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Résumé

Cette thèse porte sur le 
al
ul des amplitudes d'héli
ités de la leptoprodu
tion di�ra
tive

ex
lusive du méson ρ dans la limite de Regge perturbative au-delà du twist dominant. La


ompréhension de 
e pro
essus et autres pro
essus ex
lusifs en terme d'intéra
tions entre

les 
onstituents fondamentaux de la QCD, 
onstitue un enjeu majeur pour 
omprendre la

stru
ture des hadrons. L'appro
he suivie par le modèle présenté i
i est basée d'une part sur

la kT−fa
torisation à petits x, 
'est-à-dire dans la limite des hautes énergies dans le 
entre

de masse W ∼ √
s et d'autre part sur la fa
torisation 
olinéaire du méson ρ dans la limite

des hautes virtualités Q du photon virtuel intéragissant ave
 le nu
léon.

Dans l'appro
he de la kT−fa
torisation, l'amplitude est s
indée en deux piè
es prin
ipales,

le fa
teur d'impa
t 
orrespondant à la transition du photon virtuel au méson ρ (γ∗(λγ) →
ρ(λρ)) et le fa
teur d'impa
t du nu
leon 
ible. Ces deux fa
teurs d'impa
ts intéragissent

par l'é
hange d'un poméron dans la voie t qui 
ontient toute la dépenden
e en énergie du

pro
essus. Le poméron est dé
rit à l'ordre dominant par l'é
hange de deux gluons et à l'ordre

dominant en ln(1/x) ave
 x ∼ Q2/W 2
par l'é
hange d'une é
helle de gluons dans le voie t.

La haute virtualité du photon justi�e l'appli
ation de la QCD perturbative pour 
al
uler

le fa
teur d'impa
t γ∗(λγ) → ρ(λρ) en utilisant la fa
torisation 
olinéaire pour séparer les


ontributions dominantes au twist 2 et au twist 3. Cette appro
he a été employée par

Ginzburg, Pan�l et Serbo en 1985 pour 
al
uler les termes de twist 2 des fa
teurs d'impa
ts

des transitions où le photon virtuel est polarisé soit longitudinalement soit transversalement

et où le méson ρ est polarisé longitudinalement. Ces transitions sont dénotées respe
tivement

"γ∗L → ρL" et "γ∗T → ρL". L'appro
he a ensuite été poussée au twist 3 en 2010 par Anikin,

Ivanov, Pire, Szymanowski et Wallon, pour obtenir le terme de twist 3 du fa
teur d'impa
t de

la transition "γ∗T → ρT " où le photon virtuel et le méson ρ sont polarisés transversalement.

Ces résultats sont invariants de jauge et font apparaître les ditributions d'amplitudes du

méson ρ paramétrisant la produ
tion du méson à partir des états de Fo
k intermédiaires

quark-antiquark et quark-antiquark-gluon.

Dans 
ette thèse nous présentons un premier modèle se basant sur 
es résultats pour les

fa
teurs d'impa
ts, pour dé
rire les rapports d'amplitudes d'héli
ités asso
iés à 
e pro
essus

en utilisant un modèle phénoménologique pour le fa
teur d'impa
t du nu
léon 
ible. On utilise

aussi un modèle pour les distributions d'amplitudes du méson ρ basé sur le développement


onforme de 
elles-
i. Les résultats de 
e modèle sont ensuite 
omparés aux données de

HERA et nous dis
utons les résultats obtenus.

Une se
onde appro
he est présentée où les fa
teurs d'impa
ts aux twist 2 et 3 des tran-

sitions γ∗L → ρL et γ∗T → ρT sont redérivés dans la représentation des paramètres d'impa
ts.

On montre que 
es résultats sont équivalents à 
eux obtenus dans l'appro
he dans l'espa
e

des impulsions et permettent d'avoir une image en terme des 
on�gurations de dip�les de


ouleurs 
ontenues dans l'état partonique intermédaire de la transition γ∗ → ρ. Les ampli-

tudes d'héli
ités ainsi obtenues se dé
omposent en une 
onvolution entre le re
ouvrement des

fon
tions d'onde du photon virtuel et du méson ρ 
al
ulé dans l'approximation 
olinéaire,



ave
 l'amplitude d'intéra
tion d'un dip�le de 
ouleur ave
 le nu
léon 
ible. Cette dernière

amplitude est universelle et déterminée à partir d'autres pro
essus tels que le pro
essus de

di�usion profondément inélastique. Nous obtenons ainsi une expression pour les amplitudes

d'héli
ités où nous pouvons 
ombiner des modèles d'amplitude de di�usion dip�le-nu
léon

ave
 le re
ouvrement des fon
tions d'onde issus des 
al
uls de fa
torisation 
olinéaire aux

twists 2 et 3. Nous présentons les prédi
tions, 
omparées aux données de HERA, pour les

se
tions e�
a
es polarisées de la produ
tion di�ra
tive ex
lusive du méson ρ obtenues à

partir des amplitudes d'héli
ités. Les prédi
tions sont en a

ord ave
 les données pour des

virtualités supérieures à 5-7 GeV

2
. Nous présentons une analyse de 
es résultats, notamment

nous dis
utons le r�le des 
orre
tions de twists supérieurs et nous 
omparons nos résultats

ave
 des re
ouvrements de fon
tions d'onde obtenus par d'autres modèles existants.

Mots-
lefs: Pro
essus ex
lusifs, Chromodynamique Quantique perturbative, Ampli-

tudes d'héli
ités, Fa
torisation 
olinéaire, kT−fa
torisation, Dip�les de 
ouleurs.



Abstra
t

This thesis, entitled "Hard ex
lusive pro
esses beyond the leading twist", deals with the


omputation of the heli
ity amplitudes of the ex
lusive di�ra
tive ρ−meson leptoprodu
tion

in the perturbative Regge limit beyond the leading twist. The understanding of su
h ex
lusive

pro
esses in terms of the elementary 
onstituents of QCD is a serious 
hallenge to understand

the hadroni
 stru
ture. The approa
h we follow here, �rst relies on the kT−fa
torization in

the small−x regime, i.e. when there is a high energy W ∼ √
s in the 
enter of mass of

the photon-proton system. It se
ondly relies on the 
ollinear fa
torization s
heme for large

virtualities Q of the photon, to fa
torize the ρ−meson soft part of the pro
ess.

Within the kT−fa
torization approa
h, the amplitude splits in two main pie
es, the

γ∗(λγ) → ρ(λρ) impa
t fa
tor, with λγ and λρ the polarizations of the virtual photon and

the ρ−meson, and the nu
leon impa
t fa
tor. The impa
t fa
tors are intera
ting with the

ex
hange of a pomeron in the t−
hannel whi
h 
orresponds to the ex
hange of two t−
hannel
gluons at leading order and a ladder of gluons at leading log(1/x) order, with x ∼ Q2/W 2

.

At high virtualities of the photon, the perturbative QCD te
hniques are justi�ed to 
om-

pute the γ∗(λγ) → ρ(λρ) impa
t fa
tor using the 
ollinear fa
torization s
heme to get the

twist 2 and twist 3 terms. This approa
h was �rst used in 1985 by Ginzburg, Pan�l and

Serbo to 
ompute the twist 2 γ∗L → ρL and γ∗T → ρL impa
t fa
tors. In 2010 the twist 3

term of the γ∗T → ρT impa
t fa
tor was derived by Anikin, Ivanov, Pire, Szymanowski and

Wallon. The results obtained are gauge invariant and they involve the twist 2 and twist 3

distribution amplitudes of the ρ−meson that parameterize the meson produ
tion from the

quark antiquark and the quark antiquark gluon intermediate Fo
k states.

In this thesis we present a model based on these impa
t fa
tor results to get predi
tions

for the ratios of heli
ity amplitudes asso
iated to the ρ−meson di�ra
tive leptoprodu
tion

using a phenomenologi
al model for the proton impa
t fa
tor. We also use a model for

the distribution amplitudes based on the 
onformal expansion. The predi
tions are then


ompared to HERA data and we dis
uss the results of this approa
h.

A se
ond approa
h is presented where the twist 2 and twist 3 impa
t fa
tors are derived

in the impa
t parameter representation. We show that the results are equivalent to the

ones obtained in the momentum spa
e representation. The results in impa
t parameter

representation give information about the dipole 
on�guration 
ontent of the intermediate

state involved in the γ∗ → ρ impa
t fa
tors. As a result of this approa
h, the heli
ity

amplitudes fa
torize as the 
onvolution of two parts, the �rst one is the overlap of the virtual

photon and the ρ-meson wave fun
tions 
omputed in the 
ollinear approximation and the

se
ond one is the dipole-target s
attering amplitude. The dipole-target s
attering amplitude

is well determined on other pro
esses su
h as deep inelasti
 s
attering pro
esses. Combining a

model for the dipole 
ross-se
tion with the results obtained within the 
ollinear fa
torization

s
heme for the overlap of the wave fun
tions, we get a model for heli
ity amplitudes and the

longitudinal and transverse polarized 
ross-se
tions. We 
ompare our predi
tions to HERA

data and get a good agreement for virtualities of the photon larger than Q2 ∼ 5 − 7 GeV

2
.



We dis
uss the results, in parti
ular the role of higher twist 
orre
tions and we 
ompare our

results with the overlaps of wave fun
tions obtained from other models that exist within the


olor dipole pi
ture.

Keywords: Ex
lusive pro
esses, Perturbative quantum 
hromodynami
s, Heli
ity am-

plitudes, Collinear fa
torization, kT−fa
torization, Color dipoles.
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Introdu
tion

In
lusive pro
esses, su
h as the deep inelasti
 s
attering (DIS) pro
esses have provided a

lot of information about the nature of strong intera
tions and the nu
leon stru
ture. These

pro
esses �rst des
ribed by the naive parton model proposed by Feynman and Bjorken [1, 2℄

to explain the approximate Bjorken s
aling observed at SLAC in late 60's, allowed to disen-

tangle the hadroni
 stru
ture as made of elementary asymptoti
ally free 
onstituents 
alled

"partons". The mysterious fa
ts that in a strongly bound hadroni
 state the partons are

a
ting like free and the fa
t that quarks without their 
olor degrees of freedom are violating

the Pauli ex
lusion prin
iple were solved with the apparition of the quantum 
hromodynam-

i
s (QCD) to des
ribe the strong intera
tions. Indeed, QCD whi
h is a non-abelian gauge

quantum �eld theory based on the SU(3) 
olor group, is an asymptoti
ally free theory given

the number of �avors we know, as demonstrated in 1973 by Wil
zek, Politzer and Gross

[3, 4, 5℄. This is due to the non-abelian 
hara
ter of QCD and the running of αs is very well

reprodu
ed by the data.

Another important feature of QCD is the 
on�nement of quarks and gluons into 
olorless

hadroni
 states whi
h makes the dire
t observation of partons as external parti
les impossible.

The experimental eviden
e for gluons at PETRA in 1979 
omes from 3-jet events, due to an

energeti
 gluon radiation qq̄ → qq̄g in the hard sub-pro
ess e−e+ → qq̄. The 
on�nement of

the emitted quark antiquark and gluon leads to the observation of 3-jet events. These events

are also used to determined the 
oupling 
onstant of the strong intera
tion αs.

Many te
hniques exist to study the QCD properties. The perturbative QCD (pQCD)

approa
h is one of them and it relies on the fa
torization of a pro
ess into a hard part where

large energy s
ales are involved and a soft part involving the long distan
e dynami
s of the

partons inside the hadrons. The presen
e of a hard s
ale Q in the 
ollision is needed to justify

the perturbative expansion in αs(Q) of the hard part and the fa
torization into hard and soft

pie
es. Under kinemati
 assumptions, one 
an derive pQCD evolution equations su
h as the

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP), Efremov-Radyushkin-Brodsky-Lepage

(ERBL) or Balitsky-Fadin-Kuraev-Lipatov (BFKL) equations, for the soft parts but pQCD


annot provide information of non-pertubative aspe
ts of soft parts. Other te
hniques 
an

supply information on non-perturbative quantities su
h as latti
e QCD, e�e
tive �eld theories

or QCD sum rules te
hniques.

In
lusive pro
esses have also provided a deep understanding of the stru
ture of the hadrons

and the partoni
 distribution fun
tions (PDFs), whi
h are known on a wide kinemati
 range.

They have been the testing ground of theoreti
al innovations su
h as the operator produ
t

expansion (OPE) formalism �rst introdu
ed in parti
le physi
s by Wilson in the 70's [6℄ and

then applied to DIS [7, 4℄. However in
lusive pro
ess observables give only information on

the forward kinemati
s where there is no momentum transfered in t−
hannel. With the

in
reasing improvement of the experiments, the measurements on ex
lusive pro
esses, where

one is interesting to a spe
i�
 �nal state, have begun to bring additional information on the

hadroni
 stru
ture. For example, the generalized parton distributions (GPDs) parameterizing



the nu
leon in the non-forward limit have to take into a

ount not only the x dependen
e

of the partoni
 distributions but also the skewness dependen
e. The ex
lusive pro
esses

su
h as the di�ra
tive produ
tion of ve
tor mesons, or the deep virtual Compton s
attering

(DVCS) have been studied for more than 25 years and are still the subje
t of many studies

and experiments. For our purpose, we should name more parti
ularly the HERA 
ollider


ollaborations H1 and ZEUS as they have provided data for very small values of x and

moderate Q2
, whi
h is the kinemati
 region of interest in this thesis. The low−x physi
s is

an interesting limit of QCD. Alternative approa
hes from the usual 
ollinear fa
torization

s
heme are based on kT−fa
torization, su
h as the dipole models by Nikolaev, Zakharov [8, 9℄

and Mueller [10, 11℄ or the CGC formalism [12, 13, 14, 15, 16, 17℄. Su
h approa
hes are used

to understand the transition from a diluted to a dense partoni
 system due to the emission

of gluons by Bremsstrahlung whi
h takes pla
e in the small−x limit. This transition poses

the interesting question of saturation e�e
ts inside the hadrons.

In this thesis we developed a model for the di�ra
tive ρ−meson produ
tion in the per-

turbative Regge limit, i.e. at small x and at high enough Q2
to use pQCD te
hniques. This

approa
h will be presented in 
hapter 2 and 
hapter 3, while the �rst 
hapter will be devoted

to introdu
e the main tools of this treatment on a DIS pro
ess.

In the 
hapter 1, we will introdu
e basi
s of di�erent te
hniques that are used in this thesis.

We will present the kT−fa
torization on the simplest examples to explain how the amplitudes


an be fa
torized in the high energy limit, in sub-pro
esses 
alled "impa
t fa
tors". Next,

after a brief general introdu
tion to DIS, we will fo
us on a DIS pro
ess to show how these

impa
t fa
tors 
an be interpreted in the language of dipole models. This permits us to dis
uss

the importan
e and di�erent ways of in
orporation into the dipole model of saturation e�e
ts.

In the 
hapter 2, we will present the Light-Cone Collinear Fa
torization (LCCF) s
heme

beyond the leading twist and its appli
ation to the 
omputation of the impa
t fa
torΦγ∗(λγ )→ρ(λρ)

of the transition of the virtual photon of heli
ity λγ into a ρ−meson of heli
ity λρ. In this

approa
h, the soft part asso
iated to the produ
tion of the ρ−meson is parameterized by the

distribution amplitudes (DAs) of the ρ−meson. We will dis
uss the energy s
ale dependen
e

of the DAs and the QCD sum rule te
hnique to get non-perturbative parameters that enters

the DAs. Finally we will present a phenomenologi
al model to get predi
tions on heli
ity

amplitudes of the di�ra
tive ρ−meson produ
tion at HERA. This model will naturally lead

us to the next 
hapter topi
.

In the 
hapter 3, we will 
onne
t the impa
t fa
tor Φγ∗(γ)→ρλρ
obtained in the previous


hapter in the 
ollinear approximation, to the 
olor dipole pi
ture. From this result, one 
an

get phenomenologi
al models by 
ombining our results for the impa
t fa
tors with dipole

models that are already known from DIS analysis and that 
ontains the x−dependen
e
of the heli
ity amplitudes. These dipole models in
lude the saturation dynami
s of the

nu
leon target. We 
ompare the predi
tions of the polarized 
ross-se
tions of the ρ−meson

ele
troprodu
tion with HERA data and dis
uss our results.

In the 
hapters 2 and 3, some parts are based on our own 
ontributions like the phe-

nomenologi
al model [18℄ at the end of the 
hapter 2, and the 
hapter 3 whi
h is based on



the studies [19℄ and [20℄.





Chapter 1

High energy QCD

In this 
hapter we present basi
s of the 
on
epts and tools ne
essary to ta
kle the phe-

nomenology of hadroni
 rea
tions in the small−x physi
s.

After an introdu
tion on the Regge theory and the pomeron traje
tory se
. 1.1, we explain

on the quark-quark s
attering the kT−fa
torization pro
edure, �rst in the 
ase of one gluon

ex
hanged in t−
hannel and then in the 
ase of a 
olor singlet ex
hange (two gluon ex
hange)

in se
. 1.2. We show how the impa
t fa
tors emerge from this pi
ture and brie�y dis
uss the

resummation at leading log(1/x) of the gluon ladder ex
hange in the t−
hannel.
We present some basi
s of DIS pro
ess in se
. 1.3, and show how the amplitude 
an be

fa
torized in the dipole pi
ture into the photon wave fun
tions and the dipole 
ross-se
tion.

We present �nally di�erent models of dipole 
ross-se
tion that in
lude the saturation e�e
ts,

as well as the equations that governs the energy dependen
e of the dipole 
ross-se
tion in the

diluted and dense regimes.

1.1 Introdu
tion

1.1.1 Postulates and 
onsequen
es

Before QCD was applied to des
ribe the strong intera
tions, physi
ists relied on the basi


postulates of the Lorentz invarian
e, the unitarity and the analyti
ity of the S-matrix in

order to get information on the hadroni
 s
attering.

Lorentz invarian
e of the S−matrix implies that the S−matrix element 
orresponding to

the pro
ess

a(pA, λA) + b(pB, λB) → c(pC , λC) + d(pD, λD) , (1.1)


an be expressed in terms of Lorentz invariant quantities su
h as the Mandelstam variables

and the masses of the parti
les. For the parti
ular 
ase of the pro
ess (1.1) where two

parti
les in the initial state give two parti
les in the �nal state, the s
attering amplitude


an be expressed in terms of the Mandelstam variables s = (pA + pB)
2
, t = (pA − pC)

2
and

u = (pA − pD)
2
whi
h satisfy

s+ t+ u =
∑

i

m2
i , (1.2)

5
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where mi denotes the mass of the parti
le i.

The unitarity 
ondition of the S−matrix

S†S = SS† = 1 , (1.3)

expresses the fa
t that the probability for an initial state to give any �nal state is equal to

one. Let us 
onsider an in-state |a〉 and an out-state |b〉 whi
h are respe
tively states of free

parti
les at the times t→ −∞ and t→ ∞. The 
orresponding S-matrix element is

Sab = 〈b| a〉 . (1.4)

Let us introdu
e now the T−matrix element su
h as S = 1+iT , and the s
attering amplitude

Aab and the 
ross-se
tion σab asso
iated to this pro
ess,

Sab = δab + iTab = δab + i(2π)4δ4(
∑

a

pa −
∑

b

pb)Aab . (1.5)

The 
ross-se
tion σab of the event a→ b is related to the probability of this event to happen,

it is then proportional to the square of the s
attering amplitude,

σab =
1

F

∫

dΠb |Aab|2 , (1.6)

with F the �ux fa
tor and Πb the phase spa
e of the n−body parti
les of the b �nal state.

The �ux fa
tor in the 
ase of the pro
ess (1.1) is given by

F = 2
√

λ(s,m2
A, m

2
B) (1.7)

where λ(s,m2
A, m

2
B) is the standard kinemati
 variable,

λ(s,m2
A, m

2
B) =

(

s− (mA +mB)
2
) (

s− (mA −mB)
2
)

. (1.8)

The expression (1.7) for the �ux fa
tor remains true for the produ
tion of n parti
les in the

�nal state from a two-parti
le initial state. Note that in the large s limit where the masses


an be negle
ted 
ompared to s, the �ux fa
tor is just F = 2s.

The unitarity 
ondition of the S−matrix (1.3) implies then the following 
ondition on the

T−matrix elements

∑

c

(δac + iTac)
(

δcb − iT †cb

)

= δab

i
(

T †ab − Tab

)

=
∑

c

TacT
†
cb , (1.9)

where c is any physi
al state, i.e. the parti
les of this state are on the mass-shell. In terms

of the s
attering amplitudes, using the fa
t that

2iImAab = Aab −A†ab , (1.10)
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the relation (1.9) reads

2ImAab = (2π)4δ4(
∑

a

pa −
∑

b

pb)
∑

c

AacA†cb . (1.11)

This relation has very important 
onsequen
es as it leads to the Cutkosky rules 
.f. se
. 1.1.3

and, in the spe
ial 
ase where one put identi
al in- and out- states, it leads to the opti
al

theorem. The theorem reads

2ImAaa(s, t = 0) = (2π)4δ4(
∑

a

pa −
∑

b

pb)
∑

c

|Aac|2 . (1.12)

As a 
onsequen
e of the opti
al theorem, the total 
ross-se
tion σtot, asso
iated to the pro
ess

"a→ any physi
al state", is given up to a 
oe�
ient by the imaginary part of the amplitude

Aaa(s, t = 0),

2ImAaa(s, t = 0) = Fσtot . (1.13)

The third postulate is the analyti
ity of the S−matrix elements, meaning that the

S−matrix is an analyti
al fun
tion of the Lorentz invariants seen as 
omplex variables. An-

alyti
ity has been shown to be a 
onsequen
e of the 
ausality, whi
h prevents two regions

separated by a spa
e-like distan
e to in�uen
e on ea
h other. Some 
onsequen
es of the

analyti
ity are:

• the 
rossing symmetry of the s
attering amplitudes,

• the dispersion relations whi
h allows to get the real part of the amplitude from the

imaginary part.

The 
rossing symmetry in the 
ase of the two to two parti
le pro
ess (1.1) reads

Aa+c̄→b̄+d(s, t) = Aa+b→c+d(t, s) (1.14)

Aa+d̄→b̄+c(s, u) = Aa+b→c+d(u, s) (1.15)

where b̄, c̄ and d̄ are the antiparti
les asso
iated to b, c and d. In the 
ase where ImA(s, t)

falls to zero when z → ∞, the dispersion relation whi
h relates the amplitude to its imaginary

part is obtained by deforming the integration 
ontour whi
h surround the 
uts,

A(s, t) =
1

π

∫ ∞

s+th

ds′
ImA(s′, t)

s′ − s
+

1

π

∫ s−th

−∞
ds′

ImA(s′, t)

s′ − s
, (1.16)

where sth
+
and sth

−
are the thresholds of parti
le produ
tion along the real positive and real

negative axis. If the asymptoti
 behavior of the integrand when |s| → ∞ is not falling fast

enough then the dispersion relation (1.16) is not valid and should be repla
ed by a subtra
ted

dispersion relation where the integrand is divided by as many fa
tors (s′−s0) as it is ne
essary



CHAPTER 1. HIGH ENERGY QCD 8

to ensure the 
onvergen
e of the integrand with s0 an arbitrary point. For the addition of

one of the fa
tor s′ − s0, the subtra
ted dispersion relation reads

A(s, t) = A(s0, t) +
(s− s0)

π

∫ ∞

s+th

ds′
ImA(s′, t)

(s′ − s)(s′ − s0)
(1.17)

+
s− s0
π

∫ s−th

−∞
ds′

ImA(s′, t)

(s′ − s)(s′ − s0)
.

Note that these relations require the knowledge of the asymptoti
 behavior of the s
attering

amplitudes whi
h is the subje
t of the Regge theory.

These so-
alled "bootstrap" relations, that relate the imaginary part of the amplitude to

the amplitude itself and to the sum of produ
t of other amplitudes due to the analyti
ity

and unitarity postulates, are obtained without for now spe
ifying the underlying quantum

�eld theory and are very general 
onsiderations.

1.1.2 Regge traje
tories and the pomeron inter
ept

In the high energy limit s→ ∞ with �xed t, 
alled the Regge limit, the asymptoti
 behavior

of the amplitude of the pro
ess

a+ b→ c+ d , (1.18)

is 
onne
ted to the angular momentum l of the parti
le ex
hanged in s−
hannel of the 
rossed

hannel pro
ess,

a+ c̄→ b̄+ d . (1.19)

The partial wave expansion of the amplitude of the 
rossed pro
ess (1.19),

Aa+c̄→b̄+d(s, t) =
∑

l=0

(2l + 1)al(s)Pl(1 + 2
t

s
) , (1.20)

allows to de
ouple the 
ontribution given by elementary parti
le of angular momentum l and

mass M ex
hanged in the s−
hannel. The 
rossing symmetry implies that for the pro
ess

a+b→ c+d where the role of the Mandelstam variables are ex
hanged, s↔ t, the amplitude

is essentially given by the resonan
e and takes the form,

Aab→cd(s, t =M2) = Aac̄→b̄d(t =M2, s) (1.21)

= Al(t)Pl(1 + 2
s

t
) =

Gac̄(t)Gb̄d(t)

t−M2
(σt + (−1)l)Pl(1 + 2s/t) ,

where σt is the signature whi
h is 1 for 
rossing even amplitudes and −1 for 
rossing odd

amplitudes, Gac̄(t) is the vertex of the parti
le ex
hanged in the t−
hannel with the external

parti
les. The pro
ess t =M2
is not in the physi
al region of the s−
hannel and in eq. (1.21)

an analyti
al 
ontinuation of the Legendre polynomials in the physi
al region of the pro
ess

(1.18) allows to derive the asymptoti
 behavior of the amplitude of the pro
ess,

Aa+b→c+d(s, t) =
gac(t)gbd(t)

t−M2
sl . (1.22)
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Note that the fa
t that the verti
es Gij do not depend on s at high energy is an universal

feature that we will see also when des
ribing the impa
t fa
tor approa
h in kT−fa
torization
s
heme. The amplitude depends on s only through the parti
les ex
hanged in t−
hannel.

This asymptoti
 behavior violates the unitarity of the theory. Indeed it was proven long

ago by Froissart [21℄ using unitarity and partial wave expansion that hadroni
 
ross-se
tions

has to in
rease slower than ln2(s),

σtot < A ln2(s) ,

with A ∼ 60 mb. This is equivalent to bound the asymptoti
 amplitudes by,

A(s, t) < s ln2(s) ,

whi
h from (1.22) is 
learly violated for l > 1.

The way to solve this problem is to use the Sommerfeld-Watson integral transformation

to express the partial wave expansion. The pole stru
ture in the 
omplex variable l of the

partial wave amplitude Al(t) = A(l, t) will then �x the 
omplex angular momentum of the

resonan
e. The resonan
e angular momentum given by the pole αR(t) of maximal real value

will dominate the asymptoti
 power behavior of the amplitude, this pole is 
alled the Regge

pole and the e�e
tive "resonan
e" asso
iated to this pole, of 
omplex angular momentum

l = αR(t) is 
alled reggeon. The underlying assumption is that poles are simple poles, but

in pra
ti
e logarithms appearing in the perturbation theory 
an gives bran
h 
uts. The pole

αR(t) is a Regge traje
tory and αR(0) the reggeon inter
ept. The traje
tories l = αR(t) are

universal obje
ts that only depends on the quantum numbers of the parti
le ex
hanged in

t−
hannel.
For t < 0, the t−dependen
e of the Regge pole 
an be experimentally obtained by �tting

the energy dependen
e of the s−
hannel amplitudes. As explained above, the reggeon 
an be

seen as resonan
es at t =M2
of angular momentum l. The idea of so-
alled Chew Frauts
hi

plots was then to show the masses of known resonan
es ρ, ω, · · · , as a fun
tion of their angular
momentum. It turns out that the data are aligned on straight-lines and by extrapolating to

the physi
al region t < 0, the straight-lines give a relatively good des
riptions of the data

obtained from experiments, leading to linear Regge traje
tories

αR(t =M2) = αR(0) + α′Rt .

The Regge theory allows to 
omplete the bootstrap relation as it allows to obtain the

asymptoti
 behavior of the amplitude.

Using the opti
al theorem, the s−power like dependen
e of the total 
ross-se
tion is

σtot ∝ ImA(s, t = 0) ∝ sαR(t=0)−1 . (1.23)

It was demonstrated by Pomeran
huk that the 
ross-se
tion vanishes asymptoti
ally in the


ase where there is a 
harge ex
hange in the t−
hannel. A Regge traje
tory with αR(0) > 1


orresponds then to a reggeon that 
arries the va
uum quantum numbers and whi
h is 
alled
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the "pomeron" (for a pedagogi
al review on the pomeron in QCD see [22℄). The pomeron

inter
ept is denoted αP (0). Donna
hie and Landsho� [23℄ have proposed a �t of the total


ross-se
tions for pp and pp̄ 
ollisions as

σtot = Xsǫ + Y s−η ,

where the �rst term 
an be interpreted as the ex
hange of a pomeron while the se
ond term


orresponds to the ex
hange of a reggeon. The best �ts were

σpp
tot = 21.7 s0.08 + 56.1 s−0.45 ,

σpp̄
tot = 21.7 s0.08 + 98.4 s−0.45 .

These �ts highlights the fa
t that the pomeron 
ouplings to the antiproton and the proton

are the same whi
h is due to the fa
t that the pomeron 
arries va
uum quantum numbers.

The value η = 0.45, 
orresponds to the Regge traje
tory 
lose to the one given by the linear

�ts of Chew Frauts
hi plots based on the spe
trum of {ρ, ω · · · } resonan
es.

The pomeron inter
ept αP (0) = 1.08 violates the unitarity bound from the Froissart

theorem but one 
an show that with this value of the pomeron inter
ept, the violation o

urs

only at the Plan
k s
ale.

The quark and gluon 
ontent of the pomeron 
an be studied in di�ra
tive disso
iation

pro
esses where for example in ep 
ollision, the pomeron is seen like a parton of the proton

that intera
ts with the ele
tron to give any �nal state X. This rea
tion is analogous to deep

inelasti
 s
attering where the pomeron repla
es the proton whi
h allows to study its partoni



ontent.

1.1.3 Cutkosky rules

In the 
ase of QED or QCD one 
an 
he
k that the imaginary part of an amplitude A(s, t)

arises when a virtual parti
le goes on-shell due to the iǫ term in the propagator denominators

p2 + iǫ. Bran
h 
uts appear for s real su
h as s > s0 with s0 the threshold where a physi
al

state 
an be produ
ed. Due to analyti
ity we have the relations

ReA(s+ iǫ, t) = ReA(s− iǫ, t) , (1.24)

ImA(s+ iǫ, t) = −ImA(s− iǫ, t) , (1.25)

the dis
ontinuity of the amplitude around the bran
h 
ut along the real axis reads

Dis
sA(s, t) = Limǫ→0(A(s+ iǫ, t)−A(s− iǫ, t)) = 2i ImA(s+ iǫ, t) . (1.26)

It 
an be shown that the dis
ontinuity of the amplitude 
an be obtained by repla
ing in the

propagators

1

p2 + iǫ
→ −2iπδ(p2 −m2) θ(p0) . (1.27)

The θ(p0) ensures that the parti
le has positive energy, i.e. is a physi
al parti
le. For any

diagram the dis
ontinuity 
an be dire
tly obtained by following the so-
alled "Cutkosky

rules" [24℄,
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1. the diagrams must be 
ut in all possible ways su
h that the 
ut propagators 
an be put

on shell simultaneously,

2. the 
ut propagators are repla
ed following eq. (1.27),

3. the dis
ontinuity is given by the sum of all the 
ut diagrams.

We will use these rules in the following parts in order to get the imaginary part of the

amplitudes by 
omputing their dis
ontinuities with the Cutkosky rules.

1.2 S
attering amplitudes in the Regge limit

In this se
tion, we introdu
e the approximations to get the dominant 
ontribution of the

amplitudes in the perturbative Regge limit, using the fa
t that in this limit s/ |t| is very

large. We �rst 
onsider the quark-quark s
attering amplitude with one gluon ex
hange in

the t−
hannel to show the kinemati
s of the dominant 
ontribution in powers of 1/s. Then we


ompute the quark-quark amplitude of a 
olor singlet ex
hange in t−
hannel involving a two
gluon ex
hange in t−
hannel. This example is parti
ularly relevant for hadroni
 pro
esses

in the perturbative Regge limit, as the 
olor singlet ex
hange dominates the 
olorless states

s
attering. We �nally show how the amplitude 
an be fa
torized into the so-
alled "impa
t

fa
tors" and the t−
hannel gluons Green fun
tion. Note that the approa
h presented in this

se
tion, is based on Feynman gauge 
al
ulations and the 
al
ulations beyond the Born order

approximation would be di�erent within another gauge. Of 
ourse, the �nal results for gauge

invariant quantities are gauge independent.

1.2.1 The 
olor o
tet ex
hange

At leading order the s
attering of two quarks in QCD is given by the tree diagram shown in

�g. 1.1, where a gluon 
arrying the 
olor 
harge a is ex
hanged between the two quarks. We

will assume that a hard s
ale justi�es the use of pQCD for example |t| ≫ Λ2
QCD and the fa
t

that s≫ |t|.

PSfrag repla
ements

pA ∼ p1

pB ∼ p2

∆a

Figure 1.1: Quark-quark s
attering amplitude at the tree level with an o
tet ex
hange in

t−
hannel.

We denote respe
tively pA and pB the momenta of the upper quark and lower quark and

mA, mB their masses. The Mandelstam variable SAB = (pA+pB)
2
is large by assumption and
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we 
an negle
t the masses of the quarks and then assume that their momenta pA and pB are

very 
lose to two light-like ve
tors p1 and p2 of opposite dire
tions su
h as SAB ∼ s = 2p1 ·p2,
where s is the large s
ale. We 
an expand pA and pB on this Sudakov basis as,

pA = p1 +
m2

A

s
p2 , pB = p2 +

m2
B

s
p1 ,

SAB = (pA + pB)
2 = m2

B +m2
A + 2pA · pB ∼ 2p1 · p2 = s .

The momentum of the gluon ex
hanged in t−
hannel 
an also be de
omposed on this basis

as,

∆ = αp1 + βp2 + k⊥ . (1.28)

It is 
onventional to use a two-dimensional eu
lidean ve
tor, that we underline (x), to repla
e

the Minkowskian transverse ve
tor x⊥, su
h as x2⊥ = −x2. We will use this 
onvention all

along the manus
ript.

Assuming that the parti
les are on the mass-shell (we negle
t now the masses of the

quarks), one has the two following 
onditions,

(pA −∆)2 = 0 (1.29)

(pB +∆)2 = 0 (1.30)

whi
h lead to

−(1− α)β +
∆2
⊥
s

= 0 , (1.31)

(1 + β)α+
∆2
⊥
s

= 0 . (1.32)

Substituting in eq. (1.32) the expression of β by,

β =
∆2
⊥

s(1− α)
, (1.33)

leads to a se
ond order equation in α,

α2 − α− ∆2
⊥
s

= 0 . (1.34)

The two 
ouples of solutions for α and β up to �rst order in

∆2
⊥

s
are,

α = 1 +
∆2
⊥
s
, β = −1 , (1.35)

and

α = −∆2
⊥
s
, β =

∆2
⊥
s
. (1.36)

The �rst 
ouple of solutions is not relevant as it would imply that t = ∆2 ∼ −s, whi
h
violates our �rst assumption s≫ −t. The se
ond 
ouple of solution gives,

∆ = −∆2
⊥
s
p1 +

∆2
⊥
s
p2 +∆⊥ . (1.37)
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We get then that t = ∆2 ∼ ∆2
⊥ = −∆2

. Note that it justi�es a posteriori that ∆2
⊥/s ∼ t/s


an be negle
ted.

We will now introdu
e another approximation to simplify the vertex expression, 
alled

the eikonal approximation. The upper vertex gives the 
ontribution,

igur(p1 −∆)γµtaij us(p1) , (1.38)

where we put expli
itly the spinor indi
es r, s, of the Dira
 spinors. The spinor ur(p1 −∆)

depends on the ve
tor p1−∆ whi
h is approximately equal to p1 as |β| ∼ |α| ∼ |∆2
⊥| /s≪ 1.

Thus, the upper vertex simpli�es as,

igur(p1)γ
µtaij us(p1) = 2igpµ1δr,st

a
i,j , (1.39)

where we have used the Gordon identity,

ur(p
′)γµus(p) =

1

2m
ūr(p

′) ((p′µ + pµ) + iσµν(p′ − p)ν)us(p) , (1.40)

with m the mass of the fermion and

σµν =
i

2
[γµ, γν ] , (1.41)

for p′ = p = p1, and the normalizations of the spinors ur(p)us(p) = 2mδr,s. This approx-

imation is known as the "eikonal approximation" and 
an be used as long as a soft gauge

parti
le is ex
hanged. Finally, using for the lower vertex the same approximation one gets

for the s
attering amplitude,

iM = ig2(2pµ1)
gµν
∆2

(2pν2)δr1,s1δr2,s2t
a
ijt

a
kl

= i8παs
s

t
δr1,s1δr2,s2t

a
ijt

a
kl . (1.42)

Note that the upper and lower verti
es are respe
tively proportional to pµ1 and pν2, thus if we

de
ompose the metri
 tensor into the following tensor 
omponents

gµν =
2

s
p2µp1ν +

2

s
p1µp2ν + g⊥µν , (1.43)

only the 
omponent

2
s
p2µp1ν gives a non-vanishing 
ontribution. As the metri
 tensor is


oming from the sum over the polarizations of the propagator of the gluon, this 
omponent


an be seen as the tensor produ
t of the so-
alled "non-sense" polarizations,

εupµ =

√

2

s
p2µ , εdownν =

√

2

s
p1ν , (1.44)

su
h as gµν 
an be repla
ed due to the eikonal approximation by εupµ ε
down

ν .Now the amplitude

M reads

iM =
−i
∆2

(ig)2
(

uλ′(p1)/ε
uptaij uλ(p1)

) (

uλ′(p2)/ε
downtakl uλ(p2)

)

. (1.45)
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(a) (b)

PSfrag repla
ements

k1 k2

p1

p2

+

Figure 1.2: Diagrams of the singlet ex
hange at Born order.

1.2.2 The singlet 
olor ex
hange in t−
hannel
In di�ra
tive pro
esses the quantum numbers ex
hanged in t−
hannel are those of the va
uum
and 
onsequently, we have to 
onsider a singlet 
olor ex
hange in t−
hannel. Let us 
onsider
the 
olor singlet ex
hange on the quark-quark s
attering amplitude.

A 
olor singlet ex
hange in t−
hannel involves at least two gluons. At Born order, the

s
attering of two quarks is given by the two diagrams shown in �g. 1.2. These two diagrams

are related by 
rossing symmetry. Let us de�ne ∆ = k1 − k2 the momentum ex
hanged in

t−
hannel. The diagram (b) 
an be obtained from diagram (a) results, up to the 
olor fa
tor

that are di�erent by

A(b)(s, t, u) = A(a)(u, t, s) ≈ A(a)(−s, t, s) , (1.46)

where we use for the last equality, the fa
t that at large s and �xed t,

s ≈ −u .

The 
olor fa
tor for a singlet ex
hange of the diagrams (a) and (b) are equal and given by

(tatb)ij
δij
N

(tatb)kl
δkl
N

=
1

N2

(

δab

2

)(

δab

2

)

=
N2 − 1

4N2
. (1.47)

Let us 
ompute the imaginary part of the diagram (a) by using the Cutkosky rules,

ImA =
1

2

N2 − 1

4N2

∫

dΠCut.

2 Atree(k1)Atree†(−k2 = ∆− k1) . (1.48)

In �g. 1.3 the 
ut of the fermioni
 line of diagram (a) is represented by the dashed line.

The 
olor fa
tors are put apart of the amplitude Atree

. The expression of Atree(k) is given

by (1.42),

Atree(k) = −8παs
s

k2
. (1.49)

The integral measure dΠCut.

2 on the phase spa
e is given by,

∫

dΠCut.

2 =

∫

d4l1
(2π)4

d4l2
(2π)4

(2π)δ(l21)(2π)δ(l
2
2) (2π)

4δ(4)(p1 + p2 − l1 − l2)

=

∫

d4k1
(2π)4

d4l2 (2π)δ((p1 + k1)
2)(2π)δ(l22)δ

(4)(p2 − l2 − k1)

=

∫

d4k1
(2π)2

δ((p1 + k1)
2)δ((p2 − k1)

2) , (1.50)

(1.51)
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PSfrag repla
ements
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Figure 1.3: Cut of the diagram (a).

where in the se
ond line we have shifted the momentum l1 by the k1 = l1 − p1. The mass

shell 
onditions l21 = 0 and l22 = 0 being imposed by the Dira
 fa
tors. Using the Sudakov

de
omposition of the momentum k1,

k1 = α1 p1 + β1 p2 + k1⊥ , (1.52)

dΠ2 reads,

∫

dΠCut.

2 =
s

2

∫

dα1dβ1d
2k1⊥

(2π)2
δ(βs(1 + α)− k21)δ(−αs(1− β)− k21) . (1.53)

The fa
tor s/2 
omes from the Ja
obian of the 
oordinate transformation from k1 = (k01,
~k1)

to k1 = (α, β, k1⊥) with p1 · p2 = s/2.

The imaginary part of the amplitude reads

ImA(a) =
N2 − 1

4N2

1

2

s

2

∫

dα1dβ1d
2k1⊥

(2π)2
δ(βs(1 + α)− k21)δ(−αs(1− β)− k21)

× (−8παs s)
2 1

k21 k
2
2

(1.54)

=
N2 − 1

4N2
16π2α2

ss

∫

d2k1
(2π)2

1

k21 k
2
2

, (1.55)

where k2 = k1 −∆.

A full 
omputation of the amplitude at one loop would lead to terms proportional to

ln(s/t) = ln(s/ |t|)− iπ, where the imaginary 
ontribution to the full amplitude arises from

the fa
tor −iπ. Keeping this in mind, we see that we 
an get the real part of the amplitude

by repla
ing −iπ → ln(s/ |t|) in our result,

ReA(a) = −N
2 − 1

4N2
16πα2

s

s

t
ln(

s

|t|)
∫

d2k1
(2π)2

−∆2

k21 (k1 −∆)2
. (1.56)

Using the 
rossing symmetry relation (1.46) the full amplitude at one loop of the diagram

(b) is

A(b) = −N
2 − 1

4N2
16πα2

s

−s
t

ln(
−s
t
)

∫

d2k1
(2π)2

−∆2

k21 (k1 −∆)2
. (1.57)
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Note that there is no 
ontribution to the imaginary part as −s/t > 0, whi
h is 
onsistent that

the diagram b does not 
ontribute to the dis
ontinuity, it is only ne
essary for 
onvergen
e in

the s 
omplex plane. The expression (1.57) is the opposite of the real part of the 
ontribution

of the diagram (a). Consequently the real parts of the two diagrams 
an
el and only the

imaginary part of diagram (a) remains at the end,

A(a)+(b) = ImA(a) . (1.58)

Note that this 
an
ellation is due to the fa
t that the 
olor fa
tors are the same for the

diagrams (a) and (b), as we are interesting here in a 
olor singlet ex
hange. It is not the 
ase

for a 
olor o
tet ex
hange where the real parts are not 
an
eling ea
h other.

1.2.3 Impa
t fa
tor representation of the quark-quark s
attering

amplitude

We will introdu
e here the kT−fa
torization s
heme [25, 26, 27, 28, 29, 30, 31℄ whi
h is valid

in the perturbative Regge limit where the amplitude is fa
torized into an upper and a lower

so-
alled impa
t fa
tors that ex
hange at Born level two t−
hannel gluons in a singlet 
olor

state.

Let us show on the parti
ular example of the s
attering of two quarks in the forward limit

∆ = 0, k1 = k and k2 = k, the pro
edure of kT−fa
torization.

(a1) (b1)

(a2) (b2)

PSfrag repla
ements

k1 k2

k2 k1

Figure 1.4: Diagrams of the singlet ex
hange.

In �g. 1.4 are shown four diagrams whi
h when they are summed 
orresponds to twi
e the

amplitude at the Born level of the singlet ex
hange, A = 1
2
(A(a1)+A(b1)+A(a2)+A(b2)). The

fa
tor 1/2 prevent from over
ounting the diagram 
ontributions due to the loop-integration
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where we integrate over all 
on�gurations of the momenta k1, k2. The amplitude of the

diagram (a1), putting apart the 
olor fa
tor

N2−1
4N2 reads

iA(a1) =
s

2

∫

dαdβd2k

(2π)4

(

u(p1)igγ
µ i(/p1 + /k)

(p1 + k)2 + iǫ
igγνu(p1)

)

up

×
(

u(p2) igγ
α i(/p2 − /k)

(p2 − k)2 + iǫ
igγβu(p2)

)

down

−igµα
k2 + iǫ

−igνβ
k2 + iǫ

, (1.59)

where "up" and "down" subs
ripts identify the upper and lower parts of the diagram (a1)

�g. 1.2. Now using the eikonal approximation, we 
an repla
e

gµν → 2

s
pup2µp

down

1ν , (1.60)

and we 
an approximate k = αp1 + βp2 + k⊥ by

kup = βp2 + k⊥ , kdown = αp1 + k⊥ , (1.61)

as the p1 (resp. p2) 
omponent is negligible 
ompared to one in the upper (resp. lower) part

of the diagram. We also approximate k2 = −k2. After these simpli�
ations we get,

iA(a1) =
s

2

∫

dαdβd2k

(2π)4

(

2i(ig)2

s
u(p1)

/p2/p1/p2

βs− k2 + iǫ
u(p1)

)

up

×
(

2i(ig)2

s
u(p2)

/p1/p2/p1

−αs− k2 + iǫ
u(p2)

)

down

i

k2
i

k2
. (1.62)

Using the Cli�ord algebra of the Dira
 matrix {γµ, γν} = 2gµν, and the fa
t that p1 and p2

are light-
one ve
tors we have

u(p1)/p2/p1/p2u(p1) = su(p1)/p2u(p1) = s2 , (1.63)

where we have for the last equality used the Gordon identity and the normalization of the

spinors. The amplitude reads now,

iA(a1) =
s

2

∫

d2k

(2π)2
−1

(k2)2

×
(

2i(ig)2
∫

dβ

2π

1

β − k2

s
+ iǫ

)

up

×
(

2i(ig)2
∫

dα

2π

1

−α− k2

s
+ iǫ

)

down

. (1.64)

Let us rewrite this result as

iA(a1) =
s

2

∫

d2k

(2π)2
−1

(k2)2

(
∫

dβ

2π
φ(β, k)

)

up

(
∫

dα

2π
φ(−α,−k)

)

down

, (1.65)

with

φ(x, ℓ) =
2i(ig)2

x− ℓ2

s
+ iǫ

. (1.66)
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The 
ontributions of the diagrams (b1), (a2) and (b2), are obtained by 
hanging the signs of

k in the propagators leading to

iA(b1) =
s

2

∫

d2k

(2π)2
−1

(k2)2

(
∫

dβ

2π
φ(−β,−k)

)

up

(
∫

dα

2π
φ(−α,−k)

)

down

, (1.67)

iA(a2) =
s

2

∫

d2k

(2π)2
−1

(k2)2

(
∫

dβ

2π
φ(−β,−k)

)

up

(
∫

dα

2π
φ(α, k)

)

down

, (1.68)

iA(b2) =
s

2

∫

d2k

(2π)2
−1

(k2)2

(
∫

dβ

2π
φ(β, k)

)

up

(
∫

dα

2π
φ(α, k)

)

down

. (1.69)

The total 
ontribution reads

iA =
s

2

∫

d2k

(2π)2
−1

(k2)2
× 2 (1.70)

× 1

2

(
∫

dβ

2π
(φ(β, k) + φ(−β,−k))

)

up

× 1

2

(
∫

dα

2π
(φ(α, k) + φ(−α,−k))

)

down

,

where the fa
tor

1
2
are symmetri
ally inserted in front of the upper and lower parts of the

pro
ess. As we know that iA = 1
2
(A(a1) + A(a2) + +A(b1) + A(b2)) be
ause of the fa
t we

have 
onsidered twi
e more diagrams than it was ne
essary, we have a global fa
tor

(

1
2

)

up

×
(

1
2

)

down

× 2 = 1
2
where the extra fa
tor 2 has been put in the t−
hannel gluon propagator

part of the amplitude. This fa
tor 2 is 
oming from the fa
t that there are two possibilities to


ombine the indi
es of the gµαgνβ of the propagator and gµβgνα, in other words this fa
tor is

absorbed in the 4−point green fun
tion of the t−
hannel gluons. As we took 
are of keeping

the 
oe�
ient that belong respe
tively to the upper and lower part of the pro
ess, we see

that eq. (1.70) 
an be represented as in �g. 1.5.

Looking at the integrands of eq. (1.70) is also now 
lear that the integrals over β and α


onverge,

φ(a1)
up

(β, k) + φ(a1)
up

(−β,−k) ∼ 1

β2
. (1.71)

The 
ontributions of all the diagrams are ne
essary to prove the 
onvergen
e of the integrals

over β.

We 
hoose to integrate over the 
ontour C− in the β− and α− 
omplex planes shown in

�g. 1.6, the integral

1

2

(
∫

C−

dβ

2π
(φ(β, k) + φ(−β,−k))

)

1

2

(
∫

C−

dα

2π
(φ(α, k) + φ(−α,−k))

)

=
1

4

∫

C−

dβ

2π
φ(β, k)

∫

C−

dα

2π
φ(α, k) =

1

4
(2i(ig)2)2(−i)(−i) = (4παs)

2 . (1.72)

After restoring the 
olor fa
tor, we get the same result than in the dire
t 
omputation with

the Cutkosky rules eq. (1.54)

ImA =
N2 − 1

4N2
16π2α2

ss

∫

d2k1
(2π)2

1

(k2)2
. (1.73)
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Figure 1.5: De
omposition of the total amplitude and 
ombinatorial fa
tors.
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Going ba
k to eq. (1.70) we see that the amplitude reads

A =
is

2

∫

d2k

(2π)2
2

(k2)2
Φab
up

(k)Φab
down

(k) , (1.74)

= is

∫

d2k

(2π)2
1

(k2)2
Φab
up

(k)Φab
down

(k) , (1.75)

with,

Φab
up

(k) =
δab

2N

1

2

∫

dβ

2π
(φ(β, k) + φ(−β,−k)) (1.76)

=
1

2

∫

dβ

2π
εNS

µ εNS

ν Sµν
q(p1)g(k1,a)→q(p1)g(k2,b)

(β, k) , (1.77)

the so-
alled impa
t fa
tor for the upper part of the pro
ess, where Sµν
q(p1)g(k1,a)→q(p1)g(k2,b)

(β, k)

is the S−matrix element of the upper sub-pro
ess where the quark 
ouples with gluons with

"non-sense" polarizations εNS

as de�ned in eq. (1.44) due to eikonal approximation.

Note that other 
onventions exist, for example in ref. [22℄, the impa
t fa
tor is de�ned as

Φ[22℄ = 2πΦHere
and the amplitude reads

A[22℄ = is

∫

d2k

(2π)4
Φ[22℄Φ[22℄

(k2)2
,

or in ref. [32℄, Φ[32℄ = 2
√
πΦHere

and the amplitude reads

A[32℄ =
is

2

∫

d2k

(2π)3
Φ[32℄Φ[32℄

(k2)2
.

Depending on the 
onventions, the 
olor fa
tor

δab

2N
is in
luded in the impa
t fa
tor de�-

nition su
h as the 
olor fa
tor

N2−1
4N2 =

(

δab

2N

)

up

(

δab

2N

)

down

is re
overed in the �nal amplitude.

Note that in the 
ase of two quark s
attering amplitude, the impa
t fa
tors are 
onstant

and equal to 4παs. As a 
onsequen
e the integral over k is infra-red divergent. We will see

that in the 
ase where 
olorless parti
les are involved in the initial and �nal states of the

impa
t fa
tor, the gauge invarian
e for
es the impa
t fa
tor to 
an
el, preventing thus the

infra-red divergen
e of the k integral.

1.2.4 The kT fa
torization s
heme

We present how the kT−fa
torization pro
edure is generalized for 
olorless states. Let us


onsider a more general pro
ess where two 
olorless probes s
atter with an ex
hange of a

pomeron in t−
hannel,

A(p1) +B(p2) → A′(p1 +∆) +B′(p2 −∆) .

Due to the fa
t that we are in the high energy limit there will be a large rapidity gap between

A′ and B′. The dominant 
ontribution in powers of s to the amplitude is given by an ex
hange
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of gluons in t-
hannel. Indeed the power behavior in s of the amplitude at high energy for

N parti
les ex
hanged in t−
hannel depends on the spins σi of these parti
les,

A ∝ s
∑

i σi−N+1 , (1.78)

thus the leading 
ontributions in powers of s involves only gluons. As a general prin
iple, in

the limit s→ ∞ the eikonal approximation for gluons leads to the �nite terms that does not

de
rease as power of s.

One 
an repla
e the numerators of the gluon propagators by the non-sense polarizations

thanks to the eikonal approximation in the upper and lower blob verti
es. Then one 
an

safely negle
t the 
omponent of the gluon momenta along the dominant like-
one dire
tion

of the upper or lower blob 
ompared to the 
omponent of the momenta of the parti
les of

the blobs. The amplitude fa
torizes then as illustrated in �g. 1.7 where Φup
a and Φup

b are the

s− and u−
ontributions to the sub-pro
esses A + g → A′ + g. The 4-point Green fun
tion

of the gluons G 
ontains the energy dependen
e and as we de�ne the impa
t fa
tors as the

sum of the s− and u− 
hannel, we need to put a fa
tor 1/2 in the de�nition of the impa
t

fa
tor to avoid double 
ounting when joining the gluoni
 lines as it was illustrated on the

quark�quark s
attering. One should not forget also the fa
tor 2 
oming from the Ja
obian

s/2 in the integral measure.
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Figure 1.7: kT−fa
torization of the pro
ess A + B → A′ + B′. The upper and lower impa
t

fa
tors are the sum of the s− and u−
ontributions Φup(down) = 1
2
(Φ

up(down)
a + Φ

up(down)
b ).

The 4-point Green fun
tion of the gluons at Born level G reads

2

k2(k −∆)2
,

where the fa
tor 2 is due to the fa
t that there are two 
ombinations to link the upper gluons

to the lower ones as illustrated in �g. 1.5 and the amplitude reads

A = is

∫

d2k

(2π)2
1

k2(k −∆)2
Φab
up

(k, k −∆)Φab
down

(k, k −∆) , (1.79)
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Figure 1.8: Deformation of the 
ontour in the κ 
omplex plane.

with

Φab
up

(k) =
1

2

∫

dβ

2π
εNS

µ εNS

ν Sµν, ab
A g→A′ g(β, k) . (1.80)

De�ning the s−
hannel Mandelstam variable κ of the system A(pA) + g(k1), su
h as,

κ = (pA + k1)
2 ≡ βs+ p2A + k21 ,

we 
an repla
e the integral over β by an integral over κ,

Φab
up

(k) =
1

2s

∫

dκ

2π
εNS

µ εNS

ν Sµν, ab
A g→A′ g(κ, k) . (1.81)

The impa
t fa
tor is then de�ned as the integral along the 
ontour illustrated in �g. 1.8.

