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Résumé

Cette thése porte sur le calcul des amplitudes d’hélicités de la leptoproduction diffractive
exclusive du méson p dans la limite de Regge perturbative au-dela du twist dominant. La
compréhension de ce processus et autres processus exclusifs en terme d’intéractions entre
les constituents fondamentaux de la QCD, constitue un enjeu majeur pour comprendre la
structure des hadrons. L’approche suivie par le modéle présenté ici est basée d’une part sur
la kp—factorisation a petits z, c’est-a-dire dans la limite des hautes énergies dans le centre
de masse W ~ /s et d’autre part sur la factorisation colinéaire du méson p dans la limite
des hautes virtualités @ du photon virtuel intéragissant avec le nucléon.

Dans 'approche de la kr—factorisation, I’amplitude est scindée en deux piéces principales,
le facteur d’impact correspondant a la transition du photon virtuel au méson p (v*(\,) —
p(A,)) et le facteur d’impact du nucleon cible. Ces deux facteurs d’impacts intéragissent
par I’échange d’'un poméron dans la voie ¢ qui contient toute la dépendence en énergie du
processus. Le poméron est décrit a ’ordre dominant par 1’échange de deux gluons et a l'ordre
dominant en In(1/x) avec x ~ Q?/W? par I’échange d’une échelle de gluons dans le voie t.

La haute virtualité du photon justifie I’application de la QCD perturbative pour calculer
le facteur d’impact v*(\,) — p(),) en utilisant la factorisation colinéaire pour séparer les
contributions dominantes au twist 2 et au twist 3. Cette approche a été employée par
Ginzburg, Panfil et Serbo en 1985 pour calculer les termes de twist 2 des facteurs d’impacts
des transitions ou le photon virtuel est polarisé soit longitudinalement soit transversalement
et ot le méson p est polarisé longitudinalement. Ces transitions sont dénotées respectivement
"vi = pr" et "y — pr". L’approche a ensuite été poussée au twist 3 en 2010 par Anikin,
Ivanov, Pire, Szymanowski et Wallon, pour obtenir le terme de twist 3 du facteur d’impact de

A%

la transition "~y — pp"

ol le photon virtuel et le méson p sont polarisés transversalement.
Ces résultats sont invariants de jauge et font apparaitre les ditributions d’amplitudes du
méson p paramétrisant la production du méson a partir des états de Fock intermédiaires
quark-antiquark et quark-antiquark-gluon.

Dans cette thése nous présentons un premier modéle se basant sur ces résultats pour les
facteurs d’impacts, pour décrire les rapports d’amplitudes d’hélicités associés a ce processus
en utilisant un modéle phénoménologique pour le facteur d’impact du nucléon cible. On utilise
aussi un modeéle pour les distributions d’amplitudes du méson p basé sur le développement,
conforme de celles-ci. Les résultats de ce modéle sont ensuite comparés aux données de
HERA et nous discutons les résultats obtenus.

Une seconde approche est présentée ot les facteurs d’impacts aux twist 2 et 3 des tran-
sitions v; — pr et ;. — pr sont redérivés dans la représentation des parameétres d’impacts.
On montre que ces résultats sont équivalents & ceux obtenus dans I'approche dans I'espace
des impulsions et permettent d’avoir une image en terme des configurations de dipoles de
couleurs contenues dans ’état partonique intermédaire de la transition v* — p. Les ampli-
tudes d’hélicités ainsi obtenues se décomposent en une convolution entre le recouvrement des

fonctions d’onde du photon virtuel et du méson p calculé dans 'approximation colinéaire,



avec 'amplitude d’intéraction d’un dipole de couleur avec le nucléon cible. Cette derniére
amplitude est universelle et déterminée a partir d’autres processus tels que le processus de
diffusion profondément inélastique. Nous obtenons ainsi une expression pour les amplitudes
d’hélicités ot nous pouvons combiner des modéles d’amplitude de diffusion dipéle-nucléon
avec le recouvrement des fonctions d’onde issus des calculs de factorisation colinéaire aux
twists 2 et 3. Nous présentons les prédictions, comparées aux données de HERA, pour les
sections efficaces polarisées de la production diffractive exclusive du méson p obtenues a
partir des amplitudes d’hélicités. Les prédictions sont en accord avec les données pour des
virtualités supérieures a 5-7 GeV2. Nous présentons une analyse de ces résultats, notamment
nous discutons le role des corrections de twists supérieurs et nous comparons nos résultats
avec des recouvrements de fonctions d’onde obtenus par d’autres modéles existants.
Mots-clefs: Processus exclusifs, Chromodynamique Quantique perturbative, Ampli-

tudes d’hélicités, Factorisation colinéaire, kr—factorisation, Dipoles de couleurs.



Abstract

This thesis, entitled "Hard exclusive processes beyond the leading twist", deals with the
computation of the helicity amplitudes of the exclusive diffractive p—meson leptoproduction
in the perturbative Regge limit beyond the leading twist. The understanding of such exclusive
processes in terms of the elementary constituents of QCD is a serious challenge to understand
the hadronic structure. The approach we follow here, first relies on the kr—factorization in
the small—z regime, i.e. when there is a high energy W ~ /s in the center of mass of
the photon-proton system. It secondly relies on the collinear factorization scheme for large
virtualities () of the photon, to factorize the p—meson soft part of the process.

Within the kp—factorization approach, the amplitude splits in two main pieces, the
7*(A\y) = p(A,) impact factor, with A, and A, the polarizations of the virtual photon and
the p—meson, and the nucleon impact factor. The impact factors are interacting with the
exchange of a pomeron in the t—channel which corresponds to the exchange of two t—channel
gluons at leading order and a ladder of gluons at leading log(1/x) order, with x ~ Q*/W?2.

At high virtualities of the photon, the perturbative QCD techniques are justified to com-
pute the v*(\,) — p(),) impact factor using the collinear factorization scheme to get the
twist 2 and twist 3 terms. This approach was first used in 1985 by Ginzburg, Panfil and
Serbo to compute the twist 2 v; — pr and v — pp impact factors. In 2010 the twist 3
term of the 7. — pr impact factor was derived by Anikin, Ivanov, Pire, Szymanowski and
Wallon. The results obtained are gauge invariant and they involve the twist 2 and twist 3
distribution amplitudes of the p—meson that parameterize the meson production from the
quark antiquark and the quark antiquark gluon intermediate Fock states.

In this thesis we present a model based on these impact factor results to get predictions
for the ratios of helicity amplitudes associated to the p—meson diffractive leptoproduction
using a phenomenological model for the proton impact factor. We also use a model for
the distribution amplitudes based on the conformal expansion. The predictions are then
compared to HERA data and we discuss the results of this approach.

A second approach is presented where the twist 2 and twist 3 impact factors are derived
in the impact parameter representation. We show that the results are equivalent to the
ones obtained in the momentum space representation. The results in impact parameter
representation give information about the dipole configuration content of the intermediate
state involved in the v* — p impact factors. As a result of this approach, the helicity
amplitudes factorize as the convolution of two parts, the first one is the overlap of the virtual
photon and the p-meson wave functions computed in the collinear approximation and the
second one is the dipole-target scattering amplitude. The dipole-target scattering amplitude
is well determined on other processes such as deep inelastic scattering processes. Combining a
model for the dipole cross-section with the results obtained within the collinear factorization
scheme for the overlap of the wave functions, we get a model for helicity amplitudes and the
longitudinal and transverse polarized cross-sections. We compare our predictions to HERA

data and get a good agreement for virtualities of the photon larger than Q? ~ 5 — 7 GeV?2.



We discuss the results, in particular the role of higher twist corrections and we compare our
results with the overlaps of wave functions obtained from other models that exist within the
color dipole picture.

Keywords: Exclusive processes, Perturbative quantum chromodynamics, Helicity am-

plitudes, Collinear factorization, kr—factorization, Color dipoles.



Remerciements

Je voudrais remercier tout d’abord mes directeurs de thése Samuel Wallon et Lech Szy-
manowski ainsi que notre proche collaborateur Bernard Pire pour ces trois années de thése
ot ils m’ont fait partager leur enthousiasme pour la recherche. J’ai énormément appris grace
a leurs conseils et & nos discussions et je leur suis profondément reconnaissant autant pour
leur investissement dans mon apprentissage que pour tout le savoir qu’ils ont réussi a me
communiquer. Je les remercie d’avoir toujours été disponibles et a I’écoute lorsque j’ai eu
besoin de leur aide qui s’est toujours révélée trés précieuse dans ’avancement de mes travaux
de thése. Cela aura été un vrai plaisir de travailler avec eux ainsi qu'une expérience trés
enrichissante.

Je remercie le directeur du laboratoire Henk Hilhorst, pour m’avoir accueilli au LPT et
m’avoir permis d’aller & un grand nombre de conférences et d’écoles qui m’ont beaucoup
apportées. J'aimerais aussi remercier toute I’équipe administrative du LPT, Mireille Calvet,
Philippe Molle, Jocelyne Puech et Odile Heckenauer, ainsi que ’équipe "informatique" du
laboratoire, Philippe Boucaud et Olivier Brand-Foissac, pour leur disponibilité et 'aide qu’ils
m’ont tous apporté durant ces trois années.

Je tiens a remercier nos collaborateurs polonais Krzysztof Golec-Biernat, Leszek Mo-
tyka et Mariusz Sadzikowski pour leur accueil et pour nos discussions lors de mes séjours
a Cracovie. Je voudrais remercier Stéphane Munier et Cyrille Marquet pour leurs conseils
concernant mes travaux de thése, ainsi que Christophe Royon pour ses nombreuses invita-
tions & des conférences internationales. Un grand merci & Hervé Moutarde et Franck Sabatié
pour me donner la chance de continuer a travailler sur d’intéressants problémes de physique
hadronique et pour m’avoir accepté au sein de leur nouveau projet.

Merci a tous les membres de mon jury pour avoir accepté de prendre de leur temps pour
examiner ma thése. Je les remercie pour les remarques trés pertinentes qui ont été soulevées
durant la soutenance et qui permettent d’envisager de nouvelles perspectives au travail qui
a été fait dans cette thése.

Un grand merci aussi aux doctorants du laboratoire pour les bons moments passés dans
la caféet du LPT. Je remercie particulierement Cédric Weiland avec qui j’ai partagé mon
bureau durant ces trois années pour son agréable compagnie et pour toutes les discussions
intéressantes que nous avons eu ensemble.

Merci & mon ami Axel avec qui nous avons suivi nos études depuis les classes préparatoires
jusqu’a la thése et a qui je dois énormément. Je le remercie pour son soutient tout au
long de nos études ol nous avons partagé notre passion pour la physique. Je remercie mes
parents et mon frére pour leurs incessants encouragements durant toutes mes années d’études.
Merci aussi a tous mes amis pour les bons moments passés ensemble durant ces trois années,
Antoine, Gabriel, Olga, Roberto, Béa, Charles, ainsi que tous ceux que je ne peux citer ici
mais que je n’oublie pas. Enfin je ne peux que remercier ma bien-aimée Katyusha pour son
immense soutient durant ces deux derniéres années de these.

Merci & vous tous!



Acknowledgments

First I would like to thank my supervisors Samuel Wallon and Lech Szymanowski as well as
our close collaborator Bernard Pire, for having shared with me their enthusiasm for research
during these three years of thesis. I have learned a lot thanks to their advices and our
discussions and I am deeply grateful for their investment in my formation as well as for all
the knowledge they gave me. I thank them for being always available and attentive when
I needed their assistance which has always been very helpful in my work. It was a great
pleasure working with them and it was for me a very rewarding experience.

I would like to thank the director of the laboratory, Henk Hilhorst, for welcoming me
at the LPT and for all the conferences and the schools that he allowed me to participate
and where [ have learned a lot. I would like also to thank the administrative team of the
LPT, Mireille Calvet, Philippe Molle, Jocelyne Puech and Odile Heckenauer, as well as the
"computer" team, Olivier Brand-Foissac and Philippe Boucaud for their availability and for
all the assistance they provided me during these three years.

[ want to thank our colleagues from Poland, Krzysztof Golec-Biernat, Leszek Motyka and
Mariusz Sadzikowski for their hospitality and for our discussions during my visits in Krakow.
I would like to thank Stéphane Munier and Cyrille Marquet for their advices on my thesis
work and Christophe Royon for his invitations to international conferences. Many thanks to
Hervé Moutarde and Franck Sabatié for giving me the opportunity to continue to work on
interesting hadronic physics problems and for accepting me in their new project.

Many thanks also to all the members of the jury for taking from their time to examine
my thesis. I thank them for all the relevant remarks that have been told during the denfense
which allow to consider new perspectives to the work of my thesis.

A big thank you to all the PhD students of the LPT for the good time we spent in the
cafet of the lab. I am particularly thankful to Cédric Weiland with whom I was sharing my
office during these three years for his very pleasant company and the interesting discussions
we have had.

Many thanks to my friend Axel with whom we shared our taste for physics since our first
years at the university, and to whom I owe a lot. I thank my parents and my brother for
their constant support all along my studies. Many thanks to all my friends for the good time
we spent together during these three years, Antoine, Gabriel, Olga, Roberto, Béa, Charles,
and all others that I don’t name here but who are not forgotten. I finally thank my beloved
Katyusha for her huge support during these two last years of PhD.

Thank you very much!



Contents

Introduction

1 High energy QCD
1.1 Introduction . . . . . . . . . ...
1.1.1 Postulates and consequences . . . . . . . . .. ... ... ... ....
1.1.2  Regge trajectories and the pomeron intercept . . . . . ... ... ..
1.1.3 Cutkosky rules . . . . . . . . L
1.2 Scattering amplitudes in the Regge limit . . . . .. .. ... ... ... ...
1.2.1 The color octet exchange . . . . . . . . . ... ... ... ...
1.2.2  The singlet color exchange in t—channel . . . . . . .. ... ... ..
1.2.3 Impact factor representation of the quark-quark scattering amplitude
1.2.4 The kp factorization scheme . . . . . . . .. . ... ...
1.3 Deep inelastic scattering amplitude in the perturbative Regge kinematics . .
1.3.1 Introduction to DIS observables . . . . . ... ... ... ... ....
1.3.2 Impact factors ;7 = YL p - -« o o o oo
1.3.3 Color dipole picture . . . . . . . . . ...
1.3.4 Models for the dipole target interactions . . . . . .. ... ... ...

2 Light-Cone Collinear Factorization applied to the p—meson production
2.1 Introduction . . . . . . . . ..
2.1.1 Diffractive exclusive vector electroproduction . . . . . . . .. ... ..
2.1.2  The underlying ideas of our approach . . . . . . . .. ... ... ...
2.2 Light-cone collinear factorization up to twist 3 accuracy . . . . . . .. . . ..
2.2.1 Soft parts and hard parts . . . .. ... ... ... ...
2.2.2 Factorization of the spinor indices . . . . . . . . .. .. ... ... ..
2.2.3 Factorization of the color indices . . . . . ... ... ... .. ....
2.2.4 Factorization in the momentum space around the light cone direction p
2.3 Parameterizing the vacuum to rho-meson matrix elements . . . . . . . . ..
2.3.1 Light-cone wave functions and distribution amplitudes . . . . . . ..
2.3.2  Lorentz decomposition and parity analysis . . . . . .. .. ... ...
2.4 Reduction to a minimal set of DAs . . . . . .. ... o000
2.4.1 DA relations from the equations of motion of QCD . . . . . . . . ..

o ot ot Ot

10
11
11
14
16
20
24
24
30
33
40

51
ol
ol
59
56
56
59
62
63
68
69
70
77
77



2.4.2 Equations from the n—independence condition . . . . . .. ... . .. 79

2.4.3 Wandzura-Wilczek and genuine solutions . . . . . . .. ... .. ... 82
2.4.4 The dictionary . . . . . . . . 86
2.5 Conformal expansion and scale dependence of DAs . . . . .. .. ... ... 88
2.5.1 Goal of the conformal expansion . . . . . . . .. .. ... ... .... 88
2.5.2  Conformal expansion of the DAs . . . . .. .. ... ... ... ... 90
2.5.3 Scale dependence of the DAs . . . . . . . .. ... ... ........ 91
26 QCDsumrules . . . . . .. 98
2.7 Impact factors v*(Ay) = p(N,) - - . o o oo 100
2.7.1 Kinematics . . . . . . .. 101
272 The y] — pp transition . . . . . . . .. ... 102
2.7.3 The v; — pr impact factor . . . . .. ..o 103
2.7.4 The v; — pp impact factor . . . . .. ..o 104
2.8 Helicity amplitudes . . . . . . . . ... o 109
2.8.1 Measurement of helicity amplitudes and spin matrix elements . . . . 110
2.8.2 A proton impact factor model . . . . . ... ... 112
2.8.3 Helicity amplitudes Ty, and Ty at t = t,,,;,, - Comparison of obtained
predictions with Hl data . . . . . . . .. ... ... ... ....... 112
2.8.4 Helicity amplitudes Tyg and Ty for ¢t #tpm - 0 o 0 o o o o 0 o L L. 117
2.8.5 Discussion of the results . . . . .. ... ... ... ... ... ... 123
LCCF in the impact parameter representation 125
3.1 Introduction . . . . . . . . ... 125
3.2 The qq intermediate state contributions . . . . . . . .. . ... ... ... .. 126
3.2.1 Equivalent LCCF procedure in impact parameter representation . . . 126
3.2.2  Impact factor calculation for the ¢q contribution . . . . . . . . . . .. 128
3.2.3 Interpretation of the result obtained in the WW approximation . . . 133
3.2.4 Equivalence of momentum and impact parameter calculations . . . . 135
3.2.5 The impact parameter representation of the v; — pr impact factor . 135
3.3 The gqg intermediate state contribution to the ;. — pr impact factor . . . . 136
3.3.1 LCCF in impact parameter representation for the qgg amplitude . . . 137
3.3.2 The color dipole configurations of the hard part . . . . .. ... ... 138
3.3.3 Fourier transforms of the 3-parton diagrams in the collinear limit . . 143
3.3.4 Spin non-flip and spin flip ¢Gg impact factor . . . . . . ... ... .. 147
3.4 The twist 3 v7 — ppr impact factor in the dipole picture. . . . . . . . . . .. 151
3.4.1 The dipole picture arising from the equations of motion of QCD . . . 151
3.4.2 Equivalence with the results obtained in momentum space in the light-
cone collinear factorization scheme . . . . . . . ... ... ... ... 153
3.4.3 Complete twist 3 result of the v — ppr impact factor . . . . . . . .. 155
3.5 Helicity amplitudes and polarized cross-sections . . . . . . . . ... ... .. 156
3.6 Comparison with the HERA data . . . . . ... ... ... ... ....... 159



3.7 Interacting dipole distributions . . . . . ... ..o 0oL
3.7.1 Overlaps and distributions . . . . . . .. .. ... ... ..., ...,
3.7.2 Comparison of overlaps . . . . . . . . .. ... ... ...

3.8 DISCUSSIiOn . . . . . ... e e e

Conclusions
Appendix

REFERENCES

175

177

182



Introduction

Inclusive processes, such as the deep inelastic scattering (DIS) processes have provided a
lot of information about the nature of strong interactions and the nucleon structure. These
processes first described by the naive parton model proposed by Feynman and Bjorken |1, 2]
to explain the approximate Bjorken scaling observed at SLAC in late 60’s, allowed to disen-
tangle the hadronic structure as made of elementary asymptotically free constituents called
"partons". The mysterious facts that in a strongly bound hadronic state the partons are
acting like free and the fact that quarks without their color degrees of freedom are violating
the Pauli exclusion principle were solved with the apparition of the quantum chromodynam-
ics (QCD) to describe the strong interactions. Indeed, QCD which is a non-abelian gauge
quantum field theory based on the SU(3) color group, is an asymptotically free theory given
the number of flavors we know, as demonstrated in 1973 by Wilczek, Politzer and Gross
|3, 4, 5|. This is due to the non-abelian character of QCD and the running of oy is very well
reproduced by the data.

Another important feature of QCD is the confinement of quarks and gluons into colorless
hadronic states which makes the direct observation of partons as external particles impossible.
The experimental evidence for gluons at PETRA in 1979 comes from 3-jet events, due to an
energetic gluon radiation ¢ — ¢dg in the hard sub-process e"e™ — ¢¢. The confinement of
the emitted quark antiquark and gluon leads to the observation of 3-jet events. These events
are also used to determined the coupling constant of the strong interaction a.

Many techniques exist to study the QCD properties. The perturbative QCD (pQCD)
approach is one of them and it relies on the factorization of a process into a hard part where
large energy scales are involved and a soft part involving the long distance dynamics of the
partons inside the hadrons. The presence of a hard scale @ in the collision is needed to justify
the perturbative expansion in a4(Q) of the hard part and the factorization into hard and soft
pieces. Under kinematic assumptions, one can derive pQCD evolution equations such as the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP), Efremov-Radyushkin-Brodsky-Lepage
(ERBL) or Balitsky-Fadin-Kuraev-Lipatov (BFKL) equations, for the soft parts but pQCD
cannot provide information of non-pertubative aspects of soft parts. Other techniques can
supply information on non-perturbative quantities such as lattice QCD, effective field theories
or QCD sum rules techniques.

Inclusive processes have also provided a deep understanding of the structure of the hadrons
and the partonic distribution functions (PDFs), which are known on a wide kinematic range.
They have been the testing ground of theoretical innovations such as the operator product
expansion (OPE) formalism first introduced in particle physics by Wilson in the 70’s [6] and
then applied to DIS |7, 4|. However inclusive process observables give only information on
the forward kinematics where there is no momentum transfered in ¢—channel. With the
increasing improvement of the experiments, the measurements on exclusive processes, where
one is interesting to a specific final state, have begun to bring additional information on the

hadronic structure. For example, the generalized parton distributions (GPDs) parameterizing



the nucleon in the non-forward limit have to take into account not only the z dependence
of the partonic distributions but also the skewness dependence. The exclusive processes
such as the diffractive production of vector mesons, or the deep virtual Compton scattering
(DVCS) have been studied for more than 25 years and are still the subject of many studies
and experiments. For our purpose, we should name more particularly the HERA collider
collaborations H1 and ZEUS as they have provided data for very small values of x and
moderate %, which is the kinematic region of interest in this thesis. The low—x physics is
an interesting limit of QCD. Alternative approaches from the usual collinear factorization
scheme are based on kr—factorization, such as the dipole models by Nikolaev, Zakharov |8, 9|
and Mueller [10, 11| or the CGC formalism |12, 13, 14, 15, 16, 17|. Such approaches are used
to understand the transition from a diluted to a dense partonic system due to the emission
of gluons by Bremsstrahlung which takes place in the small—x limit. This transition poses
the interesting question of saturation effects inside the hadrons.

In this thesis we developed a model for the diffractive p—meson production in the per-
turbative Regge limit, i.e. at small x and at high enough Q? to use pQCD techniques. This
approach will be presented in chapter 2 and chapter 3, while the first chapter will be devoted
to introduce the main tools of this treatment on a DIS process.

In the chapter 1, we will introduce basics of different techniques that are used in this thesis.
We will present the kr—factorization on the simplest examples to explain how the amplitudes
can be factorized in the high energy limit, in sub-processes called "impact factors". Next,
after a brief general introduction to DIS, we will focus on a DIS process to show how these
impact factors can be interpreted in the language of dipole models. This permits us to discuss
the importance and different ways of incorporation into the dipole model of saturation effects.

In the chapter 2, we will present the Light-Cone Collinear Factorization (LCCF) scheme
beyond the leading twist and its application to the computation of the impact factor @7 ) =r(%)
of the transition of the virtual photon of helicity A, into a p—meson of helicity A,. In this
approach, the soft part associated to the production of the p—meson is parameterized by the
distribution amplitudes (DAs) of the p—meson. We will discuss the energy scale dependence
of the DAs and the QCD sum rule technique to get non-perturbative parameters that enters
the DAs. Finally we will present a phenomenological model to get predictions on helicity
amplitudes of the diffractive p—meson production at HERA. This model will naturally lead
us to the next chapter topic.

In the chapter 3, we will connect the impact factor 7 =% obtained in the previous
chapter in the collinear approximation, to the color dipole picture. From this result, one can
get phenomenological models by combining our results for the impact factors with dipole
models that are already known from DIS analysis and that contains the x—dependence
of the helicity amplitudes. These dipole models include the saturation dynamics of the
nucleon target. We compare the predictions of the polarized cross-sections of the p—meson
electroproduction with HERA data and discuss our results.

In the chapters 2 and 3, some parts are based on our own contributions like the phe-

nomenological model [18] at the end of the chapter 2, and the chapter 3 which is based on



the studies [19] and |20].






Chapter 1

High energy QCD

In this chapter we present basics of the concepts and tools necessary to tackle the phe-
nomenology of hadronic reactions in the small—z physics.

After an introduction on the Regge theory and the pomeron trajectory sec. 1.1, we explain
on the quark-quark scattering the kpr—factorization procedure, first in the case of one gluon
exchanged in t—channel and then in the case of a color singlet exchange (two gluon exchange)
in sec. 1.2. We show how the impact factors emerge from this picture and briefly discuss the
resummation at leading log(1/x) of the gluon ladder exchange in the t—channel.

We present some basics of DIS process in sec. 1.3, and show how the amplitude can be
factorized in the dipole picture into the photon wave functions and the dipole cross-section.
We present finally different models of dipole cross-section that include the saturation effects,
as well as the equations that governs the energy dependence of the dipole cross-section in the

diluted and dense regimes.

1.1 Introduction

1.1.1 Postulates and consequences

Before QCD was applied to describe the strong interactions, physicists relied on the basic
postulates of the Lorentz invariance, the unitarity and the analyticity of the S-matrix in
order to get information on the hadronic scattering.

Lorentz invariance of the S—matrix implies that the S—matrix element corresponding to

the process
a(pa, Aa) + b(ps, Ag) = c(pc, Ac) + d(pp, Ap) (1.1)

can be expressed in terms of Lorentz invariant quantities such as the Mandelstam variables
and the masses of the particles. For the particular case of the process (1.1) where two
particles in the initial state give two particles in the final state, the scattering amplitude
can be expressed in terms of the Mandelstam variables s = (pa + pp)?, t = (pa — pc)? and
u = (ps — pp)? which satisfy
sHt+u=>)» m;, (1.2)
i

5
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where m; denotes the mass of the particle 7.

The unitarity condition of the S—matrix
ST =985T=1, (1.3)

expresses the fact that the probability for an initial state to give any final state is equal to
one. Let us consider an in-state |a) and an out-state |b) which are respectively states of free

particles at the times ¢t — —oo and t — oco. The corresponding S-matrix element is
Sap = (b a) . (1.4)

Let us introduce now the T'—matrix element such as S = 1447, and the scattering amplitude

A and the cross-section o, associated to this process,

Sab = 5ab + iTab = 5ab + i(27T)4(54(Z Pa — Zpb)Aab . (15)
a b

The cross-section o, of the event a — b is related to the probability of this event to happen,

it is then proportional to the square of the scattering amplitude,

1
Oah — F/dﬂb |-Aab|2 s (16)

with F' the flux factor and II, the phase space of the n—body particles of the b final state.
The flux factor in the case of the process (1.1) is given by

F =24/A(s,m%,m%) (1.7)
where \(s, m%,m%) is the standard kinematic variable,
A(s,m%4, my) = (s — (ma+mp)?) (s — (ma —mp)?) . (1.8)

The expression (1.7) for the flux factor remains true for the production of n particles in the
final state from a two-particle initial state. Note that in the large s limit where the masses
can be neglected compared to s, the flux factor is just ' = 2s.

The unitarity condition of the S—matrix (1.3) implies then the following condition on the

T—matrix elements
S (e +1Tue) (60— 1T4) = b

(Tl -Tw) = Y T.T, (1.9)

where ¢ is any physical state, i.e. the particles of this state are on the mass-shell. In terms

of the scattering amplitudes, using the fact that

2Tm Agy = Aap — Al (1.10)
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the relation (1.9) reads
2ImAg = 2m)'0*' O pa— D 1) Y Al (1.11)
a b c

This relation has very important consequences as it leads to the Cutkosky rules c.f. sec. 1.1.3
and, in the special case where one put identical in- and out- states, it leads to the optical

theorem. The theorem reads
2Tm Aga(s,t = 0) = 2m)*0* O pa — > _m) > Ml - (1.12)
a b c

As a consequence of the optical theorem, the total cross-section oy, associated to the process
"a — any physical state", is given up to a coefficient by the imaginary part of the amplitude
Aga(s,t =0),

2Zm Auo(s,t =0) = Foyy . (1.13)

The third postulate is the analyticity of the S—matrix elements, meaning that the
S—matrix is an analytical function of the Lorentz invariants seen as complex variables. An-
alyticity has been shown to be a consequence of the causality, which prevents two regions
separated by a space-like distance to influence on each other. Some consequences of the

analyticity are:
e the crossing symmetry of the scattering amplitudes,

e the dispersion relations which allows to get the real part of the amplitude from the

imaginary part.
The crossing symmetry in the case of the two to two particle process (1.1) reads
Aa+5—>l§+d(5> t) = Aa-{—b—)c—l—d(ta 3) (1.14)

Aa+J—>B+c(Sv u) = Aa+b—>0+d(uv 5) (1'15)

where b, ¢ and d are the antiparticles associated to b, ¢ and d. In the case where Zm A(s, t)
falls to zero when z — oo, the dispersion relation which relates the amplitude to its imaginary

part is obtained by deforming the integration contour which surround the cuts,

A(s,t):l/ dS/M+l/“LdSIM’ (1.16)

T |+ s'—s T s —s

th -

where s and s~ are the thresholds of particle production along the real positive and real
negative axis. If the asymptotic behavior of the integrand when |s| — oo is not falling fast
enough then the dispersion relation (1.16) is not valid and should be replaced by a subtracted

dispersion relation where the integrand is divided by as many factors (s’ —sg) as it is necessary
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to ensure the convergence of the integrand with sy an arbitrary point. For the addition of

one of the factor s’ — sg, the subtracted dispersion relation reads

B (s — s0) /°° , ImA(S,t)
A(s,t) = A(sg,t) + — " ds & =505 — o) (1.17)
s—so (5 , ImA(s,t)
i /_oo BT —s)

Note that these relations require the knowledge of the asymptotic behavior of the scattering
amplitudes which is the subject of the Regge theory.

These so-called "bootstrap" relations, that relate the imaginary part of the amplitude to
the amplitude itself and to the sum of product of other amplitudes due to the analyticity
and unitarity postulates, are obtained without for now specifying the underlying quantum

field theory and are very general considerations.

