Jµ(y)Jν(0) in the de�nition (1.90) of Wµν

by the OPE leads to

4πWµν =
∑

s,i

〈Os,i(0)〉
∫

d4yeiq·y(y · p)sCs,i(y2)

=
∑

s

x−s
∑

i

〈Os,i(0)〉 (−iQ2 ∂

∂Q2
)sC̃s,i(Q2)

≡
∑

s

x−s
∑

i

〈Os,i(0)〉 Ds,i(Q2) , (1.101)

with C̃s,i(Q2) the Fourier transform of Cs,i(y2). Ds,i(Q2) sales like ∼ (1/Q)ti−2, so at

leading twist the Bjorken saling is veri�ed. The oe�ient funtions Ds,i(Q2) are universal

as the target dependene is ontained in the initial and �nal states of 〈Os,i(0)〉 and they are

alulable in pQCD. The struture funtions take the forms

F1(x,Q
2) =

∑

s

x−s
∑

i

〈Os,i(0)〉 Ds,i
1 (Q2) , (1.102)

F2(x,Q
2) =

∑

s

x−s+1
∑

i

〈Os,i(0)〉 Ds,i
2 (Q2) . (1.103)

The leading twist QCD operators are,

Oµ1···µs
s,qf

= ψ̄(0)γ{µ1∂µ2 · · ·∂µs}ψ(0) , (1.104)

Oµ1···µs
s,g = F {µ1

µ ∂µ2 · · ·∂µs−1F µs}µ , (1.105)

with "{· · · }" stands for the symmetrization of µ1, · · ·µs indies and the subtration of the

trae terms. Identifying the struture funtions in (1.97) and (1.102, 1.103) leads to

∫

dx

x
xs(ff (x) + ff̄(x)) =

〈

Os,qf

〉

, (1.106)
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whih relates the Mellin moments of the PDFs to the expeted values on the hadroni state

〈

Os,qf

〉

.

Taking the average value of Oµ1···µs
s,qf

and Oµ1···µs
s,g on quark of �avor f ′ state, one an show

that the orresponding

〈

Os,qf

〉

= δff ′ and 〈Os,g〉 = 0. Identifying the struture funtions in

(1.97) and (1.102, 1.103) leads to

∫

dx

x
(ff(x) + ff̄(x)) =

〈

Os,qf

〉

. (1.107)

The Callan-Symanzik renormalization group equations for the orrelators 〈J(y)J(0)〉 and
〈Os,i〉 read

(

µ
∂

∂µ
+ β(g)

∂

∂αs

)

〈J(y)J(0)〉 = 0 , (1.108)

((

µ
∂

∂µ
+ β(αs)

∂

∂αs

)

δij + γs,ij(αs)

)

〈Os,j〉 = 0 , (1.109)

with β(αs) = µ2 dαs

dµ2 and γs,ij the element of the anomalous dimension matrix. The running

of αs at one loop approximation leads to

αs(Q) =
8π2

β0 ln(Q/ΛQCD)
, (1.110)

with β0 =
11
3
Nc− 2

3
nf

4π
. As the struture funtions do not depend on the hoie of µ2

, the

oe�ient funtions satisfy

((

µ
∂

∂µ
+ β(αs)

∂

∂αs

)

δij + γs,ij

)

Ds,j = 0 , (1.111)

The solutions of this equation is given by,

Ds,i(Q/µ, αs) = Ds,j(Q0/µ, αs(Q))





(

ln(Q/ΛQCD)

ln(Q0/ΛQCD)

)
8π2A(s)

β0





ji

.

The oe�ients Aij(s) = γs,ij(µ)/(4παs(µ)) of the matrix A are alulable at one loop level

from the ounter terms that regularize the operator divergene. As a onsequene the saling

violations at one loop are responsible for the Bjorken saling and the mixing between the

operator expetation values involves the gluon operators (�utuations resolved when probing

with a higher sensibility),

∫

dx

x
xs
∑

f

(ff(x,Q
2) + ff̄(x,Q

2)) ∝





(

ln(Q/ΛQCD)

ln(Q0/ΛQCD)

)
8π2A
β0





fi

〈Os,i〉Q0
. (1.112)

Deriving this equation with respet to ln(Q2) leads to

Q2∂f̃f (s,Q
2)

∂Q2
= −2παs(Q)Afj(s)f̃j(s) , (1.113)
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with f̃ the Mellin moments of the PDFs. This equation is equivalent to the DGLAP equation

in x−spae,
∂fi(x,Q

2)

∂ ln(Q2)
=
αs(Q

2)

2π

∫ 1

x

dy

y
Pij(x/y)fj(y,Q

2) , (1.114)

where the splitting funtions Pij(x/y) are the Mellin moments of the elements Aij(s),

∫

dx

x
xsPij(x) = −4πAij(s) . (1.115)

Note that the eigenvetors assoiated to the eigenvalue zero of the matrix A determine the

sum rules. These eigenvetors, whih are ombinations of operators, are sale independent.

For example the sum rule for s = 1 implies the onservation of the number of partons and

for s = 2 the onservation of the longitudinal momentum arried by all the partons.

The physial piture is that the photon an resolve the parton struture inside the parton

qi. The splitting funtions Pij(y) are the amplitudes of probability to get the parton j with

fration of momentum y of the momentum of the parton from the parton i. The DGLAP

equation is urrently known up to NNLO orretions [49℄.

1.3.2 Impat fators γ∗L,T → γ∗L,T

In terms of the Lorentz invariant quantities x, y and Q2
, the di�erential ross-setion (1.93)

in the in�nite momentum frame reads

dσep
tot

dxdQ2
=

2πα2

xQ4

(

(1 + (1− y)2)F2(x,Q
2)− y2FL(x,Q

2)
)

. (1.116)

These two struture funtions are losely linked to the longitudinal and transverse polarized

ross-setions σL and σT of the proesses

∑

X γ∗L,T + p(p) → X(pX),

FL(x,Q
2) =

Q2

4π2α
σL(x,Q

2) , (1.117)

F2(x,Q
2) =

Q2

4π2α

(

σT (x,Q
2) + σL(x,Q

2)
)

. (1.118)
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Figure 1.12: kT−fatorization of the forward Compton sattering amplitude.

We will fous in this part on the determination of the polarized ross-setions σL and σT

de�ned in eqs. (1.117, 1.118) in the perturbative Regge limit. Using the optial theorem,
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the polarized ross-setions σL,T are related to the forward Compton sattering amplitudes

Ael.

L,T ≡ Aγ∗L,T p→γ∗L,T p(s, t = 0),

σL,T =
2

F
ImAel.

L,T (s) =
1

s
ImAel.

L,T . (1.119)

Using the impat fator representation for the Compton sattering amplitude, as illustrated

in �g. 1.12 we get at Born level

σL,T =

∫

d2k

(2π)2
1

(k2)2
Φγ∗L,T→γ∗L,T (k,Q2)ΦP→P (k,M2) , (1.120)

where M is some non-perturbative sale of the transverse dynamis of the partons inside the

proton.

In the region Q2 ≫ Λ2
QCD, the impat fator Φγ∗L,T→γ∗L,T

an be omputed within the

perturbation theory. We will onsider here the lowest order in perturbation theory where

the photons interat with the gluons in t−hannel by dissoiating in a quark anti-quark pair.

We neglet for simpliity the masses of the quark in this omputation assuming Q2 ≫ m2
f ,

where mf is the mass of a quark of �avor f .

The vetors q, l and k are deomposed in the Sudakov basis of light-one vetors p1 and

p2 suh as,

q = p1 −
Q2

s
p2 , (1.121)

l = yp1 + βp2 + l⊥ , (1.122)

k =
κ+Q2 + k2

s
p2 + k⊥ . (1.123)

Note that we work in the in�nite momentum frame where the proton and the virtual photon

are moving respetively near the light-one vetors p2 and p1.

The longitudinal and transverse polarization vetors of the virtual photons are

εµγL =
1

Q
(pµ1 +

Q2

s
pµ2) , ε± =

1√
2
(0,∓1,−i, 0) . (1.124)

We de�ne the eulidean polarization vetors in the transverse spae as,

e± =
1√
2
(∓1,−i) . (1.125)

We use the Cutkosky rules to ompute the disontinuity of the four diagrams shown in

�g. 1.13 that ontribute to the impat fators.

The ontribution to the impat fator of the diagram (a) for a loop involving a quark of

eletri harge e,

Φ
γ∗L→γ∗L
(a) =

1

2s

∫

dκ

(2π)
Disκ A(a) (1.126)
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Figure 1.13: The four diagrams ontributing to the γ∗ → γ∗ impat fators, the dashed lines

are the ut in the diagrams.

and

Disκ A(a) =

∫

d4l

(2π)2
δ(l2)δ((l − q − k)2)(4πα)(4παs) (1.127)

×
−Tr

(

/εγ
∗

L (/l − /q)/εNS(/l − /q − /k)/εNS(/l − /q)/ε∗γ
∗

L /l
)

)

((l − q)2)2

=
s

2

∫

dydβd2ℓ

(2π)2
δ(ys(β − ℓ2

ys
)δ(ȳ(κ− κ0))(4πα)(4παs)

×
−Tr

(

/εγ
∗

L (/l − /q)/εNS(/l − /q − /k)/εNS(/l − /q)/ε∗γ
∗

L /l
)

)

((l − q)2)2

=
s

2

∫

dy d2ℓ

(2π)2
1

ys

δ(κ− κ0)

ȳ
(4πα)(4παs)

×
(

2Q

s

)2(
2

s

) −Tr (/p2(−ȳ/p1)/p2(−ȳ/p1)/p2(−ȳ/p1)/p2(y/p1))
( 1
y
(ℓ2 + yȳQ2))2

= 32sααs

∫

dy d2ℓδ(κ− κ0)
ȳ2y2Q2

(ℓ2 + yȳQ2)2
, (1.128)

with κ0 =
1
yȳ

(ℓ− yk)2. Note that we use the Ward identity to simplify the omputation by

rewriting the longitudinal polarization of the virtual photon as

εγ
∗

L =
1

Q

(

q +
2Q2

s
p2

)

. (1.129)

The Ward identity

qµAµ = 0 , (1.130)
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with Aµ suh as A = εγ
∗µ(q)Aµ, allows then to get rid of the terms in qµ in the photon

polarizations,

εγ
∗

L =
1

Q

(

qµ +
2Q2

s
pµ2

)

−→ 2Q

s
pµ2 . (1.131)

The ontribution of the diagram (a) to the impat fator reads

Φ
γ∗L→γ∗L
(a) =

8ααs

π

∫

dy d2ℓ
ȳ2y2Q2

(ℓ2 + yȳQ2)2
. (1.132)

Computing the other ontributions in the ase of the longitudinally polarized photon, sum-

ming the ontributions of all the �avors f of eletri harge qf and inluding the olor fator

Tr(tatb) = δab

2
involved in the olor singlet exhange, the total impat fator reads

Φγ∗L→γ∗L =
δab

2

8ααs

π

nf
∑

f

q2f

∫

dy d2ℓ

(

yȳQ

D(ℓ)
− yȳQ

D(ℓ+ k)

)2

. (1.133)

where D(ℓ) = ℓ2+µ2
with µ2 = yȳ Q2+m2

f . For ompleteness, we have restored in eq. (1.133)

the masses of the quarks involved in the loop mf .

The impat fator Φγ∗T→γ∗T
an be omputed using the same tehniques than we have

presented for Φγ∗L→γ∗L
. The result reads

Φγ∗T→γ∗T =
δab

2

2αsα

π

nf
∑

f

q2f

∫

dy d2ℓ (1.134)

×
{

−4yȳ ei · (L(ℓ)− L(ℓ− k)) (L(ℓ)− L(ℓ− k)) · e∗j
+ei · e∗j (L(ℓ)− L(ℓ− k))2

+ m2
f ei · e∗j

(

1

D(ℓ)
− 1

D(ℓ+ k)

)(

1

D(ℓ)
− 1

D(ℓ− k)

)}

,

with ei and e∗j the eulidean transverse polarization vetors of the ingoing and outgoing

photons, and

L(ℓ) =
ℓ

ℓ2 + µ2
.

It is easy to hek that the impat fators vanish when k2 → 0 as a onsequene of the Ward

identity as disussed in setion. 1.2.4.

1.3.3 Color dipole piture

Introdution

The basi idea of the dipole piture for DIS, initiated by the works of Nikolaev, Zakharov

[8, 9℄ and Mueller [10, 11℄, is that in the proton rest frame at low x, the photon dissoiates

into a partoni system that onstitutes a olletion of olor antiolor pairs alled "olor

dipoles" whih have a long life time ompared to the time of the interation of the partons

with the proton target. The sizes of the dipoles an then be assumed to be �xed during

the sattering of the partons with the nuleon target. The dipole states parameterized in
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terms of their transverse sizes are eigenstates of the sattering operators as the dipole size is

preserved during the sattering with the target. The amplitude fatorizes into, the overlap

of the initial Ψi and �nal Ψ∗f wave funtions of the virtual photon in the ase of DIS, whih

are the amplitude of probability to produe a on�guration of dipoles with �xed transverse

sizes, and the sattering amplitude T of these dipoles with the target.

The amplitude of the proess ip → fp, where p is the nuleon target and i and f the

initial and �nal states, an be written symbolially [50, 51℄,

A =
∑

n,Fn,{λk}

∫

[d2nrk]

∫

[dyk]Ψ
∗
f(n, {yk, rk, λk}) T (Fn) Ψi(n, {yk, rk, λk}) , (1.135)

where n is the number of partons involved in the intermediate Fok state Fn with longitudinal

fration of momentum {zk}k=1..n and impat parameters {rk}k=1..n, of heliities {λk}k=1..n.

The sattering operator T (Fn) being diagonal in the dipole states formed by the partoni

system is independent of the initial and �nal states that have formed the dipoles and by

onsequene is a universal quantity that depends only on the nuleon target dynamis.

The simplest ase is given by the lowest intermediate Fok state onstituted by a quark

(y, r1) antiquark (ȳ, r2) pair, where the ouples (z, rk) denotes the longitudinal fration of

momentum and the transverse position (impat parameter) of the parton. Indeed the ontri-

bution of higher Fok states due to the emission of low energy gluons are important when the

rapidity inreases but they an be absorbed, in the large Nc limit, in the dipole sattering

amplitude evolution governed by the BFKL evolution equation [52℄. The dipole piture for

DIS orresponds to the diagram shown in �g. 1.14, where we denote N (x, r, b) the imaginary

part of the (T (F2)), r = r2−r1 is the dipole vetor and b = yr1+ ȳr2 is the impat parameter

of the dipole, whih is Fourier onjugate of the transverse momentum transfer ∆.

PSfrag replaements

γ∗ γ∗

PP

N (x, r, b)

r

Figure 1.14: DIS within the olor dipole piture

Let us stress a useful analogy pointed out by Susskind [53℄ between the parton kine-

matis and the two-body problem in quantum mehanis. The Poinaré group in the in�nite

momentum frame ontains a sub-group that we denote F of transformations that leave invari-

ant the hypersurfae orthogonal to the dominant light-one diretion p1 and whose algebra

is isomorphi to the Galilean algebra of the transformations on a two-dimensional spae.

Among the transformations of the sub-group F are "Galilean boost"-like transformations on
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the transverse spae. In Ref. [53℄, a ditionary is established between the generators of the

Galilean transformations of a two-dimensional system of non-relativisti partiles of masses

mi, positions ri and momenta ℓi, and the generators of the sub-group F of the system of

partiles of longitudinal frations of momentum yi = {y, ȳ}, transverse impat parameters

ri = {r1, r2} and transverse momenta ℓi = {ℓ1, ℓ2}. The analog of the masses m1 and m2 of

the quark and the antiquark are proportional to the longitudinal omponents 2yp1 and 2ȳp1

in our omputation.

In the two-dimensional mehanis, the two-body problem an be simpli�ed by splitting

the system into the kinemati variables of its enter of mass and of its redued partile.

Following the above analogy, we �nd that the transverse oordinate of the "enter of mass"

of the dipole is given by b, and the vetor of the redued partile is given by r, while the

momentum of the redued partile is,

ℓ = ȳℓ1 − yℓ2 ,

and the e�etive mass is

M =
m1m2

m1 +m2
= 2yȳp1 .

The imaginary part of the dipole amplitude an be related to the b−dependent dipole

ross-setion,

dσ̂

d2b
= 2N (x, r, b) . (1.136)

In the ase of DIS, the momentum exhanged in t−hannel is zero whih leads to the following

dipole ross-setion,

σ̂(x, r) =

∫

d2b
d2σ̂

db
= 2

∫

d2bN (r, b, x) .

A usual assumptions is that the b−dependene fatorizes in N (x, r, b) as,

N (x, r, b) = T (b)N (x, r) .

The funtion T (b) desribes the gluon density inside the nuleon, it an be for example hosen

as a step funtion whih is one inside the nuleon and zero outside, giving after integration

over b,
∫

d2bN (x, r, b) = πR2N (x, r) ,

where R is the radius of the nuleon. This integral over b gives then an overall normalization

to the dipole ross-setion denoted σ0 suh as

σ̂(x, r) = σ0N (x, r) , (1.137)

with σ0 = 2
∫

d2bT (b) = 2πR2
.

As we will see on the partiular "saturation model", the dipole piture will be also on-

venient to implement saturation e�ets as one an de�ne dense and diluted partoni systems

depending on the size that the dipole an resolve ompared to a so-alled "saturation sale"

that emerges from the non-linear equations that govern the x−dependene of the dipole

sattering amplitude.
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DIS: fatorization of the wave funtions

Coming bak to the γ∗L,T → γ∗L,T impat fators eqs. (1.133, 1.134) for the DIS proess, we

will show that the results are onsistent with the dipole piture of �g. 1.14 one expressed in

the impat parameter representation. Let us introdue two identities

1

,

1

ℓ2 + µ2
=

∫

d2r

2π
eik·rK0(µr) , (1.138)

ℓ

ℓ2 + µ2
= −iµ

∫

d2r

2π
eik·r

r

r
K1(µr) . (1.139)

where r is a vetor of the transverse oordinate spae onjugated to the transverse momentum

ℓ, r = |r| and Kα(x) are the modi�ed Bessel funtions of the seond kind whih obey the

modi�ed Bessel's equations,

x2K ′′α(x) + xK ′α(x)− (x2 + α2)Kα(x) = 0 .

Using these identities, we an get the following expressions for the impat fators

Φγ∗L→γ∗L =
δab

2

8ααs

π

nf
∑

f

q2f

∫

dy d2ℓ

(

yȳQ

D(ℓ)
− yȳQ

D(ℓ− k)

)(

yȳQ

D(ℓ)
− yȳQ

D(ℓ− k)

)

=
δab

2

8ααs

π

nf
∑

f

q2f

∫

dy

∫

d2r yȳQK0(µr)

∫

d2r′ yȳQK0(µr
′)

×
(

1− e−ik·r
)

(

1− e−ik·r
′
)

∫

d2ℓ

(2π)2
eiℓ·(r+r′)

=
δab

2

8ααs

π

nf
∑

f

q2f

∫

dy

∫

d2r (yȳQK0(µr)) (yȳQK0(µr))

×
(

1− e−ik·r
) (

1− eik·r
)

=

∫

dy

∫

d2r

nf
∑

f

∑

h,h̄

∣

∣

∣
Ψ

γ∗L
f,hh̄

∣

∣

∣

2
[

δab

2

4παs

N

(

1− e−ik·r
) (

1− eik·r
)

]

, (1.140)

where Ψ
γ∗L
f,hh̄

is the amplitude of probability for the photon to dissoiate into a quark and

an antiquark of �avor f and of respetive heliities h and h̄ and longitudinal frations of

momentum y and ȳ = 1− y, whih form a olor dipole of size r. Ψ
γ∗L
f,hh̄

is the wave funtion

of the longitudinally polarized virtual photon omputed in the �rst order of the light-one

perturbation theory [54℄,

Ψ
γ∗L
f,hh̄

(y, r;Q2) = δh̄,−h
eqf
2π

√

Nc

π
(yȳQ)K0(µ |r|) . (1.141)

In eq. (1.140), the part between the square brakets orresponds to the interation of the

dipole with the two t−hannel gluons. The fatorization of the amplitude into the wave

funtions of the virtual photon and the dipole interation is valid even at low Q2
, it is only

1

Note that we got a overall minus sign in (1.139) ompared to [32℄.
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a onsequene of the high energy limit. Coming bak to the expressions of the polarized

ross-setions eq. (1.120) and replaing the impat fator of the proton by the unintegrated

gluon density F(x, k) de�ned as ΦP→P/(2π)2 at Born order, the polarized ross-setions read

σL,T =

∫

d2k
1

(k2)2
Φγ∗L,T→γ∗L,T (k,Q2)F(x, k) . (1.142)

Note that the gluon density g(x,Q2) is given by

g(x,Q2) =
1

π

∫ Q2

d2k

k2
F(x, k) . (1.143)

Inserting the result of eq. (1.140) in the expression of the polarized ross-setions eq. (1.142)

leads to the formula,

σL =

nf
∑

f

∫

dy

∫

d2r
∑

h,h̄

∣

∣

∣
Ψ

γ∗L
f,hh̄

∣

∣

∣

2

σ̂(x, r) , (1.144)

with the dipole ross-setion

σ̂(x, r) =
N2 − 1

4

4παs

N

∫

d2k
1

(k2)2
F(x, k)

(

1− e−ik·r
) (

1− eik·r
)

. (1.145)

Similarly the polarized ross-setion σT reads

σT =

nf
∑

f

∫

dy

∫

d2r
∑

h,h̄

∣

∣

∣
Ψ

γ∗T
f,hh̄

∣

∣

∣

2

σ̂(x, r) , (1.146)

where the wave funtion Ψ
γ∗T
f,hh̄

of the virtual transversely polarized photon is,

Ψ
γ∗T (λγ )

f,h,h̄
(y, r;Q2) = δh̄,−h

ieqf
2π

√

Nc

π
(yδh,λγ + ȳδh,−λγ )

(r · e(λγ ))

|r| µK1(µ |r|) . (1.147)

Note that the expressions of the wave funtions of the virtual photon beome in the non-

forward limit [32℄ where a momentum ∆ is exhanged in the t−hannel,

Ψ
γ∗L
hh̄
(q +∆) = δh̄,−h

eqf
2π

√

N

π
yȳQK0(µr)e

iȳ∆·r , (1.148)

Ψ
γ∗T
hh̄
(q +∆) = δh̄,−h

ieqf
2π

√

N

π
(yδh,λγ − ȳδh,−λγ )

e(λγ ) · r
r

µK1(µr)e
iȳ∆·r

+δh̄,hδhλγmf
eqf
2π

√

N

2π
K0(µr)e

iȳ∆·r . (1.149)

Let us now sketh how the light-one wave funtions naturally emerge from the eikonal

limit. The eikonal limit s→ ∞ an be seen as an in�nite boost of the inoming and outgoing

states along their longitudinal diretion z,

Sαβ = Limω→∞ 〈β| eiωK−U(∞,−∞)e−iωK
− |α〉 , (1.150)
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with K− = −Kz
the Lorentz boost generator along z. Splitting the S−matrix as,

U(−∞,∞) = U(−∞,−L)U(−L, L)U(L,∞) , (1.151)

where U(−L, L) ontains the interations eAµ(x)Jµ(x) with an external potential Aµ(x) for

x+ ∈ [−L, L], and inserting the in�nite boost along z leads to

Sαβ = 〈β|U0(+∞, 0) (1.152)

×T+{eie
∫

d2x⊥(
∫

dx+A−(x+,0,x⊥))(
∫

dx−J+(0,x−,x⊥))}
×U0(0,−∞) |α〉 ,

where U0(t1, t2) is the evolution operator that ontains only the self interation of the �elds.

The expression (1.152) an be projeted on all intermediate Fok states |γ〉 and |β〉 as,

Sαβ =
∑

γ,δ

〈β|U0(+∞, 0) |γ〉 〈γ|

×T+{eie
∫

d2x⊥(
∫

dx+A−(x+,0,x⊥))(
∫

dx−J+(0,x−,x⊥))}
× |δ〉 〈δ|U0(0,−∞) |α〉 , (1.153)

with T+ the light-one time ordered produt. In our ase, the sums over γ and δ are restrited

to the lowest Fok state, i.e. a quark antiquark pair. The photon light-one wave funtion

for a given intermediate state 〈δ| ontaining n partiles with oordinate {yi, r⊥i} is de�ned

as the amplitude of probability to get from the initial photon state at x+ = −∞ the state δ

at the light-one time x+ = 0,

Ψ({yi, r⊥i}) = 〈δ|U0(0,−∞) |α〉 . (1.154)

In the ase δ = q(p1, h)q̄(p2, h̄), the Fourier transform in k⊥−spae of light-one wave funtion
of the photon γ∗(q, λγ) reads

Ψ̃λ
hh̄({yi, k⊥i}) =

∫

d2k⊥i
(2π)2

e−ik⊥i·r⊥i 〈δ|U0(0,−∞) |α〉 , (1.155)

whih is the amplitude of a photon to split as γ∗(q, λγ) → q(ℓ1, h)q̄(ℓ2, h̄). We keep the

onventions

ℓ1 = yp1 +
ℓ2

ys
p2 + ℓ⊥ , ℓ2 = ȳp1 +

ℓ2

ȳs
p2 − ℓ⊥ (1.156)

q = p1 −
Q2

s
p2 , (1.157)

and we denote the energy Ei = k−i with k−i /
√
s ≡ p1 · k. We de�ne also the plus omponent

as k+i /
√
s ≡ p2 · k. The light-one wave funtion an be omputed in light-one perturbation

theory (Feynman rules an be found in [55℄). It reads

Ψ̃λ
hh̄(y, ℓ⊥) =

∫ 0

−∞
dte−it(Eγ−E1−E2+iǫ) 1√

s

uh(ℓ1)√
y

(eq(−/ǫ(λγ )))
vh̄(ℓ2)√

ȳ
(1.158)

=
i

Eγ −E1 − E2

1√
s

uh(ℓ1)(eqδab(−/ǫ(λγ )))vh̄(ℓ2)√
yȳ

(1.159)

=
i2
√
yȳ

ℓ2 + µ2
uh(ℓ1)(eqδab(−/ǫ(λγ )))vh̄(ℓ2) . (1.160)
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Note that in the standard way to alulate Feynman diagrams, the wave funtion an be

obtained by replaing the onservation of energy fator 2πδ(Eγ −E1 −E2) in the expression

of the T−matrix, by the integral

∫ 0

−∞
dx+ e−ix

+(Eγ−E1−E2+iǫ) =
i

Eγ − E1 − E2
,

and by adding the phase spae fator

1√
yȳs

. This spae fator

1√
yȳs

should be omitted for

external spinor �elds but as we are interested in the ase when the quark antiquark pair

interats at x+ = 0, we keep this fator in the de�nition of the wave funtion.

The expliit omputation of the urrents ū/ǫv an be done using the hiral representation

for the Dira spinors,

uh(p) =
/p+m√
E +m

(

χh(p)

0

)

(1.161)

and

vh(p) =
−/p+m√
E +m

(

0

χ−h(p)

)

, (1.162)

with χ1/2(p) = (1, 0) and χ−1/2 = (0, 1) and using the expressions (1.138) and (1.139) to

Fourier transform the results, allows to ome bak to the results for the photon wave funtion

Ψ
λγ

hh̄
(y, r) given by eqs. (1.141, 1.147) up to a normalization fator that depends on the

quantum numbers of the quark antiquark pair.

Let us now make a brief remark on the role of the eikonal approximation in the fatoriza-

tion of the photon wave funtions following the derivation in Ref. [56℄ in "usual" Feynman

diagrams. Let us onsider the diagram illustrated in �g. 1.15.

PSfrag replaements

q
ℓ1ℓ1

ℓ2

k

ℓa

Figure 1.15: One part of the ut diagrams.

The diagram gives the ontribution,

A = −eu
(h)(ℓ1)/ε

(λ)(q)/ℓa/ε
NS v(h̄)(ℓ2)

ℓ2a + iǫ
(1.163)

= e
y

ℓ2 + yȳQ2
u(h)(ℓ1)/ε

(λ)(q)/ℓa/ε
NS v(h̄)(ℓ2) , (1.164)
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where

ℓ1 = yp1 +
ℓ2

ys
p2 + ℓ⊥ , ℓ2 = ȳp1 +

ℓ2

ȳs
p2 − ℓ⊥ , (1.165)

q = p1 −
Q2

s
p2 , k =

κ+Q2 + k2

s
p2 + k⊥ , (1.166)

ℓa = ℓ1 − q = −ȳp1 +
ℓ2 + yQ2

ys
p2 + ℓ⊥ . (1.167)

Due to the eikonal approximation in the gluoni vertex, the polarization of the t-hannel

gluon is along p2. We an then safely hange in the numerator ℓa → ℓa + βp2, with β an

arbitrary number as

(/ℓa + β/p2)/p2 = /ℓa/p2 ,

to hange in the numerator ℓa → ℓ̃a with ℓ̃a on the mass shell,

ℓ̃a = −ȳp1 −
ℓ2

ȳs
p2 + ℓ⊥ = −ℓ2 .

Then we an rewrite

/ℓa →
∑

h̃

v(h̃)(ℓ2)v̄
(h̃)(ℓ2) ,

to get a fatorized form of the amplitude,

A =
∑

h̃

y

(

e
u(h)(ℓ1)/ε

(λ)(q)v(h̃)(ℓ2)

ℓ2 + yȳQ2

)

v̄(h̃)(ℓ2)/ε
NS v(h̄)(ℓ2) (1.168)

=
s

(2π)2

∑

h̃

Ψ̃
γ∗λ
h,−h̃(y, ℓ) δh̃,h̄ . (1.169)

1.3.4 Models for the dipole target interations

Under the assumption that the b−parameter dependene of the dipole sattering amplitude

fatorizes, we saw that the dipole ross-setion reads

σ̂(x, r) = σ0N (x, r) ≡ σ0N (Y, r) , (1.170)

with Y the rapidity Y = ln(1/x). Note that the assumption that the b dependene fator-

izes, even though used in most of dipole models, is not supported by the data on exlusive

di�rative proesses at HERA.

The dipole ross-setion σ̂(x, r) involves the dynamis of the gluons inside the proton.

At small−x one an expet saturation e�ets whih appear when the partoni density of the

nuleon beomes large. In the in�nite momentum frame, we an interpret saturation e�ets

as the saturation of the number of gluons of transverse size 1/Q in the wave funtion of the

nuleon target. This growth of the gluon density ould be responsible for a unitarity problem

(violation of the Froissart bound by the hard QCD pomeron exhange) of the theory but

we an expet that at some point the number of gluons stops growing, i.e. saturates, due
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Figure 1.16: Saturation and diluted regimes.

to reombinations of the partons following the idea of Gribov, Levin and Ryskin [57℄. Two

regimes an be then de�ned as illustrated in �g. 1.16, the diluted regime where the nuleon

is not saturated by the partons and the saturation regime where the gluon transverse areas

start to overlap. The so-alled ritial line between the two regimes is given by Q2 = Q2
s(x),

with Q2
s(x) the inverse transverse area where the probability to �nd more than one gluon is

of order one.

To take into aount these saturation e�ets inside the proton, a �rst saturation model

was introdued by Gole-Biernat and Wüstho� in 1998, where the dipole ross-setion is

parameterized by a Gaussian ansatz whih saturates at a value σ0,

σ̂(x, r) = σ0

{

1− exp

(

− r2

4R2
0(x)

)}

, (1.171)

where R0(x) is the saturation radius

R2
0(x) =

1

GeV

2

(

x

x0

)λ

, (1.172)

and the saturation regime is given for

Q2 .
1

R2
0(x)

∼ Q2
s(x) . (1.173)

The suess of this model was to desribe all the ontemporary HERA data [58, 59, 60, 61℄

for inlusive as well as di�rative ross-setions. The main feature of this model [62℄ is that it

provides a dipole ross-setion that gives bak the pomeron trajetory in the diluted regime

1/Q << R0(x),

F2 ∼ x−λ ,
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while for dense partoni systems 1/Q >> R0(x) the Froissart ondition is reovered,

F2 ∼ Q2σ0 ln(1/x) .

In the limit r → 0 the dipole ross-setion vanishes like σ̂(x, r) ∼ r2, this is known as the

property of "olor transpareny" [63, 64℄ due to the sreening of the quark and the antiquark

olors when the r → 0. Note that the Taylor expansion of eq. (1.145) around r = 0 shows this

behavior of the dipole ross-setion. To make ontat with the photoprodution regime, it is

ustomary [65℄ to make the following modi�ation in the de�nition of the Bjorken variable x

x→ x

(

1 +
4m2

f

Q2

)

=
Q2

W 2 +Q2

(

1 +
4m2

f

Q2

)

−−−→
Q2→0

4m2
f

W 2
, (1.174)

where mf is an e�etive quark mass whih depends on the �avor f and of the model used to

�t the data. The values of the best �t parameters of the original saturation model are shown

in tab. 1.1. Note that the inlusion of the harm ontribution, with mc = 1.5 GeV has also

been performed in Ref. [65℄. In �g. 1.17 are ompared the �ts with and without mass mf to

HERA data.

Fits σ0 (mb) λ x0

No harm 23.03 0.288 3.04× 10−4

With harm 29.12 0.277 0.41× 10−4

Table 1.1: Values of the parameters entering the GBW dipole ross-setion.

Another important feature of the saturation model whih is well reprodued by the data

is the geometri saling [66℄. The geometri saling an be seen as a onsequene of the

saling of the dipole ross-setion in the variable r̂ = r/R0(x). As wave funtions sale in

rQ = r̂QR0(x), one an show that after integration over r̂, the ross-setion does not depend

on Q2
and x but on a single saling variable τ = Q2R2

0(x). In �g. 1.18 the data for σγ∗p
tot

versus τ , are all lying on the same line, showing learly that the variables Q2
and x are

not independent variables. It was shown that the geometri saling still holds in the diluted

regime in the region governed by the BFKL equation up to Q2 ∼ Q4
s/Λ

2
QCD [67℄.

With the inreasing preision of data [68, 69, 70℄, the original saturation model failed to

desribe the new set of data, as it has been heked in Ref. [71℄ but it inspired many studies

[72, 71, 73, 74, 75, 76, 77℄. A way to improve the large Q2
behavior of the old GBW model,

is inspired from the onnetion at large Q2
between the gluon density g(x, µ2) and the dipole

ross-setion [78℄,

σ̂(x, r) =
π2

3
r2αs xg(x, C/r

2) , (1.175)

with xg(x, µ2) driven by the DGLAP evolution. The model proposed in Ref. [71℄ by Bartels,

Gole-Biernat and Kowalski for the dipole ross-setion is,

σ̂(x, r) = σ0

(

1− exp

(

−π
2r2αs(µ

2
g)xg(x;µ

2
g)

3σ0

))

, (1.176)
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Figure 1.17: The saturation model ompared to H1 and ZEUS data, [62℄. The solid and

dotted lines are respetively the results with mf = 140 MeV and mf = 0.

where the sale µ2
g = C

r2
+ µ2

0. The gluon density g(x, µ2
g) evolves with the LO-DGLAP

equation, negleting the quark distributions as we are in the low x regime, and obeys the

initial ondition at Q2
0 = 1 GeV2

xg(x,Q2
0) = Agx

−λg(1− x)5.6 . (1.177)

Two sets of the parameters {mf , Ag, λg, C, µ
2
0} were found to give a good desription of the

DIS data as shown in the table 1.2.

Fits mf (GeV) Ag σ0 (mb) λg C µ2
0 (GeV

2
) χ2/Ndf

1 0.14 1.20 23.0 0.28 0.26 0.52 1.17

2 0 13.71 23.8 -0.41 11.10 1.00 0.97

Table 1.2: Values of the parameters entering the BGBK dipole ross-setion.

The extension of this model with b−parameter dependene "b-sat" model [74, 76℄, for

non-forward sattering amplitudes, reads

N (x, r, b) = 1− exp(− π2

2Nc

r2αs(µ
2
g)xg(x, µ

2)T (b)) , (1.178)

where the proton shape in the transverse plane T (b) is assumed to have a Gaussian shape.

This model assumes that multiple dipoles satter independently and the models based on this
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Figure 1.18: Exhibition of the geometri saling by HERA data [66℄.

assumption, using the kind of parameterization of the dipole ross-setion as in eq. (1.178),

are referred as Glauber-Mueller models. Exlusive proesses in the high energy limit o�er a

good opportunity to probe the gluon density shape T (b) in the hadrons. The results obtained

with a Gaussian shape from the eletroprodution of vetor mesons at HERA, give the value

√

〈b〉2 = 0.56 fm whih is slightly smaller than the proton radius harge 0.87 fm.

The saturation sale Qs at the energies of HERA ollider is of the order Qs(x) ∼ 1 GeV

whih allows a perturbative treatment of the evolution equations of the dipole sattering

amplitude. In the diluted regime, the sattering amplitude is driven by the BFKL equation

in the regime Q2
s < Q2 < Q4

s/Λ
2
QCD [67℄. In the saturation regime, the reombinations of

gluons are responsible for non-linear terms in the evolution equations that desribe the small-x

evolution of the hadroni wave funtion. In the olor glass ondensate (CGC) formalism, the

JIMWLK equation, based on the study of renormalization (a la Wilson) group equation for

Wilson line orrelators gives the gluon density evolution in dense partoni regime aounting

for saturation e�ets. The JIMWLK equation is equivalent in priniple to an in�nite set of
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oupled equations on orrelators of Wilson lines known as the Balitsky hierarhy. This is

due to the fat that one needs to average over the target on�gurations during the ollisions,

leading then to oupled equations between di�erent Wilson line orrelators. In the large

Nc−limit, this set of in�nite oupled equations involves only dipole operators T and under

the assumption that 〈TT 〉 ≈ 〈T 〉2, the evolution equation on 〈T 〉 is given by the BK equation

onN ≡ T the forward dipole sattering amplitude whih reads at LO in the impat parameter

spae,

∂N (Y, r12)

∂Y
=

αsNc

2π2

∫

d2r0⊥
r212
r210r

2
02

(1.179)

× (N (Y, r01) +N (Y, r02)−N (Y, r12)−N (Y, r01)N (Y, r02)) ,

with rij = |ri⊥ − rj⊥|. In the CGC formalism, it was shown [79℄ that in the weakly oupled

regime (N (Y, r) ≪ 1), one gets bak the BFKL equation,

∂N (Y, r12)

∂Y
=
αsNc

2π2

∫

d2r0⊥
r212
r210r

2
02

(N (Y, r01) +N (Y, r02)−N (Y, r12)) , (1.180)

whih is the linearized version of the BK-equation where the quadrati term

N (Y, r01)N (Y, r02) is negleted as the partoni density is small. Note that the BFKL equation

leads to unbound solutions related to the gluon density and responsible for the violation of

the unitarity while the BK equation leads to bound solutions.

A parameterization for the dipole sattering amplitude known as the CGC model [73℄

omes from an approximation of the solution to the LO-BFKL equation in the viinity of the

saturation regime. The LO-BFKL solution using the Mellin moments representation of the

dipole sattering amplitude reads

N (Y, r) =

∫

C

dγ

2iπ

(

r2Q2
0

)γ
eh(Y )χ(γ)Ñ0(γ) =

∫

C

dγ

2iπ
exp(h(Y )χ(γ)− γρ)Ñ0(γ) , (1.181)

where

h(Y ) =
αs(Qs(Y ))Nc

π
Y , ρ = ln(1/r2Q2

0) ,

χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ), with ψ(γ) =
d ln Γ(γ)

dγ
,

with Γ the Euler funtion. The integral over γ is evaluated by using the saddle point approx-

imation expanding to the seond order around the saturation saddle point γ0(Y ) = ρ/h(Y ).

This leads to a solution of the form,

N (Y, r) ≈ N0 exp

(

−γs(ρ− ρs)−
Rs

2χ′′(γs)ρs
(ρ− ρs)

2

)

(1.182)

where ρs(Y ) = ln(Q2
s(Y )/Q

2
0) and Rs = ρs(Y )/h(Y ). One �nds bak the geometri saling

when the �rst term "γs(ρ− ρs)" dominates for ρ ∼ ρs. The seond term whih is analogous

to a di�usion term violates the geometri saling.
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Note that an analogy exists between the BK equation and the equation in reation-

di�usion proesses in statistial physis governed by the equation of Fisher, Kolmogorov,

Petrov and Pisounov (FKPP),

∂tN = ∂2zN +N −N2 . (1.183)

This analogy found by Munier and Peshanski [80, 81, 82, 83℄ by resaling the BK equation

[84℄ for the quantity

N(Y, k) =

∫

d2r⊥
2πr2⊥

N (Y, r⊥)e
ik⊥·r⊥ ,

was used in order to get information on the universal properties of the BK solutions whih

are related to traveling wave solutions.

The CGC model assumes that the approximated solution is of order N (Y, r) = N0 ∼ 1

when r = 1/Qs, in order to take into aount the viinity with the saturation regime. The

solution in the forward limit proposed by Ianu, Itakura and Munier in Ref. [73℄ is,

N (x, r) = N0

(

rQs

2

)(2(γs+ ln(2/rQs)
9.9λ ln(1/x)

))
if rQs ≤ 2 ,

= 1− exp(−a ln2(brQs)) if rQs ≥ 2 . (1.184)

where γs is the saddle point in the viinity of the saturation regime. The solution for rQs ≥ 2

orresponds to the funtional form of solutions expeted from BK- equation and the a and b

are determined in order that there is no disontinuity ofN (x, r) and its derivative. This model

was extended to inlude the impat parameter b dependene in order to desribe the exlusive

di�rative proesses at HERA. The �rst extension by Marquet, Peshanski and Soyez [85℄,

inludes the b dependene through the saturation sale, Q2
s(Y,∆) = Q2

0(1 + c∆2)eλY , and

a multipliative non-perturbative form fator f(∆) = e−B∆2
, with t = −∆2

. A seond

approah alled the "b-CGC" model in Ref. [76℄ by Kowalski, Motyka and Watt, onsists

only in replaing

Qs(x, b) = Qs(x)

(

e
− b2

2BCGC

)
1

2γs

.

Reently, the dipole sattering amplitude has been worked out by numerial resolution of

the BK equation with running oupling orretion, the rBK equation [86, 87℄, taking di�erent

initial onditions lose to the GBW saturation model and to the MLerran-Venugopalan (MV)

model [88℄. We will denote these numerial solutions for the dipole sattering amplitudes

as the Albaete-Armesto-Milhano-Quiroga-Salgado (AAMQS)-model. Indeed the solution of

LO-BK does not work so well as it predits a growth of the saturation sale way to fast when

rapidity is inreasing [67, 89℄. It was shown [90, 91℄ that the main orretion that allows to

solve the disrepany between the preditions and the data is the running oupling orretion

of the kernel of the BK- equation.
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The rBK equation reads

∂N (Y, r12)

∂Y
= (1.185)

∫

d2r0⊥
Ncαs(r

2
12)

2π2

[

r212
r201r

2
02

+
1

r201

(

αs(r
2
01)

αs(r202)
− 1

)

+
1

r202

(

αs(r
2
02)

αs(r201)
− 1

)]

×{N (Y, r01) +N (Y, r02)−N (Y, r12)−N (Y, r01)N (Y, r02)} .

The oupling onstant in the evolution kernel of the rBK equation (1.185) depends on the

number of ative quark �avors nf ,

αs,nf
(r2) =

4π

β0,nf
ln

[

4C2

r2Λ2
nf

] , (1.186)

where β0,nf
= 11 − 2

3
nf , Λnf

is the QCD sale and C is one of the free parameters of the

model. The sales Λnf
are determined by the mathing ondition αs,nf−1(r

2
⋆) = αs,nf

(r2⋆) at

r2⋆ = 4C2/m2
f and an experimental value of αs. The oupling onstant is frozen to a value

αfr ∼ 1 that it annot exeed to avoid infra-red divergenes.