This 
ontour 
an be 
losed on the dis
ontinuity of the right 
ut along the real axis, leading

to the �nal expression

Φab
up

(k) =
1

2s

∫

dκ

2π
εNS

µ εNS

ν Dis
κSµν, ab
A g→A′ g(κ, k) . (1.82)

The energy dependen
e of the gluon Green fun
tion 
an be worked out at the leading

log(1/x) (LLx) a

ura
y by resumming the amplitude in the relevant parameter αs ln(s) as

the large logarithm of s 
an 
ompensate the small value of αs. The large ln(s) are given

at LLx in the multi-Regge kinemati
 where, 
onsidering A and B �ying respe
tively almost

along the light-
one ve
tors p1 and p2, a ladder of gluons with momenta

ki = αip1 + βip2 + k⊥i ,

is ex
hanged in t−
hannel with the following strong ordering,

1 ≫ α1 ≫ αi ≫ αn ,

β1 ≪ βi ≪ βn ≪ 1 ,

k2⊥1 ∼ k2⊥i ∼ sαiβi . (1.83)

In this kinemati
, the ladder of gluons 
an be resummed in two "reggeized" gluons whi
h

ex
hange usual gluons 
oupling with an e�e
tive vertex 
alled Lipatov vertex [33℄. Using
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Mellin transformation to de
ouple the gluon ladder from the impa
t fa
tors the amplitude

reads

A(s, t) =
is

(2π)2

∫

d2k

k2
Φab

1 (k, ∆− k)

∫

d2k′

k′2
Φab

2 (−k′, −∆+ k′)

δ+i∞
∫

δ−i∞

dω

2πi

(

s

s0

)ω

Gω(k, k
′,∆) , (1.84)

with the Mellin transform of the Green fun
tion Gω(k, k
′,∆) is governed by the Balitsky,

Fadin, Kuraev and Lipatov (BFKL) equation [34, 35, 36, 37℄ at LLx. The BFKL equation

in terms of the rapidity Y = ln(1/x) reads

∂

∂Y
F(Y, k′) =

αsNc

2π

∫

d2kK(k′, k)F(Y, k) (1.85)

with F(Y, k,∆) the unintegrated gluon density whi
h 
ontains the 4-point gluon Green fun
-

tion Y−dependen
e and K(k′, k) the BFKL kernel. The BFKL solution [38, 33℄ is of the

form

F(Y, k) ∼ (1/x)
4Ncαs

π
ln(2) ∼ sω0 . (1.86)

This solution exhibits a value for the pomeron inter
ept of αP = 1 + ω0 = 1 + 4Ncαs

π
ln(2)

whi
h is slightly above one, leading to the violation of the Froissart bound as it was already

expe
ted from the Donna
hie and Landsho� �ts. We will see in se
tion 1.3.4 some of the

models proposed to solve this problem of unitarity violation.

Note that the impa
t fa
tors do not depend on s and the whole s−dependen
e is in
luded
in the Green fun
tion of the gluons. This remark agrees with the dis
ussion in part 1.1.2 on

the universality of the t−
hannel reggeon ex
hange whi
h 
ontains the s−dependen
e of the
amplitudes.

The QCD gauge invarian
e and the fa
t that the probes are 
olorless, require the 
an
el-

lation of the impa
t fa
tors in the limits k⊥ → 0 or (k⊥−∆⊥) → 0. Indeed this is due to the

QCD Ward identities, assuming that the t−
hannel gluons are on-shell (whi
h is the 
ase in

the limit k2⊥ ≈ k2 → 0),

Sγ∗g→γ∗g
µν kµ = Sγ∗g→γ∗g

µν (∆− k)ν = 0 . (1.87)

eq. (1.87) implies that the impa
t fa
tor proportional to

Sγ∗g→γ∗g
µν εNSµεNSν =

2

s
Sγ∗g→γ∗g
µν pµ2p

ν
2 = −2

s
Sγ∗g→γ∗g
µν kµ⊥(k⊥ −∆⊥)

ν ,

vanishes when k⊥ → 0 or k⊥ − ∆⊥ → 0. The fa
t that the probes are 
olorless is essential

for the QCD Ward identity used here. For example, in the quark-quark s
attering, we saw

that the amplitude are not infra-red safe be
ause they do not 
an
el when k⊥ → 0, but the

quarks are not 
olorless probes. Another way to see this gauge invarian
e requirement is

that a 
olorless probe intera
ts with the t−
hannel gluons through a partoni
 system. For

k⊥ of the order of the transverse size of the partoni
 system, the gluon 
an resolve the 
olor
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harges of the partons. When k⊥ vanishes, the transverse size resolved by the gluon be
omes

larger than the transverse size r of the system and the 
olor 
harges of the partons are then

s
reening ea
h other. As the probe is 
olorless, the whole partoni
 system is 
olorless and the


oupling of the gluon to this system is then vanishing as the e�e
tive 
olor 
harge resolved

by the gluon vanishes, as illustrated in �g. 1.9.
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ements

k → 01/k 1/k

r

r

Figure 1.9: In the limit k → 0, the gluon 
annot resolve anymore the 
olored quark as its


olor 
harge is shadowed by the 
olor 
harge of the antiquark.

1.3 Deep inelasti
 s
attering amplitude in the perturba-

tive Regge kinemati
s

1.3.1 Introdu
tion to DIS observables

PSfrag repla
ements k
k′

q

p
pX

Figure 1.10: Deep inelasti
 s
attering pro
ess e−(k) + p(p) → e−(k′) +X(pX) summed over

all �nal states X .

We denote p, q and k the respe
tive momenta of the proton, the virtual photon and the

ele
tron. The virtuality Q of the photon is de�ned as q2 = −Q2
. Let us denote,

• S = (k + p)2 the squared 
enter of mass energy of the ep system,

• W = (q + p)2 the squared 
enter of mass energy of the γ∗p system,

• x = Q2

2p·q = Q2

2ν
with ν = p · q, the Bjorken variable of the pro
ess, whi
h in the parton

model is the fra
tion of proton momentum 
arried by the intera
ting parton and ν/Mp

the virtual photon energy in the proton rest frame.

• y = p·q
p·k the fra
tion of the ele
tron energy transferred to the virtual photon in the

proton rest frame.
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In the high energy limit, (for a pedagogi
al book on high energy QCD see Ref. [39℄), s ≫
Q2 ≫ (M2

p ,Λ
2
QCD) with ΛQCD the QCD s
ale and Mp the mass of the proton, the variables

x and y 
an be approximated by x ≈ Q2

W 2 and y ≈ Q2

xs
. The di�erential 
ross-se
tion reads

E ′
dσe−p

d3k′
=

e2

8π2(s−M2
p )q

4
LµνWµν , (1.88)

with E ′ and k′ the energy and the momentum of the s
attered ele
tron, Lµν the leptoni
 part

of the pro
ess asso
iated to the leptoni
 
urrent and Wµν the hadroni
 tensor asso
iated with

the intera
tion between the probe (the virtual photon) and the hadron. Negle
ting the mass

of the ele
tron

Lµν = 2(kµk′ν + kνk′µ − gµνk · k′). (1.89)

The tensor Wµν reads

4πWµν =
∑

X

∫

dΠX(2π)
4δ(p+ q − pX)

×
〈

〈p(p)| J†ν(0) |X(pX)〉 〈X(pX)| Jµ(0) |p(p)〉
〉

spin

=

∫

d4yeiq·y
〈

〈p(p)| J†ν(y)Jµ(0) |p(p)〉
〉

spin
(1.90)

from the �rst line to the se
ond we used �rst a translation of the matrix element

〈p(p)| e−iP̂ ·yeiP̂ ·yJ†ν(0)e−iP̂ ·yeiP̂ ·y |X(pX)〉 = eiy·(pX−p) 〈p(p)| J†ν(y) |X(pX)〉 ,

and then the 
ompleteness relation

∑

X

∫

dΠx |X(pX)〉 〈X(pX)| = 1 .

Due to the opti
al theorem, the tensor Wµν is related to the imaginary part of the forward

Compton s
attering amplitude Tµν (Wµν = 2ImTµν) illustrated in �g. 1.11,

4πTµν = i

∫

d4y eiy·q
〈

〈p(p)|T{J†ν(y)Jµ(0)} |p(p)〉
〉

spin
. (1.91)

PSfrag repla
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Figure 1.11: Forward Compton s
attering amplitude.

The hadroni
 tensor 
annot be 
omputed perturbatively and have to be modeled by

parameterizing it on the relevant Lorentz stru
tures. Using the transformations under parity
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and time reversal of the 
orrelator and the gauge invarian
e 
onditions qµWµν = qνWµν = 0,

the hadroni
 tensor Wµν 
an be parameterized by two independent stru
ture fun
tions F1

and F2 su
h as,

Wµν = −(gµν −
qµqν
q2

)F1(x,Q
2)

+
1

ν
(pµ − qµ

p · q
q2

)(pν − qν
p · q
q2

)F2(x,Q
2) . (1.92)

Putting all together one �nds for the di�erential 
ross-se
tion of the DIS of the proton and

the ele
tron in the proton rest frame,

dσep
tot

dE ′dΩ
=

α2

4MpE2 sin4(θ/2)

(

2F1 sin
2(θ/2) +

M2
p

ν
F2 cos

2(θ/2)

)

, (1.93)

with Ω and θ the solid angle and the azimuthal angle of the s
attered ele
tron and α = e2/4π

the �ne stru
ture 
onstant.

The parton model

In the so-
alled naive parton model proposed by Feynman and Bjorken [2, 40, 1℄, the proton

is assumed to be 
onstituted of point-like fermioni
 parti
les 
alled partons. Comparing the

result (1.93) with the di�erential 
ross-se
tion of a spin 1/2 point-like parti
le, for example

e−µ− 
ross-se
tion,

dσe−µ−

dE ′dΩ
=

α2δ(1− x)

4mµE2 sin4(θ/2)

(

sin2(θ/2) +
m2

µ

ν
cos2(θ/2)

)

, (1.94)

and assuming that a parton of mass mf and momentum pf = xfp intera
ts with the photon,

leads to

2F1 =
Mp

mf
δ(1− zf ) =

Mp

mf
δ(1− x/xf )

and

F2 =
mf

Mp xf
δ(1− zf ) =

mf

Mp xf
δ(1− x/xf ) = xf

Mp

mf

δ(1− x/xf ) = 2xfF1 ,

with zf = Q2/2q ·pf = x/xf . Note that ν is repla
ed in (1.94) by νf = q ·pf = xfν and in the

proton rest frame νf/ν = mf/Mp. It implies that the stru
ture fun
tions are independent of

Q2
whi
h 
ould explain in the early experimental analysis at SLAC the fa
t that the measure

of F2 depends very weakly on Q2
known as the Bjorken s
aling. In the parton model, the

hadroni
 tensor Wµν is written as,

Wµν =
∑

f

∫

dxf
xf

ff(xf )W
f
µν , (1.95)

with ff the parton distribution fun
tion and W f
µν the "partoni
 tensor",

4πW f
µν =

∫

d4p′2πδ(p′2)(2π)4δ(xfp+ q − p′)
〈

〈xfp| J†ν(y)Jµ(0) |xfp〉
〉

spin

= 2πxfδ(xf − x) e2f

(

−(gµν −
qµqν
q2

) +
2xf
ν

(pµ − qµ
p · q
q2

)(pν − qν
p · q
q2

)

)

. (1.96)
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This leads to the expressions

F1 =
1

2

∑

f

e2fff(x) and F2 = 2xF1(x) , (1.97)

the se
ond equality in (1.97) is known as the Callan-Gross relation [41℄, and 
ould explain

why the data for the longitudinal stru
ture fun
tion de�ned as FL(x) = F2(x) − 2xF1(x)

were small 
ompared to the data of F2. Despite of these predi
tions, the main problem of

the naive parton model is that it assumes that the partons are free inside the nu
leon while

they should be in the same time strongly intera
ting with ea
h other to maintain themselves

in the hadron bound state. This is of 
ourse explain by the asymptoti
 freedom in QCD, i.e.

the 
oupling of the partons be
omes weak at high energy s
ales Q2 ≫ Λ2
QCD.

The parton pi
ture in QCD

A hadron in the point of view of QCD 
ontains �u
tuations of partoni
 �elds of spa
e and

time s
ale smaller than its hadroni
 size. The probe (virtual photon) 
an resolve the �u
-

tuations in the hadrons that have typi
ally larger sizes than the size of the probe and all

smaller �u
tuations only parti
ipate in the renormalization of the masses and the 
oupling


onstants. In the in�nite momentum frame where the proton has the speed of light, the

Lorentz dilatation of time s
ales implies that the �u
tuations have a long life time 
ompared

to the time s
ale of the probe and they behave as if they were free. From this point of view

we see that the number of �u
tuations resolved by the probe be
omes larger and larger with

de
reasing x be
ause of the emission of gluons by bremsstrahlung. The fa
t that the probe

resolves more and more partons as Q2
in
reases is the sour
e of the quantum 
orre
tions that

violates the Bjorken s
aling. So both x and Q2
variations leads to quantum 
orre
tions to the

observables. The x−evolution is given by the BFKL equation in the diluted regime where the

partoni
 density is small and by the Balitsky-Kov
hegov (BK) equation [42, 43℄ in the dense

regime where the partoni
 intera
tions due to their overlapping leads to non-linear evolution

equations. Both equations resum the large leading terms in αs

∫ p+ dk+

k+
∼ αs ln(1/x) due

to the soft gluon emissions. The Q2
evolution is given by the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) equation [44, 45, 46, 47℄ whi
h resums the large ln(Q2) leading

terms that appear due to 
ollinear singularities αs

∫ Q2 dk2⊥
k2⊥

∼ αs ln(Q
2).

In the Bjorken limit (Q2 → ∞, x �xed), the expression (1.90) of Wµν , the integral is

dominated by the value of the 
orrelator for 0 < y2 < 1
Q2 . The way to 
ompute these


ontributions is to use the operator produ
t expansion (OPE) on the light-
one y2 → 0, the

OPE te
hnique was introdu
ed in parti
le physi
s by Wilson in the 70's [6℄ and was then

applied to DIS [7, 4℄ and later to ex
lusive pro
esses [48℄. It 
onsists in expanding the produ
t

of the ele
tromagneti
 
urrents as

J(y)J(0)
|y|→0
=
∑

s,i

Cs,i
µ1···µs

(y)Oµ1···µs

i (0) , (1.98)

where the 
oe�
ients Cs,i
µ1···µs

(y) = yµ1 · · · yµsC
s,i(y2) are the Wilson 
oe�
ients, the fun
tions

Cs,i(y2) 
ontain the singularities when |y| → 0. Oµ1···µs

i (0) are lo
al operators of spin s that
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have the same quantum numbers of the l.h.s. of (1.98). By dimensional analysis, the 
anoni
al

dimension of the 
urrents are dJ = 3 and then the Wilson 
oe�
ients behave as

Cs,i(y2) ∼ |y|ds,i−s−6 = |y|ti−6 , (1.99)

where ds,i is the 
anoni
al dimension of the operator Oµ1···µs

i and s is the spin and ti = ds,i−s
is the twist of the operator Oµ1···µs

i . Note that the di�eren
e between the OPE on the

light-
one (y2 → 0) and the standard OPE (yµ → 0), is that the hierar
hy of the leading

operators is not given by the 
anoni
al dimension of the operators but by their twists and

thus there is an in�nite set of operators of the same twist, as the dimension of the operators


an be 
ompensated by their spins. The singularities that drive the behavior of the non-lo
al


orrelators are given by operators of twist ts,i < 6 and the leading twist operators of QCD

are of twist 2.

One 
an parameterize the 
orrelators on the possible Lorentz stru
tures as,

〈

〈p(p)| Oµ1···µs

s,i (0) |p(p)〉
〉

spin
= pµ · · · pµs 〈Os,i(0)〉+ · · · , (1.100)

where "· · ·" stand for terms with tra
e. Repla
ing Jµ(y)Jν(0) in the de�nition (1.90) of Wµν

by the OPE leads to

4πWµν =
∑

s,i

〈Os,i(0)〉
∫

d4yeiq·y(y · p)sCs,i(y2)

=
∑

s

x−s
∑

i

〈Os,i(0)〉 (−iQ2 ∂

∂Q2
)sC̃s,i(Q2)

≡
∑

s

x−s
∑

i

〈Os,i(0)〉 Ds,i(Q2) , (1.101)

with C̃s,i(Q2) the Fourier transform of Cs,i(y2). Ds,i(Q2) s
ales like ∼ (1/Q)ti−2, so at

leading twist the Bjorken s
aling is veri�ed. The 
oe�
ient fun
tions Ds,i(Q2) are universal

as the target dependen
e is 
ontained in the initial and �nal states of 〈Os,i(0)〉 and they are


al
ulable in pQCD. The stru
ture fun
tions take the forms

F1(x,Q
2) =

∑

s

x−s
∑

i

〈Os,i(0)〉 Ds,i
1 (Q2) , (1.102)

F2(x,Q
2) =

∑

s

x−s+1
∑

i

〈Os,i(0)〉 Ds,i
2 (Q2) . (1.103)

The leading twist QCD operators are,

Oµ1···µs
s,qf

= ψ̄(0)γ{µ1∂µ2 · · ·∂µs}ψ(0) , (1.104)

Oµ1···µs
s,g = F {µ1

µ ∂µ2 · · ·∂µs−1F µs}µ , (1.105)

with "{· · · }" stands for the symmetrization of µ1, · · ·µs indi
es and the subtra
tion of the

tra
e terms. Identifying the stru
ture fun
tions in (1.97) and (1.102, 1.103) leads to

∫

dx

x
xs(ff (x) + ff̄(x)) =

〈

Os,qf

〉

, (1.106)
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whi
h relates the Mellin moments of the PDFs to the expe
ted values on the hadroni
 state

〈

Os,qf

〉

.

Taking the average value of Oµ1···µs
s,qf

and Oµ1···µs
s,g on quark of �avor f ′ state, one 
an show

that the 
orresponding

〈

Os,qf

〉

= δff ′ and 〈Os,g〉 = 0. Identifying the stru
ture fun
tions in

(1.97) and (1.102, 1.103) leads to

∫

dx

x
(ff(x) + ff̄(x)) =

〈

Os,qf

〉

. (1.107)

The Callan-Symanzik renormalization group equations for the 
orrelators 〈J(y)J(0)〉 and
〈Os,i〉 read

(

µ
∂

∂µ
+ β(g)

∂

∂αs

)

〈J(y)J(0)〉 = 0 , (1.108)

((

µ
∂

∂µ
+ β(αs)

∂

∂αs

)

δij + γs,ij(αs)

)

〈Os,j〉 = 0 , (1.109)

with β(αs) = µ2 dαs

dµ2 and γs,ij the element of the anomalous dimension matrix. The running

of αs at one loop approximation leads to

αs(Q) =
8π2

β0 ln(Q/ΛQCD)
, (1.110)

with β0 =
11
3
Nc− 2

3
nf

4π
. As the stru
ture fun
tions do not depend on the 
hoi
e of µ2

, the


oe�
ient fun
tions satisfy

((

µ
∂

∂µ
+ β(αs)

∂

∂αs

)

δij + γs,ij

)

Ds,j = 0 , (1.111)

The solutions of this equation is given by,

Ds,i(Q/µ, αs) = Ds,j(Q0/µ, αs(Q))





(

ln(Q/ΛQCD)

ln(Q0/ΛQCD)

)
8π2A(s)

β0





ji

.

The 
oe�
ients Aij(s) = γs,ij(µ)/(4παs(µ)) of the matrix A are 
al
ulable at one loop level

from the 
ounter terms that regularize the operator divergen
e. As a 
onsequen
e the s
aling

violations at one loop are responsible for the Bjorken s
aling and the mixing between the

operator expe
tation values involves the gluon operators (�u
tuations resolved when probing

with a higher sensibility),

∫

dx

x
xs
∑

f

(ff(x,Q
2) + ff̄(x,Q

2)) ∝





(

ln(Q/ΛQCD)

ln(Q0/ΛQCD)

)
8π2A
β0





fi

〈Os,i〉Q0
. (1.112)

Deriving this equation with respe
t to ln(Q2) leads to

Q2∂f̃f (s,Q
2)

∂Q2
= −2παs(Q)Afj(s)f̃j(s) , (1.113)
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with f̃ the Mellin moments of the PDFs. This equation is equivalent to the DGLAP equation

in x−spa
e,
∂fi(x,Q

2)

∂ ln(Q2)
=
αs(Q

2)

2π

∫ 1

x

dy

y
Pij(x/y)fj(y,Q

2) , (1.114)

where the splitting fun
tions Pij(x/y) are the Mellin moments of the elements Aij(s),

∫

dx

x
xsPij(x) = −4πAij(s) . (1.115)

Note that the eigenve
tors asso
iated to the eigenvalue zero of the matrix A determine the

sum rules. These eigenve
tors, whi
h are 
ombinations of operators, are s
ale independent.

For example the sum rule for s = 1 implies the 
onservation of the number of partons and

for s = 2 the 
onservation of the longitudinal momentum 
arried by all the partons.

The physi
al pi
ture is that the photon 
an resolve the parton stru
ture inside the parton

qi. The splitting fun
tions Pij(y) are the amplitudes of probability to get the parton j with

fra
tion of momentum y of the momentum of the parton from the parton i. The DGLAP

equation is 
urrently known up to NNLO 
orre
tions [49℄.

1.3.2 Impa
t fa
tors γ∗L,T → γ∗L,T

In terms of the Lorentz invariant quantities x, y and Q2
, the di�erential 
ross-se
tion (1.93)

in the in�nite momentum frame reads

dσep
tot

dxdQ2
=

2πα2

xQ4

(

(1 + (1− y)2)F2(x,Q
2)− y2FL(x,Q

2)
)

. (1.116)

These two stru
ture fun
tions are 
losely linked to the longitudinal and transverse polarized


ross-se
tions σL and σT of the pro
esses

∑

X γ∗L,T + p(p) → X(pX),

FL(x,Q
2) =

Q2

4π2α
σL(x,Q

2) , (1.117)

F2(x,Q
2) =

Q2

4π2α

(

σT (x,Q
2) + σL(x,Q

2)
)

. (1.118)

PSfrag repla
ements

ΦP→P

Φγ∗→γ∗

Figure 1.12: kT−fa
torization of the forward Compton s
attering amplitude.

We will fo
us in this part on the determination of the polarized 
ross-se
tions σL and σT

de�ned in eqs. (1.117, 1.118) in the perturbative Regge limit. Using the opti
al theorem,
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the polarized 
ross-se
tions σL,T are related to the forward Compton s
attering amplitudes

Ael.

L,T ≡ Aγ∗L,T p→γ∗L,T p(s, t = 0),

σL,T =
2

F
ImAel.

L,T (s) =
1

s
ImAel.

L,T . (1.119)

Using the impa
t fa
tor representation for the Compton s
attering amplitude, as illustrated

in �g. 1.12 we get at Born level

σL,T =

∫

d2k

(2π)2
1

(k2)2
Φγ∗L,T→γ∗L,T (k,Q2)ΦP→P (k,M2) , (1.120)

where M is some non-perturbative s
ale of the transverse dynami
s of the partons inside the

proton.

In the region Q2 ≫ Λ2
QCD, the impa
t fa
tor Φγ∗L,T→γ∗L,T


an be 
omputed within the

perturbation theory. We will 
onsider here the lowest order in perturbation theory where

the photons intera
t with the gluons in t−
hannel by disso
iating in a quark anti-quark pair.

We negle
t for simpli
ity the masses of the quark in this 
omputation assuming Q2 ≫ m2
f ,

where mf is the mass of a quark of �avor f .

The ve
tors q, l and k are de
omposed in the Sudakov basis of light-
one ve
tors p1 and

p2 su
h as,

q = p1 −
Q2

s
p2 , (1.121)

l = yp1 + βp2 + l⊥ , (1.122)

k =
κ+Q2 + k2

s
p2 + k⊥ . (1.123)

Note that we work in the in�nite momentum frame where the proton and the virtual photon

are moving respe
tively near the light-
one ve
tors p2 and p1.

The longitudinal and transverse polarization ve
tors of the virtual photons are

εµγL =
1

Q
(pµ1 +

Q2

s
pµ2) , ε± =

1√
2
(0,∓1,−i, 0) . (1.124)

We de�ne the eu
lidean polarization ve
tors in the transverse spa
e as,

e± =
1√
2
(∓1,−i) . (1.125)

We use the Cutkosky rules to 
ompute the dis
ontinuity of the four diagrams shown in

�g. 1.13 that 
ontribute to the impa
t fa
tors.

The 
ontribution to the impa
t fa
tor of the diagram (a) for a loop involving a quark of

ele
tri
 
harge e,

Φ
γ∗L→γ∗L
(a) =

1

2s

∫

dκ

(2π)
Dis
κ A(a) (1.126)



CHAPTER 1. HIGH ENERGY QCD 32

PSfrag repla
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Figure 1.13: The four diagrams 
ontributing to the γ∗ → γ∗ impa
t fa
tors, the dashed lines

are the 
ut in the diagrams.

and

Dis
κ A(a) =

∫

d4l

(2π)2
δ(l2)δ((l − q − k)2)(4πα)(4παs) (1.127)

×
−Tr

(

/εγ
∗

L (/l − /q)/εNS(/l − /q − /k)/εNS(/l − /q)/ε∗γ
∗

L /l
)

)

((l − q)2)2

=
s

2

∫

dydβd2ℓ

(2π)2
δ(ys(β − ℓ2

ys
)δ(ȳ(κ− κ0))(4πα)(4παs)

×
−Tr

(

/εγ
∗

L (/l − /q)/εNS(/l − /q − /k)/εNS(/l − /q)/ε∗γ
∗

L /l
)

)

((l − q)2)2

=
s

2

∫

dy d2ℓ

(2π)2
1

ys

δ(κ− κ0)

ȳ
(4πα)(4παs)

×
(

2Q

s

)2(
2

s

) −Tr (/p2(−ȳ/p1)/p2(−ȳ/p1)/p2(−ȳ/p1)/p2(y/p1))
( 1
y
(ℓ2 + yȳQ2))2

= 32sααs

∫

dy d2ℓδ(κ− κ0)
ȳ2y2Q2

(ℓ2 + yȳQ2)2
, (1.128)

with κ0 =
1
yȳ

(ℓ− yk)2. Note that we use the Ward identity to simplify the 
omputation by

rewriting the longitudinal polarization of the virtual photon as

εγ
∗

L =
1

Q

(

q +
2Q2

s
p2

)

. (1.129)

The Ward identity

qµAµ = 0 , (1.130)
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with Aµ su
h as A = εγ
∗µ(q)Aµ, allows then to get rid of the terms in qµ in the photon

polarizations,

εγ
∗

L =
1

Q

(

qµ +
2Q2

s
pµ2

)

−→ 2Q

s
pµ2 . (1.131)

The 
ontribution of the diagram (a) to the impa
t fa
tor reads

Φ
γ∗L→γ∗L
(a) =

8ααs

π

∫

dy d2ℓ
ȳ2y2Q2

(ℓ2 + yȳQ2)2
. (1.132)

Computing the other 
ontributions in the 
ase of the longitudinally polarized photon, sum-

ming the 
ontributions of all the �avors f of ele
tri
 
harge qf and in
luding the 
olor fa
tor

Tr(tatb) = δab

2
involved in the 
olor singlet ex
hange, the total impa
t fa
tor reads

Φγ∗L→γ∗L =
δab

2

8ααs

π

nf
∑

f

q2f

∫

dy d2ℓ

(

yȳQ

D(ℓ)
− yȳQ

D(ℓ+ k)

)2

. (1.133)

where D(ℓ) = ℓ2+µ2
with µ2 = yȳ Q2+m2

f . For 
ompleteness, we have restored in eq. (1.133)

the masses of the quarks involved in the loop mf .

The impa
t fa
tor Φγ∗T→γ∗T

an be 
omputed using the same te
hniques than we have

presented for Φγ∗L→γ∗L
. The result reads

Φγ∗T→γ∗T =
δab

2

2αsα

π

nf
∑

f

q2f

∫

dy d2ℓ (1.134)

×
{

−4yȳ ei · (L(ℓ)− L(ℓ− k)) (L(ℓ)− L(ℓ− k)) · e∗j
+ei · e∗j (L(ℓ)− L(ℓ− k))2

+ m2
f ei · e∗j

(

1

D(ℓ)
− 1

D(ℓ+ k)

)(

1

D(ℓ)
− 1

D(ℓ− k)

)}

,

with ei and e∗j the eu
lidean transverse polarization ve
tors of the ingoing and outgoing

photons, and

L(ℓ) =
ℓ

ℓ2 + µ2
.

It is easy to 
he
k that the impa
t fa
tors vanish when k2 → 0 as a 
onsequen
e of the Ward

identity as dis
ussed in se
tion. 1.2.4.

1.3.3 Color dipole pi
ture

Introdu
tion

The basi
 idea of the dipole pi
ture for DIS, initiated by the works of Nikolaev, Zakharov

[8, 9℄ and Mueller [10, 11℄, is that in the proton rest frame at low x, the photon disso
iates

into a partoni
 system that 
onstitutes a 
olle
tion of 
olor anti
olor pairs 
alled "
olor

dipoles" whi
h have a long life time 
ompared to the time of the intera
tion of the partons

with the proton target. The sizes of the dipoles 
an then be assumed to be �xed during

the s
attering of the partons with the nu
leon target. The dipole states parameterized in
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terms of their transverse sizes are eigenstates of the s
attering operators as the dipole size is

preserved during the s
attering with the target. The amplitude fa
torizes into, the overlap

of the initial Ψi and �nal Ψ∗f wave fun
tions of the virtual photon in the 
ase of DIS, whi
h

are the amplitude of probability to produ
e a 
on�guration of dipoles with �xed transverse

sizes, and the s
attering amplitude T of these dipoles with the target.

The amplitude of the pro
ess ip → fp, where p is the nu
leon target and i and f the

initial and �nal states, 
an be written symboli
ally [50, 51℄,

A =
∑

n,Fn,{λk}

∫

[d2nrk]

∫

[dyk]Ψ
∗
f(n, {yk, rk, λk}) T (Fn) Ψi(n, {yk, rk, λk}) , (1.135)

where n is the number of partons involved in the intermediate Fo
k state Fn with longitudinal

fra
tion of momentum {zk}k=1..n and impa
t parameters {rk}k=1..n, of heli
ities {λk}k=1..n.

The s
attering operator T (Fn) being diagonal in the dipole states formed by the partoni


system is independent of the initial and �nal states that have formed the dipoles and by


onsequen
e is a universal quantity that depends only on the nu
leon target dynami
s.

The simplest 
ase is given by the lowest intermediate Fo
k state 
onstituted by a quark

(y, r1) antiquark (ȳ, r2) pair, where the 
ouples (z, rk) denotes the longitudinal fra
tion of

momentum and the transverse position (impa
t parameter) of the parton. Indeed the 
ontri-

bution of higher Fo
k states due to the emission of low energy gluons are important when the

rapidity in
reases but they 
an be absorbed, in the large Nc limit, in the dipole s
attering

amplitude evolution governed by the BFKL evolution equation [52℄. The dipole pi
ture for

DIS 
orresponds to the diagram shown in �g. 1.14, where we denote N (x, r, b) the imaginary

part of the (T (F2)), r = r2−r1 is the dipole ve
tor and b = yr1+ ȳr2 is the impa
t parameter

of the dipole, whi
h is Fourier 
onjugate of the transverse momentum transfer ∆.

PSfrag repla
ements

γ∗ γ∗

PP

N (x, r, b)

r

Figure 1.14: DIS within the 
olor dipole pi
ture

Let us stress a useful analogy pointed out by Susskind [53℄ between the parton kine-

mati
s and the two-body problem in quantum me
hani
s. The Poin
aré group in the in�nite

momentum frame 
ontains a sub-group that we denote F of transformations that leave invari-

ant the hypersurfa
e orthogonal to the dominant light-
one dire
tion p1 and whose algebra

is isomorphi
 to the Galilean algebra of the transformations on a two-dimensional spa
e.

Among the transformations of the sub-group F are "Galilean boost"-like transformations on
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the transverse spa
e. In Ref. [53℄, a di
tionary is established between the generators of the

Galilean transformations of a two-dimensional system of non-relativisti
 parti
les of masses

mi, positions ri and momenta ℓi, and the generators of the sub-group F of the system of

parti
les of longitudinal fra
tions of momentum yi = {y, ȳ}, transverse impa
t parameters

ri = {r1, r2} and transverse momenta ℓi = {ℓ1, ℓ2}. The analog of the masses m1 and m2 of

the quark and the antiquark are proportional to the longitudinal 
omponents 2yp1 and 2ȳp1

in our 
omputation.

In the two-dimensional me
hani
s, the two-body problem 
an be simpli�ed by splitting

the system into the kinemati
 variables of its 
enter of mass and of its redu
ed parti
le.

Following the above analogy, we �nd that the transverse 
oordinate of the "
enter of mass"

of the dipole is given by b, and the ve
tor of the redu
ed parti
le is given by r, while the

momentum of the redu
ed parti
le is,

ℓ = ȳℓ1 − yℓ2 ,

and the e�e
tive mass is

M =
m1m2

m1 +m2
= 2yȳp1 .

The imaginary part of the dipole amplitude 
an be related to the b−dependent dipole


ross-se
tion,

dσ̂

d2b
= 2N (x, r, b) . (1.136)

In the 
ase of DIS, the momentum ex
hanged in t−
hannel is zero whi
h leads to the following

dipole 
ross-se
tion,

σ̂(x, r) =

∫

d2b
d2σ̂

db
= 2

∫

d2bN (r, b, x) .

A usual assumptions is that the b−dependen
e fa
torizes in N (x, r, b) as,

N (x, r, b) = T (b)N (x, r) .

The fun
tion T (b) des
ribes the gluon density inside the nu
leon, it 
an be for example 
hosen

as a step fun
tion whi
h is one inside the nu
leon and zero outside, giving after integration

over b,
∫

d2bN (x, r, b) = πR2N (x, r) ,

where R is the radius of the nu
leon. This integral over b gives then an overall normalization

to the dipole 
ross-se
tion denoted σ0 su
h as

σ̂(x, r) = σ0N (x, r) , (1.137)

with σ0 = 2
∫

d2bT (b) = 2πR2
.

As we will see on the parti
ular "saturation model", the dipole pi
ture will be also 
on-

venient to implement saturation e�e
ts as one 
an de�ne dense and diluted partoni
 systems

depending on the size that the dipole 
an resolve 
ompared to a so-
alled "saturation s
ale"

that emerges from the non-linear equations that govern the x−dependen
e of the dipole

s
attering amplitude.
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DIS: fa
torization of the wave fun
tions

Coming ba
k to the γ∗L,T → γ∗L,T impa
t fa
tors eqs. (1.133, 1.134) for the DIS pro
ess, we

will show that the results are 
onsistent with the dipole pi
ture of �g. 1.14 on
e expressed in

the impa
t parameter representation. Let us introdu
e two identities

1

,

1

ℓ2 + µ2
=

∫

d2r

2π
eik·rK0(µr) , (1.138)

ℓ

ℓ2 + µ2
= −iµ

∫

d2r

2π
eik·r

r

r
K1(µr) . (1.139)

where r is a ve
tor of the transverse 
oordinate spa
e 
onjugated to the transverse momentum

ℓ, r = |r| and Kα(x) are the modi�ed Bessel fun
tions of the se
ond kind whi
h obey the

modi�ed Bessel's equations,

x2K ′′α(x) + xK ′α(x)− (x2 + α2)Kα(x) = 0 .

Using these identities, we 
an get the following expressions for the impa
t fa
tors

Φγ∗L→γ∗L =
δab

2

8ααs

π

nf
∑

f

q2f

∫

dy d2ℓ

(

yȳQ

D(ℓ)
− yȳQ

D(ℓ− k)

)(

yȳQ

D(ℓ)
− yȳQ

D(ℓ− k)

)

=
δab

2

8ααs

π

nf
∑

f

q2f

∫

dy

∫

d2r yȳQK0(µr)

∫

d2r′ yȳQK0(µr
′)

×
(

1− e−ik·r
)

(

1− e−ik·r
′
)

∫

d2ℓ

(2π)2
eiℓ·(r+r′)

=
δab

2

8ααs

π

nf
∑

f

q2f

∫

dy

∫

d2r (yȳQK0(µr)) (yȳQK0(µr))

×
(

1− e−ik·r
) (

1− eik·r
)

=

∫

dy

∫

d2r

nf
∑

f

∑

h,h̄

∣

∣

∣
Ψ

γ∗L
f,hh̄

∣

∣

∣

2
[

δab

2

4παs

N

(

1− e−ik·r
) (

1− eik·r
)

]

, (1.140)

where Ψ
γ∗L
f,hh̄

is the amplitude of probability for the photon to disso
iate into a quark and

an antiquark of �avor f and of respe
tive heli
ities h and h̄ and longitudinal fra
tions of

momentum y and ȳ = 1− y, whi
h form a 
olor dipole of size r. Ψ
γ∗L
f,hh̄

is the wave fun
tion

of the longitudinally polarized virtual photon 
omputed in the �rst order of the light-
one

perturbation theory [54℄,

Ψ
γ∗L
f,hh̄

(y, r;Q2) = δh̄,−h
eqf
2π

√

Nc

π
(yȳQ)K0(µ |r|) . (1.141)

In eq. (1.140), the part between the square bra
kets 
orresponds to the intera
tion of the

dipole with the two t−
hannel gluons. The fa
torization of the amplitude into the wave

fun
tions of the virtual photon and the dipole intera
tion is valid even at low Q2
, it is only

1

Note that we got a overall minus sign in (1.139) 
ompared to [32℄.
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a 
onsequen
e of the high energy limit. Coming ba
k to the expressions of the polarized


ross-se
tions eq. (1.120) and repla
ing the impa
t fa
tor of the proton by the unintegrated

gluon density F(x, k) de�ned as ΦP→P/(2π)2 at Born order, the polarized 
ross-se
tions read

σL,T =

∫

d2k
1

(k2)2
Φγ∗L,T→γ∗L,T (k,Q2)F(x, k) . (1.142)

Note that the gluon density g(x,Q2) is given by

g(x,Q2) =
1

π

∫ Q2

d2k

k2
F(x, k) . (1.143)

Inserting the result of eq. (1.140) in the expression of the polarized 
ross-se
tions eq. (1.142)

leads to the formula,

σL =

nf
∑

f

∫

dy

∫

d2r
∑

h,h̄

∣

∣

∣
Ψ

γ∗L
f,hh̄

∣

∣

∣

2

σ̂(x, r) , (1.144)

with the dipole 
ross-se
tion

σ̂(x, r) =
N2 − 1

4

4παs

N

∫

d2k
1

(k2)2
F(x, k)

(

1− e−ik·r
) (

1− eik·r
)

. (1.145)

Similarly the polarized 
ross-se
tion σT reads

σT =

nf
∑

f

∫

dy

∫

d2r
∑

h,h̄

∣

∣

∣
Ψ

γ∗T
f,hh̄

∣

∣

∣

2

σ̂(x, r) , (1.146)

where the wave fun
tion Ψ
γ∗T
f,hh̄

of the virtual transversely polarized photon is,

Ψ
γ∗T (λγ )

f,h,h̄
(y, r;Q2) = δh̄,−h

ieqf
2π

√

Nc

π
(yδh,λγ + ȳδh,−λγ )

(r · e(λγ ))

|r| µK1(µ |r|) . (1.147)

Note that the expressions of the wave fun
tions of the virtual photon be
ome in the non-

forward limit [32℄ where a momentum ∆ is ex
hanged in the t−
hannel,

Ψ
γ∗L
hh̄
(q +∆) = δh̄,−h

eqf
2π

√

N

π
yȳQK0(µr)e

iȳ∆·r , (1.148)

Ψ
γ∗T
hh̄
(q +∆) = δh̄,−h

ieqf
2π

√

N

π
(yδh,λγ − ȳδh,−λγ )

e(λγ ) · r
r

µK1(µr)e
iȳ∆·r

+δh̄,hδhλγmf
eqf
2π

√

N

2π
K0(µr)e

iȳ∆·r . (1.149)

Let us now sket
h how the light-
one wave fun
tions naturally emerge from the eikonal

limit. The eikonal limit s→ ∞ 
an be seen as an in�nite boost of the in
oming and outgoing

states along their longitudinal dire
tion z,

Sαβ = Limω→∞ 〈β| eiωK−U(∞,−∞)e−iωK
− |α〉 , (1.150)
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with K− = −Kz
the Lorentz boost generator along z. Splitting the S−matrix as,

U(−∞,∞) = U(−∞,−L)U(−L, L)U(L,∞) , (1.151)

where U(−L, L) 
ontains the intera
tions eAµ(x)Jµ(x) with an external potential Aµ(x) for

x+ ∈ [−L, L], and inserting the in�nite boost along z leads to

Sαβ = 〈β|U0(+∞, 0) (1.152)

×T+{eie
∫

d2x⊥(
∫

dx+A−(x+,0,x⊥))(
∫

dx−J+(0,x−,x⊥))}
×U0(0,−∞) |α〉 ,

where U0(t1, t2) is the evolution operator that 
ontains only the self intera
tion of the �elds.

The expression (1.152) 
an be proje
ted on all intermediate Fo
k states |γ〉 and |β〉 as,

Sαβ =
∑

γ,δ

〈β|U0(+∞, 0) |γ〉 〈γ|

×T+{eie
∫

d2x⊥(
∫

dx+A−(x+,0,x⊥))(
∫

dx−J+(0,x−,x⊥))}
× |δ〉 〈δ|U0(0,−∞) |α〉 , (1.153)

with T+ the light-
one time ordered produ
t. In our 
ase, the sums over γ and δ are restri
ted

to the lowest Fo
k state, i.e. a quark antiquark pair. The photon light-
one wave fun
tion

for a given intermediate state 〈δ| 
ontaining n parti
les with 
oordinate {yi, r⊥i} is de�ned

as the amplitude of probability to get from the initial photon state at x+ = −∞ the state δ

at the light-
one time x+ = 0,

Ψ({yi, r⊥i}) = 〈δ|U0(0,−∞) |α〉 . (1.154)

In the 
ase δ = q(p1, h)q̄(p2, h̄), the Fourier transform in k⊥−spa
e of light-
one wave fun
tion
of the photon γ∗(q, λγ) reads

Ψ̃λ
hh̄({yi, k⊥i}) =

∫

d2k⊥i
(2π)2

e−ik⊥i·r⊥i 〈δ|U0(0,−∞) |α〉 , (1.155)

whi
h is the amplitude of a photon to split as γ∗(q, λγ) → q(ℓ1, h)q̄(ℓ2, h̄). We keep the


onventions

ℓ1 = yp1 +
ℓ2

ys
p2 + ℓ⊥ , ℓ2 = ȳp1 +

ℓ2

ȳs
p2 − ℓ⊥ (1.156)

q = p1 −
Q2

s
p2 , (1.157)

and we denote the energy Ei = k−i with k−i /
√
s ≡ p1 · k. We de�ne also the plus 
omponent

as k+i /
√
s ≡ p2 · k. The light-
one wave fun
tion 
an be 
omputed in light-
one perturbation

theory (Feynman rules 
an be found in [55℄). It reads

Ψ̃λ
hh̄(y, ℓ⊥) =

∫ 0

−∞
dte−it(Eγ−E1−E2+iǫ) 1√

s

uh(ℓ1)√
y

(eq(−/ǫ(λγ )))
vh̄(ℓ2)√

ȳ
(1.158)

=
i

Eγ −E1 − E2

1√
s

uh(ℓ1)(eqδab(−/ǫ(λγ )))vh̄(ℓ2)√
yȳ

(1.159)

=
i2
√
yȳ

ℓ2 + µ2
uh(ℓ1)(eqδab(−/ǫ(λγ )))vh̄(ℓ2) . (1.160)
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Note that in the standard way to 
al
ulate Feynman diagrams, the wave fun
tion 
an be

obtained by repla
ing the 
onservation of energy fa
tor 2πδ(Eγ −E1 −E2) in the expression

of the T−matrix, by the integral

∫ 0

−∞
dx+ e−ix

+(Eγ−E1−E2+iǫ) =
i

Eγ − E1 − E2
,

and by adding the phase spa
e fa
tor

1√
yȳs

. This spa
e fa
tor

1√
yȳs

should be omitted for

external spinor �elds but as we are interested in the 
ase when the quark antiquark pair

intera
ts at x+ = 0, we keep this fa
tor in the de�nition of the wave fun
tion.

The expli
it 
omputation of the 
urrents ū/ǫv 
an be done using the 
hiral representation

for the Dira
 spinors,

uh(p) =
/p+m√
E +m

(

χh(p)

0

)

(1.161)

and

vh(p) =
−/p+m√
E +m

(

0

χ−h(p)

)

, (1.162)

with χ1/2(p) = (1, 0) and χ−1/2 = (0, 1) and using the expressions (1.138) and (1.139) to

Fourier transform the results, allows to 
ome ba
k to the results for the photon wave fun
tion

Ψ
λγ

hh̄
(y, r) given by eqs. (1.141, 1.147) up to a normalization fa
tor that depends on the

quantum numbers of the quark antiquark pair.

Let us now make a brief remark on the role of the eikonal approximation in the fa
toriza-

tion of the photon wave fun
tions following the derivation in Ref. [56℄ in "usual" Feynman

diagrams. Let us 
onsider the diagram illustrated in �g. 1.15.

PSfrag repla
ements

q
ℓ1ℓ1

ℓ2

k

ℓa

Figure 1.15: One part of the 
ut diagrams.

The diagram gives the 
ontribution,

A = −eu
(h)(ℓ1)/ε

(λ)(q)/ℓa/ε
NS v(h̄)(ℓ2)

ℓ2a + iǫ
(1.163)

= e
y

ℓ2 + yȳQ2
u(h)(ℓ1)/ε

(λ)(q)/ℓa/ε
NS v(h̄)(ℓ2) , (1.164)
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where

ℓ1 = yp1 +
ℓ2

ys
p2 + ℓ⊥ , ℓ2 = ȳp1 +

ℓ2

ȳs
p2 − ℓ⊥ , (1.165)

q = p1 −
Q2

s
p2 , k =

κ+Q2 + k2

s
p2 + k⊥ , (1.166)

ℓa = ℓ1 − q = −ȳp1 +
ℓ2 + yQ2

ys
p2 + ℓ⊥ . (1.167)

Due to the eikonal approximation in the gluoni
 vertex, the polarization of the t-
hannel

gluon is along p2. We 
an then safely 
hange in the numerator ℓa → ℓa + βp2, with β an

arbitrary number as

(/ℓa + β/p2)/p2 = /ℓa/p2 ,

to 
hange in the numerator ℓa → ℓ̃a with ℓ̃a on the mass shell,

ℓ̃a = −ȳp1 −
ℓ2

ȳs
p2 + ℓ⊥ = −ℓ2 .

Then we 
an rewrite

/ℓa →
∑

h̃

v(h̃)(ℓ2)v̄
(h̃)(ℓ2) ,

to get a fa
torized form of the amplitude,

A =
∑

h̃

y

(

e
u(h)(ℓ1)/ε

(λ)(q)v(h̃)(ℓ2)

ℓ2 + yȳQ2

)

v̄(h̃)(ℓ2)/ε
NS v(h̄)(ℓ2) (1.168)

=
s

(2π)2

∑

h̃

Ψ̃
γ∗λ
h,−h̃(y, ℓ) δh̃,h̄ . (1.169)

1.3.4 Models for the dipole target intera
tions

Under the assumption that the b−parameter dependen
e of the dipole s
attering amplitude

fa
torizes, we saw that the dipole 
ross-se
tion reads

σ̂(x, r) = σ0N (x, r) ≡ σ0N (Y, r) , (1.170)

with Y the rapidity Y = ln(1/x). Note that the assumption that the b dependen
e fa
tor-

izes, even though used in most of dipole models, is not supported by the data on ex
lusive

di�ra
tive pro
esses at HERA.

The dipole 
ross-se
tion σ̂(x, r) involves the dynami
s of the gluons inside the proton.

At small−x one 
an expe
t saturation e�e
ts whi
h appear when the partoni
 density of the

nu
leon be
omes large. In the in�nite momentum frame, we 
an interpret saturation e�e
ts

as the saturation of the number of gluons of transverse size 1/Q in the wave fun
tion of the

nu
leon target. This growth of the gluon density 
ould be responsible for a unitarity problem

(violation of the Froissart bound by the hard QCD pomeron ex
hange) of the theory but

we 
an expe
t that at some point the number of gluons stops growing, i.e. saturates, due
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Figure 1.16: Saturation and diluted regimes.

to re
ombinations of the partons following the idea of Gribov, Levin and Ryskin [57℄. Two

regimes 
an be then de�ned as illustrated in �g. 1.16, the diluted regime where the nu
leon

is not saturated by the partons and the saturation regime where the gluon transverse areas

start to overlap. The so-
alled 
riti
al line between the two regimes is given by Q2 = Q2
s(x),

with Q2
s(x) the inverse transverse area where the probability to �nd more than one gluon is

of order one.

To take into a

ount these saturation e�e
ts inside the proton, a �rst saturation model

was introdu
ed by Gole
-Biernat and Wüstho� in 1998, where the dipole 
ross-se
tion is

parameterized by a Gaussian ansatz whi
h saturates at a value σ0,

σ̂(x, r) = σ0

{

1− exp

(

− r2

4R2
0(x)

)}

, (1.171)

where R0(x) is the saturation radius

R2
0(x) =

1

GeV

2

(

x

x0

)λ

, (1.172)

and the saturation regime is given for

Q2 .
1

R2
0(x)

∼ Q2
s(x) . (1.173)

The su

ess of this model was to des
ribe all the 
ontemporary HERA data [58, 59, 60, 61℄

for in
lusive as well as di�ra
tive 
ross-se
tions. The main feature of this model [62℄ is that it

provides a dipole 
ross-se
tion that gives ba
k the pomeron traje
tory in the diluted regime

1/Q << R0(x),

F2 ∼ x−λ ,
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while for dense partoni
 systems 1/Q >> R0(x) the Froissart 
ondition is re
overed,

F2 ∼ Q2σ0 ln(1/x) .

In the limit r → 0 the dipole 
ross-se
tion vanishes like σ̂(x, r) ∼ r2, this is known as the

property of "
olor transparen
y" [63, 64℄ due to the s
reening of the quark and the antiquark


olors when the r → 0. Note that the Taylor expansion of eq. (1.145) around r = 0 shows this

behavior of the dipole 
ross-se
tion. To make 
onta
t with the photoprodu
tion regime, it is


ustomary [65℄ to make the following modi�
ation in the de�nition of the Bjorken variable x

x→ x

(

1 +
4m2

f

Q2

)

=
Q2

W 2 +Q2

(

1 +
4m2

f

Q2

)

−−−→
Q2→0

4m2
f

W 2
, (1.174)

where mf is an e�e
tive quark mass whi
h depends on the �avor f and of the model used to

�t the data. The values of the best �t parameters of the original saturation model are shown

in tab. 1.1. Note that the in
lusion of the 
harm 
ontribution, with mc = 1.5 GeV has also

been performed in Ref. [65℄. In �g. 1.17 are 
ompared the �ts with and without mass mf to

HERA data.

Fits σ0 (mb) λ x0

No 
harm 23.03 0.288 3.04× 10−4

With 
harm 29.12 0.277 0.41× 10−4

Table 1.1: Values of the parameters entering the GBW dipole 
ross-se
tion.

Another important feature of the saturation model whi
h is well reprodu
ed by the data

is the geometri
 s
aling [66℄. The geometri
 s
aling 
an be seen as a 
onsequen
e of the

s
aling of the dipole 
ross-se
tion in the variable r̂ = r/R0(x). As wave fun
tions s
ale in

rQ = r̂QR0(x), one 
an show that after integration over r̂, the 
ross-se
tion does not depend

on Q2
and x but on a single s
aling variable τ = Q2R2

0(x). In �g. 1.18 the data for σγ∗p
tot

versus τ , are all lying on the same line, showing 
learly that the variables Q2
and x are

not independent variables. It was shown that the geometri
 s
aling still holds in the diluted

regime in the region governed by the BFKL equation up to Q2 ∼ Q4
s/Λ

2
QCD [67℄.

With the in
reasing pre
ision of data [68, 69, 70℄, the original saturation model failed to

des
ribe the new set of data, as it has been 
he
ked in Ref. [71℄ but it inspired many studies

[72, 71, 73, 74, 75, 76, 77℄. A way to improve the large Q2
behavior of the old GBW model,

is inspired from the 
onne
tion at large Q2
between the gluon density g(x, µ2) and the dipole


ross-se
tion [78℄,

σ̂(x, r) =
π2

3
r2αs xg(x, C/r

2) , (1.175)

with xg(x, µ2) driven by the DGLAP evolution. The model proposed in Ref. [71℄ by Bartels,

Gole
-Biernat and Kowalski for the dipole 
ross-se
tion is,

σ̂(x, r) = σ0

(

1− exp

(

−π
2r2αs(µ

2
g)xg(x;µ

2
g)

3σ0

))

, (1.176)
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Figure 1.17: The saturation model 
ompared to H1 and ZEUS data, [62℄. The solid and

dotted lines are respe
tively the results with mf = 140 MeV and mf = 0.

where the s
ale µ2
g = C

r2
+ µ2

0. The gluon density g(x, µ2
g) evolves with the LO-DGLAP

equation, negle
ting the quark distributions as we are in the low x regime, and obeys the

initial 
ondition at Q2
0 = 1 GeV2

xg(x,Q2
0) = Agx

−λg(1− x)5.6 . (1.177)

Two sets of the parameters {mf , Ag, λg, C, µ
2
0} were found to give a good des
ription of the

DIS data as shown in the table 1.2.

Fits mf (GeV) Ag σ0 (mb) λg C µ2
0 (GeV

2
) χ2/Ndf

1 0.14 1.20 23.0 0.28 0.26 0.52 1.17

2 0 13.71 23.8 -0.41 11.10 1.00 0.97

Table 1.2: Values of the parameters entering the BGBK dipole 
ross-se
tion.

The extension of this model with b−parameter dependen
e "b-sat" model [74, 76℄, for

non-forward s
attering amplitudes, reads

N (x, r, b) = 1− exp(− π2

2Nc

r2αs(µ
2
g)xg(x, µ

2)T (b)) , (1.178)

where the proton shape in the transverse plane T (b) is assumed to have a Gaussian shape.

This model assumes that multiple dipoles s
atter independently and the models based on this
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Figure 1.18: Exhibition of the geometri
 s
aling by HERA data [66℄.

assumption, using the kind of parameterization of the dipole 
ross-se
tion as in eq. (1.178),

are referred as Glauber-Mueller models. Ex
lusive pro
esses in the high energy limit o�er a

good opportunity to probe the gluon density shape T (b) in the hadrons. The results obtained

with a Gaussian shape from the ele
troprodu
tion of ve
tor mesons at HERA, give the value

√

〈b〉2 = 0.56 fm whi
h is slightly smaller than the proton radius 
harge 0.87 fm.