1.1.2 Regge trajectories and the pomeron intercept

In the high energy limit s — oo with fixed ¢, called the Regge limit, the asymptotic behavior
of the amplitude of the process
a+b—c+d, (1.18)

is connected to the angular momentum [ of the particle exchanged in s—channel of the crossed

channel process,
a+é—b+d. (1.19)

The partial wave expansion of the amplitude of the crossed process (1.19),

t
Asrospra(sit) = Y21+ Dai(s) P(1 + 22, (1.20)
1=0
allows to decouple the contribution given by elementary particle of angular momentum [ and
mass M exchanged in the s—channel. The crossing symmetry implies that for the process
a+b — c+d where the role of the Mandelstam variables are exchanged, s <> ¢, the amplitude

is essentially given by the resonance and takes the form,

Aapsea(s,t = M?*) = Apsspa(t = M?, ) (1.21)

= AR+ = %(m (1)) P14 25)1)

where o; is the signature which is 1 for crossing even amplitudes and —1 for crossing odd
amplitudes, G,(t) is the vertex of the particle exchanged in the t—channel with the external
particles. The process t = M? is not in the physical region of the s—channel and in eq. (1.21)
an analytical continuation of the Legendre polynomials in the physical region of the process

(1.18) allows to derive the asymptotic behavior of the amplitude of the process,

ac(l t
Aa-i—b—)c—i—d(sv t) - %Sl : (122)
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Note that the fact that the vertices G;; do not depend on s at high energy is an universal
feature that we will see also when describing the impact factor approach in kr—factorization
scheme. The amplitude depends on s only through the particles exchanged in ¢—channel.
This asymptotic behavior violates the unitarity of the theory. Indeed it was proven long
ago by Froissart [21]| using unitarity and partial wave expansion that hadronic cross-sections

has to increase slower than In*(s),
Oror < Alnz(s) ,
with A ~ 60 mb. This is equivalent to bound the asymptotic amplitudes by,
A(s,t) < sln®(s),

which from (1.22) is clearly violated for [ > 1.

The way to solve this problem is to use the Sommerfeld-Watson integral transformation
to express the partial wave expansion. The pole structure in the complex variable [ of the
partial wave amplitude A;(t) = A(l,t) will then fix the complex angular momentum of the
resonance. The resonance angular momentum given by the pole ag(t) of maximal real value
will dominate the asymptotic power behavior of the amplitude, this pole is called the Regge
pole and the effective "resonance" associated to this pole, of complex angular momentum
[ = ag(t) is called reggeon. The underlying assumption is that poles are simple poles, but
in practice logarithms appearing in the perturbation theory can gives branch cuts. The pole
ag(t) is a Regge trajectory and az(0) the reggeon intercept. The trajectories [ = ag(t) are
universal objects that only depends on the quantum numbers of the particle exchanged in
t—channel.

For t < 0, the t—dependence of the Regge pole can be experimentally obtained by fitting
the energy dependence of the s—channel amplitudes. As explained above, the reggeon can be
seen as resonances at t = M? of angular momentum /. The idea of so-called Chew Frautschi
plots was then to show the masses of known resonances p, w, - - -, as a function of their angular
momentum. [t turns out that the data are aligned on straight-lines and by extrapolating to
the physical region ¢t < 0, the straight-lines give a relatively good descriptions of the data

obtained from experiments, leading to linear Regge trajectories
ar(t = M?) = ag(0) + oyt .

The Regge theory allows to complete the bootstrap relation as it allows to obtain the
asymptotic behavior of the amplitude.

Using the optical theorem, the s—power like dependence of the total cross-section is
Opor X I A(s,t = 0) oc s@R(=0-1 (1.23)

It was demonstrated by Pomeranchuk that the cross-section vanishes asymptotically in the
case where there is a charge exchange in the t—channel. A Regge trajectory with ar(0) > 1

corresponds then to a reggeon that carries the vacuum quantum numbers and which is called
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the "pomeron" (for a pedagogical review on the pomeron in QCD see [22]). The pomeron
intercept is denoted ap(0). Donnachie and Landshoff [23] have proposed a fit of the total

cross-sections for pp and pp collisions as
Otot — )(S6 + Ys_n s

where the first term can be interpreted as the exchange of a pomeron while the second term

corresponds to the exchange of a reggeon. The best fits were

ot = 21.75%% 45615704

of? = 21.75"0% 198457045

These fits highlights the fact that the pomeron couplings to the antiproton and the proton
are the same which is due to the fact that the pomeron carries vacuum quantum numbers.
The value n = 0.45, corresponds to the Regge trajectory close to the one given by the linear
fits of Chew Frautschi plots based on the spectrum of {p, w---} resonances.

The pomeron intercept ap(0) = 1.08 violates the unitarity bound from the Froissart
theorem but one can show that with this value of the pomeron intercept, the violation occurs
only at the Planck scale.

The quark and gluon content of the pomeron can be studied in diffractive dissociation
processes where for example in ep collision, the pomeron is seen like a parton of the proton
that interacts with the electron to give any final state X. This reaction is analogous to deep
inelastic scattering where the pomeron replaces the proton which allows to study its partonic

content.

1.1.3 Cutkosky rules

In the case of QED or QCD one can check that the imaginary part of an amplitude A(s, ?)
arises when a virtual particle goes on-shell due to the 7¢ term in the propagator denominators
p? + ie. Branch cuts appear for s real such as s > sy with sg the threshold where a physical

state can be produced. Due to analyticity we have the relations
Re A(s +ie,t) = ReA(s — ie,t), (1.24)
ImA(s+iet) = —ImA(s—iet), (1.25)
the discontinuity of the amplitude around the branch cut along the real axis reads
Discs A(s, t) = Limeo(A(s + i€, t) — A(s — i€, t)) = 20 Zm A(s + i€, t) . (1.26)

It can be shown that the discontinuity of the amplitude can be obtained by replacing in the
propagators
— —2imd(p? — m?) 0(p°) . (1.27)

p? + i€
The 6(p°) ensures that the particle has positive energy, i.e. is a physical particle. For any
diagram the discontinuity can be directly obtained by following the so-called "Cutkosky
rules" [24],
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1. the diagrams must be cut in all possible ways such that the cut propagators can be put

on shell simultaneously,
2. the cut propagators are replaced following eq. (1.27),
3. the discontinuity is given by the sum of all the cut diagrams.

We will use these rules in the following parts in order to get the imaginary part of the

amplitudes by computing their discontinuities with the Cutkosky rules.

1.2 Scattering amplitudes in the Regge limit

In this section, we introduce the approximations to get the dominant contribution of the
amplitudes in the perturbative Regge limit, using the fact that in this limit s/ |f] is very
large. We first consider the quark-quark scattering amplitude with one gluon exchange in
the t—channel to show the kinematics of the dominant contribution in powers of 1/s. Then we
compute the quark-quark amplitude of a color singlet exchange in t—channel involving a two
gluon exchange in t—channel. This example is particularly relevant for hadronic processes
in the perturbative Regge limit, as the color singlet exchange dominates the colorless states
scattering. We finally show how the amplitude can be factorized into the so-called "impact
factors" and the t—channel gluons Green function. Note that the approach presented in this
section, is based on Feynman gauge calculations and the calculations beyond the Born order
approximation would be different within another gauge. Of course, the final results for gauge

invariant quantities are gauge independent.

1.2.1 The color octet exchange

At leading order the scattering of two quarks in QCD is given by the tree diagram shown in
fig. 1.1, where a gluon carrying the color charge a is exchanged between the two quarks. We
will assume that a hard scale justifies the use of pQCD for example |t| > AéCD and the fact
that s > |[t|.

pPa~n

PB ~ D2

»-

Figure 1.1: Quark-quark scattering amplitude at the tree level with an octet exchange in

t—channel.

We denote respectively p4 and pg the momenta of the upper quark and lower quark and

m 4, mp their masses. The Mandelstam variable Sqp = (p4+pg)? is large by assumption and



CHAPTER 1. HIGH ENERGY QCD 12

we can neglect the masses of the quarks and then assume that their momenta p4 and pp are
very close to two light-like vectors p; and p, of opposite directions such as Sag ~ s = 2p; - pa,

where s is the large scale. We can expand p4 and pp on this Sudakov basis as,

mi m2

pa=pit 2D, pB=p2+TBp1,
Sap = (pa+pp)’ =mh+mi +2pa-pp~2p-pr=s.

The momentum of the gluon exchanged in ¢—channel can also be decomposed on this basis
as,
A =ap;+ PBps + k| . (1.28)
It is conventional to use a two-dimensional euclidean vector, that we underline (z), to replace
the Minkowskian transverse vector x,, such as #2 = —z2 We will use this convention all
along the manuscript.
Assuming that the particles are on the mass-shell (we neglect now the masses of the

quarks), one has the two following conditions,

(pa—A) =0 (1.29)
(ps+A)P? = 0 (1.30)
which lead to
_(1_a)5+%i = 0, (1.31)
(1+ﬁ)a+%i = 0. (1.32)

Substituting in eq. (1.32) the expression of 3 by,

AL
= 1.33
p s(1—a)’ (1.33)
leads to a second order equation in «,
2
a2—a—£:0. (1.34)
s
The two couples of solutions for av and 5 up to first order in ATi are,
AQ
a:1+T¢, B=-1, (1.35)
and A2 A2
a=——2, B=—L. (1.36)
s s

The first couple of solutions is not relevant as it would imply that t = A? ~ —s, which

violates our first assumption s > —t. The second couple of solution gives,

A2 A2
A= Lp1+?lp2+AL. (1.37)

S



CHAPTER 1. HIGH ENERGY QCD 13

We get then that t = A% ~ A2 = —A?. Note that it justifies a posteriori that A2 /s ~ t/s
can be neglected.
We will now introduce another approximation to simplify the vertex expression, called

the eikonal approximation. The upper vertex gives the contribution,

gt (pr — A)YHtg us(pr) (1.38)

where we put explicitly the spinor indices r, s, of the Dirac spinors. The spinor @, (p; — A)
depends on the vector p; — A which is approximately equal to p; as || ~ |a] ~ |A%| /s < 1.

Thus, the upper vertex simplifies as,
igﬂr(pl)fyut?j us<p1) = Qigplllér,st?’j ) (139)

where we have used the Gordon identity,

B0 () = 5 ) (0 + ) 0 8 = ) (). (1.40)

with m the mass of the fermion and

1
ot = 5[7“)7”]’ (1.41)

for p’ = p = p1, and the normalizations of the spinors u,(p)us(p) = 2md,s. This approx-
imation is known as the "eikonal approximation" and can be used as long as a soft gauge
particle is exchanged. Finally, using for the lower vertex the same approximation one gets
for the scattering amplitude,

. . g

M= ig(200) 35 (2P5) 00 1O it

s
= 18T As—0py 50y 5o tiith - (1.42)

t 72,5271

Note that the upper and lower vertices are respectively proportional to p} and pY, thus if we

decompose the metric tensor into the following tensor components

2 2 .
Juw = gpQ;Lplu + ;plupQV + Guv s (143)

only the component %pguplu gives a non-vanishing contribution. As the metric tensor is
coming from the sum over the polarizations of the propagator of the gluon, this component

can be seen as the tensor product of the so-called "non-sense" polarizations,

u 2 W11 2
6“" = \/;pg,“ ESO = \/;phu (1.44)

such as g,,, can be replaced due to the eikonal approximation by ezpagown.Now the amplitude
M reads

M= ;_i(ig)z (@ (p)#"P 5 ua(p1)) (@y (p2)g " i un(p2)) - (1.45)
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g8 g -

D2 . S

(a) (b)

P1

Figure 1.2: Diagrams of the singlet exchange at Born order.

1.2.2 The singlet color exchange in {—channel

In diffractive processes the quantum numbers exchanged in t—channel are those of the vacuum
and consequently, we have to consider a singlet color exchange in t—channel. Let us consider
the color singlet exchange on the quark-quark scattering amplitude.

A color singlet exchange in ¢—channel involves at least two gluons. At Born order, the
scattering of two quarks is given by the two diagrams shown in fig. 1.2. These two diagrams
are related by crossing symmetry. Let us define A = k; — ko the momentum exchanged in
t—channel. The diagram (b) can be obtained from diagram (a) results, up to the color factor
that are different by

Aw(s,t,u) = Awy(u,t,8) = Aw)(—s,t,s), (1.46)

where we use for the last equality, the fact that at large s and fixed ¢,
SR —U.

The color factor for a singlet exchange of the diagrams (a) and (b) are equal and given by

ab ab 2
(tatb)ij% (tatb)kz% = % (%) (%) = % (1.47)
Let us compute the imaginary part of the diagram (a) by using the Cutkosky rules,
ImA = IN" -1 /dl’[gut' AT () AT (—ky = A — k). (1.48)
2 4N?

In fig. 1.3 the cut of the fermionic line of diagram (a) is represented by the dashed line.
The color factors are put apart of the amplitude A", The expression of A" (k) is given

by (1.42), }
A (k) = —8%@8? : (1.49)

The integral measure dII"" on the phase space is given by,

cu. _ [ Al AUy a0 sy o vas() .
Jamg = [ G ema@eniE) (2n) ' o+ 2~ — )

B / (2?)140[452 (2m)0((p1 + k1)) (2m)(12)6W (po — Iy — ky)

:(/ég%&@y+mfw«m—kn%, (1.50)
(1.51)
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b
Y41

Y

ly
D2

Y

|
|
|
|
|
|
|
Atree(kl) | AtreeT(_kz)

Figure 1.3: Cut of the diagram (a).

where in the second line we have shifted the momentum [; by the k; = [y — p;. The mass
shell conditions I? = 0 and I3 = 0 being imposed by the Dirac factors. Using the Sudakov

decomposition of the momentum £,

ki =oa1pr+ Bip2+ ki1, (1.52)
dIly reads,
s [ dawdBid®k
Jange =5 [EACELS (14 )~ D3 as1 - ) - D). (159

The factor s/2 comes from the Jacobian of the coordinate transformation from ky = (k9, k1)
to ]{31 = (Oé,ﬁ,ku_) with P1 P2 = 8/2
The imaginary part of the amplitude reads

2 _ 2
Tmdw = Sy | i 631+ @) - E)3(-as(l - ) - &

AN? 22 (27)2
X <—87TOZS S)zﬁ (154)
vy v
N2 _—1 k1
= 1622/ S 1.55
Nz N QR R (1.55)

where k, = k; — A.

A full computation of the amplitude at one loop would lead to terms proportional to
In(s/t) = In(s/ [t|) — im, where the imaginary contribution to the full amplitude arises from
the factor —im. Keeping this in mind, we see that we can get the real part of the amplitude

by replacing —im — In(s/ |¢]|) in our result,

2 _ 2 _A2
N —1 58 s)/dﬁl A (1.56)

— ai—In(— .
4N? °t (|t| (2m)2 kT (k, — A)?
Using the crossing symmetry relation (1.46) the full amplitude at one loop of the diagram
(b) is
Ap = -

(1.57)

N2 -1 -5, ,—s / d’k, —A?

16T’ — In(— .
ave o) | G e — Ay
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Note that there is no contribution to the imaginary part as —s/t > 0, which is consistent that
the diagram b does not contribute to the discontinuity, it is only necessary for convergence in
the s complex plane. The expression (1.57) is the opposite of the real part of the contribution
of the diagram (a). Consequently the real parts of the two diagrams cancel and only the

imaginary part of diagram (a) remains at the end,
A(a)+(b) =7m A(a) . (1.58)

Note that this cancellation is due to the fact that the color factors are the same for the
diagrams (a) and (b), as we are interesting here in a color singlet exchange. It is not the case

for a color octet exchange where the real parts are not canceling each other.

1.2.3 Impact factor representation of the quark-quark scattering

amplitude

We will introduce here the kr—factorization scheme |25, 26, 27, 28, 29, 30, 31| which is valid
in the perturbative Regge limit where the amplitude is factorized into an upper and a lower
so-called impact factors that exchange at Born level two t—channel gluons in a singlet color
state.

Let us show on the particular example of the scattering of two quarks in the forward limit

A =0, ky = k and ky = k, the procedure of kr—factorization.

RERETD \%5/

(al) (b1)

) NN
| S

(a2) (b2)

Figure 1.4: Diagrams of the singlet exchange.

In fig. 1.4 are shown four diagrams which when they are summed corresponds to twice the
amplitude at the Born level of the singlet exchange, A = %(A(al) + Ay + A2) + Apz)). The
factor 1/2 prevent from overcounting the diagram contributions due to the loop-integration
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where we integrate over all configurations of the momenta ki, ks. The amplitude of the

diagram (al), putting apart the color factor AZV_QI reads
_ s [dadBdk [ . i+ B
A a — __F = H v
1A (a1) 2/ 2 <U(p1)297 TSR u(pr) .

N o W —K) —igua —igy
< (o B e), g et 0

where "up" and "down" subscripts identify the upper and lower parts of the diagram (al)

fig. 1.2. Now using the eikonal approximation, we can replace

2 u WIL
G = P3P (1.60)
and we can approximate k = ap; + Ops + ki by
k' = fBpat+ ke, kP =ap+ky, (1.61)

as the py (resp. p2) component is negligible compared to one in the upper (resp. lower) part

of the diagram. We also approximate k> = —k?. After these simplifications we get,
. S dOzdﬂCPE 22(29)2_ ]52751](52
Z‘A(al) - 9 / (271_)4 < s u(pl) Bs — EQ I ieu(pl) .
2i(ig)* Pipai ) i
— . 1.62
( s u(p2)—as — k4 ieu(p2) down K> K ( )

Using the Clifford algebra of the Dirac matrix {7 7"} = 2¢*”, and the fact that p; and po

are light-cone vectors we have

U(p1)poprpau(pr) = su(pr)pau(pr) = s°, (1.63)

where we have for the last equality used the Gordon identity and the normalization of the

spinors. The amplitude reads now,
. s &Pk -1
ZA(al) - 5/ (27T)2 (E2)2
i dp 1
2i(ig)* / PP R
2m b — — +ie w

X <2i(ig)2 dﬁ%) : (1.64)
down

2 .
27—04—%+u—:

X

Let us rewrite this result as

o =5 [ ([ ro0m) ([ooccam), o o

bl t) = 0 (1.66)

with
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The contributions of the diagrams (bl), (a2) and (b2), are obtained by changing the signs of
k in the propagators leading to

A = 3 [ 25, o (/ %aﬁ(—ﬁ,—@)w (/ j—jas(—a,—@)dm, (1.67)
o = 3 B ([ 0), (o) v

o = 3 ([ ow), (o) )

The total contribution reads

iA = 2/ (;Z;E)Q (52 “ o

where the factor % are symmetrically inserted in front of the upper and lower parts of the
process. As we know that iA = %(.A(al) + A(2) + + A1) + Apg)) because of the fact we
have considered twice more diagrams than it was necessary, we have a global factor (%)up X
(%)down X 2= % where the extra factor 2 has been put in the t—channel gluon propagator
part of the amplitude. This factor 2 is coming from the fact that there are two possibilities to
combine the indices of the g,,g,3 of the propagator and g,3g.,, in other words this factor is
absorbed in the 4—point green function of the t—channel gluons. As we took care of keeping
the coefficient that belong respectively to the upper and lower part of the process, we see
that eq. (1.70) can be represented as in fig. 1.5.

Looking at the integrands of eq. (1.70) is also now clear that the integrals over  and «

converge,
S (B, k) + 8D (B, —k) ~ ﬁl

The contributions of all the diagrams are necessary to prove the convergence of the integrals

(1.71)

over f3.
We choose to integrate over the contour C~ in the f— and a— complex planes shown in
fig. 1.6, the integral

3 ([ 5200 +o-0.-) 5 ([ Gotetan + o(-a,-1)

B i 2 %(5’ )/C ;l_:Cb(O‘»@:i(%(ig)z)z(—i)(—i)=(4m5)2. (1.72)

After restoring the color factor, we get the same result than in the direct computation with
the Cutkosky rules eq. (1.54)

N2 -1 d’k, 1
7 = 167 / 1 : 1.
m A RE 6= 2r) 1) (1.73)
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N[

(T7 %),
(33 7 )
i

Figure 1.5: Decomposition of the total amplitude and combinatorial factors.

2 .
—%—kze

Figure 1.6: f— or a— complex planes, the poles of the ¢(+a, +k) function and the contour

C~ of integration.
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Going back to eq. (1.70) we see that the amplitude reads

= s ko 2 ab ab
A= 5] @y TR O (K) P (E) (1.74)

. Pk 1 "
- “/ 2y @ B i), (1.75)

with,
6ab1 d
Pipk) = 2N2/ 9 (6(8, ) + 6(B, 1)) (1.76)
g 3}

- 2/27r u € NSS;L(Pl (klva)éq(pl)g(kg,b)(ﬁv@a (1.77)

the so-called impact factor for the upper part of the process, where S (o191, —a(p1)g (k%b)(ﬁ, k)
is the S—matrix element of the upper sub-process where the quark couples with gluons with
"non-sense" polarizations e¥° as defined in eq. (1.44) due to eikonal approximation.

Note that other conventions exist, for example in ref. [22], the impact factor is defined as
Pl22l = 27 dHere and the amplitude reads

2 22| pl22
A[QQ]:iS/ Ak o122l
(2m)*t (&%)

or in ref. [32], ¥ = 2,/ ®He¢ and the amplitude reads

Ao [

2/ @2n)* (&)?

Depending on the conventions, the color factor % is included in the impact factor defi-

nition such as the color factor 4N21 = (%)u <%> o is recovered in the final amplitude.

Note that in the case of two quark scattering amplitude, the impact factors are constant
and equal to 4ma,. As a consequence the integral over k is infra-red divergent. We will see
that in the case where colorless particles are involved in the initial and final states of the
impact factor, the gauge invariance forces the impact factor to cancel, preventing thus the

infra-red divergence of the k integral.

1.2.4 The k7 factorization scheme

We present how the kr—factorization procedure is generalized for colorless states. Let us
consider a more general process where two colorless probes scatter with an exchange of a

pomeron in t—channel,
A(pr) + B(pz) = A'(p1 +A) + B'(p2 — A).

Due to the fact that we are in the high energy limit there will be a large rapidity gap between

A’and B’. The dominant contribution in powers of s to the amplitude is given by an exchange
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of gluons in ¢t-channel. Indeed the power behavior in s of the amplitude at high energy for

N particles exchanged in t—channel depends on the spins o; of these particles,
A o gZioim N+ (1.78)

thus the leading contributions in powers of s involves only gluons. As a general principle, in
the limit s — oo the eikonal approximation for gluons leads to the finite terms that does not
decrease as power of s.

One can replace the numerators of the gluon propagators by the non-sense polarizations
thanks to the eikonal approximation in the upper and lower blob vertices. Then one can
safely neglect the component of the gluon momenta along the dominant like-cone direction
of the upper or lower blob compared to the component of the momenta of the particles of
the blobs. The amplitude factorizes then as illustrated in fig. 1.7 where @2 and ®,” are the
s— and u—contributions to the sub-processes A + g — A"+ ¢g. The 4-point Green function
of the gluons G contains the energy dependence and as we define the impact factors as the
sum of the s— and u— channel, we need to put a factor 1/2 in the definition of the impact
factor to avoid double counting when joining the gluonic lines as it was illustrated on the
quark—quark scattering. One should not forget also the factor 2 coming from the Jacobian

s/2 in the integral measure.

A A’

B B’

Figure 1.7: kr—factorization of the process A+ B — A’ + B’. The upper and lower impact
up(doum)>

factors are the sum of the s— and u—contributions @*(@wn) —= %(@Zp(down) + &,
The 4-point Green function of the gluons at Born level G reads
2
Kk — A2
where the factor 2 is due to the fact that there are two combinations to link the upper gluons

to the lower ones as illustrated in fig. 1.5 and the amplitude reads

N .
A = s [ G g b M0, (k- ), (1.79)



CHAPTER 1. HIGH ENERGY QCD 22

. _
~—

Figure 1.8: Deformation of the contour in the x complex plane.
with

a 1 dﬂ v, ab
L(k) = = / —ehoen S (B,k). (1.80)

9 It Ag—Alg

Defining the s—channel Mandelstam variable x of the system A(pa) + g(k1), such as,
k= (pa+hi) =Bs+ph+ki,

we can replace the integral over S by an integral over k,

1 d/‘i v.ab
5 %sﬁssﬁssg g (R k). (1.81)

(k) =

The impact factor is then defined as the integral along the contour illustrated in fig. 1.8.
This contour can be closed on the discontinuity of the right cut along the real axis, leading
to the final expression

1 d
o %5%58@13%55@ @ (k). (1.82)

ab
oL (k) =

The energy dependence of the gluon Green function can be worked out at the leading
log(1/x) (LLx) accuracy by resumming the amplitude in the relevant parameter aglIn(s) as
the large logarithm of s can compensate the small value of a;. The large In(s) are given
at LLx in the multi-Regge kinematic where, considering A and B flying respectively almost

along the light-cone vectors p; and ps, a ladder of gluons with momenta

ki = aip1 + Bipa + k14,
is exchanged in t—channel with the following strong ordering,

1>a0 >0 >a,,
b <€ B € B <1,
Ky~ kL~ saif; (1.83)

In this kinematic, the ladder of gluons can be resummed in two "reggeized" gluons which

exchange usual gluons coupling with an effective vertex called Lipatov vertex [33]. Using
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Mellin transformation to decouple the gluon ladder from the impact factors the amplitude

reads
18 Ak d*E , ,
A(s,t) = W/k—{q"fb(&é—@/ k’; PL(—K, —A+ k)
5+ioo_d w B
w [ s ,
d—100

with the Mellin transform of the Green function G, (k, k', A) is governed by the Balitsky,
Fadin, Kuraev and Lipatov (BFKL) equation [34, 35, 36, 37| at LLx. The BFKL equation
in terms of the rapidity Y = In(1/z) reads

0 as N,

—F(YE)= "2 | kKK kK)F(Y,k 1.
) =% [ PR D FYE) (1.85)
with (Y, k, A) the unintegrated gluon density which contains the 4-point gluon Green func-
tion Y —dependence and K (%', k) the BFKL kernel. The BFKL solution [38, 33| is of the
form

FY, k) ~ (1/2) 5@ o goo (1.86)

This solution exhibits a value for the pomeron intercept of ap = 1+ wp = 1 + 282 In(2)
which is slightly above one, leading to the violation of the Froissart bound as it was already
expected from the Donnachie and Landshoff fits. We will see in section 1.3.4 some of the
models proposed to solve this problem of unitarity violation.

Note that the impact factors do not depend on s and the whole s—dependence is included
in the Green function of the gluons. This remark agrees with the discussion in part 1.1.2 on
the universality of the t—channel reggeon exchange which contains the s—dependence of the
amplitudes.

The QCD gauge invariance and the fact that the probes are colorless, require the cancel-
lation of the impact factors in the limits £, — 0 or (k. — A, ) — 0. Indeed this is due to the
QCD Ward identities, assuming that the t—channel gluons are on-shell (which is the case in
the limit k% ~ k? — 0),

Szzg_”’*gk“ = SZ;Q_W*Q(A — k) =0. (1.87)
eq. (1.87) implies that the impact factor proportional to

2 e
—Z8T IR (ky — AL)Y

2
Y g—=v*g NSu _NSv __ < oy *g—=~*g, M, Vv __
S;uz € € =-=95 Papo = g M

s M
vanishes when &, — 0 or k&, — A, — 0. The fact that the probes are colorless is essential
for the QCD Ward identity used here. For example, in the quark-quark scattering, we saw
that the amplitude are not infra-red safe because they do not cancel when k; — 0, but the
quarks are not colorless probes. Another way to see this gauge invariance requirement is
that a colorless probe interacts with the {—channel gluons through a partonic system. For

k) of the order of the transverse size of the partonic system, the gluon can resolve the color
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charges of the partons. When £, vanishes, the transverse size resolved by the gluon becomes
larger than the transverse size r of the system and the color charges of the partons are then
screening each other. As the probe is colorless, the whole partonic system is colorless and the
coupling of the gluon to this system is then vanishing as the effective color charge resolved

by the gluon vanishes, as illustrated in fig. 1.9.

=3

o gve 2D

_— >

Figure 1.9: In the limit £ — 0, the gluon cannot resolve anymore the colored quark as its

color charge is shadowed by the color charge of the antiquark.

1.3 Deep inelastic scattering amplitude in the perturba-

tive Regge kinematics
1.3.1 Introduction to DIS observables

k/

_——>  Dx

Figure 1.10: Deep inelastic scattering process e~ (k) + p(p) — e~ (k') + X (px) summed over
all final states X.

We denote p, ¢ and k the respective momenta of the proton, the virtual photon and the
electron. The virtuality @ of the photon is defined as ¢> = —Q?. Let us denote,

e S = (k+ p)? the squared center of mass energy of the ep system,
e W = (q+ p)? the squared center of mass energy of the v*p system,

o r = % = g—j with v = p - ¢, the Bjorken variable of the process, which in the parton
model is the fraction of proton momentum carried by the interacting parton and v /M,

the virtual photon energy in the proton rest frame.

oy = % the fraction of the electron energy transferred to the virtual photon in the

proton rest frame.
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In the high energy limit, (for a pedagogical book on high energy QCD see Ref. [39]), s >
Q* > (.M2 AéCD) with Agep the QCD scale and M, the mass of the proton, the variables

x and y can be approximated by = ~ ‘%—22 and y ~ %2 The differential cross-section reads
prio” ¢ LW, (1.88)
B3k 8w (s — M2)g* e '

with E” and £ the energy and the momentum of the scattered electron, L, the leptonic part
of the process associated to the leptonic current and W, the hadronic tensor associated with
the interaction between the probe (the virtual photon) and the hadron. Neglecting the mass

of the electron
" = 2(kFE"Y + K'E" — g"k - k). (1.89)

The tensor W, reads

47W, = Z/dﬂx (2m)*6(p + ¢ — px)
X
< ((p(0)] JH0) 1X (px)) (X (px)] Ju(0) [p(D)))
= [ e () T 0 D), (1.90)
from the first line to the second we used first a translation of the matrix element
()] e eI 0)e VY X (px)) = X (p(p)| T (w) X (px))

and then the completeness relation

> [ X ) () = 1

Due to the optical theorem, the tensor W, is related to the imaginary part of the forward

Compton scattering amplitude 7}, (W, = 2ZmT,,) illustrated in fig. 1.11,

15T =i [ et (o) T 0} D)), (1.91)
H v
0 Y
\\

Figure 1.11: Forward Compton scattering amplitude.