The initial onditions are inspired by the GBW model NGBW (Y0, r) and the MV model

NMV (Y0, r) reads

NGBW (Y0, r) = σGBW
0

{

1− exp

[

−
(

r2Q2
s 0

4

)γ]}

, (1.187)

NMV (Y0, r) = σMV
0

{

1− exp

[

−
(

r2Q2
s 0

4

)γ

ln

(

r

Λ3

+ e

)]}

, (1.188)

with Y0 the rapidity that orresponds to x0 = 0.01, Qs 0 the initial saturation sale at x = x0

and γ the anomalous dimension. The free parameters involved in the AAMQS model are

�tted on the struture funtion F2(x,Q
2) and the x−dependene is ompletely driven by the

rBK equation.

The solutions for the dipole ross-setions are given with and without the heavy quarks

harm and beauty ontributions. For further use in hap. 3 we denote the solutions as follows,

• AAMQS set (a), with the initial ondition given by (1.187) a la GBW, with the on-

tribution of light quarks (u, d, s) only,

• AAMQS set (e), with the initial ondition given by (1.188) a la MV, with the ontri-

bution of light quarks (u, d, s) only,

• AAMQS set (b), with the initial ondition given by (1.187) a la GBW, with the on-

tribution of light and heavy quarks (u, d, s, c, b),

• AAMQS set (f), with the initial ondition given by (1.188) a la MV, with the ontri-

bution of light and heavy quarks (u, d, s, c, b).
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Figure 1.19: Comparison of the results for the redued ross-setion σr with the data, �gure

from ref. [87℄. In (a) the results are obtained with the GBW initial ondition and only the

ontribution of light quarks. In (b), the ontribution of heavy quarks harm and beauty is

inluded.

It turns out that the results are very weakly dependent on the hoie of the initial onditions

and one an restrit its hoie to the sets (a) and (b). The polarized ross-setions read

σγ∗p
L,T ; set(a) = σ0

∑

f=u,d,s

∫

d2r

∫

dy
∣

∣

∣
Ψ

γ∗L,T

f (y, r;Q,mf , ef )
∣

∣

∣

2

N l.(x, r) , (1.189)

σγ∗p
L,T, set(b) = σl.

0

∑

f=u,d,s

∫

d2r

∫

dy
∣

∣

∣
Ψ

γ∗L,T

f (y, r;Q,mf , ef)
∣

∣

∣

2

N l.(x, r)

+ σh.
0

∑

f=,b

∫

d2r

∫

dy
∣

∣

∣
Ψ

γ∗L,T

f (y, r;Q,mf , ef)
∣

∣

∣

2

N h.(x, r) . (1.190)

where σl.
0 N l.(x, r) and σh.

0 N h.(x, r) are respetively the dipole ross-setion ontributions of

light and heavy quarks.

We present in tabs. 1.3 and 1.4 values of the parameters of the �ts obtained in ref. [87℄.

Fits Q2
s0 σ0 (mb) γ C χ2/Ndf

(a) 0.241 32.357 0.971 2.46 1.226

(e) 0.165 32.895 1.135 2.52 1.171

Table 1.3: Values of the parameters entering the AAMQS sets (a) and (e) dipole ross-

setions.

Another kind of dipole ross-setions models [92, 93℄ exist based on the Regge theory,

where the universal trajetories of hard and soft pomerons are �tted from HERA data. The

hard pomeron exhange is involved for small dipole size r < r0 and the soft pomeron exhange

for large dipole size r > r1. The so-alled FS04 model parameterizes the dipole ross-setion
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Fits Q2
s0 Q

(c,b) 2
s0 σl.

0 (mb) σh.
0 (mb) γ γ(c,b) C χ2/Ndf

(b) 0.2386 0.2329 35.465 18.430 1.263 0.883 3.902 1.231

(f) 0.1687 0.1417 35.449 19.066 1.369 1.035 4.079 1.244

Table 1.4: Values of the parameters entering the AAMQS sets (b) and (f) dipole ross-

setions.

as,

σ̂(x, r) = AH r
2 x−λH

if r < r0 (1.191)

= AS x
−λS

if r > r1 , (1.192)

ombining the olor transpareny behavior for small r with the soft pomeron exhange behav-

ior at large r. A linear interpolation is performed in the region of intermediate r (r0 < r < r1).

An improved version of the FS04 Regge model was proposed to inlude saturation e�ets by

allowing the parameter r0 to vary in order that the dipole ross-setion satis�es the ondition,

σ(x, r0)/σ(x, r1) = f , (1.193)

where the parameter f is �tted.

A general remark about the amplitudes of the exlusive di�rative proesses omputed

within the dipole model approah, is that two kinds of orretions an be taken into aount

in these treatments. The �rst one is a orretion due to the non-zero skewness involved in

the proess. At small x, the skewness ξ is of the order ξ ∼ x
2
and it was shown that the e�et

of the skewness result in a multipliative fator Rg in front of the gluon density [94℄,

Rg(λ) =
22λ+3

√
π

Γ(λ+ 5/2)

Γ(λ+ 4)
, with λ ≡ ∂ ln xg(x, µ2)

∂ ln(1/x)
. (1.194)

The seond one is that in the high energy limit, the imaginary part of the amplitude dominates

the real part but one an evaluate the real part by using dispersion tehniques. The ratio of

the real and imaginary parts of the amplitude A reads

β = ReA/ImA = tan(πλ/2) , with λ ≡ ∂ lnA
∂ ln(1/x)

.
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Chapter 2

Light-Cone Collinear Fatorization

applied to the ρ−meson prodution

2.1 Introdution

2.1.1 Di�rative exlusive vetor eletroprodution

In the hap. 1 we have introdued the kT−fatorization sheme that holds in the high energy

limit s ≫ |t|. In this ontext, we introdued the onept of hard pomeron exhange in

hadroni proesses and we presented olor dipole models that inlude the idea of partoni

density saturation that ould restore the unitarity of the theory.

PSfrag replaements

p p′

e−, k e−, k′

ρ, pρ
W 2

−Q2

t

Figure 2.1: The di�rative eletroprodution of the ρ−meson and Lorentz invariant kinemati

variables.

The two forthoming hapters are devoted to the study of heliity amplitudes of the

di�rative leptoprodution of the ρ−meson in the high energy limit illustrated in �g. 2.1,

γ∗(q, λγ)p(pp) → ρ(pρ, λρ)p(p
′
p) ,

with λγ and λρ the polarizations of the virtual photon and the ρ−meson.

51
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ρ−MESON PRODUCTION 52

The di�rative vetor meson prodution (DVMP) at HERA as well as the deeply virtual

Compton sattering (DVCS) are exellent proesses to probe the hadroni ontent in pQCD

regime. Contrary to inlusive proesses, exlusive proesses allows to get information on

additional degrees of freedom suh as the skewness dependene or the transverse distributions

of gluons at small−x inside the nuleon target.

A proof of the fatorization theorem for the eletroprodution of vetor mesons was given

by Collins, Frankfurt and Strikman in [95℄. This theorem states that the leading twist

amplitude is given by,

A =
∑

i,j

(

fi/p ⊗Hij ⊗ φV
j

)

µ
+ power suppressed terms . (2.1)

where the three main amplitude piees are, fi/p the distribution funtion of the parton i

inside the hadron p (transversity distribution if transversely polarized vetor meson), Hij

the hard sattering amplitude and ΦV
j the light one wave funtion of the vetor meson.

The parameter µ is the renormalization-fatorization sale whih should be hosen of the

order of the virtuality Q of the photon in order to ompute the oe�ient funtion Hij using

perturbative theory at a �nite order of the expansion. It was also shown by power ounting

argument that the prodution from a transversely polarized virtual photon is suppressed by

1/Q ompared to the prodution from a longitudinal photon.

The DVMP has been the subjet of many experiments. The pioneering experiments on

small−x di�rative muo-prodution of vetor mesons were analyzed on deuterium, alium

and arbon targets down to x ∼ 5.10−3 by the NMC ollaboration [96℄ and on proton target

down to x ∼ 2.10−4 by the E665 ollaboration [97℄, for a wide range of virtualities. The HERA

ollaborations ZEUS and H1 have provided very preise data with respetively integrated

luminosity of 120 pb−1 and 51 pb−1 on the spin density matrix elements of the di�rative ρ0

and φ mesons prodution in a small−x, for a wide range of energies W in the enter of mass

γ∗p and photon virtualities Q. The reent analysis provided by ZEUS in 2007 [98℄ and by H1

in 2009 [99℄ are a motivating experimental bakground to investigate the heliity amplitudes

of the vetor meson prodution at small−x. These analysis supersede the former analysis

already performed by these ollaborations in late 90's [100, 101, 102℄. The data of H1 and

ZEUS are preious to aess suh important universal quantities as the pomeron trajetory,

through the energy dependene and the t−dependene of the di�erential ross-setion. One

usually uses ansatz for the vetor meson wave funtions based on the dipole on�guration

inside the vetor meson onstituted by the valene quarks. The data allows to investigate

the fatorization proedure as well as the ontent of the ρ−meson wave funtion.

The DVMP was also analyzed by HERMES [103, 104, 105℄, JLab [106℄ and COMPASS

[107℄ in other kinemati range of lower energies in the enter of mass, i.e. higher x, essential

to understand the pQCD approahes based on ollinear fatorization and GPDs.

There are many models derived from mostly three theoretial approahes (we will not

make here a review of all the models). Two of the approahes are equivalent approahes, the

kT−fatorization approah and the olor dipole approah, the third is the ollinear fatoriza-

tion approah. As we saw in the hap. 1, kT -fatorization allows to regroup the partiles into



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE

ρ−MESON PRODUCTION 53

sub-proesses involving the inoming and outgoing partiles of approximately same rapidities

leading to two impat fators exhanging reggeized gluons whih resum the gluons exhanged

in t−hannel. In the ase of the DVMP the heliity amplitudes as illustrated in �g. 2.2 read,

TλV λγ ∝ is

∫

d2k⊥
k4⊥

Φ
γ∗λγ→VλV F(x, k⊥) , (2.2)

with F(x, k⊥) the unintegrated gluon density.
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Figure 2.2: kT−fatorization of the DVMP.

The energy dependene of the proess is then given by the BFKL evolution for the unin-

tegrated gluons density known at LLx [34, 35, 36, 37℄ and NLLx [108, 109, 110, 111℄.

This approah needs a model for the proton impat fator at Born order or a model for

the unintegrated gluon density of the nuleon target. It is the approah we will use in the

seond part of this hapter to get a model for the heliity amplitude Tλρλγ . Let us desribe

some of the appliations of this approah.

Martin, Ryskin and Teubner (MRT) [112℄ have pointed out that the di�rative ρ−meson

prodution data from HERA indiates that it should be treated within pQCD. They proposed

a model based on the parton-hadron duality, to express the ρ−meson prodution ross-setion

as

σγ∗p→ρp ≈ 0.9
∑

q=u,d

∫

dM2dσγ∗p→(qq̄)p

dM2
, (2.3)

with M2
the invariant mass of the qq̄ system. Using kT−fatorization approah and a gluon

density ansatz xg(x,Q2) ∼ x−λ(Q2)γ, with γ the e�etive anomalous dimension of the gluon

density, leads to the ratio of polarized ross-setions

σL
σT

=
Q2

M2

(

γ

γ + 1

)2

. (2.4)

More reent models based on the kT -fatorization and model of gluon density exist, e.g. the

model from Ivanov, Nikolaev and Savin [113℄, whih allows preditions for all spin density

matrix elements for the eletroprodution of ρ−meson.
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Figure 2.3: DVMP within the olor dipole piture.

The olor dipole approah of DVMP illustrated in �g. 2.3, is equivalent to the kT−fatorization
sheme but in impat parameter spae where the onvolution of the wave funtions of the

initial projetile and �nal state an be fatorized even at low Q2
, from the dipole target

sattering amplitude. Like in the kT−fatorization sheme the dipole target ross-setion

has to be modeled and ontains the x−dependene of the proess. This x−dependene is

linked to the behavior the gluon density xg(x,Q2) ∼ x−λ. The amplitude takes the form

Tλρλγ =

∫ 1

0

dy

∫

d2r
(

Ψρ∗
λρ
Ψγ

λγ

)

(y, r)A(qq̄)p→(qq̄)p′(x, r) , (2.5)

where y and r are respetively the fration of longitudinal momentum and the transverse

size of the dipole. In the previous hapter we have already mentioned some of the models

that exist for the dipole ross-setion. Note that another type of approah exists based

on the generalized vetor dominane to get the DVMP amplitudes, see e.g. [114℄ where

preditions are made for the ratios of heliity amplitudes. The ρ−meson wave funtions are

unknown but many models have been proposed. Some of them assume the fatorization of the

transverse degrees of freedom from the longitudinal ones. For example the model of Dosh,

Gousset, Kulzinger and Pirner (DGKP) model [115℄, where the transverse size dependene

is assumed to be independent from y and to have a Gaussian shape. Other models, for

example the Nemhik, Nikolaev, Predazzi and Zakharov (NNPZ) model [116, 117, 113℄ or

models proposed by Forshaw, Sandapen and Shaw [118, 119, 120℄, assume a dynamis of the

onstituent quark antiquark pair that is in agreement with the size of the meson suggested by

spetrosopi models in the rest frame of the meson.The light-one meson wave funtions are

then obtained by applying a "relativization proedure" whih allows to get their expressions

in the in�nite momentum frame. In general the dynamis of the qq̄ pair assumed in the rest

frame is given by an harmoni osillator potential for the large distane dynamis and the

short distane dynamis is driven by a Coulombi potential term.

Another approah lose to the MRT model, based on the kT−fatorization sheme in the

impat parameter spae, is followed in ref. [121℄ by Ivanov and Kirshner to fatorize the

wave funtions of the virtual photon and the vetor meson. The vetor meson wave funtion

and the dipole sattering amplitude are then expanded around small dipole size and the

end-point divergenes when y → {0, 1} are regularized by the sale dependene of the gluon
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density. This model allows to get preditions for the full set of heliity amplitudes.
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Figure 2.4: Leading hand bag diagrams in the ollinear fatorization approah.

The ollinear fatorization approah initiated in [122, 123℄ by Brodsky, Frankfurt, Gunion,

Koepf, Mueller and Strikman, based on the ollinear fatorization sheme eq. (2.1) [95, 124℄

where the amplitude is fatorized as illustrated in �g. 2.4 into GPDs, distributions amplitudes

(DAs) of the ρ−meson and a hard proess alulable using pQCD.

The longitudinally polarized amplitude reads

T00 ∝
∫

dy

∫

dxfi(x, x
′)Hij(y, x, x

′)ΨV
j (y) , (2.6)

with y the usual fration of photon longitudinal momentum arried by one of the quark,

fi(x, x
′) represents GPDs, whih are the probability to �nd the parton i inside the proton

that arries x fration of its longitudinal momentum and omes bak inside the proton with

the fration x′. GPDs are a generalization of PDF to the non-forward limit x 6= x′ allowing

to take into aount skewness e�ets. Hij is the hard sub-proess where the parton i gives

a parton j that hadronizes into the meson with integrated wave funtion ΨV
j . The ollinear

fatorization sheme have been improved to remove end-point singularities that appear for

the transversely polarized ross-setion using Sudakov fators [125℄, whih allows to overome

end-point singularity problems, and has been applied to ρ-eletroprodution through the

VGG model [126℄ and the Kroll and Goloskokov model [127, 128, 129℄. In pratie the

end-point singularities are regularized by keeping the transverse momenta of the qq̄ pair that

forms the vetor meson and by assuming that they are distributed by a Gaussian distribution

that prevents large dipole size on�gurations. Note that this approah is valid not only in

the large energy limit but also forW ∼ Q. The GPDs are not known and have to be modeled

starting from the PDFs forms and implementing the skewness and t−dependenies.

2.1.2 The underlying ideas of our approah

In the approah presented below, we use at a �rst level the kT−fatorization to fatorize the

γ∗(λγ) → ρ(λρ) impat fator in the amplitude. Using the fat that the virtuality of the

photon is large, we an apply the ollinear fatorization sheme to fatorize the soft part

assoiated to the ρ−meson prodution from the partons produed in the hard part. Note

that the notion of twist here is de�ned as the twist of the operators involved in the (qq̄) → ρ

and (qq̄g) → ρ meson prodution and not in the sense of the twist of the operators of the
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γ∗p→ ρp amplitude. This approah was performed a long time ago by Ginzburg, Pan�l and

Serbo [130℄ up to twist 2 for the γ∗L → ρL and γ∗T → ρL transitions and was reently derived

by Anikin, Ivanov, Pire, Szymanowski and Wallon [131℄ for the γ∗T → ρT transition up to

twist 3 in the forward limit. The presene of the k⊥ of the t−hannel gluons, regularizes the
end-point divergenes as it gives a �nite size of the order r ∼ 1/k⊥ to the qq̄ pair. The quark

and the antiquark, after the interation with the t−hannel gluons, are �ying ollinearly and
hadronize into a ρ−meson. A little deviation from the ollinear diretion aligned on the

ρ−meson momentum will give higher twist orretions and we will present how to take into

aount these higher twist orretions up to twist 3.

The hapter an be divided in two parts. The �rst part is the desription of the so-alled

light-one ollinear fatorization (LCCF) proedure [132, 133, 134℄, inspired from the initial

Ellis�Furmanski�Petronzio (EFP) fatorization [135, 136, 137, 138, 139, 140℄, generalized for

exlusive proesses. This fatorization sheme uses the Taylor expansion of the hard part

around the dominant light-one diretion in the light one gauge to get the higher twist

ontributions. We will present the LCCF on the alulation of the impat fators γ∗ → ρ,

following the approah of Ref. [131℄. This approah being gauge invariant, a onnetion be-

tween the LCCF results and the results obtained within another approah alled the ovariant

ollinear fatorization (CCF) approah an be established. The relations between the CCF

DAs and the LCCF DAs were derived in [131℄. A model developed by Ball, Braun, Koike

and Tanaka in [141, 142℄, based on the onformal symmetry of the non-loal orrelators in

the CCF approah, is then used to get a model for the LCCF DAs.

In the seond part of the hapter we will present a model [18℄ using an impat fator

model [143℄ for the proton, based on the results of the �rst part. At the end we ompare the

preditions to HERA data.

2.2 Light-one ollinear fatorization up to twist 3 au-

ray

2.2.1 Soft parts and hard parts

We onsider the S−matrix element of the leptoprodution of the ρ−meson involving a hard

part where a highly virtual photon dissoiates into the onstituent partons involved in the

ρ−meson �nal state wave funtion and a soft part whih desribes the hadronization of these

partons into the ρ−meson. Up to twist 3, one needs to onsider the two (qq̄) and three (qq̄g)

parton intermediate Fok states and we will denote respetively Aqq̄ and Aqq̄g the assoiated

amplitudes. The partons interat at Born order with two t−hannel gluons with non-sense

polarizations as illustrated in �g. 2.5.

The main idea is to separate the proess into the hard sub-proess involving the small

distane physis that an be treated in the pQCD approah and the soft sub-proess involving

the long distane interations between the partons in the hadroni state. The hard sub-
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Figure 2.5: 2- and 3-parton orrelators attahed to a hard sattering amplitude in the spei�

ase of the γ∗ → ρ impat fator, where vertial lines are hard t− hannel gluons in the olor

singlet state.

proess orresponds to the Feynman diagrams where the partons are propagating the hard

sale whih is the virtuality of the photon Q, this hard part is then related to the photon

vertex. The soft part of the proess annot be desribed in terms of free �eld operators due

to the interations with other partons in the non-perturbative regime, and one ends up with

soft parts expressed in terms of interating �elds in the Heisenberg piture operators. In

order to get gauge invariant operators in the soft parts, one needs also to inlude the gluoni

radiations into the �nal state due to the motion of the partons, whih in pratie results in

the presene of Wilson lines linking the oordinates of the partoni �elds.

The amplitudes read

iAqq̄ =

∫

d4ℓ1
(2π)4

Tr (Hqq̄(ℓ)Sqq̄(ℓ)) , (2.7)

iAqq̄g =

∫

d4ℓ1
(2π)4

d4ℓg
(2π)4

Tr

(

Hα
qq̄g(ℓ1, ℓg)Sqq̄g α(ℓ1, ℓg)

)

, (2.8)

where we expliitly put the integral over ℓ1 and ℓg, the momenta of the quark and the gluon

involved in the loops. The hard parts of these proesses are denoted with Hqq̄ and H
α
qq̄g and

the soft parts by Sqq̄ and Sqq̄g α. The traes are over spinor and olor indies of the hard and

soft parts. More expliitly the soft parts are given by the Fourier transforms of the non-loal

orrelators of the partoni �elds

1

between the vauum and the ρ−meson states

S(ℓ) =

∫

d4z
〈

ρ(pρ)
∣

∣ψ(0)[0, z]ψ̄(z)
∣

∣ 0
〉

µ2
F
e−iℓ·z , (2.9)

Sα(ℓ1, ℓg) =

∫

d4z1 d
4zg e

−iℓg ·zg−iℓ1·z1

×
〈

ρ(pρ)
∣

∣ψ(0)[0, zg]gA
T
α(zg)[zg, z1]ψ̄(z1)

∣

∣ 0
〉

µ2
F
, (2.10)

where the brakets are Wilson lines de�ned by the path-ordered produt

[z1, z2] ≡ P exp

(

ig

∫ 1

0

dt (z1 − z2)
ν Aν(t z1 + (1− t) z2)

)

.

In the following parts we will omit to write Wilson lines in the orrelators, we will see that

they redue to a fator one in a spei� axial gauge in whih we will hoose to work. The

1

The �avor of the qq̄ pairs involved in the ρ0−meson wave funtion

∣

∣ρ0
〉

= 1√
2
(|ūu〉 −

∣

∣d̄d
〉

), is restored

by onsidering a �avorless qq̄ pair of eletri harge

e√
2
. The �elds ψ̄ and ψ here are then assoiated to a

�avorless qq̄ pair with an eletri harge

e√
2
.
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sale µF is the fatorization sale under whih the internal momenta of the partons inside

the hadron are integrated over. This sale allows to separate the large distane physis inside

the hadron from the small distane physis.

The hard sub-proess is desribed by Feynman diagrams shown in �g. 2.7 for the qq̄

intermediate state amplitude, and in �gs. 2.8, 2.9 and 2.10, for respetively the "abelian",

the "non-abelian with one triple gluon vertex" and the "non-abelian with two triple gluons

verties" diagrams for the qq̄g intermediate state amplitude. Let us emphasize the fat that

in all these diagrams the external partoni legs are amputated.

Let us illustrate how one an deompose the amplitude into in one hand the Fourier

transform of a spae oordinate orrelator and on the other hand the usual momentum spae

representation amplitude given by Feynman diagrams. We hoose a very simple example;

the amplitude of a photon deaying into a qq̄ pair, as shown in �g. 2.6.
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Figure 2.6: γ → qq̄, deomposition in two piees of the amplitude.

The amplitude an be written as follows,

iA = 〈ℓ1, s; ℓ2, r| − ie

∫

d4z ψ̄(z) /A(z)ψ(z) |q, λ〉

= εµ(q, λ) 〈ℓ1, s; ℓ2, r| − ie

∫

d4z ψ̄s(z)γ
µ
srψr(z) |0〉

= (−ie/ε(q, λ))rs
∫

d4z 〈ℓ1, s; ℓ2, r| ψ̄s(z)ψr(z) |0〉 . (2.11)

In the last line we see that the amplitude reads as the trae of a hard part (−ie/ε(q, λ))rs
amputated of the external qq̄ external legs, multiplied by the loal orrelator

∫

d4z 〈ℓ1, s; ℓ2, r| ψ̄s(z)ψr(z) |0〉 .

In this simple example, the orrelator is loal as it involves only one vertex and it redues

to ūs(ℓ1)vr(ℓ2) as the �nal state is a qq̄ state ontrary to our ase where the �nal state is a

hadroni state with ompliated interations between the external �elds. The eqs. (2.7) and

(2.8) are obtained in the same way, the �nal orrelators annot be alulated within pQCD

and have to be parameterized as we will see later after applying the light-one ollinear

fatorization proedure whih allows to fully separate the hard parts from the soft parts whih

are still linked by olor, spinor indies and the 4-momentum integrals over the intermediate

parton momenta.
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Figure 2.7: The 6 hard diagrams attahed to the 2-parton orrelators, whih ontribute to

the γ∗ → ρ impat fator.

2.2.2 Fatorization of the spinor indies

Let us introdue very helpful identities alled Fierz identity in the spinor spae, whih is a

deomposition on the basis of the sixteen Dira matries

2

ΓS Γµ
V Γµν

T Γµ
A ΓP

I γµ σµν = i
2
[γµ, γν] γ5γµ i γ5

We denote the inverse of the Dira matrix

Γα ≡ (Γα)−1 . (2.12)

The inverse matrix are expliitly given by

(γµ)−1 = γµ ≡ ΓV µ , (σµν)−1 = σµν ≡ ΓTµν ,

(γ5γµ)−1 = γµγ
5 ≡ ΓAµ , (iγ5)−1 = −iγ5 ≡ Γ−1P .

(2.13)

The Fierz identity in spinor spae reads

δbb̄ δaā =
1

4
Γα b̄ā Γ

α
ab . (2.14)

Any matrix of the spinor spae an be deomposed as

X = xα Γ
α =

1

4
ΓαTr (XΓα) =

1

4
ΓαTr (XΓα) , (2.15)

2

The onvention taken is γ5 = i γ0 γ1 γ2 γ3.
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Figure 2.8: The 12 �Abelian� (i.e. without triple gluon vertex) type ontributions from the

hard sattering amplitude attahed to the 3-parton orrelators for the γ∗ → ρ impat fator.

based on the identity,

TrΓαΓβ = 4δαβ . (2.16)

The Fierz identity an be illustrated as in �g. 2.11. We use this identity to fatorize the
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Figure 2.9: The 12 �non-Abelian� -(with one triple gluon vertex) ontributions from the hard

sattering amplitude attahed to the 3-parton orrelators, for the γ∗ → ρ impat fator.
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Figure 2.10: The 4 �non-Abelian� -(with two triple gluon verties) ontributions from the

hard sattering amplitude attahed to the 3-parton orrelators, for the γ∗ → ρ impat fator.

spinor indies of the hard and soft parts,

Tr (H S) = HijSij = HrsδirδjsSij =
1

4

∑

Γ

HrsSijΓ
µ
rsΓµ ij

=
1

4

∑

Γ

Tr (HΓµ) (SΓµ) . (2.17)
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Figure 2.11: Fierz identity in spinor spae.

In our ase, a minus sign omes from the Wik theorem, one has to ommute the spinor

�elds,

−〈ψr ψ̄s〉 =
1

4
〈ψ̄ γµ ψ〉 γµrs +

1

4
〈ψ̄ γ5γµ ψ〉 (γµγ5)rs + · · · (2.18)

where we have put expliitly the spinor indies r and s of the fermioni �elds.

Note that the spinor indies fatorization only involves the fermioni �elds, and onse-

quently the Fierz deomposition goes the same way for the qq̄ and the qq̄g intermediate

states.

2.2.3 Fatorization of the olor indies

The Fierz identity an be also derived in olor spae. Assuming the normalization of the

generators t

Tr (ta tb) =
1

2
δab , (2.19)

one an show the Fierz identity for the generators of SU(Nc),

taij t
a
kℓ =

1

2

(

δiℓ δjk −
1

Nc

δij δkℓ

)

, (2.20)

whih graphially reads
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ℓ

 . (2.21)

In the ase of the qq̄ exhange, we an use this identity as
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i

j k

ℓ

= 2
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ℓ

+
1

Nc
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i

j k

ℓ

, (2.22)

with i, j are the hard part indies and k, l are soft part indies. Then we see that the �rst

term of the r.h.s. will give zero one projeted on a olor singlet state beause of the gluon

oupling to the fermioni �elds involved in the soft part. Hene the trae over the olor

indies of the hard and soft part an be written as

Tr(Hqq̄ Sqq̄) =
1

Nc

Tr(Hqq̄)Tr(Sqq̄) .

The normalization of the qq̄g singlet state in olor spae is 2/(N2
c −1) leading to the fatorized

expression

Tr(Hqq̄g Sqq̄g) =
2

N2
c − 1

Tr(Hqq̄g)Tr(Sqq̄g) ,

for the qq̄g amplitude.
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2.2.4 Fatorization in the momentum spae around the light one

diretion p

The amplitude iAqq̄ after fatorization of the spinor and olor indies

3

reads

iAqq̄ = −1

4

∑

{Γ}

∫

d4ℓ

(2π)4
Tr (Hqq̄(ℓ)Γ

µ) S
Γµ

qq̄ (ℓ) , (2.23)

iAqq̄g = −1

4

∑

{Γ}

∫

d4ℓ1
(2π)4

∫

d4ℓg
(2π)4

Tr

(

Hα
qq̄g(ℓ1, ℓg)Γ

µ
)

S
Γµ

qq̄g α(ℓ1, ℓg) , (2.24)

with

S
Γµ

qq̄ (ℓ) ≡
∫

d4z
〈

ρ(pρ)
∣

∣ψ̄(z)Γµψ(0)
∣

∣ 0
〉

e−iℓ·z , (2.25)

S
Γµ

qq̄g α(ℓ1, ℓg) ≡
∫

d4z1 d
4zg
〈

ρ(pρ)
∣

∣ψ̄(z1) gΓµA
T
α(zg)ψ(0)

∣

∣ 0
〉

e−iℓ1·z1−iℓg·zg .

(2.26)

The fatorization in momentum spae around the dominant light one vetor requires that

we de�ne a basis of light-one vetors on whih the partoni momenta an be deomposed in

order then to Taylor expand the hard part around the dominant light one vetor. We de�ne

then two light like vetors p and n, whih satisfy p ·n = 1 and suh as p is the dominant light

one diretion, p and n are denoted usually the "plus" and "minus" light one vetors. The

dominant light one diretion in our ase is given naturally by the diretion of the ρ−meson

pρ = p+
m2

ρ

2
n

twist 3

= p ,

as the mass term of the vetor meson leads to kinemati twist orretions starting at twist 4

whih is beyond the sope of this study. Note that the hoie of the light one vetor n is not

unique. The amplitude at the end should not depend on the partiular hoie of this vetor

and this will give additional onstrains on the DAs as we will see in the setion 2.4.2.

The momenta of the quark ℓ1 and the antiquark ℓ2 in the two-parton amplitude are

deomposed as

ℓ1 = yp+ β1n+ ℓ⊥ and ℓ2 = ȳp+ β2n− ℓ⊥ . (2.27)

Following [144, 138℄, in this approah the partons are on the mass-shell leading to

β1 =
ℓ2

2y
and β2 =

ℓ2

2ȳ
,

For the three-parton amplitude, the quark ℓ1, antiquark ℓ2 and gluon ℓg momenta are

deomposed as

ℓ1 = y1p+ β1n+ ℓ1⊥ , (2.28)

ℓ2 = ȳ2p+ β2n+ ℓ2⊥ , (2.29)

ℓg = ygp+ βgn + ℓg⊥ . (2.30)

3

The Fierz oe�ients from olor spae fatorization 1/Nc and 2/(N2

c − 1) are impliitly put in the hard

part expressions for oniness of the formulas.
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the momentum onservation and the on-shellness of the partons, imply that

yg = y2 − y1 , ℓg⊥ = −(ℓ1⊥ + ℓ2⊥) , 2(β1 + β2 + βg) =
ℓ21
y1

+
ℓ22
ȳ2

+
ℓ2g
yg
.

We deompose the Fourier onjugate in oordinate spae zi of the momentum ℓi as

zi = γi p + λi n + zi⊥ .

Let us fous on the two-parton ontribution. The leading twist ontribution to the am-

plitude is given by assuming that the quark and the antiquark are �ying ollinearly to the

diretion of the ρ−meson

Hqq̄(ℓ1) ≡ Hqq̄(y, β1, ℓ⊥) ≈ Hqq̄(y) , (2.31)

whih orrespond to the zero order term of the Taylor expansion of the hard part around the

dominant light one diretion p.

The ontributions in eah order in 1/Q, are given by the Taylor expansion of the hard

part around the dominant light one diretion p [144, 138℄. Up to twist 3, this expansion

an be interpreted as the emission from the hard part of a qq̄ pair with a very small relative

transverse momentum justifying the Taylor expansion around the ollinear diretion. The

relevant terms of the Taylor expansion up to twist 3 are

HΓµ

qq̄ (ℓ1) = HΓµ

qq̄ (y) +Hν,Γµ

qq̄ (y) (ℓ1 − yp)ν + · · ·
twist 3≈ HΓµ

qq̄ (y) +Hν,Γµ

qq̄ (y) ℓ1⊥ν . (2.32)

where, for oniseness, we use the notations

HΓµ

qq̄ ≡ Tr(Hqq̄Γ
µ) , Hν,Γµ

qq̄ ≡ ∂

∂ℓ1ν
Tr(Hqq̄Γ

µ) .

The term of n-th order of this Taylor expansion reads

∂n

∂ℓ1ν1 · · ·∂ℓ1νn
Tr(Hqq̄Γ

µ) (ℓ1 − yp)ν1 · · · (ℓ1 − yp)νn ,

where (ℓ1 − yp)ν1 · · · (ℓ1 − yp)νn ating on the soft part, will give transverse derivatives of

the orrelator, leading to the moments of the wave funtion of the hadron. Note that the

insertions of transverse gluons and transverse derivatives ((ℓ1 − yp)ν1 ∼ ℓ1⊥ν1) inrease the

twist of the operators in the soft part.

We will treat separately the onvolutions of the two terms of the last line of eq. (2.32)

with the soft part. The �rst term (zero-th order of the Taylor expansion) is

iA(0)
qq̄ = −1

4

∫

dy

2π
HΓµ

qq̄ (y)

∫

dβ1
2π

dℓ⊥
(2π)2

∫

dγdλdz⊥e
−i(yλ+β1γ+ℓ⊥·z⊥)

× 〈ρ(p)|ψ̄(γp+ λn+ z⊥) Γµ ψ(0)|0〉

= −1

4

∫

dyHΓµ

qq̄ (y)

∫

dλ

2π
e−iyλ〈ρ(p)|ψ̄(λn) Γµ ψ(0)|0〉µ2

F
. (2.33)
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In eq. (2.33), the subsript µ2
F is the fatorization sale up to whih the �utuations in the

transverse momentum spae are integrated,

〈ρ(p)|ψ̄(λn) Γµ ψ(0)|0〉µ2
F
≡
∫

ℓ2⊥≤µ2
F

dℓ⊥ dz⊥
(2π)2

e−iℓ⊥·z⊥〈ρ(p)|ψ̄(λn+ z⊥) Γµ ψ(0)|0〉 . (2.34)

Let us give now a more preise interpretation of the presene of this ut-o� on the trans-

verse momenta. In the rest frame of the meson, its size is of order µ−10 in all diretions with

µ0 ∼ mρ, and in this frame a ut-o� at µ−1F ∼ Q−1 GeV allows to get most of the internal

dynamis whih is not resolved by the system of partons. In the rest frame of the partons

reated by the virtual photon and propagating with the hard sale Q, the partoni system

has a typial spatial extension of the order Q−1. The boost to go from the meson rest frame

to the partoni system rest frame indues a ontration of the longitudinal size of the meson

by a fator Q/µ0, leading to a longitudinal size of the order of Q−1. Hene we see that the

�utuations along the longitudinal size an be always resolved even for very large virtualities,

while the �utuations in the transverse diretion are not boosted and remains of the order

µ−10 . Thus these transverse �utuations are part on the long distane dynamis of the meson

and have to be integrated over up to the sale µF ∼ Q. Choosing the renormalization sale

to be equal to the fatorization sale, the dependene of the DAs on the sale µF is given by

the renormalization equations of the operators in the orrelators.

Note that for the ase of the qq̄ pair intermediate state, the transverse size of the pair is

of the order

√
yȳQ instead of Q due to the fat that the photon is split in two onstituents.

In a symmetri jet on�guration (y ∼ 1/2), a reasonable hoie for µF is

µF =
√

〈yȳQ2〉 ∼ Q

2
.

For aligned jet on�gurations (y ∼ 0 or ȳ ∼ 0) whih are expeted to dominate the trans-

versely polarized ρ−meson prodution, this hoie has to be justi�ed depending on the av-

erage values of y and ȳ given by the distribution of dipoles, i.e. the overlaps of the wave

funtions of the transverse virtual photon and the ρ−meson.

After the momentum fatorization, the operators in the orrelation funtions are a produt

of �elds on the light one diretion n, z2 = (λn)2 = 0. Restoring the Wilson line, the gauge

invariant orrelator reads

〈ρ(p)|ψ̄(λn)[λn, 0] Γα ψ(0)|0〉 . (2.35)

We hoose to work in the light-one gauge A · n = 0 whih allows to simplify the Wilson line

to a fator one

[λn, 0] ≡ P exp

(

ig

∫ 1

0

dt λ nν Aν(t λ)

)

= 1 .

The seond term of the Taylor expansion (2.32), i.e. the �rst order in ℓ⊥ of the Taylor
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expansion, reads

iA(1)
qq̄ = −1

4

∫

dy

2π
Hν,Γµ

qq̄ (y)

∫

dβ1
2π

∫

dℓ⊥
(2π)2

ℓ⊥ν

∫

dγ dλ dz⊥

× e−i(yλ+β1γ+ℓ⊥·z⊥)〈ρ(p)|ψ̄(γp+ λn + z⊥) Γµ ψ(0)|0〉

= −1

4

∫

dyHν,Γµ

qq̄ (y)

∫

dλ

2π
e−iyλ

×
∫

dz⊥

∫

dℓ⊥
(2π)2

ℓ⊥ν e
−iℓ⊥·z⊥ 〈ρ(p)|ψ̄(λn + z⊥) Γµ ψ(0)|0〉 . (2.36)

We must now get rid of the fator ℓ⊥ and this is done by replaing ℓ⊥ → i∂/∂z⊥ ating on

the exp(−iℓ⊥ · z⊥) and then doing an integration by parts,

iA(1)
qq̄ =−1

4

∫

dy Hν,Γµ

qq̄ (y)

∫

dλ

2π
e−iyλ

∫

dℓ⊥
(2π)2

dz⊥
(

i∂⊥νe
−iℓ⊥·z⊥

)

×〈ρ(p)|ψ̄(λn+ z⊥) Γµ ψ(0)|0〉

=
i

4

∫

dyHν,Γµ

qq̄ (y)

∫

dλ

2π
e−iyλ

∫

dℓ⊥
(2π)2

∫

dz⊥ e
−iℓ⊥·z⊥

× ∂

∂z⊥ν
〈ρ(p)|ψ̄(γp+ λn+ z⊥) Γµ ψ(0)|0〉

=
i

4

∫

dyHν,Γµ

qq̄ (y)

∫

dλ

2π
e−iλy

∂

∂z⊥ν
〈ρ(p)|ψ̄(λn) Γµ ψ(0)|0〉µ2

F
. (2.37)

The transverse derivative of the non-loal orrelator an be put inside as an operator ating

on the fermioni �elds,

∂

∂z⊥ν
〈ρ(p)|ψ̄(λn+ 0⊥) Γα ψ(0)|0〉µ2

F
= −〈ρ(p)|ψ̄(λn+ 0⊥) Γα

←→
∂⊥ν ψ(0)|0〉µ2

F
, (2.38)

with

←→
∂⊥α = 1

2
(
−→
∂⊥α −

←−
∂⊥α ). So �nally,

iA(1)
qq̄ =

−1

4

∫

dyHν,Γµ

qq̄ (y)

∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) Γµi

←→
∂⊥ν ψ(0)|0〉µ2

F
. (2.39)

The ollinear fatorization in the momentum spae is now ahieved for the two-parton am-

plitude up to twist 3 as the hard and soft part are now only related by the integral over

y. The result for the two-parton ontribution is then given by the sum of A(0)
qq̄ and A(1)

qq̄ as

illustrated in �g. 2.12.

PSfrag replaements

ρ

ℓ
H(ℓ) S(ℓ) →

PSfrag replaements

ρ
H(y)

yp

S(y)

Γ Γ

+

PSfrag replaements

ρ

ℓ
Hν(y) S⊥ν (y)

Γ Γ

Figure 2.12: Fatorization of 2-parton ontributions in the example of the γ∗ → ρ impat

fator.

The derivative term of the hard part Hν,Γµ

qq̄ (y) in the expression of A(1)
qq̄ an be omputed

using the following identity,

PSfrag replaements

∂

∂pµ
=

ppp γµ

where

PSfrag replaements

p
=

1

m− /p− iǫ
.

(2.40)
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The hard part Hν,Γµ

qq̄ (y) orresponds then to the omputation of the 12 diagrams shown in

�g. 2.13. Indeed the derivative of eah of the 6 diagrams of �g. 2.7 involves the sum of the

derivatives of eah propagators of the diagram leading to

∂

∂ℓν








PSfrag replaements

Γµ









=
PSfrag replaements

γν

Γµ
+

PSfrag replaements

γν

Γµ
. (2.41)

where the dashed lines are only here to indiate with respet to whih propagator we are

deriving.

PSfrag replaements

y

−ȳ
PSfrag replaements PSfrag replaements PSfrag replaements

(a1) (a2) (b1) (b2)

PSfrag replaements PSfrag replaements

PSfrag replaements PSfrag replaements

(1) (2) (d1) (d2)

PSfrag replaements PSfrag replaements

PSfrag replaements PSfrag replaements

(e1) (e2) (f1) (f2)

Figure 2.13: The 12 ontributions arising from the �rst derivative of the 6 hard diagrams

attahed to the 2-parton orrelators, whih ontribute to the γ∗ → ρ impat fator, with

momentum �ux of external line, along p1 diretion.

At the twist 3 level, we need to onsider also the non-minimal parton on�guration where

there is an additional gluon. Contrary to a ovariant gauge treatment, the hoie of the axial

light-one gauge (n · A = 0) allows to get rid of the longitudinal omponent of the gluon

polarization.
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We now fous on the qq̄g intermediate state amplitude. In the ase of three-parton

exhange ontribution, only the zero-th order of the Taylor expansion of the hard part is

needed up to twist 3 with a transversely polarized gluon,

iAqq̄g = −1

4

∫

dy1 dβ1 d
2ℓ1⊥

(2π)4

∫

dyg dβg d
2ℓg⊥

(2π)4

∫

dγ1 dλ1 d
2z1⊥

∫

dγg dλg d
2zg⊥

×Hα,Γµ

qq̄g (y1, yg) 〈ρ(p)|ψ̄(z1) Γµ gA
⊥
α (zg)ψ(0)|0〉e−iℓ1·z1e−iℓg·zg

= −1

4

∫

dy1

∫

dygH
α,Γµ

qq̄g (y1, yg)

×
∫

dλ1 dλg
(2π)2

e−iy1λ1 e−iygλg 〈ρ(p)|ψ̄(λ1n) Γµ gA
⊥
α (λgn)ψ(0)|0〉µ2

F
, (2.42)

where we denote Tr(Hα
qq̄g Γ

µ) = Hα,Γµ

qq̄g . The fatorization for the three-parton ontribution

is illustrated in �g. 2.14.

PSfrag replaements

ρ
Hα

qq̄g(ℓ1, ℓg) Sqq̄gα −→

PSfrag replaements

ρ

Hα,Γµ

qq̄g (y1, yg) S
Γµ

qq̄gα

Γ Γ

Figure 2.14: Fatorization of 3-parton ontributions in the example of the γ∗ → ρ impat

fator.

Note that the sum of the �rst order term of the Taylor expansion in ∂⊥ for the qq̄

intermediate state ontribution given by eq. (2.39) and the qq̄g intermediate state ontribution

given by eq. (2.42), orresponds to the �rst order term of a Taylor expansion with respet

to the transverse ovariant derivative D⊥µ (z) = ∂⊥µ − igA⊥µ (z) of the hard part around the

dominant light-one diretion, it reads

iA(1)
qDq̄ =

−1

4

∫

dy1

∫

dygH
ν,Γµ

qq̄g (y1, yg)

∫

dλ1
2π

e−iλ1y1

∫

dλg
2π

e−iλgyg
(2.43)

×〈ρ(p)|ψ̄(λ1n) Γµi
←→
D⊥ν (λg)ψ(0)|0〉µ2

F
.