The saturation s
ale Qs at the energies of HERA 
ollider is of the order Qs(x) ∼ 1 GeV

whi
h allows a perturbative treatment of the evolution equations of the dipole s
attering

amplitude. In the diluted regime, the s
attering amplitude is driven by the BFKL equation

in the regime Q2
s < Q2 < Q4

s/Λ
2
QCD [67℄. In the saturation regime, the re
ombinations of

gluons are responsible for non-linear terms in the evolution equations that des
ribe the small-x

evolution of the hadroni
 wave fun
tion. In the 
olor glass 
ondensate (CGC) formalism, the

JIMWLK equation, based on the study of renormalization (a la Wilson) group equation for

Wilson line 
orrelators gives the gluon density evolution in dense partoni
 regime a

ounting

for saturation e�e
ts. The JIMWLK equation is equivalent in prin
iple to an in�nite set of
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oupled equations on 
orrelators of Wilson lines known as the Balitsky hierar
hy. This is

due to the fa
t that one needs to average over the target 
on�gurations during the 
ollisions,

leading then to 
oupled equations between di�erent Wilson line 
orrelators. In the large

Nc−limit, this set of in�nite 
oupled equations involves only dipole operators T and under

the assumption that 〈TT 〉 ≈ 〈T 〉2, the evolution equation on 〈T 〉 is given by the BK equation

onN ≡ T the forward dipole s
attering amplitude whi
h reads at LO in the impa
t parameter

spa
e,

∂N (Y, r12)

∂Y
=

αsNc

2π2

∫

d2r0⊥
r212
r210r

2
02

(1.179)

× (N (Y, r01) +N (Y, r02)−N (Y, r12)−N (Y, r01)N (Y, r02)) ,

with rij = |ri⊥ − rj⊥|. In the CGC formalism, it was shown [79℄ that in the weakly 
oupled

regime (N (Y, r) ≪ 1), one gets ba
k the BFKL equation,

∂N (Y, r12)

∂Y
=
αsNc

2π2

∫

d2r0⊥
r212
r210r

2
02

(N (Y, r01) +N (Y, r02)−N (Y, r12)) , (1.180)

whi
h is the linearized version of the BK-equation where the quadrati
 term

N (Y, r01)N (Y, r02) is negle
ted as the partoni
 density is small. Note that the BFKL equation

leads to unbound solutions related to the gluon density and responsible for the violation of

the unitarity while the BK equation leads to bound solutions.

A parameterization for the dipole s
attering amplitude known as the CGC model [73℄


omes from an approximation of the solution to the LO-BFKL equation in the vi
inity of the

saturation regime. The LO-BFKL solution using the Mellin moments representation of the

dipole s
attering amplitude reads

N (Y, r) =

∫

C

dγ

2iπ

(

r2Q2
0

)γ
eh(Y )χ(γ)Ñ0(γ) =

∫

C

dγ

2iπ
exp(h(Y )χ(γ)− γρ)Ñ0(γ) , (1.181)

where

h(Y ) =
αs(Qs(Y ))Nc

π
Y , ρ = ln(1/r2Q2

0) ,

χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ), with ψ(γ) =
d ln Γ(γ)

dγ
,

with Γ the Euler fun
tion. The integral over γ is evaluated by using the saddle point approx-

imation expanding to the se
ond order around the saturation saddle point γ0(Y ) = ρ/h(Y ).

This leads to a solution of the form,

N (Y, r) ≈ N0 exp

(

−γs(ρ− ρs)−
Rs

2χ′′(γs)ρs
(ρ− ρs)

2

)

(1.182)

where ρs(Y ) = ln(Q2
s(Y )/Q

2
0) and Rs = ρs(Y )/h(Y ). One �nds ba
k the geometri
 s
aling

when the �rst term "γs(ρ− ρs)" dominates for ρ ∼ ρs. The se
ond term whi
h is analogous

to a di�usion term violates the geometri
 s
aling.
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Note that an analogy exists between the BK equation and the equation in rea
tion-

di�usion pro
esses in statisti
al physi
s governed by the equation of Fisher, Kolmogorov,

Petrov and Pis
ounov (FKPP),

∂tN = ∂2zN +N −N2 . (1.183)

This analogy found by Munier and Pes
hanski [80, 81, 82, 83℄ by res
aling the BK equation

[84℄ for the quantity

N(Y, k) =

∫

d2r⊥
2πr2⊥

N (Y, r⊥)e
ik⊥·r⊥ ,

was used in order to get information on the universal properties of the BK solutions whi
h

are related to traveling wave solutions.

The CGC model assumes that the approximated solution is of order N (Y, r) = N0 ∼ 1

when r = 1/Qs, in order to take into a

ount the vi
inity with the saturation regime. The

solution in the forward limit proposed by Ian
u, Itakura and Munier in Ref. [73℄ is,

N (x, r) = N0

(

rQs

2

)(2(γs+ ln(2/rQs)
9.9λ ln(1/x)

))
if rQs ≤ 2 ,

= 1− exp(−a ln2(brQs)) if rQs ≥ 2 . (1.184)

where γs is the saddle point in the vi
inity of the saturation regime. The solution for rQs ≥ 2


orresponds to the fun
tional form of solutions expe
ted from BK- equation and the a and b

are determined in order that there is no dis
ontinuity ofN (x, r) and its derivative. This model

was extended to in
lude the impa
t parameter b dependen
e in order to des
ribe the ex
lusive

di�ra
tive pro
esses at HERA. The �rst extension by Marquet, Pes
hanski and Soyez [85℄,

in
ludes the b dependen
e through the saturation s
ale, Q2
s(Y,∆) = Q2

0(1 + c∆2)eλY , and

a multipli
ative non-perturbative form fa
tor f(∆) = e−B∆2
, with t = −∆2

. A se
ond

approa
h 
alled the "b-CGC" model in Ref. [76℄ by Kowalski, Motyka and Watt, 
onsists

only in repla
ing

Qs(x, b) = Qs(x)

(

e
− b2

2BCGC

)
1

2γs

.

Re
ently, the dipole s
attering amplitude has been worked out by numeri
al resolution of

the BK equation with running 
oupling 
orre
tion, the r
BK equation [86, 87℄, taking di�erent

initial 
onditions 
lose to the GBW saturation model and to the M
Lerran-Venugopalan (MV)

model [88℄. We will denote these numeri
al solutions for the dipole s
attering amplitudes

as the Alba
ete-Armesto-Milhano-Quiroga-Salgado (AAMQS)-model. Indeed the solution of

LO-BK does not work so well as it predi
ts a growth of the saturation s
ale way to fast when

rapidity is in
reasing [67, 89℄. It was shown [90, 91℄ that the main 
orre
tion that allows to

solve the dis
repan
y between the predi
tions and the data is the running 
oupling 
orre
tion

of the kernel of the BK- equation.
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The r
BK equation reads

∂N (Y, r12)

∂Y
= (1.185)

∫

d2r0⊥
Ncαs(r

2
12)

2π2

[

r212
r201r

2
02

+
1

r201

(

αs(r
2
01)

αs(r202)
− 1

)

+
1

r202

(

αs(r
2
02)

αs(r201)
− 1

)]

×{N (Y, r01) +N (Y, r02)−N (Y, r12)−N (Y, r01)N (Y, r02)} .

The 
oupling 
onstant in the evolution kernel of the r
BK equation (1.185) depends on the

number of a
tive quark �avors nf ,

αs,nf
(r2) =

4π

β0,nf
ln

[

4C2

r2Λ2
nf

] , (1.186)

where β0,nf
= 11 − 2

3
nf , Λnf

is the QCD s
ale and C is one of the free parameters of the

model. The s
ales Λnf
are determined by the mat
hing 
ondition αs,nf−1(r

2
⋆) = αs,nf

(r2⋆) at

r2⋆ = 4C2/m2
f and an experimental value of αs. The 
oupling 
onstant is frozen to a value

αfr ∼ 1 that it 
annot ex
eed to avoid infra-red divergen
es.

The initial 
onditions are inspired by the GBW model NGBW (Y0, r) and the MV model

NMV (Y0, r) reads

NGBW (Y0, r) = σGBW
0

{

1− exp

[

−
(

r2Q2
s 0

4

)γ]}

, (1.187)

NMV (Y0, r) = σMV
0

{

1− exp

[

−
(

r2Q2
s 0

4

)γ

ln

(

r

Λ3

+ e

)]}

, (1.188)

with Y0 the rapidity that 
orresponds to x0 = 0.01, Qs 0 the initial saturation s
ale at x = x0

and γ the anomalous dimension. The free parameters involved in the AAMQS model are

�tted on the stru
ture fun
tion F2(x,Q
2) and the x−dependen
e is 
ompletely driven by the

r
BK equation.

The solutions for the dipole 
ross-se
tions are given with and without the heavy quarks


harm and beauty 
ontributions. For further use in 
hap. 3 we denote the solutions as follows,

• AAMQS set (a), with the initial 
ondition given by (1.187) a la GBW, with the 
on-

tribution of light quarks (u, d, s) only,

• AAMQS set (e), with the initial 
ondition given by (1.188) a la MV, with the 
ontri-

bution of light quarks (u, d, s) only,

• AAMQS set (b), with the initial 
ondition given by (1.187) a la GBW, with the 
on-

tribution of light and heavy quarks (u, d, s, c, b),

• AAMQS set (f), with the initial 
ondition given by (1.188) a la MV, with the 
ontri-

bution of light and heavy quarks (u, d, s, c, b).
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Figure 1.19: Comparison of the results for the redu
ed 
ross-se
tion σr with the data, �gure

from ref. [87℄. In (a) the results are obtained with the GBW initial 
ondition and only the


ontribution of light quarks. In (b), the 
ontribution of heavy quarks 
harm and beauty is

in
luded.

It turns out that the results are very weakly dependent on the 
hoi
e of the initial 
onditions

and one 
an restri
t its 
hoi
e to the sets (a) and (b). The polarized 
ross-se
tions read

σγ∗p
L,T ; set(a) = σ0

∑

f=u,d,s

∫

d2r

∫

dy
∣

∣

∣
Ψ

γ∗L,T

f (y, r;Q,mf , ef )
∣

∣

∣

2

N l.(x, r) , (1.189)

σγ∗p
L,T, set(b) = σl.

0

∑

f=u,d,s

∫

d2r

∫

dy
∣

∣

∣
Ψ

γ∗L,T

f (y, r;Q,mf , ef)
∣

∣

∣

2

N l.(x, r)

+ σh.
0

∑

f=
,b

∫

d2r

∫

dy
∣

∣

∣
Ψ

γ∗L,T

f (y, r;Q,mf , ef)
∣

∣

∣

2

N h.(x, r) . (1.190)

where σl.
0 N l.(x, r) and σh.

0 N h.(x, r) are respe
tively the dipole 
ross-se
tion 
ontributions of

light and heavy quarks.

We present in tabs. 1.3 and 1.4 values of the parameters of the �ts obtained in ref. [87℄.

Fits Q2
s0 σ0 (mb) γ C χ2/Ndf

(a) 0.241 32.357 0.971 2.46 1.226

(e) 0.165 32.895 1.135 2.52 1.171

Table 1.3: Values of the parameters entering the AAMQS sets (a) and (e) dipole 
ross-

se
tions.

Another kind of dipole 
ross-se
tions models [92, 93℄ exist based on the Regge theory,

where the universal traje
tories of hard and soft pomerons are �tted from HERA data. The

hard pomeron ex
hange is involved for small dipole size r < r0 and the soft pomeron ex
hange

for large dipole size r > r1. The so-
alled FS04 model parameterizes the dipole 
ross-se
tion
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Fits Q2
s0 Q

(c,b) 2
s0 σl.

0 (mb) σh.
0 (mb) γ γ(c,b) C χ2/Ndf

(b) 0.2386 0.2329 35.465 18.430 1.263 0.883 3.902 1.231

(f) 0.1687 0.1417 35.449 19.066 1.369 1.035 4.079 1.244

Table 1.4: Values of the parameters entering the AAMQS sets (b) and (f) dipole 
ross-

se
tions.

as,

σ̂(x, r) = AH r
2 x−λH

if r < r0 (1.191)

= AS x
−λS

if r > r1 , (1.192)


ombining the 
olor transparen
y behavior for small r with the soft pomeron ex
hange behav-

ior at large r. A linear interpolation is performed in the region of intermediate r (r0 < r < r1).

An improved version of the FS04 Regge model was proposed to in
lude saturation e�e
ts by

allowing the parameter r0 to vary in order that the dipole 
ross-se
tion satis�es the 
ondition,

σ(x, r0)/σ(x, r1) = f , (1.193)

where the parameter f is �tted.

A general remark about the amplitudes of the ex
lusive di�ra
tive pro
esses 
omputed

within the dipole model approa
h, is that two kinds of 
orre
tions 
an be taken into a

ount

in these treatments. The �rst one is a 
orre
tion due to the non-zero skewness involved in

the pro
ess. At small x, the skewness ξ is of the order ξ ∼ x
2
and it was shown that the e�e
t

of the skewness result in a multipli
ative fa
tor Rg in front of the gluon density [94℄,

Rg(λ) =
22λ+3

√
π

Γ(λ+ 5/2)

Γ(λ+ 4)
, with λ ≡ ∂ ln xg(x, µ2)

∂ ln(1/x)
. (1.194)

The se
ond one is that in the high energy limit, the imaginary part of the amplitude dominates

the real part but one 
an evaluate the real part by using dispersion te
hniques. The ratio of

the real and imaginary parts of the amplitude A reads

β = ReA/ImA = tan(πλ/2) , with λ ≡ ∂ lnA
∂ ln(1/x)

.
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Chapter 2

Light-Cone Collinear Fa
torization

applied to the ρ−meson produ
tion

2.1 Introdu
tion

2.1.1 Di�ra
tive ex
lusive ve
tor ele
troprodu
tion

In the 
hap. 1 we have introdu
ed the kT−fa
torization s
heme that holds in the high energy

limit s ≫ |t|. In this 
ontext, we introdu
ed the 
on
ept of hard pomeron ex
hange in

hadroni
 pro
esses and we presented 
olor dipole models that in
lude the idea of partoni


density saturation that 
ould restore the unitarity of the theory.

PSfrag repla
ements

p p′

e−, k e−, k′

ρ, pρ
W 2

−Q2

t

Figure 2.1: The di�ra
tive ele
troprodu
tion of the ρ−meson and Lorentz invariant kinemati


variables.

The two forth
oming 
hapters are devoted to the study of heli
ity amplitudes of the

di�ra
tive leptoprodu
tion of the ρ−meson in the high energy limit illustrated in �g. 2.1,

γ∗(q, λγ)p(pp) → ρ(pρ, λρ)p(p
′
p) ,

with λγ and λρ the polarizations of the virtual photon and the ρ−meson.

51
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The di�ra
tive ve
tor meson produ
tion (DVMP) at HERA as well as the deeply virtual

Compton s
attering (DVCS) are ex
ellent pro
esses to probe the hadroni
 
ontent in pQCD

regime. Contrary to in
lusive pro
esses, ex
lusive pro
esses allows to get information on

additional degrees of freedom su
h as the skewness dependen
e or the transverse distributions

of gluons at small−x inside the nu
leon target.

A proof of the fa
torization theorem for the ele
troprodu
tion of ve
tor mesons was given

by Collins, Frankfurt and Strikman in [95℄. This theorem states that the leading twist

amplitude is given by,

A =
∑

i,j

(

fi/p ⊗Hij ⊗ φV
j

)

µ
+ power suppressed terms . (2.1)

where the three main amplitude pie
es are, fi/p the distribution fun
tion of the parton i

inside the hadron p (transversity distribution if transversely polarized ve
tor meson), Hij

the hard s
attering amplitude and ΦV
j the light 
one wave fun
tion of the ve
tor meson.

The parameter µ is the renormalization-fa
torization s
ale whi
h should be 
hosen of the

order of the virtuality Q of the photon in order to 
ompute the 
oe�
ient fun
tion Hij using

perturbative theory at a �nite order of the expansion. It was also shown by power 
ounting

argument that the produ
tion from a transversely polarized virtual photon is suppressed by

1/Q 
ompared to the produ
tion from a longitudinal photon.

The DVMP has been the subje
t of many experiments. The pioneering experiments on

small−x di�ra
tive muo-produ
tion of ve
tor mesons were analyzed on deuterium, 
al
ium

and 
arbon targets down to x ∼ 5.10−3 by the NMC 
ollaboration [96℄ and on proton target

down to x ∼ 2.10−4 by the E665 
ollaboration [97℄, for a wide range of virtualities. The HERA


ollaborations ZEUS and H1 have provided very pre
ise data with respe
tively integrated

luminosity of 120 pb−1 and 51 pb−1 on the spin density matrix elements of the di�ra
tive ρ0

and φ mesons produ
tion in a small−x, for a wide range of energies W in the 
enter of mass

γ∗p and photon virtualities Q. The re
ent analysis provided by ZEUS in 2007 [98℄ and by H1

in 2009 [99℄ are a motivating experimental ba
kground to investigate the heli
ity amplitudes

of the ve
tor meson produ
tion at small−x. These analysis supersede the former analysis

already performed by these 
ollaborations in late 90's [100, 101, 102℄. The data of H1 and

ZEUS are pre
ious to a

ess su
h important universal quantities as the pomeron traje
tory,

through the energy dependen
e and the t−dependen
e of the di�erential 
ross-se
tion. One

usually uses ansatz for the ve
tor meson wave fun
tions based on the dipole 
on�guration

inside the ve
tor meson 
onstituted by the valen
e quarks. The data allows to investigate

the fa
torization pro
edure as well as the 
ontent of the ρ−meson wave fun
tion.

The DVMP was also analyzed by HERMES [103, 104, 105℄, JLab [106℄ and COMPASS

[107℄ in other kinemati
 range of lower energies in the 
enter of mass, i.e. higher x, essential

to understand the pQCD approa
hes based on 
ollinear fa
torization and GPDs.

There are many models derived from mostly three theoreti
al approa
hes (we will not

make here a review of all the models). Two of the approa
hes are equivalent approa
hes, the

kT−fa
torization approa
h and the 
olor dipole approa
h, the third is the 
ollinear fa
toriza-

tion approa
h. As we saw in the 
hap. 1, kT -fa
torization allows to regroup the parti
les into
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sub-pro
esses involving the in
oming and outgoing parti
les of approximately same rapidities

leading to two impa
t fa
tors ex
hanging reggeized gluons whi
h resum the gluons ex
hanged

in t−
hannel. In the 
ase of the DVMP the heli
ity amplitudes as illustrated in �g. 2.2 read,

TλV λγ ∝ is

∫

d2k⊥
k4⊥

Φ
γ∗λγ→VλV F(x, k⊥) , (2.2)

with F(x, k⊥) the unintegrated gluon density.

PSfrag repla
ements

V = ρ0, φ, · · ·

∫

d2k⊥

F(x, k⊥)

Φ
γ∗λγ→Vλρ(Q2, k⊥)

Figure 2.2: kT−fa
torization of the DVMP.

The energy dependen
e of the pro
ess is then given by the BFKL evolution for the unin-

tegrated gluons density known at LLx [34, 35, 36, 37℄ and NLLx [108, 109, 110, 111℄.

This approa
h needs a model for the proton impa
t fa
tor at Born order or a model for

the unintegrated gluon density of the nu
leon target. It is the approa
h we will use in the

se
ond part of this 
hapter to get a model for the heli
ity amplitude Tλρλγ . Let us des
ribe

some of the appli
ations of this approa
h.

Martin, Ryskin and Teubner (MRT) [112℄ have pointed out that the di�ra
tive ρ−meson

produ
tion data from HERA indi
ates that it should be treated within pQCD. They proposed

a model based on the parton-hadron duality, to express the ρ−meson produ
tion 
ross-se
tion

as

σγ∗p→ρp ≈ 0.9
∑

q=u,d

∫

dM2dσγ∗p→(qq̄)p

dM2
, (2.3)

with M2
the invariant mass of the qq̄ system. Using kT−fa
torization approa
h and a gluon

density ansatz xg(x,Q2) ∼ x−λ(Q2)γ, with γ the e�e
tive anomalous dimension of the gluon

density, leads to the ratio of polarized 
ross-se
tions

σL
σT

=
Q2

M2

(

γ

γ + 1

)2

. (2.4)

More re
ent models based on the kT -fa
torization and model of gluon density exist, e.g. the

model from Ivanov, Nikolaev and Savin [113℄, whi
h allows predi
tions for all spin density

matrix elements for the ele
troprodu
tion of ρ−meson.
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ements
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Figure 2.3: DVMP within the 
olor dipole pi
ture.

The 
olor dipole approa
h of DVMP illustrated in �g. 2.3, is equivalent to the kT−fa
torization
s
heme but in impa
t parameter spa
e where the 
onvolution of the wave fun
tions of the

initial proje
tile and �nal state 
an be fa
torized even at low Q2
, from the dipole target

s
attering amplitude. Like in the kT−fa
torization s
heme the dipole target 
ross-se
tion

has to be modeled and 
ontains the x−dependen
e of the pro
ess. This x−dependen
e is

linked to the behavior the gluon density xg(x,Q2) ∼ x−λ. The amplitude takes the form

Tλρλγ =

∫ 1

0

dy

∫

d2r
(

Ψρ∗
λρ
Ψγ

λγ

)

(y, r)A(qq̄)p→(qq̄)p′(x, r) , (2.5)

where y and r are respe
tively the fra
tion of longitudinal momentum and the transverse

size of the dipole. In the previous 
hapter we have already mentioned some of the models

that exist for the dipole 
ross-se
tion. Note that another type of approa
h exists based

on the generalized ve
tor dominan
e to get the DVMP amplitudes, see e.g. [114℄ where

predi
tions are made for the ratios of heli
ity amplitudes. The ρ−meson wave fun
tions are

unknown but many models have been proposed. Some of them assume the fa
torization of the

transverse degrees of freedom from the longitudinal ones. For example the model of Dos
h,

Gousset, Kulzinger and Pirner (DGKP) model [115℄, where the transverse size dependen
e

is assumed to be independent from y and to have a Gaussian shape. Other models, for

example the Nem
hik, Nikolaev, Predazzi and Zakharov (NNPZ) model [116, 117, 113℄ or

models proposed by Forshaw, Sandapen and Shaw [118, 119, 120℄, assume a dynami
s of the


onstituent quark antiquark pair that is in agreement with the size of the meson suggested by

spe
tros
opi
 models in the rest frame of the meson.The light-
one meson wave fun
tions are

then obtained by applying a "relativization pro
edure" whi
h allows to get their expressions

in the in�nite momentum frame. In general the dynami
s of the qq̄ pair assumed in the rest

frame is given by an harmoni
 os
illator potential for the large distan
e dynami
s and the

short distan
e dynami
s is driven by a Coulombi
 potential term.

Another approa
h 
lose to the MRT model, based on the kT−fa
torization s
heme in the

impa
t parameter spa
e, is followed in ref. [121℄ by Ivanov and Kirs
hner to fa
torize the

wave fun
tions of the virtual photon and the ve
tor meson. The ve
tor meson wave fun
tion

and the dipole s
attering amplitude are then expanded around small dipole size and the

end-point divergen
es when y → {0, 1} are regularized by the s
ale dependen
e of the gluon
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density. This model allows to get predi
tions for the full set of heli
ity amplitudes.

PSfrag repla
ements

GPD

γ∗ V = ρ0, φ,· · ·

p

p'
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xp2 x′p2

Figure 2.4: Leading hand bag diagrams in the 
ollinear fa
torization approa
h.

The 
ollinear fa
torization approa
h initiated in [122, 123℄ by Brodsky, Frankfurt, Gunion,

Koepf, Mueller and Strikman, based on the 
ollinear fa
torization s
heme eq. (2.1) [95, 124℄

where the amplitude is fa
torized as illustrated in �g. 2.4 into GPDs, distributions amplitudes

(DAs) of the ρ−meson and a hard pro
ess 
al
ulable using pQCD.

The longitudinally polarized amplitude reads

T00 ∝
∫

dy

∫

dxfi(x, x
′)Hij(y, x, x

′)ΨV
j (y) , (2.6)

with y the usual fra
tion of photon longitudinal momentum 
arried by one of the quark,

fi(x, x
′) represents GPDs, whi
h are the probability to �nd the parton i inside the proton

that 
arries x fra
tion of its longitudinal momentum and 
omes ba
k inside the proton with

the fra
tion x′. GPDs are a generalization of PDF to the non-forward limit x 6= x′ allowing

to take into a

ount skewness e�e
ts. Hij is the hard sub-pro
ess where the parton i gives

a parton j that hadronizes into the meson with integrated wave fun
tion ΨV
j . The 
ollinear

fa
torization s
heme have been improved to remove end-point singularities that appear for

the transversely polarized 
ross-se
tion using Sudakov fa
tors [125℄, whi
h allows to over
ome

end-point singularity problems, and has been applied to ρ-ele
troprodu
tion through the

VGG model [126℄ and the Kroll and Goloskokov model [127, 128, 129℄. In pra
ti
e the

end-point singularities are regularized by keeping the transverse momenta of the qq̄ pair that

forms the ve
tor meson and by assuming that they are distributed by a Gaussian distribution

that prevents large dipole size 
on�gurations. Note that this approa
h is valid not only in

the large energy limit but also forW ∼ Q. The GPDs are not known and have to be modeled

starting from the PDFs forms and implementing the skewness and t−dependen
ies.

2.1.2 The underlying ideas of our approa
h

In the approa
h presented below, we use at a �rst level the kT−fa
torization to fa
torize the

γ∗(λγ) → ρ(λρ) impa
t fa
tor in the amplitude. Using the fa
t that the virtuality of the

photon is large, we 
an apply the 
ollinear fa
torization s
heme to fa
torize the soft part

asso
iated to the ρ−meson produ
tion from the partons produ
ed in the hard part. Note

that the notion of twist here is de�ned as the twist of the operators involved in the (qq̄) → ρ

and (qq̄g) → ρ meson produ
tion and not in the sense of the twist of the operators of the
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γ∗p→ ρp amplitude. This approa
h was performed a long time ago by Ginzburg, Pan�l and

Serbo [130℄ up to twist 2 for the γ∗L → ρL and γ∗T → ρL transitions and was re
ently derived

by Anikin, Ivanov, Pire, Szymanowski and Wallon [131℄ for the γ∗T → ρT transition up to

twist 3 in the forward limit. The presen
e of the k⊥ of the t−
hannel gluons, regularizes the
end-point divergen
es as it gives a �nite size of the order r ∼ 1/k⊥ to the qq̄ pair. The quark

and the antiquark, after the intera
tion with the t−
hannel gluons, are �ying 
ollinearly and
hadronize into a ρ−meson. A little deviation from the 
ollinear dire
tion aligned on the

ρ−meson momentum will give higher twist 
orre
tions and we will present how to take into

a

ount these higher twist 
orre
tions up to twist 3.

The 
hapter 
an be divided in two parts. The �rst part is the des
ription of the so-
alled

light-
one 
ollinear fa
torization (LCCF) pro
edure [132, 133, 134℄, inspired from the initial

Ellis�Furmanski�Petronzio (EFP) fa
torization [135, 136, 137, 138, 139, 140℄, generalized for

ex
lusive pro
esses. This fa
torization s
heme uses the Taylor expansion of the hard part

around the dominant light-
one dire
tion in the light 
one gauge to get the higher twist


ontributions. We will present the LCCF on the 
al
ulation of the impa
t fa
tors γ∗ → ρ,

following the approa
h of Ref. [131℄. This approa
h being gauge invariant, a 
onne
tion be-

tween the LCCF results and the results obtained within another approa
h 
alled the 
ovariant


ollinear fa
torization (CCF) approa
h 
an be established. The relations between the CCF

DAs and the LCCF DAs were derived in [131℄. A model developed by Ball, Braun, Koike

and Tanaka in [141, 142℄, based on the 
onformal symmetry of the non-lo
al 
orrelators in

the CCF approa
h, is then used to get a model for the LCCF DAs.

In the se
ond part of the 
hapter we will present a model [18℄ using an impa
t fa
tor

model [143℄ for the proton, based on the results of the �rst part. At the end we 
ompare the

predi
tions to HERA data.

2.2 Light-
one 
ollinear fa
torization up to twist 3 a

u-

ra
y

2.2.1 Soft parts and hard parts

We 
onsider the S−matrix element of the leptoprodu
tion of the ρ−meson involving a hard

part where a highly virtual photon disso
iates into the 
onstituent partons involved in the

ρ−meson �nal state wave fun
tion and a soft part whi
h des
ribes the hadronization of these

partons into the ρ−meson. Up to twist 3, one needs to 
onsider the two (qq̄) and three (qq̄g)

parton intermediate Fo
k states and we will denote respe
tively Aqq̄ and Aqq̄g the asso
iated

amplitudes. The partons intera
t at Born order with two t−
hannel gluons with non-sense

polarizations as illustrated in �g. 2.5.

The main idea is to separate the pro
ess into the hard sub-pro
ess involving the small

distan
e physi
s that 
an be treated in the pQCD approa
h and the soft sub-pro
ess involving

the long distan
e intera
tions between the partons in the hadroni
 state. The hard sub-
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Figure 2.5: 2- and 3-parton 
orrelators atta
hed to a hard s
attering amplitude in the spe
i�



ase of the γ∗ → ρ impa
t fa
tor, where verti
al lines are hard t− 
hannel gluons in the 
olor

singlet state.

pro
ess 
orresponds to the Feynman diagrams where the partons are propagating the hard

s
ale whi
h is the virtuality of the photon Q, this hard part is then related to the photon

vertex. The soft part of the pro
ess 
annot be des
ribed in terms of free �eld operators due

to the intera
tions with other partons in the non-perturbative regime, and one ends up with

soft parts expressed in terms of intera
ting �elds in the Heisenberg pi
ture operators. In

order to get gauge invariant operators in the soft parts, one needs also to in
lude the gluoni


radiations into the �nal state due to the motion of the partons, whi
h in pra
ti
e results in

the presen
e of Wilson lines linking the 
oordinates of the partoni
 �elds.

The amplitudes read

iAqq̄ =

∫

d4ℓ1
(2π)4

Tr (Hqq̄(ℓ)Sqq̄(ℓ)) , (2.7)

iAqq̄g =

∫

d4ℓ1
(2π)4

d4ℓg
(2π)4

Tr

(

Hα
qq̄g(ℓ1, ℓg)Sqq̄g α(ℓ1, ℓg)

)

, (2.8)

where we expli
itly put the integral over ℓ1 and ℓg, the momenta of the quark and the gluon

involved in the loops. The hard parts of these pro
esses are denoted with Hqq̄ and H
α
qq̄g and

the soft parts by Sqq̄ and Sqq̄g α. The tra
es are over spinor and 
olor indi
es of the hard and

soft parts. More expli
itly the soft parts are given by the Fourier transforms of the non-lo
al


orrelators of the partoni
 �elds

1

between the va
uum and the ρ−meson states

S(ℓ) =

∫

d4z
〈

ρ(pρ)
∣

∣ψ(0)[0, z]ψ̄(z)
∣

∣ 0
〉

µ2
F
e−iℓ·z , (2.9)

Sα(ℓ1, ℓg) =

∫

d4z1 d
4zg e

−iℓg ·zg−iℓ1·z1

×
〈

ρ(pρ)
∣

∣ψ(0)[0, zg]gA
T
α(zg)[zg, z1]ψ̄(z1)

∣

∣ 0
〉

µ2
F
, (2.10)

where the bra
kets are Wilson lines de�ned by the path-ordered produ
t

[z1, z2] ≡ P exp

(

ig

∫ 1

0

dt (z1 − z2)
ν Aν(t z1 + (1− t) z2)

)

.

In the following parts we will omit to write Wilson lines in the 
orrelators, we will see that

they redu
e to a fa
tor one in a spe
i�
 axial gauge in whi
h we will 
hoose to work. The

1

The �avor of the qq̄ pairs involved in the ρ0−meson wave fun
tion

∣

∣ρ0
〉

= 1√
2
(|ūu〉 −

∣

∣d̄d
〉

), is restored

by 
onsidering a �avorless qq̄ pair of ele
tri
 
harge

e√
2
. The �elds ψ̄ and ψ here are then asso
iated to a

�avorless qq̄ pair with an ele
tri
 
harge

e√
2
.
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s
ale µF is the fa
torization s
ale under whi
h the internal momenta of the partons inside

the hadron are integrated over. This s
ale allows to separate the large distan
e physi
s inside

the hadron from the small distan
e physi
s.

The hard sub-pro
ess is des
ribed by Feynman diagrams shown in �g. 2.7 for the qq̄

intermediate state amplitude, and in �gs. 2.8, 2.9 and 2.10, for respe
tively the "abelian",

the "non-abelian with one triple gluon vertex" and the "non-abelian with two triple gluons

verti
es" diagrams for the qq̄g intermediate state amplitude. Let us emphasize the fa
t that

in all these diagrams the external partoni
 legs are amputated.

Let us illustrate how one 
an de
ompose the amplitude into in one hand the Fourier

transform of a spa
e 
oordinate 
orrelator and on the other hand the usual momentum spa
e

representation amplitude given by Feynman diagrams. We 
hoose a very simple example;

the amplitude of a photon de
aying into a qq̄ pair, as shown in �g. 2.6.

PSfrag repla
ements
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ℓ1,s; ℓ2,r

Figure 2.6: γ → qq̄, de
omposition in two pie
es of the amplitude.

The amplitude 
an be written as follows,

iA = 〈ℓ1, s; ℓ2, r| − ie

∫

d4z ψ̄(z) /A(z)ψ(z) |q, λ〉

= εµ(q, λ) 〈ℓ1, s; ℓ2, r| − ie

∫

d4z ψ̄s(z)γ
µ
srψr(z) |0〉

= (−ie/ε(q, λ))rs
∫

d4z 〈ℓ1, s; ℓ2, r| ψ̄s(z)ψr(z) |0〉 . (2.11)

In the last line we see that the amplitude reads as the tra
e of a hard part (−ie/ε(q, λ))rs
amputated of the external qq̄ external legs, multiplied by the lo
al 
orrelator

∫

d4z 〈ℓ1, s; ℓ2, r| ψ̄s(z)ψr(z) |0〉 .

In this simple example, the 
orrelator is lo
al as it involves only one vertex and it redu
es

to ūs(ℓ1)vr(ℓ2) as the �nal state is a qq̄ state 
ontrary to our 
ase where the �nal state is a

hadroni
 state with 
ompli
ated intera
tions between the external �elds. The eqs. (2.7) and

(2.8) are obtained in the same way, the �nal 
orrelators 
annot be 
al
ulated within pQCD

and have to be parameterized as we will see later after applying the light-
one 
ollinear

fa
torization pro
edure whi
h allows to fully separate the hard parts from the soft parts whi
h

are still linked by 
olor, spinor indi
es and the 4-momentum integrals over the intermediate

parton momenta.
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Figure 2.7: The 6 hard diagrams atta
hed to the 2-parton 
orrelators, whi
h 
ontribute to

the γ∗ → ρ impa
t fa
tor.

2.2.2 Fa
torization of the spinor indi
es

Let us introdu
e very helpful identities 
alled Fierz identity in the spinor spa
e, whi
h is a

de
omposition on the basis of the sixteen Dira
 matri
es

2

ΓS Γµ
V Γµν

T Γµ
A ΓP

I γµ σµν = i
2
[γµ, γν] γ5γµ i γ5

We denote the inverse of the Dira
 matrix

Γα ≡ (Γα)−1 . (2.12)

The inverse matrix are expli
itly given by

(γµ)−1 = γµ ≡ ΓV µ , (σµν)−1 = σµν ≡ ΓTµν ,

(γ5γµ)−1 = γµγ
5 ≡ ΓAµ , (iγ5)−1 = −iγ5 ≡ Γ−1P .

(2.13)

The Fierz identity in spinor spa
e reads

δbb̄ δaā =
1

4
Γα b̄ā Γ

α
ab . (2.14)

Any matrix of the spinor spa
e 
an be de
omposed as

X = xα Γ
α =

1

4
ΓαTr (XΓα) =

1

4
ΓαTr (XΓα) , (2.15)

2

The 
onvention taken is γ5 = i γ0 γ1 γ2 γ3.
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Figure 2.8: The 12 �Abelian� (i.e. without triple gluon vertex) type 
ontributions from the

hard s
attering amplitude atta
hed to the 3-parton 
orrelators for the γ∗ → ρ impa
t fa
tor.

based on the identity,

TrΓαΓβ = 4δαβ . (2.16)

The Fierz identity 
an be illustrated as in �g. 2.11. We use this identity to fa
torize the



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE

ρ−MESON PRODUCTION 61

PSfrag repla
ements PSfrag repla
ements PSfrag repla
ements

PSfrag repla
ements

(atG1) (atG2) (btG1) (btG2)

PSfrag repla
ements PSfrag repla
ements

PSfrag repla
ements

PSfrag repla
ements

(
tG1) (
tG2) (dtG1) (dtG2)

PSfrag repla
ements PSfrag repla
ements

PSfrag repla
ements PSfrag repla
ements

(etG1) (etG2) (ftG1) (ftG2)

Figure 2.9: The 12 �non-Abelian� -(with one triple gluon vertex) 
ontributions from the hard

s
attering amplitude atta
hed to the 3-parton 
orrelators, for the γ∗ → ρ impa
t fa
tor.
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Figure 2.10: The 4 �non-Abelian� -(with two triple gluon verti
es) 
ontributions from the

hard s
attering amplitude atta
hed to the 3-parton 
orrelators, for the γ∗ → ρ impa
t fa
tor.

spinor indi
es of the hard and soft parts,

Tr (H S) = HijSij = HrsδirδjsSij =
1

4

∑

Γ

HrsSijΓ
µ
rsΓµ ij

=
1

4

∑

Γ

Tr (HΓµ) (SΓµ) . (2.17)
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aā

bb̄

Γα Γα

Figure 2.11: Fierz identity in spinor spa
e.

In our 
ase, a minus sign 
omes from the Wi
k theorem, one has to 
ommute the spinor

�elds,

−〈ψr ψ̄s〉 =
1

4
〈ψ̄ γµ ψ〉 γµrs +

1

4
〈ψ̄ γ5γµ ψ〉 (γµγ5)rs + · · · (2.18)

where we have put expli
itly the spinor indi
es r and s of the fermioni
 �elds.

Note that the spinor indi
es fa
torization only involves the fermioni
 �elds, and 
onse-

quently the Fierz de
omposition goes the same way for the qq̄ and the qq̄g intermediate

states.

2.2.3 Fa
torization of the 
olor indi
es

The Fierz identity 
an be also derived in 
olor spa
e. Assuming the normalization of the

generators t

Tr (ta tb) =
1

2
δab , (2.19)

one 
an show the Fierz identity for the generators of SU(Nc),

taij t
a
kℓ =

1

2

(

δiℓ δjk −
1

Nc

δij δkℓ

)

, (2.20)

whi
h graphi
ally reads

PSfrag repla
ements

i

j k

ℓ

=
1

2





PSfrag repla
ements

i

j k

ℓ

− 1

Nc

PSfrag repla
ements

i

j k

ℓ

 . (2.21)

In the 
ase of the qq̄ ex
hange, we 
an use this identity as

PSfrag repla
ements

i

j k

ℓ

= 2

PSfrag repla
ements

i

j k

ℓ

+
1

Nc

PSfrag repla
ements

i

j k

ℓ

, (2.22)

with i, j are the hard part indi
es and k, l are soft part indi
es. Then we see that the �rst

term of the r.h.s. will give zero on
e proje
ted on a 
olor singlet state be
ause of the gluon


oupling to the fermioni
 �elds involved in the soft part. Hen
e the tra
e over the 
olor

indi
es of the hard and soft part 
an be written as

Tr(Hqq̄ Sqq̄) =
1

Nc

Tr(Hqq̄)Tr(Sqq̄) .

The normalization of the qq̄g singlet state in 
olor spa
e is 2/(N2
c −1) leading to the fa
torized

expression

Tr(Hqq̄g Sqq̄g) =
2

N2
c − 1

Tr(Hqq̄g)Tr(Sqq̄g) ,

for the qq̄g amplitude.
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2.2.4 Fa
torization in the momentum spa
e around the light 
one

dire
tion p

The amplitude iAqq̄ after fa
torization of the spinor and 
olor indi
es

3

reads

iAqq̄ = −1

4

∑

{Γ}

∫

d4ℓ

(2π)4
Tr (Hqq̄(ℓ)Γ

µ) S
Γµ

qq̄ (ℓ) , (2.23)

iAqq̄g = −1

4

∑

{Γ}

∫

d4ℓ1
(2π)4

∫

d4ℓg
(2π)4

Tr

(

Hα
qq̄g(ℓ1, ℓg)Γ

µ
)

S
Γµ

qq̄g α(ℓ1, ℓg) , (2.24)

with

S
Γµ

qq̄ (ℓ) ≡
∫

d4z
〈

ρ(pρ)
∣

∣ψ̄(z)Γµψ(0)
∣

∣ 0
〉

e−iℓ·z , (2.25)

S
Γµ

qq̄g α(ℓ1, ℓg) ≡
∫

d4z1 d
4zg
〈

ρ(pρ)
∣

∣ψ̄(z1) gΓµA
T
α(zg)ψ(0)

∣

∣ 0
〉

e−iℓ1·z1−iℓg·zg .

(2.26)

The fa
torization in momentum spa
e around the dominant light 
one ve
tor requires that

we de�ne a basis of light-
one ve
tors on whi
h the partoni
 momenta 
an be de
omposed in

order then to Taylor expand the hard part around the dominant light 
one ve
tor. We de�ne

then two light like ve
tors p and n, whi
h satisfy p ·n = 1 and su
h as p is the dominant light


one dire
tion, p and n are denoted usually the "plus" and "minus" light 
one ve
tors. The

dominant light 
one dire
tion in our 
ase is given naturally by the dire
tion of the ρ−meson

pρ = p+
m2

ρ

2
n

twist 3

= p ,

as the mass term of the ve
tor meson leads to kinemati
 twist 
orre
tions starting at twist 4

whi
h is beyond the s
ope of this study. Note that the 
hoi
e of the light 
one ve
tor n is not

unique. The amplitude at the end should not depend on the parti
ular 
hoi
e of this ve
tor

and this will give additional 
onstrains on the DAs as we will see in the se
tion 2.4.2.

The momenta of the quark ℓ1 and the antiquark ℓ2 in the two-parton amplitude are

de
omposed as

ℓ1 = yp+ β1n+ ℓ⊥ and ℓ2 = ȳp+ β2n− ℓ⊥ . (2.27)

Following [144, 138℄, in this approa
h the partons are on the mass-shell leading to

β1 =
ℓ2

2y
and β2 =

ℓ2

2ȳ
,

For the three-parton amplitude, the quark ℓ1, antiquark ℓ2 and gluon ℓg momenta are

de
omposed as

ℓ1 = y1p+ β1n+ ℓ1⊥ , (2.28)

ℓ2 = ȳ2p+ β2n+ ℓ2⊥ , (2.29)

ℓg = ygp+ βgn + ℓg⊥ . (2.30)

3

The Fierz 
oe�
ients from 
olor spa
e fa
torization 1/Nc and 2/(N2

c − 1) are impli
itly put in the hard

part expressions for 
on
iness of the formulas.
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the momentum 
onservation and the on-shellness of the partons, imply that

yg = y2 − y1 , ℓg⊥ = −(ℓ1⊥ + ℓ2⊥) , 2(β1 + β2 + βg) =
ℓ21
y1

+
ℓ22
ȳ2

+
ℓ2g
yg
.

We de
ompose the Fourier 
onjugate in 
oordinate spa
e zi of the momentum ℓi as

zi = γi p + λi n + zi⊥ .

Let us fo
us on the two-parton 
ontribution. The leading twist 
ontribution to the am-

plitude is given by assuming that the quark and the antiquark are �ying 
ollinearly to the

dire
tion of the ρ−meson

Hqq̄(ℓ1) ≡ Hqq̄(y, β1, ℓ⊥) ≈ Hqq̄(y) , (2.31)

whi
h 
orrespond to the zero order term of the Taylor expansion of the hard part around the

dominant light 
one dire
tion p.

The 
ontributions in ea
h order in 1/Q, are given by the Taylor expansion of the hard

part around the dominant light 
one dire
tion p [144, 138℄. Up to twist 3, this expansion


an be interpreted as the emission from the hard part of a qq̄ pair with a very small relative

transverse momentum justifying the Taylor expansion around the 
ollinear dire
tion. The

relevant terms of the Taylor expansion up to twist 3 are

HΓµ

qq̄ (ℓ1) = HΓµ

qq̄ (y) +Hν,Γµ

qq̄ (y) (ℓ1 − yp)ν + · · ·
twist 3≈ HΓµ

qq̄ (y) +Hν,Γµ

qq̄ (y) ℓ1⊥ν . (2.32)

where, for 
on
iseness, we use the notations

HΓµ

qq̄ ≡ Tr(Hqq̄Γ
µ) , Hν,Γµ

qq̄ ≡ ∂

∂ℓ1ν
Tr(Hqq̄Γ

µ) .

The term of n-th order of this Taylor expansion reads

∂n

∂ℓ1ν1 · · ·∂ℓ1νn
Tr(Hqq̄Γ

µ) (ℓ1 − yp)ν1 · · · (ℓ1 − yp)νn ,

where (ℓ1 − yp)ν1 · · · (ℓ1 − yp)νn a
ting on the soft part, will give transverse derivatives of

the 
orrelator, leading to the moments of the wave fun
tion of the hadron. Note that the

insertions of transverse gluons and transverse derivatives ((ℓ1 − yp)ν1 ∼ ℓ1⊥ν1) in
rease the

twist of the operators in the soft part.

We will treat separately the 
onvolutions of the two terms of the last line of eq. (2.32)

with the soft part. The �rst term (zero-th order of the Taylor expansion) is

iA(0)
qq̄ = −1

4

∫

dy

2π
HΓµ

qq̄ (y)

∫

dβ1
2π

dℓ⊥
(2π)2

∫

dγdλdz⊥e
−i(yλ+β1γ+ℓ⊥·z⊥)

× 〈ρ(p)|ψ̄(γp+ λn+ z⊥) Γµ ψ(0)|0〉

= −1

4

∫

dyHΓµ

qq̄ (y)

∫

dλ

2π
e−iyλ〈ρ(p)|ψ̄(λn) Γµ ψ(0)|0〉µ2

F
. (2.33)
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In eq. (2.33), the subs
ript µ2
F is the fa
torization s
ale up to whi
h the �u
tuations in the

transverse momentum spa
e are integrated,

〈ρ(p)|ψ̄(λn) Γµ ψ(0)|0〉µ2
F
≡
∫

ℓ2⊥≤µ2
F

dℓ⊥ dz⊥
(2π)2

e−iℓ⊥·z⊥〈ρ(p)|ψ̄(λn+ z⊥) Γµ ψ(0)|0〉 . (2.34)

Let us give now a more pre
ise interpretation of the presen
e of this 
ut-o� on the trans-

verse momenta. In the rest frame of the meson, its size is of order µ−10 in all dire
tions with

µ0 ∼ mρ, and in this frame a 
ut-o� at µ−1F ∼ Q−1 GeV allows to get most of the internal

dynami
s whi
h is not resolved by the system of partons. In the rest frame of the partons


reated by the virtual photon and propagating with the hard s
ale Q, the partoni
 system

has a typi
al spatial extension of the order Q−1. The boost to go from the meson rest frame

to the partoni
 system rest frame indu
es a 
ontra
tion of the longitudinal size of the meson

by a fa
tor Q/µ0, leading to a longitudinal size of the order of Q−1. Hen
e we see that the

�u
tuations along the longitudinal size 
an be always resolved even for very large virtualities,

while the �u
tuations in the transverse dire
tion are not boosted and remains of the order

µ−10 . Thus these transverse �u
tuations are part on the long distan
e dynami
s of the meson

and have to be integrated over up to the s
ale µF ∼ Q. Choosing the renormalization s
ale

to be equal to the fa
torization s
ale, the dependen
e of the DAs on the s
ale µF is given by

the renormalization equations of the operators in the 
orrelators.

Note that for the 
ase of the qq̄ pair intermediate state, the transverse size of the pair is

of the order

√
yȳQ instead of Q due to the fa
t that the photon is split in two 
onstituents.

In a symmetri
 jet 
on�guration (y ∼ 1/2), a reasonable 
hoi
e for µF is

µF =
√

〈yȳQ2〉 ∼ Q

2
.

For aligned jet 
on�gurations (y ∼ 0 or ȳ ∼ 0) whi
h are expe
ted to dominate the trans-

versely polarized ρ−meson produ
tion, this 
hoi
e has to be justi�ed depending on the av-

erage values of y and ȳ given by the distribution of dipoles, i.e. the overlaps of the wave

fun
tions of the transverse virtual photon and the ρ−meson.

After the momentum fa
torization, the operators in the 
orrelation fun
tions are a produ
t

of �elds on the light 
one dire
tion n, z2 = (λn)2 = 0. Restoring the Wilson line, the gauge

invariant 
orrelator reads

〈ρ(p)|ψ̄(λn)[λn, 0] Γα ψ(0)|0〉 . (2.35)

We 
hoose to work in the light-
one gauge A · n = 0 whi
h allows to simplify the Wilson line

to a fa
tor one

[λn, 0] ≡ P exp

(

ig

∫ 1

0

dt λ nν Aν(t λ)

)

= 1 .

The se
ond term of the Taylor expansion (2.32), i.e. the �rst order in ℓ⊥ of the Taylor
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expansion, reads

iA(1)
qq̄ = −1

4

∫

dy

2π
Hν,Γµ

qq̄ (y)

∫

dβ1
2π

∫

dℓ⊥
(2π)2

ℓ⊥ν

∫

dγ dλ dz⊥

× e−i(yλ+β1γ+ℓ⊥·z⊥)〈ρ(p)|ψ̄(γp+ λn + z⊥) Γµ ψ(0)|0〉

= −1

4

∫

dyHν,Γµ

qq̄ (y)

∫

dλ

2π
e−iyλ

×
∫

dz⊥

∫

dℓ⊥
(2π)2

ℓ⊥ν e
−iℓ⊥·z⊥ 〈ρ(p)|ψ̄(λn + z⊥) Γµ ψ(0)|0〉 . (2.36)

We must now get rid of the fa
tor ℓ⊥ and this is done by repla
ing ℓ⊥ → i∂/∂z⊥ a
ting on

the exp(−iℓ⊥ · z⊥) and then doing an integration by parts,

iA(1)
qq̄ =−1

4

∫

dy Hν,Γµ

qq̄ (y)

∫

dλ

2π
e−iyλ

∫

dℓ⊥
(2π)2

dz⊥
(

i∂⊥νe
−iℓ⊥·z⊥

)

×〈ρ(p)|ψ̄(λn+ z⊥) Γµ ψ(0)|0〉

=
i

4

∫

dyHν,Γµ

qq̄ (y)

∫

dλ

2π
e−iyλ

∫

dℓ⊥
(2π)2

∫

dz⊥ e
−iℓ⊥·z⊥

× ∂

∂z⊥ν
〈ρ(p)|ψ̄(γp+ λn+ z⊥) Γµ ψ(0)|0〉

=
i

4

∫

dyHν,Γµ

qq̄ (y)

∫

dλ

2π
e−iλy

∂

∂z⊥ν
〈ρ(p)|ψ̄(λn) Γµ ψ(0)|0〉µ2

F
. (2.37)

The transverse derivative of the non-lo
al 
orrelator 
an be put inside as an operator a
ting

on the fermioni
 �elds,

∂

∂z⊥ν
〈ρ(p)|ψ̄(λn+ 0⊥) Γα ψ(0)|0〉µ2

F
= −〈ρ(p)|ψ̄(λn+ 0⊥) Γα

←→
∂⊥ν ψ(0)|0〉µ2

F
, (2.38)

with

←→
∂⊥α = 1

2
(
−→
∂⊥α −

←−
∂⊥α ). So �nally,

iA(1)
qq̄ =

−1

4

∫

dyHν,Γµ

qq̄ (y)

∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) Γµi

←→
∂⊥ν ψ(0)|0〉µ2

F
. (2.39)

The 
ollinear fa
torization in the momentum spa
e is now a
hieved for the two-parton am-

plitude up to twist 3 as the hard and soft part are now only related by the integral over

y. The result for the two-parton 
ontribution is then given by the sum of A(0)
qq̄ and A(1)

qq̄ as

illustrated in �g. 2.12.

PSfrag repla
ements

ρ

ℓ
H(ℓ) S(ℓ) →

PSfrag repla
ements

ρ
H(y)

yp

S(y)

Γ Γ

+

PSfrag repla
ements

ρ

ℓ
Hν(y) S⊥ν (y)

Γ Γ

Figure 2.12: Fa
torization of 2-parton 
ontributions in the example of the γ∗ → ρ impa
t

fa
tor.

The derivative term of the hard part Hν,Γµ

qq̄ (y) in the expression of A(1)
qq̄ 
an be 
omputed

using the following identity,

PSfrag repla
ements

∂

∂pµ
=

ppp γµ

where

PSfrag repla
ements

p
=

1

m− /p− iǫ
.

(2.40)
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The hard part Hν,Γµ

qq̄ (y) 
orresponds then to the 
omputation of the 12 diagrams shown in

�g. 2.13. Indeed the derivative of ea
h of the 6 diagrams of �g. 2.7 involves the sum of the

derivatives of ea
h propagators of the diagram leading to

∂

∂ℓν








PSfrag repla
ements

Γµ









=
PSfrag repla
ements

γν

Γµ
+

PSfrag repla
ements

γν

Γµ
. (2.41)

where the dashed lines are only here to indi
ate with respe
t to whi
h propagator we are

deriving.

PSfrag repla
ements

y

−ȳ
PSfrag repla
ements PSfrag repla
ements PSfrag repla
ements

(a1) (a2) (b1) (b2)

PSfrag repla
ements PSfrag repla
ements

PSfrag repla
ements PSfrag repla
ements

(
1) (
2) (d1) (d2)

PSfrag repla
ements PSfrag repla
ements

PSfrag repla
ements PSfrag repla
ements

(e1) (e2) (f1) (f2)

Figure 2.13: The 12 
ontributions arising from the �rst derivative of the 6 hard diagrams

atta
hed to the 2-parton 
orrelators, whi
h 
ontribute to the γ∗ → ρ impa
t fa
tor, with

momentum �ux of external line, along p1 dire
tion.

At the twist 3 level, we need to 
onsider also the non-minimal parton 
on�guration where

there is an additional gluon. Contrary to a 
ovariant gauge treatment, the 
hoi
e of the axial

light-
one gauge (n · A = 0) allows to get rid of the longitudinal 
omponent of the gluon

polarization.
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We now fo
us on the qq̄g intermediate state amplitude. In the 
ase of three-parton

ex
hange 
ontribution, only the zero-th order of the Taylor expansion of the hard part is

needed up to twist 3 with a transversely polarized gluon,

iAqq̄g = −1

4

∫

dy1 dβ1 d
2ℓ1⊥

(2π)4

∫

dyg dβg d
2ℓg⊥

(2π)4

∫

dγ1 dλ1 d
2z1⊥

∫

dγg dλg d
2zg⊥

×Hα,Γµ

qq̄g (y1, yg) 〈ρ(p)|ψ̄(z1) Γµ gA
⊥
α (zg)ψ(0)|0〉e−iℓ1·z1e−iℓg·zg

= −1

4

∫

dy1

∫

dygH
α,Γµ

qq̄g (y1, yg)

×
∫

dλ1 dλg
(2π)2

e−iy1λ1 e−iygλg 〈ρ(p)|ψ̄(λ1n) Γµ gA
⊥
α (λgn)ψ(0)|0〉µ2

F
, (2.42)

where we denote Tr(Hα
qq̄g Γ

µ) = Hα,Γµ

qq̄g . The fa
torization for the three-parton 
ontribution

is illustrated in �g. 2.14.

PSfrag repla
ements

ρ
Hα

qq̄g(ℓ1, ℓg) Sqq̄gα −→

PSfrag repla
ements

ρ

Hα,Γµ

qq̄g (y1, yg) S
Γµ

qq̄gα

Γ Γ

Figure 2.14: Fa
torization of 3-parton 
ontributions in the example of the γ∗ → ρ impa
t

fa
tor.

Note that the sum of the �rst order term of the Taylor expansion in ∂⊥ for the qq̄

intermediate state 
ontribution given by eq. (2.39) and the qq̄g intermediate state 
ontribution

given by eq. (2.42), 
orresponds to the �rst order term of a Taylor expansion with respe
t

to the transverse 
ovariant derivative D⊥µ (z) = ∂⊥µ − igA⊥µ (z) of the hard part around the

dominant light-
one dire
tion, it reads

iA(1)
qDq̄ =

−1

4

∫

dy1

∫

dygH
ν,Γµ

qq̄g (y1, yg)

∫

dλ1
2π

e−iλ1y1

∫

dλg
2π

e−iλgyg
(2.43)

×〈ρ(p)|ψ̄(λ1n) Γµi
←→
D⊥ν (λg)ψ(0)|0〉µ2

F
.