The hadronic tensor cannot be computed perturbatively and have to be modeled by

parameterizing it on the relevant Lorentz structures. Using the transformations under parity
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and time reversal of the correlator and the gauge invariance conditions ¢*W,, = ¢"W,, =0,
the hadronic tensor W, can be parameterized by two independent structure functions F;

and Fj such as,

quqv
Wul/ = _(g;ﬂ/_ 22 )F1($7Q2)
1 D-q D-q
=0 0~ 0 SR (1.92)

Putting all together one finds for the differential cross-section of the DIS of the proton and

the electron in the proton rest frame,

do;?, a2 . M2
o= 2F, sin?(0/2) + —L2 F, cos®(0/2 1
dE'dQ  4M,E?sin'(6/2) 1 sin”(6/2) + - Fcos 0/2) |, (1.93)

with Q and 6 the solid angle and the azimuthal angle of the scattered electron and o = €% /47

the fine structure constant.

The parton model

In the so-called naive parton model proposed by Feynman and Bjorken |2, 40, 1|, the proton
is assumed to be constituted of point-like fermionic particles called partons. Comparing the
result (1.93) with the differential cross-section of a spin 1/2 point-like particle, for example

e~ |~ cross-section,

do® a?5(1 — ) . m?
dE/dQ - 4m“E2 s1n4(9/2) (Sln (9/2) + 7 COS (9/2)) y (194)

and assuming that a parton of mass my and momentum p; = xp interacts with the photon,

leads to

M M
2F = —25(1 — zp) = —25(1 —
1= (1—2p) my (1—a/xy)
and M
mf mf P
F = o(1 — = o(1 — = —5(1 — = 2x+F
T (1—2y) M (1 —x/xf) = x5 my (1 —a/xp) =22 F1,

with z; = Q%/2q-py = 2/ ;. Note that v is replaced in (1.94) by vy = q-p; = z;v and in the
proton rest frame vy/v = my/M,. It implies that the structure functions are independent of
Q? which could explain in the early experimental analysis at SLAC the fact that the measure
of F, depends very weakly on Q? known as the Bjorken scaling. In the parton model, the

hadronic tensor W, is written as,
W =3 [ St (1.95)
!
with f the parton distribution function and WJV the "partonic tensor",
dxW], = / d'p'2ms(p?) (2m) 8 (xp + g — 1) (sl T} () Ju(0) |250))

Qv 2% P-q P-q
:27T1'f5(1'f—1')6?c <—(g,w— £ )"’—f(pu_qM—)(pu_QV?)) . (196)

7 v q?
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This leads to the expressions
1

Fi=3 ; et fr(x) and Fy = 22F (), (1.97)

the second equality in (1.97) is known as the Callan-Gross relation [41], and could explain
why the data for the longitudinal structure function defined as Fi(z) = Fy(z) — 22F;(z)
were small compared to the data of Fy. Despite of these predictions, the main problem of
the naive parton model is that it assumes that the partons are free inside the nucleon while
they should be in the same time strongly interacting with each other to maintain themselves
in the hadron bound state. This is of course explain by the asymptotic freedom in QCD, i.e.

the coupling of the partons becomes weak at high energy scales Q2 > AQCD

The parton picture in QCD

A hadron in the point of view of QCD contains fluctuations of partonic fields of space and
time scale smaller than its hadronic size. The probe (virtual photon) can resolve the fluc-
tuations in the hadrons that have typically larger sizes than the size of the probe and all
smaller fluctuations only participate in the renormalization of the masses and the coupling
constants. In the infinite momentum frame where the proton has the speed of light, the
Lorentz dilatation of time scales implies that the fluctuations have a long life time compared
to the time scale of the probe and they behave as if they were free. From this point of view
we see that the number of fluctuations resolved by the probe becomes larger and larger with
decreasing x because of the emission of gluons by bremsstrahlung. The fact that the probe
resolves more and more partons as Q2 increases is the source of the quantum corrections that
violates the Bjorken scaling. So both z and Q* variations leads to quantum corrections to the
observables. The x—evolution is given by the BFKL equation in the diluted regime where the
partonic density is small and by the Balitsky-Kovchegov (BK) equation [42, 43] in the dense
regime where the partonic interactions due to their overlapping leads to non-linear evolution
equations. Both equations resum the large leading terms in oy Pt Cﬁf—f ~ agln(1l/z) due
to the soft gluon emissions. The Q? evolution is given by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equation [44, 45, 46, 47| which resums the large In(Q?) leading
terms that appear due to collinear singularities o fQ2 Cf:—;l ~ asIn(Q?).

In the Bjorken limit (Q? — oo, x fixed), the expregsion (1.90) of W,
é. The way to compute these

contributions is to use the operator product expansion (OPE) on the light-cone y* — 0, the

the integral is

dominated by the value of the correlator for 0 < y? <

OPE technique was introduced in particle physics by Wilson in the 70’s [6] and was then
applied to DIS [7, 4] and later to exclusive processes [48]. It consists in expanding the product

of the electromagnetic currents as

W)Z o (1)L (0), (1.98)

where the coefficients 37, (y) = Yy, - - -y, C*'(y?) are the Wilson coefficients, the functions

C*'(y*) contain the singularities when |y| — 0. O*"#+(0) are local operators of spin s that
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have the same quantum numbers of the L.h.s. of (1.98). By dimensional analysis, the canonical

dimension of the currents are d; = 3 and then the Wilson coefficients behave as

o) ey = (1.99)

=yl

where d; ; is the canonical dimension of the operator O """ and s is the spin and t; = ds; — s
is the twist of the operator O ""*. Note that the difference between the OPE on the
light-cone (y* — 0) and the standard OPE (y, — 0), is that the hierarchy of the leading
operators is not given by the canonical dimension of the operators but by their twists and
thus there is an infinite set of operators of the same twist, as the dimension of the operators
can be compensated by their spins. The singularities that drive the behavior of the non-local
correlators are given by operators of twist ¢5; < 6 and the leading twist operators of QCD
are of twist 2.

One can parameterize the correlators on the possible Lorentz structures as,

({0 (0) Ip(D)), 0 = P!+ P {Os(0)) + -+, (1.100)

where "- - - " stand for terms with trace. Replacing J,(y)J,(0) in the definition (1.90) of W,
by the OPE leads to

47TWMV = Z <OSZ-( )) /d4yeiq~y(y,p)808,i(y2)

= Zx‘s > (0.i(0) (—iQ? 8Q2> C(Q?)

7

Zx—s 3 (0.4(0) D@, (1.101)

with C*#(Q?) the Fourier transform of C®/(y?). D%/(Q?) scales like ~ (1/Q)"2, so at
leading twist the Bjorken scaling is verified. The coefficient functions D*%(Q?) are universal
as the target dependence is contained in the initial and final states of (O, ;(0)) and they are
calculable in pQCD. The structure functions take the forms

Fi(z,@Q%) = Zx-sz +i(0)) D@, (1.102)
Fy(z, Q) = Zx—“lz «i(0)) D31 (Q%). (1.103)

7

The leading twist QCD operators are,

Ol = D(0)y gz .. gt (0) (1.104)
O = pligua . guee1 prshi (1.105)

with "{---}" stands for the symmetrization of i, -- s indices and the subtraction of the
trace terms. Identifying the structure functions in (1.97) and (1.102, 1.103) leads to

/ 9T 5 (fr() + Fr(a) = (O (1.106)

i
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which relates the Mellin moments of the PDFs to the expected values on the hadronic state

(Osy)-

Taking the average value of (9%}'”5 and OFL# on quark of flavor f’ state, one can show
that the corresponding <Os,qf> = 0rp and (O ,) = 0. Identifying the structure functions in
(1.97) and (1.102, 1.103) leads to

[ st + 5@ = (Ou)) (1.107)

The Callan-Symanzik renormalization group equations for the correlators (J(y).J(0)) and
(Og.;) read

(13 + 805 ) LTIO) = 0, (1.108)
<(M% + 5(%)(%8) 0ij + Vs,z‘j(oés)) (Os5) = 0, (1.109)

with S(ay) = ,tﬁ% and 7, ;; the element of the anomalous dimension matrix. The running

of a, at one loop approximation leads to

@-—" (1.110)
Qg = , .
BoIn(Q/Agep)
with [y = %Nzi;%nf. As the structure functions do not depend on the choice of u?, the
coefficient functions satisty
0 + B(cs) 0 bij + D% =0 (1.111)
a Qg ) >— ij 5,17 © =0, .
Hou Ba, ) O T T
The solutions of this equation is given by,
1 (Q/A ) 87'r2A(s)
. . n QCD Bo
D?®* o) = DY y Qs O A
@/ = DQu/0ul@) | (AR )

ji
The coefficients A;;(s) = 7s,4j(1)/(4mas(p)) of the matrix A are calculable at one loop level
from the counter terms that regularize the operator divergence. As a consequence the scaling
violations at one loop are responsible for the Bjorken scaling and the mixing between the
operator expectation values involves the gluon operators (fluctuations resolved when probing

with a higher sensibility),

d_x s 2 B 2 < In(Q/Agcep) )8%? O,
|5 S st @)+ 1@ o | (gt ey (Oudg (11
Deriving this equation with respect to In(Q?) leads to
. ) ~
sz = =27 (Q) Ay (s) f(s), (1.113)

0Q)?
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with f the Mellin moments of the PDFs. This equation is equivalent to the DGLAP equation

in rz—space,

0fi(z, Q%) _ au(@®) ['dy 2
om(Q?)  on /x?Pij(x/y)fj(y,Q), (1.114)

where the splitting functions P;;(z/y) are the Mellin moments of the elements A;;(s),

/i—xxsﬂ-(x) = —4mA;;(s) . (1.115)
Note that the eigenvectors associated to the eigenvalue zero of the matrix A determine the
sum rules. These eigenvectors, which are combinations of operators, are scale independent.
For example the sum rule for s = 1 implies the conservation of the number of partons and
for s = 2 the conservation of the longitudinal momentum carried by all the partons.

The physical picture is that the photon can resolve the parton structure inside the parton
¢;- The splitting functions P;;(y) are the amplitudes of probability to get the parton j with
fraction of momentum y of the momentum of the parton from the parton ¢. The DGLAP

equation is currently known up to NNLO corrections [49].

1.3.2 Impact factors 77, — 7] 7

In terms of the Lorentz invariant quantities z, y and @2, the differential cross-section (1.93)
in the infinite momentum frame reads

do;?, 21’

drdQ? Q!

(1+ 1 =y Fa(r, Q%) — y*Fi(z, Q%) . (1.116)

These two structure functions are closely linked to the longitudinal and transverse polarized

cross-sections o7, and o of the processes Y v 77 7+ p(p) = X (px),

2

Q) = oone@?), (L1
2

Fy(z,Q%) = 432(1 (or(z,Q*) + or(z, Q%) . (1.118)

Figure 1.12: kp—factorization of the forward Compton scattering amplitude.

We will focus in this part on the determination of the polarized cross-sections oy, and op
defined in eqs. (1.117, 1.118) in the perturbative Regge limit. Using the optical theorem,
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the polarized cross-sections o 1 are related to the forward Compton scattering amplitudes

el. — _
AL,T = A”/Z?TP%VZ?TP(&IS = 0),

2 1
oL = fImAil;T(S) = gImAil;T. (1.119)
Using the impact factor representation for the Compton scattering amplitude, as illustrated

in fig. 1.12 we get at Born level

k1 . .
oL = — QL (k, Q)  (k, M?), 1.120

L,T / (27T)2 (EZ)Z (— Q ) (— ) ( )
where M is some non-perturbative scale of the transverse dynamics of the partons inside the
proton.

In the region Q? > AéCD, the impact factor ®72.777L7 can be computed within the
perturbation theory. We will consider here the lowest order in perturbation theory where
the photons interact with the gluons in £—channel by dissociating in a quark anti-quark pair.
We neglect for simplicity the masses of the quark in this computation assuming Q? > mfc,
where my is the mass of a quark of flavor f.

The vectors ¢, [ and k are decomposed in the Sudakov basis of light-cone vectors p; and

P2 such as,
2
S %p% (1.121)
= yp1+Pp2+ 1o, (1.122)
+Q*+ K
k= Wfpg + k. (1.123)

Note that we work in the infinite momentum frame where the proton and the virtual photon
are moving respectively near the light-cone vectors p, and p;.
The longitudinal and transverse polarization vectors of the virtual photons are
1 2 n 1

L = @( 1+ ?pg), e = 2 (0,F1,—i,0) . (1.124)

We define the euclidean polarization vectors in the transverse space as,
+ 1 »
e = —(F1,—1i) . (1.125)

We use the Cutkosky rules to compute the discontinuity of the four diagrams shown in
fig. 1.13 that contribute to the impact factors.
The contribution to the impact factor of the diagram (a) for a loop involving a quark of

electric charge e,

o 1 dk
LT — — [ Dy 1.126
(a) 25 (271’) ISCx A(a) ( )
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Figure 1.13: The four diagrams contributing to the v* — ~* impact factors, the dashed lines

are the cut in the diagrams.

and
Disc,, Ay = / (jﬂgzé(lz)é((l —q— k) (4ra)(4ray) (1.127)

~Tr (71 (/= DU~ d— DA U- D7 1))

: (=g

=5 [ amats(8 — )atae — ko) (ima) (iras)
~Tr (41 (/= S0~ d — DA G- D7 1))

: (=g
s [dyd* 1 6(k— ko)

- 5/ T (4mar)(dma)

" (@)2 (Z) —Tr (P2 (=P P2 (= p1) P2 (—Up1)P2(yp1))

s ) \s CE+yiQn)?

7*y*Q?

= 32$aa5/dy d*05(k — ko),
P+ y2)?

(1.128)

with ko = % (£ — yk)®. Note that we use the Ward identity to simplify the computation by

rewriting the longitudinal polarization of the virtual photon as

2
el = % (q + %pa) : (1.129)

The Ward identity
A, =0, (1.130)
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with A, such as A = £7#(q)A,, allows then to get rid of the terms in ¢” in the photon

polarizations,
.1 20? 20
], = 0 (Q“ + Tpg) — ?Pg (1.131)
The contribution of the diagram (a) to the impact factor reads
e Baa, 22292
g - 299 / dy d%fy—?. (1.132)
‘ 4 (€ + yyQ?)?

Computing the other contributions in the case of the longitudinally polarized photon, sum-

ming the contributions of all the flavors f of electric charge ¢; and including the color factor
ab

Tr(t*t*) = £~ involved in the color singlet exchange, the total impact factor reads

2
Ui — 0% Baa, i 2/d d*¢ vio _ _yyeQ 2 (1.133)
= f%‘ VEE\Dbw " pu+hk) '

where D({) = £*+p? with 1* = yjj Q*+m?. For completeness, we have restored in eq. (1.133)
the masses of the quarks involved in the loop my.
The impact factor ®7777 can be computed using the same techniques than we have

presented for @277, The result reads

O — 5_ab2a_8a§: 2/d A2 (1.134)
2 - I | &= '
x {—4yge; - (L(L) — L(£— k) (L(0) = L(L k) - ¢
2

+e; - €5 (L(¢) — L(L — k))

J

+mﬁf§(J@_D@i@)<&@_D@i@)}’

with e; and e} the euclidean transverse polarization vectors of the ingoing and outgoing

photons, and

L) =—5——.
L=
It is easy to check that the impact factors vanish when k% — 0 as a consequence of the Ward

identity as discussed in section. 1.2.4.

1.3.3 Color dipole picture
Introduction

The basic idea of the dipole picture for DIS, initiated by the works of Nikolaev, Zakharov
[8, 9] and Mueller [10, 11], is that in the proton rest frame at low x, the photon dissociates
into a partonic system that constitutes a collection of color anticolor pairs called "color
dipoles" which have a long life time compared to the time of the interaction of the partons
with the proton target. The sizes of the dipoles can then be assumed to be fixed during

the scattering of the partons with the nucleon target. The dipole states parameterized in
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terms of their transverse sizes are eigenstates of the scattering operators as the dipole size is
preserved during the scattering with the target. The amplitude factorizes into, the overlap
of the initial ¥; and final ¥} wave functions of the virtual photon in the case of DIS, which
are the amplitude of probability to produce a configuration of dipoles with fixed transverse
sizes, and the scattering amplitude 7" of these dipoles with the target.

The amplitude of the process ip — fp, where p is the nucleon target and 7 and f the

initial and final states, can be written symbolically |50, 51|,

A= > /[dz"ﬁk]/[dyk]‘lf}(n, (ks 11 Ak }) T(Fn) Wi, {ye 7> Ai}) (1.135)

n7]:n7{)‘k}

where n is the number of partons involved in the intermediate Fock state F,, with longitudinal
fraction of momentum {z;}r—1 , and impact parameters {r, }x=1.,, of helicities {\x}x=1. -
The scattering operator T'(F,) being diagonal in the dipole states formed by the partonic
system is independent of the initial and final states that have formed the dipoles and by
consequence is a universal quantity that depends only on the nucleon target dynamics.

The simplest case is given by the lowest intermediate Fock state constituted by a quark
(y,r,) antiquark (g,r,) pair, where the couples (z,7,) denotes the longitudinal fraction of
momentum and the transverse position (impact parameter) of the parton. Indeed the contri-
bution of higher Fock states due to the emission of low energy gluons are important when the
rapidity increases but they can be absorbed, in the large N, limit, in the dipole scattering
amplitude evolution governed by the BFKL evolution equation [52|. The dipole picture for
DIS corresponds to the diagram shown in fig. 1.14, where we denote NV (x,r,b) the imaginary
part of the (T'(F3)), r = ry—ry is the dipole vector and b = yr, + yr, is the impact parameter
of the dipole, which is Fourier conjugate of the transverse momentum transfer A.

7" /\ g
M

=
\d
I
SR

Figure 1.14: DIS within the color dipole picture

Let us stress a useful analogy pointed out by Susskind |53| between the parton kine-
matics and the two-body problem in quantum mechanics. The Poincaré group in the infinite
momentum frame contains a sub-group that we denote F' of transformations that leave invari-
ant the hypersurface orthogonal to the dominant light-cone direction p; and whose algebra
is isomorphic to the Galilean algebra of the transformations on a two-dimensional space.

Among the transformations of the sub-group F' are "Galilean boost"-like transformations on
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the transverse space. In Ref. [53], a dictionary is established between the generators of the
Galilean transformations of a two-dimensional system of non-relativistic particles of masses
m;, positions r; and momenta ¢;, and the generators of the sub-group F of the system of
particles of longitudinal fractions of momentum y; = {y,y}, transverse impact parameters
r; = {ry,ry} and transverse momenta ¢, = {{,, {,}. The analog of the masses m; and my of
the quark and the antiquark are proportional to the longitudinal components 2yp, and 2yp;
in our computation.

In the two-dimensional mechanics, the two-body problem can be simplified by splitting
the system into the kinematic variables of its center of mass and of its reduced particle.
Following the above analogy, we find that the transverse coordinate of the "center of mass"
of the dipole is given by b, and the vector of the reduced particle is given by r, while the

momentum of the reduced particle is,

L=yl —yly,
and the effective mass is
mims _
mi + Mo

The imaginary part of the dipole amplitude can be related to the b—dependent dipole
cross-section,
4o _ 2N (z,1,0) . (1.136)
d?b T
In the case of DIS, the momentum exchanged in t—channel is zero which leads to the following

dipole cross-section,

. 0, d°0 2

A usual assumptions is that the b—dependence factorizes in N (z,r,b) as,
N(z,r,b) = TN (z,1) .

The function T'(b) describes the gluon density inside the nucleon, it can be for example chosen
as a step function which is one inside the nucleon and zero outside, giving after integration

over b,

/ PYN (.1, b) = RN (2,1)

where R is the radius of the nucleon. This integral over b gives then an overall normalization

to the dipole cross-section denoted o such as
o(x, 1) = ooN(x,1), (1.137)

with o9 = 2 [ d*bT(b) = 27 R>.

As we will see on the particular "saturation model", the dipole picture will be also con-
venient to implement saturation effects as one can define dense and diluted partonic systems
depending on the size that the dipole can resolve compared to a so-called "saturation scale"
that emerges from the non-linear equations that govern the z—dependence of the dipole
scattering amplitude.
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DIS: factorization of the wave functions

Coming back to the 77  — 7} p impact factors eqs. (1.133, 1.134) for the DIS process, we
will show that the results are consistent with the dipole picture of fig. 1.14 once expressed in

the impact parameter representation. Let us introduce two identities®,

1 d?r . ”
i /2—7;6@—}(0(#7“), (1.138)
¢ [T

where r is a vector of the transverse coordinate space conjugated to the transverse momentum
¢, r = |r| and K,(z) are the modified Bessel functions of the second kind which obey the
modified Bessel’s equations,

2> K!(x) + 2 K (v) — (2% + o) K,(z) = 0.

Using these identities, we can get the following expressions for the impact factors

iy 0" Baay { wQ  wyQ \ (w3Q i@
e = 77%:“’3”/@0[25(1?(@_19@—@) <D<@‘D(£—@)

nf
3% 8avarg

= 5 quc/dy/d2£yz7QKo(ur)/d%’ngKo(ur’)
/
. o d20 )
> (1 . e—zk'z) <1 o e—zEz) / (27T—)2 ezﬁ-(z+£)

nf
3% 8avarg

- T [y [ @ 5Q Ko(ur)) (v5@ Kolpar)

X (1 — e_’E'ﬁ) (1 _ iE'ﬁ)

/dy/dzrz Z‘@Mh

l& 47;\?5 (1— e ™7y (1 ¢kr)| (1.140)

where W;th is the amplitude of probability for the photon to dissociate into a quark and
an antiquark of flavor f and of respective helicities h and h and longitudinal fractions of
momentum y and ¥ = 1 — y, which form a color dipole of size r. ‘I/f .- 1s the wave function
of the longitudinally polarized virtual photon computed in the first order of the light-cone

perturbation theory [54],

N,

Wi (4,13 Q%) = 6, h(;qf —(yyQ) Ko(p Ir]) (1.141)

In eq. (1.140), the part between the square brackets corresponds to the interaction of the
dipole with the two t—channel gluons. The factorization of the amplitude into the wave

functions of the virtual photon and the dipole interaction is valid even at low Q?, it is only

!Note that we got a overall minus sign in (1.139) compared to [32].
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a consequence of the high energy limit. Coming back to the expressions of the polarized
cross-sections eq. (1.120) and replacing the impact factor of the proton by the unintegrated

gluon density F(z, k) defined as ®~F /(27)? at Born order, the polarized cross-sections read

N R
S / Pl s ¥ (5, Q) F e ). (1.142)

Note that the gluon density g(x, Q?) is given by

Q* g2
g(z,Q%) = - / dkff(x k). (1.143)

Inserting the result of eq. (1.140) in the expression of the polarized cross-sections eq. (1.142)

leads to the formula,

Z/dy/d2 Z‘\If}hh 6(x, ) (1.144)
with the dipole cross-section
X N? — 14ra, 1 ik ik
o(x,r) = 1 N d2_<E2)2 (2,k) (1 — e ™7) (1 —e™7) . (1.145)
Similarly the polarized cross-section op reads
ny
Z/dy/d2 Z‘\I];Thh o (1) (1.146)

where the wave function \II;Thh of the virtual transversely polarized photon is,

ieqr | N, B (r- e(’\v))
—(yo O —
or - (YO, + Yon,-r,)

7|

Note that the expressions of the wave functions of the virtual photon become in the non-

WO (13 Q%) = 6, ol WK (). (1147)

forward limit [32] where a momentum A is exchanged in the ¢—channel,

e N

V(g + A) = b, 2qf \| —ygQKo(pr)e ST, (1.148)
ie N e

V(g +A) = 65 gl = (0, — Fon-n, ) =g (ar)e 7T

+5,3,h5h>wmf o M KO /JT zy__ (1149)

Let us now sketch how the light-cone wave functions naturally emerge from the eikonal
limit. The eikonal limit s — oo can be seen as an infinite boost of the incoming and outgoing

states along their longitudinal direction z,

Sap = Lim,, o (8] €“ U(oo, —o0)e ™5 |a) | (1.150)
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with K~ = —K? the Lorentz boost generator along z. Splitting the S—matrix as,
U(—o0,00) = U(—00,—L)U(—L, L)U(L, o), (1.151)
where U(—L, L) contains the interactions eA*(z).J,(x) with an external potential A*(x) for
*t e [-L, L], and inserting the infinite boost along z leads to

Sap = (B|Uo(+00,0) (1.152)
XT+{eiefd%cl_(fd:c*A’(er,O,:cJ_))(fda:’JJr(O,x’,xJ_))}

xUp(0, —00) |av)

where Up(t1,t2) is the evolution operator that contains only the self interaction of the fields.

The expression (1.152) can be projected on all intermediate Fock states |y) and |5) as,
Sas = Y _{BlUs(+00,0) ) (~]

¥,0
XT_’_{eiefdz:vL(f dm*A*(m+,0,ml))(f dm*JJr(O,:v*,ml))}

% 6) (8] Up(0, —00) @) (1.153)

with T’y the light-cone time ordered product. In our case, the sums over v and J are restricted
to the lowest Fock state, i.e. a quark antiquark pair. The photon light-cone wave function
for a given intermediate state (0| containing n particles with coordinate {y;,r;} is defined
as the amplitude of probability to get from the initial photon state at 7 = —oo the state 0

at the light-cone time ™ = 0,
U({yi,r1:}) = (8] Up(0, —00) |v) . (1.154)
In the case § = q(p1, h)G(pz, h), the Fourier transform in k| —space of light-cone wave function
of the photon 7*(¢, \) reads
T\ dsz_z' ik T .
Uonyi ku}) = 2r)° L (0] Up (0, —00) |a) (1.155)
which is the amplitude of a photon to split as v*(q, \,) — q(¢1,h)q(ls, h). We keep the

conventions

2 2
b= ypi+=patli, L=gpi+=—p—{1 (1.156)
ys YSs
2
¢ = PP, (1.157)

and we denote the energy E; = k; with k; /\/s = p; - k. We define also the plus component
as ki //s = py - k. The light-cone wave function can be computed in light-cone perturbation

theory (Feynman rules can be found in [55]). It reads

‘ijzﬁ(y,h) = /_ dte—it(Ew—El—Ez—He)%ﬂ\;_)( ( ¢/()M,))) (1158)
4 up (£ ”) Vp, (L2

i Lmed % et i

= L) el )

/\
\_/

(1.160)
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Note that in the standard way to calculate Feynman diagrams, the wave function can be
obtained by replacing the conservation of energy factor 27d(E, — £y — E») in the expression

of the T'—matrix, by the integral

0 .
, . 1
d + —Zl’Jr(E»y—El—EQ-‘rZE) _
/_oox ’ B, —E B
and by adding the phase space factor \/ﬁ This space factor \/Z% should be omitted for

external spinor fields but as we are interested in the case when the quark antiquark pair
interacts at 2+ = 0, we keep this factor in the definition of the wave function.
The explicit computation of the currents u¢v can be done using the chiral representation

for the Dirac spinors,

_ p+m Xn(p)

Uh(ﬁ)—m( 0 >

un(p) = ﬂ( ! ) : (1.162)

(1.161)

and

VE+m \ x-n(p)

with x1/2(p) = (1,0) and x—12 = (0,1) and using the expressions (1.138) and (1.139) to
Fourier transform the results, allows to come back to the results for the photon wave function
\Ilz%(y,ﬁ) given by egs. (1.141, 1.147) up to a normalization factor that depends on the
quantum numbers of the quark antiquark pair.

Let us now make a brief remark on the role of the eikonal approximation in the factoriza-
tion of the photon wave functions following the derivation in Ref. [56] in "usual" Feynman

diagrams. Let us consider the diagram illustrated in fig. 1.15.

gl : 61

ly

Figure 1.15: One part of the cut diagrams.

The diagram gives the contribution,

4 = O (et 0 (1) (1.163)
02 4 e '

= emﬂ(h) () (@)™ v (82) (1.164)
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where

? 2

by = ypr+—pa+Lli, lo=ypr+ =—ps—4L, (1.165)
ys ys
? K+ Q*+ K

q = pl—%pz, kf:Lpz%—kl, (1.166)

P yR?
le = bLi—q=—yp+ %pz +01. (1.167)

Due to the eikonal approximation in the gluonic vertex, the polarization of the ¢-channel
gluon is along p;. We can then safely change in the numerator ¢, — ¢, + Spo, with g an

arbitrary number as
(fa + BP2)P2 = fap2

to change in the numerator ¢, — {, with ¢, on the mass shell,
2

by =—Yp1 — —pa+ 4L = —Ls.
s

Then we can rewrite

ﬂa — Z 62 (h 62)

to get a factorized form of the amphtude,

A = Z Y (eﬂ(h)(gl)?(()\)(?)U(ﬁ)(£2)> 1—)(%)<€2>¢NS U(E)wz) (1.168)

0+ yyQ?

= & Z@Zf_ﬁ(y,g)dm. (1.169)

1.3.4 Models for the dipole target interactions

Under the assumption that the b—parameter dependence of the dipole scattering amplitude

factorizes, we saw that the dipole cross-section reads
o(z,r) = ooN(z,1r) = 0o N(Y,1), (1.170)

with Y the rapidity Y = In(1/x). Note that the assumption that the b dependence factor-
izes, even though used in most of dipole models, is not supported by the data on exclusive
diffractive processes at HERA.

The dipole cross-section (x,r) involves the dynamics of the gluons inside the proton.
At small—x one can expect saturation effects which appear when the partonic density of the
nucleon becomes large. In the infinite momentum frame, we can interpret saturation effects
as the saturation of the number of gluons of transverse size 1/@Q in the wave function of the
nucleon target. This growth of the gluon density could be responsible for a unitarity problem
(violation of the Froissart bound by the hard QCD pomeron exchange) of the theory but

we can expect that at some point the number of gluons stops growing, i.e. saturates, due
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Figure 1.16: Saturation and diluted regimes.

to recombinations of the partons following the idea of Gribov, Levin and Ryskin [57]. Two
regimes can be then defined as illustrated in fig. 1.16, the diluted regime where the nucleon
is not saturated by the partons and the saturation regime where the gluon transverse areas
start to overlap. The so-called critical line between the two regimes is given by Q? = Q?%(z),
with Q%(x) the inverse transverse area where the probability to find more than one gluon is
of order one.