2.3 Parameterizing the vauum to rho-meson matrix el-

ements

The goal of this part is to parameterize the vauum to ρ−meson matrix elements that appear

in eqs. (2.33), (2.39) and (2.42) and ontains the twist 2 and twist 3 ontributions to the

γ∗ g → ρ g amplitude. We will �rst introdue the notion of DA, then we will show how

onsidering the quantum numbers of the ρ−meson state, the equations of motion (EOMs) of

QCD and another ondition alled n−independene, allows to restrit ourselves to a minimal

set of DAs. We �nally desribe how one an �nd expliit expressions for these DAs using

onformal expansion, renormalization equations and QCD sum rules tehniques.
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2.3.1 Light-one wave funtions and distribution amplitudes

Let us introdue the lowest Fok state light-one wave funtion of the ρ−meson Ψ
(λρ)

hh̄
(y, ℓ) and

its onnetion with the DAs. Note that in our notation the usual "+" and "-" omponents of a

vetor z = αzp1+γp2+z⊥ are respetively given by projeting on p2 and p1, z
+
√
s ≡ z·p2 = αz

and z−
√
s ≡ z · p1 = γ.

The wave funtion in momentum spae is the Fourier transform of the Bethe-Salpeter

wave funtion of positive energy at the �xed light-one time z+ ≡ γ = 0. This objet is

the amplitude of probability to �nd a qq̄ pair with respetive heliities h and h̄, frations of

longitudinal momentum y and ȳ, and transverse momenta ℓ and −ℓ, in the ρ−meson state.

Following the onventions of [120℄, the mode expansion of the quark �eld with z laying on

the light-one diretion z = λn is

ψ(λn) =

∫

dyd2ℓ

(2π)3 (2y)

∑

h

[u(h)(y, ℓ)b̂h(y, ℓ) e
−iyλ + v(h)(y, ℓ)d̂†h(y, ℓ) e

iyλ] . (2.44)

The ρ−meson state is de�ned at lowest order of the Fok expansion by

|ρ(pρ, λρ)〉 =
√

4πNc

∑

h,h̄

∫

dyd2ℓ⊥

(2π)3
√

(2y)(2ȳ)
Ψ

λρ

h,h̄
(y, ℓ)b̂†h(y, ℓ)d̂

†
h̄
(ȳ,−ℓ) |0〉 , (2.45)

where the antiommutation relations at equal light-one time (z+ ≡ γ) are,

{

b̂†h(y, ℓ), b̂h′(y
′, ℓ′)

}

γ=0
= (2π)3δ(y − y′)δ(2)(ℓ− ℓ′) (2yp)δh,h . (2.46)

Assuming that the qq̄ state saturates the ρ−meson state, then the probability Pqq̄ to �nd a

qq̄ in the ρ−meson state is one, leading to the normalization ondition [55, 145℄

Pqq̄ =
∑

h,h̄

∫

dy

∫

d2r
∣

∣

∣
Ψ

λρ

h,h̄
(y, r)

∣

∣

∣

2

= 1 , (2.47)

with Ψ
λρ

h,h̄
(y, r) the Fourier transform in the transverse spae, r is the transverse size of the

qq̄ pair. Considering the eletroni deay of the ρ−meson in terms of the wave funtions of

a virtual photon Ψ
λγ

h,h̄
, and of the ρ−meson gives the additional relation [115, 145℄

efρmρ(e
∗
γ · eρ) =

∑

h,h̃

∫

dy

∫

d2rΨ
λρ

h,h̃
(y, r)Ψ

λγ

h,h̃
(y, r) . (2.48)

The vauum to ρ−meson matrix elements that are involved in A(0)
are

〈ρ(p, λρ)|ψ̄(λn) Γµ ψ(0)|0〉 =
√

4πNc

∑

hh̄

∫

dyd2ℓ

(2π)3
√

(2y)(2ȳ)
eiyλ

Ψ
∗λρ

h,h̄
(y, ℓ)[ū(h)(y, ℓ) Γµ v

(h̄)(y,−ℓ)] . (2.49)
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By de�nition, the DAs parameterize the Fourier transforms of the vauum to ρ−meson

matrix elements. We an write as a generi de�nition of the DA ϕi(y, µF ),

mρfρϕi(y, µ
2
F ) =

∫

dλ

2π
e−iyλ〈ρ(p)|ψ̄(λn) (L · Γ) ψ(0)|0〉µ2

F

=
√

4πNc

∑

hh̄

∫ ℓ2<µ2
F d2ℓ

(2π)3
√

(2y)(2ȳ)
eiyλ

× Ψ
∗(λρ)

h,h̄
(y, ℓ)[ū(h)(y, ℓ)L · Γ v(h̄)(y,−ℓ)] , (2.50)

with Lµ the relevant Lorentz struture assoiated to ϕi on whih is projeted the orrelator.

The wave funtion is not known but it is ustomary to parameterize it as a spinor part S
λρ

hh̄

whih is similar to the oupling to the qq̄ pair to a photon, and a salar part φλρ whih has

to be modeled and whih is onstrained by the relations (2.47, 2.48). In this ase the wave

funtion takes the form

Ψ
(λρ)

hh̄
=

√

Nc

4π
S
λρ

hh̄
φλρ , (2.51)

with S
λρ

hh̄
= ūh(y, ℓ)/e

(λρ)vh̄(ȳ,−ℓ). The omputation of the DA with the wave funtion de�ned

in (2.51) leads to interpret the DAs in the asymptoti limit µ2
F → ∞ as the moments of the

salar funtion φλρ(y, ℓ) in the transverse momentum spae.

2.3.2 Lorentz deomposition and parity analysis

We will now investigate the set of DAs we need to parameterize the matrix elements of the

twist 2 and twist 3 operators.

The role of hirality onservation

We �rst restrit the sum over the Γµ
matries to the sum of γµ and γµγ5 as they are hirality-

onserving matries. Indeed, as we have negleted the quark masses, the onservation of

heliity implies then the onservation of the hirality in the QED and QCD verties. The

onservation of hirality at eah verties of the hard part and the fat that the quantum

number exhanged in t−hannel are those of the vauum, i.e. hiral even, impose that the

Γµ
matries must be hiral even. One an readily hek that the hirality-violating matries

like 1 , σµν , · · · are giving vanishing ontributions in the two t−hannel gluon approximation.

The onsequene of the hirality onserving ondition is that the hiral odd DAs [142℄ suh as

the leading twist DA for a transversely vetor meson or the twist 3 DAs for a longitudinally

polarized meson, deouple from the hard parts. As a onsequene, the twist expansion starts

at twist 3 for the prodution of a ρT and the next term of the twist expansion for the

prodution of a ρL is of twist 4. Let us give an exhaustive list of the Fourier transforms of

the vauum to ρ−meson matrix elements that we have to parameterize given the two hiral
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even struture {γµ, γ5γµ},

S
γµ
qq̄ (y, µ

2
F ) ≡

∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γµ ψ(0)|0〉µ2

F
, (2.52)

S
γ5γµ
qq̄ (y, µ2

F ) ≡
∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γ5γµ ψ(0)|0〉µ2

F
, (2.53)

S
γµ,⊥
qq̄ (y, µ2

F ) ≡
∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γµ i

←→
∂⊥α ψ(0)|0〉µ2

F
, (2.54)

S
γ5γµ,⊥
qq̄ (y, µ2

F ) ≡
∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γ5γµ i

←→
∂⊥α ψ(0)|0〉µ2

F
, (2.55)

S
γµ,α
qq̄g (y1, y2, µ

2
F ) ≡

∫

dλ1
2π

e−iλ1y1

∫

dλg
2π

e−iλg(y2−y1)

×〈ρ(p)|ψ̄(λ1n) γµ gA⊥α (λgn)ψ(0)|0〉µ2
F
, (2.56)

S
γ5γµ,α
qq̄g (y1, y2, µ

2
F ) ≡

∫

dλ1
2π

e−iλ1y1

∫

dλg
2π

e−iλg(y2−y1)

×〈ρ(p)|ψ̄(λ1n) γ5γµ gA⊥α (λgn)ψ(0)|0〉µ2
F
. (2.57)

Deomposition on Lorentz strutures

The idea is to deompose on Lorentz strutures the non-loal orrelators and to keep the

strutures whih will give ontributions up to a given twist. The Lorentz strutures have to

be built from the relevant momenta p, n and the polarization of the outgoing ρ−meson e∗. To

understand whih are the relevant Lorentz strutures to keep up to a given twist, let us give

a power ounting argument in the in�nite momentum frame where p ∼ Q→ ∞. We diretly

see in this frame that the salar produt p · n = 1 implies that n ∼ 1
Q
and e∗⊥ ∼ 1. This

saling of the momenta, gives the power behavior in 1/Q for eah term of the deomposition.

The twist 2 O(1) and twist 3 O(1/Q) Lorentz strutures that we an build are then,

(n · e∗)pµ =
1

mρ

pµ ∼ Q ⇒ Twist 2, longitudinal polarization, (vetor) , (2.58)

(n · p)e∗⊥µ = e∗⊥µ ∼ 1 ⇒ Twist 3, transverse polarization, (vetor) , (2.59)

R∗⊥µ ∼ 1 ⇒ Twist 3, transverse polarization, (2.60)

(axial vetor) ,

where

4

R∗⊥µ ≡ εµαβγe
∗α
⊥ p

βnγ .

Other Lorentz strutures exist but they an be expressed in terms of these ones or they are of

twist 4 like for example (p · e∗)nµ ∼ 1
Q
. We see from the power ounting that the orrelators

with two Lorentz indies assoiated to the prodution of a transversely polarized ρ−meson

an be only,

pα e
∗
⊥µ ⇒ Twist 3, transverse polarization, (vetor) , (2.61)

pαR
∗
⊥µ ⇒ Twist 3, transverse polarization, (axial vetor) . (2.62)

4

The onvention taken for the Levi-Civita tensor is ε0123 = −ε0123 = 1.
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Note that another way to perform the power ounting in twist [146℄ is to deompose the

�elds in their "+" and "−" omponents, whih are also alled good and bad omponents,

leading to the de�nitions of quasipartoni operators (only onstituted of "+" �elds) and non-

quasipartoni operators ontaining "−" omponents. For spinor �elds of dimension d and spin

s, these omponents orrespond to the spin projetion of the �eld ψ, ψ+ = Π+ψ ≡ 1
2
γ−γ+ψ

has spin s = 1/2 and ψ− = Π−ψ ≡ 1
2
γ+γ−ψ has spin s = −1/2, with Π± the spin projetion

operators. The onformal spin of the primary �eld ψ, j = d+s
2

and its so-alled ollinear

twist t = d − s, are di�erent for ψ+ and ψ− omponents whih have respetively twist 1

and 2. To illustrate the twist ounting of the operators, let us fous on the operator ψ̄γµψ.

The quasipartoni operator ψ̄+γ+ψ+ is a leading twist operator while ψ̄+γ⊥ψ− + ψ̄−γ⊥ψ+ is

a twist 3 operator and ψ̄−γ−ψ− is a twist 4 operator. The role of the onformal spin of the

operators will be disussed in setion 2.5.

Let us now fous on the parameterization of the S
γµ
qq̄ , whih a priori involves three unknown

funtions ϕ1(y), ϕ3(y) and ϕ̃A(y),

S
γµ
qq̄ =

∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γµ ψ(0)|0〉 (2.63)

= mρfρ
(

ϕ1(y) (e
∗ · n)pµ + iϕ̃A(y)R

∗
⊥µ + ϕ3(y) (p · n)e∗⊥

)

. (2.64)

The normalization mρfρ ontains the information on the large distane physis. The deay

onstant fρ is de�ned as

〈0| ψ̄(0)γµψ(0) |ρ(p, λ)〉 = mρfρe
λ
µ , (2.65)

and it has been measured: fρ ∼ 200 MeV.

In pratie one has to de�ne non-perturbative oupling onstants (fV
3,ρ, · · · ) in order that

the DAs have proper normalizations. We will see in setion 2.6 the determination of suh

non perturbative inputs, using QCD sum rules tehniques. Let us now investigate how the

parity analysis will onstrain the set of unknown funtions, on the partiular ase of S
γµ
qq̄ .

Parity onstraints

Under parity, the light one vetors p, n and e∗⊥ transform as

Pν
µpν = nµ , Pν

µnν = pµ , Pν
µe
∗
ν(−~p, λ) = −e∗µ(~p, λ) , (2.66)

and the operator ψ̄(z)γµψ(0) transforms as

ψ̄(z)γµψ(0) −→ Pν
µ ψ̄(Pα

β z
β)γνψ(0) , (2.67)

where P = diag(1,−1,−1,−1) is the parity matrix on the Lorentz vetor representation.

The proofs are quite straightforward exept for the transformation of e∗ν where one needs to

boost by Lν
µ(p) the vetor in the rest frame of the ρ−meson where ~p = ~0,

eµ(Pp, λ) = Lµ
ν (Pp)eν(~0, λ) = Pµ

αL
α
β(p)Pβ

ν e
ν(~0, λ) = −Pµ

ν e
ν(p, λ) , (2.68)
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where we use the fat that in the rest frame

Pβ
ν e

ν(~0, λ) = −eβ(~0, λ) ,

as e0(~0, λ) = 0.

Inserting the identity 1 = PP † between the operator and the states, the matrix element

transforms as

〈ρ(p, λ)|PP †ψ̄(z)γµψ(0)PP † |0〉 = ηρPν
µ 〈ρ(Pp, λ)| ψ̄(Pz)γµψ(0) |0〉 , (2.69)

with ηρ = −1 the intrinsi parity of the ρ−state. This equality in terms of DAs reads

∫

dy
(

ϕ1(y)(e
∗(~p, λ) · n)pµ + ϕ3(y)e

∗
⊥(p, λ) + iϕ̃A(y)R

∗
⊥µ
)

eiyp·z

= ηρPν
µ

∫

dy eiy(Pp)·(Pz) (ϕ1(y) (e
∗
α(Pp, λ)(Pn)α) (Pp)ν + ϕ3(y)e

∗
⊥ν(Pp, λ)

+iϕ̃A(y)εναβγe
∗α
⊥ (Pp, λ) (Pp)β Pnγ

)

. (2.70)

The �rst term that multiplies ϕ1(y), simpli�es as

ηρPν
µPβ

ν pβ(e
∗
α(Pp, λ)Pα

σ n
σ) = ηρpµ(−Pσ

αe
∗
σ(p, λ)p

α)

= −ηρ(e∗σ(p, λ) · n)pµ . (2.71)

The term multiplying ϕ3(y) simpli�es as

ηρPν
µe
∗
⊥ν(Pp, λ) = −ηρPν

µPσ
ν e
∗
⊥σ(p, λ) = −ηρe∗⊥µ(p, λ) (2.72)

and �nally the term multiplying ϕ̃A(y) reads

ηρPν
µεναβγe

∗α
⊥ (Pp, λ)Pβ

λ p
λPδ

ρn
ρ

= −ηρPν
µεναβγPα

σ e
∗σ
⊥ (Pp, λ)Pβ

λp
λ Pδ

ρn
ρ

= −ηρ
(

εναβγPµ
νPα

σPβ
λPγ

ρ

)

e∗σ⊥ (p, λ)pλnρ

= −ηρdet(P)εµσλρe
∗σ
⊥ (p, λ)pλnρ

= ηρεµσλρe
∗σ
⊥ (p, λ)pλnρ , (2.73)

where we use the fat that Pν
µ = Pµ

ν , εµαβγPµ
νPα

σPβ
λPγ

ρ = det(P)ενσλρ by de�nition of the

determinant, and det(P) = −1. The relation given in eq. (2.70) leads to

∫

dy
(

ϕ1(y)(e
∗ · n)pµ + ϕ3(y)e

∗
⊥(p, λ) + iϕ̃A(y)R

∗
⊥µ
)

eiyp·z (2.74)

=

∫

dy
(

ϕ1(y)(e
∗ · n)pµ + ϕ3(y)e

∗
⊥(p, λ)− iϕ̃A(y)R

∗
⊥µ
)

eiyp·z .

The onditions given by the parity analysis are then

ϕ1(y) = ϕ1(y) , ϕ3(y) = ϕ3(y) , ϕ̃A(y) = −ϕ̃A(y) ⇒ ϕ̃A(y) = 0 . (2.75)
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C-parity onstraints

The transformation under C-parity of the operator ψ̄(z)γµψ(0) is

C†ψ̄(z)γµψ(0)C = −ψ̄(0)γµψ(z) .

The orrelator reads

〈ρ(p, λ)|CC†ψ̄(z)γµψ(0)CC† |0〉 = −ηcρ 〈ρ(p, λ)| ψ̄(0)γµψ(z) |0〉
= −ηcρ 〈ρ(p, λ)| eiP̂ Ẑe−iP̂ Ẑψ̄(0)eiP̂ Ẑe−iP̂ Ẑγµψ(z)e

iP̂ Ẑe−iP̂ Ẑ |0〉
= −ηcρ 〈ρ(p, λ)| eiP̂ Ẑψ̄(−z)γµψ(0)e−iP̂ Ẑ |0〉 , (2.76)

where we have inserted the translation operators e−iP̂ Ẑ
. The intrinsi C-parity of the

ρ0−meson is ηcρ = −1. The vauum state is invariant under translation while the ρ−meson

state gives the eigenvalue exp(ip · z). We get then the equality

〈ρ(p, λ)|CC†ψ̄(z)γµψ(0)CC† |0〉 = −ηcρeip·z 〈ρ(p, λ)| ψ̄(−z)γµψ(0) |0〉 . (2.77)

Parameterizing the orrelator in terms of the ϕ1(y) and ϕ3(y) gives the relation

mρfρ

∫

dyeiyp·z[ϕ1(y)(e
∗ · n)pµ + ϕ3(y)e

∗
⊥] = −ηρeip·zmρfρ

×
∫

dye−iyp·z[ϕ1(y)(e
∗ · n)pµ + ϕ3(y)e

∗
⊥] . (2.78)

Changing the integration variable y by ỹ = 1− y, leads to

mρfρ

∫

dyeiyp·z[ϕ1(y)(e
∗ · n)pµ + ϕ3(y)e

∗
⊥]

= mρfρ

∫

dỹeiỹp·z[ϕ1(1− ỹ)(e∗ · n)pµ + ϕ3(1− ỹ)e∗⊥] . (2.79)

We an now identify the di�erent terms, and the onstraints given by the C-parity transfor-

mation of the orrelator are

ϕ1(y) = ϕ1(1− y) and ϕ3(y) = ϕ3(1− y) . (2.80)

Time reversal onstraints

The ρ−meson state transforms under T−parity as

T |ρ(p, λ)〉 = ζ∗ρ(−1)1−λ |ρ(Pp,−λ)〉 . (2.81)

One an prove also the relation

e∗µ(Pp,−λ) = (−1)1+λPν
µeµ(p, λ) , (2.82)

whih will be useful in the transformations. The operator ψ̄(z)γµψ(0) transforms under time

reversal as,

T−1ψ̄(z)γµψ(0)T = Pν
µψ̄(−Pz)γνψ(0) .
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The orrelator after inserting the operators TT−1 reads

〈ρ(p, λ)|TT−1ψ̄(z)γµψ(0)TT−1 |0〉
= ζρ(−1)1−λ

(

〈ρ(Pp,−λ)| ψ̄(−Pz)Pν
µγνψ(0) |0〉

)∗

= ζρ(−1)1−λ
(
∫

dye−iy(Pp)·(Pn)[ϕ1(y)(e
∗(Pp,−λ) · Pn)Pν

µ(Pp)ν

+ϕ3(y)Pν
µe
∗
⊥ν(Pp,−λ)]

)∗
. (2.83)

The fat that the orrelator is onjugated is due to the fat that time reversal exhanges the

in−state with the out−state. The salar produt e∗(Pp,−λ) · Pn simpli�es,

e∗(Pp,−λ) · Pn = (−1)1+λ(Pe(p, λ)) · (Pn) = (−1)1+λe(p, λ) · n .

We get then,

= ζρ(−1)1−λ
(
∫

dye−iy(Pp)·(Pn)[ϕ1(y)(e
∗(Pp,−λ) · Pn)Pν

µ(Pp)ν

+ϕ3(y)Pν
µe
∗
⊥ν(Pp,−λ)]

)∗

= ζρ(−1)2
(
∫

dye−iyp·n[ϕ1(y)(e(p, λ) · n)pµ + ϕ3(y)e⊥µ(p, λ)]

)∗

= ζρ

∫

dyeiyp·n[ϕ∗1(y)(e
∗(p, λ) · n)pµ + ϕ∗3(y)e

∗
⊥µ(p, λ)] . (2.84)

By identi�ation we have the following relations

ϕ∗1(y) = ϕ1(y) , ϕ∗3(y) = ϕ3(y) , (2.85)

whih show that the DAs are real funtions.

The full set of distribution amplitudes

The same proedure an be applied to the other orrelators and one �nds at the end that the

parameterization of the orrelators involves two DAs (ϕ1, ϕ3) for the S
γµ
qq̄ (y, µF ), one (ϕA)

for the axial vetor orrelator S
γ5γµ
qq̄ , one for the vetor (ϕT

1 ) and axial vetor (ϕT
A) orrelators

with transverse derivative, and one for the vetor (B) and for the axial vetor (D) orrelators

with three partons,

S
γµ
qq̄ (y;µ

2
F ) = mρfρ[ϕ1(y;µ

2
F ) (e

∗ · n) pµ + ϕ3(y;µ
2
F ) e

∗
⊥µ], (2.86)

S
γ5γµ
qq̄ (y;µ2

F ) = mρfρ i ϕA(y;µ
2
F )R

∗
⊥µ , (2.87)

S
γµ,⊥
qq̄ (y;µ2

F ) = mρfρ ϕ
T
1 (y;µ

2
F ) pµ e

∗
⊥α , (2.88)

S
γ5γµ,⊥
qq̄ (y;µ2

F ) = imρfρ ϕ
T
A(y;µ

2
F ) pµR

∗
⊥α , (2.89)

S
γµ,α
qq̄g (y1, y2;µ

2
F ) = mρ fρ ζ

V
3ρ(µ

2
F )B(y1, y2;µ

2
F ) pµ e

∗
⊥α , (2.90)

S
γ5γµ,α
qq̄g (y1, y2;µ

2
F ) = mρ fρ ζ

A
3ρ(µ

2
F ) iD(y1, y2;µ

2
F ) pµR

∗
⊥α , (2.91)

where ζV3ρ(µ
2
F ) and ζ

A
3ρ(µ

2
F ) are dimensionless oupling onstants:

ζV3ρ(µ
2
F ) =

fV
3ρ(µ

2
F )

fρ
, ζA3ρ(µ

2
F ) =

fA
3ρ(µ

2
F )

fρ
. (2.92)



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE

ρ−MESON PRODUCTION 76

We remind that, for the qq̄g amplitude, the quark, the antiquark and the gluon frations of

longitudinal momentum are respetively denoted y1, ȳ2 = 1−y2 and yg, and verify the relation
y1 + ȳ2 + yg = 1. Note that for the qq̄g DAs B and D, the gluon fration of momentum is

positive 0 ≤ yg ≤ 1 whih onstrains the integral over y1 and y2 by the ondition y1 ≤ y2 ≤ 1,

∫ 1

0

dy1

∫ 1

0

dy2 −→
∫ 1

0

dy2

∫ y2

0

dy1 .

The onstraints obtained from the parity relations are,

ϕ1(y) = ϕ1(ȳ) , ϕ3(y) = ϕ3(ȳ) , ϕA(y) = −ϕA(−ȳ)
ϕT
1 (y) = −ϕT

1 (ȳ) , ϕT
A(y) = ϕT

A(ȳ)

B(y1, y2) = −B(ȳ2, ȳ1) , D(y1, y2) = D(ȳ2, ȳ1) .

Inserting in eqs. (2.33), (2.39), (2.96) the previous parameterization of the orrelators and

using the shorthand notations,

H
Γµaµ
qq̄ (y) ≡ HΓµ

qq̄ (y) aµ , H
b,Γµaµ
qq̄ (y) ≡ Hα,Γµ

qq̄ (y) aµ bα ,

H
b,Γµaµ
qq̄g (y1, y2) ≡ Hα,Γµ

qq̄ (y1, y2) aµ bα ,

we get the onvolutions

iA(0)
qq̄ = −mρfρ

4

∫

dyH
/p
qq̄(y)ϕ1(y;µ

2
F ) (e

∗
ρ · n) , (2.93)

for a longitudinally polarized ρ−meson,

iA(0)
qq̄ = −mρfρ

4

∫

dy
[

H
/e∗ρT
qq̄ (y)ϕ3(y;µ

2
F ) + iH

/R∗⊥γ5
qq̄ (y)ϕA(y;µ

2
F )
]

, (2.94)

iA(1)
qq̄ = −mρfρ

4

∫

dy [H
e∗ρT ,/p

qq̄ (y)ϕT
1 (y;µ

2
F ) + iH

R∗⊥,/pγ5
qq̄ (y)ϕT

A(y;µ
2
F )] , (2.95)

for the two-parton ontributions and

iAqq̄g = −mρfρ
4

∫

dy1dy2 [H
e∗ρT ,/p

qq̄g (y1, y2)ζ
V
3 (µ

2
F )B(y1, y2;µ

2
F )

+H
R∗⊥,/pγ5
qq̄g (y1, y2) ζ

A
3 (µ

2
F ) iD(y1, y2;µ

2
F )] , (2.96)

for the three-parton ontribution of the transversely polarized ρ−meson. The DAs satisfy

the normalization onditions

∫ 1

0

dy ϕ1(y) = 1 ,

∫ 1

0

dy ϕ3(y) = 1 ,

∫ 1

0

dy (y − ȳ)ϕA(y) =
1

2
, (2.97)

by de�nition of the assoiated oupling onstants.
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2.4 Redution to a minimal set of DAs

The set of DAs de�ned above is over-omplete, �rst the DAs are related by the EOMs of

QCD (se. 2.4.1) [138℄ and seond their parameterizations depend on an arbitrary vetor n

and the amplitude has to be invariant under the transformations that preserve p · n = 1

and n2 = 0, leading to additional relations among DAs (se. 2.4.2). These relations an be

solved and lead to two sets of independent solutions (se. 2.4.3), the �rst set orresponds to

the so-alled Wandzura-Wilzek (WW) solutions [147℄ {ϕWW
3 , ϕWW

A , ϕT WW
1 , ϕT WW

A } whih

only depend on ϕ1 the leading twist two-parton DA and the seond set of solutions are alled

"genuine" solutions {ϕgen
3 , ϕgen

A , ϕT gen
1 , ϕT gen

A }, they depend only on the twist 3 three-parton

DAs. The genuine twist 3 solutions an be interpreted as the higher Fok state ontribution

to the amplitude. The relations between the DAs have been derived independently of the

hard sub-proess in [142℄ in the ovariant approah using exat operators identities that relate

the non-loal operators [148, 149℄. We will follow here the approah of [131℄. In the last part

(se. 2.155) we show how the three independent DAs {ϕ1, B, D} and the analogous DAs of

Ref. [142℄ {φ‖, V, A} in the ovariant approah, are related, as it was shown in Ref. [131℄.

2.4.1 DA relations from the equations of motion of QCD

The Dira equation on the spinor �elds allows to derive relations between the DAs. Let us

insert the Dira equation inside the orrelator

〈

ψr(0)ψ̄s(z)
〉

, where r and s are the spinor

indies of the �elds, suh as

〈

i /~Dx
urψr(x)ψ̄s(z)

〉

x=0
= 0 , (2.98)

with

~Dx
r is the ovariant derivative with respet to the oordinate x. Another onstraint an

be similarly obtained by ating on ψ̄(z),

〈

ψr(0)ψ̄r(z)i /
←
D

z

st

〉

= 0 . (2.99)

Let �rst fous on the

~∂r part of the ovariant derivative, and split it into its longitudinal

omponent

~∂L and its transverse omponent

~∂⊥. Then the Fourier transform of the orrelator

reads

∫

d4ze−iyp·z−iȳp·x
(〈

i~/∂
x

Lψ(x)ψ̄(z)
〉

+
〈

i~/∂
x

⊥ψ(x)ψ̄(z)
〉)

x=0
. (2.100)

The �rst term of eq. 2.100 involving the longitudinal derivative an be simpli�ed as

∫

d4ze−iyp·z−iȳp·x
〈

i~/∂
x

Lψ(x)ψ̄(z)
〉

x=0

= −ȳ/p
∫

d4ze−iyp·z−iȳp·x
〈

ψ(x)ψ̄(z)
〉

x=0
. (2.101)

The result of eq. (2.101) is obtained by �rst translating the orrelator by −z, then performing

an integration by part and translating bak by +z the orrelator. Using the Fierz identity

−〈ϕrϕ̄s〉 =
1

4
(〈ϕ̄γµϕ〉 γµrs + 〈ϕ̄γ5γµϕ〉 (γµγ5)rs) , (2.102)
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and the parametrization of the orrelators given in eqs.(2.86, 2.87), the ontribution of the

longitudinal derivative reads

mρfρ
4

ȳ(/p/e∗⊥ϕ3(y;µ
2
F )+i/p /R

∗
⊥γ5ϕA(y;µ

2
F )) = −imρfρ

4
ȳσp,e∗⊥

(

ϕ3(y;µ
2
F ) + ϕA(y;µ

2
F )
)

, (2.103)

where in the r.h.s.

σp,e∗⊥ =
i

2
[/p, /e∗⊥] .

The longitudinal derivative ontribution is then

∫

d4ze−iyp·z−iȳp·x
〈

i~/∂
x

Lψ(x)ψ̄(z)
〉

x=0

=
−imρfρ

4
σp,e∗⊥

(

ȳϕ3(y;µ
2
F ) + ȳϕA(y;µ

2
F )
)

. (2.104)

The ontribution from the transverse derivative ∂x⊥
∫

d4ze−iyp·z−iȳp·x
〈

i~/∂
x

⊥ψ(x)ψ̄(z)
〉

x=0
, (2.105)

is diretly parameterized by DAs of eqs. (2.88, 2.89) after using the Fierz identity. The

transverse derivative ontribution reads

∫

d4ze−iyp·z−iȳp·x
〈

i~/∂
x

⊥ψ(x)ψ̄(z)
〉

x=0

=
mρfρ
4

(/pϕT
1 (y) + i/p /R∗⊥γ5ϕ

T
A(y)) (2.106)

= −imρfρ
4

σp,e∗⊥
(

ϕT
1 (y;µ

2
F ) + ϕT

A(y;µ
2
F )
)

. (2.107)

Adding the two ontributions, the derivative term ∂ of the ovariant derivative D reads

∫

d4ze−iyp·z−iȳp·x
(〈

i~/∂
x

Lψ(x)ψ̄(z)
〉

+
〈

i~/∂
x

⊥ψ(x)ψ̄(z)
〉)

x=0
(2.108)

= −imρfρ
4

σp,e∗⊥
[

ȳϕ3(y;µ
2
F ) + ȳϕA(y;µ

2
F ) + ϕT

1 (y;µ
2
F ) + ϕT

A(y;µ
2
F )
]

.

The interation term with the gluon �eld of the ovariant derivative reads

∫

d4ze−iyp·z
〈

g /A(0)ψ(0)ψ̄(z)
〉

, (2.109)

whih after using the Fierz identity, reads

∫

d4ze−iyp·z
〈

g /A⊥(0)ψ(0)ψ̄(z)
〉

= −1

4
γρ

∫

d4ze−iyp·z
[〈

ψ̄(z) γµ g A
⊥ρ(0)ψ(0)

〉

γµ

+
〈

ψ̄(z) γ5γµ g A
⊥ρ(0)ψ(0)

〉

γµγ5
]

. (2.110)

Using the parameterization eqs.(2.90, 2.91), we get

∫

d4ze−iyp·z
〈

g /A⊥(0)ψ(0)ψ̄(z)
〉

=
mρfρ
4

∫ 1

y1

dy2
[

ζV3 B(y1, y2)/p/e
∗
⊥ + iζA3 D(y1, y2)/p /R

∗
⊥γ5
]

= −imρfρ
4

σp,e∗⊥

∫ 1

y1

dy2[ζ
V
3 B(y1, y2) + ζA3 D(y1, y2)] . (2.111)
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We �nally obtain that the Dira equation inserted in the orrelator as

∫

d4ze−iyp·z
〈

/~D(0)ψ(0)ψ̄(z)
〉

= 0 , (2.112)

leads to

ȳϕ3(y;µ
2
F ) + ȳϕA(y;µ

2
F ) + ϕT

1 (y;µ
2
F ) + ϕT

A(y;µ
2
F )

= −
∫ 1

y1

dy2
[

ζV3 (µ
2
F )B(y1, y2;µ

2
F ) + ζA3 (µ

2
F )D(y1, y2;µ

2
F )
]

. (2.113)

The seond equation given by the Dira equation applied to the seond fermioni �eld

gives the following ondition,

yϕ3(y;µ
2
F )− yϕA(y;µ

2
F )− ϕT

1 (y;µ
2
F ) + ϕT

A(y;µ
2
F )

= −
∫ 1

y1

dy2
[

−ζV3 (µ2
F )B(y1, y2;µ

2
F ) + ζA3 (µ

2
F )D(y1, y2;µ

2
F )
]

. (2.114)

Finally we see that the EOMs of QCD lead to two relations on the DAs, mixing the twist 2

and twist 3 DAs.

2.4.2 Equations from the n−independene ondition
The basis of light one vetor hosen to perform the expansion of the hard part around

the dominant light one diretion p, is not unique as n is not �xed by a physial diretion.

The amplitude should then be independent of this arbitrary hoie, leading to an additional

set of equations on the DAs whih is independent of the assoiated hard sattering ampli-

tude, as it relies on Ward identities. We will see that separating the axial vetor from the

vetor ontributions of the amplitudes and demanding the n−independene of these ontri-

butions, one an simplify these onditions thanks to the Ward identities. At the end, the

n−independene onditions are the onvolutions of a ommon hard part (involving only the

quark and antiquark pair exhange) with the following ombinations of DAs

dϕT
1

dy
(y;µ2

F ) + ϕ1(y;µ
2
F )− ϕ3(y;µ

2
F )

+ζV3 (µ
2
F )

∫ 1

0

dy2
B(y, y2) + B(y2, y)

y2 − y
= 0 , (2.115)

for the vetor ontribution and

dϕT
A

dy
(y;µ2

F )− ϕA(y;µ
2
F ) +

ζA3 (µ
2
F )

∫ 1

0

dy2
D(y, y2) +D(y2, y)

y2 − y
= 0 , (2.116)

for the axial vetor ontribution.

The onditions that we require to get a Sudakov basis on the vetor n are,
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• n is light-like,

• p · n = 1.

Starting from a basis of referene with a �xed light-one referene vetor n0
satisfying these

onditions, we an deompose on this basis any vetor n satisfying the same onditions as

nµ = −n
2
⊥
2
pµ + nµ

0 + nµ
⊥ .

Hene only the transverse degrees of freedom parameterize the n−vetors and the n−independene
of the amplitude reads

d

dnµ
⊥
A = 0 . (2.117)

The total derivative an be written as

d

dnµ
⊥
A =

∂nν

∂nµ
⊥

∂

∂nν
+
∂(e∗ · n)
∂nµ
⊥

∂

∂(e∗ · n) A

= [−n⊥µpν + gν⊥µ]
∂A
∂nν

+ e∗⊥
∂A

∂(e∗ · n) = 0 , (2.118)

as the amplitude dependene on n is partially due to the parameterization of the polarization

e∗. The n−independene ondition applies separately for the vetor Avetor

and the axial

vetor Aaxial

parts of the amplitudes, due to their di�erent parity properties. The dependene

on n of Avetor

and Aaxial

omes respetively from the fator e∗ · n as

eµT = eµ − (e∗ · n)pµ ,

and R∗⊥µ = εµe∗⊥pn where the vetor n an only be ontrated with p so that the dependene

is in p · n then,

∂nν

nµ
⊥

dAaxial

dnν
= 0 ⇒ ∂Aaxial

∂nµ
⊥

= 0 , (2.119)

dAvetor

dnµ
⊥

= 0 ⇒ ∂Avetor

∂(e∗ · n⊥)
= 0 . (2.120)

The equation of n−independene of the vetor amplitude Avetor

(2.120) involves the terms

proportional to ϕ1, ϕ3, ϕ
T
1 and B. The assoiated Fierz struture losing the spinor indies

of the partoni �elds of the hard "vetor" sattering is γµ. The term proportional to ϕ1 reads

diagrammatially as,

∂

∂(e∗ · n)A
(0)
qq̄ = −mρfρ

4

∂

∂(e∗ · n)

∫

dyϕ1(y)(e
∗ · n)

PSfrag replaements

/p

= −mρfρ
4

∫

dyϕ1(y)

PSfrag replaements

/p
. (2.121)
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The term in ϕ3 is

∂

∂(e∗ · n)A
(1),ϕ3
qq̄ = −mρfρ

4

∂

∂(e∗ · n)

∫

dyϕ3(y)(e
∗
µ − (e∗ · n)pµ)

PSfrag replaements

γµ

=
mρfρ
4

∫

dyϕ3(y)

PSfrag replaements

/p
. (2.122)

The term in ϕT
1 involves the derivative of the hard part Hν,γµ

qq̄ , whih formally reads

∂

∂(e∗ · n)

(

−mρfρ
4

∫

dyH
e∗−(e∗·n)p,/p
qq̄ (y)ϕT

1 (y;µ
2
F )

)

(2.123)

=
mρfρ
4

∫

dyϕT
1 (y;µ

2
F )









PSfrag replaements

/p

/p

+

PSfrag replaements

/p

/p








= −mρfρ
4

∫

dy1

∫

dy2δ(y2 − y1)
ϕT
1 (y1;µ

2
F )

y2 − y1









PSfrag replaements

/p
y1

ȳ1
−

PSfrag replaements

y2

ȳ2

/p









= −mρfρ
4

∫

dy









PSfrag replaements

/p









d

dy
ϕT
1 (y;µ

2
F ) , (2.124)

where we used the following Ward identity in the ollinear limit [150℄,

pµ

PSfrag replaements

y1 p y2 pγµ
=

1

y2 − y1











PSfrag replaements

(y2 − y1)p

y2 p
−

PSfrag replaements

y1 p

(y2 − y1) p










. (2.125)

We see that it is some kind of integration by part in order that the derivative ating on the

hard part �nally ats on the DA.

One an show that the three-parton ontribution to eq. (2.120) that will mix with the

previous terms is assoiated to the abelian diagrams of �g. 2.8. These diagrams have the
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same olor struture than the two-parton diagrams and the term in B reads

∂

∂(e∗ · n)

(−mρfρ
4

∫

dy1dy2H
e∗−(e∗·n)p,/p
qq̄g (y1, y2)ζ

V
3 (µ

2
F )B(y1, y2;µ

2
F )

)

=
mρfρ
4

∫

dy1dy2ζ
V
3 (µ

2
F )B(y1, y2;µ

2
F )









PSfrag replaements

/p

/p

y1

ȳ2
+

PSfrag replaements

y1

ȳ2

/p

/p








= −mρfρ
4

ζV3 (µ
2
F )

∫

dy1

∫

dy2
B(y1, y2;µ

2
F )

y2 − y1









PSfrag replaements

/p
y1

ȳ1
−

PSfrag replaements

y2

ȳ2

/p









= −mρfρ
4

ζV3 (µ
2
F )

∫

dy1

∫

dy2









PSfrag replaements

/p









×B(y1, y2;µ
2
F ) +B(y2, y1;µ

2
F )

y2 − y1
, (2.126)

where we used the Ward identity (2.125), and the symmetry property

B(y1, y2;µ
2
F ) = −B(ȳ2, ȳ1;µ

2
F ) .

Finally, the sum of these terms gives the hard sub-proess independent relation oming

from eq. (2.120),

dϕT
1

dy
(y;µ2

F ) + ϕ1(y;µ
2
F )− ϕ3(y;µ

2
F )

+ζV3 (µ
2
F )

∫ 1

0

dy2
B(y, y2) + B(y2, y)

y2 − y
= 0 . (2.127)

The axial vetor n−independene ondition an be derived with the same tehniques and

gives the relation

dϕT
A

dy
(y;µ2

F )− ϕA(y;µ
2
F ) +

ζA3 (µ
2
F )

∫ 1

0

dy2
D(y, y2) +D(y2, y)

y2 − y
. (2.128)

The equations (2.127) and (2.128) are the results of the n−independene onditions.

2.4.3 Wandzura-Wilzek and genuine solutions

As we saw in the two previous setions, the seven DAs involved in the hiral even proess

are not independent. They are related by four equations, namely two equations from the

EOMs of QCD and two equations oming from the n−independene onditions. This means

that four of the seven DAs, denoted ”ϕi” = {ϕ3, ϕA, ϕ
T
1 , ϕ

T
A}, an be expressed in terms of

three independent DAs hosen to be {ϕ1, B,D}. The solutions for ϕi an be split into a
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solution depending only on the twist 2 DA ϕ1, by putting B and D to zero whih onsists in

forgetting about the orrelators with an additional transverse gluon, these solutions are alled

Wandzura-Wilzek (WW) solutions [147, 151℄ and are denoted ϕWW
i , and genuine solutions

denoted ϕgen
i whih only depend on B and D. The deomposition of the solutions ϕi is a

linear deomposition in ϕgen
i and ϕWW

i ,

ϕi(y;µ
2
F ) = ϕWW

i (y;µ2
F ) + ϕgen

i (y;µ2
F ) .

The WW-solutions

Putting the ontributions of B and D to zero, the EOMs for the WW DAs are

5

ȳϕWW
3 (y) + ȳϕWW

A (y) + ϕT WW
1 (y) + ϕT WW

A (y) = 0 , (2.129)

y ϕWW
3 (y)− y ϕWW

A (y)− ϕT WW
1 (y) + ϕT WW

A (y) = 0 . (2.130)

The n−independene relations read
d

dy
ϕT WW
1 (y) = −ϕ1(y) + ϕWW

3 (y) ,
d

dy
ϕT WW
A (y) = ϕWW

A (y) . (2.131)

From the previous equations, one an dedue a set of equations relating ϕ3 and ϕA to ϕ1,

d

dy
ϕWW
3 (y) = −(ȳ − y)

d

dy
ϕWW
A (y) , 2ϕ1(y) =

d

dy
ϕWW
A (y) + (ȳ − y)

d

dy
ϕWW
3 (y) . (2.132)

The solutions of these equations are [147, 151℄

ϕWW
A (y) =

1

2





y
∫

0

dv

v̄
ϕ1(v)−

1
∫

y

dv

v
ϕ1(v)



 , (2.133)

ϕWW
3 (y) =

1

2





y
∫

0

dv

v̄
ϕ1(v) +

1
∫

y

dv

v
ϕ1(v)



 , (2.134)

they satisfy the normalization onditions

1
∫

0

dy ϕWW
3 (y) = 1 and

1
∫

0

dy ϕWW
A (y) = 1 . (2.135)

Inserting these solutions in the eqs. (2.129, 2.130) gives the solutions for ϕT
1 and ϕT

A,

ϕT WW
A (y) =

1

2

[

−ȳ
∫ y

0

dv

v̄
ϕ1(v)− y

∫ 1

y

dv

v
ϕ1(v)

]

, (2.136)

ϕT WW
1 (y) =

1

2

[

−ȳ
∫ y

0

dv

v̄
ϕ1(v) + y

∫ 1

y

dv

v
ϕ1(v)

]

. (2.137)

The WW-solutions (2.134, 2.133) were already derived in Ref. [152℄ for the omputation of

the transition form fators Bu,d → V + γ with V = {K∗, ρ}, Bd → ω + γ and Bs → V + γ

V = {φ,K∗}.
Let us emphasize that the WW solutions are not intrinsi twist 3 distributions, they only

depend on the leading twist DA ϕ1 assoiated to the prodution of a longitudinal meson.