2.3 Parameterizing the va
uum to rho-meson matrix el-

ements

The goal of this part is to parameterize the va
uum to ρ−meson matrix elements that appear

in eqs. (2.33), (2.39) and (2.42) and 
ontains the twist 2 and twist 3 
ontributions to the

γ∗ g → ρ g amplitude. We will �rst introdu
e the notion of DA, then we will show how


onsidering the quantum numbers of the ρ−meson state, the equations of motion (EOMs) of

QCD and another 
ondition 
alled n−independen
e, allows to restri
t ourselves to a minimal

set of DAs. We �nally des
ribe how one 
an �nd expli
it expressions for these DAs using


onformal expansion, renormalization equations and QCD sum rules te
hniques.
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2.3.1 Light-
one wave fun
tions and distribution amplitudes

Let us introdu
e the lowest Fo
k state light-
one wave fun
tion of the ρ−meson Ψ
(λρ)

hh̄
(y, ℓ) and

its 
onne
tion with the DAs. Note that in our notation the usual "+" and "-" 
omponents of a

ve
tor z = αzp1+γp2+z⊥ are respe
tively given by proje
ting on p2 and p1, z
+
√
s ≡ z·p2 = αz

and z−
√
s ≡ z · p1 = γ.

The wave fun
tion in momentum spa
e is the Fourier transform of the Bethe-Salpeter

wave fun
tion of positive energy at the �xed light-
one time z+ ≡ γ = 0. This obje
t is

the amplitude of probability to �nd a qq̄ pair with respe
tive heli
ities h and h̄, fra
tions of

longitudinal momentum y and ȳ, and transverse momenta ℓ and −ℓ, in the ρ−meson state.

Following the 
onventions of [120℄, the mode expansion of the quark �eld with z laying on

the light-
one dire
tion z = λn is

ψ(λn) =

∫

dyd2ℓ

(2π)3 (2y)

∑

h

[u(h)(y, ℓ)b̂h(y, ℓ) e
−iyλ + v(h)(y, ℓ)d̂†h(y, ℓ) e

iyλ] . (2.44)

The ρ−meson state is de�ned at lowest order of the Fo
k expansion by

|ρ(pρ, λρ)〉 =
√

4πNc

∑

h,h̄

∫

dyd2ℓ⊥

(2π)3
√

(2y)(2ȳ)
Ψ

λρ

h,h̄
(y, ℓ)b̂†h(y, ℓ)d̂

†
h̄
(ȳ,−ℓ) |0〉 , (2.45)

where the anti
ommutation relations at equal light-
one time (z+ ≡ γ) are,

{

b̂†h(y, ℓ), b̂h′(y
′, ℓ′)

}

γ=0
= (2π)3δ(y − y′)δ(2)(ℓ− ℓ′) (2yp)δh,h . (2.46)

Assuming that the qq̄ state saturates the ρ−meson state, then the probability Pqq̄ to �nd a

qq̄ in the ρ−meson state is one, leading to the normalization 
ondition [55, 145℄

Pqq̄ =
∑

h,h̄

∫

dy

∫

d2r
∣

∣

∣
Ψ

λρ

h,h̄
(y, r)

∣

∣

∣

2

= 1 , (2.47)

with Ψ
λρ

h,h̄
(y, r) the Fourier transform in the transverse spa
e, r is the transverse size of the

qq̄ pair. Considering the ele
troni
 de
ay of the ρ−meson in terms of the wave fun
tions of

a virtual photon Ψ
λγ

h,h̄
, and of the ρ−meson gives the additional relation [115, 145℄

efρmρ(e
∗
γ · eρ) =

∑

h,h̃

∫

dy

∫

d2rΨ
λρ

h,h̃
(y, r)Ψ

λγ

h,h̃
(y, r) . (2.48)

The va
uum to ρ−meson matrix elements that are involved in A(0)
are

〈ρ(p, λρ)|ψ̄(λn) Γµ ψ(0)|0〉 =
√

4πNc

∑

hh̄

∫

dyd2ℓ

(2π)3
√

(2y)(2ȳ)
eiyλ

Ψ
∗λρ

h,h̄
(y, ℓ)[ū(h)(y, ℓ) Γµ v

(h̄)(y,−ℓ)] . (2.49)



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE

ρ−MESON PRODUCTION 70

By de�nition, the DAs parameterize the Fourier transforms of the va
uum to ρ−meson

matrix elements. We 
an write as a generi
 de�nition of the DA ϕi(y, µF ),

mρfρϕi(y, µ
2
F ) =

∫

dλ

2π
e−iyλ〈ρ(p)|ψ̄(λn) (L · Γ) ψ(0)|0〉µ2

F

=
√

4πNc

∑

hh̄

∫ ℓ2<µ2
F d2ℓ

(2π)3
√

(2y)(2ȳ)
eiyλ

× Ψ
∗(λρ)

h,h̄
(y, ℓ)[ū(h)(y, ℓ)L · Γ v(h̄)(y,−ℓ)] , (2.50)

with Lµ the relevant Lorentz stru
ture asso
iated to ϕi on whi
h is proje
ted the 
orrelator.

The wave fun
tion is not known but it is 
ustomary to parameterize it as a spinor part S
λρ

hh̄

whi
h is similar to the 
oupling to the qq̄ pair to a photon, and a s
alar part φλρ whi
h has

to be modeled and whi
h is 
onstrained by the relations (2.47, 2.48). In this 
ase the wave

fun
tion takes the form

Ψ
(λρ)

hh̄
=

√

Nc

4π
S
λρ

hh̄
φλρ , (2.51)

with S
λρ

hh̄
= ūh(y, ℓ)/e

(λρ)vh̄(ȳ,−ℓ). The 
omputation of the DA with the wave fun
tion de�ned

in (2.51) leads to interpret the DAs in the asymptoti
 limit µ2
F → ∞ as the moments of the

s
alar fun
tion φλρ(y, ℓ) in the transverse momentum spa
e.

2.3.2 Lorentz de
omposition and parity analysis

We will now investigate the set of DAs we need to parameterize the matrix elements of the

twist 2 and twist 3 operators.

The role of 
hirality 
onservation

We �rst restri
t the sum over the Γµ
matri
es to the sum of γµ and γµγ5 as they are 
hirality-


onserving matri
es. Indeed, as we have negle
ted the quark masses, the 
onservation of

heli
ity implies then the 
onservation of the 
hirality in the QED and QCD verti
es. The


onservation of 
hirality at ea
h verti
es of the hard part and the fa
t that the quantum

number ex
hanged in t−
hannel are those of the va
uum, i.e. 
hiral even, impose that the

Γµ
matri
es must be 
hiral even. One 
an readily 
he
k that the 
hirality-violating matri
es

like 1 , σµν , · · · are giving vanishing 
ontributions in the two t−
hannel gluon approximation.

The 
onsequen
e of the 
hirality 
onserving 
ondition is that the 
hiral odd DAs [142℄ su
h as

the leading twist DA for a transversely ve
tor meson or the twist 3 DAs for a longitudinally

polarized meson, de
ouple from the hard parts. As a 
onsequen
e, the twist expansion starts

at twist 3 for the produ
tion of a ρT and the next term of the twist expansion for the

produ
tion of a ρL is of twist 4. Let us give an exhaustive list of the Fourier transforms of

the va
uum to ρ−meson matrix elements that we have to parameterize given the two 
hiral
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even stru
ture {γµ, γ5γµ},

S
γµ
qq̄ (y, µ

2
F ) ≡

∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γµ ψ(0)|0〉µ2

F
, (2.52)

S
γ5γµ
qq̄ (y, µ2

F ) ≡
∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γ5γµ ψ(0)|0〉µ2

F
, (2.53)

S
γµ,⊥
qq̄ (y, µ2

F ) ≡
∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γµ i

←→
∂⊥α ψ(0)|0〉µ2

F
, (2.54)

S
γ5γµ,⊥
qq̄ (y, µ2

F ) ≡
∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γ5γµ i

←→
∂⊥α ψ(0)|0〉µ2

F
, (2.55)

S
γµ,α
qq̄g (y1, y2, µ

2
F ) ≡

∫

dλ1
2π

e−iλ1y1

∫

dλg
2π

e−iλg(y2−y1)

×〈ρ(p)|ψ̄(λ1n) γµ gA⊥α (λgn)ψ(0)|0〉µ2
F
, (2.56)

S
γ5γµ,α
qq̄g (y1, y2, µ

2
F ) ≡

∫

dλ1
2π

e−iλ1y1

∫

dλg
2π

e−iλg(y2−y1)

×〈ρ(p)|ψ̄(λ1n) γ5γµ gA⊥α (λgn)ψ(0)|0〉µ2
F
. (2.57)

De
omposition on Lorentz stru
tures

The idea is to de
ompose on Lorentz stru
tures the non-lo
al 
orrelators and to keep the

stru
tures whi
h will give 
ontributions up to a given twist. The Lorentz stru
tures have to

be built from the relevant momenta p, n and the polarization of the outgoing ρ−meson e∗. To

understand whi
h are the relevant Lorentz stru
tures to keep up to a given twist, let us give

a power 
ounting argument in the in�nite momentum frame where p ∼ Q→ ∞. We dire
tly

see in this frame that the s
alar produ
t p · n = 1 implies that n ∼ 1
Q
and e∗⊥ ∼ 1. This

s
aling of the momenta, gives the power behavior in 1/Q for ea
h term of the de
omposition.

The twist 2 O(1) and twist 3 O(1/Q) Lorentz stru
tures that we 
an build are then,

(n · e∗)pµ =
1

mρ

pµ ∼ Q ⇒ Twist 2, longitudinal polarization, (ve
tor) , (2.58)

(n · p)e∗⊥µ = e∗⊥µ ∼ 1 ⇒ Twist 3, transverse polarization, (ve
tor) , (2.59)

R∗⊥µ ∼ 1 ⇒ Twist 3, transverse polarization, (2.60)

(axial ve
tor) ,

where

4

R∗⊥µ ≡ εµαβγe
∗α
⊥ p

βnγ .

Other Lorentz stru
tures exist but they 
an be expressed in terms of these ones or they are of

twist 4 like for example (p · e∗)nµ ∼ 1
Q
. We see from the power 
ounting that the 
orrelators

with two Lorentz indi
es asso
iated to the produ
tion of a transversely polarized ρ−meson


an be only,

pα e
∗
⊥µ ⇒ Twist 3, transverse polarization, (ve
tor) , (2.61)

pαR
∗
⊥µ ⇒ Twist 3, transverse polarization, (axial ve
tor) . (2.62)

4

The 
onvention taken for the Levi-Civita tensor is ε0123 = −ε0123 = 1.
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Note that another way to perform the power 
ounting in twist [146℄ is to de
ompose the

�elds in their "+" and "−" 
omponents, whi
h are also 
alled good and bad 
omponents,

leading to the de�nitions of quasipartoni
 operators (only 
onstituted of "+" �elds) and non-

quasipartoni
 operators 
ontaining "−" 
omponents. For spinor �elds of dimension d and spin

s, these 
omponents 
orrespond to the spin proje
tion of the �eld ψ, ψ+ = Π+ψ ≡ 1
2
γ−γ+ψ

has spin s = 1/2 and ψ− = Π−ψ ≡ 1
2
γ+γ−ψ has spin s = −1/2, with Π± the spin proje
tion

operators. The 
onformal spin of the primary �eld ψ, j = d+s
2

and its so-
alled 
ollinear

twist t = d − s, are di�erent for ψ+ and ψ− 
omponents whi
h have respe
tively twist 1

and 2. To illustrate the twist 
ounting of the operators, let us fo
us on the operator ψ̄γµψ.

The quasipartoni
 operator ψ̄+γ+ψ+ is a leading twist operator while ψ̄+γ⊥ψ− + ψ̄−γ⊥ψ+ is

a twist 3 operator and ψ̄−γ−ψ− is a twist 4 operator. The role of the 
onformal spin of the

operators will be dis
ussed in se
tion 2.5.

Let us now fo
us on the parameterization of the S
γµ
qq̄ , whi
h a priori involves three unknown

fun
tions ϕ1(y), ϕ3(y) and ϕ̃A(y),

S
γµ
qq̄ =

∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γµ ψ(0)|0〉 (2.63)

= mρfρ
(

ϕ1(y) (e
∗ · n)pµ + iϕ̃A(y)R

∗
⊥µ + ϕ3(y) (p · n)e∗⊥

)

. (2.64)

The normalization mρfρ 
ontains the information on the large distan
e physi
s. The de
ay


onstant fρ is de�ned as

〈0| ψ̄(0)γµψ(0) |ρ(p, λ)〉 = mρfρe
λ
µ , (2.65)

and it has been measured: fρ ∼ 200 MeV.

In pra
ti
e one has to de�ne non-perturbative 
oupling 
onstants (fV
3,ρ, · · · ) in order that

the DAs have proper normalizations. We will see in se
tion 2.6 the determination of su
h

non perturbative inputs, using QCD sum rules te
hniques. Let us now investigate how the

parity analysis will 
onstrain the set of unknown fun
tions, on the parti
ular 
ase of S
γµ
qq̄ .

Parity 
onstraints

Under parity, the light 
one ve
tors p, n and e∗⊥ transform as

Pν
µpν = nµ , Pν

µnν = pµ , Pν
µe
∗
ν(−~p, λ) = −e∗µ(~p, λ) , (2.66)

and the operator ψ̄(z)γµψ(0) transforms as

ψ̄(z)γµψ(0) −→ Pν
µ ψ̄(Pα

β z
β)γνψ(0) , (2.67)

where P = diag(1,−1,−1,−1) is the parity matrix on the Lorentz ve
tor representation.

The proofs are quite straightforward ex
ept for the transformation of e∗ν where one needs to

boost by Lν
µ(p) the ve
tor in the rest frame of the ρ−meson where ~p = ~0,

eµ(Pp, λ) = Lµ
ν (Pp)eν(~0, λ) = Pµ

αL
α
β(p)Pβ

ν e
ν(~0, λ) = −Pµ

ν e
ν(p, λ) , (2.68)
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where we use the fa
t that in the rest frame

Pβ
ν e

ν(~0, λ) = −eβ(~0, λ) ,

as e0(~0, λ) = 0.

Inserting the identity 1 = PP † between the operator and the states, the matrix element

transforms as

〈ρ(p, λ)|PP †ψ̄(z)γµψ(0)PP † |0〉 = ηρPν
µ 〈ρ(Pp, λ)| ψ̄(Pz)γµψ(0) |0〉 , (2.69)

with ηρ = −1 the intrinsi
 parity of the ρ−state. This equality in terms of DAs reads

∫

dy
(

ϕ1(y)(e
∗(~p, λ) · n)pµ + ϕ3(y)e

∗
⊥(p, λ) + iϕ̃A(y)R

∗
⊥µ
)

eiyp·z

= ηρPν
µ

∫

dy eiy(Pp)·(Pz) (ϕ1(y) (e
∗
α(Pp, λ)(Pn)α) (Pp)ν + ϕ3(y)e

∗
⊥ν(Pp, λ)

+iϕ̃A(y)εναβγe
∗α
⊥ (Pp, λ) (Pp)β Pnγ

)

. (2.70)

The �rst term that multiplies ϕ1(y), simpli�es as

ηρPν
µPβ

ν pβ(e
∗
α(Pp, λ)Pα

σ n
σ) = ηρpµ(−Pσ

αe
∗
σ(p, λ)p

α)

= −ηρ(e∗σ(p, λ) · n)pµ . (2.71)

The term multiplying ϕ3(y) simpli�es as

ηρPν
µe
∗
⊥ν(Pp, λ) = −ηρPν

µPσ
ν e
∗
⊥σ(p, λ) = −ηρe∗⊥µ(p, λ) (2.72)

and �nally the term multiplying ϕ̃A(y) reads

ηρPν
µεναβγe

∗α
⊥ (Pp, λ)Pβ

λ p
λPδ

ρn
ρ

= −ηρPν
µεναβγPα

σ e
∗σ
⊥ (Pp, λ)Pβ

λp
λ Pδ

ρn
ρ

= −ηρ
(

εναβγPµ
νPα

σPβ
λPγ

ρ

)

e∗σ⊥ (p, λ)pλnρ

= −ηρdet(P)εµσλρe
∗σ
⊥ (p, λ)pλnρ

= ηρεµσλρe
∗σ
⊥ (p, λ)pλnρ , (2.73)

where we use the fa
t that Pν
µ = Pµ

ν , εµαβγPµ
νPα

σPβ
λPγ

ρ = det(P)ενσλρ by de�nition of the

determinant, and det(P) = −1. The relation given in eq. (2.70) leads to

∫

dy
(

ϕ1(y)(e
∗ · n)pµ + ϕ3(y)e

∗
⊥(p, λ) + iϕ̃A(y)R

∗
⊥µ
)

eiyp·z (2.74)

=

∫

dy
(

ϕ1(y)(e
∗ · n)pµ + ϕ3(y)e

∗
⊥(p, λ)− iϕ̃A(y)R

∗
⊥µ
)

eiyp·z .

The 
onditions given by the parity analysis are then

ϕ1(y) = ϕ1(y) , ϕ3(y) = ϕ3(y) , ϕ̃A(y) = −ϕ̃A(y) ⇒ ϕ̃A(y) = 0 . (2.75)
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C-parity 
onstraints

The transformation under C-parity of the operator ψ̄(z)γµψ(0) is

C†ψ̄(z)γµψ(0)C = −ψ̄(0)γµψ(z) .

The 
orrelator reads

〈ρ(p, λ)|CC†ψ̄(z)γµψ(0)CC† |0〉 = −ηcρ 〈ρ(p, λ)| ψ̄(0)γµψ(z) |0〉
= −ηcρ 〈ρ(p, λ)| eiP̂ Ẑe−iP̂ Ẑψ̄(0)eiP̂ Ẑe−iP̂ Ẑγµψ(z)e

iP̂ Ẑe−iP̂ Ẑ |0〉
= −ηcρ 〈ρ(p, λ)| eiP̂ Ẑψ̄(−z)γµψ(0)e−iP̂ Ẑ |0〉 , (2.76)

where we have inserted the translation operators e−iP̂ Ẑ
. The intrinsi
 C-parity of the

ρ0−meson is ηcρ = −1. The va
uum state is invariant under translation while the ρ−meson

state gives the eigenvalue exp(ip · z). We get then the equality

〈ρ(p, λ)|CC†ψ̄(z)γµψ(0)CC† |0〉 = −ηcρeip·z 〈ρ(p, λ)| ψ̄(−z)γµψ(0) |0〉 . (2.77)

Parameterizing the 
orrelator in terms of the ϕ1(y) and ϕ3(y) gives the relation

mρfρ

∫

dyeiyp·z[ϕ1(y)(e
∗ · n)pµ + ϕ3(y)e

∗
⊥] = −ηρeip·zmρfρ

×
∫

dye−iyp·z[ϕ1(y)(e
∗ · n)pµ + ϕ3(y)e

∗
⊥] . (2.78)

Changing the integration variable y by ỹ = 1− y, leads to

mρfρ

∫

dyeiyp·z[ϕ1(y)(e
∗ · n)pµ + ϕ3(y)e

∗
⊥]

= mρfρ

∫

dỹeiỹp·z[ϕ1(1− ỹ)(e∗ · n)pµ + ϕ3(1− ỹ)e∗⊥] . (2.79)

We 
an now identify the di�erent terms, and the 
onstraints given by the C-parity transfor-

mation of the 
orrelator are

ϕ1(y) = ϕ1(1− y) and ϕ3(y) = ϕ3(1− y) . (2.80)

Time reversal 
onstraints

The ρ−meson state transforms under T−parity as

T |ρ(p, λ)〉 = ζ∗ρ(−1)1−λ |ρ(Pp,−λ)〉 . (2.81)

One 
an prove also the relation

e∗µ(Pp,−λ) = (−1)1+λPν
µeµ(p, λ) , (2.82)

whi
h will be useful in the transformations. The operator ψ̄(z)γµψ(0) transforms under time

reversal as,

T−1ψ̄(z)γµψ(0)T = Pν
µψ̄(−Pz)γνψ(0) .
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The 
orrelator after inserting the operators TT−1 reads

〈ρ(p, λ)|TT−1ψ̄(z)γµψ(0)TT−1 |0〉
= ζρ(−1)1−λ

(

〈ρ(Pp,−λ)| ψ̄(−Pz)Pν
µγνψ(0) |0〉

)∗

= ζρ(−1)1−λ
(
∫

dye−iy(Pp)·(Pn)[ϕ1(y)(e
∗(Pp,−λ) · Pn)Pν

µ(Pp)ν

+ϕ3(y)Pν
µe
∗
⊥ν(Pp,−λ)]

)∗
. (2.83)

The fa
t that the 
orrelator is 
onjugated is due to the fa
t that time reversal ex
hanges the

in−state with the out−state. The s
alar produ
t e∗(Pp,−λ) · Pn simpli�es,

e∗(Pp,−λ) · Pn = (−1)1+λ(Pe(p, λ)) · (Pn) = (−1)1+λe(p, λ) · n .

We get then,

= ζρ(−1)1−λ
(
∫

dye−iy(Pp)·(Pn)[ϕ1(y)(e
∗(Pp,−λ) · Pn)Pν

µ(Pp)ν

+ϕ3(y)Pν
µe
∗
⊥ν(Pp,−λ)]

)∗

= ζρ(−1)2
(
∫

dye−iyp·n[ϕ1(y)(e(p, λ) · n)pµ + ϕ3(y)e⊥µ(p, λ)]

)∗

= ζρ

∫

dyeiyp·n[ϕ∗1(y)(e
∗(p, λ) · n)pµ + ϕ∗3(y)e

∗
⊥µ(p, λ)] . (2.84)

By identi�
ation we have the following relations

ϕ∗1(y) = ϕ1(y) , ϕ∗3(y) = ϕ3(y) , (2.85)

whi
h show that the DAs are real fun
tions.

The full set of distribution amplitudes

The same pro
edure 
an be applied to the other 
orrelators and one �nds at the end that the

parameterization of the 
orrelators involves two DAs (ϕ1, ϕ3) for the S
γµ
qq̄ (y, µF ), one (ϕA)

for the axial ve
tor 
orrelator S
γ5γµ
qq̄ , one for the ve
tor (ϕT

1 ) and axial ve
tor (ϕT
A) 
orrelators

with transverse derivative, and one for the ve
tor (B) and for the axial ve
tor (D) 
orrelators

with three partons,

S
γµ
qq̄ (y;µ

2
F ) = mρfρ[ϕ1(y;µ

2
F ) (e

∗ · n) pµ + ϕ3(y;µ
2
F ) e

∗
⊥µ], (2.86)

S
γ5γµ
qq̄ (y;µ2

F ) = mρfρ i ϕA(y;µ
2
F )R

∗
⊥µ , (2.87)

S
γµ,⊥
qq̄ (y;µ2

F ) = mρfρ ϕ
T
1 (y;µ

2
F ) pµ e

∗
⊥α , (2.88)

S
γ5γµ,⊥
qq̄ (y;µ2

F ) = imρfρ ϕ
T
A(y;µ

2
F ) pµR

∗
⊥α , (2.89)

S
γµ,α
qq̄g (y1, y2;µ

2
F ) = mρ fρ ζ

V
3ρ(µ

2
F )B(y1, y2;µ

2
F ) pµ e

∗
⊥α , (2.90)

S
γ5γµ,α
qq̄g (y1, y2;µ

2
F ) = mρ fρ ζ

A
3ρ(µ

2
F ) iD(y1, y2;µ

2
F ) pµR

∗
⊥α , (2.91)

where ζV3ρ(µ
2
F ) and ζ

A
3ρ(µ

2
F ) are dimensionless 
oupling 
onstants:

ζV3ρ(µ
2
F ) =

fV
3ρ(µ

2
F )

fρ
, ζA3ρ(µ

2
F ) =

fA
3ρ(µ

2
F )

fρ
. (2.92)
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We remind that, for the qq̄g amplitude, the quark, the antiquark and the gluon fra
tions of

longitudinal momentum are respe
tively denoted y1, ȳ2 = 1−y2 and yg, and verify the relation
y1 + ȳ2 + yg = 1. Note that for the qq̄g DAs B and D, the gluon fra
tion of momentum is

positive 0 ≤ yg ≤ 1 whi
h 
onstrains the integral over y1 and y2 by the 
ondition y1 ≤ y2 ≤ 1,

∫ 1

0

dy1

∫ 1

0

dy2 −→
∫ 1

0

dy2

∫ y2

0

dy1 .

The 
onstraints obtained from the parity relations are,

ϕ1(y) = ϕ1(ȳ) , ϕ3(y) = ϕ3(ȳ) , ϕA(y) = −ϕA(−ȳ)
ϕT
1 (y) = −ϕT

1 (ȳ) , ϕT
A(y) = ϕT

A(ȳ)

B(y1, y2) = −B(ȳ2, ȳ1) , D(y1, y2) = D(ȳ2, ȳ1) .

Inserting in eqs. (2.33), (2.39), (2.96) the previous parameterization of the 
orrelators and

using the shorthand notations,

H
Γµaµ
qq̄ (y) ≡ HΓµ

qq̄ (y) aµ , H
b,Γµaµ
qq̄ (y) ≡ Hα,Γµ

qq̄ (y) aµ bα ,

H
b,Γµaµ
qq̄g (y1, y2) ≡ Hα,Γµ

qq̄ (y1, y2) aµ bα ,

we get the 
onvolutions

iA(0)
qq̄ = −mρfρ

4

∫

dyH
/p
qq̄(y)ϕ1(y;µ

2
F ) (e

∗
ρ · n) , (2.93)

for a longitudinally polarized ρ−meson,

iA(0)
qq̄ = −mρfρ

4

∫

dy
[

H
/e∗ρT
qq̄ (y)ϕ3(y;µ

2
F ) + iH

/R∗⊥γ5
qq̄ (y)ϕA(y;µ

2
F )
]

, (2.94)

iA(1)
qq̄ = −mρfρ

4

∫

dy [H
e∗ρT ,/p

qq̄ (y)ϕT
1 (y;µ

2
F ) + iH

R∗⊥,/pγ5
qq̄ (y)ϕT

A(y;µ
2
F )] , (2.95)

for the two-parton 
ontributions and

iAqq̄g = −mρfρ
4

∫

dy1dy2 [H
e∗ρT ,/p

qq̄g (y1, y2)ζ
V
3 (µ

2
F )B(y1, y2;µ

2
F )

+H
R∗⊥,/pγ5
qq̄g (y1, y2) ζ

A
3 (µ

2
F ) iD(y1, y2;µ

2
F )] , (2.96)

for the three-parton 
ontribution of the transversely polarized ρ−meson. The DAs satisfy

the normalization 
onditions

∫ 1

0

dy ϕ1(y) = 1 ,

∫ 1

0

dy ϕ3(y) = 1 ,

∫ 1

0

dy (y − ȳ)ϕA(y) =
1

2
, (2.97)

by de�nition of the asso
iated 
oupling 
onstants.
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2.4 Redu
tion to a minimal set of DAs

The set of DAs de�ned above is over-
omplete, �rst the DAs are related by the EOMs of

QCD (se
. 2.4.1) [138℄ and se
ond their parameterizations depend on an arbitrary ve
tor n

and the amplitude has to be invariant under the transformations that preserve p · n = 1

and n2 = 0, leading to additional relations among DAs (se
. 2.4.2). These relations 
an be

solved and lead to two sets of independent solutions (se
. 2.4.3), the �rst set 
orresponds to

the so-
alled Wandzura-Wil
zek (WW) solutions [147℄ {ϕWW
3 , ϕWW

A , ϕT WW
1 , ϕT WW

A } whi
h

only depend on ϕ1 the leading twist two-parton DA and the se
ond set of solutions are 
alled

"genuine" solutions {ϕgen
3 , ϕgen

A , ϕT gen
1 , ϕT gen

A }, they depend only on the twist 3 three-parton

DAs. The genuine twist 3 solutions 
an be interpreted as the higher Fo
k state 
ontribution

to the amplitude. The relations between the DAs have been derived independently of the

hard sub-pro
ess in [142℄ in the 
ovariant approa
h using exa
t operators identities that relate

the non-lo
al operators [148, 149℄. We will follow here the approa
h of [131℄. In the last part

(se
. 2.155) we show how the three independent DAs {ϕ1, B, D} and the analogous DAs of

Ref. [142℄ {φ‖, V, A} in the 
ovariant approa
h, are related, as it was shown in Ref. [131℄.

2.4.1 DA relations from the equations of motion of QCD

The Dira
 equation on the spinor �elds allows to derive relations between the DAs. Let us

insert the Dira
 equation inside the 
orrelator

〈

ψr(0)ψ̄s(z)
〉

, where r and s are the spinor

indi
es of the �elds, su
h as

〈

i /~Dx
urψr(x)ψ̄s(z)

〉

x=0
= 0 , (2.98)

with

~Dx
r is the 
ovariant derivative with respe
t to the 
oordinate x. Another 
onstraint 
an

be similarly obtained by a
ting on ψ̄(z),

〈

ψr(0)ψ̄r(z)i /
←
D

z

st

〉

= 0 . (2.99)

Let �rst fo
us on the

~∂r part of the 
ovariant derivative, and split it into its longitudinal


omponent

~∂L and its transverse 
omponent

~∂⊥. Then the Fourier transform of the 
orrelator

reads

∫

d4ze−iyp·z−iȳp·x
(〈

i~/∂
x

Lψ(x)ψ̄(z)
〉

+
〈

i~/∂
x

⊥ψ(x)ψ̄(z)
〉)

x=0
. (2.100)

The �rst term of eq. 2.100 involving the longitudinal derivative 
an be simpli�ed as

∫

d4ze−iyp·z−iȳp·x
〈

i~/∂
x

Lψ(x)ψ̄(z)
〉

x=0

= −ȳ/p
∫

d4ze−iyp·z−iȳp·x
〈

ψ(x)ψ̄(z)
〉

x=0
. (2.101)

The result of eq. (2.101) is obtained by �rst translating the 
orrelator by −z, then performing

an integration by part and translating ba
k by +z the 
orrelator. Using the Fierz identity

−〈ϕrϕ̄s〉 =
1

4
(〈ϕ̄γµϕ〉 γµrs + 〈ϕ̄γ5γµϕ〉 (γµγ5)rs) , (2.102)
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and the parametrization of the 
orrelators given in eqs.(2.86, 2.87), the 
ontribution of the

longitudinal derivative reads

mρfρ
4

ȳ(/p/e∗⊥ϕ3(y;µ
2
F )+i/p /R

∗
⊥γ5ϕA(y;µ

2
F )) = −imρfρ

4
ȳσp,e∗⊥

(

ϕ3(y;µ
2
F ) + ϕA(y;µ

2
F )
)

, (2.103)

where in the r.h.s.

σp,e∗⊥ =
i

2
[/p, /e∗⊥] .

The longitudinal derivative 
ontribution is then

∫

d4ze−iyp·z−iȳp·x
〈

i~/∂
x

Lψ(x)ψ̄(z)
〉

x=0

=
−imρfρ

4
σp,e∗⊥

(

ȳϕ3(y;µ
2
F ) + ȳϕA(y;µ

2
F )
)

. (2.104)

The 
ontribution from the transverse derivative ∂x⊥
∫

d4ze−iyp·z−iȳp·x
〈

i~/∂
x

⊥ψ(x)ψ̄(z)
〉

x=0
, (2.105)

is dire
tly parameterized by DAs of eqs. (2.88, 2.89) after using the Fierz identity. The

transverse derivative 
ontribution reads

∫

d4ze−iyp·z−iȳp·x
〈

i~/∂
x

⊥ψ(x)ψ̄(z)
〉

x=0

=
mρfρ
4

(/pϕT
1 (y) + i/p /R∗⊥γ5ϕ

T
A(y)) (2.106)

= −imρfρ
4

σp,e∗⊥
(

ϕT
1 (y;µ

2
F ) + ϕT

A(y;µ
2
F )
)

. (2.107)

Adding the two 
ontributions, the derivative term ∂ of the 
ovariant derivative D reads

∫

d4ze−iyp·z−iȳp·x
(〈

i~/∂
x

Lψ(x)ψ̄(z)
〉

+
〈

i~/∂
x

⊥ψ(x)ψ̄(z)
〉)

x=0
(2.108)

= −imρfρ
4

σp,e∗⊥
[

ȳϕ3(y;µ
2
F ) + ȳϕA(y;µ

2
F ) + ϕT

1 (y;µ
2
F ) + ϕT

A(y;µ
2
F )
]

.

The intera
tion term with the gluon �eld of the 
ovariant derivative reads

∫

d4ze−iyp·z
〈

g /A(0)ψ(0)ψ̄(z)
〉

, (2.109)

whi
h after using the Fierz identity, reads

∫

d4ze−iyp·z
〈

g /A⊥(0)ψ(0)ψ̄(z)
〉

= −1

4
γρ

∫

d4ze−iyp·z
[〈

ψ̄(z) γµ g A
⊥ρ(0)ψ(0)

〉

γµ

+
〈

ψ̄(z) γ5γµ g A
⊥ρ(0)ψ(0)

〉

γµγ5
]

. (2.110)

Using the parameterization eqs.(2.90, 2.91), we get

∫

d4ze−iyp·z
〈

g /A⊥(0)ψ(0)ψ̄(z)
〉

=
mρfρ
4

∫ 1

y1

dy2
[

ζV3 B(y1, y2)/p/e
∗
⊥ + iζA3 D(y1, y2)/p /R

∗
⊥γ5
]

= −imρfρ
4

σp,e∗⊥

∫ 1

y1

dy2[ζ
V
3 B(y1, y2) + ζA3 D(y1, y2)] . (2.111)
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We �nally obtain that the Dira
 equation inserted in the 
orrelator as

∫

d4ze−iyp·z
〈

/~D(0)ψ(0)ψ̄(z)
〉

= 0 , (2.112)

leads to

ȳϕ3(y;µ
2
F ) + ȳϕA(y;µ

2
F ) + ϕT

1 (y;µ
2
F ) + ϕT

A(y;µ
2
F )

= −
∫ 1

y1

dy2
[

ζV3 (µ
2
F )B(y1, y2;µ

2
F ) + ζA3 (µ

2
F )D(y1, y2;µ

2
F )
]

. (2.113)

The se
ond equation given by the Dira
 equation applied to the se
ond fermioni
 �eld

gives the following 
ondition,

yϕ3(y;µ
2
F )− yϕA(y;µ

2
F )− ϕT

1 (y;µ
2
F ) + ϕT

A(y;µ
2
F )

= −
∫ 1

y1

dy2
[

−ζV3 (µ2
F )B(y1, y2;µ

2
F ) + ζA3 (µ

2
F )D(y1, y2;µ

2
F )
]

. (2.114)

Finally we see that the EOMs of QCD lead to two relations on the DAs, mixing the twist 2

and twist 3 DAs.

2.4.2 Equations from the n−independen
e 
ondition
The basis of light 
one ve
tor 
hosen to perform the expansion of the hard part around

the dominant light 
one dire
tion p, is not unique as n is not �xed by a physi
al dire
tion.

The amplitude should then be independent of this arbitrary 
hoi
e, leading to an additional

set of equations on the DAs whi
h is independent of the asso
iated hard s
attering ampli-

tude, as it relies on Ward identities. We will see that separating the axial ve
tor from the

ve
tor 
ontributions of the amplitudes and demanding the n−independen
e of these 
ontri-

butions, one 
an simplify these 
onditions thanks to the Ward identities. At the end, the

n−independen
e 
onditions are the 
onvolutions of a 
ommon hard part (involving only the

quark and antiquark pair ex
hange) with the following 
ombinations of DAs

dϕT
1

dy
(y;µ2

F ) + ϕ1(y;µ
2
F )− ϕ3(y;µ

2
F )

+ζV3 (µ
2
F )

∫ 1

0

dy2
B(y, y2) + B(y2, y)

y2 − y
= 0 , (2.115)

for the ve
tor 
ontribution and

dϕT
A

dy
(y;µ2

F )− ϕA(y;µ
2
F ) +

ζA3 (µ
2
F )

∫ 1

0

dy2
D(y, y2) +D(y2, y)

y2 − y
= 0 , (2.116)

for the axial ve
tor 
ontribution.

The 
onditions that we require to get a Sudakov basis on the ve
tor n are,
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• n is light-like,

• p · n = 1.

Starting from a basis of referen
e with a �xed light-
one referen
e ve
tor n0
satisfying these


onditions, we 
an de
ompose on this basis any ve
tor n satisfying the same 
onditions as

nµ = −n
2
⊥
2
pµ + nµ

0 + nµ
⊥ .

Hen
e only the transverse degrees of freedom parameterize the n−ve
tors and the n−independen
e
of the amplitude reads

d

dnµ
⊥
A = 0 . (2.117)

The total derivative 
an be written as

d

dnµ
⊥
A =

∂nν

∂nµ
⊥

∂

∂nν
+
∂(e∗ · n)
∂nµ
⊥

∂

∂(e∗ · n) A

= [−n⊥µpν + gν⊥µ]
∂A
∂nν

+ e∗⊥
∂A

∂(e∗ · n) = 0 , (2.118)

as the amplitude dependen
e on n is partially due to the parameterization of the polarization

e∗. The n−independen
e 
ondition applies separately for the ve
tor Ave
tor

and the axial

ve
tor Aaxial

parts of the amplitudes, due to their di�erent parity properties. The dependen
e

on n of Ave
tor

and Aaxial


omes respe
tively from the fa
tor e∗ · n as

eµT = eµ − (e∗ · n)pµ ,

and R∗⊥µ = εµe∗⊥pn where the ve
tor n 
an only be 
ontra
ted with p so that the dependen
e

is in p · n then,

∂nν

nµ
⊥

dAaxial

dnν
= 0 ⇒ ∂Aaxial

∂nµ
⊥

= 0 , (2.119)

dAve
tor

dnµ
⊥

= 0 ⇒ ∂Ave
tor

∂(e∗ · n⊥)
= 0 . (2.120)

The equation of n−independen
e of the ve
tor amplitude Ave
tor

(2.120) involves the terms

proportional to ϕ1, ϕ3, ϕ
T
1 and B. The asso
iated Fierz stru
ture 
losing the spinor indi
es

of the partoni
 �elds of the hard "ve
tor" s
attering is γµ. The term proportional to ϕ1 reads

diagrammati
ally as,

∂

∂(e∗ · n)A
(0)
qq̄ = −mρfρ

4

∂

∂(e∗ · n)

∫

dyϕ1(y)(e
∗ · n)

PSfrag repla
ements

/p

= −mρfρ
4

∫

dyϕ1(y)

PSfrag repla
ements

/p
. (2.121)
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The term in ϕ3 is

∂

∂(e∗ · n)A
(1),ϕ3
qq̄ = −mρfρ

4

∂

∂(e∗ · n)

∫

dyϕ3(y)(e
∗
µ − (e∗ · n)pµ)

PSfrag repla
ements

γµ

=
mρfρ
4

∫

dyϕ3(y)

PSfrag repla
ements

/p
. (2.122)

The term in ϕT
1 involves the derivative of the hard part Hν,γµ

qq̄ , whi
h formally reads

∂

∂(e∗ · n)

(

−mρfρ
4

∫

dyH
e∗−(e∗·n)p,/p
qq̄ (y)ϕT

1 (y;µ
2
F )

)

(2.123)

=
mρfρ
4

∫

dyϕT
1 (y;µ

2
F )









PSfrag repla
ements

/p

/p

+

PSfrag repla
ements

/p

/p








= −mρfρ
4

∫

dy1

∫

dy2δ(y2 − y1)
ϕT
1 (y1;µ

2
F )

y2 − y1









PSfrag repla
ements

/p
y1

ȳ1
−

PSfrag repla
ements

y2

ȳ2

/p









= −mρfρ
4

∫

dy









PSfrag repla
ements

/p









d

dy
ϕT
1 (y;µ

2
F ) , (2.124)

where we used the following Ward identity in the 
ollinear limit [150℄,

pµ

PSfrag repla
ements

y1 p y2 pγµ
=

1

y2 − y1











PSfrag repla
ements

(y2 − y1)p

y2 p
−

PSfrag repla
ements

y1 p

(y2 − y1) p










. (2.125)

We see that it is some kind of integration by part in order that the derivative a
ting on the

hard part �nally a
ts on the DA.

One 
an show that the three-parton 
ontribution to eq. (2.120) that will mix with the

previous terms is asso
iated to the abelian diagrams of �g. 2.8. These diagrams have the



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE

ρ−MESON PRODUCTION 82

same 
olor stru
ture than the two-parton diagrams and the term in B reads

∂

∂(e∗ · n)

(−mρfρ
4

∫

dy1dy2H
e∗−(e∗·n)p,/p
qq̄g (y1, y2)ζ

V
3 (µ

2
F )B(y1, y2;µ

2
F )

)

=
mρfρ
4

∫

dy1dy2ζ
V
3 (µ

2
F )B(y1, y2;µ

2
F )









PSfrag repla
ements

/p

/p

y1

ȳ2
+

PSfrag repla
ements

y1

ȳ2

/p

/p








= −mρfρ
4

ζV3 (µ
2
F )

∫

dy1

∫

dy2
B(y1, y2;µ

2
F )

y2 − y1









PSfrag repla
ements

/p
y1

ȳ1
−

PSfrag repla
ements

y2

ȳ2

/p









= −mρfρ
4

ζV3 (µ
2
F )

∫

dy1

∫

dy2









PSfrag repla
ements

/p









×B(y1, y2;µ
2
F ) +B(y2, y1;µ

2
F )

y2 − y1
, (2.126)

where we used the Ward identity (2.125), and the symmetry property

B(y1, y2;µ
2
F ) = −B(ȳ2, ȳ1;µ

2
F ) .

Finally, the sum of these terms gives the hard sub-pro
ess independent relation 
oming

from eq. (2.120),

dϕT
1

dy
(y;µ2

F ) + ϕ1(y;µ
2
F )− ϕ3(y;µ

2
F )

+ζV3 (µ
2
F )

∫ 1

0

dy2
B(y, y2) + B(y2, y)

y2 − y
= 0 . (2.127)

The axial ve
tor n−independen
e 
ondition 
an be derived with the same te
hniques and

gives the relation

dϕT
A

dy
(y;µ2

F )− ϕA(y;µ
2
F ) +

ζA3 (µ
2
F )

∫ 1

0

dy2
D(y, y2) +D(y2, y)

y2 − y
. (2.128)

The equations (2.127) and (2.128) are the results of the n−independen
e 
onditions.

2.4.3 Wandzura-Wil
zek and genuine solutions

As we saw in the two previous se
tions, the seven DAs involved in the 
hiral even pro
ess

are not independent. They are related by four equations, namely two equations from the

EOMs of QCD and two equations 
oming from the n−independen
e 
onditions. This means

that four of the seven DAs, denoted ”ϕi” = {ϕ3, ϕA, ϕ
T
1 , ϕ

T
A}, 
an be expressed in terms of

three independent DAs 
hosen to be {ϕ1, B,D}. The solutions for ϕi 
an be split into a
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solution depending only on the twist 2 DA ϕ1, by putting B and D to zero whi
h 
onsists in

forgetting about the 
orrelators with an additional transverse gluon, these solutions are 
alled

Wandzura-Wil
zek (WW) solutions [147, 151℄ and are denoted ϕWW
i , and genuine solutions

denoted ϕgen
i whi
h only depend on B and D. The de
omposition of the solutions ϕi is a

linear de
omposition in ϕgen
i and ϕWW

i ,

ϕi(y;µ
2
F ) = ϕWW

i (y;µ2
F ) + ϕgen

i (y;µ2
F ) .

The WW-solutions

Putting the 
ontributions of B and D to zero, the EOMs for the WW DAs are

5

ȳϕWW
3 (y) + ȳϕWW

A (y) + ϕT WW
1 (y) + ϕT WW

A (y) = 0 , (2.129)

y ϕWW
3 (y)− y ϕWW

A (y)− ϕT WW
1 (y) + ϕT WW

A (y) = 0 . (2.130)

The n−independen
e relations read
d

dy
ϕT WW
1 (y) = −ϕ1(y) + ϕWW

3 (y) ,
d

dy
ϕT WW
A (y) = ϕWW

A (y) . (2.131)

From the previous equations, one 
an dedu
e a set of equations relating ϕ3 and ϕA to ϕ1,

d

dy
ϕWW
3 (y) = −(ȳ − y)

d

dy
ϕWW
A (y) , 2ϕ1(y) =

d

dy
ϕWW
A (y) + (ȳ − y)

d

dy
ϕWW
3 (y) . (2.132)

The solutions of these equations are [147, 151℄

ϕWW
A (y) =

1

2





y
∫

0

dv

v̄
ϕ1(v)−

1
∫

y

dv

v
ϕ1(v)



 , (2.133)

ϕWW
3 (y) =

1

2





y
∫

0

dv

v̄
ϕ1(v) +

1
∫

y

dv

v
ϕ1(v)



 , (2.134)

they satisfy the normalization 
onditions

1
∫

0

dy ϕWW
3 (y) = 1 and

1
∫

0

dy ϕWW
A (y) = 1 . (2.135)

Inserting these solutions in the eqs. (2.129, 2.130) gives the solutions for ϕT
1 and ϕT

A,

ϕT WW
A (y) =

1

2

[

−ȳ
∫ y

0

dv

v̄
ϕ1(v)− y

∫ 1

y

dv

v
ϕ1(v)

]

, (2.136)

ϕT WW
1 (y) =

1

2

[

−ȳ
∫ y

0

dv

v̄
ϕ1(v) + y

∫ 1

y

dv

v
ϕ1(v)

]

. (2.137)

The WW-solutions (2.134, 2.133) were already derived in Ref. [152℄ for the 
omputation of

the transition form fa
tors Bu,d → V + γ with V = {K∗, ρ}, Bd → ω + γ and Bs → V + γ

V = {φ,K∗}.
Let us emphasize that the WW solutions are not intrinsi
 twist 3 distributions, they only

depend on the leading twist DA ϕ1 asso
iated to the produ
tion of a longitudinal meson.

5

For the sake of 
on
iseness, we will omit the dependen
e in µ2

F
of the DAs as it is not needed in this

part.
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Genuine solutions

The genuine solutions obey the full EOMs and n−independen
e relations,

ȳ1ϕ
gen
3 (y1) + ȳ1ϕ

gen
A (y1) + ϕT gen

1 (y1) + ϕT gen
A (y1)

= −
∫ 1

0

dy2
[

ζV3 B(y1, y2) + ζA3 D(y1, y2)
]

, (2.138)

y1 ϕ
gen
3 (y1)− y1 ϕ

gen
A (y1)− ϕT gen

1 (y1) + ϕT gen
A (y1)

= −
1
∫

0

dy2
[

−ζV3 B(y2, y1) + ζA3 D(y2, y1)
]

, (2.139)

d

dy1
ϕT gen
1 (y1) = ϕgen

3 (y1)− ζV3

∫ 1

0

dy2
y2 − y1

(B(y1, y2) +B(y2, y1)) , (2.140)

d

dy1
ϕT gen
A (y1) = ϕgen

A (y1)− ζA3

∫ 1

0

dy2
y2 − y1

(D(y1, y2) +D(y2, y1)) . (2.141)

Isolating the distributions ϕgen
3 and ϕgen

A , one �nds the equations,

d

dy1
ϕgen
3 (y1) + (ȳ1 − y1)

d

dy1
ϕgen
A (y1) = 4 ζA3

∫ 1

0

dy2
y2 − y1

D(+)(y1, y2)

−2 ζV3
d

dy1

∫ 1

0

dy2B
(−)(y1, y2)− 2 ζA3

d

dy1

∫ 1

0

dy2D
(+)(y1, y2) , (2.142)

d

dy1
ϕgen
A (y1) + (ȳ1 − y1)

d

dy1
ϕgen
3 (y1) = 4 ζV3

∫ 1

0

dy2
y2 − y1

B(+)(y1, y2)

−2 ζV3
d

dy1

∫ 1

0

dy2B
(+)(y1, y2)− 2 ζA3

d

dy1

∫ 1

0

dy2D
(−)(y1, y2) , (2.143)

where we denote,

B(±)(y1, y2) = B(y1, y2)±B(y2, y1) andD
(±)(y1, y2) = D(y1, y2)±D(y2, y1) . (2.144)

From the system of equations (2.142, 2.143), we 
an dedu
e the following equation on ϕgen
3 ,

d

dy1
ϕgen
3 (y1) = −1

2

(

1

y1
+

1

ȳ1

){

ζV3

[

y1

∫ 1

y1

dy2
d

dy1
B(y1, y2)− ȳ1

∫ y1

0

d

dy1
B(y2, y1)

+(ȳ1 − y1)

(
∫ 1

y1

dy2
B(y1, y2)

y2 − y1
+

∫ y1

0

dy2
B(y2, y1)

y2 − y1

)]

+ζA3

[

y1

∫ 1

y1

dy2
d

dy1
D(y1, y2) + ȳ1

∫ y1

0

d

dy1
D(y2, y1)

−
∫ 1

y1

dy2
D(y1, y2)

y2 − y1
−
∫ y1

0

dy2
D(y2, y1)

y2 − y1

]}

. (2.145)

The normalized solution for ϕgen
3 is obtained by integrating over y1. The solution is expe
ted

to be of the form,

ϕgen
3 (y) =

1

2

(

−
∫ 1

y

dy1
y1

+

∫ 1

0

dy1
ȳ1

)

{...} . (2.146)
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Finding the right 
ombination between the bra
kets gives the following solution for ϕgen
3 ,

ϕgen
3 (y) = (2.147)

−1

2

∫ 1

y

du

u

[
∫ u

0

dy2
d

du
(ζV3 B − ζA3 D)(y2, u)−

∫ 1

u

dy2
y2 − u

(ζV3 B − ζA3 D)(u, y2)

−
∫ u

0

dy2
y2 − u

(ζV3 B − ζA3 D)(y2, u)

]

−1

2

∫ y1

0

du

ū

[
∫ 1

u

dy2
d

du
(ζV3 B + ζA3 D)(u, y2)−

∫ 1

u

dy2
y2 − u

(ζV3 B + ζA3 D)(u, y2)

−
∫ u

0

dy2
y2 − u

(ζV3 B + ζA3 D)(y2, u)

]

.

We will denote,

S(y1, y2;µ
2
F ) = ζV3 (µ

2
F )B(y1, y2;µ

2
F ) + ζA3 (µ

2
F )D(y1, y2;µ

2
F ) , (2.148)

M(y1, y2;µ
2
F ) = ζV3 (µ

2
F )B(y1, y2;µ

2
F )− ζA3 (µ

2
F )D(y1, y2;µ

2
F ) . (2.149)

They transform under the ex
hange of the quark and the antiquark roles as

S(ȳ2, ȳ1;µ
2
F ) = −M(y1, y2;µ

2
F ) . (2.150)

The solution ϕgen
3 
an be written in the form analogously to the expression of the WW

solution (2.134),

ϕgen
3 (y) =

1

2

[
∫ 1

ȳ

du
A(u)

u
+

∫ 1

y

du
A(u)

u

]

, (2.151)

where

A(u) =

∫ u

0

dy2

[

1

y2 − u
− ∂u

]

M(y2, u) +

∫ 1

u

dy2
1

y2 − u
M(u, y2) . (2.152)

the quantity A(u) satis�es the 
onstraints,

∫ 1

0

duA(u) = 0 and

∫ 1

0

du ūA(u) = 0 . (2.153)

Inserting the solution (2.147) in eq. (2.140), the genuine solution for ϕT
1 is

ϕT gen
1 =

∫ y

0

duϕgen
3 (u)− ζV3

∫ y

0

dy1

∫ 1

y

dy2
B(y1, y2)

y2 − y1
. (2.154)

Similarly, the genuine solutions for ϕA and ϕT
A 
an be obtained from the solutions ϕgen

3 and

ϕT gen
1 by ex
hanging the role of ζV3 B and ζA3 D. In terms of the 
ombinations S(y2, y1) and

M(y2, y1), this 
orresponds to ex
hange

S(y1, y2) → S(y1, y2) and M(y1, y2) → −M(y1, y2) .
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2.4.4 The di
tionary

In Ref. [131℄, the equivalen
e between the 
ovariant 
ollinear approa
h (CCF), whi
h is

developed in Refs. [141, 142, 153, 154, 155℄ and the LCCF parameterization of the DAs is

shown on the example of the γ∗ → ρ impa
t fa
tor. The di
tionary between the two sets of

DAs is

B(y1, y2) = −V(y1, ȳ2)
y2 − y1

, D(y1, y2) = −A(y1, ȳ2)

y2 − y1
, (2.155)

ϕ1(y) = φ‖(y) , ϕ3(y) = g
(v)
⊥ (y) , ϕA(y) = −1

4

∂g
(a)
⊥ (y)

∂y
.

The higher twist 
ontributions 
ome from the deviation from the light-
one dire
tion

z2 → 0 due to the non-zero meson mass mρ. In our approa
h we negle
ted the mass term

in the de�nitions of the momentum pρ ∼ p and the parton separation z, justifying that it

would lead to twist 4 terms at least. The two-parton 
hiral-even DAs up to twist 3 a

ura
y,

negle
ting the quark mass terms, are de�ned as

〈0|u(z)γµ[z,−z]d(−z) |ρ(p, λ)〉 = mρfρ

(

pµ
e(λ) · z
p · z

∫ 1

0

dy eiξp·zΦ‖(y, µ
2)

+e
(λ)
⊥µ

∫ 1

0

dy eξp·zg
(v)
⊥ (y, µ2)

)

, (2.156)

〈0|u(z)γµγ5[z,−z]d(−z) |ρ(p, λ)〉 =
1

2
mρfρεµe(λ)⊥ p z

∫

dy eiξp·zg
(a)
⊥ , (2.157)

with ξ = y − ȳ, where the twist 2 DA is φ‖ and where g
(a)
⊥ , g

(v)
⊥ are the twist 3 DAs. The


hiral-even three parton DAs are de�ned as

〈0|u(z)γα[z, vz]gGµν(vz)[vz,−z]d(−z) |ρ(p, λ)〉 = imρfρζ
V
3 (2.158)

×pα(pµe(λ)⊥ν − pνe
(λ)
⊥µ)V(v, pz) ,

〈0|u(z)γαγ5[z, vz]gG̃µν(vz)[vz,−z]d(−z) |ρ(p, λ)〉 = mρfρζ
A
3 (2.159)

×pα(pµe(λ)⊥ν − pνe
(λ)
⊥µ)A(v, pz) ,

with

F(v, pz) =

∫

D[y]e−ipz(ȳ2−y1+vyg)F(y1, ȳ2, yg) , (2.160)

and

∫

D[y] ≡
∫ 1

0
dy1
∫ 1

0
dy2
∫ 1

0
dyg δ(1 − y1 − ȳ2 − yg). The dual of the strength tensor being

de�ned as G̃µν = −1
2
εµνρσG

ρσ
.

Writing the two-parton matrix elements appearing in the soft parts of our pro
ess in
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terms of the previous DAs, leads to

〈ρ(p)| ψ̄(z)[z, 0]γµψ(0) |0〉 = mρfρ

∫ 1

0

dyeiyp·z
(

φ‖(y)
e∗ · z
p · z pµ

+e∗⊥µg
(v)
⊥ (y)

)

, (2.161)

〈ρ(p)| ψ̄(z)[z, 0]γ5γµψ(0) |0〉 = −mρfρ
4

∫ 1

0

dyeiyp·zg
(a)
⊥ (y)εµe∗⊥ p z

= imρfρ

∫ 1

0

dyeiyp·z

[

−1

4

dg
(a)
⊥ (y)

dy

]

εµ e∗⊥ p z

p · z . (2.162)

Identifying the 
oordinate z with the light 
one dire
tion z = λn and 
hoosing the axial

gauge n · A = 0, the identi�
ation of the DAs is straightforward and leads to the di
tionary

(2.155) for ϕ1, ϕ3, ϕA.