To take into account these saturation effects inside the proton, a first saturation model
was introduced by Golec-Biernat and Wiisthoff in 1998, where the dipole cross-section is

parameterized by a Gaussian ansatz which saturates at a value oy,

o) = a0 {1 e (_W)} , (1171)

where Ry(x) is the saturation radius

1 2\
Ri(x) = oo (x—o) : (1.172)

and the saturation regime is given for

1
2
VSR

The success of this model was to describe all the contemporary HERA data [58, 59, 60, 61]
for inclusive as well as diffractive cross-sections. The main feature of this model [62] is that it

~ Q*(x). (1.173)

provides a dipole cross-section that gives back the pomeron trajectory in the diluted regime

1/Q << Ro(x),

-
FQN.CL' s
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while for dense partonic systems 1/Q >> Ry(x) the Froissart condition is recovered,
F2 ~ Q20'0 111(1/37) .

In the limit 7 — 0 the dipole cross-section vanishes like &(x,7) ~ r?, this is known as the
property of "color transparency" |63, 64] due to the screening of the quark and the antiquark
colors when the 7 — 0. Note that the Taylor expansion of eq. (1.145) around r = 0 shows this
behavior of the dipole cross-section. To make contact with the photoproduction regime, it is

customary [65] to make the following modification in the definition of the Bjorken variable z

4mfc Q? 4m3£ 4m3£
r—ax|l+ o :W2+Q2 I+ 02 ) @00 T2 (1.174)

where my is an effective quark mass which depends on the flavor f and of the model used to

fit the data. The values of the best fit parameters of the original saturation model are shown
in tab. 1.1. Note that the inclusion of the charm contribution, with m. = 1.5 GeV has also
been performed in Ref. [65]. In fig. 1.17 are compared the fits with and without mass my to
HERA data.

Fits oo (mb) | A Zo
No charm 23.03 | 0.288 | 3.04 x 1074
With charm | 29.12 | 0.277 | 0.41 x 10~*

Table 1.1: Values of the parameters entering the GBW dipole cross-section.

Another important feature of the saturation model which is well reproduced by the data
is the geometric scaling [66]. The geometric scaling can be seen as a consequence of the
scaling of the dipole cross-section in the variable # = r/Ry(z). As wave functions scale in
rQ = rQRy(x), one can show that after integration over 7, the cross-section does not depend
on Q% and z but on a single scaling variable 7 = Q2R2(x). In fig. 1.18 the data for o7, ”
versus 7, are all lying on the same line, showing clearly that the variables Q* and x are
not independent variables. It was shown that the geometric scaling still holds in the diluted
regime in the region governed by the BFKL equation up to Q* ~ Q3/A3qp [67].

With the increasing precision of data |68, 69, 70|, the original saturation model failed to
describe the new set of data, as it has been checked in Ref. |71 but it inspired many studies
[72, 71, 73, 74, 75, 76, 77]. A way to improve the large Q? behavior of the old GBW model,
is inspired from the connection at large Q* between the gluon density g(z, 4?) and the dipole

cross-section |78|,

71‘2

o(z,r) = 37’20@ xg(x,C/r?), (1.175)

with zg(z, u*) driven by the DGLAP evolution. The model proposed in Ref. |71| by Bartels,

Golec-Biernat and Kowalski for the dipole cross-section is,

WQTQOés(uﬁ)xg(x;uﬁ))) |

30’0

6(z,r) = o <1—eXp (— (1.176)
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Figure 1.17: The saturation model compared to Hl and ZEUS data, [62]. The solid and
dotted lines are respectively the results with m; = 140 MeV and my = 0.

where the scale 2 = & + p3. The gluon density g(z, p2) evolves with the LO-DGLAP
equation, neglecting the quark distributions as we are in the low x regime, and obeys the
initial condition at Q3 = 1 GeV?

rg(z, Q) = Aga (1 — 2)°C. (1.177)

Two sets of the parameters {m, A,, \,, C, u2} were found to give a good description of the
DIS data as shown in the table 1.2.

Fits | my (GeV) | A, | oo (mb) | A, C | ud (GeV?) | x*/Ny
1 0.14 1.20 23.0 0.28 | 0.26 0.52 1.17
2 0 13.71 23.8 -0.41 | 11.10 1.00 0.97

Table 1.2: Values of the parameters entering the BGBK dipole cross-section.

The extension of this model with b—parameter dependence "b-sat" model |74, 76], for
non-forward scattering amplitudes, reads
2

N(z,r,b)=1— exp(—27;vc7"2as(u§)xg(x, 12T (b)), (1.178)

where the proton shape in the transverse plane 7'(b) is assumed to have a Gaussian shape.

This model assumes that multiple dipoles scatter independently and the models based on this
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Figure 1.18: Exhibition of the geometric scaling by HERA data [66].

assumption, using the kind of parameterization of the dipole cross-section as in eq. (1.178),
are referred as Glauber-Mueller models. Exclusive processes in the high energy limit offer a
good opportunity to probe the gluon density shape 7'(b) in the hadrons. The results obtained

with a Gaussian shape from the electroproduction of vector mesons at HERA, give the value

(b)* = 0.56 fm which is slightly smaller than the proton radius charge 0.87 fm.
The saturation scale @) at the energies of HERA collider is of the order Q (x) ~ 1 GeV

which allows a perturbative treatment of the evolution equations of the dipole scattering
amplitude. In the diluted regime, the scattering amplitude is driven by the BFKL equation
in the regime Q7 < Q* < Qi/A%¢p [67]. In the saturation regime, the recombinations of
gluons are responsible for non-linear terms in the evolution equations that describe the small-x
evolution of the hadronic wave function. In the color glass condensate (CGC) formalism, the
JIMWLK equation, based on the study of renormalization (a la Wilson) group equation for
Wilson line correlators gives the gluon density evolution in dense partonic regime accounting

for saturation effects. The JIMWLK equation is equivalent in principle to an infinite set of
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coupled equations on correlators of Wilson lines known as the Balitsky hierarchy. This is
due to the fact that one needs to average over the target configurations during the collisions,
leading then to coupled equations between different Wilson line correlators. In the large
N.—limit, this set of infinite coupled equations involves only dipole operators 1" and under
the assumption that (TT) ~ (T)?, the evolution equation on (T is given by the BK equation
on N = T the forward dipole scattering amplitude which reads at LO in the impact parameter

space,
ON (Y, r12) asN, r?
: = ==& 12 1.179
oY 2m2 oL r20T3, ( )
X (N(K 7’01) +N(Y, 7“02) —/\/’(Y, 7“12) —N(Y, T01)N(Y, 7’02)) )
with r;; = |1, — rj1|. In the CGC formalism, it was shown [79] that in the weakly coupled

= |
regime (N (Y,r) < 1), one gets back the BEKL equation,

2
aj\/(ax; re) _ o;g / &ro. r%ﬁgQ (N(Y,m01) + N (Y, 709) — N (Y, 712)) (1.180)
which is the linearized version of the BK-equation where the quadratic term
N (Y, r01)N (Y, rg2) is neglected as the partonic density is small. Note that the BEKL equation
leads to unbound solutions related to the gluon density and responsible for the violation of
the unitarity while the BK equation leads to bound solutions.

A parameterization for the dipole scattering amplitude known as the CGC model [73]
comes from an approximation of the solution to the LO-BFKL equation in the vicinity of the
saturation regime. The LO-BFKL solution using the Mellin moments representation of the

dipole scattering amplitude reads

N(Y,r) Z/Cdi(erS)weh(Y)X(”No(v) — [ & b)) — ) Nor), (1181)

2im c 2im
where .
p(ry = @Iy ) aregp).
() = 26(1) — (7)) — B(1 — ), with ¥(7) = O“d—z(”

with I' the Euler function. The integral over v is evaluated by using the saddle point approx-
imation expanding to the second order around the saturation saddle point vo(Y) = p/h(Y).
This leads to a solution of the form,

N(Y,r) ~ Np exp (—%(p —ps) — R (p— ps)z) (1.182)

2X"(7s)p
where p,(Y) = In(Q*(Y)/Q3) and R, = p,(Y)/h(Y). One finds back the geometric scaling
when the first term "v4(p — ps)" dominates for p ~ p;. The second term which is analogous

to a diffusion term violates the geometric scaling.



CHAPTER 1. HIGH ENERGY QCD 46

Note that an analogy exists between the BK equation and the equation in reaction-

diffusion processes in statistical physics governed by the equation of Fisher, Kolmogorov,
Petrov and Piscounov (FKPP),

ON =0*N + N — N?. (1.183)

This analogy found by Munier and Peschanski [80, 81, 82, 83| by rescaling the BK equation
[84] for the quantity
N(Y, k) = / Lri g (Y,r et
’ 2mr? ’ ’

was used in order to get information on the universal properties of the BK solutions which
are related to traveling wave solutions.

The CGC model assumes that the approximated solution is of order N'(Y,r) = Ny ~ 1
when 7 = 1/@Q);, in order to take into account the vicinity with the saturation regime. The

solution in the forward limit proposed by Iancu, Itakura and Munier in Ref. [73] is,

TQS (2(')’.54‘%((?72)))
N('TvT) = NO( 9 ) if’f’QSSQ,
= 1 —exp(—aln®(brQ,)) ifrQ,>2. (1.184)

where v, is the saddle point in the vicinity of the saturation regime. The solution for rQ), > 2
corresponds to the functional form of solutions expected from BK- equation and the a and b
are determined in order that there is no discontinuity of N'(z, r) and its derivative. This model
was extended to include the impact parameter b dependence in order to describe the exclusive
diffractive processes at HERA. The first extension by Marquet, Peschanski and Soyez [85],
includes the b dependence through the saturation scale, Q*(Y,A) = Q2(1 + cA*)eM, and
a multiplicative non-perturbative form factor f(A) = e™B2 with t = —A% A second
approach called the "b-CGC" model in Ref. [76] by Kowalski, Motyka and Watt, consists

only in replacing
2\ 75
b Vs
Qs(z,b) = Qs(x) (e_QBCGC) .

Recently, the dipole scattering amplitude has been worked out by numerical resolution of
the BK equation with running coupling correction, the rcBK equation [86, 87|, taking different
initial conditions close to the GBW saturation model and to the McLerran-Venugopalan (MV)
model [88]. We will denote these numerical solutions for the dipole scattering amplitudes
as the Albacete-Armesto-Milhano-Quiroga-Salgado (AAMQS)-model. Indeed the solution of
LO-BK does not work so well as it predicts a growth of the saturation scale way to fast when
rapidity is increasing [67, 89]. It was shown [90, 91| that the main correction that allows to
solve the discrepancy between the predictions and the data is the running coupling correction
of the kernel of the BK- equation.
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The rcBK equation reads

8/\/'(Y, 7“12) .
oY N
Noag(ri,) [ r? 1 [as(rd) 1 [as(rd,)

APy, e { 2, - s\or) ) 4 = s\T02
/ 7’817“32 7“31 as(r(%Q) 7“32 (T

X {./\/’(}/, 7“01) +N(Y, 7’02) —N(Y, 7’12) — ./\/’(}/, 7“01)./\/’(}/, 7“02)} .

=]

(=] ]
—_
~—

The coupling constant in the evolution kernel of the reBK equation (1.185) depends on the

number of active quark flavors ny,
4

Y
402
BO,nf In [T2A%f]

Ay (%) (1.186)

where Sy, = 11 — %nf, A, is the QCD scale and C' is one of the free parameters of the

n
model. The scales A, are dfetermined by the matching condition ap,—1(r7) = @, (r2) at
r? = 4C? /mfc and an experimental value of as. The coupling constant is frozen to a value
ayr ~ 1 that it cannot exceed to avoid infra-red divergences.

The initial conditions are inspired by the GBW model N“BW (Yj, r) and the MV model

NMV (Y, r) reads
202 \ 7
NV (v, r)y = o§BW {1 — exp {— (%) }} , (1.187)

N vy, r) = o'V {1 — exp [— <r24—§°)7 In (Aig +e)“ , (1.188)

with Yj the rapidity that corresponds to o = 0.01, Qs the initial saturation scale at x = xg
and v the anomalous dimension. The free parameters involved in the AAMQS model are
fitted on the structure function Fy(x, Q?) and the z—dependence is completely driven by the
rcBK equation.

The solutions for the dipole cross-sections are given with and without the heavy quarks

charm and beauty contributions. For further use in chap. 3 we denote the solutions as follows,

e AAMQS set (a), with the initial condition given by (1.187) a la GBW, with the con-
tribution of light quarks (u,d, s) only,

e AAMQS set (e), with the initial condition given by (1.188) a la MV, with the contri-
bution of light quarks (u,d, s) only,

e AAMQS set (b), with the initial condition given by (1.187) a la GBW, with the con-
tribution of light and heavy quarks (u,d, s, ¢, b),

e AAMQS set (f), with the initial condition given by (1.188) a la MV, with the contri-
bution of light and heavy quarks (u,d, s, ¢, b).
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Figure 1.19: Comparison of the results for the reduced cross-section o, with the data, figure
from ref. [87]. In (a) the results are obtained with the GBW initial condition and only the
contribution of light quarks. In (b), the contribution of heavy quarks charm and beauty is

included.

It turns out that the results are very weakly dependent on the choice of the initial conditions

and one can restrict its choice to the sets (a) and (b). The polarized cross-sections read

* * 2
s = 00 Y [ & [V n@m )| Man, s

f=u,d,s

P - gk d? d \I,VZ,T( :Q )2/\/1'( )
UL,T, set(b) 0o r Y f Yy, r; &, my, € €, r

f=u,d,s

* 2
+ o Z/dzz/dy‘W;L’T(y,f;Q,Mf,ef)‘ N™(z,r). (L190)

f=c,b

where of N(z, 1) and ol N™(z,r) are respectively the dipole cross-section contributions of
light and heavy quarks.
We present in tabs. 1.3 and 1.4 values of the parameters of the fits obtained in ref. |87].

Fits 20 | oo (mb) | C | X*/Ny
(a) | 0.241 | 32.357 | 0.971 | 2.46 1.226
(e) |0.165 | 32.895 | 1.135 | 2.52 1.171

Table 1.3: Values of the parameters entering the AAMQS sets (a) and (e) dipole cross-

sections.

Another kind of dipole cross-sections models [92, 93| exist based on the Regge theory,
where the universal trajectories of hard and soft pomerons are fitted from HERA data. The
hard pomeron exchange is involved for small dipole size r < ry and the soft pomeron exchange

for large dipole size r > r;. The so-called FS04 model parameterizes the dipole cross-section
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Fits 2 ng)’b) ok (mb) | of (mb) | ~ ~/(e:b) C | X*/Ng
(b) | 0.2386 | 0.2329 | 35.465 18.430 | 1.263 | 0.883 | 3.902 1.231
(f) 0.1687 | 0.1417 | 35.449 19.066 | 1.369 | 1.035 | 4.079 1.244

Table 1.4: Values of the parameters entering the AAMQS sets (b) and (f) dipole cross-

sections.

as,

o(z,r) = Agriz™™ ifr <rg (1.191)

= Aga™ ifr >, (1.192)

combining the color transparency behavior for small r with the soft pomeron exchange behav-
ior at large r. A linear interpolation is performed in the region of intermediate r (ro < r < 7).
An improved version of the FS04 Regge model was proposed to include saturation effects by

allowing the parameter r( to vary in order that the dipole cross-section satisfies the condition,

o(x,ro)/o(x,m) = [, (1.193)

where the parameter f is fitted.

A general remark about the amplitudes of the exclusive diffractive processes computed
within the dipole model approach, is that two kinds of corrections can be taken into account
in these treatments. The first one is a correction due to the non-zero skewness involved in
the process. At small x, the skewness ¢ is of the order { ~ 5 and it was shown that the effect

of the skewness result in a multiplicative factor R, in front of the gluon density [94],

_2PHT(A+5/2)

The second one is that in the high energy limit, the imaginary part of the amplitude dominates

: _ Olnxg(x, u?)
with A= 9In(1/z)

(1.194)

the real part but one can evaluate the real part by using dispersion techniques. The ratio of

the real and imaginary parts of the amplitude A reads

Oln A

§=ReA/TmA=tan(m\/2), with A= giaos.
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Chapter 2

Light-Cone Collinear Factorization

applied to the p—meson production

2.1 Introduction

2.1.1 Diffractive exclusive vector electroproduction

In the chap. 1 we have introduced the kr—factorization scheme that holds in the high energy
limit s > [t|. In this context, we introduced the concept of hard pomeron exchange in
hadronic processes and we presented color dipole models that include the idea of partonic

density saturation that could restore the unitarity of the theory.
_ 2 — /
e, k —Q e, k

P> Pp

Figure 2.1: The diffractive electroproduction of the p—meson and Lorentz invariant kinematic

variables.

The two forthcoming chapters are devoted to the study of helicity amplitudes of the
diffractive leptoproduction of the p—meson in the high energy limit illustrated in fig. 2.1,

Y (4, \)p(pp) = p(Pps Ao)P(P),)

with A, and A, the polarizations of the virtual photon and the p—meson.

ol
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The diffractive vector meson production (DVMP) at HERA as well as the deeply virtual
Compton scattering (DVCS) are excellent processes to probe the hadronic content in pQCD
regime. Contrary to inclusive processes, exclusive processes allows to get information on
additional degrees of freedom such as the skewness dependence or the transverse distributions
of gluons at small—x inside the nucleon target.

A proof of the factorization theorem for the electroproduction of vector mesons was given
by Collins, Frankfurt and Strikman in [95]. This theorem states that the leading twist
amplitude is given by,

A= Z (fi/p ® Hi; ® qb;-/)u + power suppressed terms. (2.1)

2Y)

where the three main amplitude pieces are, f;/, the distribution function of the parton ¢
inside the hadron p (transversity distribution if transversely polarized vector meson), H,;
the hard scattering amplitude and (ID}/ the light cone wave function of the vector meson.
The parameter p is the renormalization-factorization scale which should be chosen of the
order of the virtuality @) of the photon in order to compute the coefficient function H;; using
perturbative theory at a finite order of the expansion. It was also shown by power counting
argument that the production from a transversely polarized virtual photon is suppressed by
1/Q compared to the production from a longitudinal photon.

The DVMP has been the subject of many experiments. The pioneering experiments on
small—z diffractive muo-production of vector mesons were analyzed on deuterium, calcium
and carbon targets down to z ~ 5.1073 by the NMC collaboration [96] and on proton target
down to x ~ 2.10~* by the E665 collaboration |97], for a wide range of virtualities. The HERA
collaborations ZEUS and H1 have provided very precise data with respectively integrated
luminosity of 120 pb~* and 51 pb™! on the spin density matrix elements of the diffractive p°
and ¢ mesons production in a small—z, for a wide range of energies W in the center of mass
v*p and photon virtualities (). The recent analysis provided by ZEUS in 2007 |98| and by H1
in 2009 [99] are a motivating experimental background to investigate the helicity amplitudes
of the vector meson production at small—z. These analysis supersede the former analysis
already performed by these collaborations in late 90’s [100, 101, 102]. The data of H1 and
ZEUS are precious to access such important universal quantities as the pomeron trajectory,
through the energy dependence and the t—dependence of the differential cross-section. One
usually uses ansatz for the vector meson wave functions based on the dipole configuration
inside the vector meson constituted by the valence quarks. The data allows to investigate
the factorization procedure as well as the content of the p—meson wave function.

The DVMP was also analyzed by HERMES [103, 104, 105|, JLab [106] and COMPASS
[107] in other kinematic range of lower energies in the center of mass, i.e. higher x, essential
to understand the pQCD approaches based on collinear factorization and GPDs.

There are many models derived from mostly three theoretical approaches (we will not
make here a review of all the models). Two of the approaches are equivalent approaches, the
kr—factorization approach and the color dipole approach, the third is the collinear factoriza-

tion approach. As we saw in the chap. 1, kp-factorization allows to regroup the particles into
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sub-processes involving the incoming and outgoing particles of approximately same rapidities
leading to two impact factors exchanging reggeized gluons which resum the gluons exchanged
in t—channel. In the case of the DVMP the helicity amplitudes as illustrated in fig. 2.2 read,

Py
Taya, o is / O e k), (2.2)
1

with F(x, k) the unintegrated gluon density.

V= p07 ¢7 e
(I)'Y;FW%VAP (QQ, kJ_)

[ %k,

Figure 2.2: kp—factorization of the DVMP.

The energy dependence of the process is then given by the BFKL evolution for the unin-
tegrated gluons density known at LLx [34, 35, 36, 37| and NLLx [108, 109, 110, 111].

This approach needs a model for the proton impact factor at Born order or a model for
the unintegrated gluon density of the nucleon target. It is the approach we will use in the
second part of this chapter to get a model for the helicity amplitude T}, . Let us describe
some of the applications of this approach.

Martin, Ryskin and Teubner (MRT) [112] have pointed out that the diffractive p—meson
production data from HERA indicates that it should be treated within pQCD. They proposed
a model based on the parton-hadron duality, to express the p—meson production cross-section
as p

Gpspp 22 0, ngu:d / dM? U’Ydﬂjq , (2.3)
with M? the invariant mass of the ¢ system. Using kr—factorization approach and a gluon
density ansatz zg(z, Q?) ~ 27(Q?)", with 7 the effective anomalous dimension of the gluon

density, leads to the ratio of polarized cross-sections

2 2
o _ 9@ (1) (2.4)
or M? Y +1
More recent models based on the kp-factorization and model of gluon density exist, e.g. the

model from Ivanov, Nikolaev and Savin [113|, which allows predictions for all spin density

matrix elements for the electroproduction of p—meson.
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Figure 2.3: DVMP within the color dipole picture.

The color dipole approach of DVMP illustrated in fig. 2.3, is equivalent to the kr—factorization
scheme but in impact parameter space where the convolution of the wave functions of the
initial projectile and final state can be factorized even at low @2, from the dipole target
scattering amplitude. Like in the kp—factorization scheme the dipole target cross-section
has to be modeled and contains the x—dependence of the process. This xr—dependence is
linked to the behavior the gluon density xg(z, Q?) ~ 2=*. The amplitude takes the form

1
Tyn, = / dy / d'r (‘I”i’:‘l’lv) (¥, 1) Agap—(aaw (€,1) (2.5)
0

where y and r are respectively the fraction of longitudinal momentum and the transverse
size of the dipole. In the previous chapter we have already mentioned some of the models
that exist for the dipole cross-section. Note that another type of approach exists based
on the generalized vector dominance to get the DVMP amplitudes, see e.g. [114] where
predictions are made for the ratios of helicity amplitudes. The p—meson wave functions are
unknown but many models have been proposed. Some of them assume the factorization of the
transverse degrees of freedom from the longitudinal ones. For example the model of Dosch,
Gousset, Kulzinger and Pirner (DGKP) model [115], where the transverse size dependence
is assumed to be independent from y and to have a Gaussian shape. Other models, for
example the Nemchik, Nikolaev, Predazzi and Zakharov (NNPZ) model [116, 117, 113] or
models proposed by Forshaw, Sandapen and Shaw [118, 119, 120], assume a dynamics of the
constituent quark antiquark pair that is in agreement with the size of the meson suggested by
spectroscopic models in the rest frame of the meson.The light-cone meson wave functions are
then obtained by applying a "relativization procedure" which allows to get their expressions
in the infinite momentum frame. In general the dynamics of the qq pair assumed in the rest
frame is given by an harmonic oscillator potential for the large distance dynamics and the
short distance dynamics is driven by a Coulombic potential term.

Another approach close to the MRT model, based on the ky—factorization scheme in the
impact parameter space, is followed in ref. [121| by Ivanov and Kirschner to factorize the
wave functions of the virtual photon and the vector meson. The vector meson wave function
and the dipole scattering amplitude are then expanded around small dipole size and the

end-point divergences when y — {0, 1} are regularized by the scale dependence of the gluon
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density. This model allows to get predictions for the full set of helicity amplitudes.

V:pO, ¢;

Figure 2.4: Leading hand bag diagrams in the collinear factorization approach.

The collinear factorization approach initiated in [122, 123] by Brodsky, Frankfurt, Gunion,
Koepf, Mueller and Strikman, based on the collinear factorization scheme eq. (2.1) [95, 124]
where the amplitude is factorized as illustrated in fig. 2.4 into GPDs, distributions amplitudes
(DAs) of the p—meson and a hard process calculable using pQCD.

The longitudinally polarized amplitude reads

Too o< /dy/dxfi(x,x')Hij(y,x,x')\P}/(y), (2.6)

with y the usual fraction of photon longitudinal momentum carried by one of the quark,
fi(z, x") represents GPDs, which are the probability to find the parton 7 inside the proton
that carries x fraction of its longitudinal momentum and comes back inside the proton with
the fraction 2/. GPDs are a generalization of PDF to the non-forward limit x # 2’ allowing
to take into account skewness effects. H;; is the hard sub-process where the parton ¢ gives
a parton j that hadronizes into the meson with integrated wave function \Ify The collinear
factorization scheme have been improved to remove end-point singularities that appear for
the transversely polarized cross-section using Sudakov factors [125], which allows to overcome
end-point singularity problems, and has been applied to p-electroproduction through the
VGG model [126] and the Kroll and Goloskokov model [127, 128, 129]. In practice the
end-point singularities are regularized by keeping the transverse momenta of the ¢qq pair that
forms the vector meson and by assuming that they are distributed by a Gaussian distribution
that prevents large dipole size configurations. Note that this approach is valid not only in
the large energy limit but also for W ~ . The GPDs are not known and have to be modeled

starting from the PDFs forms and implementing the skewness and t—dependencies.

2.1.2 The underlying ideas of our approach

In the approach presented below, we use at a first level the kr—factorization to factorize the
7*(Ay) = p(A,) impact factor in the amplitude. Using the fact that the virtuality of the
photon is large, we can apply the collinear factorization scheme to factorize the soft part
associated to the p—meson production from the partons produced in the hard part. Note
that the notion of twist here is defined as the twist of the operators involved in the (¢q) — p

and (¢qg) — p meson production and not in the sense of the twist of the operators of the
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v*p — pp amplitude. This approach was performed a long time ago by Ginzburg, Panfil and
Serbo |130] up to twist 2 for the v; — pr and 5 — pp, transitions and was recently derived
by Anikin, Ivanov, Pire, Szymanowski and Wallon [131] for the v — pr transition up to
twist 3 in the forward limit. The presence of the k, of the t—channel gluons, regularizes the
end-point divergences as it gives a finite size of the order r ~ 1/k, to the ¢g pair. The quark
and the antiquark, after the interaction with the t—channel gluons, are flying collinearly and
hadronize into a p—meson. A little deviation from the collinear direction aligned on the
p—meson momentum will give higher twist corrections and we will present how to take into
account these higher twist corrections up to twist 3.

The chapter can be divided in two parts. The first part is the description of the so-called
light-cone collinear factorization (LCCF) procedure [132, 133, 134], inspired from the initial
Ellis-Furmanski-Petronzio (EFP) factorization [135, 136, 137, 138, 139, 140|, generalized for
exclusive processes. This factorization scheme uses the Taylor expansion of the hard part
around the dominant light-cone direction in the light cone gauge to get the higher twist
contributions. We will present the LCCF on the calculation of the impact factors v* — p,
following the approach of Ref. [131]. This approach being gauge invariant, a connection be-
tween the LCCF results and the results obtained within another approach called the covariant
collinear factorization (CCF) approach can be established. The relations between the CCF
DAs and the LCCF DAs were derived in [131]. A model developed by Ball, Braun, Koike
and Tanaka in [141, 142|, based on the conformal symmetry of the non-local correlators in
the CCF approach, is then used to get a model for the LCCF DAs.

In the second part of the chapter we will present a model [18] using an impact factor
model [143] for the proton, based on the results of the first part. At the end we compare the
predictions to HERA data.

2.2 Light-cone collinear factorization up to twist 3 accu-

racy

2.2.1 Soft parts and hard parts

We consider the S—matrix element of the leptoproduction of the p—meson involving a hard
part where a highly virtual photon dissociates into the constituent partons involved in the
p—meson final state wave function and a soft part which describes the hadronization of these
partons into the p—meson. Up to twist 3, one needs to consider the two (¢q) and three (¢Gg)
parton intermediate Fock states and we will denote respectively A,; and A, the associated
amplitudes. The partons interact at Born order with two ¢—channel gluons with non-sense
polarizations as illustrated in fig. 2.5.

The main idea is to separate the process into the hard sub-process involving the small
distance physics that can be treated in the pQCD approach and the soft sub-process involving
the long distance interactions between the partons in the hadronic state. The hard sub-
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Figure 2.5: 2- and 3-parton correlators attached to a hard scattering amplitude in the specific
case of the v* — p impact factor, where vertical lines are hard t— channel gluons in the color

singlet state.

process corresponds to the Feynman diagrams where the partons are propagating the hard
scale which is the virtuality of the photon (), this hard part is then related to the photon
vertex. The soft part of the process cannot be described in terms of free field operators due
to the interactions with other partons in the non-perturbative regime, and one ends up with
soft parts expressed in terms of interacting fields in the Heisenberg picture operators. In
order to get gauge invariant operators in the soft parts, one needs also to include the gluonic
radiations into the final state due to the motion of the partons, which in practice results in
the presence of Wilson lines linking the coordinates of the partonic fields.

The amplitudes read

L [

g = [ Gt ) Sigl0) (2.7
o rdMy d, _

ZAqfig - /(2 ) (27r) L Tr (qug(gbgg) Sqqga(gbgg)) ) (2~8)

where we explicitly put the integral over ¢; and ¢,, the momenta of the quark and the gluon
involved in the loops. The hard parts of these processes are denoted with H,; and Hg, and
the soft parts by S,z and Syg54. The traces are over spinor and color indices of the hard and
soft parts. More explicitly the soft parts are given by the Fourier transforms of the non-local

correlators of the partonic fields' between the vacuum and the p—meson states

5@ = [ % o) [pO0.39(2)] ), ¢ (29)
Sa(l1,¢,) = /d4zl dtz, e ootz
X <P pp W’ )10, Zg gA (Zg)[zgvzl (Zl)‘ O>M% ) (2.10)

where the brackets are Wilson lines defined by the path-ordered product

(21, 2] = P exp (ig /01 dt (21 — )" Atz + (1 —1) 22)) .

In the following parts we will omit to write Wilson lines in the correlators, we will see that

they reduce to a factor one in a specific axial gauge in which we will choose to work. The

'The flavor of the ¢g pairs involved in the p®—meson wave function |p°) = =5 (Jau) — |dd)), is restored
by considering a flavorless ¢q pair of electric charge % The fields ¢ and here are then associated to a

flavorless ¢q pair with an electric charge \%
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scale pp is the factorization scale under which the internal momenta of the partons inside
the hadron are integrated over. This scale allows to separate the large distance physics inside
the hadron from the small distance physics.