5

For the sake of oniseness, we will omit the dependene in µ2

F
of the DAs as it is not needed in this

part.
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Genuine solutions

The genuine solutions obey the full EOMs and n−independene relations,

ȳ1ϕ
gen
3 (y1) + ȳ1ϕ

gen
A (y1) + ϕT gen

1 (y1) + ϕT gen
A (y1)

= −
∫ 1

0

dy2
[

ζV3 B(y1, y2) + ζA3 D(y1, y2)
]

, (2.138)

y1 ϕ
gen
3 (y1)− y1 ϕ

gen
A (y1)− ϕT gen

1 (y1) + ϕT gen
A (y1)

= −
1
∫

0

dy2
[

−ζV3 B(y2, y1) + ζA3 D(y2, y1)
]

, (2.139)

d

dy1
ϕT gen
1 (y1) = ϕgen

3 (y1)− ζV3

∫ 1

0

dy2
y2 − y1

(B(y1, y2) +B(y2, y1)) , (2.140)

d

dy1
ϕT gen
A (y1) = ϕgen

A (y1)− ζA3

∫ 1

0

dy2
y2 − y1

(D(y1, y2) +D(y2, y1)) . (2.141)

Isolating the distributions ϕgen
3 and ϕgen

A , one �nds the equations,

d

dy1
ϕgen
3 (y1) + (ȳ1 − y1)

d

dy1
ϕgen
A (y1) = 4 ζA3

∫ 1

0

dy2
y2 − y1

D(+)(y1, y2)

−2 ζV3
d

dy1

∫ 1

0

dy2B
(−)(y1, y2)− 2 ζA3

d

dy1

∫ 1

0

dy2D
(+)(y1, y2) , (2.142)

d

dy1
ϕgen
A (y1) + (ȳ1 − y1)

d

dy1
ϕgen
3 (y1) = 4 ζV3

∫ 1

0

dy2
y2 − y1

B(+)(y1, y2)

−2 ζV3
d

dy1

∫ 1

0

dy2B
(+)(y1, y2)− 2 ζA3

d

dy1

∫ 1

0

dy2D
(−)(y1, y2) , (2.143)

where we denote,

B(±)(y1, y2) = B(y1, y2)±B(y2, y1) andD
(±)(y1, y2) = D(y1, y2)±D(y2, y1) . (2.144)

From the system of equations (2.142, 2.143), we an dedue the following equation on ϕgen
3 ,

d

dy1
ϕgen
3 (y1) = −1

2

(

1

y1
+

1

ȳ1

){

ζV3

[

y1

∫ 1

y1

dy2
d

dy1
B(y1, y2)− ȳ1

∫ y1

0

d

dy1
B(y2, y1)

+(ȳ1 − y1)

(
∫ 1

y1

dy2
B(y1, y2)

y2 − y1
+

∫ y1

0

dy2
B(y2, y1)

y2 − y1

)]

+ζA3

[

y1

∫ 1

y1

dy2
d

dy1
D(y1, y2) + ȳ1

∫ y1

0

d

dy1
D(y2, y1)

−
∫ 1

y1

dy2
D(y1, y2)

y2 − y1
−
∫ y1

0

dy2
D(y2, y1)

y2 − y1

]}

. (2.145)

The normalized solution for ϕgen
3 is obtained by integrating over y1. The solution is expeted

to be of the form,

ϕgen
3 (y) =

1

2

(

−
∫ 1

y

dy1
y1

+

∫ 1

0

dy1
ȳ1

)

{...} . (2.146)
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Finding the right ombination between the brakets gives the following solution for ϕgen
3 ,

ϕgen
3 (y) = (2.147)

−1

2

∫ 1

y

du

u

[
∫ u

0

dy2
d

du
(ζV3 B − ζA3 D)(y2, u)−

∫ 1

u

dy2
y2 − u

(ζV3 B − ζA3 D)(u, y2)

−
∫ u

0

dy2
y2 − u

(ζV3 B − ζA3 D)(y2, u)

]

−1

2

∫ y1

0

du

ū

[
∫ 1

u

dy2
d

du
(ζV3 B + ζA3 D)(u, y2)−

∫ 1

u

dy2
y2 − u

(ζV3 B + ζA3 D)(u, y2)

−
∫ u

0

dy2
y2 − u

(ζV3 B + ζA3 D)(y2, u)

]

.

We will denote,

S(y1, y2;µ
2
F ) = ζV3 (µ

2
F )B(y1, y2;µ

2
F ) + ζA3 (µ

2
F )D(y1, y2;µ

2
F ) , (2.148)

M(y1, y2;µ
2
F ) = ζV3 (µ

2
F )B(y1, y2;µ

2
F )− ζA3 (µ

2
F )D(y1, y2;µ

2
F ) . (2.149)

They transform under the exhange of the quark and the antiquark roles as

S(ȳ2, ȳ1;µ
2
F ) = −M(y1, y2;µ

2
F ) . (2.150)

The solution ϕgen
3 an be written in the form analogously to the expression of the WW

solution (2.134),

ϕgen
3 (y) =

1

2

[
∫ 1

ȳ

du
A(u)

u
+

∫ 1

y

du
A(u)

u

]

, (2.151)

where

A(u) =

∫ u

0

dy2

[

1

y2 − u
− ∂u

]

M(y2, u) +

∫ 1

u

dy2
1

y2 − u
M(u, y2) . (2.152)

the quantity A(u) satis�es the onstraints,

∫ 1

0

duA(u) = 0 and

∫ 1

0

du ūA(u) = 0 . (2.153)

Inserting the solution (2.147) in eq. (2.140), the genuine solution for ϕT
1 is

ϕT gen
1 =

∫ y

0

duϕgen
3 (u)− ζV3

∫ y

0

dy1

∫ 1

y

dy2
B(y1, y2)

y2 − y1
. (2.154)

Similarly, the genuine solutions for ϕA and ϕT
A an be obtained from the solutions ϕgen

3 and

ϕT gen
1 by exhanging the role of ζV3 B and ζA3 D. In terms of the ombinations S(y2, y1) and

M(y2, y1), this orresponds to exhange

S(y1, y2) → S(y1, y2) and M(y1, y2) → −M(y1, y2) .
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2.4.4 The ditionary

In Ref. [131℄, the equivalene between the ovariant ollinear approah (CCF), whih is

developed in Refs. [141, 142, 153, 154, 155℄ and the LCCF parameterization of the DAs is

shown on the example of the γ∗ → ρ impat fator. The ditionary between the two sets of

DAs is

B(y1, y2) = −V(y1, ȳ2)
y2 − y1

, D(y1, y2) = −A(y1, ȳ2)

y2 − y1
, (2.155)

ϕ1(y) = φ‖(y) , ϕ3(y) = g
(v)
⊥ (y) , ϕA(y) = −1

4

∂g
(a)
⊥ (y)

∂y
.

The higher twist ontributions ome from the deviation from the light-one diretion

z2 → 0 due to the non-zero meson mass mρ. In our approah we negleted the mass term

in the de�nitions of the momentum pρ ∼ p and the parton separation z, justifying that it

would lead to twist 4 terms at least. The two-parton hiral-even DAs up to twist 3 auray,

negleting the quark mass terms, are de�ned as

〈0|u(z)γµ[z,−z]d(−z) |ρ(p, λ)〉 = mρfρ

(

pµ
e(λ) · z
p · z

∫ 1

0

dy eiξp·zΦ‖(y, µ
2)

+e
(λ)
⊥µ

∫ 1

0

dy eξp·zg
(v)
⊥ (y, µ2)

)

, (2.156)

〈0|u(z)γµγ5[z,−z]d(−z) |ρ(p, λ)〉 =
1

2
mρfρεµe(λ)⊥ p z

∫

dy eiξp·zg
(a)
⊥ , (2.157)

with ξ = y − ȳ, where the twist 2 DA is φ‖ and where g
(a)
⊥ , g

(v)
⊥ are the twist 3 DAs. The

hiral-even three parton DAs are de�ned as

〈0|u(z)γα[z, vz]gGµν(vz)[vz,−z]d(−z) |ρ(p, λ)〉 = imρfρζ
V
3 (2.158)

×pα(pµe(λ)⊥ν − pνe
(λ)
⊥µ)V(v, pz) ,

〈0|u(z)γαγ5[z, vz]gG̃µν(vz)[vz,−z]d(−z) |ρ(p, λ)〉 = mρfρζ
A
3 (2.159)

×pα(pµe(λ)⊥ν − pνe
(λ)
⊥µ)A(v, pz) ,

with

F(v, pz) =

∫

D[y]e−ipz(ȳ2−y1+vyg)F(y1, ȳ2, yg) , (2.160)

and

∫

D[y] ≡
∫ 1

0
dy1
∫ 1

0
dy2
∫ 1

0
dyg δ(1 − y1 − ȳ2 − yg). The dual of the strength tensor being

de�ned as G̃µν = −1
2
εµνρσG

ρσ
.

Writing the two-parton matrix elements appearing in the soft parts of our proess in
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terms of the previous DAs, leads to

〈ρ(p)| ψ̄(z)[z, 0]γµψ(0) |0〉 = mρfρ

∫ 1

0

dyeiyp·z
(

φ‖(y)
e∗ · z
p · z pµ

+e∗⊥µg
(v)
⊥ (y)

)

, (2.161)

〈ρ(p)| ψ̄(z)[z, 0]γ5γµψ(0) |0〉 = −mρfρ
4

∫ 1

0

dyeiyp·zg
(a)
⊥ (y)εµe∗⊥ p z

= imρfρ

∫ 1

0

dyeiyp·z

[

−1

4

dg
(a)
⊥ (y)

dy

]

εµ e∗⊥ p z

p · z . (2.162)

Identifying the oordinate z with the light one diretion z = λn and hoosing the axial

gauge n · A = 0, the identi�ation of the DAs is straightforward and leads to the ditionary

(2.155) for ϕ1, ϕ3, ϕA.

The three partile orrelators reads

〈ρ(p)| ψ̄(z)[z, tz]γµ gGαβ(tz)[tz, 0]ψ(0) |0〉 (2.163)

= −imρfρζ
V
3 pµ(pαe

∗
⊥β − pβe

∗
⊥α)

∫

D[y]V(y1, ȳ2) eiy1p·z+iygp·(tz) ,

〈ρ(p)| ψ̄(z)[z, tz]γ5γµ gG̃αβ(tz)[tz, 0]ψ(0) |0〉 (2.164)

= mρfρζ
A
3 pµ(pαe

∗
⊥β − pβe

∗
⊥α)

∫

D[y]A(y1, ȳ2) e
iy1p·z+iygp·(tz) .

In the axial gauge n · A = 0, the Wilson lines drop o� and the gluon �eld is expressed in

terms of the �eld-strenght tensor as

Aα(y) =

∫ ∞

0

dσ e−ǫσ nβ Gαβ(y + σn) . (2.165)

Multiplying (2.163, 2.167) by nβ
, integrating over σ i.e. over t after a hange of variable, one

gets

〈ρ(p)| ψ̄(z)γµ gAα(tz)ψ(0) |0〉 (2.166)

= −mρfρζ
V
3 pµpαe

∗
⊥β

∫

D[y]
V(y1, ȳ2)

yg
eiy1p·z+iygp·(tz) ,

〈ρ(p)| ψ̄(z)γ5γµ gAα(tz)ψ(0) |0〉 (2.167)

= −imρfρζ
A
3 pµ

εα e∗⊥ p z

p · z

∫

D[y]
A(y1, ȳ2)

yg
eiy1p·z+iygp·(tz) . (2.168)

The identi�ation in z = λn gives the relations in (2.155) for the three-parton DAs.

In [131℄ the equivalene of the DAs (2.155) was arefully heked on the results for the

spin �ip and spin non-�ip impat fator alulations. The fat that both results in ovariant

gauge and light-one gauge are the same is also an expliit hek on the gauge invariane of

the impat fator results.
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2.5 Conformal expansion and sale dependene of DAs

Now, having established a onnetion between the DAs of the LCCF approah [131℄ and the

DAs of the CCF approah [142℄, we an use the models for the DAs that was presented in

[142℄ using

• �rst onformal expansion terms of the DAs,

• fatorization/renormalization sale dependene driven by renormalization group equa-

tions of the onformal operator expansion,

• QCD sum rules for the values of the oupling onstants at a initial sale µ0 = 1 GeV

to get expliit expressions for φ‖(y;µ
2), V(y;µ2), A(y;µ2).

2.5.1 Goal of the onformal expansion

Let us �rst motivate the onformal expansion of the light-one wave funtions by onsider-

ing an analogous problem; the problem of one partile in a spherial potential in quantum

mehanis. In this ase, the invariane under rotation of the spherial potential allows to

deouple the radial dependene from the angular dependene by performing a partial wave

expansion of the wave funtion in the basis of the spherial harmonis. This deomposition al-

lows to put all the angular dependene into these harmonis, and then the radial dependene

is driven by the one-dimensional Shrödinger equation.

In our ase, the massless QCD is invariant under the transformations of the ollinear

subgroup of the onformal group SL(2,R) that desribes Mobiüs transformations on the

light-one. The onformal invariane is broken by quantum orretions but it is valid at

the level of leading logarithm auray. The Efremov-Radyushkin-Brodsky-Lepage (ERBL)

equation [156, 157℄ that governs the Q2−dependene of the DA ϕ(y;Q2), reads

Q2 ∂

∂Q2
ϕ(y;Q2) =

αs(Q
2)

4π

∫ 1

0

[dz]V (z, y)ϕ(z;Q2) , (2.169)

where the kernel V an be omputed in pQCD for large Q2
. Note that the ERBL evolution

is urrently known at NLO [158, 159, 160, 161℄. The eigenfuntions ϕn that diagonalize

the Brodsky-Lepage potential are given by the representations of the onformal group Pn(y)

labeled by a onformal spin n

ϕn(y,Q
2) ∝ an(Q

2)Pn(y) . (2.170)

For example, the leading twist DA longitudinal y dependene is expanded on the basis of the

Gegenbauer orthogonal polynomials C
3/2
n

ϕ1(y;µ
2) ≡ Φ‖(y) = 6yȳ

∞
∑

n=0

a‖n(µ
2
F )C

3/2
n (y − ȳ) , (2.171)
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like in quantum mehanis the wave funtion angular dependene is expanded on Legendre

orthogonal polynomials labeled by the orbital quantum numbers. In this expansion, the n−th

term has a onformal spin n + 2. At the LL auray, the oe�ients an(Q
2) evolution is

driven by the renormalization group (RG) equation of the operators On of same onformal

spin,

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

O(i)
n (x;µ2) = −αs

2π
Γn
ijO(j)

n (x;µ2) . (2.172)

There is no operator mixing under renormalization between operators of di�erent onformal

spins, whih means in other words that in the basis of these operators the anomalous di-

mension matrix Γn is blok diagonal. Indeed the matries Γn is diagonal for leading twist

operators but the representation of twist 3 operators are degenerate as we will see. The

solutions have the form,

ϕ(y;µ2) = N
∑

n

an(µ
2)Pn(y) , (2.173)

with N a normalization fator. The sale evolution of an(µ
2) is of the form

a(i)n (µ2) = [L
Γn
β0 (µ2, µ2

0)]ij a
(j)
n (µ2

0) ,

where L(µ2, µ2
0) = (αs(µ

2)/αs(µ
2
0)).

The onformal spin of a onstituent primary �eld is equal to j = 1
2
(d + s) with d the

anonial dimension and s the spin projetion of the �eld onto the light-one. The multi-

partile states an be expanded in terms of onformal spin and its lowest spin is the sum of

the spin of the onstituent primary �elds. This lowest spin state is alled "asymptoti DA",

and is the only surviving state in the large energy limit due to the fat that it has the lowest

anomalous dimension. The asymptoti DA for a multi-partile state takes the form [162, 149℄

φAS(α1, α2, .., αn) =
Γ(2j1 + ..+ 2jn)

Γ(2j1)Γ(2j2)..Γ(2jn)
α2j1−1
1 α2j2−1

2 ...α2jn−1
n , (2.174)

with αk the longitudinal fration of the momentum (

∑n
1 αk = 1) arried by the primary

onstituent �eld fk (quark antiquark or gluon �eld) of onformal spin jk. The asymptoti

DA ϕ1(y, µ
2
F ) with µ

2
F ∼ Q2 → ∞, denoted ϕAS

1 (y) is then given by

ϕAS
1 (y) = 6yȳ . (2.175)

In the prodution of the ρ−meson up to twist 3 we neglet the masses of the quarks whih

are fairly small ompared to the sales of the problem but if one would be interested in the

φ−meson prodution for example, one should be more areful and take into aount SU(3)-

�avor breaking symmetry. The introdution of mass e�ets breaks expliitly the onformal

invariane.

Nevertheless, the masses do not a�et the transverse evolution of DAs as it is given by

the sale evolution of the operators governed by the anomalous dimensions whih does not

depend on the masses as long as they an be negleted ompared to the sale of the proess.

Keeping the quark masses, the higher twist DAs when expressed in terms of a minimal



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE

ρ−MESON PRODUCTION 90

set of DAs through the relations suh as EOMs of QCD or n−independene, exhibit terms

proportional to the quark masses. These terms mix the hiral even and hiral odd setors.

For example the twist 3 DAs ϕT
1 would get a dependene from the twist 2 DA of the hiral

odd setor proportional to the sum of quark masses mu +md. As the masses of the quarks

are inside multipliative fators in these terms, the onformal expansion an still be used to

study the DA evolutions.

2.5.2 Conformal expansion of the DAs

The twist 2 DA ϕ1(y;µ
2) onformal partial wave expansion is already given in eq. (2.171).

The �rst oe�ient a
‖
0 is onstant due to the normalization ondition

∫ 1

0

dy ϕ1(y;µ
2) = 1 .

The invariane of the ρ−meson state under G-parity implies that the n−odd terms are

vanishing.

The onformal expansion an be performed on operators with de�nite spin projetion on

the light-one. The spin projetors on the light-one are P+ = 1
2
γ∗γ. and P− = 1

2
γ.γ∗ with

the notations a. = a · z and a∗ =
a·p
p·z . The twist 3 DAs operators are

〈0| γ.γ⊥µ γ∗[z,−z]d(−z)
∣

∣ρ−(p, λ)
〉

= −mρfρ e
(λ)
⊥µ

∫ 1

0

dyeiξp·z g↑↓(y) , (2.176)

〈0| γ∗γ⊥µ γ.[z,−z]d(−z)
∣

∣ρ−(p, λ)
〉

= −mρfρ e
(λ)
⊥µ

∫ 1

0

dyeiξp·z g↓↑(y) , (2.177)

with,

g↑↓ = g
(v)
⊥ +

1

4

d

du
g
(a)
⊥ ≡ ϕ3 − ϕA , (2.178)

g↓↑ = g
(v)
⊥ − 1

4

d

du
g
(a)
⊥ ≡ ϕ3 + ϕA . (2.179)

The onformal expansion for the DAs g↑↓, g↓↑ reads

g↑↓(y) = 2ȳ

∞
∑

n=0

g↑↓n P (1,0)
n (ξ) , (2.180)

g↓↑(y) = 2y

∞
∑

n=0

g↓↑n P (0,1)
n (ξ) , (2.181)

with P
(i,j)
n the Jaobi polynomials. The term labeled with n has a onformal spin n + 3/2.

This leads to the following expressions for g
(v,a)
⊥ ,

g
(v)
⊥ =

∑

n even

(Gn −Gn−1)C
1/2
n (ξ) +

∑

n odd

(gn − gn−1)C
1/2
n (ξ) , (2.182)

g
(a)
⊥ = 8yȳ

(

∑

n even

Gn −Gn+1

(n + 1)(n+ 2)
C3/2

n (ξ)

+
∑

n odd

gn − gn+1

(n+ 1)(n+ 2)
C3/2

n (ξ)

)

, (2.183)
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with,

Gn =
1

2

(

g↑↓n + (−1)ng↓↑n
)

, (2.184)

gn =
1

2

(

g↑↓n − (−1)ng↓↑n
)

. (2.185)

It is interesting that the expansion of g
(v,a)
⊥ are involving oe�ients of di�erent onformal

spin. However we do not have to worry about this mixing of onformal spin terms as g
(v,a)
⊥

an be expressed in terms of ϕ1(y) ≡ φ‖ and B(y1, y2) ≡ −V (y1,ȳ2)
y2−y1 and D(y1, y2) ≡ −A(y1,ȳ2)

y2−y1
where there is no suh mixing.

The onformal expansion of the twist 3 qq̄g orrelators reads

V(y1, ȳ2, yg) = 360y1ȳ2y
2
g

∞
∑

k,l=0

ωV
k,l Jk,l(y1, ȳ2) , (2.186)

A(y1, ȳ2, yg) = 360y1ȳ2y
2
g

∞
∑

k,l=0

ωA
k,l Jk,l(y1, ȳ2) , (2.187)

where Jk,j(y1, ȳ2) ≡ Jk,l(6, 2, 2, y1, ȳ2) are Appell polynomials and yg = 1 − (y1 + ȳ2) the

gluon fration of momentum. The onformal spin of the term labeled by the ouple {k, l} is

n = l + k + 7/2, hene the onformal representation of spin n is degenerate as the operators

with l + k = n − 7/2 have same onformal spins. Note also that the number of degeneray

inreases with n. They an mix with eah other explaining why the anomalous dimension

matrix is only blok diagonal at twist 3. The G-parity invariane of the DAs implies the

following relations between the oe�ients ωV,A
,

ωV
k,l = −ωV

l,k , ωA
k,l = ωA

l,k .

We denote ωV
[k,l] = (ωV

k,l − ωV
l,k)/2 and ωA

{k,l} = (ωA
k,l + ωA

l,k)/2. The normalization ondition

implies that

ωV
[0,1] = 28/3 , ωA

{0,0} = 1 . (2.188)

2.5.3 Sale dependene of the DAs

The di�erent terms of the onformal expansion are assoiated to onformal operators On

whose evolution is given by the Callan-Symanzik equation (2.172). To �nd whih are these

operators, the tehnique is to use the orthogonality of the polynomials to isolate the terms

of de�nite onformal spin in the onformal expression of the DA and then to reverse the

expressions of the type (2.156, 2.157) in order to get the normalizations as a funtion of the

relevant operators. Let us larify this proedure on the example of a
‖
n for the leading twist

DA ϕ1(y, µ
2).

Using the orthogonality relation of the Gegenbauer polynomials

∫ 1

−1
dξ (1− ξ2)α−1/2Cα

n (ξ)C
α
m(ξ) = δm,n

π21−2αΓ(n + 2α)

n!(n+ α)Γ(α)2
, (2.189)
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to extrat a
‖
n, leads to

a‖n =
2(2n+ 3)

3(n+ 1)(n+ 2)

∫ 1

0

dyC3/2(ξ)φ‖(y, µ
2) ,

=
2(2n+ 3)

3(n+ 1)(n+ 2)

∫ 1

0

dyC3/2
n (ξ) (2.190)

× 1

mρfρ

∫

d4z

(2π)4
e−iξp·z

1

e(λ) · z 〈0|u(z)z
µγµ[z,−z]d(−z)

∣

∣ρ−(p, λ)
〉

, (2.191)

where we used the relation (2.156) multiplied by zµ to isolate the DA φ‖. One an show that

the result an be put in the form,

a‖n =
2(2n+ 3)

3(n+ 1)(n+ 2)mρfρ(e(λ) · z)
1

(p · z)n 〈0| On(0;µ
2)
∣

∣ρ−(p, λ)
〉

, (2.192)

with the onformal operator,

On(x) = 〈0| (i∂.)n u(x)γ.C3/2
n (

↔
D. /∂.)d(x)

∣

∣ρ−(p, λ)
〉

, (2.193)

where the notations used here are

∂n.

(↔
D.

∂.

)k

≡ ∂(n−k).

↔
D

k

. = (z · ∂)n−k(z ·
→
D −

←
D

2
)k ,

with

↔
D=

→
D−
←
D

2
, and the total derivative ∂α ≡

→
D+
←
D

2
is de�ned as,

∂α (u(x)Γ[x,−x]d(−x)) ≡
∂

∂ǫα
(u(x+ ǫ)Γ[x+ ǫ,−x+ ǫ]d(−x+ ǫ))ǫ→0 . (2.194)

The onformal spin of On is the same than an that is n + 2. The sale dependene of the

operator On is determined up to the LL auray by the one-loop anomalous dimension

omputation of the operator γ
‖
n [48, 156, 157℄,

γ‖n = 4CF

(

ψ(n + 2) + γE − 3

4
− 1

2(n+ 1)(n+ 2)

)

, (2.195)

with ψ(n) = −γE +
∑n+1

k=1 1/k , and γE the Euler onstant. The sale dependene of a
‖
n is

then given by

a‖n(µ
2) = L(µ2, µ2

0)
γ
‖
n/β0 a‖n(µ

2
0) , (2.196)

where L(µ2, µ2
0) reads expliitly for µ0 = 1 GeV2

,

L(µ2) ≡ L(µ2, 1 GeV2) =
αs(µ

2)

αs(1 GeV2)
=

1

1 + β0

π
αs(1 GeV

2) ln(µ2)
. (2.197)

For the three-partile DAs, steps are similar exept that the onformal group represen-

tations are degenerate. The �rst step being to isolate the {k, l}−th terms of onformal spin

j = k + l + 7/2 ≡ (n − 2) + 7/2 using the orthogonality relations of Jaobi polynomials.

We prefer to work with �x n instead of j, whih is equivalent, as one an math the genuine

solution for the two-parton twist 3 DAs label n with the onformal spin j as j = n+ 3/2.
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The de�nition (2.158) multiplied by zαε⊥ . µν
we obtain the relation,

〈0|u(z)γ.[z, vz]gG̃⊥ .(vz)[vz,−z]d(−z) |ρ(p, λ)〉 = imρfρζ
V
3 (2.198)

×ε⊥ . p ε
(λ)
⊥

∫

D[y]V(y1, ȳ2, yg)e−ip·z(wy1+tȳ2+vyg) . (2.199)

By ating on both sides of the eq. (2.198) with the operator

∂n

∂tn−k−2∂wk
,

and taking the limit t, w → 0, we see that the r.h.s. will give

imρfρζ
V
3 ε⊥ . p ε

(λ)
⊥
(p · z)n−1

∫

D[y]yk1 ȳ
n−k−2
2 V(y1, ȳ2, yg) ,

while on the l.h.s it will give the operator,

〈0| u(0)(i
←
D.)

n−k−2γ. gG̃⊥ .(0)(i
→
D)kd(0)

∣

∣ρ−(p, λ)
〉

.

The r.h.s an be simpli�ed

imρfρζ
V
3 ε⊥ . p ε

(λ)
⊥
(p · z)n−1

∫

D[y]yk1 ȳ
n−k−2
2 V(y1, ȳ2, yg)

= imρfρζ
V
3 ε⊥ . p ε

(λ)
⊥
(p · z)n−1

×
∫

D[y]yk1 ȳ
n−k−2
2 (360y1ȳ2y

2
g)
∑

k′,l′

ωV
k′,l′Jk′,l′(y1, ȳ2)

= imρfρζ
V
3 ε⊥ . p ε

(λ)
⊥
(p · z)n−1(360(−1)nk!(n− k − 2)!

2n+1(n+ 1)(2n+ 1)!!
ωV
k,n−k−2

+terms in ωl,r−l−2 with r < n) . (2.200)

The last line in the above equation was obtained with the help of the Jaobi polynomial

relation

∫

D[y]ym+1
1 ȳn+1

2 y2gJk,l(y1, ȳ2) = δm,k
(−1)k+lk!l!

2k+l+3(k + l + 3)(2k + 2l + 5)!!
, (2.201)

for m+n = k+ l, otherwise the result is zero for m+n < k+ l and nonzero for m+n > k+ l.

The remaining terms in ωV
l,r−l−2 orrespond to total derivatives of lower onformal operators,

then the relevant onformal operator orresponding to ωV
k,n−k−2 is,

OV
k,n−k−2(0) ≡ u(0)(i

←
D.)

n−k−2γ. gG̃⊥ .(0)(i
→
D)kd(0) + total derivatives , (2.202)

the "total derivative terms" oming from other higher onformal terms remaining ωV
l,r−l−2

terms with r = n. Note that in the DIS ase, the total derivative operators sandwihed

between the proton state vanish due to the fat that they are proportional to the di�erene

of the momenta of the initial and �nal states. In our ase the matrix element is non-forward,

so the total derivatives of the operators ontribute to the matrix element. The relation on

the oupling onstants �nally reads

(

mρfρζ
V
3 ω

V
k,n−k−2

)

(µ2) =
(−1)nNn

90k!(n− k − 2)!
〈0| OV

k,n−k−2(0)
∣

∣ρ−(p, λ)
〉

, (2.203)
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with the k independent normalization

Nn =
2n−1(2n+ 1)!!(n+ 1)

iε⊥ . pε
(λ)
⊥ (p · z)n−1

.

We need now to get the sale dependene of the operators

(

OV
k,n−k−2

)

k=0..n−2 that an

mix with eah others under renormalization. Moreover we an apply the same treatment for

the axial-vetor three-parton operators leading to

(

mρfρζ
A
3 ω

A
k,n−k−2

)

(µ2) =
(−1)nNn

90k!(n− k − 2)!
〈0| OA

k,n−k−2(0)
∣

∣ρ−(p, λ)
〉

, (2.204)

with,

OA
k,n−k−2(0) ≡ u(0)(i

←
D.)

n−k−2 iγ. γ5 gG̃⊥ .(0)(i
→
D)kd(0) + total derivatives , (2.205)

and the operators

(

OA
k,n−k−2

)

k=0..n−2 and
(

OV
k,n−k−2

)

k=0..n−2 an also mix with eah other as

they have the same onformal spin j = n + 3/2.

It is useful to onsider then the sum and the di�erene of the operators,

R
V (A)±
n,k (0, µ2) = OV (A)

k,n−k−2(0, µ
2)±OV (A)

n−k−2,k(0, µ
2) , (2.206)

as the operators with di�erent parity numbers don't mix under renormalization. R
V (A)+
n,k

and RV (A)−(n, k) have respetively G-parity numbers (−1)n+1
and (−1)n. The relevant om-

binations of operators that satisfy the RG equation and whih mix under renormalization

are

R±n,k(0, µ
2) = RV±

n,k (0, µ
2)∓ RA∓

n,k (0, µ
2) . (2.207)

The solutions read,

R±n,k(0, µ
2) =

n−2
∑

l=0

(

LΓ±n /β0

)

k,l
R±n,l(0, µ

2
0) , (2.208)

and they lead to the sale evolution of the form

fV
3ρω

V
[k,n−k−2] ± fA

3ρω
A
{k,n−k−2}(µ

2) (2.209)

=

n−2
∑

l=0

(

LΓ∓n /β0

)

k,l

(

fV
3ρω

V
[l,n−l−2](µ

2
0)± fA

3ρω
A
{l,n−l−2}(µ

2
0)
)

,

with fV
3ρ = fρ ζ

V
3 and fA

3ρ = fρ ζ
A
3 . The renormalization of the operators R±n,k are known for

the forward matrix elements [163, 164℄ as they are relevant for the evolution of the struture

funtion g2. In [164℄ the expliit solutions for the omputation is performed in the ovariant

approah.

For our purpose we will use the models of ref. [142℄ for the leading twist DA φ‖, and

the twist 3 DAs V and A. In this model the leading twist DA and the twist 3 DAs are
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respetively expanded up to the onformal spins j = 4 and j = 9/2. The DAs trunated

onformal expansions read,

φ‖(y;µ2) = 6yȳ

(

1 + 3a
‖
1(µ

2)ξ +
3

2
(5ξ2 − 1) a

‖
2(ξ)

)

, (2.210)

V(y1, ȳ2, yg) = 5040(y1 − ȳ2)y1ȳ2y
2
g , (2.211)

A(y1, ȳ2, yg) = 360y1ȳ2y
2
g(1 +

1

2
(7yg − 3)ωA

1,0(µ
2)) , (2.212)

whih is equivalent, aording to (2.155), to

ϕ1(y, µ
2) = 6yȳ(1 + a

‖
2(µ

2)
3

2
(5(y − ȳ)2 − 1)) , (2.213)

B(y1, y2;µ
2) = −5040y1ȳ2(y1 − ȳ2)(y2 − y1) , (2.214)

D(y1, y2;µ
2) = −360y1ȳ2(y2 − y1)(1 +

ωA
{1,0}(µ

2)

2
(7(y2 − y1)− 3)) . (2.215)

Note that a
‖
1 = 0 due to the G-parity invariane of the ρ−meson in the vanishing quark masses

limit. This model is valid under the hypothesis that the onformal expansion onverges. This

is indeed ensured by the sale dependene of the operators at large enough ratio µ/µ0 with

µ0 the referene sale, as the higher is the onformal spin the faster the term dereases with

µ2/µ2
0.

The referene sale used here is µ0 = 1 GeV. The values of the oupling onstants [142℄

displayed in the tab. 2.1 are determined at this sale by QCD sum rules (f. next part).

αs 0.52

ωA
{1,0} -2.1

ωV
[0,1] 28/3

a
‖
2,ρ 0.18 ± 0.10

mρ f
A
3ρ 0.5− 0.6 10−2GeV2

mρ f
V
3ρ 0.2 10−2GeV2

ζA3 0.032

ζV3 0.013

Table 2.1: Coupling onstants and Gegenbauer oe�ients entering the ρ−meson DAs, at

the sale µ = 1 GeV. Note that in Ref. [142℄ the normalizations are suh that fV,A

3ρ [142℄
=

mρ f
V,A
3ρ [here].
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We need then the sale dependene of the following quantities,

a
‖
2(µ

2) , (fV
3ρω

V
[0,1])(µ

2) = 28/3 fV
3ρ(µ

2) and (fA
3ρω

A
1,0)(µ

2) .

The evolutions of a
‖
2(µ

2) is given expliitly by

a
‖
2(µ

2) = a
‖
2,0 L(µ

2)γ2/β0 . (2.216)

The fA
3ρ oupling onstant evolution reads

fA
3ρ(µ

2) = fA
3ρ(1GeV2)L(µ2)Γ

−
2 /β0 , (2.217)

with Γ−2 = −CF

3
+ 3Cg with Cg = Nc. De�ning the vetor

V (µ2) =







ωV
[0,1]f

V
3ρ(µ

2)− ωA
{0,1}(µ

2)fA
3ρ(µ

2)

ωV
[0,1]f

V
3ρ(µ

2) + ωA
{0,1}(µ

2)fA
3ρ(µ

2)






, (2.218)

the evolution of V (µ2) is given by the matrix evolution equation

V (µ2) = L(µ2)Γ
+
3 /β0V (1 GeV2) , (2.219)

with Γ+
3 given by

Γ+
3 =







8
3
CF + 7

3
Cg

2
3
CF − 2

3
Cg

5
3
CF − 4

3
Cg

1
6
CF + 4Cg






. (2.220)

Hene we get the dependene of fV
3ρ and ω

A
{0,1} by solving this matrix equation in the eigen-

vetors basis of the matrix Γ+
3 . In �g. 2.15 we display the three independent DAs ϕ1 (left), S

(enter), M (right). The �g. 2.16 shows the DAs ϕ3 (left) and ϕA (right) and �g. 2.17 shows

the DAs ϕT
1 (left) and ϕT

A (right) as a funtion of their longitudinal variables.

j1Iy ; 1 GeV2M

j1Iy ; 25 GeV2M

j1HyL = 6 y y

0.0 0.2 0.4 0.6 0.8 1.0
y

0.2

0.4

0.6

0.8

1.0

1.2

1.4

j1

SIy1, y2 = 0.6, Μ2 = 1 GeV2M

SIy1, y2 = 0.6, Μ2 = 25 GeV2M

0.1 0.2 0.3 0.4 0.5 0.6
y1

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

MIy1, y2 = 0.6, Μ2 = 1 GeV2M

MIy1, y2 = 0.6, Μ2 = 25 GeV2M

0.1 0.2 0.3 0.4 0.5 0.6
y1

0.2

0.4

0.6

0.8

1.0

Figure 2.15: The three independent DAs. Left: ϕ1(y;µ
2) as a funtion of y; in red (dotted)

asymptoti DA, in blue (solid) µ2 = 1 GeV

2
, in blue (dashed) µ2 = 25 GeV

2
. Center:

S(y1, y2 = 0.6;µ2) as a funtion of y1; in red (solid) µ2 = 1 GeV

2
, in blue (dashed) µ2 = 25

GeV

2
. Right: M(y1, y2 = 0.6;µ2) as a funtion of y1; in red (solid) µ2 = 1 GeV

2
, in blue

(dashed) µ2 = 25 GeV

2
.

These �gures exhibit the non-negligible e�ets of QCD evolution on DAs, in partiular

for the genuine twist 3 ontributions.
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j3
genIy ; Μ2 = 25 GeV2M

j3
genIy ; Μ2 = 1 GeV2M

j3
WWIy ; Μ2 = 25 GeV2M

j3
WWIy ; Μ2 = 1 GeV2M

0.2 0.4 0.6 0.8 1.0
y

0.5

1.0

1.5

2.0

jA
genIy ; Μ2 = 25 GeV2M

jA
genIy ; Μ2 = 1 GeV2M

jA
WWIy ; Μ2 = 25 GeV2M

jA
WWIy ; Μ2 = 1 GeV2M

0.2 0.4 0.6 0.8 1.0
y

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2.16: The two DAs ϕ3 (left) and ϕA (right) as a funtion of y. In red (dotted) WW

ontribution with µ2 = 1 GeV

2
; in blue (dash-dotted) WW ontribution with µ2 = 25 GeV

2
;

in red (solid) genuine ontribution with µ2 = 1 GeV

2
; in blue (dashed) genuine ontribution

with µ2 = 25 GeV

2
.

j1
T genIy ; Μ2 = 1 GeV2M

j1
T WWIy ; Μ2 = 25 GeV2M

j1
T WWIy ; Μ2 = 1 GeV2M

j1
T genIy ; Μ2 = 25 GeV2M

0.2 0.4 0.6 0.8 1.0
y
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-0.1

0.1

0.2

jA
T WWIy ; Μ2 = 25 GeV2M

jA
T WWIy ; Μ2 = 1 GeV2M

jA
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T genIy ; Μ2 = 25 GeV2M
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Figure 2.17: The two DAs ϕT
1 (left) and ϕT

A (right) as a funtion of y. In red (dotted) WW

ontribution with µ2 = 1 GeV

2
; in blue (dash-dotted) WW ontribution with µ2 = 25 GeV

2
;

in red (solid) genuine ontribution with µ2 = 1 GeV

2
; in blue (dashed) genuine ontribution

with µ2 = 25 GeV

2
.
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2.6 QCD sum rules

Let us brie�y sketh the main idea of the QCD sum rules method [165℄ to get aess to

the nonperturbative inputs, on the example of the twist 2 pion DA ϕA
π [166, 167℄ whih

parameterizes the biloal orrelator suh as,

〈0| d̄(z)/zγ5[z,−z]u(−z)
∣

∣π+(p)
〉

= iz · pfπ
∫ 1

−1
dξeiξ(z·p)ϕA

π (y) . (2.221)

This non-loal orrelator an be Taylor expanded as a sum of loal operators,

〈

d̄(z)/zγ5[z,−z]u(−z)
〉

=
∑

n

in

n!

〈

d̄(0)/zγ5(iz·
↔
D)nu(0)

〉

. (2.222)

Note that the pion deay onstant fπ is de�ned as

〈0| d̄(0)γµγ5u(0)
∣

∣π+(p)
〉

= ipµfπ , (2.223)

whih taking the limit z → 0 in (2.221), gives the normalization of the DA,

∫ 1

−1
dξϕA

π (ξ) = 1 .

Eah terms of the expansion an be written as,

〈

d̄(0)/zγ5(iz·
↔
D)nu(0)

〉

= zαzµ1 · · · zµn

〈

d̄(0)γαγ5(i
↔
D

µ1

· · · i
↔
D

µn

)u(0)
〉

= (z · p)n+1Cn . (2.224)

The oe�ients Cn an now be identi�ed with the Taylor oe�ients by expanding the r.h.s

of (2.221)

iz · pfπ
∫ 1

−1
dξeiξ(z·p)ϕA

π (y) = iz · pfπ
∫ 1

−1
dξ
∑

n

(iξ(z · p))n
n!

ϕA
π (y) , (2.225)

leading to

Cn =

∫ 1

−1
dξ ξnϕA

π (ξ) = 〈ξn〉 ,

where 〈ξn〉 is the n−th moment of the wave funtion along the light-one diretion p. The

goal now is to derive equations (sum rules) between the nonperturbative inputs suh fπ that

we want to evaluate and quantities that we an alulate or evaluate in the asymptoti regime

where the hard sale Q2 → ∞.

Let us onsider the following orrelator,

In,0(z, q) = i

∫

dxeiq·x 〈0|TOn(x)O0(0) |0〉 , (2.226)

where we denote the operator Om(y),

Om(y) = d̄(y)/zγ5(iz·
↔
D)mu(y) . (2.227)
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The intermediate state

O0(0) |0〉 = d̄(0)/zγ5u(0) |0〉 ,
has the same quantum numbers as the |π〉 state. The operators On(x) are the operators

involved between the |π〉 state and the vauum state in Eq. (2.224) so they are related to the

values of 〈ξn〉. The momentum q is the momentum exhanged between the two loal urrents

projeted on the oordinate z as in Eq. (2.221). We an express In,0(z, q) as a z−independent
quantity In,0(q

2),

In,0(z, q) = i

∫

dxeiq·x 〈0| d̄(x)/zγ5(iz·
↔
D)nu(x)d̄(0)/zγ5u(0) |0〉 (2.228)

= (z · q)n+2In,0(q
2) . (2.229)

In the asymptoti limit q2 → ∞, the main ontribution is given by pQCD. Then the

PSfrag replaements

q 0 x

Figure 2.18: pQCD loop ontribution to In,0(q
2)

asymptotially dominant ontribution is given by the loop diagram in �g. 2.18, whih gives

[166, 167℄,

IAS
n,0 (q

2) = − ln(Q2)

4π2

∫

dξξn
3

4
(1− ξ2) = − ln(Q2)

4π2

3

(n+ 1)(n+ 3)
. (2.230)

The nonperturbative orretions to this result are given by onsidering the operator expansion

of the external �elds. These orretions involve the diagrams of �g. 2.19, where operators of

lowest dimensions are G2
µν for the left diagram and ūu for the right diagram. In,0(q

2), with

PSfrag replaements

q 0 x

Vauum

PSfrag replaements

q 0 x

Vauum

Figure 2.19: Nonperturbative orretions from the vauum. Diagram on the left involves the

vauum expetation value 〈0|G2
µν |0〉, the right diagram involves 〈0| ūu |0〉.

the orretive ontributions of this operator produt expansion, takes the form,

In,0(q
2) = IAS

n,0 (q
2) +

〈0| αs

π
G2 |0〉

12q4
− 32π

81
(11 + 4n)

〈0|√αsūu |0〉
q6

+ · · ·+ Ck
〈0| Ok |0〉

q2k
+ · · · (2.231)
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The tehnique is then to use an integral Borel transform of In,0(q
2), de�ned as,

1

πM2

∫ ∞

0

dSe−S/M
2ImIn,0(S) =

1

4π2

3

(n+ 1)(n+ 3)
+

〈0| αs

π
G2 |0〉

12M4

−16π

81
(11 + 4n)

〈0|√αsūu |0〉
M6

+ · · ·+ (−1)k

(k − 1)!
Ck

〈0| Ok |0〉
M2k

+ · · · (2.232)

This manipulation, alled "borelezation", has two important onsequenes, the �rst is that

on the r.h.s. of (2.232), the operators of higher dimensions are suppressed, the seond is

that on the l.h.s the intermediate states with S > M2
that ould ontribute to the spetral

density ImIn,0 are also suppressed.