The three parti
le 
orrelators reads

〈ρ(p)| ψ̄(z)[z, tz]γµ gGαβ(tz)[tz, 0]ψ(0) |0〉 (2.163)

= −imρfρζ
V
3 pµ(pαe

∗
⊥β − pβe

∗
⊥α)

∫

D[y]V(y1, ȳ2) eiy1p·z+iygp·(tz) ,

〈ρ(p)| ψ̄(z)[z, tz]γ5γµ gG̃αβ(tz)[tz, 0]ψ(0) |0〉 (2.164)

= mρfρζ
A
3 pµ(pαe

∗
⊥β − pβe

∗
⊥α)

∫

D[y]A(y1, ȳ2) e
iy1p·z+iygp·(tz) .

In the axial gauge n · A = 0, the Wilson lines drop o� and the gluon �eld is expressed in

terms of the �eld-strenght tensor as

Aα(y) =

∫ ∞

0

dσ e−ǫσ nβ Gαβ(y + σn) . (2.165)

Multiplying (2.163, 2.167) by nβ
, integrating over σ i.e. over t after a 
hange of variable, one

gets

〈ρ(p)| ψ̄(z)γµ gAα(tz)ψ(0) |0〉 (2.166)

= −mρfρζ
V
3 pµpαe

∗
⊥β

∫

D[y]
V(y1, ȳ2)

yg
eiy1p·z+iygp·(tz) ,

〈ρ(p)| ψ̄(z)γ5γµ gAα(tz)ψ(0) |0〉 (2.167)

= −imρfρζ
A
3 pµ

εα e∗⊥ p z

p · z

∫

D[y]
A(y1, ȳ2)

yg
eiy1p·z+iygp·(tz) . (2.168)

The identi�
ation in z = λn gives the relations in (2.155) for the three-parton DAs.

In [131℄ the equivalen
e of the DAs (2.155) was 
arefully 
he
ked on the results for the

spin �ip and spin non-�ip impa
t fa
tor 
al
ulations. The fa
t that both results in 
ovariant

gauge and light-
one gauge are the same is also an expli
it 
he
k on the gauge invarian
e of

the impa
t fa
tor results.
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2.5 Conformal expansion and s
ale dependen
e of DAs

Now, having established a 
onne
tion between the DAs of the LCCF approa
h [131℄ and the

DAs of the CCF approa
h [142℄, we 
an use the models for the DAs that was presented in

[142℄ using

• �rst 
onformal expansion terms of the DAs,

• fa
torization/renormalization s
ale dependen
e driven by renormalization group equa-

tions of the 
onformal operator expansion,

• QCD sum rules for the values of the 
oupling 
onstants at a initial s
ale µ0 = 1 GeV

to get expli
it expressions for φ‖(y;µ
2), V(y;µ2), A(y;µ2).

2.5.1 Goal of the 
onformal expansion

Let us �rst motivate the 
onformal expansion of the light-
one wave fun
tions by 
onsider-

ing an analogous problem; the problem of one parti
le in a spheri
al potential in quantum

me
hani
s. In this 
ase, the invarian
e under rotation of the spheri
al potential allows to

de
ouple the radial dependen
e from the angular dependen
e by performing a partial wave

expansion of the wave fun
tion in the basis of the spheri
al harmoni
s. This de
omposition al-

lows to put all the angular dependen
e into these harmoni
s, and then the radial dependen
e

is driven by the one-dimensional S
hrödinger equation.

In our 
ase, the massless QCD is invariant under the transformations of the 
ollinear

subgroup of the 
onformal group SL(2,R) that des
ribes Mobiüs transformations on the

light-
one. The 
onformal invarian
e is broken by quantum 
orre
tions but it is valid at

the level of leading logarithm a

ura
y. The Efremov-Radyushkin-Brodsky-Lepage (ERBL)

equation [156, 157℄ that governs the Q2−dependen
e of the DA ϕ(y;Q2), reads

Q2 ∂

∂Q2
ϕ(y;Q2) =

αs(Q
2)

4π

∫ 1

0

[dz]V (z, y)ϕ(z;Q2) , (2.169)

where the kernel V 
an be 
omputed in pQCD for large Q2
. Note that the ERBL evolution

is 
urrently known at NLO [158, 159, 160, 161℄. The eigenfun
tions ϕn that diagonalize

the Brodsky-Lepage potential are given by the representations of the 
onformal group Pn(y)

labeled by a 
onformal spin n

ϕn(y,Q
2) ∝ an(Q

2)Pn(y) . (2.170)

For example, the leading twist DA longitudinal y dependen
e is expanded on the basis of the

Gegenbauer orthogonal polynomials C
3/2
n

ϕ1(y;µ
2) ≡ Φ‖(y) = 6yȳ

∞
∑

n=0

a‖n(µ
2
F )C

3/2
n (y − ȳ) , (2.171)
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like in quantum me
hani
s the wave fun
tion angular dependen
e is expanded on Legendre

orthogonal polynomials labeled by the orbital quantum numbers. In this expansion, the n−th

term has a 
onformal spin n + 2. At the LL a

ura
y, the 
oe�
ients an(Q
2) evolution is

driven by the renormalization group (RG) equation of the operators On of same 
onformal

spin,

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

O(i)
n (x;µ2) = −αs

2π
Γn
ijO(j)

n (x;µ2) . (2.172)

There is no operator mixing under renormalization between operators of di�erent 
onformal

spins, whi
h means in other words that in the basis of these operators the anomalous di-

mension matrix Γn is blo
k diagonal. Indeed the matri
es Γn is diagonal for leading twist

operators but the representation of twist 3 operators are degenerate as we will see. The

solutions have the form,

ϕ(y;µ2) = N
∑

n

an(µ
2)Pn(y) , (2.173)

with N a normalization fa
tor. The s
ale evolution of an(µ
2) is of the form

a(i)n (µ2) = [L
Γn
β0 (µ2, µ2

0)]ij a
(j)
n (µ2

0) ,

where L(µ2, µ2
0) = (αs(µ

2)/αs(µ
2
0)).

The 
onformal spin of a 
onstituent primary �eld is equal to j = 1
2
(d + s) with d the


anoni
al dimension and s the spin proje
tion of the �eld onto the light-
one. The multi-

parti
le states 
an be expanded in terms of 
onformal spin and its lowest spin is the sum of

the spin of the 
onstituent primary �elds. This lowest spin state is 
alled "asymptoti
 DA",

and is the only surviving state in the large energy limit due to the fa
t that it has the lowest

anomalous dimension. The asymptoti
 DA for a multi-parti
le state takes the form [162, 149℄

φAS(α1, α2, .., αn) =
Γ(2j1 + ..+ 2jn)

Γ(2j1)Γ(2j2)..Γ(2jn)
α2j1−1
1 α2j2−1

2 ...α2jn−1
n , (2.174)

with αk the longitudinal fra
tion of the momentum (

∑n
1 αk = 1) 
arried by the primary


onstituent �eld fk (quark antiquark or gluon �eld) of 
onformal spin jk. The asymptoti


DA ϕ1(y, µ
2
F ) with µ

2
F ∼ Q2 → ∞, denoted ϕAS

1 (y) is then given by

ϕAS
1 (y) = 6yȳ . (2.175)

In the produ
tion of the ρ−meson up to twist 3 we negle
t the masses of the quarks whi
h

are fairly small 
ompared to the s
ales of the problem but if one would be interested in the

φ−meson produ
tion for example, one should be more 
areful and take into a

ount SU(3)-

�avor breaking symmetry. The introdu
tion of mass e�e
ts breaks expli
itly the 
onformal

invarian
e.

Nevertheless, the masses do not a�e
t the transverse evolution of DAs as it is given by

the s
ale evolution of the operators governed by the anomalous dimensions whi
h does not

depend on the masses as long as they 
an be negle
ted 
ompared to the s
ale of the pro
ess.

Keeping the quark masses, the higher twist DAs when expressed in terms of a minimal
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set of DAs through the relations su
h as EOMs of QCD or n−independen
e, exhibit terms

proportional to the quark masses. These terms mix the 
hiral even and 
hiral odd se
tors.

For example the twist 3 DAs ϕT
1 would get a dependen
e from the twist 2 DA of the 
hiral

odd se
tor proportional to the sum of quark masses mu +md. As the masses of the quarks

are inside multipli
ative fa
tors in these terms, the 
onformal expansion 
an still be used to

study the DA evolutions.

2.5.2 Conformal expansion of the DAs

The twist 2 DA ϕ1(y;µ
2) 
onformal partial wave expansion is already given in eq. (2.171).

The �rst 
oe�
ient a
‖
0 is 
onstant due to the normalization 
ondition

∫ 1

0

dy ϕ1(y;µ
2) = 1 .

The invarian
e of the ρ−meson state under G-parity implies that the n−odd terms are

vanishing.

The 
onformal expansion 
an be performed on operators with de�nite spin proje
tion on

the light-
one. The spin proje
tors on the light-
one are P+ = 1
2
γ∗γ. and P− = 1

2
γ.γ∗ with

the notations a. = a · z and a∗ =
a·p
p·z . The twist 3 DAs operators are

〈0| γ.γ⊥µ γ∗[z,−z]d(−z)
∣

∣ρ−(p, λ)
〉

= −mρfρ e
(λ)
⊥µ

∫ 1

0

dyeiξp·z g↑↓(y) , (2.176)

〈0| γ∗γ⊥µ γ.[z,−z]d(−z)
∣

∣ρ−(p, λ)
〉

= −mρfρ e
(λ)
⊥µ

∫ 1

0

dyeiξp·z g↓↑(y) , (2.177)

with,

g↑↓ = g
(v)
⊥ +

1

4

d

du
g
(a)
⊥ ≡ ϕ3 − ϕA , (2.178)

g↓↑ = g
(v)
⊥ − 1

4

d

du
g
(a)
⊥ ≡ ϕ3 + ϕA . (2.179)

The 
onformal expansion for the DAs g↑↓, g↓↑ reads

g↑↓(y) = 2ȳ

∞
∑

n=0

g↑↓n P (1,0)
n (ξ) , (2.180)

g↓↑(y) = 2y

∞
∑

n=0

g↓↑n P (0,1)
n (ξ) , (2.181)

with P
(i,j)
n the Ja
obi polynomials. The term labeled with n has a 
onformal spin n + 3/2.

This leads to the following expressions for g
(v,a)
⊥ ,

g
(v)
⊥ =

∑

n even

(Gn −Gn−1)C
1/2
n (ξ) +

∑

n odd

(gn − gn−1)C
1/2
n (ξ) , (2.182)

g
(a)
⊥ = 8yȳ

(

∑

n even

Gn −Gn+1

(n + 1)(n+ 2)
C3/2

n (ξ)

+
∑

n odd

gn − gn+1

(n+ 1)(n+ 2)
C3/2

n (ξ)

)

, (2.183)
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with,

Gn =
1

2

(

g↑↓n + (−1)ng↓↑n
)

, (2.184)

gn =
1

2

(

g↑↓n − (−1)ng↓↑n
)

. (2.185)

It is interesting that the expansion of g
(v,a)
⊥ are involving 
oe�
ients of di�erent 
onformal

spin. However we do not have to worry about this mixing of 
onformal spin terms as g
(v,a)
⊥


an be expressed in terms of ϕ1(y) ≡ φ‖ and B(y1, y2) ≡ −V (y1,ȳ2)
y2−y1 and D(y1, y2) ≡ −A(y1,ȳ2)

y2−y1
where there is no su
h mixing.

The 
onformal expansion of the twist 3 qq̄g 
orrelators reads

V(y1, ȳ2, yg) = 360y1ȳ2y
2
g

∞
∑

k,l=0

ωV
k,l Jk,l(y1, ȳ2) , (2.186)

A(y1, ȳ2, yg) = 360y1ȳ2y
2
g

∞
∑

k,l=0

ωA
k,l Jk,l(y1, ȳ2) , (2.187)

where Jk,j(y1, ȳ2) ≡ Jk,l(6, 2, 2, y1, ȳ2) are Appell polynomials and yg = 1 − (y1 + ȳ2) the

gluon fra
tion of momentum. The 
onformal spin of the term labeled by the 
ouple {k, l} is

n = l + k + 7/2, hen
e the 
onformal representation of spin n is degenerate as the operators

with l + k = n − 7/2 have same 
onformal spins. Note also that the number of degenera
y

in
reases with n. They 
an mix with ea
h other explaining why the anomalous dimension

matrix is only blo
k diagonal at twist 3. The G-parity invarian
e of the DAs implies the

following relations between the 
oe�
ients ωV,A
,

ωV
k,l = −ωV

l,k , ωA
k,l = ωA

l,k .

We denote ωV
[k,l] = (ωV

k,l − ωV
l,k)/2 and ωA

{k,l} = (ωA
k,l + ωA

l,k)/2. The normalization 
ondition

implies that

ωV
[0,1] = 28/3 , ωA

{0,0} = 1 . (2.188)

2.5.3 S
ale dependen
e of the DAs

The di�erent terms of the 
onformal expansion are asso
iated to 
onformal operators On

whose evolution is given by the Callan-Symanzik equation (2.172). To �nd whi
h are these

operators, the te
hnique is to use the orthogonality of the polynomials to isolate the terms

of de�nite 
onformal spin in the 
onformal expression of the DA and then to reverse the

expressions of the type (2.156, 2.157) in order to get the normalizations as a fun
tion of the

relevant operators. Let us 
larify this pro
edure on the example of a
‖
n for the leading twist

DA ϕ1(y, µ
2).

Using the orthogonality relation of the Gegenbauer polynomials

∫ 1

−1
dξ (1− ξ2)α−1/2Cα

n (ξ)C
α
m(ξ) = δm,n

π21−2αΓ(n + 2α)

n!(n+ α)Γ(α)2
, (2.189)
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to extra
t a
‖
n, leads to

a‖n =
2(2n+ 3)

3(n+ 1)(n+ 2)

∫ 1

0

dyC3/2(ξ)φ‖(y, µ
2) ,

=
2(2n+ 3)

3(n+ 1)(n+ 2)

∫ 1

0

dyC3/2
n (ξ) (2.190)

× 1

mρfρ

∫

d4z

(2π)4
e−iξp·z

1

e(λ) · z 〈0|u(z)z
µγµ[z,−z]d(−z)

∣

∣ρ−(p, λ)
〉

, (2.191)

where we used the relation (2.156) multiplied by zµ to isolate the DA φ‖. One 
an show that

the result 
an be put in the form,

a‖n =
2(2n+ 3)

3(n+ 1)(n+ 2)mρfρ(e(λ) · z)
1

(p · z)n 〈0| On(0;µ
2)
∣

∣ρ−(p, λ)
〉

, (2.192)

with the 
onformal operator,

On(x) = 〈0| (i∂.)n u(x)γ.C3/2
n (

↔
D. /∂.)d(x)

∣

∣ρ−(p, λ)
〉

, (2.193)

where the notations used here are

∂n.

(↔
D.

∂.

)k

≡ ∂(n−k).

↔
D

k

. = (z · ∂)n−k(z ·
→
D −

←
D

2
)k ,

with

↔
D=

→
D−
←
D

2
, and the total derivative ∂α ≡

→
D+
←
D

2
is de�ned as,

∂α (u(x)Γ[x,−x]d(−x)) ≡
∂

∂ǫα
(u(x+ ǫ)Γ[x+ ǫ,−x+ ǫ]d(−x+ ǫ))ǫ→0 . (2.194)

The 
onformal spin of On is the same than an that is n + 2. The s
ale dependen
e of the

operator On is determined up to the LL a

ura
y by the one-loop anomalous dimension


omputation of the operator γ
‖
n [48, 156, 157℄,

γ‖n = 4CF

(

ψ(n + 2) + γE − 3

4
− 1

2(n+ 1)(n+ 2)

)

, (2.195)

with ψ(n) = −γE +
∑n+1

k=1 1/k , and γE the Euler 
onstant. The s
ale dependen
e of a
‖
n is

then given by

a‖n(µ
2) = L(µ2, µ2

0)
γ
‖
n/β0 a‖n(µ

2
0) , (2.196)

where L(µ2, µ2
0) reads expli
itly for µ0 = 1 GeV2

,

L(µ2) ≡ L(µ2, 1 GeV2) =
αs(µ

2)

αs(1 GeV2)
=

1

1 + β0

π
αs(1 GeV

2) ln(µ2)
. (2.197)

For the three-parti
le DAs, steps are similar ex
ept that the 
onformal group represen-

tations are degenerate. The �rst step being to isolate the {k, l}−th terms of 
onformal spin

j = k + l + 7/2 ≡ (n − 2) + 7/2 using the orthogonality relations of Ja
obi polynomials.

We prefer to work with �x n instead of j, whi
h is equivalent, as one 
an mat
h the genuine

solution for the two-parton twist 3 DAs label n with the 
onformal spin j as j = n+ 3/2.
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The de�nition (2.158) multiplied by zαε⊥ . µν
we obtain the relation,

〈0|u(z)γ.[z, vz]gG̃⊥ .(vz)[vz,−z]d(−z) |ρ(p, λ)〉 = imρfρζ
V
3 (2.198)

×ε⊥ . p ε
(λ)
⊥

∫

D[y]V(y1, ȳ2, yg)e−ip·z(wy1+tȳ2+vyg) . (2.199)

By a
ting on both sides of the eq. (2.198) with the operator

∂n

∂tn−k−2∂wk
,

and taking the limit t, w → 0, we see that the r.h.s. will give

imρfρζ
V
3 ε⊥ . p ε

(λ)
⊥
(p · z)n−1

∫

D[y]yk1 ȳ
n−k−2
2 V(y1, ȳ2, yg) ,

while on the l.h.s it will give the operator,

〈0| u(0)(i
←
D.)

n−k−2γ. gG̃⊥ .(0)(i
→
D)kd(0)

∣

∣ρ−(p, λ)
〉

.

The r.h.s 
an be simpli�ed

imρfρζ
V
3 ε⊥ . p ε

(λ)
⊥
(p · z)n−1

∫

D[y]yk1 ȳ
n−k−2
2 V(y1, ȳ2, yg)

= imρfρζ
V
3 ε⊥ . p ε

(λ)
⊥
(p · z)n−1

×
∫

D[y]yk1 ȳ
n−k−2
2 (360y1ȳ2y

2
g)
∑

k′,l′

ωV
k′,l′Jk′,l′(y1, ȳ2)

= imρfρζ
V
3 ε⊥ . p ε

(λ)
⊥
(p · z)n−1(360(−1)nk!(n− k − 2)!

2n+1(n+ 1)(2n+ 1)!!
ωV
k,n−k−2

+terms in ωl,r−l−2 with r < n) . (2.200)

The last line in the above equation was obtained with the help of the Ja
obi polynomial

relation

∫

D[y]ym+1
1 ȳn+1

2 y2gJk,l(y1, ȳ2) = δm,k
(−1)k+lk!l!

2k+l+3(k + l + 3)(2k + 2l + 5)!!
, (2.201)

for m+n = k+ l, otherwise the result is zero for m+n < k+ l and nonzero for m+n > k+ l.

The remaining terms in ωV
l,r−l−2 
orrespond to total derivatives of lower 
onformal operators,

then the relevant 
onformal operator 
orresponding to ωV
k,n−k−2 is,

OV
k,n−k−2(0) ≡ u(0)(i

←
D.)

n−k−2γ. gG̃⊥ .(0)(i
→
D)kd(0) + total derivatives , (2.202)

the "total derivative terms" 
oming from other higher 
onformal terms remaining ωV
l,r−l−2

terms with r = n. Note that in the DIS 
ase, the total derivative operators sandwi
hed

between the proton state vanish due to the fa
t that they are proportional to the di�eren
e

of the momenta of the initial and �nal states. In our 
ase the matrix element is non-forward,

so the total derivatives of the operators 
ontribute to the matrix element. The relation on

the 
oupling 
onstants �nally reads

(

mρfρζ
V
3 ω

V
k,n−k−2

)

(µ2) =
(−1)nNn

90k!(n− k − 2)!
〈0| OV

k,n−k−2(0)
∣

∣ρ−(p, λ)
〉

, (2.203)
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with the k independent normalization

Nn =
2n−1(2n+ 1)!!(n+ 1)

iε⊥ . pε
(λ)
⊥ (p · z)n−1

.

We need now to get the s
ale dependen
e of the operators

(

OV
k,n−k−2

)

k=0..n−2 that 
an

mix with ea
h others under renormalization. Moreover we 
an apply the same treatment for

the axial-ve
tor three-parton operators leading to

(

mρfρζ
A
3 ω

A
k,n−k−2

)

(µ2) =
(−1)nNn

90k!(n− k − 2)!
〈0| OA

k,n−k−2(0)
∣

∣ρ−(p, λ)
〉

, (2.204)

with,

OA
k,n−k−2(0) ≡ u(0)(i

←
D.)

n−k−2 iγ. γ5 gG̃⊥ .(0)(i
→
D)kd(0) + total derivatives , (2.205)

and the operators

(

OA
k,n−k−2

)

k=0..n−2 and
(

OV
k,n−k−2

)

k=0..n−2 
an also mix with ea
h other as

they have the same 
onformal spin j = n + 3/2.

It is useful to 
onsider then the sum and the di�eren
e of the operators,

R
V (A)±
n,k (0, µ2) = OV (A)

k,n−k−2(0, µ
2)±OV (A)

n−k−2,k(0, µ
2) , (2.206)

as the operators with di�erent parity numbers don't mix under renormalization. R
V (A)+
n,k

and RV (A)−(n, k) have respe
tively G-parity numbers (−1)n+1
and (−1)n. The relevant 
om-

binations of operators that satisfy the RG equation and whi
h mix under renormalization

are

R±n,k(0, µ
2) = RV±

n,k (0, µ
2)∓ RA∓

n,k (0, µ
2) . (2.207)

The solutions read,

R±n,k(0, µ
2) =

n−2
∑

l=0

(

LΓ±n /β0

)

k,l
R±n,l(0, µ

2
0) , (2.208)

and they lead to the s
ale evolution of the form

fV
3ρω

V
[k,n−k−2] ± fA

3ρω
A
{k,n−k−2}(µ

2) (2.209)

=

n−2
∑

l=0

(

LΓ∓n /β0

)

k,l

(

fV
3ρω

V
[l,n−l−2](µ

2
0)± fA

3ρω
A
{l,n−l−2}(µ

2
0)
)

,

with fV
3ρ = fρ ζ

V
3 and fA

3ρ = fρ ζ
A
3 . The renormalization of the operators R±n,k are known for

the forward matrix elements [163, 164℄ as they are relevant for the evolution of the stru
ture

fun
tion g2. In [164℄ the expli
it solutions for the 
omputation is performed in the 
ovariant

approa
h.

For our purpose we will use the models of ref. [142℄ for the leading twist DA φ‖, and

the twist 3 DAs V and A. In this model the leading twist DA and the twist 3 DAs are
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respe
tively expanded up to the 
onformal spins j = 4 and j = 9/2. The DAs trun
ated


onformal expansions read,

φ‖(y;µ2) = 6yȳ

(

1 + 3a
‖
1(µ

2)ξ +
3

2
(5ξ2 − 1) a

‖
2(ξ)

)

, (2.210)

V(y1, ȳ2, yg) = 5040(y1 − ȳ2)y1ȳ2y
2
g , (2.211)

A(y1, ȳ2, yg) = 360y1ȳ2y
2
g(1 +

1

2
(7yg − 3)ωA

1,0(µ
2)) , (2.212)

whi
h is equivalent, a

ording to (2.155), to

ϕ1(y, µ
2) = 6yȳ(1 + a

‖
2(µ

2)
3

2
(5(y − ȳ)2 − 1)) , (2.213)

B(y1, y2;µ
2) = −5040y1ȳ2(y1 − ȳ2)(y2 − y1) , (2.214)

D(y1, y2;µ
2) = −360y1ȳ2(y2 − y1)(1 +

ωA
{1,0}(µ

2)

2
(7(y2 − y1)− 3)) . (2.215)

Note that a
‖
1 = 0 due to the G-parity invarian
e of the ρ−meson in the vanishing quark masses

limit. This model is valid under the hypothesis that the 
onformal expansion 
onverges. This

is indeed ensured by the s
ale dependen
e of the operators at large enough ratio µ/µ0 with

µ0 the referen
e s
ale, as the higher is the 
onformal spin the faster the term de
reases with

µ2/µ2
0.

The referen
e s
ale used here is µ0 = 1 GeV. The values of the 
oupling 
onstants [142℄

displayed in the tab. 2.1 are determined at this s
ale by QCD sum rules (
f. next part).

αs 0.52

ωA
{1,0} -2.1

ωV
[0,1] 28/3

a
‖
2,ρ 0.18 ± 0.10

mρ f
A
3ρ 0.5− 0.6 10−2GeV2

mρ f
V
3ρ 0.2 10−2GeV2

ζA3 0.032

ζV3 0.013

Table 2.1: Coupling 
onstants and Gegenbauer 
oe�
ients entering the ρ−meson DAs, at

the s
ale µ = 1 GeV. Note that in Ref. [142℄ the normalizations are su
h that fV,A

3ρ [142℄
=

mρ f
V,A
3ρ [here].
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We need then the s
ale dependen
e of the following quantities,

a
‖
2(µ

2) , (fV
3ρω

V
[0,1])(µ

2) = 28/3 fV
3ρ(µ

2) and (fA
3ρω

A
1,0)(µ

2) .

The evolutions of a
‖
2(µ

2) is given expli
itly by

a
‖
2(µ

2) = a
‖
2,0 L(µ

2)γ2/β0 . (2.216)

The fA
3ρ 
oupling 
onstant evolution reads

fA
3ρ(µ

2) = fA
3ρ(1GeV2)L(µ2)Γ

−
2 /β0 , (2.217)

with Γ−2 = −CF

3
+ 3Cg with Cg = Nc. De�ning the ve
tor

V (µ2) =







ωV
[0,1]f

V
3ρ(µ

2)− ωA
{0,1}(µ

2)fA
3ρ(µ

2)

ωV
[0,1]f

V
3ρ(µ

2) + ωA
{0,1}(µ

2)fA
3ρ(µ

2)






, (2.218)

the evolution of V (µ2) is given by the matrix evolution equation

V (µ2) = L(µ2)Γ
+
3 /β0V (1 GeV2) , (2.219)

with Γ+
3 given by

Γ+
3 =







8
3
CF + 7

3
Cg

2
3
CF − 2

3
Cg

5
3
CF − 4

3
Cg

1
6
CF + 4Cg






. (2.220)

Hen
e we get the dependen
e of fV
3ρ and ω

A
{0,1} by solving this matrix equation in the eigen-

ve
tors basis of the matrix Γ+
3 . In �g. 2.15 we display the three independent DAs ϕ1 (left), S

(
enter), M (right). The �g. 2.16 shows the DAs ϕ3 (left) and ϕA (right) and �g. 2.17 shows

the DAs ϕT
1 (left) and ϕT

A (right) as a fun
tion of their longitudinal variables.

j1Iy ; 1 GeV2M

j1Iy ; 25 GeV2M

j1HyL = 6 y y

0.0 0.2 0.4 0.6 0.8 1.0
y

0.2

0.4

0.6

0.8

1.0

1.2

1.4

j1

SIy1, y2 = 0.6, Μ2 = 1 GeV2M

SIy1, y2 = 0.6, Μ2 = 25 GeV2M

0.1 0.2 0.3 0.4 0.5 0.6
y1

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

MIy1, y2 = 0.6, Μ2 = 1 GeV2M

MIy1, y2 = 0.6, Μ2 = 25 GeV2M

0.1 0.2 0.3 0.4 0.5 0.6
y1

0.2

0.4

0.6

0.8

1.0

Figure 2.15: The three independent DAs. Left: ϕ1(y;µ
2) as a fun
tion of y; in red (dotted)

asymptoti
 DA, in blue (solid) µ2 = 1 GeV

2
, in blue (dashed) µ2 = 25 GeV

2
. Center:

S(y1, y2 = 0.6;µ2) as a fun
tion of y1; in red (solid) µ2 = 1 GeV

2
, in blue (dashed) µ2 = 25

GeV

2
. Right: M(y1, y2 = 0.6;µ2) as a fun
tion of y1; in red (solid) µ2 = 1 GeV

2
, in blue

(dashed) µ2 = 25 GeV

2
.

These �gures exhibit the non-negligible e�e
ts of QCD evolution on DAs, in parti
ular

for the genuine twist 3 
ontributions.
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j3
genIy ; Μ2 = 25 GeV2M

j3
genIy ; Μ2 = 1 GeV2M

j3
WWIy ; Μ2 = 25 GeV2M

j3
WWIy ; Μ2 = 1 GeV2M

0.2 0.4 0.6 0.8 1.0
y

0.5

1.0

1.5

2.0

jA
genIy ; Μ2 = 25 GeV2M

jA
genIy ; Μ2 = 1 GeV2M

jA
WWIy ; Μ2 = 25 GeV2M

jA
WWIy ; Μ2 = 1 GeV2M

0.2 0.4 0.6 0.8 1.0
y

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2.16: The two DAs ϕ3 (left) and ϕA (right) as a fun
tion of y. In red (dotted) WW


ontribution with µ2 = 1 GeV

2
; in blue (dash-dotted) WW 
ontribution with µ2 = 25 GeV

2
;

in red (solid) genuine 
ontribution with µ2 = 1 GeV

2
; in blue (dashed) genuine 
ontribution

with µ2 = 25 GeV

2
.

j1
T genIy ; Μ2 = 1 GeV2M

j1
T WWIy ; Μ2 = 25 GeV2M

j1
T WWIy ; Μ2 = 1 GeV2M

j1
T genIy ; Μ2 = 25 GeV2M

0.2 0.4 0.6 0.8 1.0
y

-0.2

-0.1

0.1

0.2

jA
T WWIy ; Μ2 = 25 GeV2M

jA
T WWIy ; Μ2 = 1 GeV2M

jA
T genIy ; Μ2 = 1 GeV2M

jA
T genIy ; Μ2 = 25 GeV2M

0.2 0.4 0.6 0.8 1.0
y

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

Figure 2.17: The two DAs ϕT
1 (left) and ϕT

A (right) as a fun
tion of y. In red (dotted) WW


ontribution with µ2 = 1 GeV

2
; in blue (dash-dotted) WW 
ontribution with µ2 = 25 GeV

2
;

in red (solid) genuine 
ontribution with µ2 = 1 GeV

2
; in blue (dashed) genuine 
ontribution

with µ2 = 25 GeV

2
.
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2.6 QCD sum rules

Let us brie�y sket
h the main idea of the QCD sum rules method [165℄ to get a

ess to

the nonperturbative inputs, on the example of the twist 2 pion DA ϕA
π [166, 167℄ whi
h

parameterizes the bilo
al 
orrelator su
h as,

〈0| d̄(z)/zγ5[z,−z]u(−z)
∣

∣π+(p)
〉

= iz · pfπ
∫ 1

−1
dξeiξ(z·p)ϕA

π (y) . (2.221)

This non-lo
al 
orrelator 
an be Taylor expanded as a sum of lo
al operators,

〈

d̄(z)/zγ5[z,−z]u(−z)
〉

=
∑

n

in

n!

〈

d̄(0)/zγ5(iz·
↔
D)nu(0)

〉

. (2.222)

Note that the pion de
ay 
onstant fπ is de�ned as

〈0| d̄(0)γµγ5u(0)
∣

∣π+(p)
〉

= ipµfπ , (2.223)

whi
h taking the limit z → 0 in (2.221), gives the normalization of the DA,

∫ 1

−1
dξϕA

π (ξ) = 1 .

Ea
h terms of the expansion 
an be written as,

〈

d̄(0)/zγ5(iz·
↔
D)nu(0)

〉

= zαzµ1 · · · zµn

〈

d̄(0)γαγ5(i
↔
D

µ1

· · · i
↔
D

µn

)u(0)
〉

= (z · p)n+1Cn . (2.224)

The 
oe�
ients Cn 
an now be identi�ed with the Taylor 
oe�
ients by expanding the r.h.s

of (2.221)

iz · pfπ
∫ 1

−1
dξeiξ(z·p)ϕA

π (y) = iz · pfπ
∫ 1

−1
dξ
∑

n

(iξ(z · p))n
n!

ϕA
π (y) , (2.225)

leading to

Cn =

∫ 1

−1
dξ ξnϕA

π (ξ) = 〈ξn〉 ,

where 〈ξn〉 is the n−th moment of the wave fun
tion along the light-
one dire
tion p. The

goal now is to derive equations (sum rules) between the nonperturbative inputs su
h fπ that

we want to evaluate and quantities that we 
an 
al
ulate or evaluate in the asymptoti
 regime

where the hard s
ale Q2 → ∞.

Let us 
onsider the following 
orrelator,

In,0(z, q) = i

∫

dxeiq·x 〈0|TOn(x)O0(0) |0〉 , (2.226)

where we denote the operator Om(y),

Om(y) = d̄(y)/zγ5(iz·
↔
D)mu(y) . (2.227)
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The intermediate state

O0(0) |0〉 = d̄(0)/zγ5u(0) |0〉 ,
has the same quantum numbers as the |π〉 state. The operators On(x) are the operators

involved between the |π〉 state and the va
uum state in Eq. (2.224) so they are related to the

values of 〈ξn〉. The momentum q is the momentum ex
hanged between the two lo
al 
urrents

proje
ted on the 
oordinate z as in Eq. (2.221). We 
an express In,0(z, q) as a z−independent
quantity In,0(q

2),

In,0(z, q) = i

∫

dxeiq·x 〈0| d̄(x)/zγ5(iz·
↔
D)nu(x)d̄(0)/zγ5u(0) |0〉 (2.228)

= (z · q)n+2In,0(q
2) . (2.229)

In the asymptoti
 limit q2 → ∞, the main 
ontribution is given by pQCD. Then the

PSfrag repla
ements

q 0 x

Figure 2.18: pQCD loop 
ontribution to In,0(q
2)

asymptoti
ally dominant 
ontribution is given by the loop diagram in �g. 2.18, whi
h gives

[166, 167℄,

IAS
n,0 (q

2) = − ln(Q2)

4π2

∫

dξξn
3

4
(1− ξ2) = − ln(Q2)

4π2

3

(n+ 1)(n+ 3)
. (2.230)

The nonperturbative 
orre
tions to this result are given by 
onsidering the operator expansion

of the external �elds. These 
orre
tions involve the diagrams of �g. 2.19, where operators of

lowest dimensions are G2
µν for the left diagram and ūu for the right diagram. In,0(q

2), with

PSfrag repla
ements

q 0 x

Va
uum

PSfrag repla
ements

q 0 x

Va
uum

Figure 2.19: Nonperturbative 
orre
tions from the va
uum. Diagram on the left involves the

va
uum expe
tation value 〈0|G2
µν |0〉, the right diagram involves 〈0| ūu |0〉.

the 
orre
tive 
ontributions of this operator produ
t expansion, takes the form,

In,0(q
2) = IAS

n,0 (q
2) +

〈0| αs

π
G2 |0〉

12q4
− 32π

81
(11 + 4n)

〈0|√αsūu |0〉
q6

+ · · ·+ Ck
〈0| Ok |0〉

q2k
+ · · · (2.231)
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The te
hnique is then to use an integral Borel transform of In,0(q
2), de�ned as,

1

πM2

∫ ∞

0

dSe−S/M
2ImIn,0(S) =

1

4π2

3

(n+ 1)(n+ 3)
+

〈0| αs

π
G2 |0〉

12M4

−16π

81
(11 + 4n)

〈0|√αsūu |0〉
M6

+ · · ·+ (−1)k

(k − 1)!
Ck

〈0| Ok |0〉
M2k

+ · · · (2.232)

This manipulation, 
alled "borelezation", has two important 
onsequen
es, the �rst is that

on the r.h.s. of (2.232), the operators of higher dimensions are suppressed, the se
ond is

that on the l.h.s the intermediate states with S > M2
that 
ould 
ontribute to the spe
tral

density ImIn,0 are also suppressed.

The sum rule given by eq. (2.232) allows to get nonperturbative inputs. Indeed we know

that for large S > Sn ≫ µ2
0 the pQCD gives for the spe
tral density,

In,0(S) = θ(S − Sn)IAS
n,0 (S) = θ(S − Sn)

3

4π2(n+ 1)(n+ 3)
, (2.233)

where Sn is the threshold under whi
h we have to take into a

ount nonperturbative 
or-

re
tions. These non-perturbative 
orre
tions to the spe
tral density is given by the lowest

energy resonan
es among the bound states with the good quantum numbers. In this 
ase the

π+−meson state is the lowest energy resonan
e and the next one is the A1−meson, leading

to

In,0(S) = θ(S − Sn)IAS
n,0 (S) + f 2

π 〈ξn〉π δ(S −m2
π) + f 2

A 〈ξn〉A δ(S −m2
A) . (2.234)

Inserting (2.234) in the l.h.s of (2.232), we get a relation between the free parameters fπ,

fA, 〈ξn〉π, 〈ξn〉A and Sn. The va
uum expe
tation values are assumed to be known as

〈0|√αsūu |0〉 and 〈0| αs

π
G2 |0〉 
an be determined phenomenologi
ally [168, 169℄. The best �t

of the free parameters allows then to evaluate the nonperturbative input parameters.

2.7 Impa
t fa
tors γ∗(λγ) → ρ(λρ)

In this part we will present the 
omputation of the impa
t fa
tors γ∗(λγ) → ρ(λρ), denoted

Φ
γ∗λγ→ρλρ

for the transitions γ∗L → ρL, γ
∗
T → ρL and γ∗T → ρT .

Let us re
all the formulas (2.93-2.96) for the amplitudes related to the impa
t fa
tors as


onvolutions of DAs and hard sub-pro
esses. For the transition γ∗L → ρL it reads

iA(0)
qq̄ = −fρ

4

∫

dy H
/p
qq̄(y)ϕ1(y;µ

2
F ) , (2.235)
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and for the γ∗T → ρT ,

iA = −mρfρ
4

(∫

dy
[

H
/e∗ρT
qq̄ (y)ϕ3(y;µ

2
F ) + iH

/R∗⊥γ5
qq̄ (y)ϕA(y;µ

2
F )

+ H
e∗ρT ,/p

qq̄ (y)ϕT
1 (y;µ

2
F ) + iH

R∗⊥,/pγ5
qq̄ (y)ϕT

A(y;µ
2
F )
]

−i
∫

dy1dy2 [H
e∗ρT ,/p

qq̄g (y1, y2)ζ
V
3 (µ

2
F )B(y1, y2;µ

2
F )

+ H
R∗⊥,/pγ5
qq̄g (y1, y2) ζ

A
3 (µ

2
F ) iD(y1, y2;µ

2
F )]
)

. (2.236)

In order to get the impa
t fa
tor from (2.235, 2.236), one has to use the impa
t fa
tor

de�nition in our 
onventions de�ned in the se
. 1.2.4 of the 
hap. 1,

Φ
γ∗λγ→ρλρ =

1

2s

∫

dκ

2π
Discκ

(

Sγ∗g→ρg
µν pµ2 p

ν
2

2

s

)

, (2.237)

with κ = (q + k1)
2
the Mandelstam variable asso
iated to the hard sub-pro
ess.

We will present in this se
tion the 
al
ulations of the impa
t fa
tors for the di�erent types

of diagrams.

2.7.1 Kinemati
s

We 
hoose the frame where the ρ−meson is along the dominant light-
one dire
tion p = p1 ∼
pρ (up to a fa
tor m2

ρ/s), as the amplitude is independent of the 
hoi
e of the light-
one

ve
tor n, we 
hoose to �x it along the dominant dire
tion of the nu
leon impa
t fa
tor p2 to


ompute the hard part. We re
all that p2 satis�es the relation p2 · p1 = s
2
and is proportional

to the ve
tor n. In the forward kinemati
 t = (q − pρ)
2 = −∆2 → 0 presented in �g. 2.20,

PSfrag repla
ements

k1 k2

q

pρ ∼ p1

Figure 2.20: Kinemati
s of the pro
ess γ∗(q)g(k1) → g(k2)ρ(pρ).

the momenta 
an be expanded on the Sudakov basis as,

q = p1 −
Q2

s
p2 (2.238)

k1 =
κ+Q2 + k2

s
p2 + k⊥ (2.239)

k2 =
κ−m2

ρ + k2

s
p2 + k⊥ ∼ κ+ k2

s
p2 + k⊥ (2.240)
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and the polarizations

e
(λ)
⊥ = ε(λ) (2.241)

eL(q) =
1

Q

(

q +
2Q2

s
p2

)

. (2.242)

where ε± = 1√
2
(0,∓1,−i, 0), as de�ned by Eq. (1.124) in se
.1.3.2 of the 
hap. 1.

2.7.2 The γ∗L → ρL transition

The impa
t fa
tor Φγ∗L→ρL
is 
omputed from the expression of the amplitude A(0)

qq̄ given in

eq. (2.235) and from the de�nition eq. (2.237). The longitudinal polarization of the ρ−meson

is given by,

eL =
1

mρ

(

p1 −
m2

ρ

s
p2

)

. (2.243)

The hard part H
/p
qq̄(y) is given by the six diagrams presented in �g. 2.7. Let us derive the

PSfrag repla
ements

y1 p1

−ȳ1 p1

k1

y1 p1 − q −k2 − ȳ1 p1

k2

q

Figure 2.21: The detailed stru
ture of the diagram (a), one of the six diagrams of the hard

s
attering.


ontribution to the impa
t fa
tor of the diagram (a) illustrated in �g. 2.21. It reads

Φa = − e√
2

1

4

2

s
(−i) fρmρ g

2 δ
ab

2N

1

2s
(2.244)

1
∫

0

dy

∫

dκ

2π

Tr[e/γL (y /p1 − q/) /p2 (/k2 + ȳ/p1) /p2 /p1]

[(y p1 − q)2 + iǫ][(k2 + ȳp1)2 + iǫ]
ϕ1(y;µ

2
F ) .

The 
omputation is similar to the 
omputations of the impa
t fa
tors Φγ∗L,T→γ∗L,T
presented

in the 
hap. 1. It is instru
tive to tra
k the origin of the di�erent fa
tors in eq. (2.244).

1
4


omes from Fierz identity,

2
s
from the normalization of the non-sense polarizations of the

t−
hannel gluons, δab

2
from the proje
tion on the 
olor singlet state in t−
hannel, 1/N from

the Fierz fa
torization of the 
olor indi
es of the ρ−meson. We remind that

e√
2
stands for

the ele
tri
 
harge of the qq̄ 
ontent of the ρ−meson wave fun
tion

1√
2
(ūu− d̄d).

The poles in the κ−plane are given by the propagators. We re
all that the six diagrams

are needed to prove the 
onvergen
e of the integral over κ on the in�nite semi-
ir
le. We
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an then 
ompute the integral with the residue method by 
hoosing the lower 
ontour for

example. Among the six diagrams, only four of them give a 
ontribution due to their κ−pole
stru
ture for a given 
ontour 
hoi
e.

The result for the impa
t fa
tor is,

Φγ∗L→ρL =
2eg2fρ√

2Q

δab

2N

∫

dyϕ1(y)µ
2

(

1

µ2
− 1

k2 + µ2

)

=
2eg2fρ√

2Q

δab

2N

∫

dyϕ1(y)
k2

µ2 + k2
, (2.245)

where a

ording to the notation introdu
ed in the DIS 
ase in Se
. 1.3.2, µ2 = yȳQ2
. The

result 
an be extended to the non-forward kinemati
∆ 6= 0, taking the momenta of the quark

ℓ1 and of the antiquark ℓ2 as,

ℓ1 = yp1 +
(ℓ+ y∆)2

ys
p2 + ℓ⊥ + y∆⊥ (2.246)

ℓ2 = ȳp1 +
(ℓ+ ȳ∆)2

ȳs
p2 − (ℓ⊥ − ȳ∆⊥ . (2.247)

The result reads [130℄,

Φγ∗L→ρL(k,∆, Q) = 4παs
efρ√
2Q

δab
2Nc

∫ 1

0

dy µ2 ϕ1(y;Q
2)PP (y, k,∆, Q) (2.248)

with

PP (y, k,∆, Q) =
1

(y∆)2 + yȳQ2
+

1

(ȳ∆)2 + yȳQ2
(2.249)

−
(

1

(k − y∆)2 + yȳQ2
+

1

(k − ȳ∆)2 + yȳQ2

)

.

2.7.3 The γ∗T → ρL impa
t fa
tor

Using the same te
hniques, the �rst term of the expansion in twist of the impa
t fa
tor

γ∗T → ρL is of twist 2. The twist 2 
ontribution to the γ∗T → ρL impa
t fa
tor is power

suppressed by a kinemati
 fa
tor

√
t/Q 
ompared to the twist 2 
ontribution of the γ∗L → ρL

impa
t fa
tor. It reads [130℄:

Φγ∗T→ρL(k,∆, Q) = 2παs
e√
2
fρ
δab
2Nc

∫ 1

0

dy (y − ȳ)ϕ1(y;Q
2) e ·Q

P
(y, k,∆, Q) (2.250)

with

Q
P
(y, k,∆, Q) =

y∆

(y∆)2 + yȳQ2
− ȳ∆

(ȳ∆)2 + yȳQ2
(2.251)

+
k − y∆

(k − y∆)2 + yȳQ2
− k − ȳ∆

(k − ȳ∆)2 + yȳQ2
.
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2.7.4 The γ∗T → ρT impa
t fa
tor

The γ∗T → ρT impa
t fa
tor is te
hni
ally more 
ompli
ated as it involves many types of

diagrams. We will give here the result for ea
h of the di�erent types of diagrams whi
h

are represented in �gs. 2.13, 2.8, 2.9, 2.10. We skip the diagram of the type �g. 2.7 as the


omputation goes the same way than for Φγ∗L→ρL
.
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k1 − ȳ1 p1

k1 − ȳ1 p1
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Figure 2.22: The detailed stru
ture of the diagram (b1).

Let us fo
us on the diagram of �g. 2.22. We re
all that there are two 
ontributions,

the ve
tor and the axial ve
tor 
ontributions where the spinor indi
es of the diagram are

respe
tively 
losed on the Fierz stru
tures /p1 and /p1γ5.The ve
tor 
ontribution to the impa
t

fa
tor reads

ΦV
b1 = − e√

2

1

4

2

s
(−i) g2 fρmρ

δab

2Nc

1

2s

1
∫

0

dy

∫

dκ

2π

×Tr[e/γ (/k1 − ȳ /p1) e/
∗
T (/k1 − ȳ/p1) /p2 /p1 /p2(/k2 + y /p1)]

[(k1 − ȳp1)2 + iη]2[(k2 + ȳp1)2 + iη]
ϕT
1 (y) . (2.252)

Computing the tra
e and integrating over κ leads to

ΦV
b1 = −eq g

2

2
fρmρ

δab

2Nc

(2.253)

×
1
∫

0

dy y
−e∗T · eγ(y ȳ Q2 + k2) + 2 e∗T · k e∗T · k(1− 2 y)

(Q2 y ȳ + k2)2
ϕT
1 (y) .

The axial ve
tor 
ontribution reads

ΦA
b1 = −eq

i

4

2

s
(−i)g2fρmρ

δab

2Nc

1

2s

1
∫

0

dy

∫

dκ

2π
(2.254)

× Tr[e/γ (/k1 − ȳ /p1) γα (/k1 − ȳ/p1) /p2 /p1 γ5 /p2(/k2 + y /p1)]

[(k1 − ȳp1)2 + iη]2[(k2 + ȳp1)2 + iη]
ǫαe∗T pn ϕ

T
A(y) ,
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whi
h gives,

ΦA
b1 = −eq g

2

2
fρmρ

δab

2Nc

(2.255)

×
1
∫

0

dy y
−e∗T · eγ(y ȳ Q2 − k2) + 2 e∗T · k e∗T · k

(Q2 y ȳ + k2)2
ϕT
A(y) .
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Figure 2.23: The detailed stru
ture of the diagram (aG1).

Let us 
onsider now the abelian three-parton 
ontribution diagrams shown in �g. 2.23.

Two di�erent 
olor fa
tors 
an be obtained depending of where the gluon is atta
hed,

2

(N2
c − 1)

Tr(tc ta tb tc) =
δab

2Nc
: (aG1), (
G1), (eG1), (fG1) (2.256)

2

(N2
c − 1)

Tr(tc ta tc tb) =
1

2

(

2− Nc

CF

)

δab

2Nc
: (bG1), (dG1), (aG2),

(
G2), (bG2), (dG2), (eG2), (fG2) ,

where the 2/(N2
c −1) 
omes from the Fierz 
oe�
ient when fa
torizing the qq̄g state in 
olor

spa
e.

The ve
tor 
ontribution of the diagram aG1 reads

ΦV
aG1 = −eq

1

4

2

s
(i) g2 fρmρ

δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
B(y1, y2) (2.257)

× Tr[e/γ (y1 /p1 − q/) e/∗T (y2 /p1 − q/) /p2 (/k2 + ȳ2 /p1) /p2 /p1]

[(y1 p1 − q)2 + iη][(y2 p1 − q)2 + iη][(k2 + ȳ2 p1)2 + iη]
,

= −eq g
2

2
fρmρ

δab

2Nc

1
∫

0

dy1 dy2
e∗T · eγ
ȳ1Q2

B(y1, y2) . (2.258)
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The axial-ve
tor 
ontribution of aG1 reads

ΦA
aG1 = −eq

i

4

2

s
(i) g2 fρmρ

δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
εαe∗T pnD(y1, y2) (2.259)

× Tr[e/γ (y1 /p1 − q/) γα (y2 /p1 − q/) /p2 (/k2 + ȳ2 /p1) /p2 /p1]

[(y1 p1 − q)2 + iη][(y2 p1 − q)2 + iη][(k2 + ȳ2 p1)2 + iη]
,

= −eq g
2

2
fρmρ

δab

2Nc

1
∫

0

dy1 dy2
e∗T · eγ
ȳ1Q2

D(y1, y2) . (2.260)
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Figure 2.24: The detailed stru
ture of the �non-Abelian� (with one triple gluon vertex)

diagram (atG1).

The non-abelian diagram with one gluon triple vertex involves also two kinds of 
olor

fa
tors,

2

N2
c − 1

(−i) Tr(tc tb td) f cad =
Nc

2

1

CF

δab

2Nc

:

(atG1), (dtG1), (etG1), (btG2), (
tG2), (ftG2) (2.261)

2

N2
c − 1

(−i) Tr(tc td tb) f cad = −Nc

2

1

CF

δab

2Nc
:

(
tG1), (btG1), (ftG1), (atG2), (dtG2), (etG2) .

Let us 
onsider the diagram (atG1) illustrated in �g.2.24. We denote as

dνρ(k) = gνρ − kνnρ + kρnν

k · n (2.262)

the numerator of the gluon propagator in axial gauge, and

Vµ1 µ2 µ3(k1, k2, k3) = (k1 − k2)µ1 gµ1µ2 + · · · (2.263)

the momentum part of the 3-gluon vertex, where ki are in
oming, labeled in the 
ounter-


lo
kwise dire
tion. The 
ontribution of the diagram (atG1) proportional to the ve
tor DA,
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reads

ΦV
atG1 = −eq

1

4

2

s

(−i)Nc

2CF

g2mρ fρ
δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
pλ2 e

∗α
T B(y1, y2)

×Tr[e/γ (y1/p1 − q/) γν (/k2 + ȳ2 /p1) /p2 /p1]

×d
νρ(k1 + (y1 − y2)p1) Vρλα(−k1 − (y1 − y2)p1, k1, (y1 − y2)p1)

[(y1 p1 − q)2 + iη][(k1 + (y1 − y2) p1)2 + iη][(k2 + ȳ2 p1)2 + iη]
. (2.264)

Note that for this diagram, as well as for all �non-Abelian� diagrams, one 
an easily 
he
k

that only the gνρ part of (2.262) 
ontributes.

Closing the κ 
ontour above or below gives for the ve
tor DA part of the diagram (atG1)

the result

ΦV
atG1 = −eq g

2

2
mρ fρ

δab

2Nc

Nc

CF

1
∫

0

dy1 dy2
(y1 − y2) ȳ2

ȳ1 (ȳ1 k
2 + ȳ2 (y2 − y1)Q2)

e∗T · eγ B(y1, y2) . (2.265)

Similarly, the 
ontribution of the diagram (atG1) proportional to the axial ve
tor DA, reads

ΦA
atG1 = −eq

i

4

2

s

(−i)Nc

2CF
g2mρ fρ

δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
pλ2 ǫ

α
e∗T pnD(y1, y2)

×Tr[e/γ (y1/p1 − q/) γν (/k2 + ȳ2 /p1) /p2 /p1 γ5]

×d
νρ(k1 + (y1 − y2)p1) Vρλα(−k1 − (y1 − y2)p1, k1, (y1 − y2)p1)

[(y1 p1 − q)2 + iη][(k1 + (y1 − y2) p1)2 + iη][(k2 + ȳ2 p1)2 + iη]
, (2.266)

and 
losing the κ 
ontour above or below gives

ΦA
atG1 = −eq g

2

2
mρ fρ

δab

2Nc

Nc

CF

(2.267)

×
1
∫

0

dy1 dy2
(y1 − y2) ȳ2

ȳ1 (ȳ1 k
2 + ȳ2 (y2 − y1)Q2)

e∗T · eγ D(y1, y2) .
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Figure 2.25: The detailed stru
ture of the diagram (gttG1).
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We 
onsider now the �non-Abelian� diagrams of the type of gttG1 illustrated in �g.2.25,

involving two triple gluon verti
es. They all involve the 
olor stru
ture

− 2

N2
c − 1

Tr[tc td]f cea f edb =
Nc

CF

δab

2Nc

. (2.268)

The ve
tor 
ontribution of gttG1 reads

ΦV
gttG1 = −eq

1

4

2

s

(−i)Nc

CF
g2mρ fρ

δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
pλ2 p

τ
2 e
∗δ
T B(y1, y2)

×Tr[e/γ (y1/p1 − q/) γν /p1] d
νρ(−q + (1 + y1 − y2) p1)

× Vρλα(q − (1 + y1 − y2) p1, k1, −k2 + (y1 − y2)p1) d
αβ(k2 + (y2 − y1)p1)

[(y1 p1 − q)2 + iη][(−q + (1 + y1 − y2) p1)2 + iη][(k2 + (y2 − y1) p1)2 + iη]

×Vβτδ(k2 + (y2 − y1)p1, −k2, (y1 − y2)p1) . (2.269)

When 
losing the κ 
ontour below on the single pole 
oming from the third propagator, it

equals to

ΦV
gttG1 = −eq g

2

2
mρ fρ

δab

2Nc

Nc

CF

1

Q2

1
∫

0

dy1 dy2
B(y1, y2)

ȳ1
e∗T · eγ . (2.270)

The axial DA 
ontribution from the diagram (gttG1) reads

ΦA
gttG1 = −eq

i

4

2

s

(−i)Nc

CF
g2mρ fρ

δab

2Nc

1

2s

1
∫

0

dy1 dy2

∫

dκ

2π
pλ2 p

τ
2 ǫ

σ
e∗T pnD(y1, y2)

×Tr[e/γ (y1/p1 − q/) γν /p1 γ5] d
νρ(−q + (1 + y1 − y2) p1)

× Vρλα(q − (1 + y1 − y2) p1, k1, −k2 + (y1 − y2)p1) d
αβ(k2 + (y2 − y1)p1)

[(y1 p1 − q)2 + iη][(−q + (1 + y1 − y2) p1)2 + iη][(k2 + (y2 − y1) p1)2 + iη]

×Vβτσ(k2 + (y2 − y1)p1, −k2, (y1 − y2)p1) . (2.271)

It equals, when 
losing the κ 
ontour below on the single pole 
oming from the third propa-

gator, to the expression

ΦA
gttG1 = −eq g

2

2
mρ fρ

δab

2Nc

Nc

CF

1

Q2

1
∫

0

dy1 dy2
D(y1, y2)

ȳ1
e∗T · eγ . (2.272)

All other diagrams of ea
h 
lass 
an be 
omputed a

ording to the previous examples.