The hard sub-process is described by Feynman diagrams shown in fig. 2.7 for the ¢¢
intermediate state amplitude, and in figs. 2.8, 2.9 and 2.10, for respectively the "abelian",
the "non-abelian with one triple gluon vertex" and the "non-abelian with two triple gluons
vertices" diagrams for the ¢qg intermediate state amplitude. Let us emphasize the fact that
in all these diagrams the external partonic legs are amputated.

Let us illustrate how one can decompose the amplitude into in one hand the Fourier
transform of a space coordinate correlator and on the other hand the usual momentum space
representation amplitude given by Feynman diagrams. We choose a very simple example;
the amplitude of a photon decaying into a qq pair, as shown in fig. 2.6.

q, A

fhs; KQ,I'

Figure 2.6: v — ¢gq, decomposition in two pieces of the amplitude.
The amplitude can be written as follows,
A = (sitar] —ie [ @0 ARUE 0
= @) (Gsitar] e [ 4 B0 0
= (iela. V), [ ' (st G0 (2) 0] (2.11)

In the last line we see that the amplitude reads as the trace of a hard part (—ief(q, \)),,
amputated of the external ¢ external legs, multiplied by the local correlator

/ A2 (01, 5: o, 7] Da(2)60 () 0) -

In this simple example, the correlator is local as it involves only one vertex and it reduces
to us(l1)v,.(¢2) as the final state is a ¢g state contrary to our case where the final state is a
hadronic state with complicated interactions between the external fields. The eqgs. (2.7) and
(2.8) are obtained in the same way, the final correlators cannot be calculated within pQCD
and have to be parameterized as we will see later after applying the light-cone collinear
factorization procedure which allows to fully separate the hard parts from the soft parts which
are still linked by color, spinor indices and the 4-momentum integrals over the intermediate

parton momenta.
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(a) (b) (c)

M%@

(e) (f)

T

Figure 2.7: The 6 hard diagrams attached to the 2-parton correlators, which contribute to

the v* — p impact factor.

2.2.2 Factorization of the spinor indices

Let us introduce very helpful identities called Fierz identity in the spinor space, which is a

decomposition on the basis of the sixteen Dirac matrices?
I's ry Y 1] I'p
I oo =10y P iy
We denote the inverse of the Dirac matrix
r,=T".
The inverse matrix are explicitly given by

(711)—1 =T = FV,u ) (UW/)_l =0 = FT,uI/y

(Py) = =T, () =i =T5".

The Fierz identity in spinor space reads

1

T o
4

abat ab -

Opp Oaa =
Any matrix of the spinor space can be decomposed as

1 1
X =z, = ZFO‘ Tr (XT,) = ZFQ Tr (XT?),

2The convention taken is 75 = 2'70 71 72 73.

(2.12)

(2.13)

(2.14)

(2.15)
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(aG1) (bG1) (eG1)
(aG2) (bG2) (eG2)
(cG1) (dG1) (fG1)
(cG2) (dG2) (fG2)

Figure 2.8: The 12 "Abelian“ (i.e. without triple gluon vertex) type contributions from the
hard scattering amplitude attached to the 3-parton correlators for the v* — p impact factor.

based on the identity,

Tr T = 405 . (2.16)

The Fierz identity can be illustrated as in fig. 2.11. We use this identity to factorize the
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T T E Y
(atG1) (atG2) (btG1) (btG2)
AFL AGE F
(ctG1) (ctG2) (dtG1) (dtG2)
g ~AE
(etj) (etcir>T (f6G1) (f6G2)

Figure 2.9: The 12 "non-Abelian“ -(with one triple gluon vertex) contributions from the hard

scattering amplitude attached to the 3-parton correlators, for the v* — p impact factor.

(gttG1) (gttG2) (httG1) (httG2)

Figure 2.10: The 4 "non-Abelian“ -(with two triple gluon vertices) contributions from the

hard scattering amplitude attached to the 3-parton correlators, for the v* — p impact factor.
spinor indices of the hard and soft parts,
1
Tr (H S) == HijSij - Hrséir(sjssij == Z ZHTSSZ-jFﬁsFM-j
r

_ i STk (HT#) (ST,) (2.17)
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_ 1
i (n) ()
_ a a
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Figure 2.11: Fierz identity in spinor space.

In our case, a minus sign comes from the Wick theorem, one has to commute the spinor
fields,

— (Y, s) = %(i Vu ) Yy + i(lﬁ V5 Yu ) (VY5 )ps + - - (2.18)

where we have put explicitly the spinor indices r and s of the fermionic fields.

Note that the spinor indices factorization only involves the fermionic fields, and conse-
quently the Fierz decomposition goes the same way for the ¢q and the ¢qg intermediate
states.

2.2.3 Factorization of the color indices

The Fierz identity can be also derived in color space. Assuming the normalization of the

generators ¢

Tr (t"t%) = %5@”, (2.19)
one can show the Fierz identity for the generators of SU(IV,),
1
b the = <5ié Ojk — F(Sij 5/<;e) ; (2.20)
which graphically reads
l 14 i
b O 2 @2
j ko2 /\ k | |

In the case of the ¢ exchange, we can use this identity as
i 14 ? 14 1 l
NS ) . 1 > (
i Nk |
with ¢, j are the hard part indices and k, [ are soft part indices. Then we see that the first

(2.22)

term of the r.h.s. will give zero once projected on a color singlet state because of the gluon
coupling to the fermionic fields involved in the soft part. Hence the trace over the color
indices of the hard and soft part can be written as

1
Tr(qu Sqfi) = ﬁTr(qu) Tr(Sqq) .

The normalization of the ¢gg singlet state in color space is 2/(N?—1) leading to the factorized

expression
2
Tr(Hygg Seqg) = ﬁTr(qug) Tr(Sgqe) -

for the qqg amplitude.
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2.2.4 Factorization in the momentum space around the light cone

direction p

The amplitude iA,; after factorization of the spinor and color indices® reads

iAg = —Z [ e T O Sz 0). (223)

. d* o
Z'Aqqg - Z/ - / 9 Tl" (qug(glagg)l—w) Sqqga(glvf )7 (224)

with

95}
e
=
—
N
~—
Il

[ (olo) [9(200,000)| 0) 7, (2.25)

S(I(Iga(glag ) = /d42’1 d42’g <p(pp) }@E(zl) gFM AZ(Zg)w(O)‘ 0> 6—i€1~z1—iég-zg )
(2.26)

The factorization in momentum space around the dominant light cone vector requires that
we define a basis of light-cone vectors on which the partonic momenta can be decomposed in
order then to Taylor expand the hard part around the dominant light cone vector. We define
then two light like vectors p and n, which satisfy p-n = 1 and such as p is the dominant light
cone direction, p and n are denoted usually the "plus" and "minus" light cone vectors. The

dominant light cone direction in our case is given naturally by the direction of the p—meson

2

My, twist 3
Po=p+ 5= "p,

as the mass term of the vector meson leads to kinematic twist corrections starting at twist 4
which is beyond the scope of this study. Note that the choice of the light cone vector n is not
unique. The amplitude at the end should not depend on the particular choice of this vector
and this will give additional constrains on the DAs as we will see in the section 2.4.2.

The momenta of the quark ¢; and the antiquark ¢, in the two-parton amplitude are

decomposed as

bo=yp+ pin+1LL and  ly=yp+ fon — L. (2.27)
Following [144, 138|, in this approach the partons are on the mass-shell leading to
5 s
B = % and By = 25’

For the three-parton amplitude, the quark ¢, antiquark ¢, and gluon ¢, momenta are

decomposed as

0, = yip+pPin+4,, (2.28)
by = Yop+ fon+ Ly, (2.29)
by = ygp+ Byn+ Ly . (2.30)

3The Fierz coefficients from color space factorization 1/N, and 2/(N2 — 1) are implicitly put in the hard

part expressions for conciness of the formulas.
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the momentum conservation and the on-shellness of the partons, imply that

¢ o2
Yg=vo =1, Lo =—(Lo+lu), 206+F+fF)="+"+".
Y Y2 Yy

We decompose the Fourier conjugate in coordinate space z; of the momentum /; as
Zi="7p+tANn+zi.

Let us focus on the two-parton contribution. The leading twist contribution to the am-
plitude is given by assuming that the quark and the antiquark are flying collinearly to the

direction of the p—meson

Hyq(th) = Hyg(y, b1, 1) = Hyg(y) , (2.31)

which correspond to the zero order term of the Taylor expansion of the hard part around the
dominant light cone direction p.

The contributions in each order in 1/Q), are given by the Taylor expansion of the hard
part around the dominant light cone direction p [144, 138]. Up to twist 3, this expansion
can be interpreted as the emission from the hard part of a qq pair with a very small relative
transverse momentum justifying the Taylor expansion around the collinear direction. The

relevant terms of the Taylor expansion up to twist 3 are

Hix () = Hir (y) + Heg (y) (60— yp)y + - -

twist 3

~ " Hy (y) + Hyg (y) s (2.32)

where, for conciseness, we use the notations

. oo 0
HY = Te(H, ™),  Hy™ = oo, Tr(Hagl™).

The term of n-th order of this Taylor expansion reads

"
——Tr(H " — o _
86114 . 8611% 1"( qq ) (El yp)l/l (gl yp)un s

where (¢1 — yp),, -+ ({1 — yp),, acting on the soft part, will give transverse derivatives of
the correlator, leading to the moments of the wave function of the hadron. Note that the
insertions of transverse gluons and transverse derivatives ((¢1 — yp),, ~ f11,,) increase the
twist of the operators in the soft part.

We will treat separately the convolutions of the two terms of the last line of eq. (2.32)
with the soft part. The first term (zero-th order of the Taylor expansion) is

. 200 1 dy TH dﬁl ng_ —i(yABry+Ll, =z
A = ~2 %qu (y)/ggﬁ)2 dyddz e WAHAYHEL2L)
X {p(p)[(yp + An 4 21 ) T\ 1p(0)]0)
1

N —Z/dyﬂiﬂwf%—iwp(mwm T, 1(0)[0),2. (2.33)
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In eq. (2.33), the subscript % is the factorization scale up to which the fluctuations in the

transverse momentum space are integrated,

IO L0000, = [ TR oGO+ =) Lw(0)l0) . (238

2 2
O <pp

Let us give now a more precise interpretation of the presence of this cut-off on the trans-
verse momenta. In the rest frame of the meson, its size is of order yg' in all directions with
o ~ m,, and in this frame a cut-off at pe' ~ Q7' GeV allows to get most of the internal
dynamics which is not resolved by the system of partons. In the rest frame of the partons
created by the virtual photon and propagating with the hard scale (), the partonic system
has a typical spatial extension of the order Q—!. The boost to go from the meson rest frame
to the partonic system rest frame induces a contraction of the longitudinal size of the meson
by a factor Q/uo, leading to a longitudinal size of the order of Q~'. Hence we see that the
fluctuations along the longitudinal size can be always resolved even for very large virtualities,
while the fluctuations in the transverse direction are not boosted and remains of the order
ot Thus these transverse fluctuations are part on the long distance dynamics of the meson
and have to be integrated over up to the scale up ~ (). Choosing the renormalization scale
to be equal to the factorization scale, the dependence of the DAs on the scale ug is given by

the renormalization equations of the operators in the correlators.

Note that for the case of the ¢q pair intermediate state, the transverse size of the pair is
of the order \/yy(@ instead of ) due to the fact that the photon is split in two constituents.

In a symmetric jet configuration (y ~ 1/2), a reasonable choice for pp is

i = V@) ~ 3.

For aligned jet configurations (y ~ 0 or y ~ 0) which are expected to dominate the trans-
versely polarized p—meson production, this choice has to be justified depending on the av-
erage values of y and 7 given by the distribution of dipoles, i.e. the overlaps of the wave
functions of the transverse virtual photon and the p—meson.

After the momentum factorization, the operators in the correlation functions are a product
of fields on the light cone direction n, 22 = (An)? = 0. Restoring the Wilson line, the gauge

invariant correlator reads
(p(p)|(An)[An, 0] To 10(0)]0) . (2.35)

We choose to work in the light-cone gauge A-n = 0 which allows to simplify the Wilson line

to a factor one

1
[An, 0] = Pexp (ig / dt An” A, (t )\)) =1.
0

The second term of the Taylor expansion (2.32), i.e. the first order in ¢, of the Taylor
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expansion, reads

iAY = _% O /cwl/ d /WMZL

Dt At )T SO
_ 1/d HY™ () ;Zi e~
: /dZL/ dh v e 2 p(p)[(An + 21) T, 9(0)]0) . (2.36)

We must now get rid of the factor ¢, and this is done by replacing ¢, — i0/0z, acting on
the exp(—if, - z,) and then doing an integration by parts,

. 1 soe, (AN oy [ de o
"A&i) :_Z/dquéF (y)/%e yA/ (27:)2dh (l&ué’ b l)

x (p(p)[(An + 21) T 1p(0)[0)

_ v dA g / ey / ity oz,
~ 1 / Ay Hag () / o rp | C
9

X ool )[(yp + An + z1) T, 1p(0)]0)
- / dy Hyl " (y) / D a% POIFON T o)), . (237)

The transverse derivative of the non-local correlator can be put inside as an operator acting
on the fermionic fields,

S (o) O+ 0) T (0)10)3 = ~{p)F O+ 00)Ta 0F V00, (239

with 0 = (9 — 8i). So finally,

() I AN _ixy ; Y

1Ay = dy Hyg 5-¢ ) [b(An) Dt 9, 1(0)]0) s, (2.39)
The collinear factorization in the momentum space is now achieved for the two-parton am-
plitude up to twist 3 as the hard and soft part are now only related by the integral over

y. The result for the two-parton contribution is then given by the sum of A 7 and .A(— as
illustrated in fig. 2.12.

Figure 2.12: Factorization of 2-parton contributions in the example of the v* — p impact
factor.

The derivative term of the hard part H;%F“ (y) in the expression of Afl;—) can be computed

using the following identity,
0
T _— = ® where _ 1 )
Pu P m— p— ie (2.40)
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The hard part H;;jw (y) corresponds then to the computation of the 12 diagrams shown in
fig. 2.13. Indeed the derivative of each of the 6 diagrams of fig. 2.7 involves the sum of the

derivatives of each propagators of the diagram leading to

o0 NG
o B (2.41)

where the dashed lines are only here to indicate with respect to which propagator we are

deriving.

(cl) (c2) (d1) (d2)

\
\
\ N
N ~.
S o

(el) (e2) (f1) (f2)

Figure 2.13: The 12 contributions arising from the first derivative of the 6 hard diagrams

attached to the 2-parton correlators, which contribute to the v* — p impact factor, with

momentum flux of external line, along p; direction.

At the twist 3 level, we need to consider also the non-minimal parton configuration where
there is an additional gluon. Contrary to a covariant gauge treatment, the choice of the axial
light-cone gauge (n - A = 0) allows to get rid of the longitudinal component of the gluon

polarization.
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We now focus on the qgg intermediate state amplitude. In the case of three-parton
exchange contribution, only the zero-th order of the Taylor expansion of the hard part is

needed up to twist 3 with a transversely polarized gluon,

: 1 [ dyydByd?t, [ dy,dB,d*ly,
1Ay = _1/ (2ﬁ)4 / . (2;)4 ! /d% X\ dzzu/dvg dX,d®z,1

XHg;g yh yg W}(Zl) gAJ_(Zg) (0)|0>6—i£1.z16—i£g.zg

:__/dyl/dyg qqg yhyg)

dXy dX _
< / Gt ¢ I (D) T g A g 0)]0). (2.42)

where we denote Tr(Hg,, ') = ng—gﬂ The factorization for the three-parton contribution

is illustrated in fig. 2.14.

D=

Figure 2.14: Factorization of 3-parton contributions in the example of the v* — p impact

factor.

Note that the sum of the first order term of the Taylor expansion in 9+ for the ¢g
intermediate state contribution given by eq. (2.39) and the ¢gg intermediate state contribution
given by eq. (2.42), corresponds to the first order term of a Taylor expansion with respect
to the transverse covariant derivative Dy (z) = 9, — igA;(2) of the hard part around the

dominant light-cone direction, it reads

i, d,
g = —/dyl/dyg sig (Y1, / : A””/2—7f6 ot (2.43)

<(p(p)[(Ain) T, i DL (\ 0) ¥(0)]0),,

2.3 Parameterizing the vacuum to rho-meson matrix el-

ements

The goal of this part is to parameterize the vacuum to p—meson matrix elements that appear
in egs. (2.33), (2.39) and (2.42) and contains the twist 2 and twist 3 contributions to the
v*g — pg amplitude. We will first introduce the notion of DA, then we will show how
considering the quantum numbers of the p—meson state, the equations of motion (EOMs) of
QCD and another condition called n—independence, allows to restrict ourselves to a minimal
set of DAs. We finally describe how one can find explicit expressions for these DAs using

conformal expansion, renormalization equations and QCD sum rules techniques.
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2.3.1 Light-cone wave functions and distribution amplitudes

Let us introduce the lowest Fock state light-cone wave function of the p—meson \If( )(y, /) and
its connection with the DAs. Note that in our notation the usual "+" and "-" components of a
vector z = a,,py+7ype+2z1 are respectively given by projecting on ps and py, 27/s = 2-py = .,
and z7\/s=z-p; = 1.

The wave function in momentum space is the Fourier transform of the Bethe-Salpeter
wave function of positive energy at the fixed light-cone time 2z = 4 = 0. This object is
the amplitude of probability to find a ¢G pair with respective helicities h and h, fractions of
longitudinal momentum y and ¢, and transverse momenta ¢ and —/, in the p—meson state.
Following the conventions of [120], the mode expansion of the quark field with z laying on

the light-cone direction z = An is

b(An) = / % ;[u(h) (v, Obu(y. £) e + 0 (y, O)d} (y, £) €] . (2.44)

The p—meson state is defined at lowest order of the Fock expansion by

Ao ) = VIS /4 d?“i)w%(y,@b*(y,@w,—@|o>, (2.45)

where the anticommutation relations at equal light-cone time (z* = ) are,

{Bhw.0.bu(y. )} = @m)*y—y)s (L~ L) 2yp)oun. (2.46)

=0

Assuming that the ¢g state saturates the p—meson state, then the probability P,; to find a

qq in the p—meson state is one, leading to the normalization condition [55, 145|

qu:Z/dy/d2£
h,h

with \Ifh h(y, r) the Fourier transform in the transverse space, r is the transverse size of the

A 2
Uy )| =1, (2.47)

qq pair. Cons1dering the electronic decay of the p—meson in terms of the wave functions of

a virtual photon ¥ and of the p—meson gives the additional relation [115, 145]

hh?
efomy(el Z/dy/d%"l/ (y,r hh(y, r). (2.48)

The vacuum to p—meson matrix elements that are involved in A are

(00 A) [P () T, - VIR / %

LA 5)[ Wy, ()T, 0™ (y, —0)]. (2.49)
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By definition, the DAs parameterize the Fourier transforms of the vacuum to p—meson

matrix elements. We can write as a generic definition of the DA ¢;(y, r),

modyeivos) = [ S N oI (L-1) b0)[0)

<, 20 '
- ViR [ L
hh (2m)?

(2y)(29)
Uy, 0)[a® (y, £) L - T o P (y, —0)], (2.50)

X

with L, the relevant Lorentz structure associated to ¢; on which is projected the correlator.
The wave function is not known but it is customary to parameterize it as a spinor part S;;fb
which is similar to the coupling to the ¢g pair to a photon, and a scalar part ¢,, which has
to be modeled and which is constrained by the relations (2.47, 2.48). In this case the wave
function takes the form

) [ Neoa
v = Eshg@p , (2.51)
with S};\}—’; = 1 (y, )¢ vy, (7, —£). The computation of the DA with the wave function defined
in (2.51) leads to interpret the DAs in the asymptotic limit 3 — oo as the moments of the

scalar function ¢y,(y,£) in the transverse momentum space.

2.3.2 Lorentz decomposition and parity analysis

We will now investigate the set of DAs we need to parameterize the matrix elements of the

twist 2 and twist 3 operators.

The role of chirality conservation

We first restrict the sum over the I'* matrices to the sum of y* and *~5 as they are chirality-
conserving matrices. Indeed, as we have neglected the quark masses, the conservation of
helicity implies then the conservation of the chirality in the QED and QCD vertices. The
conservation of chirality at each vertices of the hard part and the fact that the quantum
number exchanged in ¢—channel are those of the vacuum, i.e. chiral even, impose that the
['* matrices must be chiral even. One can readily check that the chirality-violating matrices
like 1,0, ,--- are giving vanishing contributions in the two t—channel gluon approximation.
The consequence of the chirality conserving condition is that the chiral odd DAs [142] such as
the leading twist DA for a transversely vector meson or the twist 3 DAs for a longitudinally
polarized meson, decouple from the hard parts. As a consequence, the twist expansion starts
at twist 3 for the production of a pr and the next term of the twist expansion for the
production of a py, is of twist 4. Let us give an exhaustive list of the Fourier transforms of

the vacuum to p—meson matrix elements that we have to parameterize given the two chiral
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even structure {7, vV},

ar
S i) = [ e M pm)FOm) 2,000 (252
St = [ Sre Mo 30n) 6 01000 (253
dX\
St (v 1) = / D0 o)) 7, 0% V(0)[0). 2.54)
Sgg‘m / —sz W()‘n)%’YuZaL (0)|0>p%7 (2.55)
dA d\, _.
Sggg yluy%:uF E/ Lt /2—756_’)‘9(92_91)
< (o) B (m) 7 g AL Am)(0)]0) . (2.56)
d\ A\, _,
S;;’;W yl)?/?qu / 271'1 _Z)\lyl /2—;6_”\5’@2_‘1}1)
< (o)) 33, AL gm)(0) 0. (2.57)

Decomposition on Lorentz structures

The idea is to decompose on Lorentz structures the non-local correlators and to keep the
structures which will give contributions up to a given twist. The Lorentz structures have to
be built from the relevant momenta p, n and the polarization of the outgoing p—meson e*. To
understand which are the relevant Lorentz structures to keep up to a given twist, let us give
a power counting argument in the infinite momentum frame where p ~ QQ — oco. We directly
see in this frame that the scalar product p - n = 1 implies that n ~ é and e} ~ 1. This
scaling of the momenta, gives the power behavior in 1/Q for each term of the decomposition.
The twist 2 O(1) and twist 3 O(1/Q) Lorentz structures that we can build are then,

1
(n-e)p,=—pu~Q = Twist 2, longitudinal polarization, (vector),  (2.58)
mp

(n-p)el, =¢e),~1 = Twist 3, transverse polarization, (vector), (2.59)
1.~ 1 = Twist 3, transverse polarization, (2.60)

(axial vector)

where?

Ry, = 6Wme*f‘p6n7 .
Other Lorentz structures exist but they can be expressed in terms of these ones or they are of
twist 4 like for example (p-e*)n, ~ é We see from the power counting that the correlators
with two Lorentz indices associated to the production of a transversely polarized p—meson

can be only,

pac€l, = Twist 3, transverse polarization, (vector), (2.61)

pa R, = Twist 3, transverse polarization, (axial vector) . (2.62)

0123

4The convention taken for the Levi-Civita tensor is € = —gp123 = 1.
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Note that another way to perform the power counting in twist [146] is to decompose the
fields in their "4+" and "—" components, which are also called good and bad components,
leading to the definitions of quasipartonic operators (only constituted of "+" fields) and non-
quasipartonic operators containing "—" components. For spinor fields of dimension d and spin
s, these components correspond to the spin projection of the field ¢, ¢, =11, ¢ = %y_mrzﬁ
has spin s = 1/2 and ¢p_ =11_¢ = %%rv_w has spin s = —1/2, with Il. the spin projection
operators. The conformal spin of the primary field ¢, 7 = % and its so-called collinear
twist t = d — s, are different for ¢, and ¥_ components which have respectively twist 1
and 2. To illustrate the twist counting of the operators, let us focus on the operator @Ww.
The quasipartonic operator v, v,/ is a leading twist operator while 1y 1_ +h_~y 1), is
a twist 3 operator and 1)_y_1)_ is a twist 4 operator. The role of the conformal spin of the
operators will be discussed in section 2.5.

Let us now focus on the parameterization of the S)%, which a priori involves three unknown

qq >
functions ¢1(y), ¢s(y) and Pa(y),

S = [ S I On) 6 0)1) 263
= muf, (1(y) (€" - n)pu +i2aly) R, +s(y) (p-n)el) . (2.64)

The normalization m, f, contains the information on the large distance physics. The decay

constant f, is defined as
. A
(0] ?/)(O)W@D(U) lp(p, ) = mpfpeu ) (2.65)
and it has been measured: f, ~ 200 MeV.

In practice one has to define non-perturbative coupling constants ( fgf o -) in order that
the DAs have proper normalizations. We will see in section 2.6 the determination of such
non perturbative inputs, using QCD sum rules techniques. Let us now investigate how the
parity analysis will constrain the set of unknown functions, on the particular case of S;,’{.

Parity constraints

Under parity, the light cone vectors p, n and e’ transform as
Pupw =myu, Py =pus Prey(=p,A) = =€, (P A) (2.66)
and the operator v(2)v,1(0) transforms as
(2)7,1p(0) — Prb(Pg27)7,1(0) (2.67)

where P = diag(1,—1,—1,—1) is the parity matrix on the Lorentz vector representation.
The proofs are quite straightforward except for the transformation of e}, where one needs to

boost by LZ(p) the vector in the rest frame of the p—meson where p = 0,

e"(Pp,A) = LE(Pp)e”(0,A) = PELE(p)Ple” (0,)) = —Phe”(p, \) , (2.68)
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where we use the fact that in the rest frame
Pfe”(ﬁ, A) = —66(6, A,

as €2(0, \) = 0.
Inserting the identity 1 = PP between the operator and the states, the matrix element

transforms as

(o0, NI PP (2) 3, (0) PP 0) = 0, Py (p(Pp, N)| & (P2)y,b(0) [0) ,  (2.69)

with 77, = —1 the intrinsic parity of the p—state. This equality in terms of DAs reads

[y ()0 - mp+ sl (0. 0) + i) 1) e
=1,P, / dy eV PP P2 (o (y) (e (Pp, A)(Pn)®) (Pp), + @3(y)et, (Pp, A)
+iga(y)evapy el (Pp, A) (Pp)” Pn?) . (2.70)

The first term that multiplies 1 (y), simplifies as

Pl PIps(es(Pp, NPin’) = npu(—Pges(p, Ap®)
= —nple;(p, ) -n)py. (2.71)

The term multiplying ¢3(y) simplifies as
1P, (Pp, A) = =1,PiPrel,(p, A) = =1p€1,, (D, A) (2.72)
and finally the term multiplying ¢ 4(y) reads

1P Evaprel” (PP, A) Pyp™ Pon’

= —1, Py evasy Pael (Pp, \) Pip* Pon”

= =y (v PLPIPLPY ) € (0, NP0

= —pdet(P)e,onse’” (p, Np*n”

= NpEporp€l (P )\)p/\”p ) (2.73)

where we use the fact that P = PY, éuaga,P,’ng‘Png = det(P)eyonr, by definition of the

determinant, and det(P) = —1. The relation given in eq. (2.70) leads to
[ v (@) np+ @)l 03) + i2awRL) (274
— [y () )+ eal)ed () — TBa)RI) e

The conditions given by the parity analysis are then

e1(y) =p1(v), @3(y) =@3(y), Galy) =—Paly) = paly) =0. (2.75)
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C-parity constraints

The transformation under C-parity of the operator ¥(z)y*(0) is

Clp(2)71"(0)C = —1h(0)7"0(2) .

The correlator reads

(p(p, A)]
=—n,(p
= —n5{p

CCT(2)3ap(0)CCT [0) = =115 (p(p, M) 9(0)7,:85(2) [0)
( ) PZe—iPZ,l?E(O)QiPZe—iPZ,yuw(Z)eiPZe—iPZ |0>
(P, M)l e

PP~ 2)y,0(0)e 7 |0) (2.76)

—iPZ

where we have inserted the translation operators e The intrinsic C-parity of the

p’—meson is n, = —1. The vacuum state is invariant under translation while the p—meson

state gives the eigenvalue exp(ip - z). We get then the equality
(p(p, )| CCT(2) 7,1 (0)CCT0) = —m5e™* {p(p, )] (—2)7,(0) [0) - (2.77)
Parameterizing the correlator in terms of the ¢1(y) and ¢3(y) gives the relation
myfy / dye™*[p1(y) (" n)pu + ps(y)el] = —meT myf,
< [y ) )] (278)
Changing the integration variable y by y = 1 — vy, leads to
P / dye™™*[o1(y)(e" - n)p, + p3(y)e’]
= mpfy [ AT (1= G)(E (1= D)), (2.79)

We can now identify the different terms, and the constraints given by the C-parity transfor-

mation of the correlator are
o1(y) = e1(1 —y) and ws3(y) = w31 —y). (2.80)

Time reversal constraints

The p—meson state transforms under T'—parity as
Tlp(p, A) = (=1 [p(Pp, =) . (2.81)
One can prove also the relation
e (Pp, =) = (=1)"Pren(p, A) | (2.82)

which will be useful in the transformations. The operator ¢(z)v,1(0) transforms under time

reversal as,

T=(2) b (O)T = PLb(—P2)146(0)
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The correlator after inserting the operators 77! reads

(p(p, I TT™ @(Z)Wb() o)

= Go(=1)"* ((p(Pp, =\)| & (=P2)Piy,4(0) |0))"
= (y(—1)' / dye—iy“’””’m [o1(y)(e*(Pp, =) - Pn)PY(Pp),
+os(y)Pret, (Pp, =) . (2.83)

The fact that the correlator is conjugated is due to the fact that time reversal exchanges the

in—state with the out—state. The scalar product e*(Pp, —\) - Pn simplifies,
¢*(Pp, =) - Pn = (=1)""A(Pe(p, N)) - (Pn) = (1) e(p,A) - n

We get then,

= (=)' ( / dye VPP P ) (y) (e* (Pp, =) - Pn)P4(Pp).
+os(y)Pret, (Pp, —A)])"
= Cp(—1)2 </ dye_iyp'n[%(y)(e(p? )\) : n)pu + <P3(y)6¢u(p, )\)])

=G [ Ay ) 0 N) s+ ) V) (281)
By identification we have the following relations

1Y) =e1(y), ¢3(y) = e3(y), (2.85)

which show that the DAs are real functions.