The sum rule given by eq. (2.232) allows to get nonperturbative inputs. Indeed we know

that for large S > Sn ≫ µ2
0 the pQCD gives for the spetral density,

In,0(S) = θ(S − Sn)IAS
n,0 (S) = θ(S − Sn)

3

4π2(n+ 1)(n+ 3)
, (2.233)

where Sn is the threshold under whih we have to take into aount nonperturbative or-

retions. These non-perturbative orretions to the spetral density is given by the lowest

energy resonanes among the bound states with the good quantum numbers. In this ase the

π+−meson state is the lowest energy resonane and the next one is the A1−meson, leading

to

In,0(S) = θ(S − Sn)IAS
n,0 (S) + f 2

π 〈ξn〉π δ(S −m2
π) + f 2

A 〈ξn〉A δ(S −m2
A) . (2.234)

Inserting (2.234) in the l.h.s of (2.232), we get a relation between the free parameters fπ,

fA, 〈ξn〉π, 〈ξn〉A and Sn. The vauum expetation values are assumed to be known as

〈0|√αsūu |0〉 and 〈0| αs

π
G2 |0〉 an be determined phenomenologially [168, 169℄. The best �t

of the free parameters allows then to evaluate the nonperturbative input parameters.

2.7 Impat fators γ∗(λγ) → ρ(λρ)

In this part we will present the omputation of the impat fators γ∗(λγ) → ρ(λρ), denoted

Φ
γ∗λγ→ρλρ

for the transitions γ∗L → ρL, γ
∗
T → ρL and γ∗T → ρT .

Let us reall the formulas (2.93-2.96) for the amplitudes related to the impat fators as

onvolutions of DAs and hard sub-proesses. For the transition γ∗L → ρL it reads

iA(0)
qq̄ = −fρ

4

∫

dy H
/p
qq̄(y)ϕ1(y;µ

2
F ) , (2.235)
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and for the γ∗T → ρT ,

iA = −mρfρ
4

(∫

dy
[

H
/e∗ρT
qq̄ (y)ϕ3(y;µ

2
F ) + iH

/R∗⊥γ5
qq̄ (y)ϕA(y;µ

2
F )

+ H
e∗ρT ,/p

qq̄ (y)ϕT
1 (y;µ

2
F ) + iH

R∗⊥,/pγ5
qq̄ (y)ϕT

A(y;µ
2
F )
]

−i
∫

dy1dy2 [H
e∗ρT ,/p

qq̄g (y1, y2)ζ
V
3 (µ

2
F )B(y1, y2;µ

2
F )

+ H
R∗⊥,/pγ5
qq̄g (y1, y2) ζ

A
3 (µ

2
F ) iD(y1, y2;µ

2
F )]
)

. (2.236)

In order to get the impat fator from (2.235, 2.236), one has to use the impat fator

de�nition in our onventions de�ned in the se. 1.2.4 of the hap. 1,

Φ
γ∗λγ→ρλρ =

1

2s

∫

dκ

2π
Discκ

(

Sγ∗g→ρg
µν pµ2 p

ν
2

2

s

)

, (2.237)

with κ = (q + k1)
2
the Mandelstam variable assoiated to the hard sub-proess.

We will present in this setion the alulations of the impat fators for the di�erent types

of diagrams.

2.7.1 Kinematis

We hoose the frame where the ρ−meson is along the dominant light-one diretion p = p1 ∼
pρ (up to a fator m2

ρ/s), as the amplitude is independent of the hoie of the light-one

vetor n, we hoose to �x it along the dominant diretion of the nuleon impat fator p2 to

ompute the hard part. We reall that p2 satis�es the relation p2 · p1 = s
2
and is proportional

to the vetor n. In the forward kinemati t = (q − pρ)
2 = −∆2 → 0 presented in �g. 2.20,

PSfrag replaements

k1 k2

q

pρ ∼ p1

Figure 2.20: Kinematis of the proess γ∗(q)g(k1) → g(k2)ρ(pρ).

the momenta an be expanded on the Sudakov basis as,

q = p1 −
Q2

s
p2 (2.238)

k1 =
κ+Q2 + k2

s
p2 + k⊥ (2.239)

k2 =
κ−m2

ρ + k2

s
p2 + k⊥ ∼ κ+ k2

s
p2 + k⊥ (2.240)
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and the polarizations

e
(λ)
⊥ = ε(λ) (2.241)

eL(q) =
1

Q

(

q +
2Q2

s
p2

)

. (2.242)

where ε± = 1√
2
(0,∓1,−i, 0), as de�ned by Eq. (1.124) in se.1.3.2 of the hap. 1.

2.7.2 The γ∗L → ρL transition

The impat fator Φγ∗L→ρL
is omputed from the expression of the amplitude A(0)

qq̄ given in

eq. (2.235) and from the de�nition eq. (2.237). The longitudinal polarization of the ρ−meson

is given by,

eL =
1

mρ

(

p1 −
m2

ρ

s
p2

)

. (2.243)

The hard part H
/p
qq̄(y) is given by the six diagrams presented in �g. 2.7. Let us derive the
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Figure 2.21: The detailed struture of the diagram (a), one of the six diagrams of the hard

sattering.

ontribution to the impat fator of the diagram (a) illustrated in �g. 2.21. It reads

Φa = − e√
2

1

4

2

s
(−i) fρmρ g

2 δ
ab

2N

1

2s
(2.244)

1
∫

0

dy

∫

dκ

2π

Tr[e/γL (y /p1 − q/) /p2 (/k2 + ȳ/p1) /p2 /p1]

[(y p1 − q)2 + iǫ][(k2 + ȳp1)2 + iǫ]
ϕ1(y;µ

2
F ) .

The omputation is similar to the omputations of the impat fators Φγ∗L,T→γ∗L,T
presented

in the hap. 1. It is instrutive to trak the origin of the di�erent fators in eq. (2.244).

1
4

omes from Fierz identity,

2
s
from the normalization of the non-sense polarizations of the

t−hannel gluons, δab

2
from the projetion on the olor singlet state in t−hannel, 1/N from

the Fierz fatorization of the olor indies of the ρ−meson. We remind that

e√
2
stands for

the eletri harge of the qq̄ ontent of the ρ−meson wave funtion

1√
2
(ūu− d̄d).

The poles in the κ−plane are given by the propagators. We reall that the six diagrams

are needed to prove the onvergene of the integral over κ on the in�nite semi-irle. We
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an then ompute the integral with the residue method by hoosing the lower ontour for

example. Among the six diagrams, only four of them give a ontribution due to their κ−pole
struture for a given ontour hoie.

The result for the impat fator is,

Φγ∗L→ρL =
2eg2fρ√

2Q

δab

2N

∫

dyϕ1(y)µ
2

(

1

µ2
− 1

k2 + µ2

)

=
2eg2fρ√

2Q

δab

2N

∫

dyϕ1(y)
k2

µ2 + k2
, (2.245)

where aording to the notation introdued in the DIS ase in Se. 1.3.2, µ2 = yȳQ2
. The

result an be extended to the non-forward kinemati∆ 6= 0, taking the momenta of the quark

ℓ1 and of the antiquark ℓ2 as,

ℓ1 = yp1 +
(ℓ+ y∆)2

ys
p2 + ℓ⊥ + y∆⊥ (2.246)

ℓ2 = ȳp1 +
(ℓ+ ȳ∆)2

ȳs
p2 − (ℓ⊥ − ȳ∆⊥ . (2.247)

The result reads [130℄,

Φγ∗L→ρL(k,∆, Q) = 4παs
efρ√
2Q

δab
2Nc

∫ 1

0

dy µ2 ϕ1(y;Q
2)PP (y, k,∆, Q) (2.248)

with

PP (y, k,∆, Q) =
1

(y∆)2 + yȳQ2
+

1

(ȳ∆)2 + yȳQ2
(2.249)

−
(

1

(k − y∆)2 + yȳQ2
+

1

(k − ȳ∆)2 + yȳQ2

)

.

2.7.3 The γ∗T → ρL impat fator

Using the same tehniques, the �rst term of the expansion in twist of the impat fator

γ∗T → ρL is of twist 2. The twist 2 ontribution to the γ∗T → ρL impat fator is power

suppressed by a kinemati fator

√
t/Q ompared to the twist 2 ontribution of the γ∗L → ρL

impat fator. It reads [130℄:

Φγ∗T→ρL(k,∆, Q) = 2παs
e√
2
fρ
δab
2Nc

∫ 1

0

dy (y − ȳ)ϕ1(y;Q
2) e ·Q

P
(y, k,∆, Q) (2.250)

with

Q
P
(y, k,∆, Q) =

y∆

(y∆)2 + yȳQ2
− ȳ∆

(ȳ∆)2 + yȳQ2
(2.251)

+
k − y∆

(k − y∆)2 + yȳQ2
− k − ȳ∆

(k − ȳ∆)2 + yȳQ2
.
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2.7.4 The γ∗T → ρT impat fator

The γ∗T → ρT impat fator is tehnially more ompliated as it involves many types of

diagrams. We will give here the result for eah of the di�erent types of diagrams whih

are represented in �gs. 2.13, 2.8, 2.9, 2.10. We skip the diagram of the type �g. 2.7 as the

omputation goes the same way than for Φγ∗L→ρL
.
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Figure 2.22: The detailed struture of the diagram (b1).

Let us fous on the diagram of �g. 2.22. We reall that there are two ontributions,

the vetor and the axial vetor ontributions where the spinor indies of the diagram are

respetively losed on the Fierz strutures /p1 and /p1γ5.The vetor ontribution to the impat

fator reads

ΦV
b1 = − e√

2

1

4

2

s
(−i) g2 fρmρ

δab

2Nc

1

2s

1
∫

0

dy

∫

dκ

2π

×Tr[e/γ (/k1 − ȳ /p1) e/
∗
T (/k1 − ȳ/p1) /p2 /p1 /p2(/k2 + y /p1)]

[(k1 − ȳp1)2 + iη]2[(k2 + ȳp1)2 + iη]
ϕT
1 (y) . (2.252)

Computing the trae and integrating over κ leads to

ΦV
b1 = −eq g

2

2
fρmρ

δab

2Nc

(2.253)

×
1
∫

0

dy y
−e∗T · eγ(y ȳ Q2 + k2) + 2 e∗T · k e∗T · k(1− 2 y)

(Q2 y ȳ + k2)2
ϕT
1 (y) .

The axial vetor ontribution reads

ΦA
b1 = −eq

i

4

2

s
(−i)g2fρmρ

δab

2Nc

1

2s

1
∫

0

dy

∫

dκ

2π
(2.254)

× Tr[e/γ (/k1 − ȳ /p1) γα (/k1 − ȳ/p1) /p2 /p1 γ5 /p2(/k2 + y /p1)]

[(k1 − ȳp1)2 + iη]2[(k2 + ȳp1)2 + iη]
ǫαe∗T pn ϕ

T
A(y) ,
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whih gives,

ΦA
b1 = −eq g

2

2
fρmρ

δab

2Nc

(2.255)

×
1
∫

0

dy y
−e∗T · eγ(y ȳ Q2 − k2) + 2 e∗T · k e∗T · k

(Q2 y ȳ + k2)2
ϕT
A(y) .
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Figure 2.23: The detailed struture of the diagram (aG1).

Let us onsider now the abelian three-parton ontribution diagrams shown in �g. 2.23.

Two di�erent olor fators an be obtained depending of where the gluon is attahed,

2

(N2
c − 1)

Tr(tc ta tb tc) =
δab

2Nc
: (aG1), (G1), (eG1), (fG1) (2.256)

2

(N2
c − 1)

Tr(tc ta tc tb) =
1

2

(

2− Nc

CF

)

δab

2Nc
: (bG1), (dG1), (aG2),

(G2), (bG2), (dG2), (eG2), (fG2) ,

where the 2/(N2
c −1) omes from the Fierz oe�ient when fatorizing the qq̄g state in olor

spae.

The vetor ontribution of the diagram aG1 reads

ΦV
aG1 = −eq

1

4

2

s
(i) g2 fρmρ

δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
B(y1, y2) (2.257)

× Tr[e/γ (y1 /p1 − q/) e/∗T (y2 /p1 − q/) /p2 (/k2 + ȳ2 /p1) /p2 /p1]

[(y1 p1 − q)2 + iη][(y2 p1 − q)2 + iη][(k2 + ȳ2 p1)2 + iη]
,

= −eq g
2

2
fρmρ

δab

2Nc

1
∫

0

dy1 dy2
e∗T · eγ
ȳ1Q2

B(y1, y2) . (2.258)
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The axial-vetor ontribution of aG1 reads

ΦA
aG1 = −eq

i

4

2

s
(i) g2 fρmρ

δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
εαe∗T pnD(y1, y2) (2.259)

× Tr[e/γ (y1 /p1 − q/) γα (y2 /p1 − q/) /p2 (/k2 + ȳ2 /p1) /p2 /p1]

[(y1 p1 − q)2 + iη][(y2 p1 − q)2 + iη][(k2 + ȳ2 p1)2 + iη]
,

= −eq g
2

2
fρmρ

δab

2Nc

1
∫

0

dy1 dy2
e∗T · eγ
ȳ1Q2

D(y1, y2) . (2.260)
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Figure 2.24: The detailed struture of the �non-Abelian� (with one triple gluon vertex)

diagram (atG1).

The non-abelian diagram with one gluon triple vertex involves also two kinds of olor

fators,

2

N2
c − 1

(−i) Tr(tc tb td) f cad =
Nc

2

1

CF

δab

2Nc

:

(atG1), (dtG1), (etG1), (btG2), (tG2), (ftG2) (2.261)

2

N2
c − 1

(−i) Tr(tc td tb) f cad = −Nc

2

1

CF

δab

2Nc
:

(tG1), (btG1), (ftG1), (atG2), (dtG2), (etG2) .

Let us onsider the diagram (atG1) illustrated in �g.2.24. We denote as

dνρ(k) = gνρ − kνnρ + kρnν

k · n (2.262)

the numerator of the gluon propagator in axial gauge, and

Vµ1 µ2 µ3(k1, k2, k3) = (k1 − k2)µ1 gµ1µ2 + · · · (2.263)

the momentum part of the 3-gluon vertex, where ki are inoming, labeled in the ounter-

lokwise diretion. The ontribution of the diagram (atG1) proportional to the vetor DA,
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reads

ΦV
atG1 = −eq

1

4

2

s

(−i)Nc

2CF

g2mρ fρ
δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
pλ2 e

∗α
T B(y1, y2)

×Tr[e/γ (y1/p1 − q/) γν (/k2 + ȳ2 /p1) /p2 /p1]

×d
νρ(k1 + (y1 − y2)p1) Vρλα(−k1 − (y1 − y2)p1, k1, (y1 − y2)p1)

[(y1 p1 − q)2 + iη][(k1 + (y1 − y2) p1)2 + iη][(k2 + ȳ2 p1)2 + iη]
. (2.264)

Note that for this diagram, as well as for all �non-Abelian� diagrams, one an easily hek

that only the gνρ part of (2.262) ontributes.

Closing the κ ontour above or below gives for the vetor DA part of the diagram (atG1)

the result

ΦV
atG1 = −eq g

2

2
mρ fρ

δab

2Nc

Nc

CF

1
∫

0

dy1 dy2
(y1 − y2) ȳ2

ȳ1 (ȳ1 k
2 + ȳ2 (y2 − y1)Q2)

e∗T · eγ B(y1, y2) . (2.265)

Similarly, the ontribution of the diagram (atG1) proportional to the axial vetor DA, reads

ΦA
atG1 = −eq

i

4

2

s

(−i)Nc

2CF
g2mρ fρ

δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
pλ2 ǫ

α
e∗T pnD(y1, y2)

×Tr[e/γ (y1/p1 − q/) γν (/k2 + ȳ2 /p1) /p2 /p1 γ5]

×d
νρ(k1 + (y1 − y2)p1) Vρλα(−k1 − (y1 − y2)p1, k1, (y1 − y2)p1)

[(y1 p1 − q)2 + iη][(k1 + (y1 − y2) p1)2 + iη][(k2 + ȳ2 p1)2 + iη]
, (2.266)

and losing the κ ontour above or below gives

ΦA
atG1 = −eq g

2

2
mρ fρ

δab

2Nc

Nc

CF

(2.267)

×
1
∫

0

dy1 dy2
(y1 − y2) ȳ2

ȳ1 (ȳ1 k
2 + ȳ2 (y2 − y1)Q2)

e∗T · eγ D(y1, y2) .
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Figure 2.25: The detailed struture of the diagram (gttG1).
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We onsider now the �non-Abelian� diagrams of the type of gttG1 illustrated in �g.2.25,

involving two triple gluon verties. They all involve the olor struture

− 2

N2
c − 1

Tr[tc td]f cea f edb =
Nc

CF

δab

2Nc

. (2.268)

The vetor ontribution of gttG1 reads

ΦV
gttG1 = −eq

1

4

2

s

(−i)Nc

CF
g2mρ fρ

δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
pλ2 p

τ
2 e
∗δ
T B(y1, y2)

×Tr[e/γ (y1/p1 − q/) γν /p1] d
νρ(−q + (1 + y1 − y2) p1)

× Vρλα(q − (1 + y1 − y2) p1, k1, −k2 + (y1 − y2)p1) d
αβ(k2 + (y2 − y1)p1)

[(y1 p1 − q)2 + iη][(−q + (1 + y1 − y2) p1)2 + iη][(k2 + (y2 − y1) p1)2 + iη]

×Vβτδ(k2 + (y2 − y1)p1, −k2, (y1 − y2)p1) . (2.269)

When losing the κ ontour below on the single pole oming from the third propagator, it

equals to

ΦV
gttG1 = −eq g

2

2
mρ fρ

δab

2Nc

Nc

CF

1

Q2

1
∫

0

dy1 dy2
B(y1, y2)

ȳ1
e∗T · eγ . (2.270)

The axial DA ontribution from the diagram (gttG1) reads

ΦA
gttG1 = −eq

i

4

2

s

(−i)Nc

CF
g2mρ fρ

δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
pλ2 p

τ
2 ǫ

σ
e∗T pnD(y1, y2)

×Tr[e/γ (y1/p1 − q/) γν /p1 γ5] d
νρ(−q + (1 + y1 − y2) p1)

× Vρλα(q − (1 + y1 − y2) p1, k1, −k2 + (y1 − y2)p1) d
αβ(k2 + (y2 − y1)p1)

[(y1 p1 − q)2 + iη][(−q + (1 + y1 − y2) p1)2 + iη][(k2 + (y2 − y1) p1)2 + iη]

×Vβτσ(k2 + (y2 − y1)p1, −k2, (y1 − y2)p1) . (2.271)

It equals, when losing the κ ontour below on the single pole oming from the third propa-

gator, to the expression

ΦA
gttG1 = −eq g

2

2
mρ fρ

δab

2Nc

Nc

CF

1

Q2

1
∫

0

dy1 dy2
D(y1, y2)

ȳ1
e∗T · eγ . (2.272)

All other diagrams of eah lass an be omputed aording to the previous examples.

Finally the result for Φγ∗T→ρT
an be deomposed on the spin �ip and spin non-�ip tensors

respetively denoted Tf and Tn.f ,

Φγ∗T→ρT = Φ
γ∗T→ρT
n.f Tn.f + Φ

γ∗T→ρT
f Tf , (2.273)
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with

Tn.f = −e∗ρ⊥ · eγ⊥
= e∗ρ · eγ , (2.274)

Tf =
(e∗ρ⊥ · k⊥)(k⊥ · eγ⊥)

k2
+

(e∗ρ⊥ · eγ⊥)
2

=
(e∗ρ · k)(k · eγ)

k2
− (e∗ρ · eγ)

2
. (2.275)

The spin non-�ip impat fator Φ
γ∗T→ρT
n.f Tn.f orresponds to transitions where the virtual

photon and the ρ−meson have the same polarizations while for the spin �ip impat fator

Φ
γ∗T→ρT
f Tf the virtual photon and the ρ−meson have di�erent polarizations. Denoting α = k2

Q2 ,

the results for the spin non-�ip γ∗T → ρT impat fator is

Φ
γ∗T→ρT
n.f. = Cab 1

CF

1
∫

0

dy1

1
∫

0

dy2 (2.276)

×
{

y1 ζ
A
3 D (y1, y2)

α+ (1− y1) y1

(

α (Nc − 2CF )

(y1 − y2 + 1)α + y1 (1− y2)
+

αNc (1− y1)

y2 α + y1 (y2 − y1)

)

−y1 ζ
V
3 B (y1, y2)

α + (1− y1) y1

(

α (2CF −Nc) (2y1 − 1)

(y1 − y2 + 1)α + y1 (1− y2)
+

αNc (1− y1)

y2 α + y1 (y2 − y1)

)

+
(

ζV3 B (y1, y2) + ζA3 D (y1, y2)
)

×
(

2CF y1
α + (1− y1) y1

− 1

1− y1

[

Nc (1− y2) (y1 − y2)

(1− y1)α + (1− y2) (y2 − y1)
+ CF +Nc

])}

and the spin �ip impat fator

Φ
γ∗T→ρT
f. (k2) =

Cab

2

{

4

∫

dy1
α

(α + y1 (1− y1))
2

[

ϕT
A(y1)− (2y1 − 1)ϕT

1 (y1)
]

− 4

∫

dy1 dy2
y1 α

α + y1 (1− y1)

[

ζA3 D (y1, y2) (−y1 + y2 − 1) + ζV3 B (y1, y2) (y1 + y2 − 1)
]

×
[

(2−Nc/CF )

α (y1 − y2 + 1) + y1 (1− y2)
− Nc

CF

1

y2 α+ y1 (y2 − y1)

]}

. (2.277)

Note that to get the eq. (2.276) one has to use the EOMs given by eqs. (2.113, 2.114), in

order to anel the terms that are not vanishing in the limit k2 → 0 and whih would lead

to end-point singularities. Thus the results have no end-point singularities and are vanishing

when k2 → 0, as imposed by the gauge invariane.

2.8 Heliity amplitudes

In this setion, we build a phenomenologial model of the ratios T11/T00 in the forward limit

and T01/T00 as a funtion of −t, and we ompare them to HERA data. But �rst let us make a

brief remark on the determination of heliity amplitudes and spin matrix elements at HERA

experiments.
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Figure 2.26: Kinematis of the ρ−prodution.

2.8.1 Measurement of heliity amplitudes and spin matrix elements

The motivation of this study is the analysis that was performed by ZEUS [98℄ and H1 [99℄

ollaborations to extrat the full set of spin density matrix elements rαij of vetor mesons

di�rative eletroprodution at small−x.
The kinemati range of energies in the enter of mass, virtualities and t variable are

displayed in tab. 2.8.1.

Q2
(GeV

2
) W (GeV) |t| (GeV2

)

ZEUS 2 < Q2 < 160 32 < W < 180 −t < 1

H1 2.5 < Q2 < 60 35 < W < 180 −t < 3

In �g. 2.26 are shown the three di�erent reation planes and the angles Φh and φh between

these planes. Φh is the angle between the plane of the virtual photon and the outgoing proton

in the enter of mass frame of the γ∗p system and the plane of the inoming and outgoing

eletrons. φh is the angle between the plane of the virtual photon and the outgoing proton

in the enter of mass frame of the γ∗p system and the plane of the pions momenta. Another

important angle is θh, the angle in the ρ−meson rest frame between the diretion of the

outgoing proton and the pions diretion.

The tehnique to extrat the heliity amplitudes Tλρλγ or the spin density matrix elements

rαλρλ′ρ
, is to expand the di�erential ross-setion on the spherial harmonis Y1λρ(θh, φh) leading
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to

dσ

d cos θh dΦh dφh

= σ ·W (cos(θh), φh,Φh) (2.278)

=
∑

λγλ′γ ;λρλ′ρ

TλρλγT
∗
λ′ρλ
′
γ
· Y1,λρ(θh, φh)Y

∗
1,λ′ρ

(θh, φh) · ρλγλ′γ , (2.279)

where ρλγλ′γ is the spin density matrix element assoiated to the prodution of the virtual

photon from the sattering lepton. The quantities ρλλ′ are de�ned by projeting the produt

of leptoni urrents that appear at the ross-setion level, on the polarizations λ and λ′ of the

virtual photons. The di�erential ross-setion of ep → e′X with X an arbitrary �nal state,

an be deoupled into,

dσ(ep→ e′X)

dQ2dy
dΠX =

α

πQ2y
(1− y +

1

2
y2)
∑

λλ′

ρλλ′dσλλ′(γ
∗p→ X) , (2.280)

with

dσγ∗p→X

dΠX
the di�erential photoabsorption ross-setion γ∗p → X . The elements of the

ρ−meson spin density matrix only depend on the angle Φh and the photon polarization

parameter ε ∼ 2(1−y)
1+(1−y)2 at small-x, whih is di�erent for H1 〈ε〉 = 0.98 and for ZEUS

〈ε〉 = 0.996.

Following the analysis of Shilling and Wolf [170℄, in the s-hannel heliity onserving

(SCHC) approximation where only the transitions with λρ = λγ are allowed, the tensor

W (cos(θh), φh,Φh) an be parameterized by the following spin density matrix elements,

r0400 =
ε

x211 + ε
, (2.281)

r11−1 = −Im(r21−1) =
1

2

x211
x211 + ε

, (2.282)

Re r510 = −Imr610 =
1

2
√
2

Re(T11T ∗00)
|T11|2 + ε |T00|2

, (2.283)

with the notation xij = |Tij | / |T00|. The analysis of [170℄ goes beyond the SCHC approxima-

tion and involves the full set of the 15 spin density matrix elements.

Note that our alulations of impat fators γ∗T → ρT are performed in the forward limit so

we an aess T11 only in this limit, while experimental data are integrated over some t range

but are dominated by very small values of t. The t−dependene is given by an exponential

falling funtions

dσL,T
dt

∼ exp(−bL,T |t|) ,

where bL and bT are �tted to HERA data. The di�erene bL − bT being very small we

an assume in a �rst approximation that the t−dependene in the ratios x11 anels out.

The in�uene of the SCHC heliity amplitudes due to the small but non-zero t−value an be

estimated from the data. For t 6= tmin, r
04
00 slightly depends on the s-hannel heliity violating

amplitudes T01, T10, and T1−1. Experimental data are dominated by |t−tmin| ≤ 0.4 GeV2
, for

whih the signi�ant amplitudes are |T00| > |T11| > |T01|. The exat relation beyond SCHC
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approximation reads

r0400 =
ε+ x201

x211 + ε+ x201 + x21−1 + 2ε x210
. (2.284)

In the next setion, we will make preditions for x11 and x01 based on the impat fator

representation of the heliity amplitude using the results obtained in the LCCF sheme.

2.8.2 A proton impat fator model

The heliity amplitudes at Born level read,

Tλρλγ = is

∫

d2k

(2π)2
1

k2(k −∆)2
Φ

γ∗λγ→ρλρ (k,∆)ΦN→N(k,∆) , (2.285)

with∆ the transverse momentum exhanged in t-hannel. The nuleon impat fatorΦN→N (k, k−
∆) is not alulable in pQCD and we have to use a model. A simple phenomenologial model

was provided for hadron-hadron sattering in Ref.[143℄ by Gunion and Soper (GS), of the

form:

ΦN→N (k,∆;M2) = Aδab

[

1

M2 + (∆
2
)2

− 1

M2 + (k − ∆
2
)2

]

. (2.286)

A and M are free parameters that orrespond to soft sales of the proton-proton impat

fator. In order to get rid of the normalizations of the heliity amplitudes, we will fous

on the desriptions of the ratios of heliity amplitudes. With the impat fator we have

omputed we an ompare two ratios namely T11/T00 in the forward limit and T01/T00 as a

funtion of t = −∆2
.

The above model (2.286) that we will refer as the "GS model" an be interpreted as the

interation of olor dipole on�gurations inside the nuleon with the two t−hannel gluons.
The sale M is then a internal hadroni transverse sale that governs the typial transverse

momentum. Suh a model was the basis of the dipole approah of high-energy sattering [10℄

and used suessfully to desribe DIS at small x [171℄.

2.8.3 Heliity amplitudes T11 and T00 at t = tmin - Comparison of

obtained preditions with H1 data

Inserting the impat fator results (2.248, 2.286) in the formula (2.285) for the heliity am-

plitudes leads to

T00 =
is CF2AB

(2π)Q5

∫ 1

0

dy ϕ1(y, µ
2)

∫ ∞

R2
1

dα
1

α2

(

1

R2
− 1

α +R2

)

α

α + yȳ
, (2.287)

with B = 2παs
e√
2
fρ, R

2 = M2

Q2 and R2
1 =

λ2

Q2 an infra-red ut-o� on the integral over α. The

infra-red ut-o� is not neessary for the onvergene of the integral but it allows to see how

muh the soft gluons ontribute to the result. The heliity amplitude T11 is split in the WW

ontribution and the genuine ontribution,

T11 = TWW
11 + T gen

11 .
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The WW ontribution ontains only the two-parton (qq̄) ontribution to the impat fator

and eah WW DAs an be expressed as a funtion of ϕ1(y), as it was expliitly shown in

Se. 2.4.3. After interhanging the integrals over α, y and u in order to �x a spei� model

for DAs at the last step when performing the u integration, the WW ontribution reads

TWW
11 =

is CF (ǫγ .ǫ
∗
ρ)mρ2AB

(2π)Q6

∫ 1

0

du
ϕ1(u;µ

2)

u

∫ u

0

dy

∫ ∞

R2
1

dα

× 1

α2

(

1

R2
− 1

α +R2

)

α(α+ 2yȳ)

(α+ yȳ)2
, (2.288)

The genuine (qq̄gen + qq̄g) ontribution involves two- and three-parton ontributions. It

reads

T gen
11 =

isCF (ǫγ.ǫ
∗
ρ)mρAB

(2π)Q6

∫ ∞

R2
1

dα

{

1

R2
− 1

α +R2

}

×
{

−
∫ 1

0

dy
α(α+ 2yȳ)

yȳ(α + yȳ)2
[(y − ȳ)ϕgen

1T (y;µ2) + ϕgen
AT (y;µ

2)]

+

∫ 1

0

dy2

∫ y2

0

dy1M(y1, y2;µ
2)

× y1ȳ1α

α + y1ȳ1

[

2−Nc/CF

α(y1 + ȳ2) + y1ȳ2
− Nc

CF

1

y2α+ y1(y2 − y1)

]

−
∫ 1

0

dy2

∫ y2

0

dy1 S(y1, y2;µ
2)

×
[

2 +Nc/CF

ȳ1
+

y1
α + y1ȳ1

(

(2−Nc/CF )y1α

α(y1 + ȳ2) + y1ȳ2
− 2

)

−Nc

CF

(y2 − y1)ȳ2
ȳ1

1

αȳ1 + (y2 − y1)ȳ2

]}

. (2.289)

We interhange the integrals over α and the longitudinal frations of momentum and we

de�ne I1(y;R
2, R2

1), I2(y1, y2;R
2, R2

1) and I3(y1, y2;R
2, R2

1) as the integrands after integration

over α

I1(y;R
2, R2

1) =

∫ ∞

R2
1

dα

(

1

R2
− 1

α +R2

)

α(α + 2yȳ)

yȳ(α+ yȳ)2
, (2.290)

I2(y1, y2;R
2, R2

1) =

∫ ∞

R2
1

dα

{

1

R2
− 1

α +R2

}

(2.291)

× y1ȳ1α

α+ y1ȳ1

[

2−Nc/CF

α(y1 + ȳ2) + y1ȳ2
− Nc

CF

1

y2α + y1(y2 − y1)

]

,

I3(y1, y2;R
2, R2

1) =

∫ ∞

R2
1

dα

{

1

R2
− 1

α +R2

}

(2.292)

×
[

2 +Nc/CF

ȳ1
+

y1
α + y1ȳ1

(

(2−Nc/CF )y1α

α(y1 + ȳ2) + y1ȳ2
− 2

)

−Nc

CF

(y2 − y1)ȳ2
ȳ1

1

αȳ1 + (y2 − y1)ȳ2

]

,
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leading to

T gen
11 =

is CF (ǫγ .ǫ
∗
ρ)mρAB

(2π)Q6

{

−
∫ 1

0

dy I1(y)[(y − ȳ)ϕgen
1T (y;µ2) + ϕgen

AT (y;µ
2)]

+

∫ 1

0

dy2

∫ y2

0

dy1I2(y1, y2)M(y1, y2;µ
2)

−
∫ 1

0

dy2

∫ y2

0

dy1I3(y1, y2)S(y1, y2;µ
2)

}

, (2.293)

where the variables R2
and R2

1 have been omitted for larity. Using the symmetry property

S(y1, y2;µ
2) = −M(ȳ2, ȳ1;µ

2), this expression takes the form

T gen
11 =

isCF (ǫγ .ǫ
∗
ρ)mρAB

(2π)Q6

{

−
∫ 1

0

dyI1(y)[(y − ȳ)ϕgen
1T (y;µ2) + ϕgen

AT (y;µ
2)]

+

∫ 1

0

dy2

∫ y2

0

dy1(I2(y1, y2) + I3(ȳ2, ȳ1))M(y1, y2;µ
2)

}

, (2.294)

with

I2(y1, y2) + I3(ȳ2, ȳ1) =
(

2− Nc

CF

)
∫ ∞

R2
1

dα
1

R2(α +R2)(α(y1 + ȳ2) + y1ȳ2)

(

ȳ2
2

α+ y2ȳ2
+

y1ȳ1
α + y1ȳ1

)

+
Nc

CF

∫ ∞

R2
1

dα
1

R2(α +R2)(α+ y1ȳ1)(αy2 + y1(y2 − y1))

+
2

y2

∫ ∞

R2
1

dα
1

R2(α +R2)(α + y2ȳ2)
. (2.295)

Combining the results (2.287) with (3.132) and (2.294), the ratios TWW
11 /T00 and T

gen
11 /T00

read

TWW
11

T00
= (2.296)

−mρ

Q

∫ 1

0

dv ϕ1(v;µ
2)

∫ 1

0

dx

∫ ∞

R2
1

dα
α + 2xv(1− xv)

α(α+ xv(1− xv))2

(

1

R2
− 1

α +R2

)

∫ 1

0

dy ϕ1(y, µ
2)

∫ ∞

R2
1

dα

α(α + yȳ)

(

1

R2
− 1

α +R2

)

where we took into aount that ǫγ .ǫ
∗
ρ = −eγ · e∗ρ = −1, and

T gen
11

T00
=

mρ

2Q
(2.297)

×

∫ 1

0
dy I1(y)[(y − ȳ)ϕgen

1T (y;µ2) + ϕgen
AT (y;µ2)]−

∫ 1

0
dy2

∫ y2

0
dy1(I2(y1, y2) + I3(ȳ2, ȳ1))M(y1, y2)

∫ 1

0
dy ϕ1(y;µ

2)

∫ ∞

R2

1

dα
1

α2

(

1

R2
− 1

α+ R2

)

α

α+ yȳ

.

The integration is performed analytially over α and numerially over remaining variables

as for example y for T00, x, v for TWW
11 and y1, y2 for T gen

11 . The measured ratio T11/T00 is
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Figure 2.27: The WW ontribution TWW
11 /T00 in green (dash-dotted line), the genuine on-

tribution T gen
11 /T00 in red (dashed line), and the sum of the two ontributions in blue (solid

line), at M = 1 GeV and λ = 0 GeV, as funtions of the virtuality of the photon. The

brown (long-dashed) urve is the ontribution based on the asymptoti DA of the ρ meson,

ϕ1(y, µ
2
F = ∞) = ϕas

1 (y) = 6y(1− y). Our results are ompared with the experimental data

from H1 [99℄. The experimental errors are taken to be the quadrati sum of statistial and

systematial errors.

onventionally de�ned [105℄ to have an opposite sign with respet to eqs. (2.296) and (2.297),

in order to ensure the usual matrix summation in the de�nition of the density matrix.

In �g. 2.27 we show the di�erent ontributions to the ratio T11/T00 as a funtion of Q2

and for the nonperturbative parameters M = 1 GeV and λ = 0 GeV. Unless spei�ed, we

take as a fatorization sale µ2
F = Q2

. Note that the fatorization sale only appears in the

ratios of the amplitudes through the DAs and the oupling onstants. We see that the WW

ontribution dominates over the genuine one. For illustration, we also show the ratio T11/T00

using the asymptoti ϕas
1 = 6yȳ DA, whih orresponds to µ2

F → ∞. In this limit, only

the WW ontribution survives sine the three-parton oupling onstants ζV3 (µ
2
F ) and ζ

A
3 (µ

2
F )

vanish when µ2
F → ∞. The small di�erene between this asymptoti result and the total

result (Sum) indiates a weak dependene of this ratio on the fatorization sale µF .

The two parameters λ and M have di�erent physial meanings. M is the typial nonper-

turbative hadroni sale, while λ is the minimal virtuality of gluons, whih should be bigger

than ΛQCD for onsisteny of our perturbative approah. From �g. 2.28 (left panel), we see

that our preditions are stable for M in the range 1-2 GeV. The data, when ompared with

our model, with µ = Q, favor a value of M of the order of 1-2 GeV but exlude a very

small value around ΛQCD. From �g. 2.28 (right panel), we see that for λ around ΛQCD, our

results are very lose to the experimental data and rather stable, whereas for λ = 1 GeV, i.e.

signi�antly larger than ΛQCD ≃ 220 MeV in the MS sheme, they notably deviate from the

data. Let us stress the fat that our estimate provides the orret sign for the ratio T01/T00

when ompared to H1 data is a nontrivial suess of our approah.

In �gs. 2.29 and 2.30 we show the results of our alulations for the spin density matrix
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Figure 2.28: Preditions for the ratio T11/T00 as a funtion of Q2
, ompared to the exper-

imental data from H1 [99℄. The experimental errors are taken to be the quadrati sum of

statistial and systematial errors. Left panel: Fixed λ = 0 GeV uto� and various values

for M . Right panel: Fixed sale M = 1 GeV, and various values of the uto� λ.
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Figure 2.29: The spin density matrix element r0400 as a funtion of Q2
for M = 0.5 GeV in

green (dash-dotted line), M = 1 GeV in blue (solid line), and M = 2 GeV in red (dashed

line), and for λ = 0 GeV. Our results are ompared with the experimental data from ZEUS

[98℄ and H1 [99℄. The experimental errors are taken to be the quadrati sum of statistial

and systematial errors.

element r0400. In �g. 2.29 is shown r0400 as a funtion of Q2
for di�erent values of the nonpertur-

bative parameter M and for λ = 0 GeV. In �g. 2.30 is shown our preditions for M = 1 GeV

and λ = 0 GeV as a funtion of W for several values of Q2
ompared to H1 and ZEUS data,

of ourse our preditions are W−independent as our alulation is at the Born level. This

observable allows a omparison of our preditions with the whole set of HERA data

6

.

6

We predit ratios of amplitudes, while ZEUS made available the spin density matrix elements; H1 ex-

trated both spin density matrix elements and ratios of amplitudes.



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE

ρ−MESON PRODUCTION 117

Total
WW
AS

Q2 = 3.3 GeV2

Q2 = 7.5 GeV2

Q2 = 22.5 GeV2

Total
WW
AS

Q2 = 3.3 GeV2

Q2 = 7.5 GeV2

Q2 = 22.5 GeV2

0 50 100 150
WHGeVL

0.5

0.6

0.7

0.8

0.9

r00
04

(a) r04
00

ontributions using GS-model vs H1

data.

Q2 = 2.4 GeV2

Q2 = 4.2 GeV2

Q2 = 8.8 GeV2

Q2 = 18. GeV2

Total
WW
AS

Q2 = 2.4 GeV2

Q2 = 4.2 GeV2

Q2 = 8.8 GeV2

Q2 = 18. GeV2

Total
WW
AS

0 50 100 150
WHGeVL

0.5

0.6

0.7

0.8

0.9

r00
04

(b) r04
00

ontributions using GS-model vs

ZEUS data.

Figure 2.30: Preditions for r0400 vsW andQ2
ompared respetively with H1[99℄ and ZEUS[98℄

data, the AS (purple dashed lines), WW (blue long dashed lines), Total (red solid lines)

ontributions are shown separately using the GS-model for M = 1 GeV and λ = 0 GeV.

2.8.4 Heliity amplitudes T00 and T01 for t 6= tmin

The H1 data show that the spin-�ip amplitude T01 is nonzero, showing an expliit s−hannel
heliity violation. Besides, this amplitude vanishes when the squared momentum exhanged

by the proton t = −∆2
is zero. We start with the generalization of eq. (2.287) for t 6= tmin,

T00 =
is CF2QAB

(2π)2(M2 + (∆/2)2)

∫ 1

0

dy yȳ ϕ1(y;µ
2) (2.298)

×
∫

d2k

k2(k −∆)2
(k −∆/2)2 − (∆/2)2

(k −∆/2)2 +M2

×
{

1

(y∆)2 + yȳ Q2
+

1

(ȳ∆)2 + yȳ Q2
− 1

(k − y∆)2 + yȳ Q2
− 1

(k − ȳ∆)2 + yȳ Q2

}

.

Similarly,

T01 =
is CF2QAB

(2π)2(M2 + (∆/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y;µ
2) (2.299)

×
∫

d2k

k2(k −∆)2
(k −∆/2)2 − (∆/2)2

(k −∆/2)2 +M2

×
{

y∆ · e
(y∆)2 + yȳ Q2

− ȳ∆ · e
(ȳ∆)2 + yȳ Q2

+
(k − y∆) · e

(k − y∆)2 + yȳ Q2
− (k − ȳ∆) · e

(k − ȳ∆)2 + yȳ Q2

}

.

In eqs. (2.298, 2.299),

• the integrations over kT are performed without infrared uto�, partially analytially

through a residue method,

• the integrations over kT are performed with an infrared uto�, fully numerially through

triangulation oordinates entered at the pole of the two t−hannel gluons.

In the next part we will detail the integration over k with both methods.
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Integration over k for T00 and T01

We desribe the method used to evaluate the integrals over k in eqs. (2.298, 2.299) when no

infra-red uto� is imposed. Let (u1,u2) be the orthonormal basis suh as ∆ = r u1, and then

k−∆ = (k1−r, k2). In that ase, a residue method, as desribed in Ref. [130℄, an be applied

for the k1 integration. In this basis, the amplitudes read

T00 =
is CF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy yȳ ϕ1(y, µ
2) (2.300)

×
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

1

k21 + k22

1

(k1 − r)2 + k22

(k1 − r/2)2 + k22 − (r/2)2

(k1 − r/2)2 + k22 +M2

×
{

1

(yr)2 + yȳ Q2
+

1

(ȳr)2 + yȳ Q2

− 1

(k1 − yr)2 + k22 + yȳ Q2
− 1

(k1 − ȳr)2 + k22 + yȳ Q2

}

and

T01=
is CFAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y, µ
2) (2.301)

×
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

1

k21 + k22

1

(k1 − r)2 + k22

(k1 − r/2)2 + k22 − (r/2)2

(k1 − r/2)2 + k22 +M2

×
{

yr e1
(yr)2 + yȳ Q2

− ȳr e1
(ȳr)2 + yȳ Q2

+
e1(k1 − yr) + e2k2

(k1 − yr)2 + k22 + yȳ Q2
− e1(k1 − ȳr) + e2k2

(k1 − ȳr)2 + k22 + yȳ Q2

}

,

where e1 and e2 are the omponents of the transverse polarization of the γ∗ in the basis

(u1,u2). We de�ne the integrands F00 and F01 as

T00 =
isCF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy yȳ ϕ1(y;µ
2)

×
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 F00(k1, k2, y) , (2.302)

T01 =
is CFAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y;µ
2)

×
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 F01(k1, k2, y) . (2.303)

We perform a shift of the variables k → (x+u1)
r
2
i.e k1 → x1, k2 → x2. The shift symmetrizes

and resales the momenta of the gluons, whih are zeros for x1 = ±1 and x2 = 0. The

integrands then read

f00(x1, x2, y) =
4

r2
1

(x1 + 1)2 + x22

1

(x1 − 1)2 + x22

x21 + x22 − 1

g(M2) + x21
(2.304)

×
{

1

(yr)2 + yȳQ2
+

1

(ȳr)2 + yȳQ2

− 4

r2

[

1

(x1 + (y − ȳ))2 + g(yȳ Q2)
+

1

(x1 − (y − ȳ))2 + g(yȳ Q2)

]}
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and

f01(x1, x2, y) =
4

r2
1

(x1 + 1)2 + x22

1

(x1 − 1)2 + x22

x21 + x22 − 1

g(M2) + x21
(2.305)

×
{

y r e1
(yr)2 + yȳQ2

+
ȳ r e1

(ȳr)2 + yȳQ2

−2

r

[

x1 + (y − ȳ)

(x1 + (y − ȳ))2 + g(yȳ Q2)
+

x1 − (y − ȳ)

(x1 − (y − ȳ))2 + g(yȳ Q2)

]}

,

with

g(v) =
4v + r2x22

r2
(2.306)

and f00 , f01 being de�ned suh that

T00 =
is CF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy yȳ ϕ1(y,Q
2) (2.307)

×
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 f00(x1, x2, y) ,

and

T01 =
is CFAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y,Q
2) (2.308)

×
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 f01(x1, x2, y) .