Finally the result for Φγ∗T→ρT

an be de
omposed on the spin �ip and spin non-�ip tensors

respe
tively denoted Tf and Tn.f ,

Φγ∗T→ρT = Φ
γ∗T→ρT
n.f Tn.f + Φ

γ∗T→ρT
f Tf , (2.273)
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with

Tn.f = −e∗ρ⊥ · eγ⊥
= e∗ρ · eγ , (2.274)

Tf =
(e∗ρ⊥ · k⊥)(k⊥ · eγ⊥)

k2
+

(e∗ρ⊥ · eγ⊥)
2

=
(e∗ρ · k)(k · eγ)

k2
− (e∗ρ · eγ)

2
. (2.275)

The spin non-�ip impa
t fa
tor Φ
γ∗T→ρT
n.f Tn.f 
orresponds to transitions where the virtual

photon and the ρ−meson have the same polarizations while for the spin �ip impa
t fa
tor

Φ
γ∗T→ρT
f Tf the virtual photon and the ρ−meson have di�erent polarizations. Denoting α = k2

Q2 ,

the results for the spin non-�ip γ∗T → ρT impa
t fa
tor is

Φ
γ∗T→ρT
n.f. = Cab 1

CF

1
∫

0

dy1

1
∫

0

dy2 (2.276)

×
{

y1 ζ
A
3 D (y1, y2)

α+ (1− y1) y1

(

α (Nc − 2CF )

(y1 − y2 + 1)α + y1 (1− y2)
+

αNc (1− y1)

y2 α + y1 (y2 − y1)

)

−y1 ζ
V
3 B (y1, y2)

α + (1− y1) y1

(

α (2CF −Nc) (2y1 − 1)

(y1 − y2 + 1)α + y1 (1− y2)
+

αNc (1− y1)

y2 α + y1 (y2 − y1)

)

+
(

ζV3 B (y1, y2) + ζA3 D (y1, y2)
)

×
(

2CF y1
α + (1− y1) y1

− 1

1− y1

[

Nc (1− y2) (y1 − y2)

(1− y1)α + (1− y2) (y2 − y1)
+ CF +Nc

])}

and the spin �ip impa
t fa
tor

Φ
γ∗T→ρT
f. (k2) =

Cab

2

{

4

∫

dy1
α

(α + y1 (1− y1))
2

[

ϕT
A(y1)− (2y1 − 1)ϕT

1 (y1)
]

− 4

∫

dy1 dy2
y1 α

α + y1 (1− y1)

[

ζA3 D (y1, y2) (−y1 + y2 − 1) + ζV3 B (y1, y2) (y1 + y2 − 1)
]

×
[

(2−Nc/CF )

α (y1 − y2 + 1) + y1 (1− y2)
− Nc

CF

1

y2 α+ y1 (y2 − y1)

]}

. (2.277)

Note that to get the eq. (2.276) one has to use the EOMs given by eqs. (2.113, 2.114), in

order to 
an
el the terms that are not vanishing in the limit k2 → 0 and whi
h would lead

to end-point singularities. Thus the results have no end-point singularities and are vanishing

when k2 → 0, as imposed by the gauge invarian
e.

2.8 Heli
ity amplitudes

In this se
tion, we build a phenomenologi
al model of the ratios T11/T00 in the forward limit

and T01/T00 as a fun
tion of −t, and we 
ompare them to HERA data. But �rst let us make a

brief remark on the determination of heli
ity amplitudes and spin matrix elements at HERA

experiments.
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s of the ρ−produ
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2.8.1 Measurement of heli
ity amplitudes and spin matrix elements

The motivation of this study is the analysis that was performed by ZEUS [98℄ and H1 [99℄


ollaborations to extra
t the full set of spin density matrix elements rαij of ve
tor mesons

di�ra
tive ele
troprodu
tion at small−x.
The kinemati
 range of energies in the 
enter of mass, virtualities and t variable are

displayed in tab. 2.8.1.

Q2
(GeV

2
) W (GeV) |t| (GeV2

)

ZEUS 2 < Q2 < 160 32 < W < 180 −t < 1

H1 2.5 < Q2 < 60 35 < W < 180 −t < 3

In �g. 2.26 are shown the three di�erent rea
tion planes and the angles Φh and φh between

these planes. Φh is the angle between the plane of the virtual photon and the outgoing proton

in the 
enter of mass frame of the γ∗p system and the plane of the in
oming and outgoing

ele
trons. φh is the angle between the plane of the virtual photon and the outgoing proton

in the 
enter of mass frame of the γ∗p system and the plane of the pions momenta. Another

important angle is θh, the angle in the ρ−meson rest frame between the dire
tion of the

outgoing proton and the pions dire
tion.

The te
hnique to extra
t the heli
ity amplitudes Tλρλγ or the spin density matrix elements

rαλρλ′ρ
, is to expand the di�erential 
ross-se
tion on the spheri
al harmoni
s Y1λρ(θh, φh) leading
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to

dσ

d cos θh dΦh dφh

= σ ·W (cos(θh), φh,Φh) (2.278)

=
∑

λγλ′γ ;λρλ′ρ

TλρλγT
∗
λ′ρλ
′
γ
· Y1,λρ(θh, φh)Y

∗
1,λ′ρ

(θh, φh) · ρλγλ′γ , (2.279)

where ρλγλ′γ is the spin density matrix element asso
iated to the produ
tion of the virtual

photon from the s
attering lepton. The quantities ρλλ′ are de�ned by proje
ting the produ
t

of leptoni
 
urrents that appear at the 
ross-se
tion level, on the polarizations λ and λ′ of the

virtual photons. The di�erential 
ross-se
tion of ep → e′X with X an arbitrary �nal state,


an be de
oupled into,

dσ(ep→ e′X)

dQ2dy
dΠX =

α

πQ2y
(1− y +

1

2
y2)
∑

λλ′

ρλλ′dσλλ′(γ
∗p→ X) , (2.280)

with

dσγ∗p→X

dΠX
the di�erential photoabsorption 
ross-se
tion γ∗p → X . The elements of the

ρ−meson spin density matrix only depend on the angle Φh and the photon polarization

parameter ε ∼ 2(1−y)
1+(1−y)2 at small-x, whi
h is di�erent for H1 〈ε〉 = 0.98 and for ZEUS

〈ε〉 = 0.996.

Following the analysis of S
hilling and Wolf [170℄, in the s-
hannel heli
ity 
onserving

(SCHC) approximation where only the transitions with λρ = λγ are allowed, the tensor

W (cos(θh), φh,Φh) 
an be parameterized by the following spin density matrix elements,

r0400 =
ε

x211 + ε
, (2.281)

r11−1 = −Im(r21−1) =
1

2

x211
x211 + ε

, (2.282)

Re r510 = −Imr610 =
1

2
√
2

Re(T11T ∗00)
|T11|2 + ε |T00|2

, (2.283)

with the notation xij = |Tij | / |T00|. The analysis of [170℄ goes beyond the SCHC approxima-

tion and involves the full set of the 15 spin density matrix elements.

Note that our 
al
ulations of impa
t fa
tors γ∗T → ρT are performed in the forward limit so

we 
an a

ess T11 only in this limit, while experimental data are integrated over some t range

but are dominated by very small values of t. The t−dependen
e is given by an exponential

falling fun
tions

dσL,T
dt

∼ exp(−bL,T |t|) ,

where bL and bT are �tted to HERA data. The di�eren
e bL − bT being very small we


an assume in a �rst approximation that the t−dependen
e in the ratios x11 
an
els out.

The in�uen
e of the SCHC heli
ity amplitudes due to the small but non-zero t−value 
an be

estimated from the data. For t 6= tmin, r
04
00 slightly depends on the s-
hannel heli
ity violating

amplitudes T01, T10, and T1−1. Experimental data are dominated by |t−tmin| ≤ 0.4 GeV2
, for

whi
h the signi�
ant amplitudes are |T00| > |T11| > |T01|. The exa
t relation beyond SCHC
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approximation reads

r0400 =
ε+ x201

x211 + ε+ x201 + x21−1 + 2ε x210
. (2.284)

In the next se
tion, we will make predi
tions for x11 and x01 based on the impa
t fa
tor

representation of the heli
ity amplitude using the results obtained in the LCCF s
heme.

2.8.2 A proton impa
t fa
tor model

The heli
ity amplitudes at Born level read,

Tλρλγ = is

∫

d2k

(2π)2
1

k2(k −∆)2
Φ

γ∗λγ→ρλρ (k,∆)ΦN→N(k,∆) , (2.285)

with∆ the transverse momentum ex
hanged in t-
hannel. The nu
leon impa
t fa
torΦN→N (k, k−
∆) is not 
al
ulable in pQCD and we have to use a model. A simple phenomenologi
al model

was provided for hadron-hadron s
attering in Ref.[143℄ by Gunion and Soper (GS), of the

form:

ΦN→N (k,∆;M2) = Aδab

[

1

M2 + (∆
2
)2

− 1

M2 + (k − ∆
2
)2

]

. (2.286)

A and M are free parameters that 
orrespond to soft s
ales of the proton-proton impa
t

fa
tor. In order to get rid of the normalizations of the heli
ity amplitudes, we will fo
us

on the des
riptions of the ratios of heli
ity amplitudes. With the impa
t fa
tor we have


omputed we 
an 
ompare two ratios namely T11/T00 in the forward limit and T01/T00 as a

fun
tion of t = −∆2
.

The above model (2.286) that we will refer as the "GS model" 
an be interpreted as the

intera
tion of 
olor dipole 
on�gurations inside the nu
leon with the two t−
hannel gluons.
The s
ale M is then a internal hadroni
 transverse s
ale that governs the typi
al transverse

momentum. Su
h a model was the basis of the dipole approa
h of high-energy s
attering [10℄

and used su

essfully to des
ribe DIS at small x [171℄.

2.8.3 Heli
ity amplitudes T11 and T00 at t = tmin - Comparison of

obtained predi
tions with H1 data

Inserting the impa
t fa
tor results (2.248, 2.286) in the formula (2.285) for the heli
ity am-

plitudes leads to

T00 =
is CF2AB

(2π)Q5

∫ 1

0

dy ϕ1(y, µ
2)

∫ ∞

R2
1

dα
1

α2

(

1

R2
− 1

α +R2

)

α

α + yȳ
, (2.287)

with B = 2παs
e√
2
fρ, R

2 = M2

Q2 and R2
1 =

λ2

Q2 an infra-red 
ut-o� on the integral over α. The

infra-red 
ut-o� is not ne
essary for the 
onvergen
e of the integral but it allows to see how

mu
h the soft gluons 
ontribute to the result. The heli
ity amplitude T11 is split in the WW


ontribution and the genuine 
ontribution,

T11 = TWW
11 + T gen

11 .
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The WW 
ontribution 
ontains only the two-parton (qq̄) 
ontribution to the impa
t fa
tor

and ea
h WW DAs 
an be expressed as a fun
tion of ϕ1(y), as it was expli
itly shown in

Se
. 2.4.3. After inter
hanging the integrals over α, y and u in order to �x a spe
i�
 model

for DAs at the last step when performing the u integration, the WW 
ontribution reads

TWW
11 =

is CF (ǫγ .ǫ
∗
ρ)mρ2AB

(2π)Q6

∫ 1

0

du
ϕ1(u;µ

2)

u

∫ u

0

dy

∫ ∞

R2
1

dα

× 1

α2

(

1

R2
− 1

α +R2

)

α(α+ 2yȳ)

(α+ yȳ)2
, (2.288)

The genuine (qq̄gen + qq̄g) 
ontribution involves two- and three-parton 
ontributions. It

reads

T gen
11 =

isCF (ǫγ.ǫ
∗
ρ)mρAB

(2π)Q6

∫ ∞

R2
1

dα

{

1

R2
− 1

α +R2

}

×
{

−
∫ 1

0

dy
α(α+ 2yȳ)

yȳ(α + yȳ)2
[(y − ȳ)ϕgen

1T (y;µ2) + ϕgen
AT (y;µ

2)]

+

∫ 1

0

dy2

∫ y2

0

dy1M(y1, y2;µ
2)

× y1ȳ1α

α + y1ȳ1

[

2−Nc/CF

α(y1 + ȳ2) + y1ȳ2
− Nc

CF

1

y2α+ y1(y2 − y1)

]

−
∫ 1

0

dy2

∫ y2

0

dy1 S(y1, y2;µ
2)

×
[

2 +Nc/CF

ȳ1
+

y1
α + y1ȳ1

(

(2−Nc/CF )y1α

α(y1 + ȳ2) + y1ȳ2
− 2

)

−Nc

CF

(y2 − y1)ȳ2
ȳ1

1

αȳ1 + (y2 − y1)ȳ2

]}

. (2.289)

We inter
hange the integrals over α and the longitudinal fra
tions of momentum and we

de�ne I1(y;R
2, R2

1), I2(y1, y2;R
2, R2

1) and I3(y1, y2;R
2, R2

1) as the integrands after integration

over α

I1(y;R
2, R2

1) =

∫ ∞

R2
1

dα

(

1

R2
− 1

α +R2

)

α(α + 2yȳ)

yȳ(α+ yȳ)2
, (2.290)

I2(y1, y2;R
2, R2

1) =

∫ ∞

R2
1

dα

{

1

R2
− 1

α +R2

}

(2.291)

× y1ȳ1α

α+ y1ȳ1

[

2−Nc/CF

α(y1 + ȳ2) + y1ȳ2
− Nc

CF

1

y2α + y1(y2 − y1)

]

,

I3(y1, y2;R
2, R2

1) =

∫ ∞

R2
1

dα

{

1

R2
− 1

α +R2

}

(2.292)

×
[

2 +Nc/CF

ȳ1
+

y1
α + y1ȳ1

(

(2−Nc/CF )y1α

α(y1 + ȳ2) + y1ȳ2
− 2

)

−Nc

CF

(y2 − y1)ȳ2
ȳ1

1

αȳ1 + (y2 − y1)ȳ2

]

,
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leading to

T gen
11 =

is CF (ǫγ .ǫ
∗
ρ)mρAB

(2π)Q6

{

−
∫ 1

0

dy I1(y)[(y − ȳ)ϕgen
1T (y;µ2) + ϕgen

AT (y;µ
2)]

+

∫ 1

0

dy2

∫ y2

0

dy1I2(y1, y2)M(y1, y2;µ
2)

−
∫ 1

0

dy2

∫ y2

0

dy1I3(y1, y2)S(y1, y2;µ
2)

}

, (2.293)

where the variables R2
and R2

1 have been omitted for 
larity. Using the symmetry property

S(y1, y2;µ
2) = −M(ȳ2, ȳ1;µ

2), this expression takes the form

T gen
11 =

isCF (ǫγ .ǫ
∗
ρ)mρAB

(2π)Q6

{

−
∫ 1

0

dyI1(y)[(y − ȳ)ϕgen
1T (y;µ2) + ϕgen

AT (y;µ
2)]

+

∫ 1

0

dy2

∫ y2

0

dy1(I2(y1, y2) + I3(ȳ2, ȳ1))M(y1, y2;µ
2)

}

, (2.294)

with

I2(y1, y2) + I3(ȳ2, ȳ1) =
(

2− Nc

CF

)
∫ ∞

R2
1

dα
1

R2(α +R2)(α(y1 + ȳ2) + y1ȳ2)

(

ȳ2
2

α+ y2ȳ2
+

y1ȳ1
α + y1ȳ1

)

+
Nc

CF

∫ ∞

R2
1

dα
1

R2(α +R2)(α+ y1ȳ1)(αy2 + y1(y2 − y1))

+
2

y2

∫ ∞

R2
1

dα
1

R2(α +R2)(α + y2ȳ2)
. (2.295)

Combining the results (2.287) with (3.132) and (2.294), the ratios TWW
11 /T00 and T

gen
11 /T00

read

TWW
11

T00
= (2.296)

−mρ

Q

∫ 1

0

dv ϕ1(v;µ
2)

∫ 1

0

dx

∫ ∞

R2
1

dα
α + 2xv(1− xv)

α(α+ xv(1− xv))2

(

1

R2
− 1

α +R2

)

∫ 1

0

dy ϕ1(y, µ
2)

∫ ∞

R2
1

dα

α(α + yȳ)

(

1

R2
− 1

α +R2

)

where we took into a

ount that ǫγ .ǫ
∗
ρ = −eγ · e∗ρ = −1, and

T gen
11

T00
=

mρ

2Q
(2.297)

×

∫ 1

0
dy I1(y)[(y − ȳ)ϕgen

1T (y;µ2) + ϕgen
AT (y;µ2)]−

∫ 1

0
dy2

∫ y2

0
dy1(I2(y1, y2) + I3(ȳ2, ȳ1))M(y1, y2)

∫ 1

0
dy ϕ1(y;µ

2)

∫ ∞

R2

1

dα
1

α2

(

1

R2
− 1

α+ R2

)

α

α+ yȳ

.

The integration is performed analyti
ally over α and numeri
ally over remaining variables

as for example y for T00, x, v for TWW
11 and y1, y2 for T gen

11 . The measured ratio T11/T00 is
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Figure 2.27: The WW 
ontribution TWW
11 /T00 in green (dash-dotted line), the genuine 
on-

tribution T gen
11 /T00 in red (dashed line), and the sum of the two 
ontributions in blue (solid

line), at M = 1 GeV and λ = 0 GeV, as fun
tions of the virtuality of the photon. The

brown (long-dashed) 
urve is the 
ontribution based on the asymptoti
 DA of the ρ meson,

ϕ1(y, µ
2
F = ∞) = ϕas

1 (y) = 6y(1− y). Our results are 
ompared with the experimental data

from H1 [99℄. The experimental errors are taken to be the quadrati
 sum of statisti
al and

systemati
al errors.


onventionally de�ned [105℄ to have an opposite sign with respe
t to eqs. (2.296) and (2.297),

in order to ensure the usual matrix summation in the de�nition of the density matrix.

In �g. 2.27 we show the di�erent 
ontributions to the ratio T11/T00 as a fun
tion of Q2

and for the nonperturbative parameters M = 1 GeV and λ = 0 GeV. Unless spe
i�ed, we

take as a fa
torization s
ale µ2
F = Q2

. Note that the fa
torization s
ale only appears in the

ratios of the amplitudes through the DAs and the 
oupling 
onstants. We see that the WW


ontribution dominates over the genuine one. For illustration, we also show the ratio T11/T00

using the asymptoti
 ϕas
1 = 6yȳ DA, whi
h 
orresponds to µ2

F → ∞. In this limit, only

the WW 
ontribution survives sin
e the three-parton 
oupling 
onstants ζV3 (µ
2
F ) and ζ

A
3 (µ

2
F )

vanish when µ2
F → ∞. The small di�eren
e between this asymptoti
 result and the total

result (Sum) indi
ates a weak dependen
e of this ratio on the fa
torization s
ale µF .

The two parameters λ and M have di�erent physi
al meanings. M is the typi
al nonper-

turbative hadroni
 s
ale, while λ is the minimal virtuality of gluons, whi
h should be bigger

than ΛQCD for 
onsisten
y of our perturbative approa
h. From �g. 2.28 (left panel), we see

that our predi
tions are stable for M in the range 1-2 GeV. The data, when 
ompared with

our model, with µ = Q, favor a value of M of the order of 1-2 GeV but ex
lude a very

small value around ΛQCD. From �g. 2.28 (right panel), we see that for λ around ΛQCD, our

results are very 
lose to the experimental data and rather stable, whereas for λ = 1 GeV, i.e.

signi�
antly larger than ΛQCD ≃ 220 MeV in the MS s
heme, they notably deviate from the

data. Let us stress the fa
t that our estimate provides the 
orre
t sign for the ratio T01/T00

when 
ompared to H1 data is a nontrivial su

ess of our approa
h.

In �gs. 2.29 and 2.30 we show the results of our 
al
ulations for the spin density matrix



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE

ρ−MESON PRODUCTION 116

M=0.5 GeV

M=1 GeV

M=1.5 GeV

M=0.3 GeV

M=2 GeV

Λ = 0 GeV

0 5 10 15 20 25
Q2

0.2

0.4

0.6

0.8

1.0

1.2

T11

T00

Λ = 1 GeV

Λ = 0.4 GeV

Λ = 0.2 GeV

Λ = 0 GeV
M = 1 GeV

0 5 10 15 20 25
Q2

0.2

0.4

0.6

0.8

1.0

1.2

T11

T00

Figure 2.28: Predi
tions for the ratio T11/T00 as a fun
tion of Q2
, 
ompared to the exper-

imental data from H1 [99℄. The experimental errors are taken to be the quadrati
 sum of

statisti
al and systemati
al errors. Left panel: Fixed λ = 0 GeV 
uto� and various values

for M . Right panel: Fixed s
ale M = 1 GeV, and various values of the 
uto� λ.
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Figure 2.29: The spin density matrix element r0400 as a fun
tion of Q2
for M = 0.5 GeV in

green (dash-dotted line), M = 1 GeV in blue (solid line), and M = 2 GeV in red (dashed

line), and for λ = 0 GeV. Our results are 
ompared with the experimental data from ZEUS

[98℄ and H1 [99℄. The experimental errors are taken to be the quadrati
 sum of statisti
al

and systemati
al errors.

element r0400. In �g. 2.29 is shown r0400 as a fun
tion of Q2
for di�erent values of the nonpertur-

bative parameter M and for λ = 0 GeV. In �g. 2.30 is shown our predi
tions for M = 1 GeV

and λ = 0 GeV as a fun
tion of W for several values of Q2

ompared to H1 and ZEUS data,

of 
ourse our predi
tions are W−independent as our 
al
ulation is at the Born level. This

observable allows a 
omparison of our predi
tions with the whole set of HERA data

6

.

6

We predi
t ratios of amplitudes, while ZEUS made available the spin density matrix elements; H1 ex-

tra
ted both spin density matrix elements and ratios of amplitudes.
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Figure 2.30: Predi
tions for r0400 vsW andQ2

ompared respe
tively with H1[99℄ and ZEUS[98℄

data, the AS (purple dashed lines), WW (blue long dashed lines), Total (red solid lines)


ontributions are shown separately using the GS-model for M = 1 GeV and λ = 0 GeV.

2.8.4 Heli
ity amplitudes T00 and T01 for t 6= tmin

The H1 data show that the spin-�ip amplitude T01 is nonzero, showing an expli
it s−
hannel
heli
ity violation. Besides, this amplitude vanishes when the squared momentum ex
hanged

by the proton t = −∆2
is zero. We start with the generalization of eq. (2.287) for t 6= tmin,

T00 =
is CF2QAB

(2π)2(M2 + (∆/2)2)

∫ 1

0

dy yȳ ϕ1(y;µ
2) (2.298)

×
∫

d2k

k2(k −∆)2
(k −∆/2)2 − (∆/2)2

(k −∆/2)2 +M2

×
{

1

(y∆)2 + yȳ Q2
+

1

(ȳ∆)2 + yȳ Q2
− 1

(k − y∆)2 + yȳ Q2
− 1

(k − ȳ∆)2 + yȳ Q2

}

.

Similarly,

T01 =
is CF2QAB

(2π)2(M2 + (∆/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y;µ
2) (2.299)

×
∫

d2k

k2(k −∆)2
(k −∆/2)2 − (∆/2)2

(k −∆/2)2 +M2

×
{

y∆ · e
(y∆)2 + yȳ Q2

− ȳ∆ · e
(ȳ∆)2 + yȳ Q2

+
(k − y∆) · e

(k − y∆)2 + yȳ Q2
− (k − ȳ∆) · e

(k − ȳ∆)2 + yȳ Q2

}

.

In eqs. (2.298, 2.299),

• the integrations over kT are performed without infrared 
uto�, partially analyti
ally

through a residue method,

• the integrations over kT are performed with an infrared 
uto�, fully numeri
ally through

triangulation 
oordinates 
entered at the pole of the two t−
hannel gluons.

In the next part we will detail the integration over k with both methods.
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Integration over k for T00 and T01

We des
ribe the method used to evaluate the integrals over k in eqs. (2.298, 2.299) when no

infra-red 
uto� is imposed. Let (u1,u2) be the orthonormal basis su
h as ∆ = r u1, and then

k−∆ = (k1−r, k2). In that 
ase, a residue method, as des
ribed in Ref. [130℄, 
an be applied

for the k1 integration. In this basis, the amplitudes read

T00 =
is CF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy yȳ ϕ1(y, µ
2) (2.300)

×
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

1

k21 + k22

1

(k1 − r)2 + k22

(k1 − r/2)2 + k22 − (r/2)2

(k1 − r/2)2 + k22 +M2

×
{

1

(yr)2 + yȳ Q2
+

1

(ȳr)2 + yȳ Q2

− 1

(k1 − yr)2 + k22 + yȳ Q2
− 1

(k1 − ȳr)2 + k22 + yȳ Q2

}

and

T01=
is CFAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y, µ
2) (2.301)

×
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

1

k21 + k22

1

(k1 − r)2 + k22

(k1 − r/2)2 + k22 − (r/2)2

(k1 − r/2)2 + k22 +M2

×
{

yr e1
(yr)2 + yȳ Q2

− ȳr e1
(ȳr)2 + yȳ Q2

+
e1(k1 − yr) + e2k2

(k1 − yr)2 + k22 + yȳ Q2
− e1(k1 − ȳr) + e2k2

(k1 − ȳr)2 + k22 + yȳ Q2

}

,

where e1 and e2 are the 
omponents of the transverse polarization of the γ∗ in the basis

(u1,u2). We de�ne the integrands F00 and F01 as

T00 =
isCF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy yȳ ϕ1(y;µ
2)

×
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 F00(k1, k2, y) , (2.302)

T01 =
is CFAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y;µ
2)

×
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 F01(k1, k2, y) . (2.303)

We perform a shift of the variables k → (x+u1)
r
2
i.e k1 → x1, k2 → x2. The shift symmetrizes

and res
ales the momenta of the gluons, whi
h are zeros for x1 = ±1 and x2 = 0. The

integrands then read

f00(x1, x2, y) =
4

r2
1

(x1 + 1)2 + x22

1

(x1 − 1)2 + x22

x21 + x22 − 1

g(M2) + x21
(2.304)

×
{

1

(yr)2 + yȳQ2
+

1

(ȳr)2 + yȳQ2

− 4

r2

[

1

(x1 + (y − ȳ))2 + g(yȳ Q2)
+

1

(x1 − (y − ȳ))2 + g(yȳ Q2)

]}
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and

f01(x1, x2, y) =
4

r2
1

(x1 + 1)2 + x22

1

(x1 − 1)2 + x22

x21 + x22 − 1

g(M2) + x21
(2.305)

×
{

y r e1
(yr)2 + yȳQ2

+
ȳ r e1

(ȳr)2 + yȳQ2

−2

r

[

x1 + (y − ȳ)

(x1 + (y − ȳ))2 + g(yȳ Q2)
+

x1 − (y − ȳ)

(x1 − (y − ȳ))2 + g(yȳ Q2)

]}

,

with

g(v) =
4v + r2x22

r2
(2.306)

and f00 , f01 being de�ned su
h that

T00 =
is CF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy yȳ ϕ1(y,Q
2) (2.307)

×
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 f00(x1, x2, y) ,

and

T01 =
is CFAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y,Q
2) (2.308)

×
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 f01(x1, x2, y) .

Sin
e the integrands in (2.307) and (2.308) os
illate qui
kly, we have used a method where

the integration over x1 
an be analyti
ally performed in order to avoid numeri
al integration

issues for the 
ase where there is no infra-red 
ut-o�. We integrate over the variable x1 using

the residue method. The poles of the integrands are the same. The poles en
losed in the

below 
ontour line for x2 ≥ 0 are

x1 = ±(y − ȳ)− i
√

g(Q2yȳ) , x1 = ±1 − ix2 , x1 = −i
√

g(M2) . (2.309)

As the integrands are symmetri
 under x2 ↔ −x2, the result is the same for x2 ≤ 0. The

remaining integrals over x2 and y are then

T00(r, Q,M) =
is CF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy yȳϕ1(y,Q
2) (2.310)

×
∫ ∞

−∞
dx2(−2iπ)

5
∑

i=1

Resi[f00] ,

T01(r, Q,M) =
is CFAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y,Q
2) (2.311)

×
∫ ∞

−∞
dx2(−2iπ)

5
∑

i=1

Resi[f01] ,

where the expli
it expressions for the residues Resi[f00] and Resi[f01] are too lengthy to be

displayed here. We then integrate numeri
ally over x2 ∈ [0,∞] and y and �nally multiply

the result due to the symmetry of the pole stru
ture by 2.
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In the 
ase where there is an infra-red 
ut-o�, we 
annot use anymore the residue method

to simplify the integrals so the integration is performed only numeri
ally but we have to


hange the variables to get stable numeri
al results. We will 
hange the variables x1 and x2

by the distan
es of the point (x1, x2) from the singularities in (-1,0) and (1,0). Let b1 and b2

be these distan
es su
h that

b21 = (x1 + 1)2 + x22 b22 = (x1 − 1)2 + x22 . (2.312)

We have two solutions for (x1, x2), one restri
ted to the upper half-plane,

x1 =
1

4
(b21 − b22) , x2 =

1

4

√

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2) , (2.313)

and one restri
ted to the lower half-plane,

x1 =
1

4
(b21 − b22) , x2 = −1

4

√

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2) . (2.314)

We 
an restrain the 
omputations to the upper half-plane be
ause the integrands of (2.308)

and (2.307) are invariant in x2 ↔ −x2. The existen
e of both solutions requires that

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2) ≥ 0 , (2.315)

or equivalently, at �xed b1, b2 ≤ b1 + 2 and b2 ≥ |b1 − 2| . This is the 
ondition for the two


ir
les 
entering in (-1,0) and (1,0) and of radius b1 and b2, respe
tively, to 
ross ea
h other.

The Ja
obian of the transformation is

2 b1b2
√

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2)
≥ 0 . (2.316)

The infrared 
uto� is in
luded by a representation of the Heaviside distribution

θ(b1 − βcut; k) =
1

1 + e−2k(b1−βcut)
, (2.317)

where βcut is the 
uto� for b1 and b2. The link with the infra-red 
uto� in GeV is λ = βcut
r
2
.

This ensures the stability of the numeri
al evaluation of the b1 and b2 integrations. Then the

amplitudes read

T00(λ; k) =
is CF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy yȳ ϕ1(y;µ
2) (2.318)

×
∫ ∞

0

db1

∫ b1+2

|b1−2|
db2 θ(b1 − βcut(λ); k) θ(b2 − βcut(λ); k)

× 2b1b2
√

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2)

×f00(y, x1(b1, b2), x2(b1, b2)) ,

T01(λ; k) =
is CF2QAB

(2π)2(M2 + (r/2)2)

∫ 1

0

dy (y − ȳ)ϕ1(y;µ
2) (2.319)

×
∫ ∞

0

db1

∫ b1+2

|b1−2|
db2θ(b1 − βcut(λ); k)θ(b2 − βcut(λ); k)

× 2 b1b2
√

(b1 + b2 + 2)(b1 + b2 − 2)(b1 − b2 + 2)(−b1 + b2 + 2)

f01(y, x1(b1, b2), x2(b1, b2)) .
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The integrations are performed numeri
ally over b1, b2, and y. The 
onstant k is 
hosen to be

equal to 10. The width of model (2.317) of the Heaviside distribution equals r× 1
k
= r

10
GeV.

This ensures the stability of the 
omputation without signi�
antly a�e
ting our results.

Comparison of the results for T01/T00 with HERA data

Fig. 2.31 shows the dependen
e of the ratio T01/T00 on the 
hoi
e of the fa
torization s
ale µ

forM = 1 GeV and λ = 0 GeV. For 
ompleteness, we also show the predi
tions based on the

asymptoti
 DAs. We see that for fa
torization s
ales around µ2 = Q2
our results are rather

insensitive to its values. Nevertheless, the ratio T01/T00 seems to be more sensitive to this

s
ale than the ratio T11/T00.

j1
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j1 Iy , Q 2 M

j1 Iy , 2 Q 2 M

j1 Iy , Q 2 �2M

Q 2
= 3.3 GeV2

M=1 GeV Λ = 0 GeV
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Figure 2.31: Predi
tions for the ratios T01/T00 as a fun
tion of |t| for M = 1 GeV and λ = 0

GeV, for di�erent values of the fa
torization s
ale µ2
, 
ompared with H1 data [99℄: the blue

(solid) line is for ϕ1(y, µ
2 = Q2), the green (dotted) line is for ϕ1(y, µ

2 = 2Q2), the brown

(dashed) line is for ϕ1(y, µ
2 = Q2/2), and the red (dashed) line is for ϕ1(y, µ

2 = ∞) =

ϕas
1 (y) = 6y(1− y). The experimental errors are taken to be the quadrati
 sum of statisti
al

and systemati
al errors. Left panel: Q2 = 3.3 GeV

2
. Right panel: Q2 = 8.6 GeV

2
.

Our predi
tions are based on pQCD and therefore, at small t, 
an only lead to a powerlike

or logarithmi
 t dependen
e. We 
an implement the non-perturbative t−dependen
e by

using the b−slope values extra
ted from H1 data [99℄. Multiplying our predi
tions for the

amplitudes by a fa
tor e−bi |t−tmin|/2
, where bi (i = L, T ) 
orresponds to ρ ele
troprodu
tion

from γ∗L or γ∗T . H1 measured values of bL and bL− bT [99℄. The measured values for the latter

are bL− bT = −0.03±0.27+0.19
−0.17 GeV

−2
(for 〈Q2〉 = 3.3 GeV2

) and bL− bT = −0.65±0.14+0.41
−0.51

GeV

−2
(for 〈Q2〉 = 8.6 GeV2

). Here we present our results in �g. 2.32. One 
an see in the

right panel of �g. 2.32 that the pre
ision of the data for the T01/T00 ratio does not permit us

to dis
riminate between a zero value for the di�eren
e of the transverse and the longitudinal

slope parameters, bL−bT , and a nonzero value of this di�eren
e, as measured by H1 at higher

values of Q2
.

Thus our estimate provides the 
orre
t sign and order of magnitude for the ratio T01/T00
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when 
ompared to H1 data for M of the order of 1 GeV in the whole range of 〈−t〉 < 1.08

GeV

2
.

M=0.5 GeV
M=1 GeV
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Figure 2.32: Predi
tions for the ratio T01/T00 as a fun
tion of |t| for λ = 0 GeV, for various

values of M , 
ompared with H1 data [99℄. The experimental errors are taken to be the

quadrati
 sum of statisti
al and systemati
al errors. Left panel: Q2 = 3.3 GeV

2
. Right

panel: Q2 = 8.6 GeV

2
.
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Figure 2.33: Predi
tions for the ratios T01/T00 as a fun
tion of |t| for M = 1 GeV, for

di�erent values of λ, 
ompared with H1 data [99℄: the blue (solid) line is for λ = 0 GeV, the

red (dashed) line is for λ = 0.2 GeV, and the green (dash-dotted) line is for λ = 0.4 GeV.

The experimental errors are taken to be the quadrati
 sum of statisti
al and systemati
al

errors. Left panel: Q2 = 3.3 GeV

2
. Right panel: Q2 = 8.6 GeV

2
.

For 
ompleteness, as we did for the ratio T11/T00, we also display in �g. 2.33 the e�e
t

of varying the 
uto� λ on kT for the ratio T01/T00. Again, the predi
tion does not 
hange

signi�
antly when λ is around ΛQCD. One obtains the same kind of values forM and λ when


omparing with the data for the two ratios T11/T00 and T01/T00. However, due to a la
k of

pre
ision of the data for the ratio T01/T00, the parameters M and λ are mainly 
onstrained

by the ratio T11/T00.
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2.8.5 Dis
ussion of the results

This model provides a fairly good des
ription of the data despite the simpli
ity of the nu
leon

impa
t fa
tor for reasonable values of M . Let us sum up the 
hara
teristi
s of this model,

• the predi
tions are not very sensitive to the typi
al transverse s
ale M of the dipole


on�guration inside the nu
leon,

• the predi
tions are not very sensitive to the 
hoi
e of the renormalization s
ale µF that

we used,

• the λ−dependen
e of the predi
tions shows that the dominant 
ontribution is given by

the ex
hange of hard gluons in t−
hannel (k2 ≫ Λ2
QCD), but also that the e�e
ts of

soft gluons are sizable.

This last point justi�es the QCD twist expansion based on the dominan
e of the s
attering

on the target of small transverse-size quark-antiquark and quark-antiquark-gluon 
olorless

states. It also justi�es the fa
t that a sizable 
ontribution is given by large dipole 
on�gura-

tions and should be de
reased by saturation e�e
ts in the nu
leon. So what we 
an learn from

this �rst approa
h is that we 
an des
ribe the HERA data with pQCD but this des
ription

have to be improved in order to implement the dynami
s of larger dipole sizes.

This approa
h 
ould be generalized to a

ess other s
attering amplitude ratios that have

also been measured and should be 
onfronted with a kT -fa
torization approa
h. This requires

nontrivial analyti
al 
al
ulations for t 6= tmin of the twist-3 amplitudes (whi
h was not needed

for the ratio T01/T00) whi
h is a hard task, sin
e it involves, in parti
ular, the 
omputation

of the γ∗L → ρT impa
t fa
tor. This deserves a separate study.

Data also exist for φ leptoprodu
tion. In this 
ase quark-mass e�e
ts should be taken

into a

ount, in parti
ular, be
ause this allows the transversely polarized φ to 
ouple through

its 
hiral-odd twist-2 DA. The fa
t that the ratio T11/T00 is not the same (after trivial mass

res
aling) for ρ and φ mesons suggests that it is an important e�e
t.

In the next 
hapter we will make the 
onne
tion of the twist expansion of the impa
t

fa
tor with the 
olor dipole formalism. The 
olor dipole s
attering amplitude in the forward

limit being well known from models �tting DIS data, this will allow to get a mu
h more

sophisti
ated model in
luding the saturation dynami
s of the nu
leon, involving no free pa-

rameter and able to predi
t the normalizations and the energy dependen
es of the heli
ity

amplitudes in the forward limit.
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Chapter 3

LCCF in the impa
t parameter

representation

3.1 Introdu
tion

In the previous se
tion we have built a phenomenologi
al model for the heli
ity amplitudes of

the pro
ess γ∗(λγ) p→ ρ(λρ) p based on the 
omputations of the impa
t fa
tors of Refs. [130,

131℄ in the 
ollinear approximation. This model relies on the models for the DAs given in

[142℄ based on 
onformal expansion and a model for the proton impa
t fa
tor [143℄ with a

free parameter M . Despite the fa
t that this model allows to get a fairly good agreement

with the data from HERA, this model does not provide the normalizations of the heli
ity

amplitudes as well as their energy dependen
es. It seems also that the saturation e�e
ts


ould lead to sizable modi�
ations of the predi
tions when the t−
hannel gluon momenta is

smaller than the saturation s
ale.

In this 
hapter, we will present a way to improve the previous model by 
onne
ting the


omputation performed in the 
ollinear fa
torization s
heme with the 
olor dipole model

approa
h. As a result, we will get a model without free parameter whi
h is able to,

• predi
t the normalization of the heli
ity amplitudes,

• predi
t the energy dependen
e of the heli
ity amplitudes,

• in
lude the saturation dynami
s of the nu
leon target.

The 
omparison with HERA data of the normalizations, the Q2− and the x−dependen
ies,
is a test for both the dipole models and the 
ollinear fa
torization beyond the leading twist

of the ρ−meson.

This 
hapter is split in two parts. In the �rst part of the 
hapter we present the 
om-

putation in the impa
t parameter representation of the two- and three-parton impa
t fa
tor


ontributions, fa
torizing in the impa
t fa
tor when it is possible, the wave fun
tion of the

virtual photon. These results in the impa
t parameter representation are stri
tly equivalent

to the results in momentum spa
e presented in the 
hap. 2. We will see however that this

125
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approa
h is more natural to generalize the twist expansion of the impa
t fa
tor as it does not

involve hard part derivative terms and it makes 
learly appear the moments of the ρ−meson

wave fun
tions whi
h are parameterized by the DAs. A non-trivial result of this approa
h is

that the results are 
onsistent with the dipole pi
ture only after using the EOMs of QCD.

It is also shown that the intera
tion of the two t−
hannel gluons with the quark antiquark

gluon intermediate state, involves only 
olor dipole intera
tions at �nite Nc (no quadrupole

term).

In the se
ond part of the 
hapter, we present the predi
tions for the polarized 
ross-

se
tions σL and σT of the pro
esses γ∗Lp→ ρLp and γ
∗
T p→ ρT p, obtained from the results of

the �rst part of the 
hapter, in 
ombination with dipole 
ross-se
tion models. These predi
-

tions are 
ompared with HERA data and we dis
uss the role of the higher twist 
orre
tions

and the role of the saturation e�e
ts in the predi
tions of the model. Parti
ularly we 
om-

pare the distributions of dipole sizes obtained from the twist expansion of the ρ−meson, to

distributions obtained with r⊥−dependent models for the overlap of the wave fun
tions of

the virtual photon and the ρ−meson.

3.2 The qq̄ intermediate state 
ontributions

3.2.1 Equivalent LCCF pro
edure in impa
t parameter representa-

tion

In the 
olor dipole pi
ture the dipole s
attering amplitude depends on the transverse dipole

size r, while in the LCCF approa
h des
ribed in the 
hap. 2, the Taylor expansion around

the light-
one dire
tion does not exhibit the transverse parton momentum dependen
e, being

Fourier 
onjugate to r. We 
an nevertheless get information about the transverse spa
e due

to the presen
e of the transverse momenta k⊥ of the t−
hannel gluons that gives to the

quark antiquark pair a transverse size r in the hard part of the pro
ess. Note that in

prin
iple one 
ould take the Fourier transform with respe
t to k of the impa
t fa
tor results

eqs. (2.276, 2.277) of 
hap. 2 to 
ombine them with a dipole model, however one would

miss the underlying dynami
s of the dipoles behind a 
ompli
ated Fourier transform. In our

approa
h we �rst express the hard parts in terms of their Fourier transforms in the transverse

impa
t parameter spa
e and then we perform the Taylor expansion of the hard part around

the dominant light-
one dire
tion.

We �rst fa
torize spinor and 
olor indi
es using Fierz identity,

Aγ∗→ρ
qq̄ =

∫

d4ℓ

(2π)4
Hqq̄(ℓ)Sqq̄(ℓ) = −1

4

∫

d4 ℓ

(2π)4
tr(Hqq̄(ℓ)Γ

α)SΓα
qq̄ (ℓ) . (3.1)

Using Sudakov variables for the loop momentum ℓ = αp + βn + ℓ⊥ and for its Fourier
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onjugate 
oordinates z = αzp+ βzn+ z⊥, the ℓ integration reads

iAqq̄ = −1

4

∫

dy

∫

d2ℓ⊥
(2π)2

Tr[Hqq̄(y, ℓ⊥)Γ
α]

∫

dαℓ

2π

∫

dβℓ
2π

∫

dλ

2π
eiλ(αℓ−y)

×
∫

d4z e−iℓ·z〈ρ(p)|ψ̄(z) Γα ψ(0)|0〉

= −1

4

∫

dy

∫

d2ℓ⊥
(2π)2

Tr[Hqq̄(y, ℓ⊥)Γ
α]

∫

dλ

2π
e−iλy

∫

d2z⊥ e
−iℓ⊥·z⊥

× 〈ρ(p)|ψ̄(λn+ z⊥) Γα ψ(0)|0〉 , (3.2)

where we kept the information about the transverse momentum in the hard part. Note that

this is the main di�eren
e at this point with the steps des
ribed in Se
. 2.2.4 of the 
hap. 2.

The main point is now to keep a tra
e of this transverse dynami
s by expressing the hard part

in terms of its Fourier transform in the impa
t parameter spa
e. We use the same shorthand

notations than in 
hap. 2,

HΓα

qq̄ (y, ℓ⊥) ≡ tr[Hqq̄(y, ℓ⊥)Γ
α] ,

and we de�ne its Fourier transform in the transverse plane,

H̃Γα

qq̄ (y, x⊥) =

∫

d2ℓ

(2π)2
HΓα

qq̄ (y, ℓ)e
−iℓ·r .

The expression we get for the amplitude reads

iAqq̄ = −1

4

∫

dy

∫

d2ℓ⊥
(2π)2

∫

d2x⊥ H̃
Γα

qq̄ (y, x⊥) e
−ix⊥·ℓ⊥

∫

dλ

2π
e−iλy

×
∫

d2z⊥e
−iℓ⊥·z⊥ 〈ρ(p)|ψ̄(λn+ z⊥) Γα ψ(0)|0〉 . (3.3)

For now, the integral over ℓ links the hard and soft parts and in order to fa
torize the

amplitude we use the Taylor expansion of the hard part around the dominant light-
one

dire
tion,

HΓα

qq̄ (y, ℓ⊥) =

∞
∑

k=0

1

k!

[

(ℓ− yp) · ∂
∂ℓ

]k

HΓα

qq̄ (y, 0⊥)

twist 3−→
1
∑

k=0

1

k!

[

ℓ⊥ · ∂

∂ℓ⊥

]k

HΓα

qq̄ (y, 0⊥)

=

∫

d2r H̃Γα

qq̄ (y, r⊥)

1
∑

k=0

(iℓ · r)k
k!

. (3.4)

Up to twist 3, the Taylor expansion is trun
ated at k = 1. All the information about the two-

parton hard part 
ontribution is en
oded in H̃Γα

qq̄ (y, r⊥) whi
h involves only the 
omputation

of six Feynman diagrams. In the momentum spa
e approa
h in Se
. 2.2.4, one would need

to 
ompute the derivative of the hard part in the limit ℓ→ yp,

∂k

∂ℓk⊥µ
HΓα

qq̄ (y, 0⊥) ,
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whi
h using the 
ollinear Ward identity leads to a number of diagrams to 
ompute whi
h

in
reases with the number of derivatives. The pri
e we pay is the integral over r the transverse

dipole size and to 
ompute the hard part with the parton transverse momenta.

Repla
ing the hard part (3.4) in (3.3) leads to

iAqq̄ = −1

4

∫

dy

∫

d2x⊥ H̃
Γα

qq̄ (y, x⊥)

×
∫ ℓ2⊥<µ2

F d2ℓ⊥
(2π)2

∫

d2z⊥

1
∑

k=0

1

k!
(−iℓ⊥ · x⊥)k e−iℓ⊥·z⊥

×
∫

dλ

2π
e−iλy 〈ρ(p)|ψ̄(λn+ z⊥) Γα ψ(0)|0〉 .

Note that the Taylor expansion terms of exp(−iℓ⊥ · x⊥) are giving the moments of the

ρ−meson wave fun
tion. After integration by parts with respe
t to the integral over z⊥ the

amplitude reads

iAqq̄ = −1

4

∫

dy

∫

d2x⊥ H̃
Γα

qq̄ (y, x⊥)

∫ ℓ2⊥<µ2
F d2ℓ⊥
(2π)2

∫

d2z⊥ e
−iℓ⊥·z⊥

×
1
∑

k=0

(−1)k

k!
(x⊥ · ∂

∂z⊥
)k
∫

dλ

2π
e−iλy 〈ρ(p)|ψ̄(λn+ z⊥) Γα ψ(0)|0〉

= −1

4

∫

dy

∫

d2x⊥ H̃
Γα

qq̄ (y, x⊥)

1
∑

k=0

1

k!
∫ ℓ2⊥<µ2

F d2ℓ⊥
(2π)2

∫

d2z⊥ e
−iℓ⊥·z⊥

∫

dλ

2π
e−iλy 〈ρ(p)|ψ̄(λn + z⊥) (x⊥·

←→
∂⊥ )kΓα ψ(0)|0〉 .

It 
an be then parameterized by the DAs as

iAqq̄ = −1

4

∫

dy

∫

d2x⊥H̃
Γα

qq̄ (y, x⊥)

∫ ℓ2⊥<µ2
F d2ℓ⊥
(2π)2

∫

d2z⊥e
−iℓ⊥·z⊥

∫

dλ

2π
e−iλy

×
(

〈ρ(p)|ψ̄(λn+ z⊥)Γα ψ(0)|0〉+ xµ⊥〈ρ(p)|ψ̄(λn+ z⊥)
←→
∂⊥µ Γα ψ(0)|0〉

)

= −mρfρ
4

∫

dy

∫

d2x⊥ {(e∗ · n)ϕ1(y;µ
2
F )H̃

/p
qq̄(y, x⊥) (3.5)

+ ϕ3(y;µ
2
F )H̃

/e∗⊥
qq̄ (y, x⊥) + iϕA(y;µ

2
F )H̃

/R∗⊥γ5
qq̄ (y, x⊥)

− i(x⊥ · e∗⊥)ϕT
1 (y;µ

2
F )H̃

/p
qq̄(y; x⊥) + (x⊥ ·R∗⊥)ϕT

A(y;µ
2
F )H̃

/pγ5
qq̄ (y; x⊥)} ,

with H̃Γα

qq̄ aα ≡ H̃Γαaα
qq̄ .

In the following part we will 
ompute the hard parts Hγµ

qq̄ (y, ℓ⊥) and Hγ5γµ

qq̄ (y, ℓ⊥), and

then we will derive the expressions of their Fourier transforms in the transverse 
oordinate

spa
e H̃γµ

qq̄ (y, x⊥) and H̃
γ5γµ

qq̄ (y, x⊥).

3.2.2 Impa
t fa
tor 
al
ulation for the qq̄ 
ontribution

We now 
ompute the hard parts in momentum spa
e Hγµ

qq̄ (y, ℓ⊥) and Hγ5γµ

qq̄ (y, ℓ⊥) for the

γ∗T (λγ) → ρT (λT ) impa
t fa
tor. The partons are kept on the mass-shell and in the 
ollinear
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limit (ℓ⊥ → 0), this kinemati
s is the same than in the 
hap. 2 whi
h allows to 
ompare the

�nal results after integration over x of the Fourier transforms.

We re
all the Sudakov de
ompositions of the momenta

ℓ1 = yp1 + ℓ⊥ +
ℓ2

ys
p2 ,

ℓ2 = ȳp1 − ℓ⊥ +
ℓ2

ȳs
p2 ,

pρ = p1 +
ℓ2

s

1

yȳ
p2 . (3.6)

The momentum of the in
oming photon is

q = p1 −
Q2

s
p2 , (3.7)

while the momenta of the gluons in t-
hannel are

k1 =
κ + k2 +Q2

s
p2 + k⊥ ,

k2 =
κ + k2 − p2ρ

s
p2 + k⊥ . (3.8)

The six diagrams of the hard part involving the qq̄ intermediate state are similar than the

diagrams of �g. 2.7 in the Se
. 2.2.1 and we use the same labeling. After 
omputing all the 6

diagrams (a), (b), (
), (d), (e), (f), we perform the integral over κ by the method of residues

to get the 
ontribution to the impa
t fa
tor, a

ording to the de�nition of the impa
t fa
tor

(2.237) in se
. 2.7 of 
hap. 2. Four poles in κ appear,

• Diagram (a) and (e) : κ1 =
(ℓ−yk)2

yȳ
− iη

• Diagram (b) and (
) : κ2 =
(ℓ+ȳk)2

yȳ
− iη

• Diagram (b) and (e) : κ3 =
−1
ȳ
((k + ℓ)2 − ℓ2 + ȳ(k2 +Q2)) + iη

• Diagram (d) and (f) : κ4 =
−1
y
((k − ℓ)2 − ℓ2 + y(k2 +Q2)) + iη .

PSfrag repla
ements

κ

Figure 3.1: Integral 
ontour C− along the lower κ− 
omplex plane.
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The hard sub-pro
ess amplitudes denoted iM, asso
iated to ea
h diagrams (a), (b), (
)

and (e) that will give a non-zero 
ontribution when we integrate over κ 
losing the 
ontour in

the lower κ plane C− illustrated in �g. 3.1, read for the di�erent stru
tures Γα ≡ {γµ, γµγ5}

• diagram (a):

iMΓα

a =
ie√
2

g2δab

2Nc

2

s

Tr[/eγ(−ȳ/p1 + ℓ2+yQ2

ys
/p2 + /ℓ⊥)/p2(−ȳ)/p1/p2Γα]

− ȳ
y
(ℓ2 + µ2)(κ− κ1)

=
2ie√
2

g2δab

2Nc

y
Tr[/eγ(−ȳ/p1 + /ℓ⊥)/p2Γ

µ]

(ℓ2 + µ2)(κ− κ1)
. (3.9)

• diagram (b)

iMΓα

b = − ie√
2

g2δab

2Nc

2

s

Tr[/p2(y/p1 + /k⊥ + /ℓ⊥)/eγ(−ȳ/p1 + /k⊥ + /ℓ⊥)/p2Γ
α]

yȳ(κ− κ2)(κ− κ3)

=
2ie√
2

g2δab

2Nc

1

yȳ(κ− κ2)(κ− κ3)

×{ȳTr(/p2(/k⊥ + /ℓ⊥)/eγΓ
α)− ytr(/eγ(/k⊥ + /ℓ⊥)/p2Γ

α)} . (3.10)

• diagram (
)

iMΓα

c = −2ie√
2

g2δab

2Nc
ȳ
Tr[/p2(y/p1 + /ℓ⊥)/eγΓ

α]

(ℓ2 + µ2)(κ− κ2)
. (3.11)

• diagram (e)

iMΓα

e = −2ie√
2

g2δab

2Nc

1

yȳ(κ− κ1)(κ− κ4)

×{ȳ tr(/p2(/k⊥ − /ℓ⊥)/eγΓ
α)− yTr(/eγ(/k⊥ − /ℓ⊥)/p2Γ

α)} . (3.12)

Computing the impa
t fa
tor hard part 
ontribution with residue method along the 
ontour

C−,
HΓα

qq̄ =
1

2s

∫

C−

dκ

2π
iMΓα

qq̄ = − i

2s
Resκ(iMΓα

qq̄ ) , (3.13)

with

κ1 − κ4 =
1

yȳ
((ℓ− k)2 + µ2) , (3.14)

κ2 − κ3 =
1

yȳ
((ℓ+ k)2 + µ2) , (3.15)

leads to

HΓα

qq̄ (y, ℓ) =
eg2δab√
22Ncs

{

y tr[/eγ(/ℓ⊥ − ȳ/p1)/p2Γ
α]− ȳ tr[/p2(y/p1 + /ℓ⊥)/eγΓ

α]

ℓ2 + µ2

−y tr[/eγ(/ℓ⊥ − /k⊥)/p2Γ
α]− ȳ tr[/p2(/ℓ⊥ − /k⊥)/eγΓ

α]

(ℓ− k)2 + µ2

−y tr[/eγ(/ℓ⊥ + /k⊥)/p2Γ
α]− ȳ tr[/p2(/ℓ⊥ + /k⊥)/eγΓ

α]

(ℓ+ k)2 + µ2

}

.
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The ve
tor and the axial-ve
tor hard parts read respe
tively

Hγµ

qq̄ (y, ℓ) = −4
eg2√
2

δab

2Nc
eµγ

yȳ

ℓ2 + µ2
− 4

eg2

s
√
2

δab

2Nc
(y − ȳ) pµ2

×
{

eγ · ℓ
ℓ2 + µ2

− eγ · (ℓ+ k)

(ℓ+ k)2 + µ2
− eγ · (ℓ− k)

(ℓ− k)2 + µ2

}

(3.16)

and

Hγµγ5
qq̄ (y, ℓ) = 4i

eg2

s
√
2

δab

2Nc

× εµνρσ
(

eγνℓ⊥ρp2σ

ℓ2 + µ2
− eγν(ℓ⊥ρ + k⊥ρ)p2σ

(ℓ+ k)2 + µ2
− eγν(ℓ⊥ρ − k⊥ρ)p2σ

(ℓ− k)2 + µ2

)

. (3.17)

The Fourier transforms of propagators in (3.16, 3.17) are related to the modi�ed Bessel

fun
tions Kν(x)

1

ℓ2 + µ2
=

∫

d2x

2π
K0(µ|x|)eiℓ·x , (3.18)

ℓ

ℓ2 + µ2
= −i

∫

d2x

2π
µ
x

|x|K1(µ|x|)eiℓ·x . (3.19)

The Fourier transforms of the ve
tor and axial-ve
tor hard parts read thus

H̃γµ

qq̄ (y, x) = 4
eg2

(2π)
√
2

δab

2Nc

(

−yȳK0(µ|x|)eµγ

+ pµ2(y − ȳ)iµ
eγ · x
|x| K1(µ|x|)

[

(1− eik·x)(1− e−ik·x)− 1
]

)

, (3.20)

H̃γµγ5
qq̄ (y, x) =

4
eg2

s(2π)
√
2

δab

2Nc
µK1(µ|x|)

[

εµνρσ eγν
x⊥ρ
|x| p2σ

]

[(1− eik·x)(1− e−ik·x)− 1] . (3.21)

The previous results (3.20, 3.21) for the hard parts integrated over κ 
an be inserted in

eq. (3.5) to obtain the impa
t fa
tor qq̄ 
ontribution as the soft parts are independent of κ.