The full set of distribution amplitudes

The same procedure can be applied to the other correlators and one finds at the end that the
parameterization of the correlators involves two DAs (¢1, ¢3) for the S)%(y, wr), one (¢a)
for the axial vector correlator S;>", one for the vector (¢] ) and axial vector (¢’) correlators
with transverse derivative, and one for the vector (B) and for the axial vector (D) correlators
with three partons,

2.86
2.87
2.88
2.89
2.90
291

Saa (ys wh) = mpfoler(ys pp) (€5 1) pu + s (y; w) €1,
Sod " (i u) = myfoioaly; py) R,
S'Y/“J- 2N T(). 2 *
o (Y np) = mufo 1 (U 17) Pp €y s
7J— - *
Saa (ys up) = imp fo 04 (s 1) pu R
Sggg (Y1, Y2 N%) =my fp C?x)(,u%) B(y1,y2; N%«“) Pu€las

Saea (1, y2; 15) = my fo G (3) i D (Y1, s 1) pu R

(2.86)
(2.87)
(2.88)
(2.89)
(2.90)
(2.91)

where (g, (u7) and §3p(,u 2)) are dimensionless coupling constants:

) = % CA2) = % (2.02)
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We remind that, for the qqg amplitude, the quark, the antiquark and the gluon fractions of
longitudinal momentum are respectively denoted y;, y» = 1—y2 and y,, and verify the relation
y1 + Y2 +y, = 1. Note that for the ¢gg DAs B and D, the gluon fraction of momentum is
positive 0 < y, < 1 which constrains the integral over y; and y» by the condition y; <y, <1,

1 1 1 Y2
/ dyl/ dys —>/ dy2/ dy, .
0 0 0 0

The constraints obtained from the parity relations are,

1Y) = e1(¥),  wsy) = w3(y), waly) = —0a(-7)
el(y) =—ei (@),  ©ay) = i)
B(y1,y2) = —B(¥2,71) » D(y1,v2) = D(y2, 1) -

Inserting in eqs. (2.33), (2.39), (2.96) the previous parameterization of the correlators and

using the shorthand notations,

THa o b,IHa _ a, [+
Hoe ™ (y) = Hyg (y) ay, Hp: " (y) = Hg"™ (y) ay b,
b,I'*a - o,
Hq(jg g (yla y2) - qu H(yla y2) Qy, ba s

we get the convolutions

. m N
iy = —%f” / dy Hyp(y)er(y; 13 (e} - ). (2.93)

for a longitudinally polarized p—meson,

. myf, ¢ . 175
Ay = ——fl . / dy [quT(y)ws(y;u%)HHﬁ” (V)paly; 13)| (2.94)
. mp,f, b N R a
AL = - / dy [Hye™ ()T (y; 1) + iHye P () @7 (05 12)] (2.95)

for the two-parton contributions and

: myf et
1Ay = _$/dy1dy2 [qug (y1>y2)<?‘>/</~£7) B(yhyz;lﬁ?)

RY i
+Hags " (g1, 2) GM1d) i Dyr, o3 13)] (2.96)

for the three-parton contribution of the transversely polarized p—meson. The DAs satisfy

the normalization conditions

/Ody%(y)zl, /Odyws(y):l, /Ody(y—g)gpA(y):%7 (2.97)

by definition of the associated coupling constants.
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2.4 Reduction to a minimal set of DAs

The set of DAs defined above is over-complete, first the DAs are related by the EOMs of
QCD (sec. 2.4.1) [138] and second their parameterizations depend on an arbitrary vector n
and the amplitude has to be invariant under the transformations that preserve p-n = 1
and n? = 0, leading to additional relations among DAs (sec. 2.4.2). These relations can be
solved and lead to two sets of independent solutions (sec. 2.4.3), the first set corresponds to
the so-called Wandzura-Wilczek (WW) solutions [147] {o¥", @AW, T WW oI WW which
only depend on ¢; the leading twist two-parton DA and the second set of solutions are called
"genuine" solutions {pd™", %", @1 9", 9"}, they depend only on the twist 3 three-parton
DAs. The genuine twist 3 solutions can be interpreted as the higher Fock state contribution
to the amplitude. The relations between the DAs have been derived independently of the
hard sub-process in [142| in the covariant approach using exact operators identities that relate
the non-local operators [148, 149|. We will follow here the approach of [131]. In the last part
(sec. 2.155) we show how the three independent DAs {¢;, B, D} and the analogous DAs of
Ref. [142] {¢), V, A} in the covariant approach, are related, as it was shown in Ref. [131].

2.4.1 DA relations from the equations of motion of QCD

The Dirac equation on the spinor fields allows to derive relations between the DAs. Let us
insert the Dirac equation inside the correlator (¢,(0)¢5(2)), where r and s are the spinor

indices of the fields, such as

(i Prn()yin()) =0, (2.98)

=0
with 5;”? is the covariant derivative with respect to the coordinate . Another constraint can

be similarly obtained by acting on (z),
— . +—z
(4:(0)r(=)i ) = 0. (2:99)

Let first focus on the 57« part of the covariant derivative, and split it into its longitudinal
component 5L and its transverse component d . Then the Fourier transform of the correlator

reads

[z ((iF0@)i@) + (i v0)ie)) - (2.100)

r=

The first term of eq. 2.100 involving the longitudinal derivative can be simplified as
[z (@)
_ _yﬁ/d4ze—iyp~z—iyp'l‘ <¢(x)qu(z)>q;:0 . (2101)

The result of eq. (2.101) is obtained by first translating the correlator by —z, then performing
an integration by part and translating back by +z the correlator. Using the Fierz identity

1

—{pr@s) = Z(@%@ Vrs +{PV5Vu) (V*Y5)rs) (2.102)
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and the parametrization of the correlators given in eqs.(2.86, 2.87), the contribution of the
longitudinal derivative reads

mpfp
4
where in the r.h.s.

T 03 0 1) IR 100a (5 13) = — 2250, (ol 4) + oy i), (2103)

Oper, = 5l 41).

The longitudinal derivative contribution is then

[tz (i @)

=0
—im, f _ _
= 1 0wer (0s(Y; 1E) + 9alys i) - (2.104)
The contribution from the transverse derivative 07
[z (i uwie) (2.105)
=0

is directly parameterized by DAs of eqgs. (2.88, 2.89) after using the Fierz identity. The

transverse derivative contribution reads

[z (i o))

=0
_ mpfp T . * T 2.106
==, W1 () + PRIv590a(Y)) (2.106)
m,f
= i ope (0 (3 E) + Ay E)) - (2.107)
Adding the two contributions, the derivative term 0 of the covariant derivative D reads
[z (@i + (i 6@ieE) (2.108)
__impfpg [— ( 2)+— ( 2)+ T(. 2)+ T(. 2)}
- 4 p,e’ Yyps\Y; b ypa\y; bp 1 \Ys bp Pa\Y; U :
The interaction term with the gluon field of the covariant derivative reads

[z (g0 0 0)3)) (2.109)
which after using the Fierz identity, reads

/ d'ze % (g AL (0) % (0)ib(2))

= —%% / d*ze™"% [((2) 7 g ATP(0)1(0)) 7"
+((2) 57 g AT (0)16(0)) 7*75] - (2.110)

Using the parameterization eqs.(2.90, 2.91), we get
[z (a0 wl0)i ()

1
_ %h / dys [ Byr, y2)pd' + iG5 D(yr, ya) PR s
Y1

1

.m

= — pro'pﬁj_ / dyg[c?"/B(yl,yg) + C{?D(yl,yg)] . (2111)
Y1
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We finally obtain that the Dirac equation inserted in the correlator as

/ a'ze= = (B(0) b(0)9(2)) = 0, (2.112)
leads to

Jos(y; 1e) + Goaly; uh) + o1 (y; 1) + o4 (y; 1)

1
= —/ dys, [C?,V(u%)B(yl,yz;uzF) + C?(M%)D(yljyz;,u%ﬂ . (2.113)

Y1

The second equation given by the Dirac equation applied to the second fermionic field

gives the following condition,

yos(y; 1) — yealy; 1e) — o1 (s 1) + o (y; uF)

1

= —/ dya [—=G5 (n3) By, y2; 1) + G5 (1) Dy, v2; 1) ] - (2.114)
Y1

Finally we see that the EOMs of QCD lead to two relations on the DAs, mixing the twist 2

and twist 3 DAs.

2.4.2 Equations from the n—independence condition

The basis of light cone vector chosen to perform the expansion of the hard part around
the dominant light cone direction p, is not unique as n is not fixed by a physical direction.
The amplitude should then be independent of this arbitrary choice, leading to an additional
set of equations on the DAs which is independent of the associated hard scattering ampli-
tude, as it relies on Ward identities. We will see that separating the axial vector from the
vector contributions of the amplitudes and demanding the n—independence of these contri-
butions, one can simplify these conditions thanks to the Ward identities. At the end, the
n—independence conditions are the convolutions of a common hard part (involving only the

quark and antiquark pair exchange) with the following combinations of DAs

dSOFiF ) ) )
rmn (y; u3) + 1 (y; 1) — @s(y; 13
' B(y,y2) + B(y2,y
+C3V(ufw)/ dy, 29 ¥ Blony) _ (2.115)
0 Yo — Y
for the vector contribution and
d(pT
—dyA (y; u%) — oaly; pF) +
Y D(y,y2) + D(y2,y
C:f(u%)/ a2t z)z_y( 29 g, (2.116)
0

for the axial vector contribution.

The conditions that we require to get a Sudakov basis on the vector n are,
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e n is light-like,
e p-n=1.

Starting from a basis of reference with a fixed light-cone reference vector n® satisfying these
conditions, we can decompose on this basis any vector n satisfying the same conditions as
2

ny
nt = —7]9“+n6‘+n‘i.

Hence only the transverse degrees of freedom parameterize the n—vectors and the n—independence

of the amplitude reads

d
—0. 2.11
dn‘iA 0 ( 7)
The total derivative can be written as

d on” 0 o(e* - 0
d © = nﬂ v + (e Nn) * 'A

n' on'| on ont  0(e*-n)

vV 1% * 8./4.

— [—nlup + gJ_“] 8?’[,'/ -+ eJ_a(e* ] n) = 0, (2118)

as the amplitude dependence on n is partially due to the parameterization of the polarization
e*. The n—independence condition applies separately for the vector A"***and the axial
vector A2 parts of the amplitudes, due to their different parity properties. The dependence

on n of A" and A>3 comes respectively from the factor e* - n as
N *
e =el' —(e"-n)p,,

and R, = €,e+ pn where the vector n can only be contracted with p so that the dependence

is in p - n then,

any d Aaxial a Aaxial
= D —— 2.11
nf  dn¥ 0 on'} 0, (2.119)
d Avector 8 Avector
- = — =0. 2.12
dn'! o= d(e*-ny) 0 (2.120)

The equation of n—independence of the vector amplitude A" (2.120) involves the terms
proportional to ¢1, 3, 1 and B. The associated Fierz structure closing the spinor indices
of the partonic fields of the hard "vector" scattering is v,,. The term proportional to ¢; reads

diagrammatically as,

o o _  myf, 0 . P
s = =Pl s [ )

B _%fp/dwl(y) ’ (2.121)
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The term in g3 is

9 (1,3 myfp 0 / s
L d _(e*
0(6* TL) qq 4 0(6* . n) y903(y)(6,u (6 n)pu)
myf, hS
- /dyws(y) ’ (2.122)
The term in ¢! involves the derivative of the hard part H;’g’“, which formally reads
0 My fp (e n)p
- dyHg; ™" Ty 13 2.12
ﬂﬁ-m< T /le ()1 (v; 1p) (2.123)
my,
=== pj/dwa@ﬁ#%) 7
‘?‘/1 ~Z‘Uz
_ mpfp /dyl /dy2(5 Yo — 901 (y17 :uF) _ Is - _ ]5
— W U1 Y2
3
m d
_ Zﬂi/}w g 7 ol (i3 (2.124)
3
where we used the following Ward identity in the collinear limit [150],
) ?(m—yM7 (m—yﬂmi
P . = - L (2.125)

hp Y yep 270N Yo D Y p

We see that it is some kind of integration by part in order that the derivative acting on the
hard part finally acts on the DA.

One can show that the three-parton contribution to eq. (2.120) that will mix with the

previous terms is associated to the abelian diagrams of fig. 2.8. These diagrams have the
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same color structure than the two-parton diagrams and the term in B reads

0 m,f,
8(6* . TZ) ( 4p s /dyldy2 qug «“ )pﬁ(y17y2)<3 (/”LF) B(y17y27 MF)
m, f U1
p L /dy1dy2C3 (13) B(y1, yo; 1) W@g W@g v
Yo

Y2

_ mpprS /dyl/dy ylay2a/~LF Q ) 7 P
Y2 — 1 g yl Y2
S

=Tl [ [ d B

g
: (2.126)

« B(y1, y2; 1) + B(y2, v1; 1)
Y2 — 1

where we used the Ward identity (2.125), and the symmetry property
B(y1, y2; pi:) = —B(52, 513 1)

Finally, the sum of these terms gives the hard sub-process independent relation coming
from eq. (2.120),

det
dyl (v 13) + o1 (y; 1) — 3(y; 17)
L B(y,ys) + Blys,
+C3V(u%)/0 ay, 2V yZ)Q _y(y2 v _g. (2.127)

The axial vector n—independence condition can be derived with the same techniques and

gives the relation

d(pT
d—yA(y; 1) — paly; u2) +

ar oy [T Dyys) + Diys,y)
Gs (kF) /O dys - . (2.128)

The equations (2.127) and (2.128) are the results of the n—independence conditions.

2.4.3 Wandzura-Wilczek and genuine solutions

As we saw in the two previous sections, the seven DAs involved in the chiral even process
are not independent. They are related by four equations, namely two equations from the
EOMs of QCD and two equations coming from the n—independence conditions. This means
that four of the seven DAs, denoted ”;” = {3, 04, 07,04}, can be expressed in terms of
three independent DAs chosen to be {¢1, B, D}. The solutions for ¢; can be split into a



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE
p—MESON PRODUCTION 83

solution depending only on the twist 2 DA ¢4, by putting B and D to zero which consists in
forgetting about the correlators with an additional transverse gluon, these solutions are called
Wandzura-Wilczek (WW) solutions [147, 151] and are denoted ¢!"" and genuine solutions

gen

denoted ¢?

)

which only depend on B and D. The decomposition of the solutions ¢; is a
linear decomposition in /" and """,

gen

eily; 1%) = eV W (y; %) + @I (y; uk) -

The WW-solutions

Putting the contributions of B and D to zero, the EOMs for the WW DAs are®

gy () + 5ol () + ol V() + h M (y) =0, (2.129)
yoy V) —yed V) et M y) e (y) = 0. (2.130)
The n—independence relations read
d d
d—ywlTWW(y) = —o1y) + ¢35 (), d—y@ﬁww(y) = oW " (y). (2.131)
From the previous equations, one can deduce a set of equations relating ¢3 and @4 to 1,
d d d d

d—ngvw(y) =—(j - y)d—waVW(y) ., 201(y) = d—y¢ZVW(y) + (- y)d—ngvw(y) . (2132)

The solutions of these equations are [147, 151]

v 1
1 dv dv
pa"(y) = 3 / —p1(v) —/ —i(v)] (2.133)
v v
L0 Yy .
[y J 1 p T
1 v v
0y " (Y) = 3 / —p1(v) +/ —pi(v)]| (2.134)
v v
L0 Yy .
they satisfy the normalization conditions
1 1
/dyso§VW<y) =1 and /deVW@) =1. (2.135)
0 0
Inserting these solutions in the eqs. (2.129, 2.130) gives the solutions for ¢1 and ¢7,
11 [(Ydv U dv
ea"M ) = 3 {—y/ —p1(v) —y/ —@1(7;)} : (2.136)
0 (% y v
11 [(Ydv L dv
o) = 5 [—y/ Twl(v)+y/ —Mv)} . (2.137)
0 v y (Y

The WW-solutions (2.134, 2.133) were already derived in Ref. [152] for the computation of
the transition form factors B, — V + v with V = {K*,p}, By - w+ vy and By = V + v
V ={¢, K*}.

Let us emphasize that the WW solutions are not intrinsic twist 3 distributions, they only

depend on the leading twist DA ¢, associated to the production of a longitudinal meson.

SFor the sake of conciseness, we will omit the dependence in p2 of the DAs as it is not needed in this
part.
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Genuine solutions

The genuine solutions obey the full EOMs and n—independence relations,

13 (1) + 1% (1) + 01 2 (1) + 047 (1)
1
= —/ dys [¢3 By, y2) + 3 D(y1, 42)] (2.138)
0
Y105 () — v %" () — 1 P ) + 009 ()
1
= —/dyz [—Cg‘,/ B(y2,y1) +C§4D(y2,y1)] 5 (2.139)
0
d en en ! dy
T ") = 87 () — & / — (Byr,y2) + Blya,yn)) , (2:140)
Y1 o Y2—
d

1
d
L ghen () = 5 () — G / 2 (D(yr, o) + Dla)) . (2.141)

dyy Y2 —

Isolating the distributions @5 and ¢%", one finds the equations,

ey 1 (g, - yﬁiwz@“w — 4 / W oy, )
dy, dy 0o Y2 — Y1

d d
-2 V—/ d 2 A—/ d , 2.142
(3 dyr Y2 B (yl Ya2) — 2(3 dys Yo D (yl Y2) ( )

iso,gf"(yl) + (1 — yl)iwge"(yl) =4¢ /1 dyo B (y1, y9)
dy dy 0o Y2 — U1
d

d
—2<3Vd—y1/ dy> B (y1,y2) — 2C§d—yl/ dys D7 (1, o), (2.143)

where we denote,

BB (y1,y9) = B(y1,y2) £ B(yz,y1) and DF (y1,42) = D(y1,92) & D(ya, 1) . (2.144)

From the system of equations (2.142, 2.143), we can deduce the following equation on ™"

d 1/1 ! d uod

&g y) = 2 dys B 5| LB

dy, 73 (y1) 5 <y1 y1) {Cs [yl /y1 Cm (Y1, y2) yl/O i (Y2, y1)

! B(y, . B(ya,
+(71 — 1) </ dys Bl ) +/ dys Blyz,vn) yl))}
1 Y2 — W 0 Y2 — W

d

1 d - Y1
+sz [?Jl/ dys d—D(y17y2)+y1/ d—D(y%yl)
Y1 Y1 0 Y1

! D v D
_/ dys (y1, 2) _/ dys (y27y1):|} . (2.145)
y1 Y2 — 1 0 Y2 — U1

The normalized solution for ¢ is obtained by integrating over y;. The solution is expected

to be of the form,
on 1 d d
=g (- [ L [ ). (2.146)
y U 0

?
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Finding the right combination between the brackets gives the following solution for ¢4

7

S5 () = (2.147)
_%/ d“{/o dya— - ({B—@D)(m,u)—[ dyz (&' B —¢3'D)(u, y2)

u Y2 — U
1 yld 1 d
_5/0 %‘ U dyz (G B+ G D) (u,p) — /u " ?izu(gg)VB + CAD) (u, )
- [ B D))

Y2 — U

We will denote,

S(ylu Ya; M%) = C:)Y(M%)B(yl,yz; M%) + C:?(M%)D(yl, Y2; /ﬁ:)? (2~148)
M (y1, yo; M%) = C?‘,/(M%)B(yby% M%) - C:?(M%)D(yl, Y23 M%) (2-149)

They transform under the exchange of the quark and the antiquark roles as
S i 1) = —M (y1, y2; 1) - (2.150)

The solution @3 can be written in the form analogously to the expression of the WW
solution (2.134),

w§™"(y) = % Ul m# + /1du #] : (2.151)
where
Alu) = /0 dy» [y2 — au} M(ys, ) + /ul i M) (2.152)

the quantity A(u) satisfies the constraints,

1 duA(u) =0 and 1 dutuwA(u) =0. (2.153)
J J

Inserting the solution (2.147) in eq. (2.140), the genuine solution for ¢] is

pToem / dupl (u) — ¢Y / dy, / dys yyl’yz (2.154)
0 2

Similarly, the genuine solutions for ¢4 and % can be obtained from the solutions ©5”" and
@1 9" by exchanging the role of (¥ B and ¢(£D. In terms of the combinations S(ys, 1) and

M(y2, y1), this corresponds to exchange

S(y1,y2) = S(y1,y2) and M (y1,y2) = —M(y1,y2) -
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2.4.4 The dictionary

In Ref. [131], the equivalence between the covariant collinear approach (CCF), which is
developed in Refs. [141, 142, 153, 154, 155| and the LCCF parameterization of the DAs is
shown on the example of the v* — p impact factor. The dictionary between the two sets of
DAs is

V(yi,y Ay, 7y
B(y1,y2) = —M7 D(y1,y2) = —M, (2.155)
Y2 — 1 Y2 — 1
19g"(y)

e1y) =), esy) =9 (W), waly) = 4y

The higher twist contributions come from the deviation from the light-cone direction
2?2 — 0 due to the non-zero meson mass m,. In our approach we neglected the mass term
in the definitions of the momentum p, ~ p and the parton separation z, justifying that it
would lead to twist 4 terms at least. The two-parton chiral-even DAs up to twist 3 accuracy,

neglecting the quark mass terms, are defined as

FICV S .
QT =2 oo, ) = oy (e [ dre o
0
1
+6(j‘;/ dyegp'zgf)(y,,uz)) , (2.156)
0
1 s (0
Ol —Ad(=2) oo ) = Sl [dves 7o, @150

with § = y — ¢, where the twist 2 DA is ¢ and where gf), gf) are the twist 3 DAs. The

chiral-even three parton DAs are defined as

O ral2: 0219G o (0202, —Jd(—2) |plo, ) = imp £y} (2158)
xpa(puel) = pue V(0. p2)
(01 T(2)7a75]2, 02]9G (v2) [0z, —2]d(=2) | p(p, ) = M, foG5' (2.159)

*Pa(puel’) — puel ) Av, pz) |
with
F(v,pz) = / Dlyle P>t Ty, g5, y,) (2.160)

and [Dly] = fol dy; fol dys fol dy, 6(1 = y1 — §a — y,). The dual of the strength tensor being

~ o 1 po
defined as G, = — 580G

Writing the two-parton matrix elements appearing in the soft parts of our process in
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terms of the previous DAs, leads to

1 *
00000 10) = ma, [ e (1),
+ejug(f)(y)> , (2.161)
) — _% : iyp-z (@)
(p(P)] ¥ (2)[z, 01157,9(0) [0) = ——7 i dye™ g\ (y)eper p-
. ! iuD- 1d (a) et pz
:Zmpfp/O dye'r= [_Z g;y(y)] 6; ~lz ) (2.162)

Identifying the coordinate z with the light cone direction z = An and choosing the axial
gauge n - A = 0, the identification of the DAs is straightforward and leads to the dictionary
(2.155) for ¢y, @3, Qa.

The three particle correlators reads

(p(p)| U(2) [z, t2]7u 9Gas(t2)[t, 0]¥(0) |0) (2.163)
= —im, [0 Pu(Pa€ls — Ppcia) / DlyV(yr, ) e 7= 10,
(p(p) 0 (2) [z, t2y57 9Gas(t2)[t2, 0]1(0) 0) (2.164)

— mpfp(i?pu(paej_ﬁ — Pg€l,) /D[@/]A(?ﬂ, o) 1Pz tiygp-(t2)

In the axial gauge n - A = 0, the Wilson lines drop off and the gluon field is expressed in
terms of the field-strenght tensor as

Au(y) = /o doe " n’ Gap(y + on). (2.165)

Multiplying (2.163, 2.167) by n”, integrating over o i.e. over t after a change of variable, one

gets
(p(p)| ¥(2)7 gAa(t2)1(0) 10) (2.166)
= _mpfpg?ypupaejﬁ / Dly] V(y;’ &) el () )
(p(p)| ()57 9Aa(t2)1(0) 0) (2.167)
. ae’ pz A ) y wy1p-2+iygp-(tz
= i £y, 2 [ DA s, (2.168)

The identification in z = An gives the relations in (2.155) for the three-parton DAs.

In [131] the equivalence of the DAs (2.155) was carefully checked on the results for the
spin flip and spin non-flip impact factor calculations. The fact that both results in covariant
gauge and light-cone gauge are the same is also an explicit check on the gauge invariance of
the impact factor results.
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2.5 Conformal expansion and scale dependence of DAs

Now, having established a connection between the DAs of the LCCF approach [131] and the
DAs of the CCF approach [142], we can use the models for the DAs that was presented in
|142] using

e first conformal expansion terms of the DAs,

e factorization/renormalization scale dependence driven by renormalization group equa-

tions of the conformal operator expansion,
e QCD sum rules for the values of the coupling constants at a initial scale py = 1 GeV

to get explicit expressions for ¢y (y; 1%), V(y; %), Aly; p?).

2.5.1 Goal of the conformal expansion

Let us first motivate the conformal expansion of the light-cone wave functions by consider-
ing an analogous problem; the problem of one particle in a spherical potential in quantum
mechanics. In this case, the invariance under rotation of the spherical potential allows to
decouple the radial dependence from the angular dependence by performing a partial wave
expansion of the wave function in the basis of the spherical harmonics. This decomposition al-
lows to put all the angular dependence into these harmonics, and then the radial dependence
is driven by the one-dimensional Schrodinger equation.

In our case, the massless QCD is invariant under the transformations of the collinear
subgroup of the conformal group SL(2,R) that describes Mobiiis transformations on the
light-cone. The conformal invariance is broken by quantum corrections but it is valid at
the level of leading logarithm accuracy. The Efremov-Radyushkin-Brodsky-Lepage (ERBL)
equation [156, 157 that governs the Q?—dependence of the DA o(y; Q?), reads

O‘S(Qz)

1
2 2 2

—p(y; = dz|\V ; 2.169
@l @) = 4 [V )ol= @), (2,169
where the kernel V can be computed in pQCD for large Q%. Note that the ERBL evolution
is currently known at NLO [158, 159, 160, 161]. The eigenfunctions ¢, that diagonalize
the Brodsky-Lepage potential are given by the representations of the conformal group P,(y)

labeled by a conformal spin n

©n (Y, Q2) X an(Q2)Pn<y> . (2.170)

For example, the leading twist DA longitudinal y dependence is expanded on the basis of the

Gegenbauer orthogonal polynomials 32

e e}

e1(y; 1?) = @y (y Z [2)C32 (y — ), (2.171)
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like in quantum mechanics the wave function angular dependence is expanded on Legendre
orthogonal polynomials labeled by the orbital quantum numbers. In this expansion, the n=*
term has a conformal spin n + 2. At the LL accuracy, the coefficients a, (Q*) evolution is
driven by the renormalization group (RG) equation of the operators O,, of same conformal
spin,

Q@

8 a ; S 1! ]
<’“‘@ - 5(9)0_9) O i) = _27rrij053)($% ). (2.172)

There is no operator mixing under renormalization between operators of different conformal
spins, which means in other words that in the basis of these operators the anomalous di-
mension matrix I', is block diagonal. Indeed the matrices I',, is diagonal for leading twist
operators but the representation of twist 3 operators are degenerate as we will see. The
solutions have the form,

Py ) = N an(p®) Puly) , (2.173)
with N a normalization factor. The scale evolution of a,(u?) is of the form
ay) (%) = [L% (12, )]y aff (1) .

where L(p?, pig) = (ovs(p?) /s (13))-

The conformal spin of a constituent primary field is equal to 7 = %(d + s) with d the
canonical dimension and s the spin projection of the field onto the light-cone. The multi-
particle states can be expanded in terms of conformal spin and its lowest spin is the sum of
the spin of the constituent primary fields. This lowest spin state is called "asymptotic DA",
and is the only surviving state in the large energy limit due to the fact that it has the lowest
anomalous dimension. The asymptotic DA for a multi-particle state takes the form [162, 149]

L(21+ .. 4+ 2n) 95,21 2551 21

oM (an, g,y ) = (2.174)

= 4 4 — o

L(25)1(255).T(25,) ' 2
with oy the longitudinal fraction of the momentum () ) ay = 1) carried by the primary
constituent field fi (quark antiquark or gluon field) of conformal spin j,. The asymptotic
DA ¢, (y, p2) with p% ~ Q* — oo, denoted ¢{%(y) is then given by

¢1°(y) = 6yy . (2.175)

In the production of the p—meson up to twist 3 we neglect the masses of the quarks which
are fairly small compared to the scales of the problem but if one would be interested in the
¢—meson production for example, one should be more careful and take into account SU(3)-
flavor breaking symmetry. The introduction of mass effects breaks explicitly the conformal
invariance.

Nevertheless, the masses do not affect the transverse evolution of DAs as it is given by
the scale evolution of the operators governed by the anomalous dimensions which does not
depend on the masses as long as they can be neglected compared to the scale of the process.

Keeping the quark masses, the higher twist DAs when expressed in terms of a minimal
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set of DAs through the relations such as EOMs of QCD or n—independence, exhibit terms
proportional to the quark masses. These terms mix the chiral even and chiral odd sectors.
For example the twist 3 DAs o would get a dependence from the twist 2 DA of the chiral
odd sector proportional to the sum of quark masses m, + my. As the masses of the quarks
are inside multiplicative factors in these terms, the conformal expansion can still be used to
study the DA evolutions.

2.5.2 Conformal expansion of the DAs

The twist 2 DA ¢;(y; 4*) conformal partial wave expansion is already given in eq. (2.171).

The first coefficient ag is constant due to the normalization condition

1
/ dy o1 (y; p?) = 1.
0

The invariance of the p—meson state under G-parity implies that the n—odd terms are
vanishing.

The conformal expansion can be performed on operators with definite spin projection on
the light-cone. The spin projectors on the light-cone are P, = %7*7_ and P = %7_7* with

the notations a. = a - z and a, = Z%’Z’. The twist 3 DAs operators are

O vy yle, —2ld(=2) [p~ (0, V) = —m,f,el) /0 dye’?* g™ (y) | (2.176)
Ol vyt [ —2d(=2) [ (5, A)) = —myf, el / dyergiy),  (2177)
with,
g = gi”&di 9 = g3 — pa, (2.178)
gt = g —idi @ = 3+ pa. (2.179)

The conformal expansion for the DAs g™, ¢*' reads

gt y) = 2yzg”P (2.180)

g (y) = 2?/29“13 (2.181)

with P the Jacobi polynomials. The term labeled with n has a conformal spin n + 3/2.