Sine the integrands in (2.307) and (2.308) osillate quikly, we have used a method where

the integration over x1 an be analytially performed in order to avoid numerial integration

issues for the ase where there is no infra-red ut-o�. We integrate over the variable x1 using

the residue method. The poles of the integrands are the same. The poles enlosed in the

below ontour line for x2 ≥ 0 are

x1 = ±(y − ȳ)− i
√

g(Q2yȳ) , x1 = ±1 − ix2 , x1 = −i
√

g(M2) . (2.309)

As the integrands are symmetri under x2 ↔ −x2, the result is the same for x2 ≤ 0. The

remaining integrals over x2 and y are then

T00(r, Q,M) =
is CF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy yȳϕ1(y,Q
2) (2.310)

×
∫ ∞

−∞
dx2(−2iπ)

5
∑

i=1

Resi[f00] ,

T01(r, Q,M) =
is CFAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y,Q
2) (2.311)

×
∫ ∞

−∞
dx2(−2iπ)

5
∑

i=1

Resi[f01] ,

where the expliit expressions for the residues Resi[f00] and Resi[f01] are too lengthy to be

displayed here. We then integrate numerially over x2 ∈ [0,∞] and y and �nally multiply

the result due to the symmetry of the pole struture by 2.
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In the ase where there is an infra-red ut-o�, we annot use anymore the residue method

to simplify the integrals so the integration is performed only numerially but we have to

hange the variables to get stable numerial results. We will hange the variables x1 and x2

by the distanes of the point (x1, x2) from the singularities in (-1,0) and (1,0). Let b1 and b2

be these distanes suh that

b21 = (x1 + 1)2 + x22 b22 = (x1 − 1)2 + x22 . (2.312)

We have two solutions for (x1, x2), one restrited to the upper half-plane,

x1 =
1

4
(b21 − b22) , x2 =

1

4

√

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2) , (2.313)

and one restrited to the lower half-plane,

x1 =
1

4
(b21 − b22) , x2 = −1

4

√

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2) . (2.314)

We an restrain the omputations to the upper half-plane beause the integrands of (2.308)

and (2.307) are invariant in x2 ↔ −x2. The existene of both solutions requires that

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2) ≥ 0 , (2.315)

or equivalently, at �xed b1, b2 ≤ b1 + 2 and b2 ≥ |b1 − 2| . This is the ondition for the two

irles entering in (-1,0) and (1,0) and of radius b1 and b2, respetively, to ross eah other.

The Jaobian of the transformation is

2 b1b2
√

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2)
≥ 0 . (2.316)

The infrared uto� is inluded by a representation of the Heaviside distribution

θ(b1 − βcut; k) =
1

1 + e−2k(b1−βcut)
, (2.317)

where βcut is the uto� for b1 and b2. The link with the infra-red uto� in GeV is λ = βcut
r
2
.

This ensures the stability of the numerial evaluation of the b1 and b2 integrations. Then the

amplitudes read

T00(λ; k) =
is CF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy yȳ ϕ1(y;µ
2) (2.318)

×
∫ ∞

0

db1

∫ b1+2

|b1−2|
db2 θ(b1 − βcut(λ); k) θ(b2 − βcut(λ); k)

× 2b1b2
√

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2)

×f00(y, x1(b1, b2), x2(b1, b2)) ,

T01(λ; k) =
is CF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y;µ
2) (2.319)

×
∫ ∞

0

db1

∫ b1+2

|b1−2|
db2θ(b1 − βcut(λ); k)θ(b2 − βcut(λ); k)

× 2 b1b2
√

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2)

f01(y, x1(b1, b2), x2(b1, b2)) .
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The integrations are performed numerially over b1, b2, and y. The onstant k is hosen to be

equal to 10. The width of model (2.317) of the Heaviside distribution equals r× 1
k
= r

10
GeV.

This ensures the stability of the omputation without signi�antly a�eting our results.

Comparison of the results for T01/T00 with HERA data

Fig. 2.31 shows the dependene of the ratio T01/T00 on the hoie of the fatorization sale µ

forM = 1 GeV and λ = 0 GeV. For ompleteness, we also show the preditions based on the

asymptoti DAs. We see that for fatorization sales around µ2 = Q2
our results are rather

insensitive to its values. Nevertheless, the ratio T01/T00 seems to be more sensitive to this

sale than the ratio T11/T00.

j1
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j1 Iy , 2 Q 2 M

j1 Iy , Q 2 �2M

Q 2
= 3.3 GeV2
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Figure 2.31: Preditions for the ratios T01/T00 as a funtion of |t| for M = 1 GeV and λ = 0

GeV, for di�erent values of the fatorization sale µ2
, ompared with H1 data [99℄: the blue

(solid) line is for ϕ1(y, µ
2 = Q2), the green (dotted) line is for ϕ1(y, µ

2 = 2Q2), the brown

(dashed) line is for ϕ1(y, µ
2 = Q2/2), and the red (dashed) line is for ϕ1(y, µ

2 = ∞) =

ϕas
1 (y) = 6y(1− y). The experimental errors are taken to be the quadrati sum of statistial

and systematial errors. Left panel: Q2 = 3.3 GeV

2
. Right panel: Q2 = 8.6 GeV

2
.

Our preditions are based on pQCD and therefore, at small t, an only lead to a powerlike

or logarithmi t dependene. We an implement the non-perturbative t−dependene by

using the b−slope values extrated from H1 data [99℄. Multiplying our preditions for the

amplitudes by a fator e−bi |t−tmin|/2
, where bi (i = L, T ) orresponds to ρ eletroprodution

from γ∗L or γ∗T . H1 measured values of bL and bL− bT [99℄. The measured values for the latter

are bL− bT = −0.03±0.27+0.19
−0.17 GeV

−2
(for 〈Q2〉 = 3.3 GeV2

) and bL− bT = −0.65±0.14+0.41
−0.51

GeV

−2
(for 〈Q2〉 = 8.6 GeV2

). Here we present our results in �g. 2.32. One an see in the

right panel of �g. 2.32 that the preision of the data for the T01/T00 ratio does not permit us

to disriminate between a zero value for the di�erene of the transverse and the longitudinal

slope parameters, bL−bT , and a nonzero value of this di�erene, as measured by H1 at higher

values of Q2
.

Thus our estimate provides the orret sign and order of magnitude for the ratio T01/T00
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when ompared to H1 data for M of the order of 1 GeV in the whole range of 〈−t〉 < 1.08

GeV

2
.
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M=1.5 GeV
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Figure 2.32: Preditions for the ratio T01/T00 as a funtion of |t| for λ = 0 GeV, for various

values of M , ompared with H1 data [99℄. The experimental errors are taken to be the

quadrati sum of statistial and systematial errors. Left panel: Q2 = 3.3 GeV

2
. Right

panel: Q2 = 8.6 GeV

2
.
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Figure 2.33: Preditions for the ratios T01/T00 as a funtion of |t| for M = 1 GeV, for

di�erent values of λ, ompared with H1 data [99℄: the blue (solid) line is for λ = 0 GeV, the

red (dashed) line is for λ = 0.2 GeV, and the green (dash-dotted) line is for λ = 0.4 GeV.

The experimental errors are taken to be the quadrati sum of statistial and systematial

errors. Left panel: Q2 = 3.3 GeV

2
. Right panel: Q2 = 8.6 GeV

2
.

For ompleteness, as we did for the ratio T11/T00, we also display in �g. 2.33 the e�et

of varying the uto� λ on kT for the ratio T01/T00. Again, the predition does not hange

signi�antly when λ is around ΛQCD. One obtains the same kind of values forM and λ when

omparing with the data for the two ratios T11/T00 and T01/T00. However, due to a lak of

preision of the data for the ratio T01/T00, the parameters M and λ are mainly onstrained

by the ratio T11/T00.
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2.8.5 Disussion of the results

This model provides a fairly good desription of the data despite the simpliity of the nuleon

impat fator for reasonable values of M . Let us sum up the harateristis of this model,

• the preditions are not very sensitive to the typial transverse sale M of the dipole

on�guration inside the nuleon,

• the preditions are not very sensitive to the hoie of the renormalization sale µF that

we used,

• the λ−dependene of the preditions shows that the dominant ontribution is given by

the exhange of hard gluons in t−hannel (k2 ≫ Λ2
QCD), but also that the e�ets of

soft gluons are sizable.

This last point justi�es the QCD twist expansion based on the dominane of the sattering

on the target of small transverse-size quark-antiquark and quark-antiquark-gluon olorless

states. It also justi�es the fat that a sizable ontribution is given by large dipole on�gura-

tions and should be dereased by saturation e�ets in the nuleon. So what we an learn from

this �rst approah is that we an desribe the HERA data with pQCD but this desription

have to be improved in order to implement the dynamis of larger dipole sizes.

This approah ould be generalized to aess other sattering amplitude ratios that have

also been measured and should be onfronted with a kT -fatorization approah. This requires

nontrivial analytial alulations for t 6= tmin of the twist-3 amplitudes (whih was not needed

for the ratio T01/T00) whih is a hard task, sine it involves, in partiular, the omputation

of the γ∗L → ρT impat fator. This deserves a separate study.

Data also exist for φ leptoprodution. In this ase quark-mass e�ets should be taken

into aount, in partiular, beause this allows the transversely polarized φ to ouple through

its hiral-odd twist-2 DA. The fat that the ratio T11/T00 is not the same (after trivial mass

resaling) for ρ and φ mesons suggests that it is an important e�et.

In the next hapter we will make the onnetion of the twist expansion of the impat

fator with the olor dipole formalism. The olor dipole sattering amplitude in the forward

limit being well known from models �tting DIS data, this will allow to get a muh more

sophistiated model inluding the saturation dynamis of the nuleon, involving no free pa-

rameter and able to predit the normalizations and the energy dependenes of the heliity

amplitudes in the forward limit.
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Chapter 3

LCCF in the impat parameter

representation

3.1 Introdution

In the previous setion we have built a phenomenologial model for the heliity amplitudes of

the proess γ∗(λγ) p→ ρ(λρ) p based on the omputations of the impat fators of Refs. [130,

131℄ in the ollinear approximation. This model relies on the models for the DAs given in

[142℄ based on onformal expansion and a model for the proton impat fator [143℄ with a

free parameter M . Despite the fat that this model allows to get a fairly good agreement

with the data from HERA, this model does not provide the normalizations of the heliity

amplitudes as well as their energy dependenes. It seems also that the saturation e�ets

ould lead to sizable modi�ations of the preditions when the t−hannel gluon momenta is

smaller than the saturation sale.

In this hapter, we will present a way to improve the previous model by onneting the

omputation performed in the ollinear fatorization sheme with the olor dipole model

approah. As a result, we will get a model without free parameter whih is able to,

• predit the normalization of the heliity amplitudes,

• predit the energy dependene of the heliity amplitudes,

• inlude the saturation dynamis of the nuleon target.

The omparison with HERA data of the normalizations, the Q2− and the x−dependenies,
is a test for both the dipole models and the ollinear fatorization beyond the leading twist

of the ρ−meson.

This hapter is split in two parts. In the �rst part of the hapter we present the om-

putation in the impat parameter representation of the two- and three-parton impat fator

ontributions, fatorizing in the impat fator when it is possible, the wave funtion of the

virtual photon. These results in the impat parameter representation are stritly equivalent

to the results in momentum spae presented in the hap. 2. We will see however that this

125
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approah is more natural to generalize the twist expansion of the impat fator as it does not

involve hard part derivative terms and it makes learly appear the moments of the ρ−meson

wave funtions whih are parameterized by the DAs. A non-trivial result of this approah is

that the results are onsistent with the dipole piture only after using the EOMs of QCD.

It is also shown that the interation of the two t−hannel gluons with the quark antiquark

gluon intermediate state, involves only olor dipole interations at �nite Nc (no quadrupole

term).

In the seond part of the hapter, we present the preditions for the polarized ross-

setions σL and σT of the proesses γ∗Lp→ ρLp and γ
∗
T p→ ρT p, obtained from the results of

the �rst part of the hapter, in ombination with dipole ross-setion models. These predi-

tions are ompared with HERA data and we disuss the role of the higher twist orretions

and the role of the saturation e�ets in the preditions of the model. Partiularly we om-

pare the distributions of dipole sizes obtained from the twist expansion of the ρ−meson, to

distributions obtained with r⊥−dependent models for the overlap of the wave funtions of

the virtual photon and the ρ−meson.

3.2 The qq̄ intermediate state ontributions

3.2.1 Equivalent LCCF proedure in impat parameter representa-

tion

In the olor dipole piture the dipole sattering amplitude depends on the transverse dipole

size r, while in the LCCF approah desribed in the hap. 2, the Taylor expansion around

the light-one diretion does not exhibit the transverse parton momentum dependene, being

Fourier onjugate to r. We an nevertheless get information about the transverse spae due

to the presene of the transverse momenta k⊥ of the t−hannel gluons that gives to the

quark antiquark pair a transverse size r in the hard part of the proess. Note that in

priniple one ould take the Fourier transform with respet to k of the impat fator results

eqs. (2.276, 2.277) of hap. 2 to ombine them with a dipole model, however one would

miss the underlying dynamis of the dipoles behind a ompliated Fourier transform. In our

approah we �rst express the hard parts in terms of their Fourier transforms in the transverse

impat parameter spae and then we perform the Taylor expansion of the hard part around

the dominant light-one diretion.

We �rst fatorize spinor and olor indies using Fierz identity,

Aγ∗→ρ
qq̄ =

∫

d4ℓ

(2π)4
Hqq̄(ℓ)Sqq̄(ℓ) = −1

4

∫

d4 ℓ

(2π)4
tr(Hqq̄(ℓ)Γ

α)SΓα
qq̄ (ℓ) . (3.1)

Using Sudakov variables for the loop momentum ℓ = αp + βn + ℓ⊥ and for its Fourier
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onjugate oordinates z = αzp+ βzn+ z⊥, the ℓ integration reads

iAqq̄ = −1

4

∫

dy

∫

d2ℓ⊥
(2π)2

Tr[Hqq̄(y, ℓ⊥)Γ
α]

∫

dαℓ

2π

∫

dβℓ
2π

∫

dλ

2π
eiλ(αℓ−y)

×
∫

d4z e−iℓ·z〈ρ(p)|ψ̄(z) Γα ψ(0)|0〉

= −1

4

∫

dy

∫

d2ℓ⊥
(2π)2

Tr[Hqq̄(y, ℓ⊥)Γ
α]

∫

dλ

2π
e−iλy

∫

d2z⊥ e
−iℓ⊥·z⊥

× 〈ρ(p)|ψ̄(λn+ z⊥) Γα ψ(0)|0〉 , (3.2)

where we kept the information about the transverse momentum in the hard part. Note that

this is the main di�erene at this point with the steps desribed in Se. 2.2.4 of the hap. 2.

The main point is now to keep a trae of this transverse dynamis by expressing the hard part

in terms of its Fourier transform in the impat parameter spae. We use the same shorthand

notations than in hap. 2,

HΓα

qq̄ (y, ℓ⊥) ≡ tr[Hqq̄(y, ℓ⊥)Γ
α] ,

and we de�ne its Fourier transform in the transverse plane,

H̃Γα

qq̄ (y, x⊥) =

∫

d2ℓ

(2π)2
HΓα

qq̄ (y, ℓ)e
−iℓ·r .

The expression we get for the amplitude reads

iAqq̄ = −1

4

∫

dy

∫

d2ℓ⊥
(2π)2

∫

d2x⊥ H̃
Γα

qq̄ (y, x⊥) e
−ix⊥·ℓ⊥

∫

dλ

2π
e−iλy

×
∫

d2z⊥e
−iℓ⊥·z⊥ 〈ρ(p)|ψ̄(λn+ z⊥) Γα ψ(0)|0〉 . (3.3)

For now, the integral over ℓ links the hard and soft parts and in order to fatorize the

amplitude we use the Taylor expansion of the hard part around the dominant light-one

diretion,

HΓα

qq̄ (y, ℓ⊥) =

∞
∑

k=0

1

k!

[

(ℓ− yp) · ∂
∂ℓ

]k

HΓα

qq̄ (y, 0⊥)

twist 3−→
1
∑

k=0

1

k!

[

ℓ⊥ · ∂

∂ℓ⊥

]k

HΓα

qq̄ (y, 0⊥)

=

∫

d2r H̃Γα

qq̄ (y, r⊥)

1
∑

k=0

(iℓ · r)k
k!

. (3.4)

Up to twist 3, the Taylor expansion is trunated at k = 1. All the information about the two-

parton hard part ontribution is enoded in H̃Γα

qq̄ (y, r⊥) whih involves only the omputation

of six Feynman diagrams. In the momentum spae approah in Se. 2.2.4, one would need

to ompute the derivative of the hard part in the limit ℓ→ yp,

∂k

∂ℓk⊥µ
HΓα

qq̄ (y, 0⊥) ,
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whih using the ollinear Ward identity leads to a number of diagrams to ompute whih

inreases with the number of derivatives. The prie we pay is the integral over r the transverse

dipole size and to ompute the hard part with the parton transverse momenta.

Replaing the hard part (3.4) in (3.3) leads to

iAqq̄ = −1

4

∫

dy

∫

d2x⊥ H̃
Γα

qq̄ (y, x⊥)

×
∫ ℓ2⊥<µ2

F d2ℓ⊥
(2π)2

∫

d2z⊥

1
∑

k=0

1

k!
(−iℓ⊥ · x⊥)k e−iℓ⊥·z⊥

×
∫

dλ

2π
e−iλy 〈ρ(p)|ψ̄(λn+ z⊥) Γα ψ(0)|0〉 .

Note that the Taylor expansion terms of exp(−iℓ⊥ · x⊥) are giving the moments of the

ρ−meson wave funtion. After integration by parts with respet to the integral over z⊥ the

amplitude reads

iAqq̄ = −1

4

∫

dy

∫

d2x⊥ H̃
Γα

qq̄ (y, x⊥)

∫ ℓ2⊥<µ2
F d2ℓ⊥
(2π)2

∫

d2z⊥ e
−iℓ⊥·z⊥

×
1
∑

k=0

(−1)k

k!
(x⊥ · ∂

∂z⊥
)k
∫

dλ

2π
e−iλy 〈ρ(p)|ψ̄(λn+ z⊥) Γα ψ(0)|0〉

= −1

4

∫

dy

∫

d2x⊥ H̃
Γα

qq̄ (y, x⊥)

1
∑

k=0

1

k!
∫ ℓ2⊥<µ2

F d2ℓ⊥
(2π)2

∫

d2z⊥ e
−iℓ⊥·z⊥

∫

dλ

2π
e−iλy 〈ρ(p)|ψ̄(λn + z⊥) (x⊥·

←→
∂⊥ )kΓα ψ(0)|0〉 .

It an be then parameterized by the DAs as

iAqq̄ = −1

4

∫

dy

∫

d2x⊥H̃
Γα

qq̄ (y, x⊥)

∫ ℓ2⊥<µ2
F d2ℓ⊥
(2π)2

∫

d2z⊥e
−iℓ⊥·z⊥

∫

dλ

2π
e−iλy

×
(

〈ρ(p)|ψ̄(λn+ z⊥)Γα ψ(0)|0〉+ xµ⊥〈ρ(p)|ψ̄(λn+ z⊥)
←→
∂⊥µ Γα ψ(0)|0〉

)

= −mρfρ
4

∫

dy

∫

d2x⊥ {(e∗ · n)ϕ1(y;µ
2
F )H̃

/p
qq̄(y, x⊥) (3.5)

+ ϕ3(y;µ
2
F )H̃

/e∗⊥
qq̄ (y, x⊥) + iϕA(y;µ

2
F )H̃

/R∗⊥γ5
qq̄ (y, x⊥)

− i(x⊥ · e∗⊥)ϕT
1 (y;µ

2
F )H̃

/p
qq̄(y; x⊥) + (x⊥ ·R∗⊥)ϕT

A(y;µ
2
F )H̃

/pγ5
qq̄ (y; x⊥)} ,

with H̃Γα

qq̄ aα ≡ H̃Γαaα
qq̄ .

In the following part we will ompute the hard parts Hγµ

qq̄ (y, ℓ⊥) and Hγ5γµ

qq̄ (y, ℓ⊥), and

then we will derive the expressions of their Fourier transforms in the transverse oordinate

spae H̃γµ

qq̄ (y, x⊥) and H̃
γ5γµ

qq̄ (y, x⊥).

3.2.2 Impat fator alulation for the qq̄ ontribution

We now ompute the hard parts in momentum spae Hγµ

qq̄ (y, ℓ⊥) and Hγ5γµ

qq̄ (y, ℓ⊥) for the

γ∗T (λγ) → ρT (λT ) impat fator. The partons are kept on the mass-shell and in the ollinear
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limit (ℓ⊥ → 0), this kinematis is the same than in the hap. 2 whih allows to ompare the

�nal results after integration over x of the Fourier transforms.

We reall the Sudakov deompositions of the momenta

ℓ1 = yp1 + ℓ⊥ +
ℓ2

ys
p2 ,

ℓ2 = ȳp1 − ℓ⊥ +
ℓ2

ȳs
p2 ,

pρ = p1 +
ℓ2

s

1

yȳ
p2 . (3.6)

The momentum of the inoming photon is

q = p1 −
Q2

s
p2 , (3.7)

while the momenta of the gluons in t-hannel are

k1 =
κ + k2 +Q2

s
p2 + k⊥ ,

k2 =
κ + k2 − p2ρ

s
p2 + k⊥ . (3.8)

The six diagrams of the hard part involving the qq̄ intermediate state are similar than the

diagrams of �g. 2.7 in the Se. 2.2.1 and we use the same labeling. After omputing all the 6

diagrams (a), (b), (), (d), (e), (f), we perform the integral over κ by the method of residues

to get the ontribution to the impat fator, aording to the de�nition of the impat fator

(2.237) in se. 2.7 of hap. 2. Four poles in κ appear,

• Diagram (a) and (e) : κ1 =
(ℓ−yk)2

yȳ
− iη

• Diagram (b) and () : κ2 =
(ℓ+ȳk)2

yȳ
− iη

• Diagram (b) and (e) : κ3 =
−1
ȳ
((k + ℓ)2 − ℓ2 + ȳ(k2 +Q2)) + iη

• Diagram (d) and (f) : κ4 =
−1
y
((k − ℓ)2 − ℓ2 + y(k2 +Q2)) + iη .

PSfrag replaements

κ

Figure 3.1: Integral ontour C− along the lower κ− omplex plane.
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The hard sub-proess amplitudes denoted iM, assoiated to eah diagrams (a), (b), ()

and (e) that will give a non-zero ontribution when we integrate over κ losing the ontour in

the lower κ plane C− illustrated in �g. 3.1, read for the di�erent strutures Γα ≡ {γµ, γµγ5}

• diagram (a):

iMΓα

a =
ie√
2

g2δab

2Nc

2

s

Tr[/eγ(−ȳ/p1 + ℓ2+yQ2

ys
/p2 + /ℓ⊥)/p2(−ȳ)/p1/p2Γα]

− ȳ
y
(ℓ2 + µ2)(κ− κ1)

=
2ie√
2

g2δab

2Nc

y
Tr[/eγ(−ȳ/p1 + /ℓ⊥)/p2Γ

µ]

(ℓ2 + µ2)(κ− κ1)
. (3.9)

• diagram (b)

iMΓα

b = − ie√
2

g2δab

2Nc

2

s

Tr[/p2(y/p1 + /k⊥ + /ℓ⊥)/eγ(−ȳ/p1 + /k⊥ + /ℓ⊥)/p2Γ
α]

yȳ(κ− κ2)(κ− κ3)

=
2ie√
2

g2δab

2Nc

1

yȳ(κ− κ2)(κ− κ3)

×{ȳTr(/p2(/k⊥ + /ℓ⊥)/eγΓ
α)− ytr(/eγ(/k⊥ + /ℓ⊥)/p2Γ

α)} . (3.10)

• diagram ()

iMΓα

c = −2ie√
2

g2δab

2Nc
ȳ
Tr[/p2(y/p1 + /ℓ⊥)/eγΓ

α]

(ℓ2 + µ2)(κ− κ2)
. (3.11)

• diagram (e)

iMΓα

e = −2ie√
2

g2δab

2Nc

1

yȳ(κ− κ1)(κ− κ4)

×{ȳ tr(/p2(/k⊥ − /ℓ⊥)/eγΓ
α)− yTr(/eγ(/k⊥ − /ℓ⊥)/p2Γ

α)} . (3.12)

Computing the impat fator hard part ontribution with residue method along the ontour

C−,
HΓα

qq̄ =
1

2s

∫

C−

dκ

2π
iMΓα

qq̄ = − i

2s
Resκ(iMΓα

qq̄ ) , (3.13)

with

κ1 − κ4 =
1

yȳ
((ℓ− k)2 + µ2) , (3.14)

κ2 − κ3 =
1

yȳ
((ℓ+ k)2 + µ2) , (3.15)

leads to

HΓα

qq̄ (y, ℓ) =
eg2δab√
22Ncs

{

y tr[/eγ(/ℓ⊥ − ȳ/p1)/p2Γ
α]− ȳ tr[/p2(y/p1 + /ℓ⊥)/eγΓ

α]

ℓ2 + µ2

−y tr[/eγ(/ℓ⊥ − /k⊥)/p2Γ
α]− ȳ tr[/p2(/ℓ⊥ − /k⊥)/eγΓ

α]

(ℓ− k)2 + µ2

−y tr[/eγ(/ℓ⊥ + /k⊥)/p2Γ
α]− ȳ tr[/p2(/ℓ⊥ + /k⊥)/eγΓ

α]

(ℓ+ k)2 + µ2

}

.
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The vetor and the axial-vetor hard parts read respetively

Hγµ

qq̄ (y, ℓ) = −4
eg2√
2

δab

2Nc
eµγ

yȳ

ℓ2 + µ2
− 4

eg2

s
√
2

δab

2Nc
(y − ȳ) pµ2

×
{

eγ · ℓ
ℓ2 + µ2

− eγ · (ℓ+ k)

(ℓ+ k)2 + µ2
− eγ · (ℓ− k)

(ℓ− k)2 + µ2

}

(3.16)

and

Hγµγ5
qq̄ (y, ℓ) = 4i

eg2

s
√
2

δab

2Nc

× εµνρσ
(

eγνℓ⊥ρp2σ

ℓ2 + µ2
− eγν(ℓ⊥ρ + k⊥ρ)p2σ

(ℓ+ k)2 + µ2
− eγν(ℓ⊥ρ − k⊥ρ)p2σ

(ℓ− k)2 + µ2

)

. (3.17)

The Fourier transforms of propagators in (3.16, 3.17) are related to the modi�ed Bessel

funtions Kν(x)

1

ℓ2 + µ2
=

∫

d2x

2π
K0(µ|x|)eiℓ·x , (3.18)

ℓ

ℓ2 + µ2
= −i

∫

d2x

2π
µ
x

|x|K1(µ|x|)eiℓ·x . (3.19)

The Fourier transforms of the vetor and axial-vetor hard parts read thus

H̃γµ

qq̄ (y, x) = 4
eg2

(2π)
√
2

δab

2Nc

(

−yȳK0(µ|x|)eµγ

+ pµ2(y − ȳ)iµ
eγ · x
|x| K1(µ|x|)

[

(1− eik·x)(1− e−ik·x)− 1
]

)

, (3.20)

H̃γµγ5
qq̄ (y, x) =

4
eg2

s(2π)
√
2

δab

2Nc
µK1(µ|x|)

[

εµνρσ eγν
x⊥ρ
|x| p2σ

]

[(1− eik·x)(1− e−ik·x)− 1] . (3.21)

The previous results (3.20, 3.21) for the hard parts integrated over κ an be inserted in

eq. (3.5) to obtain the impat fator qq̄ ontribution as the soft parts are independent of κ.

Deomposing the result into the vetor ontribution Φ
γ∗T→ρT , V
qq̄ that will lead to term propor-

tional to ϕ3, ϕ
T
1 and, axial-vetor ontribution Φ

γ∗T→ρT , A
qq̄ that leads to term proportional to

ϕA and ϕT
A, we get

Φ
γ∗T→ρT , V
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π

{

−2yȳϕ3(y)K0(µ|x|) eγ · e∗ρ

+ (y − ȳ)ϕT
1 (y)(e

∗
ρ · x)

x · eγ
|x| µK1(µ|x|)

[

(1− eik·x)(1− e−ik·x)− 1
]

}

(3.22)

and

Φ
γ∗T→ρT , A
qq̄ =

−CabQ2

s

∫

dy

∫

d2x⊥
2π

ϕT
A(y)

2

s
εx⊥e∗ρ⊥p1p2εx⊥eγ⊥p1p2

× µK1(µ|x|) ((1− eik·x)(1− e−ik·x)− 1) , (3.23)
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where we de�ne

Cab = −eg
2

√
2
mρfρ

δab

2Nc

1

Q2
. (3.24)

Note that the term with ϕA in eq. (3.5) vanishes due to the struture of the expression (3.21).

Using the fat that

εx⊥e∗ρ⊥p1p2εx⊥eγ⊥p1p2 =
s2

4

(

x2⊥ (eγ⊥ · e∗ρ⊥)− (eγ⊥ · x⊥)(x⊥ · e∗ρ⊥)
)

,

the axial-vetor ontribution takes the form

Φ
γ∗T→ρT , A
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π
ϕT
A(y)

[

e∗ρ · eγ −
(e∗ρ · x) (x · eγ)

|x|2
]

×µ|x|K1(µ|x|)((1− eik·x)(1− e−ik·x)− 1) . (3.25)

The whole 2-parton ontribution thus reads

Φ
γ∗T→ρT
qq̄ = Φ

γ∗T→ρT , V
qq̄ + Φ

γ∗T→ρT , A
qq̄ (3.26)

= −C
abQ2

2

∫

dy

∫

d2x

2π

{

−2yȳϕ3(y)K0(µ|x|) eγ · e∗ρ

+

[

(

(y − ȳ)ϕT
1 (y)− ϕT

A(y)
) (e∗ρ · x) (x · eγ)

|x|2 + ϕT
A(y) e

∗
ρ · eγ

]

× µ|x|K1(µ|x|)((1− eik·x)(1− e−ik·x)− 1)
}

. (3.27)

This result does not seem to be proportional to the familiar dipole fator

N (x, k) = (1− eik·x)(1− e−ik·x) (3.28)

desribing the oupling to the two t−hannel gluons.
Using the following relations,

∫

d2x

2π
µ|x|K1(µ|x|) = 2

∫

d2x

2π
K0(µ|x|) =

2

µ2
(3.29)

∫

d2x

2π
e∗ρ · x

x · eγ
|x| µK1(µ|x|) = eγ · e∗ρ

∫

d2x

2π
K0(µ|x|) , (3.30)

we an rewrite Φ
γ∗T→ρT
qq̄ in the form,

Φ
γ∗T→ρT
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π
(3.31)

×
{[

−(2y ȳ ϕ3(y) + (y − ȳ)ϕT
1 + ϕT

A(y))
]

K0(µ|x|) eγ · e∗ρ
+

[

[

(y − ȳ)ϕT
1 (y)− ϕT

A(y)
] e∗ρ · xx · eγ

|x|2 + ϕT
A(y)e

∗
ρ · eγ

]

× µ|x|K1(µ|x|)N (x, k)}.

The term in the r.h.s.

[

−(2y ȳ ϕ3(y) + (y − ȳ)ϕT
1 + ϕT

A(y))
]

K0(µ|x|) eγ · e∗ρ ,
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vanishes in the WW approximation. This is due to the EOMs of QCD eqs. (2.129) and

(2.130) relating the WW solutions of the DAs as shown in Se. 2.4.1. Combining eqs. (2.129)

and (2.130), one an get the relation,

2y ȳ ϕWW
3 (y) + (y − ȳ)ϕT WW

1 + ϕT WW
A (y) = 0 . (3.32)

This term also vanishes for the genuine twist 3 solutions of the DAs as we will show in

Se. 3.4.1 after omputing the qq̄g ontributions. At the end the qq̄ ontribution reads

Φ
γ∗T→ρT
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π
(3.33)

×
{[

[

(y − ȳ)ϕT
1 (y)− ϕT

A(y)
] e∗ρ · xx · eγ

|x|2 + ϕT
A(y)e

∗
ρ · eγ

]

× µ|x|K1(µ|x|)N (x, k)},

where the dipole sattering amplitude fatorizes out.

3.2.3 Interpretation of the result obtained in the WW approxima-

tion

The WW approximation whih onsists in negleting all ontributions from the qq̄g Fok

state, reads

Φ
γ∗T→ρT WW
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π

{[

(y − ȳ)ϕT WW
1 (y)− ϕT WW

A (y)
]

× (e∗ρ · x) (x · eγ)
|x|2 + ϕT WW

A (y)e∗ρ · eγ
}

µ|x|K1(µ|x|)N (x, k) . (3.34)

Similarly to the momentum spae analysis, one an split the result (3.34) into the spin non-�ip

Φ
γ∗T→ρT
qq̄, n.f. and the spin �ip Φ

γ∗T→ρT
qq̄, f. ontributions

Φ
γ∗T→ρT WW

qq̄, n.f. = −C
abQ2

2

∫

dy
(

ϕT WW
A + (y − ȳ)ϕT WW

1

)

×
∫

d2x

2π

1

2
e∗ρ · eγ µ|x|K1(µ|x|)N (x, k) (3.35)

and

Φ
γ∗T→ρT WW

qq̄, f. = −C
abQ2

2

∫

dy
(

ϕT WW
A − (y − ȳ)ϕT WW

1

)

×
∫

d2x

2π

(

1

2
e∗ρ · eγ −

(e∗ρ · x)(eγ · x)
|x|2

)

µ|x|K1(µ|x|)N (x, k) . (3.36)

Both spin �ip and spin non-�ip impat fators an be put in an elegant form similar to the

overlaps of virtual photon wave funtions in the ase of DIS,

Φ
γ∗T→ρT
2−parton(k,Q, µ

2
F ) = (3.37)

δab

2

∫

dy

∫

dr ψ
γ∗T (λγ)→ρT (λρ)WW

(qq̄) (y, r;Q, µ2
F )A(r, k) ,
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with,

A(r, k) =
4παs

Nc
N (x, k) , (3.38)

the dipole sattering amplitude aording to our de�nition of the impat fators and

ψ
γ∗T→ρT
(qq̄) (y, r;Q, µ2

F ) =
mρfρ√

2

∑

(h,h̄)

φ
ρT , (λρ)

(h,h̄)
(y;µ2

F ) Ψ
γ∗T (λγ)

(h,h̄)
(y, r;Q2) , (3.39)

the overlap of the wave funtion of the virtual photon Ψ
γ∗T (λγ)

(h,h̄)
(y, r;Q2) with the moments of

the wave funtion of the ρ−meson φ
ρT , (λρ),WW

(h,h̄)
(y;µ2

F ). We remind that the indies h and h̄

denote the quark antiquark heliities, spin ±1/2 orresponds to h = ±. Note that we put

apart the fator

δab

2
= Tr(tatb) that will ontribute to a global olor fator in the heliity

amplitude of

N2
c−1
4

. The oe�ient

mρfρ√
2
, expliitly fatorized out, is related to the partoni

ontent of the ρ0−meson as a

uū−dd̄√
2

state suh that the meson involved below is understood

as a one �avor quark�antiquark state. For larity, we reall the expressions of the virtual

photon wave funtions following the onventions of Ref. [65℄ used for the GBW saturation

model,

Ψ
γ∗L
(h,h̄)

(y, r;Q2) = δh̄,−h
e

2π

√

Nc

π

µ2

Q
K0(µ |r|) , (3.40)

Ψ
γ∗T (λγ )

(h,h̄)
(y, r;Q2) = δh̄,−h

ie

2π

√

Nc

π
(yδh,λγ + ȳδh,−λγ)

(r · e(λγ))

|r| µK1(µ |r|) . (3.41)

We an extrat from our result the relevant twist 3 moments of the ρ−meson wave funtion,

φ
ρT , (λρ),WW

(h,h̄)
(y, r;µ2

F ) = −δh̄,−hi
√

π

4Nc
(e(λρ)∗ · r)

×
(

ϕT WW
A (y;µ2

F ) + (δh,λρ − δh,−λρ)ϕ
T WW
1 (y;µ2

F )
)

. (3.42)

Note that these ombinations of "ϕT
1 ± ϕT

A" are diretly linked to the auxiliary DAs g↑↓⊥
and g↓↑⊥ of [142℄,

−
(

ϕT WW
A (y) + (δh,λρ − δh,−λρ)ϕ

T WW
1 (y)

)

= ȳ
(

ϕWW
3 (y) + ϕWW

A (y)
)

δh,λρ + y
(

ϕWW
3 (y)− ϕWW

A (y)
)

δh,−λρ

= ȳ g↓↑(y)δh,λρ + y g↑↓(y)δh,−λρ

= 2yȳ
∑

n

[g↑↓n P
(1,0)
n (ξ) δh,−λρ + g↓↑n P

(0,1)
n (ξ) δh,λρ] , (3.43)

with ξ = y− ȳ. As we have deomposed the ombination of DAs in the sum of the ontribu-

tions for eah quark and antiquark pair of spei� heliity states, it is natural that we found

a parameterization proportional to the auxiliary DAs g↑↓⊥ and g↓↑⊥ whih are the twist 3 DAs

of �xed spin projetion on the light-one.

We want to emphasize the fat that the results for φ
ρT , (λρ),WW

(h,h̄)
are the same for the spin

non-�ip (λγ = λρ) and spin �ip (λγ = −λρ) impat fators. This fat is not obvious at

all from the results of Se. 2.7.4 in the hap. 2 for the spin non-�ip and spin �ip results in
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momentum spae (see for example below the expressions (3.45, 3.46)). We see again that the

results ome more naturally in the impat parameter representation. The obtained fatorized

strutures (3.37) are illustrated in �g. 3.2.

PSfrag replaements

eγ, λγ
x

h

× x

h̄

φ
ρT , (λρ),WW

(h,h̄)
(y)

h̄

h

Figure 3.2: The 2-parton ontribution to the γ∗ → ρT impat fator in the dipole fatorized

form.

3.2.4 Equivalene of momentum and impat parameter alulations

We want now to derive the results in the momentum spae representation of Ref. [131℄

presented in Se. 2.7.4 in hap. 2, by integrating over the dipole size x. For this aim, we shall

use the following formula,

∫

d2x

2π
µ
xi xj
|x| K1(µ|x|)eiℓ·x =

1

ℓ2 + µ2

(

δij − 2
ℓi ℓj

ℓ2 + µ2

)

, (3.44)

whih leads us to the same results as in eqs (2.276, 2.277), se. 2.7.4 in the hap. 2,

Φ
γ∗T→ρT WW

qq̄, n.f. = −C
abQ2

2

∫

dy
(

ϕT WW
A + (y − ȳ)ϕT WW

1

)

×Tn.f.
2

µ2

k2(k2 + 2µ2)

(k2 + µ2)2
, (3.45)

Φ
γ∗T→ρT WW

qq̄, f. = −C
abQ2

2

∫

dy
(

ϕT WW
A − (y − ȳ)ϕT WW

1

)

×Tf.
−4k2

(k2 + µ2)2
. (3.46)

This fat an be seen as a self-onsisteny hek of our alulation.

3.2.5 The impat parameter representation of the γ∗L → ρL impat

fator

Using the eq. (3.5), in the ase of longitudinally polarized ρ−meson and virtual photon, leads

to

iAqq̄ = −1

4

∫

dy

∫

d2x⊥ H̃
γα

qq̄ (y, x⊥)

∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γα ψ(0)|0〉µ2

F

= −mρfρ
4

∫

dy ϕ1(y;µ
2
F )(e

∗ · n)
∫

d2x⊥ H̃
/p1
qq̄ (y, x⊥) . (3.47)
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The hard part reads

p1µH
γµ

qq̄ (y, ℓ)=−4Qeg2δab√
22Nc

y ȳ

(

2

ℓ2 + µ2
− 1

(ℓ+ k)2 + µ2
− 1

(ℓ− k)2 + µ2

)

. (3.48)

Its Fourier transform reads

H̃
/p1
qq̄ (y, x) = − 4Qe

(2π)
√
2 2Nc

y ȳ K0(µ|x|)g2 δabN (x, k)

= −δ
ab

2
A(x, k)

√

2π

Nc

∑

h,h̄

Ψ
γ∗L
h,h̄

(y, x) . (3.49)

The impat fator reads then

Φγ∗L→ρL(k,Q, µ2
F ) =

(

δab

2

)
∫

dy

∫

dr ψ
γ∗L→ρL
(qq̄) (y, r;Q, µ2

F )A(r, k) , (3.50)

where ψ
γ∗L→ρL
(qq̄) is the overlap,

ψ
γ∗L→ρL
(qq̄) (y, r;Q, µ2

F ) =
mρfρ√

2

∑

(h,h̄)

φρL
(hh̄)

(y;µ2
F ) Ψ

γ∗L
(h,h̄)

(y, r;Q2) . (3.51)

The extrated relevant moment of ρ−meson longitudinal wave funtion reads

φρL
(h,h̄)

(y;µ2
F ) = δh̄,−h

√

π

4Nc
(e∗L · n)ϕ1(y;µ

2
F ) . (3.52)

Comparing eqs. (3.52) and (3.42), we an see that the only di�erene between all these results

are the hoie of the DAs. This in fat is due to the simple form of eq. (3.5) in the impat

parameter spae, where the hard parts fatorize and are ontrated with di�erent Lorentz

strutures.

Performing the integral over x we reover, as expeted, the same result as in momentum

spae

Φγ∗L→ρL =
eg2δabfρQ√

22Nc

∫

dy yȳϕ1(y)

∫

d2x

2π
K0(µ|x|)(1− eik·x)(1− e−ik·x)

=
2eg2δabfρ√
22NcQ

∫

dy ϕ1(y)
k2

k2 + µ2
.

3.3 The qq̄g intermediate state ontribution to the γ∗T →
ρT impat fator

The qq̄g intermediate state, where the gluon arries a sizable amount of energy of the virtual

photon (yg ∼ y1 ∼ ȳ2), partiipates to the full twist 3 result of the impat fator. Its

ontribution involves several olor dipole on�gurations that an interat with the t−hannel
gluons.
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In se. 3.3.1, we �rst present the fatorization proedure to get a fatorized form involving

the transverse Fourier transforms of the three-parton hard parts and the twist 3 moments of

the meson wave funtion. Then, in se. 3.3.2 we prove by analyzing the olor struture of the

diagrams that there are only dipole interations and no other multipole interations. After

that, we lassify in se. 3.3.2 the hard sub-proess Feynman diagrams in order to identify the

relevant dipole on�guration that interats with the t−hannel gluons, we explain in se. 3.3.3
how the ollinear approximation simpli�es the omputations of the Fourier transforms of the

hard parts. Finally, in se. 3.3.4 the result is split into a spin �ip and a spin non-�ip

ontribution as for the two-parton ontribution.