De
omposing the result into the ve
tor 
ontribution Φ
γ∗T→ρT , V
qq̄ that will lead to term propor-

tional to ϕ3, ϕ
T
1 and, axial-ve
tor 
ontribution Φ

γ∗T→ρT , A
qq̄ that leads to term proportional to

ϕA and ϕT
A, we get

Φ
γ∗T→ρT , V
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π

{

−2yȳϕ3(y)K0(µ|x|) eγ · e∗ρ

+ (y − ȳ)ϕT
1 (y)(e

∗
ρ · x)

x · eγ
|x| µK1(µ|x|)

[

(1− eik·x)(1− e−ik·x)− 1
]

}

(3.22)

and

Φ
γ∗T→ρT , A
qq̄ =

−CabQ2

s

∫

dy

∫

d2x⊥
2π

ϕT
A(y)

2

s
εx⊥e∗ρ⊥p1p2εx⊥eγ⊥p1p2

× µK1(µ|x|) ((1− eik·x)(1− e−ik·x)− 1) , (3.23)
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where we de�ne

Cab = −eg
2

√
2
mρfρ

δab

2Nc

1

Q2
. (3.24)

Note that the term with ϕA in eq. (3.5) vanishes due to the stru
ture of the expression (3.21).

Using the fa
t that

εx⊥e∗ρ⊥p1p2εx⊥eγ⊥p1p2 =
s2

4

(

x2⊥ (eγ⊥ · e∗ρ⊥)− (eγ⊥ · x⊥)(x⊥ · e∗ρ⊥)
)

,

the axial-ve
tor 
ontribution takes the form

Φ
γ∗T→ρT , A
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π
ϕT
A(y)

[

e∗ρ · eγ −
(e∗ρ · x) (x · eγ)

|x|2
]

×µ|x|K1(µ|x|)((1− eik·x)(1− e−ik·x)− 1) . (3.25)

The whole 2-parton 
ontribution thus reads

Φ
γ∗T→ρT
qq̄ = Φ

γ∗T→ρT , V
qq̄ + Φ

γ∗T→ρT , A
qq̄ (3.26)

= −C
abQ2

2

∫

dy

∫

d2x

2π

{

−2yȳϕ3(y)K0(µ|x|) eγ · e∗ρ

+

[

(

(y − ȳ)ϕT
1 (y)− ϕT

A(y)
) (e∗ρ · x) (x · eγ)

|x|2 + ϕT
A(y) e

∗
ρ · eγ

]

× µ|x|K1(µ|x|)((1− eik·x)(1− e−ik·x)− 1)
}

. (3.27)

This result does not seem to be proportional to the familiar dipole fa
tor

N (x, k) = (1− eik·x)(1− e−ik·x) (3.28)

des
ribing the 
oupling to the two t−
hannel gluons.
Using the following relations,

∫

d2x

2π
µ|x|K1(µ|x|) = 2

∫

d2x

2π
K0(µ|x|) =

2

µ2
(3.29)

∫

d2x

2π
e∗ρ · x

x · eγ
|x| µK1(µ|x|) = eγ · e∗ρ

∫

d2x

2π
K0(µ|x|) , (3.30)

we 
an rewrite Φ
γ∗T→ρT
qq̄ in the form,

Φ
γ∗T→ρT
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π
(3.31)

×
{[

−(2y ȳ ϕ3(y) + (y − ȳ)ϕT
1 + ϕT

A(y))
]

K0(µ|x|) eγ · e∗ρ
+

[

[

(y − ȳ)ϕT
1 (y)− ϕT

A(y)
] e∗ρ · xx · eγ

|x|2 + ϕT
A(y)e

∗
ρ · eγ

]

× µ|x|K1(µ|x|)N (x, k)}.

The term in the r.h.s.

[

−(2y ȳ ϕ3(y) + (y − ȳ)ϕT
1 + ϕT

A(y))
]

K0(µ|x|) eγ · e∗ρ ,
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vanishes in the WW approximation. This is due to the EOMs of QCD eqs. (2.129) and

(2.130) relating the WW solutions of the DAs as shown in Se
. 2.4.1. Combining eqs. (2.129)

and (2.130), one 
an get the relation,

2y ȳ ϕWW
3 (y) + (y − ȳ)ϕT WW

1 + ϕT WW
A (y) = 0 . (3.32)

This term also vanishes for the genuine twist 3 solutions of the DAs as we will show in

Se
. 3.4.1 after 
omputing the qq̄g 
ontributions. At the end the qq̄ 
ontribution reads

Φ
γ∗T→ρT
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π
(3.33)

×
{[

[

(y − ȳ)ϕT
1 (y)− ϕT

A(y)
] e∗ρ · xx · eγ

|x|2 + ϕT
A(y)e

∗
ρ · eγ

]

× µ|x|K1(µ|x|)N (x, k)},

where the dipole s
attering amplitude fa
torizes out.

3.2.3 Interpretation of the result obtained in the WW approxima-

tion

The WW approximation whi
h 
onsists in negle
ting all 
ontributions from the qq̄g Fo
k

state, reads

Φ
γ∗T→ρT WW
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π

{[

(y − ȳ)ϕT WW
1 (y)− ϕT WW

A (y)
]

× (e∗ρ · x) (x · eγ)
|x|2 + ϕT WW

A (y)e∗ρ · eγ
}

µ|x|K1(µ|x|)N (x, k) . (3.34)

Similarly to the momentum spa
e analysis, one 
an split the result (3.34) into the spin non-�ip

Φ
γ∗T→ρT
qq̄, n.f. and the spin �ip Φ

γ∗T→ρT
qq̄, f. 
ontributions

Φ
γ∗T→ρT WW

qq̄, n.f. = −C
abQ2

2

∫

dy
(

ϕT WW
A + (y − ȳ)ϕT WW

1

)

×
∫

d2x

2π

1

2
e∗ρ · eγ µ|x|K1(µ|x|)N (x, k) (3.35)

and

Φ
γ∗T→ρT WW

qq̄, f. = −C
abQ2

2

∫

dy
(

ϕT WW
A − (y − ȳ)ϕT WW

1

)

×
∫

d2x

2π

(

1

2
e∗ρ · eγ −

(e∗ρ · x)(eγ · x)
|x|2

)

µ|x|K1(µ|x|)N (x, k) . (3.36)

Both spin �ip and spin non-�ip impa
t fa
tors 
an be put in an elegant form similar to the

overlaps of virtual photon wave fun
tions in the 
ase of DIS,

Φ
γ∗T→ρT
2−parton(k,Q, µ

2
F ) = (3.37)

δab

2

∫

dy

∫

dr ψ
γ∗T (λγ)→ρT (λρ)WW

(qq̄) (y, r;Q, µ2
F )A(r, k) ,
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with,

A(r, k) =
4παs

Nc
N (x, k) , (3.38)

the dipole s
attering amplitude a

ording to our de�nition of the impa
t fa
tors and

ψ
γ∗T→ρT
(qq̄) (y, r;Q, µ2

F ) =
mρfρ√

2

∑

(h,h̄)

φ
ρT , (λρ)

(h,h̄)
(y;µ2

F ) Ψ
γ∗T (λγ)

(h,h̄)
(y, r;Q2) , (3.39)

the overlap of the wave fun
tion of the virtual photon Ψ
γ∗T (λγ)

(h,h̄)
(y, r;Q2) with the moments of

the wave fun
tion of the ρ−meson φ
ρT , (λρ),WW

(h,h̄)
(y;µ2

F ). We remind that the indi
es h and h̄

denote the quark antiquark heli
ities, spin ±1/2 
orresponds to h = ±. Note that we put

apart the fa
tor

δab

2
= Tr(tatb) that will 
ontribute to a global 
olor fa
tor in the heli
ity

amplitude of

N2
c−1
4

. The 
oe�
ient

mρfρ√
2
, expli
itly fa
torized out, is related to the partoni



ontent of the ρ0−meson as a

uū−dd̄√
2

state su
h that the meson involved below is understood

as a one �avor quark�antiquark state. For 
larity, we re
all the expressions of the virtual

photon wave fun
tions following the 
onventions of Ref. [65℄ used for the GBW saturation

model,

Ψ
γ∗L
(h,h̄)

(y, r;Q2) = δh̄,−h
e

2π

√

Nc

π

µ2

Q
K0(µ |r|) , (3.40)

Ψ
γ∗T (λγ )

(h,h̄)
(y, r;Q2) = δh̄,−h

ie

2π

√

Nc

π
(yδh,λγ + ȳδh,−λγ)

(r · e(λγ))

|r| µK1(µ |r|) . (3.41)

We 
an extra
t from our result the relevant twist 3 moments of the ρ−meson wave fun
tion,

φ
ρT , (λρ),WW

(h,h̄)
(y, r;µ2

F ) = −δh̄,−hi
√

π

4Nc
(e(λρ)∗ · r)

×
(

ϕT WW
A (y;µ2

F ) + (δh,λρ − δh,−λρ)ϕ
T WW
1 (y;µ2

F )
)

. (3.42)

Note that these 
ombinations of "ϕT
1 ± ϕT

A" are dire
tly linked to the auxiliary DAs g↑↓⊥
and g↓↑⊥ of [142℄,

−
(

ϕT WW
A (y) + (δh,λρ − δh,−λρ)ϕ

T WW
1 (y)

)

= ȳ
(

ϕWW
3 (y) + ϕWW

A (y)
)

δh,λρ + y
(

ϕWW
3 (y)− ϕWW

A (y)
)

δh,−λρ

= ȳ g↓↑(y)δh,λρ + y g↑↓(y)δh,−λρ

= 2yȳ
∑

n

[g↑↓n P
(1,0)
n (ξ) δh,−λρ + g↓↑n P

(0,1)
n (ξ) δh,λρ] , (3.43)

with ξ = y− ȳ. As we have de
omposed the 
ombination of DAs in the sum of the 
ontribu-

tions for ea
h quark and antiquark pair of spe
i�
 heli
ity states, it is natural that we found

a parameterization proportional to the auxiliary DAs g↑↓⊥ and g↓↑⊥ whi
h are the twist 3 DAs

of �xed spin proje
tion on the light-
one.

We want to emphasize the fa
t that the results for φ
ρT , (λρ),WW

(h,h̄)
are the same for the spin

non-�ip (λγ = λρ) and spin �ip (λγ = −λρ) impa
t fa
tors. This fa
t is not obvious at

all from the results of Se
. 2.7.4 in the 
hap. 2 for the spin non-�ip and spin �ip results in
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momentum spa
e (see for example below the expressions (3.45, 3.46)). We see again that the

results 
ome more naturally in the impa
t parameter representation. The obtained fa
torized

stru
tures (3.37) are illustrated in �g. 3.2.
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3.2.4 Equivalen
e of momentum and impa
t parameter 
al
ulations

We want now to derive the results in the momentum spa
e representation of Ref. [131℄

presented in Se
. 2.7.4 in 
hap. 2, by integrating over the dipole size x. For this aim, we shall

use the following formula,

∫

d2x

2π
µ
xi xj
|x| K1(µ|x|)eiℓ·x =

1

ℓ2 + µ2

(

δij − 2
ℓi ℓj

ℓ2 + µ2

)

, (3.44)

whi
h leads us to the same results as in eqs (2.276, 2.277), se
. 2.7.4 in the 
hap. 2,

Φ
γ∗T→ρT WW

qq̄, n.f. = −C
abQ2

2

∫

dy
(

ϕT WW
A + (y − ȳ)ϕT WW

1

)

×Tn.f.
2

µ2

k2(k2 + 2µ2)

(k2 + µ2)2
, (3.45)

Φ
γ∗T→ρT WW

qq̄, f. = −C
abQ2

2

∫

dy
(

ϕT WW
A − (y − ȳ)ϕT WW

1

)

×Tf.
−4k2

(k2 + µ2)2
. (3.46)

This fa
t 
an be seen as a self-
onsisten
y 
he
k of our 
al
ulation.

3.2.5 The impa
t parameter representation of the γ∗L → ρL impa
t

fa
tor

Using the eq. (3.5), in the 
ase of longitudinally polarized ρ−meson and virtual photon, leads

to

iAqq̄ = −1

4

∫

dy

∫

d2x⊥ H̃
γα

qq̄ (y, x⊥)

∫

dλ

2π
e−iλy〈ρ(p)|ψ̄(λn) γα ψ(0)|0〉µ2

F

= −mρfρ
4

∫

dy ϕ1(y;µ
2
F )(e

∗ · n)
∫

d2x⊥ H̃
/p1
qq̄ (y, x⊥) . (3.47)
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The hard part reads

p1µH
γµ

qq̄ (y, ℓ)=−4Qeg2δab√
22Nc

y ȳ

(

2

ℓ2 + µ2
− 1

(ℓ+ k)2 + µ2
− 1

(ℓ− k)2 + µ2

)

. (3.48)

Its Fourier transform reads

H̃
/p1
qq̄ (y, x) = − 4Qe

(2π)
√
2 2Nc

y ȳ K0(µ|x|)g2 δabN (x, k)

= −δ
ab

2
A(x, k)

√

2π

Nc

∑

h,h̄

Ψ
γ∗L
h,h̄

(y, x) . (3.49)

The impa
t fa
tor reads then

Φγ∗L→ρL(k,Q, µ2
F ) =

(

δab

2

)
∫

dy

∫

dr ψ
γ∗L→ρL
(qq̄) (y, r;Q, µ2

F )A(r, k) , (3.50)

where ψ
γ∗L→ρL
(qq̄) is the overlap,

ψ
γ∗L→ρL
(qq̄) (y, r;Q, µ2

F ) =
mρfρ√

2

∑

(h,h̄)

φρL
(hh̄)

(y;µ2
F ) Ψ

γ∗L
(h,h̄)

(y, r;Q2) . (3.51)

The extra
ted relevant moment of ρ−meson longitudinal wave fun
tion reads

φρL
(h,h̄)

(y;µ2
F ) = δh̄,−h

√

π

4Nc
(e∗L · n)ϕ1(y;µ

2
F ) . (3.52)

Comparing eqs. (3.52) and (3.42), we 
an see that the only di�eren
e between all these results

are the 
hoi
e of the DAs. This in fa
t is due to the simple form of eq. (3.5) in the impa
t

parameter spa
e, where the hard parts fa
torize and are 
ontra
ted with di�erent Lorentz

stru
tures.

Performing the integral over x we re
over, as expe
ted, the same result as in momentum

spa
e

Φγ∗L→ρL =
eg2δabfρQ√

22Nc

∫

dy yȳϕ1(y)

∫

d2x

2π
K0(µ|x|)(1− eik·x)(1− e−ik·x)

=
2eg2δabfρ√
22NcQ

∫

dy ϕ1(y)
k2

k2 + µ2
.

3.3 The qq̄g intermediate state 
ontribution to the γ∗T →
ρT impa
t fa
tor

The qq̄g intermediate state, where the gluon 
arries a sizable amount of energy of the virtual

photon (yg ∼ y1 ∼ ȳ2), parti
ipates to the full twist 3 result of the impa
t fa
tor. Its


ontribution involves several 
olor dipole 
on�gurations that 
an intera
t with the t−
hannel
gluons.
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In se
. 3.3.1, we �rst present the fa
torization pro
edure to get a fa
torized form involving

the transverse Fourier transforms of the three-parton hard parts and the twist 3 moments of

the meson wave fun
tion. Then, in se
. 3.3.2 we prove by analyzing the 
olor stru
ture of the

diagrams that there are only dipole intera
tions and no other multipole intera
tions. After

that, we 
lassify in se
. 3.3.2 the hard sub-pro
ess Feynman diagrams in order to identify the

relevant dipole 
on�guration that intera
ts with the t−
hannel gluons, we explain in se
. 3.3.3
how the 
ollinear approximation simpli�es the 
omputations of the Fourier transforms of the

hard parts. Finally, in se
. 3.3.4 the result is split into a spin �ip and a spin non-�ip


ontribution as for the two-parton 
ontribution.

3.3.1 LCCF in impa
t parameter representation for the qq̄g ampli-

tude

The steps here are essentially the same as for the qq̄ 
ontribution. Using the Fierz de
ompo-

sition one gets

iAqq̄g =

∫

d4ℓ1
(2π)4

d4ℓg
(2π)4

tr[Hα
qq̄g(ℓ1, ℓg)Sqq̄g α(ℓ1, ℓg)]

= −1

4

∫

d4ℓ1
(2π)4

d4ℓg
(2π)4

tr[Hα
qq̄g(ℓ1, ℓg)Γ

β]S
Γβ

qq̄g α(ℓ1, ℓg) . (3.53)

We use the Sudakov de
omposition of the momenta of the partons i, ℓi = αip+ βin+ ℓi⊥

and of the Fourier 
onjugate 
oordinates zi = αzip+βzin+zi⊥ in the argument of the non-lo
al


orrelator de�ning the soft part Sqq̄g. We fa
torize the amplitude in the momentum spa
e,

and we redu
e it to a 
onvolution in the longitudinal fra
tions yi of the ρ meson momentum

p 
arried by the partons. It reads

iAqq̄g = −1

4

∫

dy1dyg

∫

d2ℓ1⊥
(2π)2

d2ℓg⊥
(2π)2

Hα,Γβ

qq̄g (y1, yg, ℓ1⊥, ℓg⊥)

×
∫

dλ1
2π

e−iλ1y1

∫

dλg
2π

e−iλgyg

∫

d2z1⊥e
−iℓ1⊥·z1⊥

∫

d2zg⊥e
−iℓg⊥·zg⊥

×〈ρ(p)|ψ̄(λ1n + z1⊥) iΓβ gA
⊥
α (λgn + zg⊥)ψ(0)|0〉 , (3.54)

with Hα,Γµ

qq̄g (yi, yj, ℓi⊥, ℓj⊥).

Let us introdu
e its Fourier transform H̃Γβ

qq̄g(yi, yj, xi⊥, xj⊥) de�ned as

Hα,Γβ

qq̄g (yi, yj, ℓi⊥, ℓj⊥)

=

∫

d2xi⊥d
2xj⊥H̃

α,Γβ

qq̄g (yi, yj, xi⊥, xj⊥) e
−i(ℓi⊥·xi⊥+ℓj⊥·xj⊥) . (3.55)

At twist 3, the Taylor expansion of the qq̄g hard part around the dominant ligh-
one

dire
tion gives the 
ontribution

Hα,Γβ

qq̄g (yi, yj, 0⊥, 0⊥) =

∫

d2x1⊥d
2xg⊥H̃

α,Γβ

qq̄g (y1, yg, x1⊥, xg⊥) (3.56)
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and the amplitude simpli�es as,

iAqq̄g = −1

4

∫

dy1dyg

∫

d2x1⊥d
2xg⊥H̃

α,Γβ

qq̄g (y1, yg, x1⊥, xg⊥)

×
∫

dλ1
2π

e−iλ1y1

∫

dλg
2π

e−iλgyg〈ρ(p)|ψ̄(λ1n) iΓβ gA
⊥
α (λgn)ψ(0)|0〉µ2

F
. (3.57)

We re
all the parameterization of the qq̄g 
orrelators appearing in eq. (3.57),

∫

dλ1
2π

dλg
2π

e−iλ1y1−iλgyg〈ρ(p)|ψ̄(λ1n) iγµ gA⊥α (λgn)ψ(0)|0〉µ2
F

= −imρ fρ ζ
V
3ρ(µ

2
F )B(y1, y2;µ

2
F ) pµ eρ⊥α , (3.58)

∫

dλ1
2π

dλg
2π

e−iλ1y1−iλgyg〈ρ(p)|ψ̄(λ1n) iγ5γµ gA⊥α (λgn)ψ(0)|0〉µ2
F

= −imρ fρ ζ
A
3ρ(µ

2
F ) iD(y1, y2;µ

2
F ) pµ εαeρ⊥pn , (3.59)

leading to

iAqq̄g =
imρfρ
4

∫

dy1dyg

∫

d2x1⊥d
2xg⊥

×
[

H̃
eρ⊥,/p
qq̄g (y1, yg, x1⊥, xg⊥) ζ

V
3ρB(y1, y1 + yg)

+ H̃
R⊥,/pγ5
qq̄g (y1, yg, x1⊥, xg⊥) iζ

A
3ρD(y1, y1 + yg)

]

, (3.60)

where we use our usual shorthand notation

H̃
a,Γµbµ
qq̄g ≡ H̃α,Γµ

qq̄g aα bµ . (3.61)

The 3-parton 
ontribution (3.60) in terms of S(y1, y2), M(y1, y2) reads

iAqq̄g =
imρfρ
4

∫

dy1dyg

∫

d2x1⊥d
2xg⊥

×
[

S(y1, y1 + yg)

2
(H̃

e∗ρ⊥,/p

qq̄g (y1, yg, x1⊥, xg⊥) + i H̃
R∗⊥,/pγ5
qq̄g (y1, yg, x1⊥, xg⊥))

+
M(y1, y1 + yg)

2
(H̃

e∗ρ⊥,/p

qq̄g (y1, yg, x1⊥, xg⊥)− i H̃
R∗⊥,/pγ5
qq̄g (y1, yg, x1⊥, xg⊥))

]

. (3.62)

The next se
tion is mainly devoted to the 
omputations of the Fourier transforms

H̃
e∗ρ⊥,/p

qq̄g (y1, yg, x1⊥, xg⊥)± i H̃
R∗⊥,/pγ5
qq̄g (y1, yg, x1⊥, xg⊥) .

3.3.2 The 
olor dipole 
on�gurations of the hard part

Diagrams and kinemati
s

The kinemati
s of the qq̄g intermediate state, illustrated in the �g. 3.3, reads

ℓ1 = y1p1 + ℓ1⊥ +
ℓ21
y1s

p2 , (3.63)

ℓ2 = ȳ2p1 + ℓ2⊥ +
ℓ22
ȳ2s

p2 , (3.64)

ℓg = ygp1 + ℓg⊥ +
ℓ2g
ygs

p2 , (3.65)
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with y1 + ȳ2 + yg = 1 and ℓ1⊥ + ℓ2⊥ + ℓg⊥ = 0. Ea
h parton is on-shell and this kinemati
s

simpli�es to the kinemati
s of the Se
. 2.7.4 in the 
ollinear limit ℓi → 0.

The momentum of the ρ meson whi
h is the sum of the momentum of the partons reads

pρ = p1 +
1

s

(

ℓ21
y1

+
ℓ22
ȳ2

+
ℓ2g
yg

)

p2 = p1 +
p2ρ
s
p2 , (3.66)

and the invariant mass squared of the partoni
 system is

p2ρ =
ℓ21
y1

+
ℓ22
ȳ2

+
ℓ2g
yg
. (3.67)

Note that the 
ollinear limit, ℓ1 = ℓ2 = ℓg = 0, implies that we negle
t higher twist e�e
ts

from the ρ−meson mass. The momenta of the t−
hannel gluons and virtual photon are still

de�ned by eqs. (3.7) and (3.8).

The "extended" amplitude de�ned as fun
tion of ℓ1⊥ and ℓg⊥

iAqq̄g, ext.(ℓ1⊥, ℓg⊥) =
imρfρ
4

∫

dy1dyg

×
[

S(y1, y1 + yg)

2
(H

e∗ρ⊥,/p

qq̄g (y1, yg, ℓ1⊥, ℓg⊥) + iH
R∗⊥,/pγ5
qq̄g (y1, yg, ℓ1⊥, ℓg⊥))

+
M(y1, y1 + yg)

2
(H

e∗ρ⊥,/p

qq̄g (y1, yg, ℓ1⊥, ℓg⊥)− iH
R∗⊥,/pγ5
qq̄g (y1, yg, ℓ1⊥, ℓg⊥))

]

, (3.68)

gives ba
k the twist 3 
ontribution of the amplitude iAqq̄g in the limit {ℓ1⊥ , ℓg⊥} → 0. Note

that this extended amplitude iAqq̄g, ext. mixes twist 3 terms (whi
h are the only one remaining

in the 
ollinear limit ℓ1⊥ = ℓg⊥ = 0), with higher twist terms indu
ed by the non-vanishing

transverse momenta ℓ1⊥ and ℓg⊥. The 
omputation of iAqq̄g, ext. relevant when taking the


ollinear limit involves all the three-parton diagrams displayed in �gs. 2.8, 2.9 and 2.10 in

Se
. 2.2.1 of the 
hap. 2. These diagrams were divided into the following types,

• the 12 "abelian" diagrams (e.g. aG1 shown in �g. 3.4),

• the 12 "non-abelian with a single triple gluon vertex" (e.g. atG1, �g. 3.5),

• the 4 "non-abelian with two triple gluon vertex" (e.g. gttG1, �g. 3.6).

Similarly to the 
omputation in the qq̄ intermediate state 
ontribution, we perform the inte-

gral over κ of iAqq̄g, using the residue method applied to the 
ontour C− to get the impa
t
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fa
tor 
ontribution of the "extended" impa
t fa
tor Φ
γ∗T→ρT
qq̄g, ext., whi
h 
ontains the relevant

dependen
e on the transverse momenta.

We show below the expli
it results of the aG1 ve
tor and axial 
ontributions to the
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extended impa
t fa
tor Φ
γ∗T→ρT
qq̄g, ext. after integration over κ. The aG1 ve
tor 
ontribution reads

ΦV
aG1, ext. =

eq g
2

2
fρmρ

δab

2Nc

1
∫

0

dy1 dy2B(y1, y2)

×
{

e∗ρ · eγ
(

ȳ2 ℓ
2
1 − y1 ℓ2 · ℓ1 + y1 ȳ2Q

2
)

+ y1
(

(ℓ1 · eγ)(ℓ2 · e∗ρ)+(ℓ1 · e∗ρ)(ℓ2 · eγ)
)}

× y1yg

(ℓ21 + µ2
1)(ygȳg ℓ

2
1 + 2y1yg ℓ1 · ℓg + y1ȳ1 ℓ

2
g + y1ȳ2yg Q2)

, (3.69)

and the aG1 axial 
ontribution reads

ΦA
aG1, ext. =

eq g
2

2
fρmρ

δab

2Nc

1
∫

0

dy1 dy2D(y1, y2)

×
{

e∗ρ · eγ
(

ȳ2 ℓ
2
1 + y1 ℓ2 · ℓ1 + y1 ȳ2Q

2
)

− y1
[

(ℓ1 · eγ) (ℓ2 · e∗ρ)+(ℓ1 · e∗ρ) (ℓ2 · eγ)
]}

× y1yg

(ℓ21 + µ2
1)(ygȳgℓ

2
1 + 2y1ygℓ1 · ℓg + y1ȳ1ℓ

2
g + y1ȳ2ygQ2)

. (3.70)

Classi�
ation of the diagrams in 
olor dipole 
on�gurations
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ting with the t−
hannel gluons.

We want to extra
t the relevant 
olor dipoles made of a 
olor-anti
olor singlet pair in

the fundamental representation, 
onstru
ted either from a qq̄ pair, denoted by {qq̄}, or from
a quark and the �antiquark part" of the gluon (denoted by {qg}), or from an antiquark

and the �quark part" of the gluon (denoted by {q̄g}), as the gluon belongs to the adjoint

representation of SU(Nc).

The diagrams are 
olle
ted depending on the pair of partons that intera
ts with the

t−
hannel gluons, see �g. 3.7. Due to the topology of the asso
iated diagrams, the dipole

{qq̄} is suppressed by 1/N2
c , the 
orresponding diagram being non-planar. The 6 diagrams


orresponding to the intera
tion of the {q̄g} system with the t−
hannel gluons are the 
ontri-
butions in

δab

2Nc

Nc

CF
of aG1, httG1, atG1, etG1, dtG1, btG2, shown in �g. 3.8. The results of the

diagrams asso
iated to the {qg} system, 
G1, gttG1, 
tG1, ftG1, btG1, dtG2 are obtained

from the diagrams of the {q̄g} system by ex
hanging the role of the quark and the anti-quark.

The diagrams asso
iated to the {qq̄} system are the 
ontributions in

δab

2Nc

(

Nc

CF
− 2
)

of aG1,

bG2, dG1 and the symmetri
 diagrams under ex
hange of the quark and the anti-quark, 
G1,

dG2, bG1, shown in �g. 3.9.

Dipole intera
tions

We will show that the 
olor stru
ture of the diagrams asso
iated to the fa
torized hard part

of the qq̄g intermediate state 
an be simpli�ed into the 
olor stru
ture of a single dipole that
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intera
ts with two t−
hannel gluons. We need for this to 
onsider the abelian diagrams and

the non-abelian diagrams. For the abelian type of diagram, one gets

PSfrag repla
ements

γ∗

= −1
2

1
Nc

PSfrag repla
ements

γ∗

(3.71)

while the non-abelian stru
ture redu
es to

PSfrag repla
ements

γ∗

= Nc

PSfrag repla
ements

γ∗

.

(3.72)

This se
ond identity 
an be easily derived based on the relation

Tr([ta , tb] tc) =
i

2
fabc , (3.73)

whi
h 
an be represented graphi
ally as

i

2
fabc =

PSfrag repla
ements

a

b c
−

PSfrag repla
ements

a

b c
, (3.74)

thus allowing to pass from the adjoint representation to the fundamental one. We thus


on
lude from eqs. (3.71, 3.72) that in 
olor spa
e we only expe
t 
olor dipole 
ontributions

even at �nite Nc.
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3.3.3 Fourier transforms of the 3-parton diagrams in the 
ollinear

limit

In the following parts, we respe
tively denote xi and ℓi the transverse position and momentum

of the parton i. Using the analogy that exists [53℄ between a Lorentz sub-group in the in�nite

momentum frame that leaves invariant the hypersurfa
e orthogonal to the dominant light-


one dire
tion with the Galilean transformations in two-dimensional me
hani
s, the idea to

simplify the 
omputation is to make a 
hange of variables di
tated by the two-body problem

in 
lassi
al me
hani
s. The qq̄g system de�ned by {y1, ℓ1}, {ȳ2, ℓ2} and {yg, ℓg} 
an be

simpli�ed by 
onsidering the 
enter of mass

Gij ≡ {yi + yj, Lij = ℓi + ℓj} ,

and the redu
ed parti
le

Rij ≡ {mij =
yiyjQ

yi + yj
, ℓij =

yiℓj − yjℓi
(yi + yj)

} ,

variables, where i and j are the partons forming the system that intera
ts with the t−
hannel
gluons. This simpli�es the expressions of the extended impa
t fa
tor results. It turns out

that in the 
ollinear limit the relevant momentum is asso
iated to the redu
ed parti
le of

the two-parton system that intera
ts with the t−
hannel gluons. As an example, the Fourier

transform of the hard part asso
iated to the 2-parton system {q̄g}, reads

H̃{q̄g}(x1, x2, xg) =

∫

d2L

(2π)2
d2ℓ2
(2π)2

d2ℓg
(2π)2

H{q̄g}(L, ℓ2, ℓg)δ
2(L)

× exp(−i((L− ℓ2 − ℓg) · x1 + ℓ2 · x2 + ℓg · xg))

=

∫

d2ℓ2
(2π)2

d2ℓg
(2π)2

H{q̄g}(ℓ2, ℓg)

× exp(−i(Lq̄g · (xGq̄g
− x1) + ℓq̄g · x)) , (3.75)

with L = ℓ1 + ℓ2 + ℓg and xG = y1 x1 + ȳ2 x2 + yg xg the momentum and the position of the


enter of mass G of the 3-parton system. We now perform the 
hange of variables (ℓ2, ℓg) →
(ℓq̄g, Lq̄g), whi
h involves the Ja
obian (ȳ2 + yg)/ȳ1 = 1, leading to

H̃{q̄g}(x1, x2, xg)=

∫

d2ℓq̄g
(2π)2

d2Lq̄g

(2π)2
H{q̄g}(ℓq̄g, Lq̄g)exp(−i(Lq̄g · (xGq̄g

− x1) + ℓq̄g · x)) . (3.76)

Let us denote F
{ij}
Diagr,V (ℓij, Lij , yi, yj) and F

{ij}
Diagr,A(ℓij, Lij , yi, yj) respe
tively the integrands

of the ve
tor and axial-ve
tor 
ontributions of the diagram 'Diagr' related to the 2-parton

system {ij}, to the "extended" impa
t fa
tor.

Taking the diagram atG1 as an example for 
larity, its ve
tor 
ontribution F
{q̄g}
atG1,V and
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its axial ve
tor 
ontribution F
{q̄g}
atG1,A read expli
itly,

F
{q̄g}
atG1,V (ℓq̄g, Lq̄g, ȳ2, yg) =

CabQ2

2

Nc

CF

1

2
(S(y1, y2) +M(y1, y2))

1

4ȳ1Q

×
{

e∗ρ · eγ

(

L2
q̄g

2µ2
1/Q

+
Q

2
+
Lq̄g · (ℓq̄g + k)

2ȳ1ȳ2Q

)

−(Lq̄g · eγ)(e∗ρ · (ℓq̄g + k)))

2ȳ2ygQ/(ȳ1 + ȳ2)
− (Lq̄g · e∗ρ)(eγ · (ℓq̄g + k))

2ȳ2Q

}

× 1
(

L2
q̄g

2µ2
1/Q

+ Q
2

)(

L2
q̄g

2µ2
1/Q

+ Q
2
+

(ℓq̄g+k)2

2µ2
q̄g/Q

) , (3.77)

F
{q̄g}
atG1,A(ℓq̄g, Lq̄g, ȳ2, yg) =

CabQ2

2

Nc

CF

1

2
(S(y1, y2)−M(y1, y2))

1

4ȳ1Q

×
{

e∗ρ · eγ

(

L2
q̄g

2µ2
1/Q

+
Q

2
− Lq̄g · (ℓq̄g + k)

2ȳ2ygQ/(ȳ1 + ȳ2)

)

+
(Lq̄g · e∗ρ)(eγ · (ℓq̄g + k))

2ȳ2ygQ/(ȳ1 + ȳ2)
+

(Lq̄g · eγ)(e∗ρ · (ℓq̄g + k))

2ȳ2Q

}

× 1
(

L2
q̄g

2µ2
1/Q

+ Q
2

)(

L2
q̄g

2µ2
1/Q

+ Q
2
+

(ℓq̄g+k)2

2µ2
q̄g/Q

) , (3.78)

with µ2
1 = y1ȳ1Q

2
, µ2

q̄g =
yg ȳ2
yg+ȳ2

Q2
. We will denote for an arbitrary pair of partons i, j,

µ2
ij =

yiyj
yi + yj

Q2 .

As our treatment aims to get the proper result only in the 
ollinear approximation, we


annot have a

ess to the full transverse information about the dipoles dynami
s but only

about dynami
s of the dipole whi
h is probed by the t−
hannel gluons. In other words, the

information 
arried by Lq̄g is only partial and not relevant in the 
ollinear approximation so

we 
an send the non-intera
ting dipole momentum Lq̄g to zero to simplify the result of the

extended impa
t fa
tor. This gives,

F
{q̄g}
atG1,V (ℓq̄g, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2) +M(y1, y2))

×µ
2
q̄g

ȳ1

e∗ρ · eγ
2
(

µ2
q̄g + (ℓq̄g + k)2

) , (3.79)

F
{q̄g}
atG1,A(ℓq̄g, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2)−M(y1, y2))

×µ
2
q̄g

ȳ1

e∗ρ · eγ
2
(

µ2
q̄g + (ℓq̄g + k)2

) . (3.80)

We 
an now express eqs. (3.79, 3.80) in terms of their Fourier transforms to get the
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Figure 3.10: The relevant momentum ℓq̄g of the intera
tion with t−
hannel gluons in the


ollinear approximation.

information about the intera
ting dipole dynami
s,

F
{q̄g}
atG1, V (ℓq̄g, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2) +M(y1, y2))

×e
∗
ρ · eγ
2

∫

d2x

(2π)

µ2
q̄g

ȳ1
K0(µq̄g |x|) ei(ℓq̄g+k)·x ,

F
{q̄g}
atG1, A(ℓq̄g, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2)−M(y1, y2))

×e
∗
ρ · eγ
2

∫

d2x

(2π)

µ2
q̄g

ȳ1
K0(µq̄g |x|) ei(ℓq̄g+k)·x .

Finally, what remains in the 
ollinear limit is

F
{q̄g}
atG1,V (0, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2) +M(y1, y2))

×e
∗
ρ · eγ
2

∫

d2x

(2π)

µ2
q̄g

ȳ1
K0(µq̄g |x|) eik·x ,

F
{q̄g}
atG1,A(0, 0, ȳ2, yg) =

Cab

2

Nc

CF

1

2
(S(y1, y2)−M(y1, y2))

×e
∗
ρ · eγ
2

∫

d2x

(2π)

µ2
q̄g

ȳ1
K0(µq̄g |x|) eik·x .

The total 
ontribution of the diagram atG1 is the sum of the above ve
tor and axial ve
tor


ontributions

F
{q̄g}
atG1(0, 0, ȳ2, yg) =

Cab

2

Nc

CF
S(y1, y2)

e∗ρ · eγ
2

∫

d2x

(2π)

µ2
q̄g

ȳ1
K0(µq̄g |x|) eik·x . (3.81)

Let us emphasize that the integral over ȳ2 and yg of F
{q̄g}
atG1(0, 0, ȳ2, yg) given in eq. (3.81) is

the twist 3 impa
t fa
tor 
ontribution of the diagram atG1 for the {q̄g} dipole, where we

have extra
ted the relevant information about the intera
ting dipole of size x.

The 
omputations of 
ontributions of all the other 3-parton diagrams pro
eed in the same

way. We �rst 
ompute the diagrams asso
iated to a dipole 
on�guration, in terms of the


enter of mass and the redu
ed parti
le momenta and masses, to obtain F {ij}(ℓij , Lij, yi, yj).

We 
ompute then the Fourier transform f̃ {ij}(x, yi, yj) of F
{ij}(ℓij, Lij = 0, yi, yj) as Lij is

never shifted by the t−
hannel gluon transverse momenta k. Finally, the impa
t fa
tor is
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expressed in terms of f̃ {ij}(x, yi, yj), where x = xi − xj is the size of the dipole {ij}, i.e. the
variable 
onjugated to the momentum ℓij . The impa
t fa
tor has thus the general form

Φ
γ∗T→ρT
qq̄g =

∑

{ij}
Φ

γ∗T→ρT {ij}
qq̄g (3.82)

=
∑

{ij}

∫

dyi dyj

∫

d2x

(2π)2
f̃ {ij}(x, yi, yj) . (3.83)

The results of the diagrams in momentum spa
e exhibit two kinds of stru
ture denoted

by S1(ℓ, µ) and S2mn(ℓ, µA, µB)

S1(ℓ, µ) =
µ2

ℓ2 + µ2
, (3.84)

S2mn(ℓ, µA, µB) =
ℓm ℓn

(ℓ2 + µ2
A)(ℓ

2 + µ2
B)
, (3.85)

where m and n are 2-dimensional eu
lidean indi
es and µ, µA, µB are the energies s
ales at

stake. The Fourier transforms of formulas (3.84) and (3.85) are

S1(ℓ, µ) =

∫

d2x

(2π)
µ2K0(µ |x|) eiℓ·x , (3.86)

and

S2mn(ℓ, µA, µB)=

∫

d2x

(2π)

e−iℓ·x

µ2
A − µ2

B

∂

∂xm

∂

∂xn
(K0(µA |x|)−K0(µB |x|)) eiℓ·x

=

∫

d2x

(2π)

1

µ2
A − µ2

B

{

δmn

2

[

µ2
A

(

K
′

0(µA |x|)
µA |x| +K

′′

0 (µA |x|)
)

−µ2
B

(

K
′

0(µB |x|)
µB |x| +K

′′

0 (µB |x|)
)]

+

(

δmn

2
− xmxn

|x|2
)[

µ2
A

(

K
′

0(µA |x|)
µA |x| −K

′′

0 (µA |x|)
)

−µ2
B

(

K
′

0(µB |x|)
µB |x| −K

′′

0 (µB |x|)
)]}

. (3.87)

This expression 
an be simpli�ed by noting that the modi�ed Bessel fun
tion Kν(λ) satis�es

the equation

λ2K
′′

ν (λ) + λK
′

ν(λ) = (λ2 + ν2)Kν(λ) . (3.88)

The expression (3.87) thus reads

S2mn(ℓ, µA, µB) =

∫

d2x

(2π)

eiℓ·x

µ2
A − µ2

B
{

δmn

2

[

µ2
AK0(µA |x|)− µ2

BK0(µB |x|)
]

−
(

δmn

2
− xmxn

|x|2
)

[

µ2
AK2(µA |x|)− µ2

BK2(µB |x|)
]

}

, (3.89)
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where we have used the relation

−1

λ
K ′0(λ) +K ′′0 (λ) = K2(λ) (3.90)

implied by the standard Bessel re
ursion formulas [172℄. Let us note that the Fourier trans-

forms in eqs. (3.86, 3.89) lead to the appearan
e of two fun
tions in the 3-parton impa
t

fa
tor, one asso
iated with the spin non-�ip transition Φ
γ∗T→ρT
qq̄g,nf and one asso
iated to the spin

�ip transition Φ
γ∗T→ρT
qq̄g, f :

Φ
γ∗T→ρT
qq̄g,n.f. ∝ µ2K0(µ |x) , (3.91)

Φ
γ∗T→ρT
qq̄g, f. ∝ µ2K2(µ |x) . (3.92)

3.3.4 Spin non-�ip and spin �ip qq̄g impa
t fa
tor

In this se
tion we show the results we obtain for ea
h 
olor dipole 
on�guration intera
ting

with the gluons in t−
hannel.
The sum of the 
ontributions in

δab

2Nc

Nc

CF
of the diagrams (
G1), (
tG1), (ftG1), (httG1),

(btG1) and (dtG2), asso
iated with the s
attering amplitude of the {qg} system on the

t−
hannel gluons, leads to the impa
t fa
tor

Φ
γ∗T→ρT , {qg}
qq̄g =

Cab

2

Nc

CF

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

×
{

e∗ρ · eγ
2

[

M(y1, y2)

y2
µ2
qgK0(µqg |x|)−

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)

+
ȳ1
y1ȳ2

M(y1, y2)
[

µ2
1K0(µ1 |x|)− µ2

qgK0(µqg |x|)
]

]

+

(

e∗ρ · eγ
2

− e∗ρ · xx · eγ
|x|2

) (

S(y1, y2)

y1
− M(y1, y2)

ȳ2

)

×
[

µ2
qgK2(µqg |x|)− µ2

1K2(µ1 |x|)
]}

+
Cab

2

Nc

CF

∫

dy1dy2

∫

d2x

(2π)
Tn.f.

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|) , (3.93)

with µ2
2 = y2ȳ2Q

2
. Note that

µ2
2

Q
= y2ȳ2Q is asso
iated to the analogous redu
ed mass of

the 2-body system 
onstituted by the antiquark and the 
enter of mass of the quark and the

gluon. We show in the tab. 3.1, the kinemati
 variables asso
iated to the 
enter of mass G

and the redu
ed parti
le R of the system {qg} that we use to obtain, after simpli�
ations

des
ribed previously, the result (3.93).

The result for the {q̄g} dipole is straightforward by ex
hanging the role of the quark and

the antiquark i.e. ex
hanging y1 and ȳ2 in (3.93). Adding the results for the {qg} and for the

{q̄g} dipoles and using the symmetry properties of S(y1, y2) andM(y1, y2) under the ex
hange
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{qg} Center of mass G Redu
ed parti
le R

momenta Lqg = ℓ1 + ℓg = −ℓ2 ℓqg =
y1 ℓg−yg ℓ1

yg+y1
=

y1 ℓg−yg ℓ1
y2

positions xG =
y1x1+ygxg

y2
x = xg − x1

masses mG = y2Q mR =
µ2
qg

Q
= y1ygQ

y2

Table 3.1: Kinemati
 variables of the 
enter of mass G and of the redu
ed parti
le R of the

system {qg}

of y1 → ȳ2, the spin non-�ip part Φ
γ∗T→ρT ,{qg}+{q̄g}
qq̄g,n.f. and the spin �ip part Φ

γ∗T→ρT ,{qg}+{q̄g}
qq̄g, f. read

Φ
γ∗T→ρT ,{qg}+{q̄g}
qq̄g,n.f. =

−Cab

2

Nc

CF

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

×
{

S(y1, y2)

ȳ1

[

µ2
1K0(µ1 |x|) + µ2

q̄gK0(µq̄g |x|)
]

− M(y1, y2)

y2

[

µ2
2K0(µ2 |x|) + µ2

qgK0(µqg |x|)
]

+

(

y2ȳ1
y1ȳ2

)

S(y1, y2)

ȳ1

[

µ2
2K0(µ2 |x|)− µ2

q̄gK0(µq̄g |x|)
]

−
(

y2ȳ1
y1ȳ2

)

M(y1, y2)

y2

[

µ2
1K0(µ1 |x|)− µ2

qgK0(µqg |x|)
]

}

+
Cab

2

Nc

CF

∫

dy1dy2

∫

d2x

(2π)

e∗ρ · eγ
2

×
[

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)−

M(y1, y2)

y2
µ2
2K0(µ2 |x|)

]

, (3.94)

and

Φ
γ∗T→ρT ,{qg}+{q̄g}
qq̄g, f. =

Cab

2

Nc

CF

∫

dy1dy2

∫

d2x

(2π)
N (x, k)(

e∗ρ · eγ
2

− e∗ρ · xx · eγ
|x|2

)

×
(

S(y1, y2)

y1
− M(y1, y2)

ȳ2

)

[

µ2
qgK2(µqg |x|)− µ2

1K2(µ1 |x|)

+µ2
q̄gK2(µq̄g |x|)− µ2

2K2(µ2 |x|)
]

. (3.95)

The spin non-�ip and spin �ip impa
t fa
tors asso
iated to the s
attering amplitude of the

dipole {qq̄} on the t−
hannel gluons are given by the 
ontributions of type

δab

2Nc
( Nc

CF
− 2) from
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the diagrams (aG1), (
G1), (bG1), (dG2), (bG2), (dG1). The results read

Φ
γ∗T→ρT ,{qq̄}
qq̄g,n.f. =

Cab

2

(

Nc

CF
− 2

)
∫

dy1dy2

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

×
{

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)−

M(y1, y2)

y2
µ2
2K0(µ2 |x|)

− S(y1, y2)

yg

[(

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
)

+
y2
ȳ2

(

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
)

]

+
M(y1, y2)

yg

[(

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
)

+
ȳ1
y1

(

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
)

]}

− Cab

2

(

Nc

CF
− 2

)
∫

dy1dy2

∫

d2x

(2π)

e∗ρ · eγ
2

×
(

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)−

M(y1, y2)

y2
µ2
2K0(µ2 |x|)

)

, (3.96)

and

Φ
γ∗T→ρT ,{qq̄}
qq̄g, f. =

Cab

2

(

Nc

CF
− 2

)∫

dy1dy2

∫

d2x

(2π)
N (x, k)

(

e∗ρ · eγ
2

− e∗ρ · xx · eγ
|x|2

)

×
(

S(y1, y2)

y1
− M(y1, y2)

ȳ2

)[

ȳ2
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

1K2(µ1 |x|)
)

+
y1
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

2K2(µ2 |x|)
)

]

. (3.97)

We show in tab. 3.2 the kinemati
 variables asso
iated to the system {qq̄}. The total 3-parton

{qq̄} Center of mass G Redu
ed parti
le R

momenta Lqq̄ = ℓ1 + ℓ2 = −ℓg ℓqq̄ =
ȳ2 ℓ1−y1 ℓ2

y1+ȳ2
=

ȳ2 ℓ1−y1 ℓ2
ȳg

positions xG =
y1x1+ȳ2x2

ȳg
x = x1 − x2

masses mG = ȳgQ mR =
µ2
qq̄

Q
= y1ȳ2Q

ȳg

Table 3.2: Kinemati
 variables of the 
enter of mass G and of the redu
ed parti
le R of the

system {qq̄}
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results for the spin non-�ip amplitude is thus

Φ
γ∗T→ρT
qq̄g, n.f. = −C

ab

2

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

×
{

2

[

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)−

M(y1, y2)

y2
µ2
2K0(µ2 |x|)

]

+
Nc

CF

[

S(y1, y2)

ȳ1
µ2
q̄gK0(µq̄g |x|)−

M(y1, y2)

y2
µ2
qgK0(µqg |x|)

+

(

y2ȳ1
ȳ2y1

)

×
(

S(y1, y2)

ȳ1

[

µ2
2K0(µ2 |x|)− µ2

q̄gK0(µq̄g |x|)
]

−M(y1, y2)

y2

[

µ2
1K0(µ1 |x|)− µ2

qgK0(µqg |x|)
]

)]

+

(

Nc

CF
− 2

)[

S(y1, y2)

yg

([

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
y2
ȳ2

[

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

)

− M(y1, y2)

yg

([

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
ȳ1
y1

[

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

)]}

+
Cab

2
e∗ρ · eγ

∫

dy1dy2

(

S(y1, y2)

ȳ1
− M(y1, y2)

y2

)

, (3.98)

while the spin �ip 3-parton impa
t fa
tor is

Φ
γ∗T→ρT
qq̄g, f. =

Cab

2

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

(

e∗ρ · eγ
2

− (e∗ρ · x) (x · eγ)
|x|2

)

×
(

S(y1, y2)

y1
− M(y1, y2)

ȳ2

){

Nc

CF

[

µ2
qgK2(µqg |x|)− µ2

1K2(µ1 |x|)

+µ2
q̄gK2(µq̄g |x|)− µ2

2K2(µ2 |x|)
]

+

(

Nc

CF

− 2

)[

ȳ2
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

1K2(µ1 |x|)
)

+
y1
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

2K2(µ2 |x|)
)

]}

. (3.99)

In the formula (3.98), the last line is not proportional to the dipole fa
tor N (x, k). In

the following part, we will show that putting together the 2-parton result (beyond WW

approximation) and the 3-parton result, all parts of the impa
t fa
tor whi
h do not have

the dipole form 
an
el ea
h others using the QCD EOM. This will extend to the full twist 3

result, the reasoning leading in the WW approximation from eq. (3.31) to eq. (3.34).
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3.4 The twist 3 γ∗T → ρT impa
t fa
tor in the dipole pi
-

ture

In the se
. 3.4.1, we show that the EOMs of QCD are essential to get a fa
torized form of the

impa
t fa
tor at the full twist 3 level. Next, in se
. 3.4.2, we show that the spin non-�ip and

spin �ip results are equivalent to the treatment in momentum spa
e presented in se
. 2.7.4 and

�nally, in se
. 3.4.3, we 
ombine two- and three-parton impa
t fa
tor 
ontributions leading

to the �nal full twist 3 result.

3.4.1 The dipole pi
ture arising from the equations of motion of

QCD

Let us re
all the two relations (2.113, 2.114) between DAs due to the QCD EOMs,

ȳϕ3(y;µ
2
F ) + ȳϕA(y;µ

2
F ) + ϕT

1 (y;µ
2
F ) + ϕT

A(y;µ
2
F )

= −
∫ 1

y

dy2S(y, y2;µ
2
F ) , (3.100)

yϕ3(y;µ
2
F )− yϕA(y;µ

2
F )− ϕT

1 (y;µ
2
F ) + ϕT

A(y;µ
2
F )

=

∫ 1

y

dy2M(y, y2;µ
2
F ) . (3.101)

Adding (3.100) multiplied by y and (3.101) multiplied by ȳ, gives the relation

yȳϕ3(y) + (y − ȳ)ϕT
1 (y) + ϕT

A(y)

= −y
∫

dy2S(y, y2) + ȳ

∫

dy2M(y, y2) . (3.102)

Multiplying (3.102) by 1/(yȳ) and integrating over y gives �nally the relation

∫

dy

yȳ

(

2yȳϕ3(y) + (y − ȳ)ϕT
1 (y) + ϕT

A(y)
)

+

∫

dy1

∫

dy2

(

S(y1, y2)

ȳ1
− M(y1, y2)

y2

)

= 0 , (3.103)

with ϕ(y) = ϕWW (y) + ϕgen(y) being the 
omplete DAs, i.e. whi
h in
lude both the WW

and the genuine twist 3 
ontributions. The 2-parton impa
t fa
tor (3.31), before using the

relations due to QCD EOMs, reads

Φ
γ∗T→ρT
qq̄ =

−CabQ2

2
e∗ρ · eγ

∫

dy

∫

d2x

2π
µK1(µ|x|)N (x, k)

×
(

[

(y − ȳ)ϕT
1 (y)− ϕT

A(y)
]

e∗ρ · x
x · eγ
|x| + ϕT

A(y)
x2

|x|e
∗
ρ · eγ

)

+
Cab

2
e∗ρ · eγ

∫

dy

yȳ

[

(2yȳ ϕ3(y) + (y − ȳ)ϕT
1 + ϕT

A(y))
]

. (3.104)



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 152

Colle
ting all terms arising from eqs. (3.98) and (3.104) whi
h are not proportional to the

dipole fa
tor we obtain

e∗ρ · eγ
Cab

2

[
∫

dy

yȳ

(

2yȳϕ3(y) + (y − ȳ)ϕT
1 (y) + ϕT

A(y)
)

+

∫

dy1

∫

dy2

(

S(y1, y2)

ȳ1
− M(y1, y2)

y2

)]

= 0 , (3.105)

i.e. we observe that they 
an
el due to the relation (3.103). The �nal 2-parton impa
t fa
tor

is thus

Φ
γ∗T→ρT
qq̄ = −C

abQ2

2

∫

dy

∫

d2x

2π

{[

(y − ȳ)ϕT
1 (y)− ϕT

A(y)
]

× (e∗ρ · x) (x · eγ)
|x|2 + ϕT

A(y)e
∗
ρ · eγ

}

µ|x|K1(µ|x|)N (x, k) , (3.106)

and it 
an be de
omposed into the spin non-�ip and the spin-�ip parts

Φ
γ∗T→ρT
qq̄, n.f. = −C

abQ2

2

∫

dy
(

ϕT
A + (y − ȳ)ϕT

1

)

×
∫

d2x

2π

1

2
e∗ρ · eγ µ|x|K1(µ|x|)N (x, k) , (3.107)

and

Φ
γ∗T→ρT
qq̄, f. = −C

abQ2

2

∫

dy
(

ϕT
A − (y − ȳ)ϕT

1

)

×
∫

d2x

2π

(

1

2
e∗ρ · eγ −

(e∗ρ · x)(eγ · x)
|x|2

)

µ|x|K1(µ|x|)N (x, k) . (3.108)

The results (3.106, 3.107, 3.108) are the extension of the formula (3.34, 3.35, 3.36) to the full

solution of the QCD EOMs for the DAs, in
luding the genuine twist 3 solutions.
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The 3-parton spin non-�ip result after using the relation (3.103) is thus

Φ
γ∗T→ρT
qq̄g,n.f. = −C

ab

2

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

×
{

2

(

S(y1, y2)

ȳ1
µ2
1K0(µ1 |x|)−

M(y1, y2)

y2
µ2
2K0(µ2 |x|)

)

+
Nc

CF

[

S(y1, y2)

ȳ1
µ2
q̄gK0(µq̄g |x|)−

M(y1, y2)

y2
µ2
qgK0(µqg |x|)

+

(

y2ȳ1
ȳ2y1

)

×
(

S(y1, y2)

ȳ1

[

µ2
2K0(µ2 |x|)− µ2

q̄gK0(µq̄g |x|)
]

−M(y1, y2)

y2

[

µ2
1K0(µ1 |x|)− µ2

qgK0(µqg |x|)
]

)]

+

(

Nc

CF

− 2

)[

S(y1, y2)

yg

([

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
y2
ȳ2

[

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

)

− M(y1, y2)

yg

([

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
ȳ1
y1

[

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

)]}

, (3.109)

and it 
an be rewritten in a more 
ompa
t way, using the symmetry properties of the DAs

under ex
hange of y1 and ȳ2, as

Φ
γ∗T→ρT
qq̄g,n.f. = −Cab

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

S(y1, y2)

×
{

1

ȳ1

(

2µ2
1K0(µ1 |x|) +

Nc

CF

[

µ2
q̄gK0(µq̄g |x|)

+

(

y2ȳ1
ȳ2y1

)

×
[

µ2
2K0(µ2 |x|)− µ2

q̄gK0(µq̄g |x|)
]

])

+
1

yg

(

Nc

CF

− 2

)

[[

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
y2
ȳ2

[

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

]}

. (3.110)

3.4.2 Equivalen
e with the results obtained in momentum spa
e in

the light-
one 
ollinear fa
torization s
heme

The integration of the spin non-�ip result over x is straightforward by using the relation

∫

d2x

(2π)
N (x, k)µ2K0(µ |x|) =

2k2

k2 + µ2
. (3.111)
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The result after integration over x is

Φ
γ∗T→ρT
qq̄g,n.f. = −Cab

∫

dy1dy2 e
∗
ρ · eγ S(y1, y2)

×
{(

2− Nc

CF

)

α

ȳgα + y1ȳ2

(

y21
α+ y1ȳ1

+
y2 ȳ2

α + y2ȳ2

)

+
Nc

CF

α

α ȳ1 + ȳ2 yg

α

α + y2 ȳ2
+

2

ȳ1

α

α+ y1ȳ1

}

, (3.112)

with α = k2/Q2
. The result (3.112) is, as expe
ted, identi
al to the one obtained in Ref. [131℄

using the light-
one 
ollinear fa
torization in the momentum spa
e representation.