This leads to the following expressions for gi ),

0" = S (G~ )OO + Y (gn — ) CL(E), (2.182)
n even n odd
G,—G
(@ _ _ n n+l 3/2
gJ_ 8yy (n%;n (n + 1)(n + 2) Cn (5)

— Jn+1 3/2
+n20d:d n+1 n—|—2)C” (5)) : (2.183)
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1
G, = §(gfﬁ+(—1)"gff)» (2.184)
1
T 5(9?—(—1)"95)- (2.185)

a)

It is interesting that the expansion of g(f’ are involving coefficients of different conformal

spin. However we do not have to worry about this mixing of conformal spin terms as g(f’a)

can be expressed in terms of ¢1(y) = ¢ and B(y1,y2) = —% and D(y1,y9) = —%
where there is no such mixing.

The conformal expansion of the twist 3 qgg correlators reads

V(y1,92,99) = 360y1520 Z Wiy Jea(yr, G2) » (2.186)
e 1=0

Ay1,92,y5) = 360017y, Z Wia Tt (Y1, 92) (2.187)
k=0

where Ji ;(y1,7%2) = Jii(6,2,2,91,72) are Appell polynomials and y, = 1 — (y; + §2) the
gluon fraction of momentum. The conformal spin of the term labeled by the couple {k,[} is
n=1+k+7/2, hence the conformal representation of spin n is degenerate as the operators
with [ + k = n — 7/2 have same conformal spins. Note also that the number of degeneracy
increases with n. They can mix with each other explaining why the anomalous dimension

matrix is only block diagonal at twist 3. The G-parity invariance of the DAs implies the

following relations between the coefficients w"+4,
vV _ .V A _ A
Wgr = ~Wiks W = Wik -

We denote wy, = (Wl —w})/2 and wi ;= (W) + w/},)/2. The normalization condition
implies that
wioy =28/3, wipey =1. (2.188)

2.5.3 Scale dependence of the DAs

The different terms of the conformal expansion are associated to conformal operators O,
whose evolution is given by the Callan-Symanzik equation (2.172). To find which are these
operators, the technique is to use the orthogonality of the polynomials to isolate the terms
of definite conformal spin in the conformal expression of the DA and then to reverse the
expressions of the type (2.156, 2.157) in order to get the normalizations as a function of the
relevant operators. Let us clarify this procedure on the example of all for the leading twist

DA ¢1(y, 1)
Using the orthogonality relation of the Gegenbauer polynomials

w2722 (n 4 2a)
n!(n+ a)l(a)? ’

1
/ de (1 — €271/ C2(€) C2(€) = b (2.189)
—1
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to extract an, leads to

_2m+3) [T )

_ 2(2n+3) ! 4/

- 3(n+ 1)(n—|—2)/0 AyCu*(¢) (2.190)
mifp/(;lﬂ;e—igpzewl (01a(2) 2" vu[2, —2]d(=2) |p~ (0, A)) (2.191)

where we used the relation (2.156) multiplied by z* to isolate the DA ¢;. One can show that

the result can be put in the form,

2(2 3 1
ol = (2n +3)

" 3t D1 2m, ™ ) (o On (05 12%) |~ (0, V) (2.192)

with the conformal operator,

Ou(w) = (0] (i0)" w(x)y CH2(D. /0)d(x) [p~ (0, V) . (2.193)

where the notations used here are

oo\ K — —
k _
o <2> = 9B D = (2 o) h(z - 22Dy

0. 2
with D— : and the total derivative 0, = D;D is defined as,
0
Op (u(x)T[z, —2]d(—2)) = . (Wx +e)l'lx+€,—x+ed(—z+€) ., - (2.194)

The conformal spin of O, is the same than a, that is n 4+ 2. The scale dependence of the
operator O, is determined up to the LL accuracy by the one-loop anomalous dimension

computation of the operator 7 [48 156, 157],

W =4Cp (w(n+2)+w—g—2<n+1§(n+2)) , (2.195)

with ¥(n) = —vyg + Z"H 1/k, and g the Euler constant. The scale dependence of al is
then given by

all (1) = L, 2) /% all (422). (2.196)
where L(p?, ud) reads explicitly for o = 1 GeV?,
as(p) _ 1

L(p?) = L(p*,1 GeV?) =

a,(1GeV?) 1+ Dag(1 GeV?) In(p2) (2.197)
For the three-particle DAs, steps are similar except that the conformal group represen-
tations are degenerate. The first step being to isolate the {k, 1}~ terms of conformal spin
j=k+1+7/2= (n—2)+ 7/2 using the orthogonality relations of Jacobi polynomials.
We prefer to work with fix n instead of j, which is equivalent, as one can match the genuine
solution for the two-parton twist 3 DAs label n with the conformal spin j as j = n + 3/2.
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The definition (2.158) multiplied by 2**-#* we obtain the relation,

O/ (=) 2, vAlgGr () oz, —2Jd(=2) o(p, N} = imy £y (2198)
pa()‘) /D[y]v<y17 g27 yg)e_ip'z(wyl-i-tgz-i-vyg) ) (2199)
0 y
By acting on both sides of the eq. (2.198) with the operator
I
otn=k=20wk’

and taking the limit ¢,w — 0, we see that the r.h.s. will give

Z’mpfp(g/ (A) p Z /D (y17y27yg)

while on the lL.h.s it will give the operator,

(0](0) (i D)2y gG.1 (0)(i D)*d(0) |p~(p, \)) -

The r.h.s can be simplified

imppr?‘,/ (A) p Z /D (y17y27y!])
'mefpgg (/\)(p Z)
< [y yfy’; ©2(360,702) S ol a1, 7o)
Kl

. 360(—1)"kl(n — k — 2)!
= ZMpfpgg/gl.pef)(p ’ Z) 1( 2"+1(7’L + 1)(27’L + 1)” wl‘e/:n—k—2

+terms in wy,—;_o with r <n). (2.200)

The last line in the above equation was obtained with the help of the Jacobi polynomial

relation
(—1)E+LEN!
(k+1+3)(2k + 21 +5)!17

for m+n = k+1[, otherwise the result is zero for m+n < k+1[ and nonzero for m+n > k+1.

/ Dlylyr™ 95 Yy Tia(y1:92) = Ok (2.201)

The remaining terms in w), ; , correspond to total derivatives of lower conformal operators,

then the relevant conformal operator corresponding to an_k_z is,
v Ny k—2 S . Nk . .
O n1—2(0) =0(0)(@ D.)""7v.9G 1 .(0)(i D)"d(0) + total derivatives, (2.202)

the "total derivative terms" coming from other higher conformal terms remaining w),_,_,
terms with » = n. Note that in the DIS case, the total derivative operators sandwiched
between the proton state vanish due to the fact that they are proportional to the difference
of the momenta of the initial and final states. In our case the matrix element is non-forward,
so the total derivatives of the operators contribute to the matrix element. The relation on
the coupling constants finally reads

(oG b i) ) = g OO @ ) . (2209)
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with the k£ independent normalization

2 204 1) (n + 1)

N,
€] .pz—:(f)(p -zl

We need now to get the scale dependence of the operators ((’),‘f/’n_k_z) , that can

k=0..n—
mix with each others under renormalization. Moreover we can apply the same treatment for

the axial-vector three-parton operators leading to

—1)"N, _
(it sa) 00) = G OOk @ 0 0) . (2208
with,
A - S \n—k-2 ~ -k s
Okmn—r—2(0) =u(0)(@ D.) iv. 759G 1 (0)(i D)"d(0) + total derivatives, (2.205)

and the operators (O,‘in_k_Q) _, can also mix with each other as

romn 20 (OF, o),

they have the same conformal spin j = n + 3/2.

0..n
It is useful to consider then the sum and the difference of the operators,

V(A)+ V(A V(A
Ry $05(0,1%) = OF S0, 5(0,17) £ 0,50 5,0, 12%) (2.206)

n,

as the operators with different parity numbers don’t mix under renormalization. RX%AH

and RV~ (n, k) have respectively G-parity numbers (—1)"*' and (—1)". The relevant com-
binations of operators that satisfy the RG equation and which mix under renormalization

are
Ry (0,1%) = Ry (0, %) F RE(0, 14) (2.207)

The solutions read,

V)

n—

+
Rik(o,,u?) = (LDL/BO)MRZEJ(O,M%), (2.208)
; :

Il
=)

and they lead to the scale evolution of the form
fg;)w[‘l/fv,n—k—Q] + fé)wﬁc,n—k—ﬂ (:uz) (2209)
2

q:
= Z <LF” /6‘))]” (f3pltm1—ay(110) & Fapwit moi_2y(143))

with fg; = f,¢ and f:f; = f, (5", The renormalization of the operators Rik are known for
the forward matrix elements [163, 164] as they are relevant for the evolution of the structure
function g,. In [164] the explicit solutions for the computation is performed in the covariant
approach.

For our purpose we will use the models of ref. [142] for the leading twist DA ¢!, and
the twist 3 DAs V and A. In this model the leading twist DA and the twist 3 DAs are
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respectively expanded up to the conformal spins j = 4 and j = 9/2. The DAs truncated

conformal expansions read,

ol(y;p?) = 6yy (1 + 3ay (2)€ + 2(552 —1) a'g(g)) , (2.210)

V(y1, G2, yg) = 5040(y1 — 42) 1172y, (2.211)
1

Alyr,92,95) = 360y1729,(1 + 5(Tyy — Bwilo (1)), (2.212)

which is equivalent, according to (2.155), to

oy ) = Bup(l+ ()55l — 92 - 1), (2.213)

B(yr,y2; 1#?) = —5040010(y1 — 92)(y2 — 1) , (2.214)
WA (2

D(y1,y2;: 11°) = —360y1572(y2 — y1)(1 + MU(@/Q —y1) —3)). (2.215)

2

Note that ag = 0 due to the G-parity invariance of the p—meson in the vanishing quark masses
limit. This model is valid under the hypothesis that the conformal expansion converges. This
is indeed ensured by the scale dependence of the operators at large enough ratio /g with
1o the reference scale, as the higher is the conformal spin the faster the term decreases with
12/ 15

The reference scale used here is o = 1 GeV. The values of the coupling constants [142]

displayed in the tab. 2.1 are determined at this scale by QCD sum rules (cf. next part).

Qg 0.52
Wiy 2.1
Wiy 28/3
ay, 0.18 = 0.10

my, f5, | 0.5 —0.6 1072 GeV?

m, fy, | 0.21072GeV?

G 0.032

v 0.013

Table 2.1: Coupling constants and Gegenbauer coefficients entering the p—meson DAs, at

the scale ;1 = 1 GeV. Note that in Ref. [142] the normalizations are such that ;/’f142] =
V,A !
mp f3p [here]”
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We need then the scale dependence of the following quantities,
as(i®), (Faplo) (i) = 28/3 (%) and (fewilo) (%)
The evolutions of al(1?) is given explicitly by
ah(p?) = alo L(p?)™/%. (2.216)
The f:{}) coupling constant evolution reads
Fip(H?) = f3,(1GeV?)L(p?) T2/, (2.217)
with ', = —C;)—F + 3 C, with C; = N,. Defining the vector

W[‘g,l]fsx)(MQ) - Wf}n} (MQ)féi(Mz)
V(p?) = : (2.218)

wiof3p(12) + wip 1y (1) f5,(14°)
the evolution of V(p?) is given by the matrix evolution equation
V(p?) = L(p*)' 1%V (1 Gev?), (2.219)

with I'y given by

I = . (2.220)
2Cp — g—l(]g %CF +4C,
Hence we get the dependence of fg; and Wﬁn} by solving this matrix equation in the eigen-
vectors basis of the matrix I'y . In fig. 2.15 we display the three independent DAs ¢, (left), S
(center), M (right). The fig. 2.16 shows the DAs ¢35 (left) and ¢4 (right) and fig. 2.17 shows
the DAs ¢TI (left) and ¢ (right) as a function of their longitudinal variables.

$1

141 1o}
L ___. R 02
12 r - = = ~
gt AN - v, 08
10} s RN 01 716
’ N L/
o8f /. _ A -02 o 06}
S W =6yy e N o A
06 v @iy 1Gev?) - N ' / 04l
04} |/ N -06 / -7 o~
) ey 25Gev?) - - A ' 02 277 M(y1, y2 = 06, 12 = 1Gev?) —\\\ \
02f _og[ Vi v2 =08, 12 =1Gev?) s MYa o = 08, 5 = 256007 .
. | 1Y, =06, 47 = N
. . . . y y1.y2 = 06, y? = 25GeV?) \X
0.0 0.2 0.4 0.6 0.8 10 1o 01 02 03 0.4 05 06 .

Figure 2.15: The three independent DAs. Left: ¢, (y; u?) as a function of y; in red (dotted)
asymptotic DA, in blue (solid) p? = 1 GeV?, in blue (dashed) p? = 25 GeVZ  Center:
S(y1,y2 = 0.6; u?) as a function of yi; in red (solid) u? = 1 GeV?, in blue (dashed) u? = 25
GeVZ. Right: M(y;,y2 = 0.6;4?) as a function of y;; in red (solid) p? = 1 GeV?, in blue
(dashed) p? = 25 GeV2.

These figures exhibit the non-negligible effects of QCD evolution on DAs, in particular

for the genuine twist 3 contributions.
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Figure 2.16: The two DAs @3 (left) and ¢4 (right) as a function of y. In red (dotted) WW
contribution with p? =1 GeV?; in blue (dash-dotted) WW contribution with p? = 25 GeV?;
in red (solid) genuine contribution with g? = 1 GeV?; in blue (dashed) genuine contribution
with p? = 25 GeV2.
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Figure 2.17: The two DAs ¢! (left) and ¢ (right) as a function of y. In red (dotted) WW
contribution with g% = 1 GeV?; in blue (dash-dotted) WW contribution with p? = 25 GeV?;
in red (solid) genuine contribution with g? = 1 GeV?; in blue (dashed) genuine contribution
with p? = 25 GeV2.
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2.6 QCD sum rules

Let us briefly sketch the main idea of the QCD sum rules method [165] to get access to
the nonperturbative inputs, on the example of the twist 2 pion DA 2 [166, 167| which

parameterizes the bilocal correlator such as,

(0] d(=)$5lz, —u(—=2) [7* (p)) = iz - / eI y). (2.221)

This non-local correlator can be Taylor expanded as a sum of local operators,

yn

_ 7 - =
(d(2)p5lz, —Ju(=2)) = > = (d(0) 136 D)"u(0) ) (2.222)
Note that the pion decay constant f; is defined as

(01 d(0)7y,75u(0) |7 (p)) = ipyfr » (2.223)

which taking the limit z — 0 in (2.221), gives the normalization of the DA,
1
[ asero -1,
-1

Each terms of the expansion can be written as,

<> M1 —MUn >

(A0 5z DY"u(0)) =z -2, (A5G D =i D )ul0)
= (2-p)""'Cy. (2.224)

The coefficients C,, can now be identified with the Taylor coefficients by expanding the r.h.s
of (2.221)

ot [ aceerod) =iz op [ g EEP ), (2.225)

1
leading to .
Cu= [ degodie= (€.
-1

where (£") is the n—th moment of the wave function along the light-cone direction p. The
goal now is to derive equations (sum rules) between the nonperturbative inputs such f; that
we want to evaluate and quantities that we can calculate or evaluate in the asymptotic regime
where the hard scale Q? — oo.

Let us consider the following correlator,
Lo(z,q) =i / dze'™ (0| TO, (2)O(0) |0) , (2.226)

where we denote the operator O,,(y),

On(y) = d(y)#1s(iz D) uly) . (2.227)
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The intermediate state

00(0) [0) = d(0)£75u(0) [0) ,
has the same quantum numbers as the |7) state. The operators O, (x) are the operators
involved between the |r) state and the vacuum state in Eq. (2.224) so they are related to the
values of (£"). The momentum ¢ is the momentum exchanged between the two local currents
projected on the coordinate z as in Eq. (2.221). We can express I,, o(z, ¢) as a z—independent

quantity I, o(¢%),

Ino(z,q) = i / dwe'” (0] d(x) 5 (i D)"u(x)d(0)5u(0) 0) (2.228)
= (2-0)"L0(¢%). (2.229)

In the asymptotic limit ¢°> — oo, the main contribution is given by pQCD. Then the

<
Y

Figure 2.18: pQCD loop contribution to I,, 0(¢*)

asymptotically dominant contribution is given by the loop diagram in fig. 2.18, which gives
[166, 167,

L5(¢%) = —lnig ) /déé“%(l &) = _1n4(7?2 ) o 1)3(n g (2.230)

The nonperturbative corrections to this result are given by considering the operator expansion

of the external fields. These corrections involve the diagrams of fig. 2.19, where operators of

lowest dimensions are G7,, for the left diagram and @u for the right diagram. I,,(¢?), with

g
.
B
\
N i
N ’
N ’
v
-W |

Figure 2.19: Nonperturbative corrections from the vacuum. Diagram on the left involves the

vacuum expectation value (0| G, |0), the right diagram involves (0] zu |0).

the corrective contributions of this operator product expansion, takes the form,

0] 2G?|0) 327 (0| \/asau |0)
I 2 — [AS 2 < T . 11 4 s
1+, <0| Oy |0> (2.231)

q2k
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The technique is then to use an integral Borel transform of I,, o(¢?), defined as,

1 , 1 3 (0] G2 [0)
dSe ™M Im1I,0(S) = — u
WM2/0 ‘ mholS) = R n IO 1204
167 (0] /arsuw |0)
22T (1] o dp) VU
sp (M) =g

(=D* ¢, 01O [0)

L I s T VET:

(2.232)

This manipulation, called "borelezation", has two important consequences, the first is that
on the r.h.s. of (2.232), the operators of higher dimensions are suppressed, the second is
that on the L.h.s the intermediate states with S > M? that could contribute to the spectral

density Zm I, are also suppressed.

The sum rule given by eq. (2.232) allows to get nonperturbative inputs. Indeed we know
that for large S > S, > uZ the pQCD gives for the spectral density,

3
Ar?(n+1)(n+3)°

Too(S) = 0(S — S,) I3 (S) = 0(S — S,) (2.233)

where S,, is the threshold under which we have to take into account nonperturbative cor-
rections. These non-perturbative corrections to the spectral density is given by the lowest
energy resonances among the bound states with the good quantum numbers. In this case the
7 —meson state is the lowest energy resonance and the next one is the A;—meson, leading
to

Too(S) = 0(S = Su)Z75(S) + f2 (€, 0(S — m3) + f(€") 4 6(S —m3). (2.234)

Inserting (2.234) in the Lh.s of (2.232), we get a relation between the free parameters fr,
fa, (€M), ("), and S,. The vacuum expectation values are assumed to be known as
(0] \/asu |0) and (0] 2=G? |0) can be determined phenomenologically [168, 169]. The best fit
of the free parameters allows then to evaluate the nonperturbative input parameters.

2.7 Impact factors v*(\,) — p(A,)

In this part we will present the computation of the impact factors v*(\,) — p(},), denoted
@732 7P for the transitions v; — pr, V4 — pr and v — pr.

Let us recall the formulas (2.93-2.96) for the amplitudes related to the impact factors as

convolutions of DAs and hard sub-processes. For the transition v; — py, it reads

: /
idig = =7 [ dyHG()en(y: i) (2.235)
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and for the . — pr,

A= _%ﬂ </ dy [H TW)es (i 1) + i Hyg " ()ealy; )
+ Hog™ ()T (s 1%) + iH e " () u%)}
i [y 555 1) ) Bl )
quﬁ m’(yl,yg)Cf(u%)iD(yl,yQ;u%)D . (2.236)

In order to get the impact factor from (2.235, 2.236), one has to use the impact factor

definition in our conventions defined in the sec. 1.2.4 of the chap. 1,
YA, THPA g—>pg H 1/2
O e = 2 — DISCH Py (2.237)
S

with £ = (¢ + k1)? the Mandelstam variable associated to the hard sub-process.
We will present in this section the calculations of the impact factors for the different types

of diagrams.

2.7.1 Kinematics

We choose the frame where the p—meson is along the dominant light-cone direction p = p; ~
P, (up to a factor mi/s), as the amplitude is independent of the choice of the light-cone
vector n, we choose to fix it along the dominant direction of the nucleon impact factor ps to
compute the hard part. We recall that p, satisfies the relation p; - p; = 5 and is proportional

to the vector n. In the forward kinematic ¢t = (¢ — p,)? = —A? — 0 presented in fig. 2.20,

Figure 2.20: Kinematics of the process v*(q)g(k1) = g(k2)p(p,).

the momenta can be expanded on the Sudakov basis as,

2

q9 = P1— ?pQ (2:238)
2 k,Z
k= M%pg tky (2.239)
K—m2+ K K+ kK

ke = fpz—i-lﬂ_f\' —po + k. (2.240)
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and the polarizations

N = W (2.241)
1 20?
= — — . 2.242
) = (0t %) (2.212)
where et = \/— (0,F1,—1,0), as defined by Eq. (1.124) in sec.1.3.2 of the chap. 1.

2.7.2 The v; — pr transition

The impact factor ®277L is computed from the expression of the amplitude Ag%) given in

eq. (2.235) and from the definition eq. (2.237). The longitudinal polarization of the p—meson

1 m’
e, =— | p1— ?pQ . (2.243)

is given by,

Y1 p1

Figure 2.21: The detailed structure of the diagram (a), one of the six diagrams of the hard

scattering.

contribution to the impact factor of the diagram (a) illustrated in fig. 2.21. It reads

e 12 5 1

O, = —— —Z(_i 20 -~
V2 4 (=) fomo 9 537 24

/ /dﬂa Trl¢s (ypr — 4) P2 (K2 + Gp1) P2 p1]

[(yp1 — q)* + ie][(k2 + yp1)? + ie]

(2.244)

o1 (y; 1) .

The computation is similar to the computations of the impact factors ®72.7 7L presented

in the chap. 1. It is instructive to track the origin of the different factors in eq. (2.244). 1

comes from Fierz 1dent1ty, from the normalization of the non-sense polarizations of the
t—channel gluons, 2 7 from the projection on the color singlet state in t—channel, 1/N from
the Fierz factorization of the color indices of the p—meson. We remind that % stands for
the electric charge of the ¢g content of the p—meson wave function %(ﬂu — dd).

The poles in the k—plane are given by the propagators. We recall that the six diagrams

are needed to prove the convergence of the integral over x on the infinite semi-circle. We
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can then compute the integral with the residue method by choosing the lower contour for
example. Among the six diagrams, only four of them give a contribution due to their k—pole
structure for a given contour choice.

The result for the impact factor is,

\ 2eq? f, 99 1 1
PILTPL = \/§Qp ﬁ dy@l(y)MQ E - 2 i ,LL2
26g2fp 6ab EQ
= — | d —_—, 2.245
V30 2N ywl(y)uukg (2.245)

where according to the notation introduced in the DIS case in Sec. 1.3.2, u? = yyQ?. The
result can be extended to the non-forward kinematic A # 0, taking the momenta of the quark

/1 and of the antiquark /5 as,

(+yA)?
b= yp+ (_yiz_)pz + 01 +yAL (2.246)
_ {+gA)? )
by = ypr1+ (_y_iz_)pz —(lL —yA,. (2.247)
The result reads [130],
(I)’YZ—V)L (k’ A7 Q) — 47T043i 5ab 1 dy ,u2 301(% Qz)PP(y, /{Z, A, Q) (2248)
o V2Q 2Ne Jo o
with
1 1
Pp(y,k,A,Q) = + (2.249)

(yA)2 +yyQ?  (JA)? + yyQ?

1 1
((@ —yA)? + yyQ? - (k—gA)? + nyZ) '

2.7.3 The v; — pr impact factor

Using the same techniques, the first term of the expansion in twist of the impact factor
vy — pr 1s of twist 2. The twist 2 contribution to the v; — pr impact factor is power
suppressed by a kinematic factor v/#/Q compared to the twist 2 contribution of the Vi = PL
impact factor. It reads [130]:

e 1

. Oa _
PP (kAL Q) = QWQS\/iprA;’C : dy (y =91 (y; QY e- Q,(y, kA, Q) (2.250)

with
yA yA
kA, = — — — — 2.251
Qply Q) (YA +yy@Q?  (yA)? + yyQ? ( )
k—yA k—gA

ARt kAR i
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2.7.4 The v; — pr impact factor

The v} — pr impact factor is technically more complicated as it involves many types of
diagrams. We will give here the result for each of the different types of diagrams which
are represented in figs. 2.13, 2.8, 2.9, 2.10. We skip the diagram of the type fig. 2.7 as the

computation goes the same way than for ®77rr,

—U1p1

Figure 2.22: The detailed structure of the diagram (bl).

Let us focus on the diagram of fig. 2.22. We recall that there are two contributions,
the vector and the axial vector contributions where the spinor indices of the diagram are
respectively closed on the Fierz structures p; and p;75.The vector contribution to the impact

factor reads

1
e 12, 5% 1
‘1)2/1 = 71;( Z)ngmeQNQ /d/
0

y Tri¢y (ky —yp1) ¢ (kr — yp1) popr pa(ka + y pu)] oL (y) . (2.252)

(k1 — yp1)? + in?[(k2 + gp1)? + in)

Computing the trace and integrating over x leads to

2 ab
€q9 )
P} ——= f,m, ON, (2.253)
1
—eh e (YygQ* + kY +2¢k ket - k(1 —2y
% /dyy T ’Y( 2)7 12“2 T ( )(p{(y)
/ (Q*yy+Ek°)
The axial vector contribution reads
2 g 1 i d
7 ) @ K
Ty = —e Zg(—i)ngp "N 2s /dy o (2.254)
0
o Lrldy (B = §P1) 70 (K1 — 9p1) P2 prvs Po(ke + ylbl)]ea )

[(ky = yp1)? + in*[(k2 + §p1)? + in] o
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which gives,

6ab

2
A €q 9
P = =Ty hemegny

(2.255)

oaly) -

1
« /dyy ;e (yy @ — k) +2¢p - kep -k 4
) @y +E) !

Y1 p1

(Y2 —y1) p1

—k2 — Y2 p1 —Y2p1

Y2p1 — ¢

Figure 2.23: The detailed structure of the diagram (aG1).

Let us consider now the abelian three-parton contribution diagrams shown in fig. 2.23.

Two different color factors can be obtained depending of where the gluon is attached,

T (tetetb 1) = - (aG1), (cG1), (eG1), (fG1) (2.256)

o )2

cG2)(bG2)(dG2%(eG2%(ﬂ}m,

2
% . (bG1), (dG1), (aG2),

Tr(tet tct’) =
1 (

where the 2/(N? — 1) comes from the Fierz coefficient when factorizing the ¢gg state in color

space.

The vector contribution of the diagram aG1 reads

1
12 5 1 dr
V — —
Qo1 = 97 ()9 fom p2Nc—25 /dyl dyz/—% By, y2) (2.257)

Tri¢y (i1 — 4) ¢7 (W2 pr — 4) P2 (K2 + G2P1) P2 1]

(101 — @)* +)[(y2 01 — @) + ) [(k2 + G2 p1)? +in]

X

(lb *

er - e
my 2NC dyl dyg ;Q;B(yl, yg) . (2258)
0

_6q‘g2 f
D) P
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The axial-vector contribution of aG1 reads
q’fm = _eq 1s ()9 fp 0 2N 99 /dyl dyz/ D(y1, y2) (2-259)
o LTl (i =) va (v 151 — ) P2 (K2 + 2 1) P2 1]
[(yip1 —@)? +n][(y2p1 — @) +in][(ke + Y2 p1)? +in]
(lb *
6q g° € * Ey
= D ) 2.2
fomy QNC J dyy dya Q2 (Y1, v2) (2.260)

Y1 p1

—Y2p1

ko

Figure 2.24: The detailed structure of the "non-Abelian“ (with one triple gluon vertex)

diagram (atGl).

The non-abelian diagram with one gluon triple vertex involves also two kinds of color

factors,
ab
e 2 ( )TT(tC tb td) fcad N7 Cl’ 25]\/-
c F
(atGl), (dtG1), (etG1), (btG2), (ctG2), (ftG2)
2 c4d 4b cad__%i(sab
Nc ( 7’) (ttt)f - 2 CF2NC
(

(CtGl), btG1), (f6G1), (atG2), (dtG2), (etG2) .

Let us consider the diagram (atG1) illustrated in fig.2.24. We denote as

k'nf + kPn¥

V(L — VP _
d"(k) =g T

the numerator of the gluon propagator in axial gauge, and

Vm H2 u3(k17 ka, k3) = (kl - /{52)”1 Guape +

(2.261)

(2.262)

(2.263)

the momentum part of the 3-gluon vertex, where k; are incoming, labeled in the counter-

clockwise direction. The contribution of the diagram (atG1) proportional to the vector DA,



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE
p—MESON PRODUCTION 107

reads

12 (—i)N 5% 1 A&\ o
(b}z/tGl = —€ Zg 20, pfp 2N, 2s /dyl dyz/gpéeT B(yh yz)

XTr¢y (yipr — 4) Vo (K2 + G2 p1) P2 p1]
d”? (kv + (1 — y2)p1) Vora(—Fk1 — (1 — v2)p1, k1, (1 — y2)p1)

(101 — @)% + in)[(k1 + (y1 — y2) p1)2 + in][(k2 + G2 p1)2 + in] (2.264)

Note that for this diagram, as well as for all “non-Abelian” diagrams, one can easily check
that only the ¢”” part of (2.262) contributes.