3.3.1 LCCF in impat parameter representation for the qq̄g ampli-

tude

The steps here are essentially the same as for the qq̄ ontribution. Using the Fierz deompo-

sition one gets

iAqq̄g =

∫

d4ℓ1
(2π)4

d4ℓg
(2π)4

tr[Hα
qq̄g(ℓ1, ℓg)Sqq̄g α(ℓ1, ℓg)]

= −1

4

∫

d4ℓ1
(2π)4

d4ℓg
(2π)4

tr[Hα
qq̄g(ℓ1, ℓg)Γ

β]S
Γβ

qq̄g α(ℓ1, ℓg) . (3.53)

We use the Sudakov deomposition of the momenta of the partons i, ℓi = αip+ βin+ ℓi⊥

and of the Fourier onjugate oordinates zi = αzip+βzin+zi⊥ in the argument of the non-loal

orrelator de�ning the soft part Sqq̄g. We fatorize the amplitude in the momentum spae,

and we redue it to a onvolution in the longitudinal frations yi of the ρ meson momentum

p arried by the partons. It reads

iAqq̄g = −1

4

∫

dy1dyg

∫

d2ℓ1⊥
(2π)2

d2ℓg⊥
(2π)2

Hα,Γβ

qq̄g (y1, yg, ℓ1⊥, ℓg⊥)

×
∫

dλ1
2π

e−iλ1y1

∫

dλg
2π

e−iλgyg

∫

d2z1⊥e
−iℓ1⊥·z1⊥

∫

d2zg⊥e
−iℓg⊥·zg⊥

×〈ρ(p)|ψ̄(λ1n + z1⊥) iΓβ gA
⊥
α (λgn + zg⊥)ψ(0)|0〉 , (3.54)

with Hα,Γµ

qq̄g (yi, yj, ℓi⊥, ℓj⊥).

Let us introdue its Fourier transform H̃Γβ

qq̄g(yi, yj, xi⊥, xj⊥) de�ned as

Hα,Γβ

qq̄g (yi, yj, ℓi⊥, ℓj⊥)

=

∫

d2xi⊥d
2xj⊥H̃

α,Γβ

qq̄g (yi, yj, xi⊥, xj⊥) e
−i(ℓi⊥·xi⊥+ℓj⊥·xj⊥) . (3.55)

At twist 3, the Taylor expansion of the qq̄g hard part around the dominant ligh-one

diretion gives the ontribution

Hα,Γβ

qq̄g (yi, yj, 0⊥, 0⊥) =

∫

d2x1⊥d
2xg⊥H̃

α,Γβ

qq̄g (y1, yg, x1⊥, xg⊥) (3.56)



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 138

and the amplitude simpli�es as,

iAqq̄g = −1

4

∫

dy1dyg

∫

d2x1⊥d
2xg⊥H̃

α,Γβ

qq̄g (y1, yg, x1⊥, xg⊥)

×
∫

dλ1
2π

e−iλ1y1

∫

dλg
2π

e−iλgyg〈ρ(p)|ψ̄(λ1n) iΓβ gA
⊥
α (λgn)ψ(0)|0〉µ2

F
. (3.57)

We reall the parameterization of the qq̄g orrelators appearing in eq. (3.57),

∫

dλ1
2π

dλg
2π

e−iλ1y1−iλgyg〈ρ(p)|ψ̄(λ1n) iγµ gA⊥α (λgn)ψ(0)|0〉µ2
F

= −imρ fρ ζ
V
3ρ(µ

2
F )B(y1, y2;µ

2
F ) pµ eρ⊥α , (3.58)

∫

dλ1
2π

dλg
2π

e−iλ1y1−iλgyg〈ρ(p)|ψ̄(λ1n) iγ5γµ gA⊥α (λgn)ψ(0)|0〉µ2
F

= −imρ fρ ζ
A
3ρ(µ

2
F ) iD(y1, y2;µ

2
F ) pµ εαeρ⊥pn , (3.59)

leading to

iAqq̄g =
imρfρ
4

∫

dy1dyg

∫

d2x1⊥d
2xg⊥

×
[

H̃
eρ⊥,/p
qq̄g (y1, yg, x1⊥, xg⊥) ζ

V
3ρB(y1, y1 + yg)

+ H̃
R⊥,/pγ5
qq̄g (y1, yg, x1⊥, xg⊥) iζ

A
3ρD(y1, y1 + yg)

]

, (3.60)

where we use our usual shorthand notation

H̃
a,Γµbµ
qq̄g ≡ H̃α,Γµ

qq̄g aα bµ . (3.61)

The 3-parton ontribution (3.60) in terms of S(y1, y2), M(y1, y2) reads

iAqq̄g =
imρfρ
4

∫

dy1dyg

∫

d2x1⊥d
2xg⊥

×
[

S(y1, y1 + yg)

2
(H̃

e∗ρ⊥,/p

qq̄g (y1, yg, x1⊥, xg⊥) + i H̃
R∗⊥,/pγ5
qq̄g (y1, yg, x1⊥, xg⊥))

+
M(y1, y1 + yg)

2
(H̃

e∗ρ⊥,/p

qq̄g (y1, yg, x1⊥, xg⊥)− i H̃
R∗⊥,/pγ5
qq̄g (y1, yg, x1⊥, xg⊥))

]

. (3.62)

The next setion is mainly devoted to the omputations of the Fourier transforms

H̃
e∗ρ⊥,/p

qq̄g (y1, yg, x1⊥, xg⊥)± i H̃
R∗⊥,/pγ5
qq̄g (y1, yg, x1⊥, xg⊥) .

3.3.2 The olor dipole on�gurations of the hard part

Diagrams and kinematis

The kinematis of the qq̄g intermediate state, illustrated in the �g. 3.3, reads

ℓ1 = y1p1 + ℓ1⊥ +
ℓ21
y1s

p2 , (3.63)

ℓ2 = ȳ2p1 + ℓ2⊥ +
ℓ22
ȳ2s

p2 , (3.64)

ℓg = ygp1 + ℓg⊥ +
ℓ2g
ygs

p2 , (3.65)
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Figure 3.3: The kinematis for 3-parton ontributions.

with y1 + ȳ2 + yg = 1 and ℓ1⊥ + ℓ2⊥ + ℓg⊥ = 0. Eah parton is on-shell and this kinematis

simpli�es to the kinematis of the Se. 2.7.4 in the ollinear limit ℓi → 0.

The momentum of the ρ meson whih is the sum of the momentum of the partons reads

pρ = p1 +
1

s

(

ℓ21
y1

+
ℓ22
ȳ2

+
ℓ2g
yg

)

p2 = p1 +
p2ρ
s
p2 , (3.66)

and the invariant mass squared of the partoni system is

p2ρ =
ℓ21
y1

+
ℓ22
ȳ2

+
ℓ2g
yg
. (3.67)

Note that the ollinear limit, ℓ1 = ℓ2 = ℓg = 0, implies that we neglet higher twist e�ets

from the ρ−meson mass. The momenta of the t−hannel gluons and virtual photon are still

de�ned by eqs. (3.7) and (3.8).

The "extended" amplitude de�ned as funtion of ℓ1⊥ and ℓg⊥

iAqq̄g, ext.(ℓ1⊥, ℓg⊥) =
imρfρ
4

∫

dy1dyg

×
[

S(y1, y1 + yg)

2
(H

e∗ρ⊥,/p

qq̄g (y1, yg, ℓ1⊥, ℓg⊥) + iH
R∗⊥,/pγ5
qq̄g (y1, yg, ℓ1⊥, ℓg⊥))

+
M(y1, y1 + yg)

2
(H

e∗ρ⊥,/p

qq̄g (y1, yg, ℓ1⊥, ℓg⊥)− iH
R∗⊥,/pγ5
qq̄g (y1, yg, ℓ1⊥, ℓg⊥))

]

, (3.68)

gives bak the twist 3 ontribution of the amplitude iAqq̄g in the limit {ℓ1⊥ , ℓg⊥} → 0. Note

that this extended amplitude iAqq̄g, ext. mixes twist 3 terms (whih are the only one remaining

in the ollinear limit ℓ1⊥ = ℓg⊥ = 0), with higher twist terms indued by the non-vanishing

transverse momenta ℓ1⊥ and ℓg⊥. The omputation of iAqq̄g, ext. relevant when taking the

ollinear limit involves all the three-parton diagrams displayed in �gs. 2.8, 2.9 and 2.10 in

Se. 2.2.1 of the hap. 2. These diagrams were divided into the following types,

• the 12 "abelian" diagrams (e.g. aG1 shown in �g. 3.4),

• the 12 "non-abelian with a single triple gluon vertex" (e.g. atG1, �g. 3.5),

• the 4 "non-abelian with two triple gluon vertex" (e.g. gttG1, �g. 3.6).

Similarly to the omputation in the qq̄ intermediate state ontribution, we perform the inte-

gral over κ of iAqq̄g, using the residue method applied to the ontour C− to get the impat
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fator ontribution of the "extended" impat fator Φ
γ∗T→ρT
qq̄g, ext., whih ontains the relevant

dependene on the transverse momenta.

We show below the expliit results of the aG1 vetor and axial ontributions to the
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Figure 3.6: The detailed struture of the diagram (gttG1).
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extended impat fator Φ
γ∗T→ρT
qq̄g, ext. after integration over κ. The aG1 vetor ontribution reads

ΦV
aG1, ext. =

eq g
2

2
fρmρ

δab

2Nc

1
∫

0

dy1 dy2B(y1, y2)

×
{

e∗ρ · eγ
(

ȳ2 ℓ
2
1 − y1 ℓ2 · ℓ1 + y1 ȳ2Q

2
)

+ y1
(

(ℓ1 · eγ)(ℓ2 · e∗ρ)+(ℓ1 · e∗ρ)(ℓ2 · eγ)
)}

× y1yg

(ℓ21 + µ2
1)(ygȳg ℓ

2
1 + 2y1yg ℓ1 · ℓg + y1ȳ1 ℓ

2
g + y1ȳ2yg Q2)

, (3.69)

and the aG1 axial ontribution reads

ΦA
aG1, ext. =

eq g
2

2
fρmρ

δab

2Nc

1
∫

0

dy1 dy2D(y1, y2)

×
{

e∗ρ · eγ
(

ȳ2 ℓ
2
1 + y1 ℓ2 · ℓ1 + y1 ȳ2Q

2
)

− y1
[

(ℓ1 · eγ) (ℓ2 · e∗ρ)+(ℓ1 · e∗ρ) (ℓ2 · eγ)
]}

× y1yg

(ℓ21 + µ2
1)(ygȳgℓ

2
1 + 2y1ygℓ1 · ℓg + y1ȳ1ℓ

2
g + y1ȳ2ygQ2)

. (3.70)

Classi�ation of the diagrams in olor dipole on�gurations
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Figure 3.7: The {qq̄}, {q̄g} and {qg} dipoles interating with the t−hannel gluons.

We want to extrat the relevant olor dipoles made of a olor-antiolor singlet pair in

the fundamental representation, onstruted either from a qq̄ pair, denoted by {qq̄}, or from
a quark and the �antiquark part" of the gluon (denoted by {qg}), or from an antiquark

and the �quark part" of the gluon (denoted by {q̄g}), as the gluon belongs to the adjoint

representation of SU(Nc).

The diagrams are olleted depending on the pair of partons that interats with the

t−hannel gluons, see �g. 3.7. Due to the topology of the assoiated diagrams, the dipole

{qq̄} is suppressed by 1/N2
c , the orresponding diagram being non-planar. The 6 diagrams

orresponding to the interation of the {q̄g} system with the t−hannel gluons are the ontri-
butions in

δab

2Nc

Nc

CF
of aG1, httG1, atG1, etG1, dtG1, btG2, shown in �g. 3.8. The results of the

diagrams assoiated to the {qg} system, G1, gttG1, tG1, ftG1, btG1, dtG2 are obtained

from the diagrams of the {q̄g} system by exhanging the role of the quark and the anti-quark.

The diagrams assoiated to the {qq̄} system are the ontributions in

δab

2Nc

(

Nc

CF
− 2
)

of aG1,

bG2, dG1 and the symmetri diagrams under exhange of the quark and the anti-quark, G1,

dG2, bG1, shown in �g. 3.9.

Dipole interations

We will show that the olor struture of the diagrams assoiated to the fatorized hard part

of the qq̄g intermediate state an be simpli�ed into the olor struture of a single dipole that
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Figure 3.8: The {q̄g} dipole ontent.
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interats with two t−hannel gluons. We need for this to onsider the abelian diagrams and

the non-abelian diagrams. For the abelian type of diagram, one gets

PSfrag replaements

γ∗

= −1
2

1
Nc

PSfrag replaements

γ∗

(3.71)

while the non-abelian struture redues to

PSfrag replaements

γ∗

= Nc

PSfrag replaements

γ∗

.

(3.72)

This seond identity an be easily derived based on the relation

Tr([ta , tb] tc) =
i

2
fabc , (3.73)

whih an be represented graphially as

i

2
fabc =

PSfrag replaements

a

b c
−

PSfrag replaements

a

b c
, (3.74)

thus allowing to pass from the adjoint representation to the fundamental one. We thus

onlude from eqs. (3.71, 3.72) that in olor spae we only expet olor dipole ontributions

even at �nite Nc.
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3.3.3 Fourier transforms of the 3-parton diagrams in the ollinear

limit

In the following parts, we respetively denote xi and ℓi the transverse position and momentum

of the parton i. Using the analogy that exists [53℄ between a Lorentz sub-group in the in�nite

momentum frame that leaves invariant the hypersurfae orthogonal to the dominant light-

one diretion with the Galilean transformations in two-dimensional mehanis, the idea to

simplify the omputation is to make a hange of variables ditated by the two-body problem

in lassial mehanis. The qq̄g system de�ned by {y1, ℓ1}, {ȳ2, ℓ2} and {yg, ℓg} an be

simpli�ed by onsidering the enter of mass

Gij ≡ {yi + yj, Lij = ℓi + ℓj} ,

and the redued partile

Rij ≡ {mij =
yiyjQ

yi + yj
, ℓij =

yiℓj − yjℓi
(yi + yj)

} ,

variables, where i and j are the partons forming the system that interats with the t−hannel
gluons. This simpli�es the expressions of the extended impat fator results. It turns out

that in the ollinear limit the relevant momentum is assoiated to the redued partile of

the two-parton system that interats with the t−hannel gluons. As an example, the Fourier

transform of the hard part assoiated to the 2-parton system {q̄g}, reads

H̃{q̄g}(x1, x2, xg) =

∫

d2L

(2π)2
d2ℓ2
(2π)2

d2ℓg
(2π)2

H{q̄g}(L, ℓ2, ℓg)δ
2(L)

× exp(−i((L− ℓ2 − ℓg) · x1 + ℓ2 · x2 + ℓg · xg))

=

∫

d2ℓ2
(2π)2

d2ℓg
(2π)2

H{q̄g}(ℓ2, ℓg)

× exp(−i(Lq̄g · (xGq̄g
− x1) + ℓq̄g · x)) , (3.75)

with L = ℓ1 + ℓ2 + ℓg and xG = y1 x1 + ȳ2 x2 + yg xg the momentum and the position of the

enter of mass G of the 3-parton system. We now perform the hange of variables (ℓ2, ℓg) →
(ℓq̄g, Lq̄g), whih involves the Jaobian (ȳ2 + yg)/ȳ1 = 1, leading to

H̃{q̄g}(x1, x2, xg)=

∫

d2ℓq̄g
(2π)2

d2Lq̄g

(2π)2
H{q̄g}(ℓq̄g, Lq̄g)exp(−i(Lq̄g · (xGq̄g

− x1) + ℓq̄g · x)) . (3.76)

Let us denote F
{ij}
Diagr,V (ℓij, Lij , yi, yj) and F

{ij}
Diagr,A(ℓij, Lij , yi, yj) respetively the integrands

of the vetor and axial-vetor ontributions of the diagram 'Diagr' related to the 2-parton

system {ij}, to the "extended" impat fator.

Taking the diagram atG1 as an example for larity, its vetor ontribution F
{q̄g}
atG1,V and
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its axial vetor ontribution F
{q̄g}
atG1,A read expliitly,

F
{q̄g}
atG1,V (ℓq̄g, Lq̄g, ȳ2, yg) =

CabQ2

2

Nc

CF

1

2
(S(y1, y2) +M(y1, y2))

1

4ȳ1Q

×
{

e∗ρ · eγ

(

L2
q̄g

2µ2
1/Q

+
Q

2
+
Lq̄g · (ℓq̄g + k)

2ȳ1ȳ2Q

)

−(Lq̄g · eγ)(e∗ρ · (ℓq̄g + k)))

2ȳ2ygQ/(ȳ1 + ȳ2)
− (Lq̄g · e∗ρ)(eγ · (ℓq̄g + k))

2ȳ2Q

}

× 1
(

L2
q̄g

2µ2
1/Q

+ Q
2

)(

L2
q̄g

2µ2
1/Q

+ Q
2
+

(ℓq̄g+k)2

2µ2
q̄g/Q

) , (3.77)

F
{q̄g}
atG1,A(ℓq̄g, Lq̄g, ȳ2, yg) =

CabQ2

2

Nc

CF

1

2
(S(y1, y2)−M(y1, y2))

1

4ȳ1Q

×
{

e∗ρ · eγ

(

L2
q̄g

2µ2
1/Q

+
Q

2
− Lq̄g · (ℓq̄g + k)

2ȳ2ygQ/(ȳ1 + ȳ2)

)

+
(Lq̄g · e∗ρ)(eγ · (ℓq̄g + k))

2ȳ2ygQ/(ȳ1 + ȳ2)
+

(Lq̄g · eγ)(e∗ρ · (ℓq̄g + k))

2ȳ2Q

}

× 1
(

L2
q̄g

2µ2
1/Q

+ Q
2

)(

L2
q̄g

2µ2
1/Q

+ Q
2
+

(ℓq̄g+k)2

2µ2
q̄g/Q

) , (3.78)

with µ2
1 = y1ȳ1Q

2
, µ2

q̄g =
yg ȳ2
yg+ȳ2

Q2
. We will denote for an arbitrary pair of partons i, j,

µ2
ij =

yiyj
yi + yj

Q2 .

As our treatment aims to get the proper result only in the ollinear approximation, we

annot have aess to the full transverse information about the dipoles dynamis but only

about dynamis of the dipole whih is probed by the t−hannel gluons. In other words, the

information arried by Lq̄g is only partial and not relevant in the ollinear approximation so

we an send the non-interating dipole momentum Lq̄g to zero to simplify the result of the

extended impat fator. This gives,

F
{q̄g}
atG1,V (ℓq̄g, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2) +M(y1, y2))

×µ
2
q̄g

ȳ1

e∗ρ · eγ
2
(

µ2
q̄g + (ℓq̄g + k)2

) , (3.79)

F
{q̄g}
atG1,A(ℓq̄g, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2)−M(y1, y2))

×µ
2
q̄g

ȳ1

e∗ρ · eγ
2
(

µ2
q̄g + (ℓq̄g + k)2

) . (3.80)

We an now express eqs. (3.79, 3.80) in terms of their Fourier transforms to get the
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Figure 3.10: The relevant momentum ℓq̄g of the interation with t−hannel gluons in the

ollinear approximation.

information about the interating dipole dynamis,

F
{q̄g}
atG1, V (ℓq̄g, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2) +M(y1, y2))

×e
∗
ρ · eγ
2

∫

d2x

(2π)

µ2
q̄g

ȳ1
K0(µq̄g |x|) ei(ℓq̄g+k)·x ,

F
{q̄g}
atG1, A(ℓq̄g, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2)−M(y1, y2))

×e
∗
ρ · eγ
2

∫

d2x

(2π)

µ2
q̄g

ȳ1
K0(µq̄g |x|) ei(ℓq̄g+k)·x .

Finally, what remains in the ollinear limit is

F
{q̄g}
atG1,V (0, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2) +M(y1, y2))

×e
∗
ρ · eγ
2

∫

d2x

(2π)

µ2
q̄g

ȳ1
K0(µq̄g |x|) eik·x ,

F
{q̄g}
atG1,A(0, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2)−M(y1, y2))

×e
∗
ρ · eγ
2

∫

d2x

(2π)

µ2
q̄g

ȳ1
K0(µq̄g |x|) eik·x .

The total ontribution of the diagram atG1 is the sum of the above vetor and axial vetor

ontributions

F
{q̄g}
atG1(0, 0, ȳ2, yg) =

Cab

2

Nc

CF
S(y1, y2)

e∗ρ · eγ
2

∫

d2x

(2π)

µ2
q̄g

ȳ1
K0(µq̄g |x|) eik·x . (3.81)

Let us emphasize that the integral over ȳ2 and yg of F
{q̄g}
atG1(0, 0, ȳ2, yg) given in eq. (3.81) is

the twist 3 impat fator ontribution of the diagram atG1 for the {q̄g} dipole, where we

have extrated the relevant information about the interating dipole of size x.

The omputations of ontributions of all the other 3-parton diagrams proeed in the same

way. We �rst ompute the diagrams assoiated to a dipole on�guration, in terms of the

enter of mass and the redued partile momenta and masses, to obtain F {ij}(ℓij , Lij, yi, yj).

We ompute then the Fourier transform f̃ {ij}(x, yi, yj) of F
{ij}(ℓij, Lij = 0, yi, yj) as Lij is

never shifted by the t−hannel gluon transverse momenta k. Finally, the impat fator is
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expressed in terms of f̃ {ij}(x, yi, yj), where x = xi − xj is the size of the dipole {ij}, i.e. the
variable onjugated to the momentum ℓij . The impat fator has thus the general form

Φ
γ∗T→ρT
qq̄g =

∑

{ij}
Φ

γ∗T→ρT {ij}
qq̄g (3.82)

=
∑

{ij}

∫

dyi dyj

∫

d2x

(2π)2
f̃ {ij}(x, yi, yj) . (3.83)

The results of the diagrams in momentum spae exhibit two kinds of struture denoted

by S1(ℓ, µ) and S2mn(ℓ, µA, µB)

S1(ℓ, µ) =
µ2

ℓ2 + µ2
, (3.84)

S2mn(ℓ, µA, µB) =
ℓm ℓn

(ℓ2 + µ2
A)(ℓ

2 + µ2
B)
, (3.85)

where m and n are 2-dimensional eulidean indies and µ, µA, µB are the energies sales at

stake. The Fourier transforms of formulas (3.84) and (3.85) are

S1(ℓ, µ) =

∫

d2x

(2π)
µ2K0(µ |x|) eiℓ·x , (3.86)

and

S2mn(ℓ, µA, µB)=

∫

d2x

(2π)

e−iℓ·x

µ2
A − µ2

B

∂

∂xm

∂

∂xn
(K0(µA |x|)−K0(µB |x|)) eiℓ·x

=

∫

d2x

(2π)

1

µ2
A − µ2

B

{

δmn

2

[

µ2
A

(

K
′

0(µA |x|)
µA |x| +K

′′

0 (µA |x|)
)

−µ2
B

(

K
′

0(µB |x|)
µB |x| +K

′′

0 (µB |x|)
)]

+

(

δmn

2
− xmxn

|x|2
)[

µ2
A

(

K
′

0(µA |x|)
µA |x| −K

′′

0 (µA |x|)
)

−µ2
B

(

K
′

0(µB |x|)
µB |x| −K

′′

0 (µB |x|)
)]}

. (3.87)

This expression an be simpli�ed by noting that the modi�ed Bessel funtion Kν(λ) satis�es

the equation

λ2K
′′

ν (λ) + λK
′

ν(λ) = (λ2 + ν2)Kν(λ) . (3.88)

The expression (3.87) thus reads

S2mn(ℓ, µA, µB) =

∫

d2x

(2π)

eiℓ·x

µ2
A − µ2

B
{

δmn

2

[

µ2
AK0(µA |x|)− µ2

BK0(µB |x|)
]

−
(

δmn

2
− xmxn

|x|2
)

[

µ2
AK2(µA |x|)− µ2

BK2(µB |x|)
]

}

, (3.89)
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where we have used the relation

−1

λ
K ′0(λ) +K ′′0 (λ) = K2(λ) (3.90)

implied by the standard Bessel reursion formulas [172℄. Let us note that the Fourier trans-

forms in eqs. (3.86, 3.89) lead to the appearane of two funtions in the 3-parton impat

fator, one assoiated with the spin non-�ip transition Φ
γ∗T→ρT
qq̄g,nf and one assoiated to the spin

�ip transition Φ
γ∗T→ρT
qq̄g, f :

Φ
γ∗T→ρT
qq̄g,n.f. ∝ µ2K0(µ |x) , (3.91)

Φ
γ∗T→ρT
qq̄g, f. ∝ µ2K2(µ |x) . (3.92)

3.3.4 Spin non-�ip and spin �ip qq̄g impat fator

In this setion we show the results we obtain for eah olor dipole on�guration interating

with the gluons in t−hannel.
The sum of the ontributions in

δab

2Nc

Nc

CF
of the diagrams (G1), (tG1), (ftG1), (httG1),

(btG1) and (dtG2), assoiated with the sattering amplitude of the {qg} system on the

t−hannel gluons, leads to the impat fator

Φ
γ∗T→ρT , {qg}
qq̄g =

Cab

2

Nc

CF

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

×
{

e∗ρ · eγ
2

[

M(y1, y2)

y2
µ2
qgK0(µqg |x|)−

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)

+
ȳ1
y1ȳ2

M(y1, y2)
[

µ2
1K0(µ1 |x|)− µ2

qgK0(µqg |x|)
]

]

+

(

e∗ρ · eγ
2

− e∗ρ · xx · eγ
|x|2

) (

S(y1, y2)

y1
− M(y1, y2)

ȳ2

)

×
[

µ2
qgK2(µqg |x|)− µ2

1K2(µ1 |x|)
]}

+
Cab

2

Nc

CF

∫

dy1dy2

∫

d2x

(2π)
Tn.f.

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|) , (3.93)

with µ2
2 = y2ȳ2Q

2
. Note that

µ2
2

Q
= y2ȳ2Q is assoiated to the analogous redued mass of

the 2-body system onstituted by the antiquark and the enter of mass of the quark and the

gluon. We show in the tab. 3.1, the kinemati variables assoiated to the enter of mass G

and the redued partile R of the system {qg} that we use to obtain, after simpli�ations

desribed previously, the result (3.93).

The result for the {q̄g} dipole is straightforward by exhanging the role of the quark and

the antiquark i.e. exhanging y1 and ȳ2 in (3.93). Adding the results for the {qg} and for the

{q̄g} dipoles and using the symmetry properties of S(y1, y2) andM(y1, y2) under the exhange
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{qg} Center of mass G Redued partile R

momenta Lqg = ℓ1 + ℓg = −ℓ2 ℓqg =
y1 ℓg−yg ℓ1

yg+y1
=

y1 ℓg−yg ℓ1
y2

positions xG =
y1x1+ygxg

y2
x = xg − x1

masses mG = y2Q mR =
µ2
qg

Q
= y1ygQ

y2

Table 3.1: Kinemati variables of the enter of mass G and of the redued partile R of the

system {qg}

of y1 → ȳ2, the spin non-�ip part Φ
γ∗T→ρT ,{qg}+{q̄g}
qq̄g,n.f. and the spin �ip part Φ

γ∗T→ρT ,{qg}+{q̄g}
qq̄g, f. read

Φ
γ∗T→ρT ,{qg}+{q̄g}
qq̄g,n.f. =

−Cab

2

Nc

CF

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

×
{

S(y1, y2)

ȳ1

[

µ2
1K0(µ1 |x|) + µ2

q̄gK0(µq̄g |x|)
]

− M(y1, y2)

y2

[

µ2
2K0(µ2 |x|) + µ2

qgK0(µqg |x|)
]

+

(

y2ȳ1
y1ȳ2

)

S(y1, y2)

ȳ1

[

µ2
2K0(µ2 |x|)− µ2

q̄gK0(µq̄g |x|)
]

−
(

y2ȳ1
y1ȳ2

)

M(y1, y2)

y2

[

µ2
1K0(µ1 |x|)− µ2

qgK0(µqg |x|)
]

}

+
Cab

2

Nc

CF

∫

dy1dy2

∫

d2x

(2π)

e∗ρ · eγ
2

×
[

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)−

M(y1, y2)

y2
µ2
2K0(µ2 |x|)

]

, (3.94)

and

Φ
γ∗T→ρT ,{qg}+{q̄g}
qq̄g, f. =

Cab

2

Nc

CF

∫

dy1dy2

∫

d2x

(2π)
N (x, k)(

e∗ρ · eγ
2

− e∗ρ · xx · eγ
|x|2

)

×
(

S(y1, y2)

y1
− M(y1, y2)

ȳ2

)

[

µ2
qgK2(µqg |x|)− µ2

1K2(µ1 |x|)

+µ2
q̄gK2(µq̄g |x|)− µ2

2K2(µ2 |x|)
]

. (3.95)

The spin non-�ip and spin �ip impat fators assoiated to the sattering amplitude of the

dipole {qq̄} on the t−hannel gluons are given by the ontributions of type

δab

2Nc
( Nc

CF
− 2) from
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the diagrams (aG1), (G1), (bG1), (dG2), (bG2), (dG1). The results read

Φ
γ∗T→ρT ,{qq̄}
qq̄g,n.f. =

Cab

2

(

Nc

CF
− 2

)
∫

dy1dy2

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

×
{

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)−

M(y1, y2)

y2
µ2
2K0(µ2 |x|)

− S(y1, y2)

yg

[(

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
)

+
y2
ȳ2

(

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
)

]

+
M(y1, y2)

yg

[(

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
)

+
ȳ1
y1

(

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
)

]}

− Cab

2

(

Nc

CF
− 2

)
∫

dy1dy2

∫

d2x

(2π)

e∗ρ · eγ
2

×
(

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)−

M(y1, y2)

y2
µ2
2K0(µ2 |x|)

)

, (3.96)

and

Φ
γ∗T→ρT ,{qq̄}
qq̄g, f. =

Cab

2

(

Nc

CF
− 2

)∫

dy1dy2

∫

d2x

(2π)
N (x, k)

(

e∗ρ · eγ
2

− e∗ρ · xx · eγ
|x|2

)

×
(

S(y1, y2)

y1
− M(y1, y2)

ȳ2

)[

ȳ2
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

1K2(µ1 |x|)
)

+
y1
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

2K2(µ2 |x|)
)

]

. (3.97)

We show in tab. 3.2 the kinemati variables assoiated to the system {qq̄}. The total 3-parton

{qq̄} Center of mass G Redued partile R

momenta Lqq̄ = ℓ1 + ℓ2 = −ℓg ℓqq̄ =
ȳ2 ℓ1−y1 ℓ2

y1+ȳ2
=

ȳ2 ℓ1−y1 ℓ2
ȳg

positions xG =
y1x1+ȳ2x2

ȳg
x = x1 − x2

masses mG = ȳgQ mR =
µ2
qq̄

Q
= y1ȳ2Q

ȳg

Table 3.2: Kinemati variables of the enter of mass G and of the redued partile R of the

system {qq̄}
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results for the spin non-�ip amplitude is thus

Φ
γ∗T→ρT
qq̄g, n.f. = −C

ab

2

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

×
{

2

[

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)−

M(y1, y2)

y2
µ2
2K0(µ2 |x|)

]

+
Nc

CF

[

S(y1, y2)

ȳ1
µ2
q̄gK0(µq̄g |x|)−

M(y1, y2)

y2
µ2
qgK0(µqg |x|)

+

(

y2ȳ1
ȳ2y1

)

×
(

S(y1, y2)

ȳ1

[

µ2
2K0(µ2 |x|)− µ2

q̄gK0(µq̄g |x|)
]

−M(y1, y2)

y2

[

µ2
1K0(µ1 |x|)− µ2

qgK0(µqg |x|)
]

)]

+

(

Nc

CF
− 2

)[

S(y1, y2)

yg

([

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
y2
ȳ2

[

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

)

− M(y1, y2)

yg

([

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
ȳ1
y1

[

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

)]}

+
Cab

2
e∗ρ · eγ

∫

dy1dy2

(

S(y1, y2)

ȳ1
− M(y1, y2)

y2

)

, (3.98)

while the spin �ip 3-parton impat fator is

Φ
γ∗T→ρT
qq̄g, f. =

Cab

2

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

(

e∗ρ · eγ
2

− (e∗ρ · x) (x · eγ)
|x|2

)

×
(

S(y1, y2)

y1
− M(y1, y2)

ȳ2

){

Nc

CF

[

µ2
qgK2(µqg |x|)− µ2

1K2(µ1 |x|)

+µ2
q̄gK2(µq̄g |x|)− µ2

2K2(µ2 |x|)
]

+

(

Nc

CF

− 2

)[

ȳ2
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

1K2(µ1 |x|)
)

+
y1
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

2K2(µ2 |x|)
)

]}

. (3.99)

In the formula (3.98), the last line is not proportional to the dipole fator N (x, k). In

the following part, we will show that putting together the 2-parton result (beyond WW

approximation) and the 3-parton result, all parts of the impat fator whih do not have

the dipole form anel eah others using the QCD EOM. This will extend to the full twist 3

result, the reasoning leading in the WW approximation from eq. (3.31) to eq. (3.34).
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3.4 The twist 3 γ∗T → ρT impat fator in the dipole pi-

ture

In the se. 3.4.1, we show that the EOMs of QCD are essential to get a fatorized form of the

impat fator at the full twist 3 level. Next, in se. 3.4.2, we show that the spin non-�ip and

spin �ip results are equivalent to the treatment in momentum spae presented in se. 2.7.4 and

�nally, in se. 3.4.3, we ombine two- and three-parton impat fator ontributions leading

to the �nal full twist 3 result.

3.4.1 The dipole piture arising from the equations of motion of

QCD

Let us reall the two relations (2.113, 2.114) between DAs due to the QCD EOMs,

ȳϕ3(y;µ
2
F ) + ȳϕA(y;µ

2
F ) + ϕT

1 (y;µ
2
F ) + ϕT

A(y;µ
2
F )

= −
∫ 1

y

dy2S(y, y2;µ
2
F ) , (3.100)

yϕ3(y;µ
2
F )− yϕA(y;µ

2
F )− ϕT

1 (y;µ
2
F ) + ϕT

A(y;µ
2
F )

=

∫ 1

y

dy2M(y, y2;µ
2
F ) . (3.101)

Adding (3.100) multiplied by y and (3.101) multiplied by ȳ, gives the relation

yȳϕ3(y) + (y − ȳ)ϕT
1 (y) + ϕT

A(y)

= −y
∫

dy2S(y, y2) + ȳ

∫

dy2M(y, y2) . (3.102)

Multiplying (3.102) by 1/(yȳ) and integrating over y gives �nally the relation

∫

dy

yȳ

(

2yȳϕ3(y) + (y − ȳ)ϕT
1 (y) + ϕT

A(y)
)

+

∫

dy1

∫

dy2

(

S(y1, y2)

ȳ1
− M(y1, y2)

y2

)

= 0 , (3.103)

with ϕ(y) = ϕWW (y) + ϕgen(y) being the omplete DAs, i.e. whih inlude both the WW

and the genuine twist 3 ontributions. The 2-parton impat fator (3.31), before using the

relations due to QCD EOMs, reads

Φ
γ∗T→ρT
qq̄ =

−CabQ2

2
e∗ρ · eγ

∫

dy

∫

d2x

2π
µK1(µ|x|)N (x, k)

×
(

[

(y − ȳ)ϕT
1 (y)− ϕT

A(y)
]

e∗ρ · x
x · eγ
|x| + ϕT

A(y)
x2

|x|e
∗
ρ · eγ

)

+
Cab

2
e∗ρ · eγ

∫

dy

yȳ

[

(2yȳ ϕ3(y) + (y − ȳ)ϕT
1 + ϕT

A(y))
]

. (3.104)
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Colleting all terms arising from eqs. (3.98) and (3.104) whih are not proportional to the

dipole fator we obtain

e∗ρ · eγ
Cab

2

[
∫

dy

yȳ

(

2yȳϕ3(y) + (y − ȳ)ϕT
1 (y) + ϕT

A(y)
)

+

∫

dy1

∫

dy2

(

S(y1, y2)

ȳ1
− M(y1, y2)

y2

)]

= 0 , (3.105)

i.e. we observe that they anel due to the relation (3.103). The �nal 2-parton impat fator

is thus

Φ
γ∗T→ρT
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π

{[

(y − ȳ)ϕT
1 (y)− ϕT

A(y)
]

× (e∗ρ · x) (x · eγ)
|x|2 + ϕT

A(y)e
∗
ρ · eγ

}

µ|x|K1(µ|x|)N (x, k) , (3.106)

and it an be deomposed into the spin non-�ip and the spin-�ip parts

Φ
γ∗T→ρT
qq̄, n.f. = −C

abQ2

2

∫

dy
(

ϕT
A + (y − ȳ)ϕT

1

)

×
∫

d2x

2π

1

2
e∗ρ · eγ µ|x|K1(µ|x|)N (x, k) , (3.107)

and

Φ
γ∗T→ρT
qq̄, f. = −C

abQ2

2

∫

dy
(

ϕT
A − (y − ȳ)ϕT

1

)

×
∫

d2x

2π

(

1

2
e∗ρ · eγ −

(e∗ρ · x)(eγ · x)
|x|2

)

µ|x|K1(µ|x|)N (x, k) . (3.108)

The results (3.106, 3.107, 3.108) are the extension of the formula (3.34, 3.35, 3.36) to the full

solution of the QCD EOMs for the DAs, inluding the genuine twist 3 solutions.
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The 3-parton spin non-�ip result after using the relation (3.103) is thus

Φ
γ∗T→ρT
qq̄g,n.f. = −C

ab

2

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

×
{

2

(

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)−

M(y1, y2)

y2
µ2
2K0(µ2 |x|)

)

+
Nc

CF

[

S(y1, y2)

ȳ1
µ2
q̄gK0(µq̄g |x|)−

M(y1, y2)

y2
µ2
qgK0(µqg |x|)

+

(

y2ȳ1
ȳ2y1

)

×
(

S(y1, y2)

ȳ1

[

µ2
2K0(µ2 |x|)− µ2

q̄gK0(µq̄g |x|)
]

−M(y1, y2)

y2

[

µ2
1K0(µ1 |x|)− µ2

qgK0(µqg |x|)
]

)]

+

(

Nc

CF

− 2

)[

S(y1, y2)

yg

([

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
y2
ȳ2

[

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

)

− M(y1, y2)

yg

([

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
ȳ1
y1

[

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

)]}

, (3.109)

and it an be rewritten in a more ompat way, using the symmetry properties of the DAs

under exhange of y1 and ȳ2, as

Φ
γ∗T→ρT
qq̄g,n.f. = −Cab

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

S(y1, y2)

×
{

1

ȳ1

(

2µ2
1K0(µ1 |x|) +

Nc

CF

[

µ2
q̄gK0(µq̄g |x|)

+

(

y2ȳ1
ȳ2y1

)

×
[

µ2
2K0(µ2 |x|)− µ2

q̄gK0(µq̄g |x|)
]

])

+
1

yg

(

Nc

CF

− 2

)

[[

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
y2
ȳ2

[

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

]}

. (3.110)

3.4.2 Equivalene with the results obtained in momentum spae in

the light-one ollinear fatorization sheme

The integration of the spin non-�ip result over x is straightforward by using the relation

∫

d2x

(2π)
N (x, k)µ2K0(µ |x|) =

2k2

k2 + µ2
. (3.111)
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The result after integration over x is

Φ
γ∗T→ρT
qq̄g,n.f. = −Cab

∫

dy1dy2 e
∗
ρ · eγ S(y1, y2)

×
{(

2− Nc

CF

)

α

ȳgα + y1ȳ2

(

y21
α+ y1ȳ1

+
y2 ȳ2

α + y2ȳ2

)

+
Nc

CF

α

α ȳ1 + ȳ2 yg

α

α + y2 ȳ2
+

2

ȳ1

α

α+ y1ȳ1

}

, (3.112)

with α = k2/Q2
. The result (3.112) is, as expeted, idential to the one obtained in Ref. [131℄

using the light-one ollinear fatorization in the momentum spae representation.

For the spin �ip result, using the symmetry of the amplitude under the exhange of y1

and ȳ2, we get

Φ
γ∗T→ρT
qq̄g, f. = Cab

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

(

e∗ρ · eγ
2

− (e∗ρ · x)(x · eγ)
|x|2

)

×
(

S(y1, y2)

y1

){

Nc

CF

[

µ2
qgK2(µqg |x|)− µ2

1K2(µ1 |x|)

+µ2
q̄gK2(µq̄g |x|)− µ2

2K2(µ2 |x|)
]

+

(

Nc

CF
− 2

)[

ȳ2
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

1K2(µ1 |x|)
)

+
y1
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

2K2(µ2 |x|)
)

]}

. (3.113)

We now integrate over x = (|x| cos(θ), |x| sin(θ)), with k = (|k| cos(φ), |k| sin(φ)) . Using the

fat that only the spin �ip ontributions are non zero, and based on the following identities

[(e−ρ )
∗ · x] [x · e+γ ]
|x|2

=

(

−i |x| e
iθ

√
2

)(

−i |x| e
iθ

√
2

)

1

|x|2
= −1

2
ei2θ , (3.114)

[(e+ρ )
∗ · x] [x · e−γ ]
|x|2

=

(

i
|x| e−iθ√

2

)(

i
|x| e−iθ√

2

)

1

|x|2
= −1

2
e−i2θ , (3.115)

resulting from the expliit de�nitions of the polarizations in eq. (2.241), we obtain

∫

d2x

(2π)
N (x, k)µ2K2(µ |x|)

(

((e∓ρ )
∗ · x)(x · e±γ )
|x|2

)

= −
∫

dλ λK2(λ)

∫

dθ

2π
2

(

1− cos

[

kλ

µ
cos(θ − φ)

])

1

2
e±i2θ

= −1

2
e±i2φ

∫

dλ λK2(λ)

∫

dθ

2π
2

(

1− cos

[

kλ

µ
cos(θ)

])

e±i2θ

= −1

2
e±i2φ2

∫

dλ λK2(λ)J2

(

kλ

µ

)

=
((e∓ρ )

∗ · k) (k · e±γ )
|k|2

2k2

k2 + µ2
, (3.116)



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 155

with λ = µ |x|. Hene the spin �ip impat fator integrated over x reads

Φ
γ∗T→ρT
qq̄g,f = −2CabTf

∫

dy1 dy2 S(y1, y2)

×
{

Nc

CF

[

αȳ2

(

y1
(α + y1ȳ1)(y2α + y1yg)

+
ȳ2

(α + y2ȳ2)(ȳ1α + ȳ2yg)

)]

+

(

Nc

CF
− 2

)[

αȳ2
ȳgα + y1ȳ2

(

y1
α + y1ȳ1

+
ȳ2

α + y2ȳ2

)]}

, (3.117)

whih is the same result as the one obtained in Ref. [131℄.

3.4.3 Complete twist 3 result of the γ∗T → ρT impat fator

Combining all the 2-parton and 3-parton results for the spin non-�ip and spin �ip impat

fators Φγ∗→ρ
n.f. , Φγ∗→ρ

f. of the γ∗T → ρT transition, we �nally obtain

Φ
γ∗T→ρT
n.f.

= −Cab

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

×
{

Q2

2

∫

dy
(

ϕT
A(y) + (y − ȳ)ϕT

1 (y)
)

µ|x|K1(µ|x|)

+

∫

dy1 dy2 S(y1, y2)

(

1

ȳ1

(

2µ2
1K0(µ1 |x|) +

Nc

CF

[

µ2
q̄gK0(µq̄g |x|)

+

(

y2 ȳ1
ȳ2 y1

)

×
[

µ2
2K0(µ2 |x|)− µ2

q̄gK0(µq̄g |x|)
]

])

+
1

yg

(

Nc

CF

− 2

)

[[

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
y2
ȳ2

[

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

])}

, (3.118)

and

Φ
γ∗T→ρT
f.