For the spin �ip result, using the symmetry of the amplitude under the ex
hange of y1

and ȳ2, we get

Φ
γ∗T→ρT
qq̄g, f. = Cab

∫

dy1dy2

∫

d2x

(2π)
N (x, k)

(

e∗ρ · eγ
2

− (e∗ρ · x)(x · eγ)
|x|2

)

×
(

S(y1, y2)

y1

){

Nc

CF

[

µ2
qgK2(µqg |x|)− µ2

1K2(µ1 |x|)

+µ2
q̄gK2(µq̄g |x|)− µ2

2K2(µ2 |x|)
]

+

(

Nc

CF
− 2

)[

ȳ2
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

1K2(µ1 |x|)
)

+
y1
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

2K2(µ2 |x|)
)

]}

. (3.113)

We now integrate over x = (|x| cos(θ), |x| sin(θ)), with k = (|k| cos(φ), |k| sin(φ)) . Using the

fa
t that only the spin �ip 
ontributions are non zero, and based on the following identities

[(e−ρ )
∗ · x] [x · e+γ ]
|x|2

=

(

−i |x| e
iθ

√
2

)(

−i |x| e
iθ

√
2

)

1

|x|2
= −1

2
ei2θ , (3.114)

[(e+ρ )
∗ · x] [x · e−γ ]
|x|2

=

(

i
|x| e−iθ√

2

)(

i
|x| e−iθ√

2

)

1

|x|2
= −1

2
e−i2θ , (3.115)

resulting from the expli
it de�nitions of the polarizations in eq. (2.241), we obtain

∫

d2x

(2π)
N (x, k)µ2K2(µ |x|)

(

((e∓ρ )
∗ · x)(x · e±γ )
|x|2

)

= −
∫

dλ λK2(λ)

∫

dθ

2π
2

(

1− cos

[

kλ

µ
cos(θ − φ)

])

1

2
e±i2θ

= −1

2
e±i2φ

∫

dλ λK2(λ)

∫

dθ

2π
2

(

1− cos

[

kλ

µ
cos(θ)

])

e±i2θ

= −1

2
e±i2φ2

∫

dλ λK2(λ)J2

(

kλ

µ

)

=
((e∓ρ )

∗ · k) (k · e±γ )
|k|2

2k2

k2 + µ2
, (3.116)
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with λ = µ |x|. Hen
e the spin �ip impa
t fa
tor integrated over x reads

Φ
γ∗T→ρT
qq̄g,f = −2CabTf

∫

dy1 dy2 S(y1, y2)

×
{

Nc

CF

[

αȳ2

(

y1
(α + y1ȳ1)(y2α + y1yg)

+
ȳ2

(α + y2ȳ2)(ȳ1α + ȳ2yg)

)]

+

(

Nc

CF
− 2

)[

αȳ2
ȳgα + y1ȳ2

(

y1
α + y1ȳ1

+
ȳ2

α + y2ȳ2

)]}

, (3.117)

whi
h is the same result as the one obtained in Ref. [131℄.

3.4.3 Complete twist 3 result of the γ∗T → ρT impa
t fa
tor

Combining all the 2-parton and 3-parton results for the spin non-�ip and spin �ip impa
t

fa
tors Φγ∗→ρ
n.f. , Φγ∗→ρ

f. of the γ∗T → ρT transition, we �nally obtain

Φ
γ∗T→ρT
n.f.

= −Cab

∫

d2x

(2π)
N (x, k)

e∗ρ · eγ
2

×
{

Q2

2

∫

dy
(

ϕT
A(y) + (y − ȳ)ϕT

1 (y)
)

µ|x|K1(µ|x|)

+

∫

dy1 dy2 S(y1, y2)

(

1

ȳ1

(

2µ2
1K0(µ1 |x|) +

Nc

CF

[

µ2
q̄gK0(µq̄g |x|)

+

(

y2 ȳ1
ȳ2 y1

)

×
[

µ2
2K0(µ2 |x|)− µ2

q̄gK0(µq̄g |x|)
]

])

+
1

yg

(

Nc

CF

− 2

)

[[

µ2
1K0(µ1 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

+
y2
ȳ2

[

µ2
2K0(µ2 |x|)− µ2

qq̄K0(µqq̄ |x|)
]

])}

, (3.118)

and

Φ
γ∗T→ρT
f.

= Cab

∫

d2x

(2π)
N (x, k)

(

e∗ρ · eγ
2

− (e∗ρ · x) (x · eγ)
|x|2

)

×
{

−Q
2

2

∫

dy
(

ϕT
A(y)− (y − ȳ)ϕT

1 (y)
)

µ|x|K1(µ|x|)

+

∫

dy1dy2

(

S(y1, y2)

y1

)[

Nc

CF

[

µ2
qgK2(µqg |x|)− µ2

1K2(µ1 |x|)

+µ2
q̄gK2(µq̄g |x|)− µ2

2K2(µ2 |x|)
]

+

(

Nc

CF
− 2

)[

ȳ2
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

1K2(µ1 |x|)
)

+
y1
yg

(

µ2
qq̄K2(µqq̄ |x|)− µ2

2K2(µ2 |x|)
)

]]}

. (3.119)

The eqs. (3.118) and (3.119) are the full twist 3 results the γ∗T (λγ) → ρT (λρ) impa
t fa
tors,

in the forward limit. These results are 
onsistent with the dipole pi
ture, as the 
oupling

with the t−
hannel gluons with a dipole of transverse size x fa
torizes out.



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 156

Note that the three-parton 
ontribution 
ould, in prin
iple, be rewritten in a fa
torized

form with a photon wave fun
tion 
hara
terizing the disso
iation of the photon into a quark

antiquark gluon intermediate state, and the ρ− meson DAs. Unfortunately, to the best of

our knowledge, the 3-body wave fun
tion of the photon is unknown.

3.5 Heli
ity amplitudes and polarized 
ross-se
tions

The full twist 3 results eqs. (3.118) and (3.119) of the previous se
tion allow us to build

a model for the heli
ity amplitude T11 based on one hand on the previous twist expansion


al
ulations and on the other hand on a dipole model for the dipole s
attering amplitude

whi
h is known from the �t of DIS data.

We are interested in the two dominant heli
ity amplitudes T00 and T11 in the forward

limit. T00 and T11 involve respe
tively the Φγ∗L→ρL
given by eq. (3.120) and Φγ∗→ρ,n.f.

given

by eq. (3.118). We 
an put the two results in the 
ompa
t form,

Φγ∗L→ρL(k,Q, µ2
F ) =

(

δab

2

)
∫

dy

∫

dr ψ
γ∗L→ρL
(qq̄) (y, r;Q, µ2

F )A(r, k) , (3.120)

Φγ∗T→ρT (k,Q, µ2
F ) =

(

δab

2

)
∫

dy

∫

dr ψ
γ∗T→ρT
(qq̄) (y, r;Q, µ2

F )A(r, k) (3.121)

+

(

δab

2

)
∫

dy2

∫

dy1

∫

dr ψ
γ∗T→ρT
(qq̄g) (y1, y2, r;Q, µ

2
F )A(r, k) .

The fun
tions ψ
γ∗L→ρL
(qq̄) , ψ

γ∗T→ρT
(qq̄) , ψ

γ∗T→ρT
(qq̄g) are respe
tively the amplitudes of produ
tion of a

ρ−meson from a quark-antiquark (quark-antiquark gluon) system produ
ed far upstream the

target in the �u
tuations of the virtual photon. We re
all their expressions,

ψ
γ∗L→ρL
(qq̄) (y, r;µ2

F ) =
mρfρ√

2

∑

(h,h̄)

φρL
(hh̄)

(y;µ2
F ) Ψ

γ∗L
(h,h̄)

(y, r;Q2) , (3.122)

ψ
γ∗T→ρT
(qq̄) (y, r;µ2

F ) =
mρfρ√

2

∑

(h,h̄)

φ
ρT , (λρ)

(h,h̄)
(y;µ2

F ) Ψ
γ∗T (λγ)

(h,h̄)
(y, r;Q2) . (3.123)

ψ
γ∗T→ρT
(qq̄g) (y, r;µ2

F ) =
mρfρ√

2

[(√

π

4Nc

S(y1, y2;µ
2
F )

2

)

Fγ∗T (y1, y2, r;Q)

−
(√

π

4Nc

M(y1, y2;µ
2
F )

2

)

Fγ∗T (ȳ2, ȳ1, r;Q)

]

, (3.124)

where the fun
tion Fγ∗T
des
ribes the �u
tuations of the transversely polarized photon into

a quark-antiquark-gluon 
olor singlet. The fun
tion Fγ∗T

an be expressed in terms of the

longitudinally polarized photon wave fun
tion

Ψγ∗L(µi, r;Q) =
∑

(h,h̄)

Ψ
γ∗L
(h,h̄)

≡ 2
e

2π

√

Nc

π

µ2
i

Q
K0(µi |r|) , (3.125)
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as

Fγ∗T (y1, y2, r;Q) =
1

2

{

2

[

Ψγ∗L(µ1, r;Q)

ȳ1Q

]

+
Nc

CF

[

Ψγ∗L(µq̄g, r;Q)

ȳ1Q
+

(

y2 ȳ1
ȳ2 y1

)

×
(

Ψγ∗L(µ2, r;Q)

ȳ1Q
− Ψγ∗L(µq̄g, r;Q)

ȳ1Q

)]

+

(

Nc

CF
− 2

)[(

Ψγ∗L(µ1, r;Q)

ygQ
− Ψγ∗L(µqq̄, r;Q)

ygQ

)

+
y2
ȳ2

(

Ψγ∗L(µ2, r;Q)

ygQ
− Ψγ∗L(µqq̄, r;Q)

ygQ

)]}

. (3.126)

Note, that in the large Nc limit Fγ∗T
simpli�es as

Fγ∗T (y1, y2, r;Q) −−−−→
Nc→∞

1

ȳ1y1ȳ2Q
(3.127)

×
{

y1ȳ2Ψ
γ∗L(µ1, r;Q) + y2ȳ1Ψ

γ∗L(µ2, r;Q)− ygΨ
γ∗L(µq̄g, r;Q)

}

.

In our 
onvention, the heli
ity amplitudes within the impa
t fa
tor representation read

Tλρλγ

s
=
δab

2

∫

d2k

k4
Φ

γ∗λγ→ρλρ
ab (k,Q, µ2

F )F(x, k) , (3.128)

with F(x, k) is the unintegrated gluon distribution as de�ned in Ref. [22℄. Note that we have

adapted the 
oe�
ient of the dipole s
attering amplitude in the impa
t fa
tor su
h as that

the dipole 
ross-se
tion de�ned in Ref. [22℄ is simply

σ̂(x, r) =
N2

c − 1

4

∫

d2k

k4
F(x, k)A(k, r) . (3.129)

Inserting the expressions for the impa
t fa
tor Φ
γ∗λγ→ρλρ

of eqs. (3.120, 3.122), one gets

T00
s

=

∫

dy

∫

dr ψ
γ∗L→ρL
(qq̄) (y, r;Q, µ2

F ) σ̂(x, r) , (3.130)

T11
s

=

∫

dy

∫

dr ψ
γ∗T→ρT
(qq̄) (y, r;Q, µ2

F ) σ̂(x, r) (3.131)

+

∫

dy2

∫

dy1

∫

dr ψ
γ∗T→ρT
(qq̄g) (y1, y2, r;Q, µ

2
F ) σ̂(x, r) .

We 
an separate T11 in the WW 
ontribution and the genuine 
ontribution

TWW
11

s
=

∫

dy

∫

dr ψ
γ∗T→ρT ,WW

(qq̄) (y, r;Q, µ2
F ) σ̂(x, r) , (3.132)

T gen
11

s
=

∫

dy

∫

dr ψ
γ∗T→ρT , gen

(qq̄) (y, r;Q, µ2
F ) σ̂(x, r) (3.133)

+

∫

dy2

∫

dy1

∫

dr ψ
γ∗T→ρT
(qq̄g) (y1, y2, r;Q, µ

2
F ) σ̂(x, r) .

As announ
ed, the formulas (3.130, 3.131) allow us to 
ombine various models of the s
at-

tering amplitude of a dipole on a nu
leon with the results obtained by the twist expansion of
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the γ∗ → ρ impa
t fa
tor. We will use the GBW-model and the AAMQS-models des
ribed

in the 
hap. 1.3.4.

At t = tmin the 
ontributions to the longitudinal and transverse di�erential 
ross-se
tions

dσL

dt
and

dσT

dt
are respe
tively related to the heli
ity amplitudes T00 and T11

dσL
dt

(t = 0) =
|T00(s, t = 0)|2

16πs2
, (3.134)

dσT
dt

(t = 0) =
|T11(s, t = 0)|2

16πs2
. (3.135)

The t−dependen
y is expe
ted to be governed by non-perturbative e�e
ts of the nu
leon

whi
h 
an be phenomenologi
ally parameterized by an exponential dependen
e of the di�er-

ential 
ross-se
tions

dσL,T
dt

(t) = e−b(Q
2)t dσL,T

dt
(t = 0) . (3.136)

Integrating over t leads to the following results in the polarized 
ross-se
tions

σL =
1

b(Q2)

|T00(s, t = 0)|2
16πs2

, (3.137)

σT =
1

b(Q2)

|T11(s, t = 0)|2
16πs2

. (3.138)

The b(Q2) slope has been measured by ZEUS and H1. We will use here quadrati
 �ts of the

b(Q2) slope data of Ref. [99℄ shown in �g. 3.11 to determine the 
ross-se
tion. Note that this

t−dependen
e is obtained by �tting the di�erential 
ross-se
tion by the fa
tor exp(−b |t|) for
several values of Q2

giving the dependen
e b(Q2). The agreement of the �ts with the H1 data

in shown in �g. 3.12.

H1

Fit
Fit Error

0 10 20 30 40
Q2

2

4

6

8

10

bHQ2L

Figure 3.11: Quadrati
 �ts of the b−slope H1 data.

Note that the t−dependen
e being given by a de
reasing exponential fun
tion, we 
an

estimate from the b−slope values that the di�erential 
ross-se
tion is dominated by the range

|t| . 1

b(Q2)
≈ 1

6
GeV

2 .
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Figure 3.12: t−dependen
e of the di�erential 
ross-se
tion measured by H1 
ollaboration [99℄

for several Q2
values and with a 
enter of mass energy W = 75 GeV.

3.6 Comparison with the HERA data

In this se
tion, we 
ompare to H1 [99℄ and ZEUS [98℄ data our predi
tions for,

σT , σL , R =
σL
σT

and r0400 =
ε

x211 + ε
.

We denote σ the total 
ross-se
tion, σ = σL + σT a

ording to ZEUS 
onvention in ref. [98℄

or σ = εσL + σT following H1 notation [99℄. We re
all that ε is the photon polarization

parameter, 〈ε〉 = 0.98 for H1 and 〈ε〉 = 0.996 for ZEUS. We remind that the dipole models

we will use are the GBW and the AAMQS dipole models.

We prefer to present r0400 instead of the ratio T11/T00 as the data are available from both H1

and ZEUS 
ollaborations. As the di�eren
e between the b−slopes of σL (bL) and σT (bT ) is

small 
ompared to the value of the b−slope measured by �tting the t−dependen
e of the total
di�erential 
ross-se
tion, we will assume that b = bL = bT . The dire
t 
onsequen
e of this is

that the ratios of di�erential 
ross-se
tions are 
onstant fun
tions of t. This assumption on

the b−slopes allows to relate r0400 to the polarized 
ross-se
tions,

r0400 ≡
σL
σ
.

As it is shown in �g. 3.13, the data of r0400 as a fun
tion of |t|, support this assumption as

they are weakly sensitive to the t−value.
The results for σT and σL are shown in �gs. 3.14(a), 3.14(b). As one 
an see the nor-

malizations of the 
ross-se
tions are in very good agreement with the data for large Q2
,
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Figure 3.13: Ratio r0400 as a fun
tion of |t| for di�erent values of Q2
from ZEUS 
ollaboration

Ref. [98℄.

independently of the dipole model used. This is a non trivial result as the overall normaliza-

tions of the predi
tions are on one hand due to the normalization of the dipole 
ross-se
tion

and on the other hand, based on the 
oupling 
onstants evaluated from QCD sum rules.

The su

ess to reprodu
e the right normalization at large Q2
indi
ates that the fa
torization

pro
edure we used works properly. The fa
t that at low Q2
there is a dis
repan
y appearing

between the data and the predi
tions, is due to higher twist e�e
ts. Indeed, the twist expan-

sion is justi�ed only up to 
ertain value of Q2
as the negle
ted terms are expe
ted to be of

the order mρ/Q. It is also interesting to observe that thanks to HERA data we 
an evaluate

when the higher twist 
orre
tions be
ome important. We see that for Q2 ∼ Q2
min ∼ 5 GeV2

,

the leading twist 
orre
tions are not enough to des
ribe the data. Unfortunately the satura-

tion regime whi
h in this kinemati
s is expe
ted for Q2 < Q2
s ∼ 1 GeV2

is not a

essible with

our twist expansion, but as it is shown in �g. 3.15, the dipole models are giving the good

x−dependen
e. We re
all that the s dependen
e of the amplitude is only given by the dipole

s
attering amplitude as the impa
t fa
tors are s−independent.
The di�erent 
ontributions, namely the WW (for σT only) 
ontribution, the total 
ontri-

butions at,

µ2
F =

Q2 +m2
ρ

4
,

and the asymptoti
 
ontributions µ2
F → ∞ are displayed for σT and σL in �gs. 3.17(a),

3.17(b). As in the GS-model of the 
hap. 2, the WW 
ontribution dominates the genuine


ontribution and the AS 
ontribution is 
lose to the other 
ontributions. Comparing the


urves of the AS and the total 
ontributions allows to get a good estimation of the dependen
e

of the results in the 
hoi
e of the fa
torization s
ale. Indeed we will see in the next part that
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(b) σL vs H1 data

Figure 3.14: Predi
tions for σT and σL vs Q2
, forW = 75 GeV, using the AAMQSa (red solid

line), AAMQSb (blue large dashed line) and GBW (green dashed line) models 
ompared to

the data of H1[99℄.

this dependen
e is quite important at the level of the overlap of the γ∗ and ρ−meson wave

fun
tions but it is hidden by the 
onvolution with the dipole 
ross-se
tion whi
h �lters the

range of dipole size where this µF−dependen
e is important.

In �gs. 3.18(a), 3.18(b) are shown the total and AS results with the un
ertainty due to

the error bars on the b−slope values in �g. 3.11.

The results with the AAMQSa dipole model for the ratiosR and r0400 are shown in �gs. 3.19,

3.20. The predi
tions are 
ompared with both H1 with W = 75 GeV and ZEUS with

W = 90 GeV 
ollaborations. The ratios are independent of the normalization of the dipole


ross-se
tion, we 
an thus only 
he
k if we get the good s
aling between the transverse,

longitudinal and total 
ross-se
tions.

The results with the other dipole models are fairly 
lose to the results obtained with the
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Figure 3.15: Total 
ontribution to the total 
ross-se
tion σ as the fun
tion ofW 
ompared to

H1 data [99℄ obtained with the AAMSQa dipole model. The un
ertainty due to the b−slope
error bars is taken into a

ount.
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Figure 3.16: Total 
ontribution to the total 
ross-se
tion σ as the fun
tion of W 
ompared

to ZEUS data [98℄ obtained with the AAMSQa dipole model. The un
ertainty due to the

b−slope error bars in taken into a

ount.

AAMQSa model, they are shown in Ref. [20℄.

3.7 Intera
ting dipole distributions

In this se
tion we study the radial distributions of dipoles in the intermediate states that

intera
t with the nu
leon via the dipole s
attering amplitude.



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 163

H1

Total
WW
AS

W=75 GeV

H1

W=75 GeV

2 5 10 20
Q2HGeV2L

1

10

100

ΣTHnbL
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(b) AS (purple dashed line) and Total (red solid line) 
ontributions to σL.

Figure 3.17: Predi
tions for σT and σL vs Q2
, for W = 75 GeV, using the AAMQSa-model,


ompared to the data of H1[99℄.

3.7.1 Overlaps and distributions

In Se
. 3.5 we have found the fa
torized expressions eqs. (3.130, 3.131) for the heli
ity am-

plitudes, that we 
an rewrite as

Tλρλγ

s
= Nλρλγ

∫ ∞

0

drPλρλγ (r, Q
2, µ2

F ) σ̂(x, r) , (3.139)

with Pλρλγ (r, Q
2, µ2

F ) being the amplitude of probability to �nd an intermediate state with

a dipole 
on�guration of size r = |r| that 
an intera
t with the two t−
hannel gluons and
Nλρλγ is a normalization fa
tor. The distribution Pλρλγ (r, Q

2, µ2
F ) reads

Pλρλγ (r, Q
2, µ2

F ) =
1

Nλρλγ

r

∫

dy
∣

∣Wλρλγ (y, r;µ
2
F , Q

2)
∣

∣ , (3.140)
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Figure 3.18: Full twist 3 and asymptoti
 predi
tions with the b−slope un
ertainty, using

AAMQSa model.

and

Nλρλγ =

∫ ∞

0

dr r

∫

dy
∣

∣Wλρλγ (y1, y, r;µ
2
F , Q

2)
∣

∣ , (3.141)

where the fun
tion

∣

∣Wλρλγ (y, r;µ
2
F , Q

2)
∣

∣

is the overlap of the wave fun
tions of the in
oming

virtual photon state and the �nal ρ−meson state. The fun
tions W00 and W11 read expli
itly,

W00(y, r;µ
2
F , Q

2) = ψ
γ∗L→ρL
(qq̄) (y, r;Q, µ2

F ) , (3.142)

W11(y, r;µ
2
F , Q

2) = ψ
γ∗T→ρT
(qq̄) (y, r;Q, µ2

F ) (3.143)

+

∫ y

0

dy1 ψ
γ∗T→ρT
(qq̄g) (y1, y, r;Q, µ

2
F ) .
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Figure 3.19: The full twist 3 
ontribution to the ratio of the 
ross-se
tions R = σL/σT in the

limit t = 0 versus W and Q2

ompared to the data of H1 [99℄ in �gure (a) and ZEUS [98℄ in

�gure (b).
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AAMQSa-model vs H1 data.
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Figure 3.20: Predi
tions for r0400 vs W and Q2

ompared respe
tively with H1[99℄ data (�gure

(a)) and ZEUS[98℄ data (�gure (b)), using the AAMQSa-model.
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The overlap W11 
an be split in the WW and the genuine 
ontributions

WWW
11 (y, r;µ2

F , Q
2) = ψ

γ∗T→ρT WW

(qq̄) (y, r;Q, µ2
F ) , (3.144)

Wgen
11 (y, r;µ2

F , Q
2) = ψ

γ∗T→ρT gen

(qq̄) (y, r;Q, µ2
F ) (3.145)

+

∫ y

0

dy1ψ
γ∗T→ρT
(qq̄g) (y1, y, r;Q, µ

2
F ) .

As the r and the Q dependen
es of the radial distributions enter the amplitudes only

through the variable "λ = rQ". We 
an res
ale the distribution by 
hanging the variable r

by λ,

Pλρλγ (λ, µ
2
F ) ≡

Pλρλγ (
λ
Q
, Q2;µ2

F )

Q
. (3.146)

The distribution Pλρλγ (λ, µ
2
F ) only depends on Q by the 
hoi
e of the renormalization s
ale

µ2
F (Q

2) =
Q2 +m2

ρ

4
.

So in the asymptoti
 
ase, Pλρλγ (λ,∞) ≡ PAS
λρλγ

(λ) depends only on λ.

Heli
ity amplitudes read,

Tλρλγ

s
= Nλρλγ

∫ ∞

0

dλPλρλγ (λ, µ
2
F ) σ̃(x, λ) , (3.147)

with

σ̃(x, λ) = σ̂

(

x,
λ

Q

)

(3.148)

the res
aled dipole 
ross-se
tion.
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* ® ΡL
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Figure 3.21: Full twist 3 (Total) P00(λ, µ
2
F (Q

2)) for Q2 = 1GeV2
(solid red) and Q2 =

10 GeV

2
(dashed blue), AS P

(AS)
00 (λ) (dotted purple) and σ̃(x, λ) at W = 90 GeV

2
for

Q2 = 1 GeV2
(dotted-dashed bla
k) and Q2 = 10 GeV2

(dashed bla
k).
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Figure 3.22: The Total P11(λ, µ
2
F (Q

2)) (red solid lines) results and their WW (blue dot-dashed

lines) and genuine (Gen) (orange dashed lines) 
ontributions, as well as the AS (purple long-

dashed line) result P
(AS)
11 (λ) and the dipole 
ross-se
tions σ̃(x, λ) (bla
k dot-dot-dashed lines)

at W = 90 GeV2
, for Q2 = 1 GeV2

(thi
k lines) and Q2 = 10 GeV2
(thin lines).

In �gs. 3.21 and 3.22 are shown the di�erent 
ontributions to the distributions P00 and

P11 for two di�erent values of Q2
, Q2 = Q2

a = 10 GeV

2
and Q2 = Q2

b = 1 GeV

2
. As

Qs(x) = R−10 (x) ∼ 1 GeV, the 
ase Q2 = Q2
a 
orresponds to the diluted regime while the 
ase

Q2 = Q2
b is at the boundary with the saturation regime.

The dipole 
ross-se
tion from the GBW-model is also shown in order to see whi
h dipole

sizes are �ltered by the intera
tion with the nu
leon. We will refer to the "dipole bandwidth"

for the range of dipole whi
h have a size above 2R0(x), i.e. r > 2R0(x), or equivalently by

multiplying both sides by Q, λ > λSat.(Q2,W ) ≡ 2R0(x)Q. Indeed we 
an see that the dipole


ross-se
tion will play the role of a �lter for the large dipoles and as one 
an note looking at

the �gs. 3.21 and 3.22, λSat.(Q2,W ) are good estimates of the inferior bounds of the dipole


ross-se
tion bandwidth.

In �g. 3.21, the AS and the total 
ontributions to P00 for both virtualities Qa and Qb are

shown and we 
an see that the distribution P00 is not sensitive to the fa
torization s
ale. We


an then 
onsider only the AS 
ase as it has a simple analyti
 form,

P
(AS)
00 (λ) =

1

Q
P(AS)

00 (
λ

Q
,Q2) = 6

∫

dy (yȳ)2λK0(
√
yȳλ) . (3.149)

For the distribution P11 we see in �g. 3.22 that the distribution is sensitive to the fa
tor-

ization s
ale. For the small values, µ2
F = µ2

F (Q
2
b), the genuine 
ontribution is as important

as the WW-
ontribution. This fa
t is not visible on the results for heli
ity amplitudes be-


ause the genuine distribution sele
ts mostly small dipoles that are not in the bandwidth

of the dipole 
ross-se
tion 
ompared to dipoles produ
ed by the WW-
ontribution. This

analysis of the dipole distributions indi
ates that the genuine 
ontribution, i.e. the quark

antiquark gluon intermediate state 
ontribution, should not be omitted in the produ
tion
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of a transversely polarized ρ−meson at the level of the overlap of the wave fun
tions. This

is in 
ontradi
tion with the usual assumptions of dipole models to assume the transversely

polarized ρ−meson state to be saturated by the valen
e quark antiquark degrees of freedom,

leading to the normalization relation (3.150) [55, 145℄ and the ele
troni
 de
ay width relation

eq. (3.151) [115, 145℄,

1 =
∑

h,h̃

∫

dy

∫

d2r
∣

∣

∣
ΨρT

h,h̃
(y, r)

∣

∣

∣

2

, (3.150)

efρmρ(e
∗
γ · eρ) =

∑

h,h̃

∫

dy

∫

d2rΨρT
h,h̃

(y, r) Ψ
γ∗T
h,h̃

(y, r) . (3.151)

Indeed, the r.h.s. of eq. (3.151), if one expands at large Q2
the ρ meson wave fun
tion

around r = 0 , is our WW result, whi
h therefore misses the genuine 
ontributions arising

from three-parton 
orrelators, whi
h 
an have a signi�
ant e�e
t even for large Q2
values.

We give in tab. 3.3 the average λ de�ned as,

〈λ〉λρλγ
(µ2

F (Q
2)) =

∫ ∞

0

dλ λPλρλγ (λ;µ
2
F ) . (3.152)

Comparing these values with λSat.(Q2,W ), allows to determine whi
h 
ontribution will

Total WW genuine AS

〈λ〉00 (µ2
F ) ∼ 3.7 x x

3π2

8
≈ 3.7

〈λ〉11 (µ2
F (1 GeV

2)) 6.3 8.7 3.2

27π2

32
≈ 8.3

〈λ〉11 (µ2
F (10 GeV

2)) 7.3 8.5 3.5 ≈ 8.3

Table 3.3: Average values of 〈λ〉 = 〈r Q〉 for the di�erent 
ontributions to the radial distri-

bution for two values of µ2
F (Q

2).

dominate when 
onvoluted with the dipole 
ross-se
tion. We 
an also give an estimation, see

tab. 3.4, of the per
entages Nλρλγ
of dipoles for a given distribution that are in the bandwidth

of the dipole 
ross-se
tion,

Nλρλγ (Q
2,W ) =

∫ ∞

λSat.(Q2,W )

dλPλρλγ (λ) . (3.153)

AS

N00(1, 90) 70%

N00(10, 90) 10%

N11(1, 90) 90%

N11(10, 90) 35%

Table 3.4: Estimation of the per
entages of dipoles that have sizes above the saturation s
ale

2R0(x).
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As expe
ted, the more the virtuality Q is high, the weaker is the overlap between the

dipole 
ross-se
tion bandwidth with the distributions leading to a de
reasing Nλρλγ with Q2
.

The fa
t that the Nλρλγ 's vary from ∼ 90% to ∼ 10% on the range Q2 ∈ [Q2
b , Q

2
a], indi
ates

that the dipole 
ross-se
tion is s
anning the dipoles distributions with a high sensitivity. This

means that the result is very sensitive to the dipole 
ross-se
tion σ̂(x, r) and to the radial

distributions Pλρ,λγ (r, Q
2;µ2

F ) pro�les.

It is interesting to get information on the longitudinal fra
tion of momentum dependen
es

of the overlaps of the wave fun
tions. In other words, do we get more symmetri
 jet (y ∼
ȳ ∼ 1

2
) or aligned jet (y ∼ 1 or ȳ ∼ 1) 
on�gurations? The overlaps of the wave fun
tions

are given in �gs. 3.23, 3.24. We restri
t ourselves to the study of the AS 
ase. We 
an

0.0
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1.0

y

0

5

10

Λ

0.0

0.1

0.2

0.3

Figure 3.23: Pro�le of the overlap of the wave fun
tions for the γ∗L → ρL transition as fun
tion

of y and λ.

see that we have a symmetri
 
on�guration for the γ∗L → ρL transition while the γ∗T → ρT

transition involves more aligned jet 
on�gurations. Note that the aligned jet 
on�gurations

are important for large values of λ and the os
illations for these large λ−values in the �g. 3.24

are surely due to numeri
al instabilities. For �xed λ, the y−shape of the overlap is in part

due to the shape of the DAs. It is then good to remind that the os
illatory shape of the DAs

is due to the fa
t that the 
onformal expansion is trun
ated up to a given 
onformal spin

[142℄.

In �gs. 3.25 and 3.26 are respe
tively shown the produ
t of the dipole 
ross-se
tion with

the distributions P00 and P11. The integrands of T00 and T11 are globally 
lose to the satura-

tion radius r ∼ 2R0(x) and the peaks are moving on larger dipole sizes when Q2
de
reases.

These plots are giving an important information about the k⊥−behavior of the integrands.

Indeed the dipole size r is the Fourier 
onjugate of the momentum k⊥ meaning that the

dominant k⊥ are of the order 1/r, with r the size 
orresponding to the maximal value of

the integrands shown in �gs. 3.25 and 3.26. We 
an see that the range of k⊥that gives a

signi�
ant 
ontribution to the amplitude is of order 1/R0(x) for large Q
2
and of order Q for

Q ∼ 1/R0(x). This behavior indi
ates that within our assumptions, the pro
ess is dominated
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Figure 3.24: Pro�le of the overlap of the wave fun
tions for the γ∗T → ρT transition as a

fun
tion of y and λ.

by some e�e
tive s
ale k⊥ 
ontained in the range [Qs, Q].

ΓL
* p ® ΡL p

Total
AS

(b) Q2 = 10 GeV2

Total
AS

(a) Q2 = 1 GeV2

2 R0
HaLHxL

2 R0
HbLHxL

0.2 0.5 1.0 2.0 5.0 10.0
rHGeV-1L

0.1

0.2

0.3

0.4

0.5

Figure 3.25: The normalized integrand of T00, i.e. P00(r, Q
2, µ2

F ) σ̂(x, r). The Total integrands

at µ2
F (Q

2) for Q2 = 1 GeV

2
(blue long-dashed line) and Q2 = 10 GeV

2
(red solid line), and

the AS integrands for Q2 = 1 GeV

2
(blue dot-dashed line) and Q2 = 10 GeV

2
(red dashed

line) integrands of T00 for W = 90 GeV.

3.7.2 Comparison of overlaps

The overlaps we have 
onsidered above involve the ρ−meson DAs. Let us 
ompare our model

for the wave fun
tion overlaps to two other models,

• the "Boosted Gaussian" (BG) model [118℄,
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Figure 3.26: The Total 
ontributions at µ2
F (Q

2) for Q2 = 1 GeV

2
(blue long-dashed line)

and Q2 = 10 GeV

2
(red solid line), and the AS 
ontributions for Q2 = 1 GeV

2
(blue dot-

dashed line) and Q2 = 10 GeV

2
(red dashed line) to the normalized integrands of T11, i.e.

P11(r, Q
2, µ2

F )σ̂(x, r), for W = 90 GeV.

• the "Gaus-LC" model [74℄.

The ρ−meson wave fun
tions are separated in spinor parts and s
alar parts φT and φL,

Ψρ

hh̄,λρ=±1(y, r) = ±
√

2Nc
1

yȳ
{ie±iθr [yδh,±δh̄,∓ − ȳδh,∓δh̄,±]∂r (3.154)

+mfδh,±δh̄,±}φT (y, r) ,

Ψρ

hh̄,λρ=0
(y, r) =

√

Ncδh,−h̄

[

mρ + δ
m2

f −∇2
r

mρ yȳ

]

φL(y, r) . (3.155)

The s
alar parts read

φGauss-LC

T (y, r) = NT (y ȳ)2 e
− r2

2R2
T , (3.156)

φGauss-LC

L (y, r) = NL y ȳ e
− r2

2R2
L , (3.157)

φBGL,T (y, r) = NL,T y ȳ exp

(

−
m2

fR
2
L,T

8yȳ
− 2yȳr2

R2
L,T

+
m2

fR
2
L,T

2

)

. (3.158)

We follow here the 
onventions and take the values for the parameters of ref. [76℄. The values

of the parameters are given in tab. 3.5. The overlaps with the virtual photon wave fun
tion

Model NT R2
T GeV

−2 NL R2
L GeV

−2 fT
ρ

Gaus-LC 4.47 21.9 1.79 10.4 fρ

Boosted Gaussian 0.911 0.853 12.9 R2
L 0.182

Table 3.5: Parameters of the "Gaus-LC" and the "Boosted Gaussian" models taken from

ref.[76℄, for Mρ = 0.776 GeV, fρ = 0.156 GeV, mf = 0.14 GeV and with fL
ρ = fρ .
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are

∑

h,h̄

ΨρT ∗
h,h̃

(y, r)Ψ
γ∗T
h,h̃

(y, r) ∝

m2
fK0(µr)φT (y, r)− (y2 + ȳ2)µK1(µr)∂rφT (y, r) , (3.159)

∑

h,h̄

ΨρL∗
h,h̃

(y, r)Ψ
γ∗L
h,h̃

(y, r) ∝

yȳK0(µr)

(

mρφL(y, r) + δ
m2

f −∇2
r

mρyȳ
φL(y, r)

)

, (3.160)

with δ = 0 for the Gaus-LC model and δ = 1 for the BG model. The longitudinal and

transverse radial distributions thus read

PL,T (r) =
1

NL,T

r

∫

dy
∑

h,h̄

Ψ
ρL,T ∗
h,h̃

(y, r)Ψ
γ∗L,T

h,h̃
(y, r) , (3.161)

where the fa
tors NL,T normalize the distributions PL,T (r). The 
omparison of our results
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* ® ΡL Q2 = 1 GeV2

 Total

Σ
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(a) γ∗
L

→ ρL radial distributions and σ̂ at

Q2 = 1 GeV2
.
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Figure 3.27: The Gauss-LC (green, long dashed), BG (blue, dot-dot-dashed), Total (red,

solid) and AS (red, dashed) radial distributions for the γ∗L → ρL transition (top) and for the

γ∗T → ρT transition (bottom), vs r for Q2 = 1 GeV

2
(left) and Q2 = 10 GeV

2
(right), as

well as the dipole 
ross-se
tion σ̂(x, r) res
aled by the fa
tor 5σ0 for W = 90 GeV (bla
k,

dot-dashed).

with the phenomenologi
al models "Gaus-LC" and "BG" allows to understand the role of

higher twist 
orre
tions on the distributions. We see for example in �gs. 3.27(b) that all

the results are quite 
lose to ea
h other for Q2 = Q2
a, leading all to a good des
ription of
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the data. For Q2 = Q2
b , we see in �g. 3.27(a) that the distribution P00 spreads more than

the distributions from the two other models. The di�eren
e is 
ertainly due to higher twist


orre
tions whi
h should be needed for su
h small virtualities. In �g. 3.27(d) the overlaps

are in good agreement for large dipoles in the bandwidth of the 
ross-se
tion, whi
h means

that higher twist 
orre
tions are washed out by the dipole 
ross-se
tion. At small Q2
, we see

in �g. 3.27(
) that the 
hoi
e µ2
F ∼ Q2

allows to get 
loser from the Gaus-LC an BG models


ompared to the AS result. Note that the higher twist 
orre
tions would play also a role on

the normalizations Nλρλγ values.

3.8 Dis
ussion

We have presented a phenomenologi
al model for the heli
ity amplitudes and the polarized


ross-se
tions of the di�ra
tive ρ−meson ele
troprodu
tion. The x−dependen
e of our pre-

di
tions is en
oded in the dipole 
ross-se
tion model while the Q2−dependen
e 
omes from

the twist 2 and twist 3 
al
ulations of the γ∗ → ρ impa
t fa
tors. Finally the t−dependen
e of
the di�erential 
ross-se
tion is taken from the more re
ent �ts of HERA data. This model does

not have free parameter as the dipole 
ross-se
tion model we use is 
ompletely determined by

the DIS stru
ture fun
tions. The results have a weak dependen
e in the fa
torization s
ale


hoi
e. As expe
ted from many studies (see for example [113℄ where it is argued that pQCD

treatment should be valid for Q2 & 20 − 30 GeV

2
), the model mat
hes the data at large

Q2
and the pro
ess 
an be des
ribed in terms of pQCD. Two di�erent e�e
ts 
ould generate

the dis
repan
y with the data, the skewness e�e
ts whi
h are not in
luded in our study as

we took the dipole 
ross-se
tion from in
lusive pro
esses, and the higher twist e�e
ts in the

ρ−meson fa
torization. As our predi
tions are in good agreement with the data at large Q2

where higher twist 
orre
tions 
an be negle
ted, we 
an expe
t that skewness e�e
ts does

not 
hange dramati
ally the predi
tions. Indeed, the skewness is expe
ted to be
ome large

for large Q2/m2
ρ ratio and our predi
tions agree with data for large Q2

whi
h indi
ates that

these e�e
ts are negligible. Our guess is then that the higher twist 
orre
tions should be

the dominant 
orre
tions to our treatment and thanks to HERA data we 
an identify the

virtuality Q2min ∼ 5 GeV

2
where the higher twist 
orre
tions be
ome important. The fa
t

that this s
ale is larger than the saturation s
ale Q2
s(x) ∼ 1 GeV

2
, indi
ates that we 
annot

yet get information on the genuine saturation regime be
ause of higher twist 
orre
tions.

The t−dependen
e of the polarized 
ross-se
tions in
ludes the 
ontributions of the other

heli
ity amplitudes that violate the SCHC. The study of the t−dependen
e of the impa
t

fa
tors would be ni
e in order to 
ombine the results of dipole models with impa
t parameter

dependen
e [85, 76℄ as the DVMP allows to probe the proton shape [145℄, in parti
ular

through lo
al geometri
 s
aling [173, 174℄.

The next-to-leading order e�e
ts - both on the evolution and on the impa
t fa
tor - should

be studied, sin
e it is now known that both may have an important phenomenologi
al e�e
t

[175, 176, 177, 178, 179℄.
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On the experimental side, the future Ele
tron-Ion Collider [180℄ and Large Hadron Ele
-

tron Collider [181℄ with a high 
enter-of-mass energy and high luminosities, as well as the

International Linear Collider [182, 183, 184℄ will hopefully open the opportunity to study in

more detail the hard di�ra
tive produ
tion of mesons [185, 186, 175, 187, 176, 188, 177, 189℄.



Con
lusions

We have presented di�erent te
hniques used to unravel the hadroni
 properties un
overed in

ex
lusive pro
esses. The interesting aspe
t of the approa
h we pursued here is that it 
om-

bines two di�erent s
hemes to model the ρ−meson intera
tions and the nu
leon intera
tions.

The �rst one involves an extended 
ollinear fa
torization approa
h with regularization of the

end-point singularities by the transverse momenta k⊥ of the t−
hannel gluons. It provides

an interesting way to study the moments of the ρ−meson wave fun
tions. The se
ond one

involves dipole models and 
on�rms the fa
torization of the intera
tion of 
olor dipole 
on�g-

urations with the nu
leon target. The extension up to twist 3, involving an additional gluon

whi
h 
an take a large amount of energy of the virtual photon, 
an be interesting in order to

study intera
tions beyond the quark antiquark pair intermediate state approximation.

The new results obtained in this thesis are,

• predi
tions for the ratios of heli
ity amplitudes T01/T00 and T11/T00 [18℄ 
ombining the

twist 2 and twist 3 γ∗ → ρ impa
t fa
tors with a model of impa
t fa
tor for the nu
leon,

• expressions in impa
t parameter spa
e representation for the γ∗L → ρL and γ∗T → ρT

impa
t fa
tors that are shown to be 
onsistent with the 
olor dipole pi
ture [19℄,

• predi
tions for the heli
ity amplitudes T00 and T11 as well as for the polarized 
ross-

se
tions σL and σT [20℄, 
ombining the impa
t parameter representation of the γ∗ → ρ

impa
t fa
tors with dipole 
ross-se
tion models.

While the �rst set of predi
tions using a nu
leon impa
t fa
tor model depends on one free

parameter, whi
h is the transverse s
ale of the nu
leon target dynami
s M , the se
ond set of

predi
tions has no free parameters and is in good agreement with data for large virtualities.

Within this model, we 
an learn that the qq̄g Fo
k state plays an important role at the level of

the overlap of the virtual photon and the ρ−meson wave fun
tions, while it 
an be negle
ted

at the level of the heli
ity amplitude T11 due to the 
onvolution with the dipole 
ross-se
tion.

Many perspe
tives in order to extend this study are possible. We 
an make predi
tions for

the future 
ollider proje
ts EIC and LHeC. This study o�ers also the perspe
tive to 
ombine

higher twist 
al
ulations of the ve
tor meson produ
tions with impa
t parameter dependent

dipole models, by extending the kinemati
s to the non-forward limit t 6= tmin. Indeed the

di�ra
tive produ
tion of ve
tor meson is a very good pro
ess to probe the impa
t parameter

dependen
e of the dipole-target s
attering amplitude and the photon wave fun
tion is well-

known in the non-forward limit [145℄. Another perspe
tive would be also to extend this

treatment to the violating s-
hannel heli
ity 
onserving heli
ity amplitudes that are measured

at HERA. A higher twist 
al
ulation 
ould be performed to get information on the higher

twist 
orre
tions in the model presented in 
hap. 3 for the low values of Q2
. One 
ould also

repeat the 
al
ulations in
luding quark mass e�e
ts and 
onsequently 
hiral odd and 
hiral

even DAs to get a similar analysis of other ve
tor mesons su
h as the φ−meson. Another

interesting perspe
tive, whi
h we have left for a further study, is to relate the 
ombinations



of DAs that appear in this �rst prin
iple treatment of the impa
t fa
tor, to the numerous

models that exist for the ρ−meson wave fun
tions. It would provide a test for these models

of ρ−meson wave fun
tions.



Appendix

QED and QCD lagrangians, Feynman rules

In our studies we work at energy s
ales where we 
an mostly negle
t the weak intera
tion


ontributions 
ompared to ele
tromagneti
 and strong intera
tions. The weak intera
tion


ould 
ontribute for example through the ex
hange of a Z0−boson instead of a virtual photon

in e−p 
ollisions but these kinds of 
ontributions 
an be safely negle
ted in our present study.

We then restri
t ourselves to the strong and the ele
tromagneti
 intera
tions involving QCD

and QED Lagrangian terms.

Let us re
all the Lagrangians and the Feynman rules whi
h are used all along this thesis,

we 
hoose to follow the 
onventions of the Peskin and S
hroeder book [190℄.

QED Feynman rules

Let us 
onsider the QED lagrangian for a theory with only ele
tron, of ele
tri
 
harge e =

− |e|, and photon �elds. The generalization of the following Lagrangian terms and Feynman

rules for fermions with ele
tri
 
harge Q |e| is straightforward and 
onsists in repla
ing e →
Q |e|. The 
ovariant derivative reads

Dµ = ∂µ + ieAµ (3.162)

with Aµ the gauge �eld of the photon.

The abelian Yang-Mills Lagrangian in the 
ovariant gauge reads

LQED = −1

4
(Fµν)

2 − 1

2 ξ
(∂µAµ)

2 + ψ̄(i /D −m)ψ (3.163)

where Fµν = ∂µAν − ∂νAµ is the �eld strength tensor of the photon, the term − 1
2 ξ

(∂µAµ)
2

is the gauge �xing term, where ξ is an arbitrary �nite number. The 
hoi
es to �x ξ = 0 and

ξ = 1 
orrespond respe
tively to the Landau and the Feynman gauges. The lagrangian 
an

be de
omposed in:

• the photon kinemati
 term,

−1

4
(Fµν)

2 − 1

2 ξ
(∂µAµ)

2 , (3.164)

• the ele
tron kinemati
 term,

ψ̄(i /∂ −m)ψ , (3.165)

• the intera
tion term,

−ψ̄(eAµ)ψ . (3.166)



This leads to the following Feynman rules for the propagators of the photon and the ele
tron,

PSfrag repla
ements

µ ν

p

−i
p2 + iε

[

gµν − (1− ξ)
pµpν
p2

]

, (3.167)

p

PSfrag repla
ements

i

/p−m
, (3.168)

and for the vertex

PSfrag repla
ements

µ

− ieγµ . (3.169)

The external lines of the Feynman diagrams for �elds of fermions and photons are re-

spe
tively given by the spinors u(s)(p) for parti
les and v(s)(p) for antiparti
les of spin s and

momentum p and polarization ve
tors ελ(p) with λ the polarization,

in
oming fermion

PSfrag repla
ements

p
u(s)(p)

outgoing fermion

PSfrag repla
ements

p
ū(s)(p)

in
oming antifermion

PSfrag repla
ements

p

v̄(s)(p)

outgoing antifermion

PSfrag repla
ements

p

v(s)(p)

in
oming photon
PSfrag repla
ements

p

µ
ε
(λ)
µ (p)

outgoing photon

PSfrag repla
ements

p

µ
ε
∗(λ)
µ (p) .

(3.170)

whi
h 
omes from the proje
tion of the free �elds on the in
oming and outgoing states.



QCD Lagrangian

The strong intera
tion is des
ribed by QCD whi
h is a lo
al gauge �eld theory based on the

non-abelian SU(3)-
olor symmetry

1

, involving quarks, antiquarks and gluons as elementary


onstituents of the hadroni
 matter. The quarks and the antiquarks belong to the funda-

mental representation of the SU(N)-
olor group and are 
arrying a 
olor 
harge. They 
ouple

with the N2 − 1 gauge boson �elds (gluons) of SU(N)-
olor Aµata that belong to the adjoint

representation of SU(N), {ta}a=1..N2−1 being the generators of SU(N). The matri
es ta are

tra
eless hermitian N × N matri
es. Note that the gluons are 
arrying 
olor 
harges of the

adjoint representation whi
h means that 
ontrary to the abelian 
ase of QED where the pho-

tons do not 
are an ele
tri
 
harge, the gluons 
an intera
t between themselves. This fa
t

will lead to new terms in the Yang-Mills lagrangian of QCD 
ompared to the one of QED.

The generators ta verify the Lie algebra stru
ture relation

[ta, tb] = i fabc tc , (3.171)

where fabc
are the stru
ture 
onstants whi
h are 
ompletely antisymmetri
 under the ex-


hange of the indi
es a, b, c. The �eld strength tensor for the gluon �elds is given by,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + g fabcA

b
µA

c
ν , (3.172)

and the 
ovariant derivative reads

Dµ = ∂µ − igtaAa
µ . (3.173)

In the 
ovariant gauge the Yang-Mills QCD Lagrangian reads

L = −1

4
F a
µνF

aµν − 1

2ξ
(∂µA

µ
a)

2 + ψ̄(iγµDµ −m)ψ + c̄� c+ g∂µc̄bfbcaA
a
µcc , (3.174)

where the �elds denoted c are the �elds of the Fadeev Popov ghosts that are introdu
ed to

represent the fun
tional determinant that appears when inserting in the Lagragian the gauge-

�xing 
ondition. These �elds are not asso
iated to physi
al parti
les as they are Grassmann

�elds, i.e. they anti
ommute as fermioni
 �elds, but in the same time they are s
alar �elds,

i.e. bosons of spin zero. As a 
onsequen
e they are appearing only when 
omputing loops.

The Feynman rules in the 
ovariant gauge are

1

We work from now with N 
olors instead of 3 in order to keep more general formulas.



PSfrag repla
ements

i j

p

i

/p−m
δij

a b

p

PSfrag repla
ements

−i
p2 + iε

[

gµν − (1− ξ)
pµpν
p2

]

δab

a b

p

PSfrag repla
ements

−iδab
p2 + iε

i j

PSfrag repla
ements

a, µ

igγµtaij
PSfrag repla
ements

a, ν1

b, ν2 c, ν3

k1

k2 k3
gfabc [gν1ν2(k1 − k2)

ν3 + δν2ν3(k2 − k3)
ν1 + δν1ν3(k3 − k1)

ν2 ]

PSfrag repla
ements

a, ν1

b, ν2

c, ν3

d, ν4
−ig2

[

fabef cde (gν1ν3gν2ν4 − gν1ν4gν2ν3)

+facef bde (gν1ν2gν3ν4 − gν1ν4gν2ν3)

+fadef bce (gν1ν2gν3ν4 − gν1ν3gν2ν4)
]

b c
p

PSfrag repla
ements

a, µ

−gfabcpµ

where the dotted lines are the Fadeev-Popov ghosts.

In this thesis we work in most of the 
ases in the light-
one gauge instead of the 
ovariant

gauge. Let us de�ne �rst the general 
ase of axial gauge where the gauge �xing term is given

by

L
gauge �x.

= − 1

2ξ
(nµAa

µ)
2 , (3.175)

with n an arbitrary �xed ve
tor. In this gauge there is no ghost but the pri
e to pay is that

the gluoni
 propagator Dab
µν(p) expression is more 
ompli
ated

Dab
µν(p) =

−iδab
p2 + iǫ

(

gµν −
nµpν + nνpµ

n · p +
ξp2 + n2

(n · p)2 pµpν
)

. (3.176)

The light-
one gauge 
orresponds to the 
hoi
e ξ = 0 and n2 = 0, i.e. n is a light 
one ve
tor.



In this 
ase the gluoni
 propagator simpli�es in

Dab
µν(p) =

−iδab
p2 + iǫ

(

gµν −
nµpν + nνpµ

n · p

)

, (3.177)

whi
h veri�es, nµD
µν(p) = 0 and the on-shell transversity 
ondition when p2 = 0, pµD

µν(p) =

0. Note that the o�-shell transversity 
ondition appears 
learly when writing Dab
µν(p) as

Dab
µν =

−i
p2 + iǫ

(

g⊥µν − p2
nµnν

(p · n)2
)

, (3.178)

where are appearing the transverse polarizations of the gluons

g⊥µν = −
2
∑

λ=1

ε∗(λ)µ ε(λ)ν .
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