= Cab

∫

d2x

(2π)
N (x, k)

(

e∗ρ · eγ
2

− (e∗ρ · x) (x · eγ)
|x|2

)

×
{

−Q
2

2

∫

dy
(

ϕT
A(y)− (y − ȳ)ϕT

1 (y)
)

µ|x|K1(µ|x|)

+

∫

dy1dy2

(

S(y1, y2)

y1

)[

Nc

CF

[

µ2
qgK2(µqg |x|)− µ2

1K2(µ1 |x|)

+µ2
q̄gK2(µq̄g |x|)− µ2

2K2(µ2 |x|)
]

+

(

Nc

CF
− 2

)[

ȳ2
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

1K2(µ1 |x|)
)

+
y1
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

2K2(µ2 |x|)
)

]]}

. (3.119)

The eqs. (3.118) and (3.119) are the full twist 3 results the γ∗T (λγ) → ρT (λρ) impat fators,

in the forward limit. These results are onsistent with the dipole piture, as the oupling

with the t−hannel gluons with a dipole of transverse size x fatorizes out.
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Note that the three-parton ontribution ould, in priniple, be rewritten in a fatorized

form with a photon wave funtion haraterizing the dissoiation of the photon into a quark

antiquark gluon intermediate state, and the ρ− meson DAs. Unfortunately, to the best of

our knowledge, the 3-body wave funtion of the photon is unknown.

3.5 Heliity amplitudes and polarized ross-setions

The full twist 3 results eqs. (3.118) and (3.119) of the previous setion allow us to build

a model for the heliity amplitude T11 based on one hand on the previous twist expansion

alulations and on the other hand on a dipole model for the dipole sattering amplitude

whih is known from the �t of DIS data.

We are interested in the two dominant heliity amplitudes T00 and T11 in the forward

limit. T00 and T11 involve respetively the Φγ∗L→ρL
given by eq. (3.120) and Φγ∗→ρ,n.f.

given

by eq. (3.118). We an put the two results in the ompat form,

Φγ∗L→ρL(k,Q, µ2
F ) =

(

δab

2

)
∫

dy

∫

dr ψ
γ∗L→ρL
(qq̄) (y, r;Q, µ2

F )A(r, k) , (3.120)

Φγ∗T→ρT (k,Q, µ2
F ) =

(

δab

2

)
∫

dy

∫

dr ψ
γ∗T→ρT
(qq̄) (y, r;Q, µ2

F )A(r, k) (3.121)

+

(

δab

2

)
∫

dy2

∫

dy1

∫

dr ψ
γ∗T→ρT
(qq̄g) (y1, y2, r;Q, µ

2
F )A(r, k) .

The funtions ψ
γ∗L→ρL
(qq̄) , ψ

γ∗T→ρT
(qq̄) , ψ

γ∗T→ρT
(qq̄g) are respetively the amplitudes of prodution of a

ρ−meson from a quark-antiquark (quark-antiquark gluon) system produed far upstream the

target in the �utuations of the virtual photon. We reall their expressions,

ψ
γ∗L→ρL
(qq̄) (y, r;µ2

F ) =
mρfρ√

2

∑

(h,h̄)

φρL
(hh̄)

(y;µ2
F ) Ψ

γ∗L
(h,h̄)

(y, r;Q2) , (3.122)

ψ
γ∗T→ρT
(qq̄) (y, r;µ2

F ) =
mρfρ√

2

∑

(h,h̄)

φ
ρT , (λρ)

(h,h̄)
(y;µ2

F ) Ψ
γ∗T (λγ)

(h,h̄)
(y, r;Q2) . (3.123)

ψ
γ∗T→ρT
(qq̄g) (y, r;µ2

F ) =
mρfρ√

2

[(√

π

4Nc

S(y1, y2;µ
2
F )

2

)

Fγ∗T (y1, y2, r;Q)

−
(√

π

4Nc

M(y1, y2;µ
2
F )

2

)

Fγ∗T (ȳ2, ȳ1, r;Q)

]

, (3.124)

where the funtion Fγ∗T
desribes the �utuations of the transversely polarized photon into

a quark-antiquark-gluon olor singlet. The funtion Fγ∗T
an be expressed in terms of the

longitudinally polarized photon wave funtion

Ψγ∗L(µi, r;Q) =
∑

(h,h̄)

Ψ
γ∗L
(h,h̄)

≡ 2
e

2π

√

Nc

π

µ2
i

Q
K0(µi |r|) , (3.125)
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as

Fγ∗T (y1, y2, r;Q) =
1

2

{

2

[

Ψγ∗L(µ1, r;Q)

ȳ1Q

]

+
Nc

CF

[

Ψγ∗L(µq̄g, r;Q)

ȳ1Q
+

(

y2 ȳ1
ȳ2 y1

)

×
(

Ψγ∗L(µ2, r;Q)

ȳ1Q
− Ψγ∗L(µq̄g, r;Q)

ȳ1Q

)]

+

(

Nc

CF
− 2

)[(

Ψγ∗L(µ1, r;Q)

ygQ
− Ψγ∗L(µqq̄, r;Q)

ygQ

)

+
y2
ȳ2

(

Ψγ∗L(µ2, r;Q)

ygQ
− Ψγ∗L(µqq̄, r;Q)

ygQ

)]}

. (3.126)

Note, that in the large Nc limit Fγ∗T
simpli�es as

Fγ∗T (y1, y2, r;Q) −−−−→
Nc→∞

1

ȳ1y1ȳ2Q
(3.127)

×
{

y1ȳ2Ψ
γ∗L(µ1, r;Q) + y2ȳ1Ψ

γ∗L(µ2, r;Q)− ygΨ
γ∗L(µq̄g, r;Q)

}

.

In our onvention, the heliity amplitudes within the impat fator representation read

Tλρλγ

s
=
δab

2

∫

d2k

k4
Φ

γ∗λγ→ρλρ
ab (k,Q, µ2

F )F(x, k) , (3.128)

with F(x, k) is the unintegrated gluon distribution as de�ned in Ref. [22℄. Note that we have

adapted the oe�ient of the dipole sattering amplitude in the impat fator suh as that

the dipole ross-setion de�ned in Ref. [22℄ is simply

σ̂(x, r) =
N2

c − 1

4

∫

d2k

k4
F(x, k)A(k, r) . (3.129)

Inserting the expressions for the impat fator Φ
γ∗λγ→ρλρ

of eqs. (3.120, 3.122), one gets

T00
s

=

∫

dy

∫

dr ψ
γ∗L→ρL
(qq̄) (y, r;Q, µ2

F ) σ̂(x, r) , (3.130)

T11
s

=

∫

dy

∫

dr ψ
γ∗T→ρT
(qq̄) (y, r;Q, µ2

F ) σ̂(x, r) (3.131)

+

∫

dy2

∫

dy1

∫

dr ψ
γ∗T→ρT
(qq̄g) (y1, y2, r;Q, µ

2
F ) σ̂(x, r) .

We an separate T11 in the WW ontribution and the genuine ontribution

TWW
11

s
=

∫

dy

∫

dr ψ
γ∗T→ρT ,WW

(qq̄) (y, r;Q, µ2
F ) σ̂(x, r) , (3.132)

T gen
11

s
=

∫

dy

∫

dr ψ
γ∗T→ρT , gen

(qq̄) (y, r;Q, µ2
F ) σ̂(x, r) (3.133)

+

∫

dy2

∫

dy1

∫

dr ψ
γ∗T→ρT
(qq̄g) (y1, y2, r;Q, µ

2
F ) σ̂(x, r) .

As announed, the formulas (3.130, 3.131) allow us to ombine various models of the sat-

tering amplitude of a dipole on a nuleon with the results obtained by the twist expansion of
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the γ∗ → ρ impat fator. We will use the GBW-model and the AAMQS-models desribed

in the hap. 1.3.4.

At t = tmin the ontributions to the longitudinal and transverse di�erential ross-setions

dσL

dt
and

dσT

dt
are respetively related to the heliity amplitudes T00 and T11

dσL
dt

(t = 0) =
|T00(s, t = 0)|2

16πs2
, (3.134)

dσT
dt

(t = 0) =
|T11(s, t = 0)|2

16πs2
. (3.135)

The t−dependeny is expeted to be governed by non-perturbative e�ets of the nuleon

whih an be phenomenologially parameterized by an exponential dependene of the di�er-

ential ross-setions

dσL,T
dt

(t) = e−b(Q
2)t dσL,T

dt
(t = 0) . (3.136)

Integrating over t leads to the following results in the polarized ross-setions

σL =
1

b(Q2)

|T00(s, t = 0)|2
16πs2

, (3.137)

σT =
1

b(Q2)

|T11(s, t = 0)|2
16πs2

. (3.138)

The b(Q2) slope has been measured by ZEUS and H1. We will use here quadrati �ts of the

b(Q2) slope data of Ref. [99℄ shown in �g. 3.11 to determine the ross-setion. Note that this

t−dependene is obtained by �tting the di�erential ross-setion by the fator exp(−b |t|) for
several values of Q2

giving the dependene b(Q2). The agreement of the �ts with the H1 data

in shown in �g. 3.12.

H1

Fit
Fit Error

0 10 20 30 40
Q2

2

4

6

8

10

bHQ2L

Figure 3.11: Quadrati �ts of the b−slope H1 data.

Note that the t−dependene being given by a dereasing exponential funtion, we an

estimate from the b−slope values that the di�erential ross-setion is dominated by the range

|t| . 1

b(Q2)
≈ 1

6
GeV

2 .



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 159

10
-2

10
-1

1

10

10 2

10 3

10 4

10 5

0 0.2 0.4 0.6 0.8

H1

 |t| [GeV2]

d
σ/

d
|t

| [
n

b
/G

eV
2 ]

W = 75 GeV

γ∗  p → ρ p

a)

Q2 [GeV2]

 3.3 (x 4)

 6.6 (x 2)

11.5 (x 1)

17.4 (x 0.5)

33.0 (x 0.5)

fit ∝  e-b|t|

Figure 3.12: t−dependene of the di�erential ross-setion measured by H1 ollaboration [99℄

for several Q2
values and with a enter of mass energy W = 75 GeV.

3.6 Comparison with the HERA data

In this setion, we ompare to H1 [99℄ and ZEUS [98℄ data our preditions for,

σT , σL , R =
σL
σT

and r0400 =
ε

x211 + ε
.

We denote σ the total ross-setion, σ = σL + σT aording to ZEUS onvention in ref. [98℄

or σ = εσL + σT following H1 notation [99℄. We reall that ε is the photon polarization

parameter, 〈ε〉 = 0.98 for H1 and 〈ε〉 = 0.996 for ZEUS. We remind that the dipole models

we will use are the GBW and the AAMQS dipole models.

We prefer to present r0400 instead of the ratio T11/T00 as the data are available from both H1

and ZEUS ollaborations. As the di�erene between the b−slopes of σL (bL) and σT (bT ) is

small ompared to the value of the b−slope measured by �tting the t−dependene of the total
di�erential ross-setion, we will assume that b = bL = bT . The diret onsequene of this is

that the ratios of di�erential ross-setions are onstant funtions of t. This assumption on

the b−slopes allows to relate r0400 to the polarized ross-setions,

r0400 ≡
σL
σ
.

As it is shown in �g. 3.13, the data of r0400 as a funtion of |t|, support this assumption as

they are weakly sensitive to the t−value.
The results for σT and σL are shown in �gs. 3.14(a), 3.14(b). As one an see the nor-

malizations of the ross-setions are in very good agreement with the data for large Q2
,



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 160

ZEUS

<Q2> = 3 GeV2

<Q2> = 10 GeV2

ZEUS 120 pb-1

|t| (GeV2)

 r
0004

 =
 σ

L
 / 

σ to
t

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

Figure 3.13: Ratio r0400 as a funtion of |t| for di�erent values of Q2
from ZEUS ollaboration

Ref. [98℄.

independently of the dipole model used. This is a non trivial result as the overall normaliza-

tions of the preditions are on one hand due to the normalization of the dipole ross-setion

and on the other hand, based on the oupling onstants evaluated from QCD sum rules.

The suess to reprodue the right normalization at large Q2
indiates that the fatorization

proedure we used works properly. The fat that at low Q2
there is a disrepany appearing

between the data and the preditions, is due to higher twist e�ets. Indeed, the twist expan-

sion is justi�ed only up to ertain value of Q2
as the negleted terms are expeted to be of

the order mρ/Q. It is also interesting to observe that thanks to HERA data we an evaluate

when the higher twist orretions beome important. We see that for Q2 ∼ Q2
min ∼ 5 GeV2

,

the leading twist orretions are not enough to desribe the data. Unfortunately the satura-

tion regime whih in this kinematis is expeted for Q2 < Q2
s ∼ 1 GeV2

is not aessible with

our twist expansion, but as it is shown in �g. 3.15, the dipole models are giving the good

x−dependene. We reall that the s dependene of the amplitude is only given by the dipole

sattering amplitude as the impat fators are s−independent.
The di�erent ontributions, namely the WW (for σT only) ontribution, the total ontri-

butions at,

µ2
F =

Q2 +m2
ρ

4
,

and the asymptoti ontributions µ2
F → ∞ are displayed for σT and σL in �gs. 3.17(a),

3.17(b). As in the GS-model of the hap. 2, the WW ontribution dominates the genuine

ontribution and the AS ontribution is lose to the other ontributions. Comparing the

urves of the AS and the total ontributions allows to get a good estimation of the dependene

of the results in the hoie of the fatorization sale. Indeed we will see in the next part that
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Figure 3.14: Preditions for σT and σL vs Q2
, forW = 75 GeV, using the AAMQSa (red solid

line), AAMQSb (blue large dashed line) and GBW (green dashed line) models ompared to

the data of H1[99℄.

this dependene is quite important at the level of the overlap of the γ∗ and ρ−meson wave

funtions but it is hidden by the onvolution with the dipole ross-setion whih �lters the

range of dipole size where this µF−dependene is important.

In �gs. 3.18(a), 3.18(b) are shown the total and AS results with the unertainty due to

the error bars on the b−slope values in �g. 3.11.

The results with the AAMQSa dipole model for the ratiosR and r0400 are shown in �gs. 3.19,

3.20. The preditions are ompared with both H1 with W = 75 GeV and ZEUS with

W = 90 GeV ollaborations. The ratios are independent of the normalization of the dipole

ross-setion, we an thus only hek if we get the good saling between the transverse,

longitudinal and total ross-setions.

The results with the other dipole models are fairly lose to the results obtained with the
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Figure 3.15: Total ontribution to the total ross-setion σ as the funtion ofW ompared to

H1 data [99℄ obtained with the AAMSQa dipole model. The unertainty due to the b−slope
error bars is taken into aount.
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Figure 3.16: Total ontribution to the total ross-setion σ as the funtion of W ompared

to ZEUS data [98℄ obtained with the AAMSQa dipole model. The unertainty due to the

b−slope error bars in taken into aount.

AAMQSa model, they are shown in Ref. [20℄.

3.7 Interating dipole distributions

In this setion we study the radial distributions of dipoles in the intermediate states that

interat with the nuleon via the dipole sattering amplitude.
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line) ontributions to σT .
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(b) AS (purple dashed line) and Total (red solid line) ontributions to σL.

Figure 3.17: Preditions for σT and σL vs Q2
, for W = 75 GeV, using the AAMQSa-model,

ompared to the data of H1[99℄.

3.7.1 Overlaps and distributions

In Se. 3.5 we have found the fatorized expressions eqs. (3.130, 3.131) for the heliity am-

plitudes, that we an rewrite as

Tλρλγ

s
= Nλρλγ

∫ ∞

0

drPλρλγ (r, Q
2, µ2

F ) σ̂(x, r) , (3.139)

with Pλρλγ (r, Q
2, µ2

F ) being the amplitude of probability to �nd an intermediate state with

a dipole on�guration of size r = |r| that an interat with the two t−hannel gluons and
Nλρλγ is a normalization fator. The distribution Pλρλγ (r, Q

2, µ2
F ) reads

Pλρλγ (r, Q
2, µ2

F ) =
1

Nλρλγ

r

∫

dy
∣

∣Wλρλγ (y, r;µ
2
F , Q

2)
∣

∣ , (3.140)
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(b) AS (purple) and Total (red) ontributions to σL.

Figure 3.18: Full twist 3 and asymptoti preditions with the b−slope unertainty, using

AAMQSa model.

and

Nλρλγ =

∫ ∞

0

dr r

∫

dy
∣

∣Wλρλγ (y1, y, r;µ
2
F , Q

2)
∣

∣ , (3.141)

where the funtion

∣

∣Wλρλγ (y, r;µ
2
F , Q

2)
∣

∣

is the overlap of the wave funtions of the inoming

virtual photon state and the �nal ρ−meson state. The funtions W00 and W11 read expliitly,

W00(y, r;µ
2
F , Q

2) = ψ
γ∗L→ρL
(qq̄) (y, r;Q, µ2

F ) , (3.142)

W11(y, r;µ
2
F , Q

2) = ψ
γ∗T→ρT
(qq̄) (y, r;Q, µ2

F ) (3.143)

+

∫ y

0

dy1 ψ
γ∗T→ρT
(qq̄g) (y1, y, r;Q, µ

2
F ) .
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(a) AAMQSa versus H1 data.
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Figure 3.19: The full twist 3 ontribution to the ratio of the ross-setions R = σL/σT in the

limit t = 0 versus W and Q2
ompared to the data of H1 [99℄ in �gure (a) and ZEUS [98℄ in

�gure (b).
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AAMQSa-model vs H1 data.
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Figure 3.20: Preditions for r0400 vs W and Q2
ompared respetively with H1[99℄ data (�gure

(a)) and ZEUS[98℄ data (�gure (b)), using the AAMQSa-model.
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The overlap W11 an be split in the WW and the genuine ontributions

WWW
11 (y, r;µ2

F , Q
2) = ψ

γ∗T→ρT WW

(qq̄) (y, r;Q, µ2
F ) , (3.144)

Wgen
11 (y, r;µ2

F , Q
2) = ψ

γ∗T→ρT gen

(qq̄) (y, r;Q, µ2
F ) (3.145)

+

∫ y

0

dy1ψ
γ∗T→ρT
(qq̄g) (y1, y, r;Q, µ

2
F ) .

As the r and the Q dependenes of the radial distributions enter the amplitudes only

through the variable "λ = rQ". We an resale the distribution by hanging the variable r

by λ,

Pλρλγ (λ, µ
2
F ) ≡

Pλρλγ (
λ
Q
, Q2;µ2

F )

Q
. (3.146)

The distribution Pλρλγ (λ, µ
2
F ) only depends on Q by the hoie of the renormalization sale

µ2
F (Q

2) =
Q2 +m2

ρ

4
.

So in the asymptoti ase, Pλρλγ (λ,∞) ≡ PAS
λρλγ

(λ) depends only on λ.

Heliity amplitudes read,

Tλρλγ

s
= Nλρλγ

∫ ∞

0

dλPλρλγ (λ, µ
2
F ) σ̃(x, λ) , (3.147)

with

σ̃(x, λ) = σ̂

(

x,
λ

Q

)

(3.148)

the resaled dipole ross-setion.
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Figure 3.21: Full twist 3 (Total) P00(λ, µ
2
F (Q

2)) for Q2 = 1GeV2
(solid red) and Q2 =

10 GeV

2
(dashed blue), AS P

(AS)
00 (λ) (dotted purple) and σ̃(x, λ) at W = 90 GeV

2
for

Q2 = 1 GeV2
(dotted-dashed blak) and Q2 = 10 GeV2

(dashed blak).
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Figure 3.22: The Total P11(λ, µ
2
F (Q

2)) (red solid lines) results and their WW (blue dot-dashed

lines) and genuine (Gen) (orange dashed lines) ontributions, as well as the AS (purple long-

dashed line) result P
(AS)
11 (λ) and the dipole ross-setions σ̃(x, λ) (blak dot-dot-dashed lines)

at W = 90 GeV2
, for Q2 = 1 GeV2

(thik lines) and Q2 = 10 GeV2
(thin lines).

In �gs. 3.21 and 3.22 are shown the di�erent ontributions to the distributions P00 and

P11 for two di�erent values of Q2
, Q2 = Q2

a = 10 GeV

2
and Q2 = Q2

b = 1 GeV

2
. As

Qs(x) = R−10 (x) ∼ 1 GeV, the ase Q2 = Q2
a orresponds to the diluted regime while the ase

Q2 = Q2
b is at the boundary with the saturation regime.

The dipole ross-setion from the GBW-model is also shown in order to see whih dipole

sizes are �ltered by the interation with the nuleon. We will refer to the "dipole bandwidth"

for the range of dipole whih have a size above 2R0(x), i.e. r > 2R0(x), or equivalently by

multiplying both sides by Q, λ > λSat.(Q2,W ) ≡ 2R0(x)Q. Indeed we an see that the dipole

ross-setion will play the role of a �lter for the large dipoles and as one an note looking at

the �gs. 3.21 and 3.22, λSat.(Q2,W ) are good estimates of the inferior bounds of the dipole

ross-setion bandwidth.

In �g. 3.21, the AS and the total ontributions to P00 for both virtualities Qa and Qb are

shown and we an see that the distribution P00 is not sensitive to the fatorization sale. We

an then onsider only the AS ase as it has a simple analyti form,

P
(AS)
00 (λ) =

1

Q
P(AS)

00 (
λ

Q
,Q2) = 6

∫

dy (yȳ)2λK0(
√
yȳλ) . (3.149)

For the distribution P11 we see in �g. 3.22 that the distribution is sensitive to the fator-

ization sale. For the small values, µ2
F = µ2

F (Q
2
b), the genuine ontribution is as important

as the WW-ontribution. This fat is not visible on the results for heliity amplitudes be-

ause the genuine distribution selets mostly small dipoles that are not in the bandwidth

of the dipole ross-setion ompared to dipoles produed by the WW-ontribution. This

analysis of the dipole distributions indiates that the genuine ontribution, i.e. the quark

antiquark gluon intermediate state ontribution, should not be omitted in the prodution
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of a transversely polarized ρ−meson at the level of the overlap of the wave funtions. This

is in ontradition with the usual assumptions of dipole models to assume the transversely

polarized ρ−meson state to be saturated by the valene quark antiquark degrees of freedom,

leading to the normalization relation (3.150) [55, 145℄ and the eletroni deay width relation

eq. (3.151) [115, 145℄,

1 =
∑

h,h̃

∫

dy

∫

d2r
∣

∣

∣
ΨρT

h,h̃
(y, r)

∣

∣

∣

2

, (3.150)

efρmρ(e
∗
γ · eρ) =

∑

h,h̃

∫

dy

∫

d2rΨρT
h,h̃

(y, r) Ψ
γ∗T
h,h̃

(y, r) . (3.151)

Indeed, the r.h.s. of eq. (3.151), if one expands at large Q2
the ρ meson wave funtion

around r = 0 , is our WW result, whih therefore misses the genuine ontributions arising

from three-parton orrelators, whih an have a signi�ant e�et even for large Q2
values.

We give in tab. 3.3 the average λ de�ned as,

〈λ〉λρλγ
(µ2

F (Q
2)) =

∫ ∞

0

dλ λPλρλγ (λ;µ
2
F ) . (3.152)

Comparing these values with λSat.(Q2,W ), allows to determine whih ontribution will

Total WW genuine AS

〈λ〉00 (µ2
F ) ∼ 3.7 x x

3π2

8
≈ 3.7

〈λ〉11 (µ2
F (1 GeV

2)) 6.3 8.7 3.2

27π2

32
≈ 8.3

〈λ〉11 (µ2
F (10 GeV

2)) 7.3 8.5 3.5 ≈ 8.3

Table 3.3: Average values of 〈λ〉 = 〈r Q〉 for the di�erent ontributions to the radial distri-

bution for two values of µ2
F (Q

2).

dominate when onvoluted with the dipole ross-setion. We an also give an estimation, see

tab. 3.4, of the perentages Nλρλγ
of dipoles for a given distribution that are in the bandwidth

of the dipole ross-setion,

Nλρλγ (Q
2,W ) =

∫ ∞

λSat.(Q2,W )

dλPλρλγ (λ) . (3.153)

AS

N00(1, 90) 70%

N00(10, 90) 10%

N11(1, 90) 90%

N11(10, 90) 35%

Table 3.4: Estimation of the perentages of dipoles that have sizes above the saturation sale

2R0(x).
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As expeted, the more the virtuality Q is high, the weaker is the overlap between the

dipole ross-setion bandwidth with the distributions leading to a dereasing Nλρλγ with Q2
.

The fat that the Nλρλγ 's vary from ∼ 90% to ∼ 10% on the range Q2 ∈ [Q2
b , Q

2
a], indiates

that the dipole ross-setion is sanning the dipoles distributions with a high sensitivity. This

means that the result is very sensitive to the dipole ross-setion σ̂(x, r) and to the radial

distributions Pλρ,λγ (r, Q
2;µ2

F ) pro�les.

It is interesting to get information on the longitudinal fration of momentum dependenes

of the overlaps of the wave funtions. In other words, do we get more symmetri jet (y ∼
ȳ ∼ 1

2
) or aligned jet (y ∼ 1 or ȳ ∼ 1) on�gurations? The overlaps of the wave funtions

are given in �gs. 3.23, 3.24. We restrit ourselves to the study of the AS ase. We an
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Figure 3.23: Pro�le of the overlap of the wave funtions for the γ∗L → ρL transition as funtion

of y and λ.

see that we have a symmetri on�guration for the γ∗L → ρL transition while the γ∗T → ρT

transition involves more aligned jet on�gurations. Note that the aligned jet on�gurations

are important for large values of λ and the osillations for these large λ−values in the �g. 3.24

are surely due to numerial instabilities. For �xed λ, the y−shape of the overlap is in part

due to the shape of the DAs. It is then good to remind that the osillatory shape of the DAs

is due to the fat that the onformal expansion is trunated up to a given onformal spin

[142℄.

In �gs. 3.25 and 3.26 are respetively shown the produt of the dipole ross-setion with

the distributions P00 and P11. The integrands of T00 and T11 are globally lose to the satura-

tion radius r ∼ 2R0(x) and the peaks are moving on larger dipole sizes when Q2
dereases.

These plots are giving an important information about the k⊥−behavior of the integrands.

Indeed the dipole size r is the Fourier onjugate of the momentum k⊥ meaning that the

dominant k⊥ are of the order 1/r, with r the size orresponding to the maximal value of

the integrands shown in �gs. 3.25 and 3.26. We an see that the range of k⊥that gives a

signi�ant ontribution to the amplitude is of order 1/R0(x) for large Q
2
and of order Q for

Q ∼ 1/R0(x). This behavior indiates that within our assumptions, the proess is dominated
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Figure 3.24: Pro�le of the overlap of the wave funtions for the γ∗T → ρT transition as a

funtion of y and λ.

by some e�etive sale k⊥ ontained in the range [Qs, Q].
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Figure 3.25: The normalized integrand of T00, i.e. P00(r, Q
2, µ2

F ) σ̂(x, r). The Total integrands

at µ2
F (Q

2) for Q2 = 1 GeV

2
(blue long-dashed line) and Q2 = 10 GeV

2
(red solid line), and

the AS integrands for Q2 = 1 GeV

2
(blue dot-dashed line) and Q2 = 10 GeV

2
(red dashed

line) integrands of T00 for W = 90 GeV.

3.7.2 Comparison of overlaps

The overlaps we have onsidered above involve the ρ−meson DAs. Let us ompare our model

for the wave funtion overlaps to two other models,

• the "Boosted Gaussian" (BG) model [118℄,
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Figure 3.26: The Total ontributions at µ2
F (Q

2) for Q2 = 1 GeV

2
(blue long-dashed line)

and Q2 = 10 GeV

2
(red solid line), and the AS ontributions for Q2 = 1 GeV

2
(blue dot-

dashed line) and Q2 = 10 GeV

2
(red dashed line) to the normalized integrands of T11, i.e.

P11(r, Q
2, µ2

F )σ̂(x, r), for W = 90 GeV.

• the "Gaus-LC" model [74℄.

The ρ−meson wave funtions are separated in spinor parts and salar parts φT and φL,

Ψρ

hh̄,λρ=±1(y, r) = ±
√

2Nc
1

yȳ
{ie±iθr [yδh,±δh̄,∓ − ȳδh,∓δh̄,±]∂r (3.154)

+mfδh,±δh̄,±}φT (y, r) ,

Ψρ

hh̄,λρ=0
(y, r) =

√

Ncδh,−h̄

[

mρ + δ
m2

f −∇2
r

mρ yȳ

]

φL(y, r) . (3.155)

The salar parts read

φGauss-LC

T (y, r) = NT (y ȳ)2 e
− r2

2R2
T , (3.156)

φGauss-LC

L (y, r) = NL y ȳ e
− r2

2R2
L , (3.157)

φBGL,T (y, r) = NL,T y ȳ exp

(

−
m2

fR
2
L,T

8yȳ
− 2yȳr2

R2
L,T

+
m2

fR
2
L,T

2

)

. (3.158)

We follow here the onventions and take the values for the parameters of ref. [76℄. The values

of the parameters are given in tab. 3.5. The overlaps with the virtual photon wave funtion

Model NT R2
T GeV

−2 NL R2
L GeV

−2 fT
ρ

Gaus-LC 4.47 21.9 1.79 10.4 fρ

Boosted Gaussian 0.911 0.853 12.9 R2
L 0.182

Table 3.5: Parameters of the "Gaus-LC" and the "Boosted Gaussian" models taken from

ref.[76℄, for Mρ = 0.776 GeV, fρ = 0.156 GeV, mf = 0.14 GeV and with fL
ρ = fρ .
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are

∑

h,h̄

ΨρT ∗
h,h̃

(y, r)Ψ
γ∗T
h,h̃

(y, r) ∝

m2
fK0(µr)φT (y, r)− (y2 + ȳ2)µK1(µr)∂rφT (y, r) , (3.159)

∑

h,h̄

ΨρL∗
h,h̃

(y, r)Ψ
γ∗L
h,h̃

(y, r) ∝

yȳK0(µr)

(

mρφL(y, r) + δ
m2

f −∇2
r

mρyȳ
φL(y, r)

)

, (3.160)

with δ = 0 for the Gaus-LC model and δ = 1 for the BG model. The longitudinal and

transverse radial distributions thus read

PL,T (r) =
1

NL,T

r

∫

dy
∑

h,h̄

Ψ
ρL,T ∗
h,h̃

(y, r)Ψ
γ∗L,T

h,h̃
(y, r) , (3.161)

where the fators NL,T normalize the distributions PL,T (r). The omparison of our results
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Figure 3.27: The Gauss-LC (green, long dashed), BG (blue, dot-dot-dashed), Total (red,

solid) and AS (red, dashed) radial distributions for the γ∗L → ρL transition (top) and for the

γ∗T → ρT transition (bottom), vs r for Q2 = 1 GeV

2
(left) and Q2 = 10 GeV

2
(right), as

well as the dipole ross-setion σ̂(x, r) resaled by the fator 5σ0 for W = 90 GeV (blak,

dot-dashed).

with the phenomenologial models "Gaus-LC" and "BG" allows to understand the role of

higher twist orretions on the distributions. We see for example in �gs. 3.27(b) that all

the results are quite lose to eah other for Q2 = Q2
a, leading all to a good desription of
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the data. For Q2 = Q2
b , we see in �g. 3.27(a) that the distribution P00 spreads more than

the distributions from the two other models. The di�erene is ertainly due to higher twist

orretions whih should be needed for suh small virtualities. In �g. 3.27(d) the overlaps

are in good agreement for large dipoles in the bandwidth of the ross-setion, whih means

that higher twist orretions are washed out by the dipole ross-setion. At small Q2
, we see

in �g. 3.27() that the hoie µ2
F ∼ Q2

allows to get loser from the Gaus-LC an BG models

ompared to the AS result. Note that the higher twist orretions would play also a role on

the normalizations Nλρλγ values.

3.8 Disussion

We have presented a phenomenologial model for the heliity amplitudes and the polarized

ross-setions of the di�rative ρ−meson eletroprodution. The x−dependene of our pre-

ditions is enoded in the dipole ross-setion model while the Q2−dependene omes from

the twist 2 and twist 3 alulations of the γ∗ → ρ impat fators. Finally the t−dependene of
the di�erential ross-setion is taken from the more reent �ts of HERA data. This model does

not have free parameter as the dipole ross-setion model we use is ompletely determined by

the DIS struture funtions. The results have a weak dependene in the fatorization sale

hoie. As expeted from many studies (see for example [113℄ where it is argued that pQCD

treatment should be valid for Q2 & 20 − 30 GeV

2
), the model mathes the data at large

Q2
and the proess an be desribed in terms of pQCD. Two di�erent e�ets ould generate

the disrepany with the data, the skewness e�ets whih are not inluded in our study as

we took the dipole ross-setion from inlusive proesses, and the higher twist e�ets in the

ρ−meson fatorization. As our preditions are in good agreement with the data at large Q2

where higher twist orretions an be negleted, we an expet that skewness e�ets does

not hange dramatially the preditions. Indeed, the skewness is expeted to beome large

for large Q2/m2
ρ ratio and our preditions agree with data for large Q2

whih indiates that

these e�ets are negligible. Our guess is then that the higher twist orretions should be

the dominant orretions to our treatment and thanks to HERA data we an identify the

virtuality Q2min ∼ 5 GeV

2
where the higher twist orretions beome important. The fat

that this sale is larger than the saturation sale Q2
s(x) ∼ 1 GeV

2
, indiates that we annot

yet get information on the genuine saturation regime beause of higher twist orretions.

The t−dependene of the polarized ross-setions inludes the ontributions of the other

heliity amplitudes that violate the SCHC. The study of the t−dependene of the impat

fators would be nie in order to ombine the results of dipole models with impat parameter

dependene [85, 76℄ as the DVMP allows to probe the proton shape [145℄, in partiular

through loal geometri saling [173, 174℄.

The next-to-leading order e�ets - both on the evolution and on the impat fator - should

be studied, sine it is now known that both may have an important phenomenologial e�et

[175, 176, 177, 178, 179℄.
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On the experimental side, the future Eletron-Ion Collider [180℄ and Large Hadron Ele-

tron Collider [181℄ with a high enter-of-mass energy and high luminosities, as well as the

International Linear Collider [182, 183, 184℄ will hopefully open the opportunity to study in

more detail the hard di�rative prodution of mesons [185, 186, 175, 187, 176, 188, 177, 189℄.



Conlusions

We have presented di�erent tehniques used to unravel the hadroni properties unovered in

exlusive proesses. The interesting aspet of the approah we pursued here is that it om-

bines two di�erent shemes to model the ρ−meson interations and the nuleon interations.

The �rst one involves an extended ollinear fatorization approah with regularization of the

end-point singularities by the transverse momenta k⊥ of the t−hannel gluons. It provides

an interesting way to study the moments of the ρ−meson wave funtions. The seond one

involves dipole models and on�rms the fatorization of the interation of olor dipole on�g-

urations with the nuleon target. The extension up to twist 3, involving an additional gluon

whih an take a large amount of energy of the virtual photon, an be interesting in order to

study interations beyond the quark antiquark pair intermediate state approximation.

The new results obtained in this thesis are,

• preditions for the ratios of heliity amplitudes T01/T00 and T11/T00 [18℄ ombining the

twist 2 and twist 3 γ∗ → ρ impat fators with a model of impat fator for the nuleon,

• expressions in impat parameter spae representation for the γ∗L → ρL and γ∗T → ρT

impat fators that are shown to be onsistent with the olor dipole piture [19℄,

• preditions for the heliity amplitudes T00 and T11 as well as for the polarized ross-

setions σL and σT [20℄, ombining the impat parameter representation of the γ∗ → ρ

impat fators with dipole ross-setion models.

While the �rst set of preditions using a nuleon impat fator model depends on one free

parameter, whih is the transverse sale of the nuleon target dynamis M , the seond set of

preditions has no free parameters and is in good agreement with data for large virtualities.

Within this model, we an learn that the qq̄g Fok state plays an important role at the level of

the overlap of the virtual photon and the ρ−meson wave funtions, while it an be negleted

at the level of the heliity amplitude T11 due to the onvolution with the dipole ross-setion.

Many perspetives in order to extend this study are possible. We an make preditions for

the future ollider projets EIC and LHeC. This study o�ers also the perspetive to ombine

higher twist alulations of the vetor meson produtions with impat parameter dependent

dipole models, by extending the kinematis to the non-forward limit t 6= tmin. Indeed the

di�rative prodution of vetor meson is a very good proess to probe the impat parameter

dependene of the dipole-target sattering amplitude and the photon wave funtion is well-

known in the non-forward limit [145℄. Another perspetive would be also to extend this

treatment to the violating s-hannel heliity onserving heliity amplitudes that are measured

at HERA. A higher twist alulation ould be performed to get information on the higher

twist orretions in the model presented in hap. 3 for the low values of Q2
. One ould also

repeat the alulations inluding quark mass e�ets and onsequently hiral odd and hiral

even DAs to get a similar analysis of other vetor mesons suh as the φ−meson. Another

interesting perspetive, whih we have left for a further study, is to relate the ombinations



of DAs that appear in this �rst priniple treatment of the impat fator, to the numerous

models that exist for the ρ−meson wave funtions. It would provide a test for these models

of ρ−meson wave funtions.



Appendix

QED and QCD lagrangians, Feynman rules

In our studies we work at energy sales where we an mostly neglet the weak interation

ontributions ompared to eletromagneti and strong interations. The weak interation

ould ontribute for example through the exhange of a Z0−boson instead of a virtual photon

in e−p ollisions but these kinds of ontributions an be safely negleted in our present study.

We then restrit ourselves to the strong and the eletromagneti interations involving QCD

and QED Lagrangian terms.

Let us reall the Lagrangians and the Feynman rules whih are used all along this thesis,

we hoose to follow the onventions of the Peskin and Shroeder book [190℄.

QED Feynman rules

Let us onsider the QED lagrangian for a theory with only eletron, of eletri harge e =

− |e|, and photon �elds. The generalization of the following Lagrangian terms and Feynman

rules for fermions with eletri harge Q |e| is straightforward and onsists in replaing e →
Q |e|. The ovariant derivative reads

Dµ = ∂µ + ieAµ (3.162)

with Aµ the gauge �eld of the photon.

The abelian Yang-Mills Lagrangian in the ovariant gauge reads

LQED = −1

4
(Fµν)

2 − 1

2 ξ
(∂µAµ)

2 + ψ̄(i /D −m)ψ (3.163)

where Fµν = ∂µAν − ∂νAµ is the �eld strength tensor of the photon, the term − 1
2 ξ

(∂µAµ)
2

is the gauge �xing term, where ξ is an arbitrary �nite number. The hoies to �x ξ = 0 and

ξ = 1 orrespond respetively to the Landau and the Feynman gauges. The lagrangian an

be deomposed in:

• the photon kinemati term,

−1

4
(Fµν)

2 − 1

2 ξ
(∂µAµ)

2 , (3.164)

• the eletron kinemati term,

ψ̄(i /∂ −m)ψ , (3.165)

• the interation term,

−ψ̄(eAµ)ψ . (3.166)



This leads to the following Feynman rules for the propagators of the photon and the eletron,

PSfrag replaements

µ ν

p

−i
p2 + iε

[

gµν − (1− ξ)
pµpν
p2

]

, (3.167)

p

PSfrag replaements

i

/p−m
, (3.168)

and for the vertex

PSfrag replaements

µ

− ieγµ . (3.169)

The external lines of the Feynman diagrams for �elds of fermions and photons are re-

spetively given by the spinors u(s)(p) for partiles and v(s)(p) for antipartiles of spin s and

momentum p and polarization vetors ελ(p) with λ the polarization,

inoming fermion

PSfrag replaements

p
u(s)(p)

outgoing fermion

PSfrag replaements

p
ū(s)(p)

inoming antifermion

PSfrag replaements

p

v̄(s)(p)

outgoing antifermion

PSfrag replaements

p

v(s)(p)

inoming photon
PSfrag replaements

p

µ
ε
(λ)
µ (p)

outgoing photon

PSfrag replaements

p

µ
ε
∗(λ)
µ (p) .

(3.170)

whih omes from the projetion of the free �elds on the inoming and outgoing states.



QCD Lagrangian

The strong interation is desribed by QCD whih is a loal gauge �eld theory based on the

non-abelian SU(3)-olor symmetry

1

, involving quarks, antiquarks and gluons as elementary

onstituents of the hadroni matter. The quarks and the antiquarks belong to the funda-

mental representation of the SU(N)-olor group and are arrying a olor harge. They ouple

with the N2 − 1 gauge boson �elds (gluons) of SU(N)-olor Aµata that belong to the adjoint

representation of SU(N), {ta}a=1..N2−1 being the generators of SU(N). The matries ta are

traeless hermitian N × N matries. Note that the gluons are arrying olor harges of the

adjoint representation whih means that ontrary to the abelian ase of QED where the pho-

tons do not are an eletri harge, the gluons an interat between themselves. This fat

will lead to new terms in the Yang-Mills lagrangian of QCD ompared to the one of QED.

The generators ta verify the Lie algebra struture relation

[ta, tb] = i fabc tc , (3.171)

where fabc
are the struture onstants whih are ompletely antisymmetri under the ex-

hange of the indies a, b, c. The �eld strength tensor for the gluon �elds is given by,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + g fabcA

b
µA

c
ν , (3.172)

and the ovariant derivative reads

Dµ = ∂µ − igtaAa
µ . (3.173)

In the ovariant gauge the Yang-Mills QCD Lagrangian reads

L = −1

4
F a
µνF

aµν − 1

2ξ
(∂µA

µ
a)

2 + ψ̄(iγµDµ −m)ψ + c̄� c+ g∂µc̄bfbcaA
a
µcc , (3.174)

where the �elds denoted c are the �elds of the Fadeev Popov ghosts that are introdued to

represent the funtional determinant that appears when inserting in the Lagragian the gauge-

�xing ondition. These �elds are not assoiated to physial partiles as they are Grassmann

�elds, i.e. they antiommute as fermioni �elds, but in the same time they are salar �elds,

i.e. bosons of spin zero. As a onsequene they are appearing only when omputing loops.

The Feynman rules in the ovariant gauge are

1

We work from now with N olors instead of 3 in order to keep more general formulas.



PSfrag replaements

i j

p

i

/p−m
δij

a b

p

PSfrag replaements

−i
p2 + iε

[

gµν − (1− ξ)
pµpν
p2

]

δab

a b

p

PSfrag replaements

−iδab
p2 + iε

i j

PSfrag replaements

a, µ

igγµtaij
PSfrag replaements

a, ν1

b, ν2 c, ν3

k1

k2 k3
gfabc [gν1ν2(k1 − k2)

ν3 + δν2ν3(k2 − k3)
ν1 + δν1ν3(k3 − k1)

ν2 ]

PSfrag replaements

a, ν1

b, ν2

c, ν3

d, ν4
−ig2

[

fabef cde (gν1ν3gν2ν4 − gν1ν4gν2ν3)

+facef bde (gν1ν2gν3ν4 − gν1ν4gν2ν3)

+fadef bce (gν1ν2gν3ν4 − gν1ν3gν2ν4)
]

b c
p

PSfrag replaements

a, µ

−gfabcpµ

where the dotted lines are the Fadeev-Popov ghosts.

In this thesis we work in most of the ases in the light-one gauge instead of the ovariant

gauge. Let us de�ne �rst the general ase of axial gauge where the gauge �xing term is given

by

L
gauge �x.

= − 1

2ξ
(nµAa

µ)
2 , (3.175)

with n an arbitrary �xed vetor. In this gauge there is no ghost but the prie to pay is that

the gluoni propagator Dab
µν(p) expression is more ompliated

Dab
µν(p) =

−iδab
p2 + iǫ

(

gµν −
nµpν + nνpµ

n · p +
ξp2 + n2

(n · p)2 pµpν
)

. (3.176)

The light-one gauge orresponds to the hoie ξ = 0 and n2 = 0, i.e. n is a light one vetor.



In this ase the gluoni propagator simpli�es in

Dab
µν(p) =

−iδab
p2 + iǫ

(

gµν −
nµpν + nνpµ

n · p

)

, (3.177)

whih veri�es, nµD
µν(p) = 0 and the on-shell transversity ondition when p2 = 0, pµD

µν(p) =

0. Note that the o�-shell transversity ondition appears learly when writing Dab
µν(p) as

Dab
µν =

−i
p2 + iǫ

(

g⊥µν − p2
nµnν

(p · n)2
)

, (3.178)

where are appearing the transverse polarizations of the gluons

g⊥µν = −
2
∑

λ=1

ε∗(λ)µ ε(λ)ν .
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