Closing the x contour above or below gives for the vector DA part of the diagram (atG1)
the result
g9’ (Y1 — y2) U

1
5ab
o, — a9 /dydy
tG1 2 PPON.Cr T g (G KR G (e — 1) Q2)

er ey B(yr, y2) . (2.265)

Similarly, the contribution of the diagram (atG1) proportional to the axial vector DA, reads

¢2(—¢)N g 1
oy = s a0, Y pfp2N 5% /dy1 dyz/ €ezon D1, 12)

XTr(¢y (y11 — 4) Vo (K2 + Y2 1) P2 P 75]

d"P (k1 + (1 — y2)P1) Vora(—k1 — (y1 — y2)p1, k1, (y1 — y2)m1)

, - - —, 2.266
o1 — 0P inls+ (ox = 92) p0)? + inll (ke + G p)? + 0] (2260
and closing the x contour above or below gives
2 ab
€4 9° 0 N,
Yuct =~y M losy (2.267)
1
(Y1 — y2) U
x| dyydys - er - ey D(y1, ya) -
/ I (K + 2 (g2 — 1) Q2) r

0

Y1 p1
q
—Y2p1
yip1—4¢q
Y2 — Y1) P1
k’l kQ

Figure 2.25: The detailed structure of the diagram (gttG1).
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We consider now the "non-Abelian“ diagrams of the type of gttG1 illustrated in fig.2.25,

involving two triple gluon vertices. They all involve the color structure

_ TT[tc td]fcea fedb N 5ab (2 268)
N2 —1 CF 2N, '
The vector contribution of gttG1 reads
12(—i)N, s 1 dk o
(I);/ttGl = —¢€ ZE(T)F pfp 2N, 2s /dy1 dy2/§p§p2 €T(S B(y1, y2)
XTrldy (yipr — ) v ] dP(—q + (1 + y1 — y2) 1)
Vora(@ — (L4+y1 — y2) p1, k1, —ka + (y1 — y2)p1) d*P (k2 + (y2 — y1)p1)
(yip — @)? +ml[(—=¢+ (L +y1 —y2) p1)? +inl[(k2 + (y2 — y1) p1)? + in)]
XVars(ka + (y2 — y1)p1, —ka, (Y1 — y2)p1) - (2.269)

When closing the x contour below on the single pole coming from the third propagator, it

equals to
1

’ 0% N, 1 B(y1, y»)
oV . — _SI /d dyy 290 P2 e o 2.270
gttG1 5 my fp =~ 2N, C' Qg Y1 aY2 T €r - €y ( )

The axial DA contribution from the diagram (gttG1) reads

i2(= i)N 5% 1 .
q);ttGl —C€q 4 CF pr 2 N, 2s /dyl y2/ p§p2 ernpn D<y17 y2)

XTr(fy (Y101 — 4) Yo P175] AP (—q + (L 4+ y1 — y2) p1)
Vora(@ — (L+ 41 — y2) p1, k1, —ko + (y1 — y2)p1) d*P (ks + (Y2 — y1)p1)
[(yipr — @)? +nl[(—q+ (1 +y1 — y2) p1)? + in][(k2 + (y2 — y1) p1)? + in]
XViro (k2 + (Y2 — y1)p1, —k2, (Y1 — y2)p1) - (2.271)

It equals, when closing the s contour below on the single pole coming from the third propa-
gator, to the expression

1

2 ab
_%9 0 N 1 D(y1, y2) .
®‘Iq4ttG1 = 2 p fp 2 N C Qz /dyl dy2 761’* ° e,\/ . (2272)

n

All other diagrams of each class can be computed according to the previous examples.

Finally the result for 7777 can be decomposed on the spin flip and spin non-flip tensors

respectively denoted Ty and 75, ¢,

QI = QI - T (2.273)
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with
Tnf = —e/*)l N
— Q: e, (2.274)
o (G k(b en) | (o)
/ EZ 2
(e5-k)k-e,) (¢ ¢,
= =P 12 SR p2 0 (2.275)
Y= PT

The spin non-flip impact factor @71, s corresponds to transitions where the virtual

photon and the p—meson have the same polarizations while for the spin flip impact factor

@fp—)pTTf the virtual photon and the p—meson have different polarizations. Denoting o = E_227
the results for the spin non-flip 77 — pr impact factor is
. 1 1
@Z;]?”T = / di / dyo (2.276)
0 0
{yl ' D (y1, v2) ( a (N, —2Cp) aN, (1 —y1) )
X +
at+(I—y)y \(W1—va+)a+y(1—v2) voar+yi(y2a—y1)
y1G B (i, y2) ( a(2Cr — N.) (21 — 1) aN: (1 =) )
- +
at+t(I—y)y \(y1—e+Dat+y(1—y2) vea+y(ya—u1)
+ (C?Y B (y1,42) + (3 D (y1>y2))
2Cr 1 { Ne (1= y2) (Y1 — 92) D}
% — + Cp + N,
(CH'(l—yl)yl L=y [(1=y)a+ (1 —y2)(y2— 1) "
and the spin flip impact factor
O () = o {4/dy1 . [Wh(y) = 2y — 1) @i ()]
b (@t y (1= 1
a
- 4/dy1 dyr— ygjl(1 - [G'D (y1,92) (=91 + 92 = 1) + & B (y1,92) (1 +y2 — 1)]
2—N./C N, 1
X { ( /Cr) - ” . (2.277)
alpr—v+)+unl—-y) Crya+ty(ya—1u1)

Note that to get the eq. (2.276) one has to use the EOMs given by eqs. (2.113, 2.114), in
order to cancel the terms that are not vanishing in the limit £* — 0 and which would lead
to end-point singularities. Thus the results have no end-point singularities and are vanishing

when k* — 0, as imposed by the gauge invariance.

2.8 Helicity amplitudes

In this section, we build a phenomenological model of the ratios 111 /Ty in the forward limit
and To1 /Too as a function of —t, and we compare them to HERA data. But first let us make a
brief remark on the determination of helicity amplitudes and spin matrix elements at HERA

experiments.
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Figure 2.26: Kinematics of the p—production.

2.8.1 Measurement of helicity amplitudes and spin matrix elements

The motivation of this study is the analysis that was performed by ZEUS [98] and H1 [99]

«

i; of vector mesons

collaborations to extract the full set of spin density matrix elements r
diffractive electroproduction at small—z.
The kinematic range of energies in the center of mass, virtualities and ¢ variable are

displayed in tab. 2.8.1.

Q? (GeV?) W (GeV) t| (GeV?)
ZEUS | 2<(@?*<160 |32<W <180 | —t<1
HlI [25<@Q*<60|35<W<180| —t<3

In fig. 2.26 are shown the three different reaction planes and the angles ®;, and ¢, between
these planes. @, is the angle between the plane of the virtual photon and the outgoing proton
in the center of mass frame of the v*p system and the plane of the incoming and outgoing
electrons. ¢y is the angle between the plane of the virtual photon and the outgoing proton
in the center of mass frame of the v*p system and the plane of the pions momenta. Another
important angle is 6, the angle in the p—meson rest frame between the direction of the
outgoing proton and the pions direction.

The technique to extract the helicity amplitudes T, or the spin density matrix elements

rfp X, is to expand the differential cross-section on the spherical harmonics Y1, (05, ¢) leading



CHAPTER 2. LIGHT-CONE COLLINEAR FACTORIZATION APPLIED TO THE

p—MESON PRODUCTION 111
to
do = o - W(cos(6)), dn, Dp) (2.278)
dcos 0, dy, dby, h i ‘
= Z a0, Ty v, Y1, (On, ¢h)YffA;J(9h, On) - Py, s (2.279)
Ay A AN,

where py . is the spin density matrix element associated to the production of the virtual
photon from the scattering lepton. The quantities pyy are defined by projecting the product
of leptonic currents that appear at the cross-section level, on the polarizations A and X’ of the
virtual photons. The differential cross-section of ep — ¢’X with X an arbitrary final state,
can be decoupled into,

do(ep — €' X) a 1

pum— 1_
dQ?dy X T 2y( vt 2

)Y padoan (v — X)), (2.280)
AN

with da;;[ip;x the differential photoabsorption cross-section v*p — X. The elements of the
p—meson spin density matrix only depend on the angle ®, and the photon polarization
parameter £ ~ % at small-z, which is different for H1 (¢) = 0.98 and for ZEUS
(g) = 0.996.

Following the analysis of Schilling and Wolf [170], in the s-channel helicity conserving
(SCHC) approximation where only the transitions with A\, = A, are allowed, the tensor

W (cos(01), ¢n, Pp) can be parameterized by the following spin density matrix elements,

04 €
= ) 2.281
T00 x§1+5 ( )
1 2 1 55%1
na = —Imrig) =g (2.282)
11

1 R6<T11T6k()>
2v/2 |T11|2 +e |T00|2 7

Reryy, = —Imr, = (2.283)
with the notation z;; = |T};| / |Too|. The analysis of [170] goes beyond the SCHC approxima-
tion and involves the full set of the 15 spin density matrix elements.

Note that our calculations of impact factors v; — pr are performed in the forward limit so
we can access 171 only in this limit, while experimental data are integrated over some ¢ range
but are dominated by very small values of . The t—dependence is given by an exponential

falling functions
do LT

dt
where by, and by are fitted to HERA data. The difference b, — by being very small we
can assume in a first approximation that the t—dependence in the ratios x1; cancels out.

~ exp(—brrlt]),

The influence of the SCHC helicity amplitudes due to the small but non-zero t—value can be
estimated from the data. For ¢ # t,,:,, r0g slightly depends on the s-channel helicity violating
amplitudes Ty1, Tho, and T ;. Experimental data are dominated by |t —t,,:,| < 0.4 GeV?, for
which the significant amplitudes are |Too| > |T11]| > |To1]. The exact relation beyond SCHC
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approximation reads
2
04 _ €+ Ty

T .
00 —
x%l + e+ x(zn + x%_l + 2¢ xfo

(2.284)
In the next section, we will make predictions for x1; and xy; based on the impact factor

representation of the helicity amplitude using the results obtained in the LCCFEF scheme.

2.8.2 A proton impact factor model

The helicity amplitudes at Born level read,

d*k 1 .
T = s — P TP (B, A)YOV TN (K, A) 2.285
v =i [ G P A (k, 2) 8N (1, A) (2285
with A the transverse momentum exchanged in t-channel. The nucleon impact factor @~ (k, k—
A) is not calculable in pQCD and we have to use a model. A simple phenomenological model
was provided for hadron-hadron scattering in Ref.[143] by Gunion and Soper (GS), of the

form:
1 1

M2 (3 M2 (k- )

A and M are free parameters that correspond to soft scales of the proton-proton impact

Dnon(k, A M?) = Ady,

(2.286)

factor. In order to get rid of the normalizations of the helicity amplitudes, we will focus
on the descriptions of the ratios of helicity amplitudes. With the impact factor we have
computed we can compare two ratios namely 711 /Ty in the forward limit and Ty, /Tho as a
function of t = —A?2.

The above model (2.286) that we will refer as the "GS model" can be interpreted as the
interaction of color dipole configurations inside the nucleon with the two ¢t—channel gluons.
The scale M is then a internal hadronic transverse scale that governs the typical transverse
momentum. Such a model was the basis of the dipole approach of high-energy scattering [10]

and used successfully to describe DIS at small x [171].

2.8.3 Helicity amplitudes 77; and Ty at t = t,,;, - Comparison of
obtained predictions with H1 data

Inserting the impact factor results (2.248, 2.286) in the formula (2.285) for the helicity am-
plitudes leads to

isCp2AB (1 o [ 1 (1 1 a
Too=—-—""1[ d dao— [ = — 2.287

with B = 2ma, 75 foy R? = Q; and R? = Q2 an infra-red cut-off on the integral over .. The

infra-red cut-off is not necessary for the convergence of the integral but it allows to see how
much the soft gluons contribute to the result. The helicity amplitude 77, is split in the WW

contribution and the genuine contribution,

Tyn=T4" +TH".
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The WW contribution contains only the two-parton (¢g) contribution to the impact factor
and each WW DAs can be expressed as a function of p;(y), as it was explicitly shown in
Sec. 2.4.3. After interchanging the integrals over «, y and u in order to fix a specific model

for DAs at the last step when performing the u integration, the WW contribution reads

ww  1sCp(ey.e p)mp2AB/ u,u / /
T\ = 2m) (5 dy R2 da

1<L_ 1 ) ((a+2yy) (2.288)

R? a+R?) (a+yy)?’

The genuine (¢g?“" + qGg) contribution involves two- and three-parton contributions. It

reads

gen __
Tll -

isCr(ey.€;)m,AB /°°
(2m)Q° R?

X {—/O dyw[(y D)l (s 1?) + %7 (s 1))

yy(o + yy)?
/ dy2/ dyl y17y27 )
Ny { 2—-N./Cp N 1 }
a+ym Loy +3) Fnve  Cryea+y1(y2 — 1)

1 Y2
—/ dyz/ dy S(yb Y2; qu)
0 0

% |i2+NC/CF—|— U1 ((2—NC/CF)leA _2)
U1 a+yigh \ oy + v2) + 112

Ne (Y2 — 1) 02 1 } }
—— . 2.289
Cr U1 ayr + (Y2 — 1)V ( )

We interchange the integrals over o and the longitudinal fractions of momentum and we
define I, (y; R%, RY), Iy(y1, yo; R?, R?) and I3(y1, y2; R?, RY) as the integrands after integration

over «

& 1 1 ala + 2yy)
Ii(y; R, R?) = / da [ = — 2.290
v B ) R? : <R2 a+R2> yy(a+yy)?’ (2:290)
& 1 1
I ‘R?. R?) = / da{ — — —— 2.291
2(y17y2a ) 1) R% Q {R2 CY+R2} ( )
> ylgla |: 2 — NC/CF B Nc 1 :|
at+yin lalyi+92) + e Cryea+y1(y2a —y1) ]
& 1 1
I ‘R* R?) = / da{ — — 2.292
3(9173/2; ) 1) R% {R2 CY+R2} ( )
{2 + N./Cp N U1 ( (2= N./Cp)y1cx B 2)
(7 a+yign \ (v + 92) + nie

~ Ne (y2 —y1)ye 1 }
Cr (1 ayy + (v — y1)v2]
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leading to

is Cp(ey.€;)m,AB
(2m)Q°

gen
Tll

1
{— | v h) (- Dt i) + s )
0
1 Y2
+/ dy2/ dy Lo (y1, y2) M (y1, yo; 1)
0 0
1 Y2
_/ dyz/ dy1fs(y1,y2)5(y1,yz;u2)} ; (2.293)
0 0

where the variables R? and R? have been omitted for clarity. Using the symmetry property

S(y1,y2; 1?) = —M (32, y1; %), this expression takes the form

en iSCF(E .e*)m AB 1 _ en en
" = (;W)”QG . {—/0 dyL(y)[(y — 9)ei5 (v; 1°) + %7 (y; 1?)]
1 Y2
T / dys / dy1<12<y1,y2>+13<y2,y1>>M<y1,y2;u2>} - (2.299)
0 0
with

Ly(y1,y2) + Is(y2, 1h) =

(2-2)

/OO dOZ 1 ( y_22 yly_l )
o Ra+R)(a(yr+ ;) +nk) \a+ i a+ynn

N, [ 1
+ do —
Cr Jpz R* (o + R?) (oo + yan) (oo + yi(y2 — 31))
2 [ 1
22 | (2.295)

v2 Jre  R*(a+ R?)(a+ yapp)

Combining the results (2.287) with (3.132) and (2.294), the ratios T);"' /Too and T /Tyo

read

% _ (2.296)
st [ [ (1)
Y 1 o0
@ /0 dy 1 (y, 1) /R% 7a(adfyy) <$ - aij)
where we took into account that e,. ’; =—€,- Q’; = —1, and
" m, (2.297)

Too  2Q

1 1 Y2
/O dyll(y)[(y—g)wi’;‘}"(y;u2)+wif$(y;u2)]—/O dyz/o dy1 (I2(y1,y2) + I3(92, 1)) M (y1,y2)
1 o0 1 1 1 o
d 2 / da— | = —
/O ye1(y; n”) - o (R2 a+R2) i

The integration is performed analytically over v and numerically over remaining variables

X

as for example y for Ty, z, v for TI/™ and y;, yo for T . The measured ratio Ty; /Ty is
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Figure 2.27: The WW contribution T}}"' /Ty in green (dash-dotted line), the genuine con-
tribution T\ /Ty in red (dashed line), and the sum of the two contributions in blue (solid
line), at M = 1 GeV and A = 0 GeV, as functions of the virtuality of the photon. The
brown (long-dashed) curve is the contribution based on the asymptotic DA of the p meson,
©1(y, p% = 00) = ¢ (y) = 6y(1 — y). Our results are compared with the experimental data
from H1 [99]. The experimental errors are taken to be the quadratic sum of statistical and

systematical errors.

conventionally defined [105] to have an opposite sign with respect to egs. (2.296) and (2.297),
in order to ensure the usual matrix summation in the definition of the density matrix.

In fig. 2.27 we show the different contributions to the ratio Ty, /Ty as a function of @?
and for the nonperturbative parameters M = 1 GeV and A = 0 GeV. Unless specified, we
take as a factorization scale % = Q?. Note that the factorization scale only appears in the
ratios of the amplitudes through the DAs and the coupling constants. We see that the WW
contribution dominates over the genuine one. For illustration, we also show the ratio 737 /Ty
using the asymptotic ¢* = 6yy DA, which corresponds to pu% — oo. In this limit, only
the WW contribution survives since the three-parton coupling constants ¢y (%) and ¢3'(u2)
vanish when p% — oo. The small difference between this asymptotic result and the total
result (Sum) indicates a weak dependence of this ratio on the factorization scale pp.

The two parameters A and M have different physical meanings. M is the typical nonper-
turbative hadronic scale, while A is the minimal virtuality of gluons, which should be bigger
than Agep for consistency of our perturbative approach. From fig. 2.28 (left panel), we see
that our predictions are stable for M in the range 1-2 GeV. The data, when compared with
our model, with © = @, favor a value of M of the order of 1-2 GeV but exclude a very
small value around Agep. From fig. 2.28 (right panel), we see that for A around Agep, our
results are very close to the experimental data and rather stable, whereas for A = 1 GeV, i.e.
significantly larger than Agep ~ 220 MeV in the MS scheme, they notably deviate from the
data. Let us stress the fact that our estimate provides the correct sign for the ratio Ty /Too
when compared to H1 data is a nontrivial success of our approach.

In figs. 2.29 and 2.30 we show the results of our calculations for the spin density matrix
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Figure 2.28: Predictions for the ratio T11/Ty as a function of Q?, compared to the exper-
imental data from H1 [99]. The experimental errors are taken to be the quadratic sum of
statistical and systematical errors. Left panel: Fixed A = 0 GeV cutoff and various values
for M. Right panel: Fixed scale M =1 GeV, and various values of the cutoff \.

&
101
08r
0.6+
A=0GeV
0.45, e HI -—-— M =05GeV
! . M =1GeV
02, ZEUS ———=-M =2GeV
S T S S S S S S SO S SO R SO Q2
0 10 20 30 40 50

Figure 2.29: The spin density matrix element rj; as a function of Q* for M = 0.5 GeV in
green (dash-dotted line), M = 1 GeV in blue (solid line), and M = 2 GeV in red (dashed
line), and for A = 0 GeV. Our results are compared with the experimental data from ZEUS
[98] and H1 [99]. The experimental errors are taken to be the quadratic sum of statistical

and systematical errors.

element 3. In fig. 2.29 is shown 7 as a function of Q? for different values of the nonpertur-
bative parameter M and for A = 0 GeV. In fig. 2.30 is shown our predictions for M =1 GeV
and A = 0 GeV as a function of W for several values of Q? compared to H1 and ZEUS data,
of course our predictions are W —independent as our calculation is at the Born level. This

observable allows a comparison of our predictions with the whole set of HERA data®.

6We predict ratios of amplitudes, while ZEUS made available the spin density matrix elements; H1 ex-
tracted both spin density matrix elements and ratios of amplitudes.
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Figure 2.30: Predictions for rJ3 vs W and Q% compared respectively with H1{99] and ZEUS|98]
data, the AS (purple dashed lines), WW (blue long dashed lines), Total (red solid lines)
contributions are shown separately using the GS-model for M =1 GeV and A = 0 GeV.

2.8.4 Helicity amplitudes T, and Ty, for t # t,,;,

The H1 data show that the spin-flip amplitude 7§, is nonzero, showing an explicit s—channel

helicity violation. Besides, this amplitude vanishes when the squared momentum exchanged

by the proton t = —A? is zero. We start with the generalization of eq. (2.287) for t # t,min,

is Cr2 QAB

Too = (27r)2(M2+(A/2)2)/0 dy yi 1 (y; 1°) (2.298)
[ b ey
k*(

Kk —A)? (k—A/2)? + M?
1 1

) {<yé)2 N TaZI (N To

Similarly,

1o

/ Ik (k—A/2)° - <A/2>2
) BE-AR (k-AR2+M
v

X{ yA-e  gA.
(WA +yyQ*  (yA)? +

_ isCr2QAB
L En(ME+ (A)2)?)
)

1 1
(k—yA?+yyQ2 (E—ﬂé)zﬂ/ﬂ@} '

/0 dy (y — §) o1(y; 1) (2.299)

Q°

In egs. (2.298, 2.299),

(k—yA)-e  (k—yA)-e }
(E—yAP+yy@*> (E—yA)P2+yyQ?)

e the integrations over kr are performed without infrared cutoff, partially analytically

through a residue method,

e the integrations over kp are performed with an infrared cutoff, fully numerically through

triangulation coordinates centered at the pole of the two t—channel gluons.

In the next part we will detail the integration over k£ with both methods.
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Integration over k for Ty, and T,

We describe the method used to evaluate the integrals over k in eqs. (2.298, 2.299) when no
infra-red cutoff is imposed. Let (u;,u,) be the orthonormal basis such as A = r u,, and then
k—A = (ky—r, ko). In that case, a residue method, as described in Ref. [130], can be applied

for the k; integration. In this basis, the amplitudes read

8 C’F2QAB !
Too = POl + (r /2> ] / dy yg e1(y, 1*) (2.300)

/dk/ K 1 (k1 —7/2)* + k§ — (r/2)?
2k2+k2 k:l—r) + k2 (k1 —1/2)% + k2 + M2

{(w’) +ny2+( r)? +ny2

1 1
(ke —yr)2 kg Q@ (R — )+ k3t uy Qz}
and

isCrAB ! ~
Tor= " /dy (v — 9)ea(y, 1*) (2.301)

(2m)2(M2 +(1/2)?) Jo
<[ 1 1 (ky —7/2)? + k3 — (r/2)?
k d
. /_o‘f 1/_ook2k% + k3 (ky — )2+ k3 (ky —7/2)2 + k3 + M2

y { yre; B yr ey
(yr)? +yy@*  (yr)* +yy Q2
e1(k1 — yr) + egks B e1(k1 — yr) + egks }
(ki —yr)? + k3 +yy Q> (ki —gr)? + k3 +yyQ*J’

where e; and ey are the components of the transverse polarization of the 4* in the basis

(uy,uy). We define the integrands Fyy and Fy; as

Ty = ;;Cﬂ@?ﬁm 3 / dy yj 1 (y; 1)
/ dk; / ki Foo (k. ko, y) (2.302)
is CFAB !
T = P 1+ (127 )/ dy (y — 9) 1 (y; %)
/ dk‘l/ dk‘g FOl ]{51,]{32, ) (2303)

We perform a shift of the variables k — (x—l—ul) i.e ky = o1, ks — x5. The shift symmetrizes

and rescales the momenta of the gluons, which are zeros for xr1 = +1 and x5 = 0. The

integrands then read

4 1 1 2?42 -1
2

= 2.304
r2(xy + 12+ 22 (x; — 1)2 + 23 g(M?) + 22 ( )

1 1
- { W2+ i@ ) + yiQ?
4
)

= e Er )
2@+ -9 +9wy@?) (11— (y—9)°+9uyQ?
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1 1 3423 —1
- = 2.305
fOl T1,T2,Y ) 7’2 (xl + 1)2 + .flf% ($1 — 1)2 + .flf% g(M2) + ZE'% ( )
yr el Yyrep
X + — -
{ 2+yyQ*  (yr)? + yyQ?
g{ 21+ (y — 9) N (v —9) H
rl(e+(y—9)?+gyy Q) (r1—(y—9)?+9wyy@) )
with A )
U+ reT
g(v) = TZ (2.306)
and foo, fo1 being defined such that
is CFQQAB /1 )
Too = d 2.307
00 POE (2 yyy iy, Q%) (2.307)
/ d$1/ dxs foo XT1,T2,Y )7
and
2'3 CFAB ! )
Ty, = d 2.

/ d931/ dxy for(z1,22,9) .

Since the integrands in (2.307) and (2.308) oscillate quickly, we have used a method where
the integration over x; can be analytically performed in order to avoid numerical integration
issues for the case where there is no infra-red cut-off. We integrate over the variable x; using
the residue method. The poles of the integrands are the same. The poles enclosed in the

below contour line for o > 0 are
vy =+ —9) —ivg(Q%uy), w1 =F1—iry, w1 =—i\/g(M?). = (2.309)

As the integrands are symmetric under zo <+ —xg, the result is the same for zo < 0. The

remaining integrals over x5 and y are then

TOO (Tv Q? M) = (271_;;(]6\4'}7'22_631?752)2) /0 dy yg‘ﬂl (y7 Qz) (2310)
X /_OO dxe(—2im) Z Res;[ fool
1sCrAB ! _ 2
Tu(rQM) = ot [a-nawe) @)

0o 5
X /; dl’g(—Qiﬂ') Z Resi[fm] 5

where the explicit expressions for the residues Res;|foo] and Res;|fo1] are too lengthy to be
displayed here. We then integrate numerically over z5 € [0, 00] and y and finally multiply
the result due to the symmetry of the pole structure by 2.
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In the case where there is an infra-red cut-off, we cannot use anymore the residue method
to simplify the integrals so the integration is performed only numerically but we have to
change the variables to get stable numerical results. We will change the variables x; and x5
by the distances of the point (z1,z3) from the singularities in (-1,0) and (1,0). Let b; and by
be these distances such that

b= (r1+ 1) +a5 b= (21— 1)*+a3. (2.312)

We have two solutions for (x1, ), one restricted to the upper half-plane,

1 1
= Z(bf —b3), 1y = Z\/(bl + by +2)(by + by —2)(by —ba +2)(=by + by +2), (2.313)

and one restricted to the lower half-plane,

1 1
Z(bf —b3), 29 = —1\/(191 by +2)(by + by — 2)(by — by + 2)(—by + by +2) . (2.314)

We can restrain the computations to the upper half-plane because the integrands of (2.308)

and (2.307) are invariant in o <+ —z2. The existence of both solutions requires that
(by +bg +2)(by + by — 2)(by — b2+ 2)(—by + by +2) > 0, (2.315)

or equivalently, at fixed by, by < by + 2 and by > |b; — 2| . This is the condition for the two
circles centering in (-1,0) and (1,0) and of radius b; and bs, respectively, to cross each other.

The Jacobian of the transformation is

2b1by
> (2.316)
\/(bl + by + 2)(61 + by — 2)([)1 — by + 2)(—61 + by + 2)
The infrared cutoff is included by a representation of the Heaviside distribution
1
0(by — Peut; k) = (2.317)

]_ _|_ 6_2k(b1_6cut) ’
where (., is the cutoff for b; and b,. The link with the infra-red cutoff in GeV is A = Bey 5.
This ensures the stability of the numerical evaluation of the b; and b, integrations. Then the

amplitudes read

Too(A; k) = (258(%22@?52)2) /O dy yij o1 (y; 1°) (2.318)

/ db, / bj dbz O(b1 — Beur(A); k) 0(b2 — Beut(N); )

2b1by
\/(bl + by + 2)([)1 + by — 2)([)1 — by + 2)(—[)1 + by + 2)
X foo(y, 21(b1, b2), 22(b1, b)),
oy 1sCr2QQAB
Tl h) = Gt 2

bi1+2
L/%J2@2 — BtV )0y — ot (N): )

2b1by
\/(bl + by + 2)(by + by — 2) (b1 — by +2)(—by + by + 2)
f01(y, $1(517 52), $2(517 52)) .

)2)/0 dy (y = §)e1(ys 1) (2.319)
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The integrations are performed numerically over by, bs, and y. The constant k is chosen to be
equal to 10. The width of model (2.317) of the Heaviside distribution equals r x + = & GeV.

This ensures the stability of the computation without significantly affecting our results.

Comparison of the results for Ty, /Ty with HERA data

Fig. 2.31 shows the dependence of the ratio To; /Tho on the choice of the factorization scale
for M =1 GeV and A = 0 GeV. For completeness, we also show the predictions based on the
asymptotic DAs. We see that for factorization scales around p? = Q? our results are rather
insensitive to its values. Nevertheless, the ratio Ty /Tho seems to be more sensitive to this
scale than the ratio 17, /Tgo.

E To1
Too T_00
o4 o H1 - @™y 0207
m(y,QZ)
o3f || e iy, 2Q%) 015}
——— @(y.Q%/2)

021 010+

B D B P A R @(y.2Q7
01 2 2 005 e a(y.Q%/2)
M=1Gev Q°=33GeV" 1=0GeV M=1GeV Q% =86GeV? A=0GeV
00 05 10 15 20 00 05 10 15 20

Figure 2.31: Predictions for the ratios To; /Ty as a function of |t| for M =1 GeV and A =0
GeV, for different values of the factorization scale p?, compared with H1 data [99]: the blue
(solid) line is for ¢y (y, u? = Q?), the green (dotted) line is for ¢;(y, u* = 2Q?), the brown
(dashed) line is for ¢;(y, > = @Q%/2), and the red (dashed) line is for ¢(y, u* = oo) =
©1*(y) = 6y(1 —y). The experimental errors are taken to be the quadratic sum of statistical
and systematical errors. Left panel: Q? = 3.3 GeV?. Right panel: Q? = 8.6 GeV?.

Our predictions are based on pQCD and therefore, at small £, can only lead to a powerlike
or logarithmic ¢ dependence. We can implement the non-perturbative t—dependence by
using the b—slope values extracted from H1 data [99]. Multiplying our predictions for the
amplitudes by a factor e l=tminl/2 where b; (i = L,T) corresponds to p electroproduction
from 7} or 74 . H1 measured values of by, and b, — by [99]. The measured values for the latter
are by, — by = —0.03£0.277512 GeV~2 (for (Q?) = 3.3 GeV?) and b, — by = —0.65+£0.141531
GeV~2 (for (Q?) = 8.6 GeV?). Here we present our results in fig. 2.32. One can see in the
right panel of fig. 2.32 that the precision of the data for the Ty, /Ty ratio does not permit us
to discriminate between a zero value for the difference of the transverse and the longitudinal
slope parameters, by, — by, and a nonzero value of this difference, as measured by H1 at higher
values of Q2.

Thus our estimate provides the correct sign and order of magnitude for the ratio To; /7o
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when compared to H1 data for M of the order of 1 GeV in the whole range of (—t) < 1.08
GeV2.
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Figure 2.32: Predictions for the ratio Ty /Ty as a function of |t| for A = 0 GeV, for various
values of M, compared with H1 data [99]. The experimental errors are taken to be the
quadratic sum of statistical and systematical errors. Left panel: Q? = 3.3 GeV2. Right

panel: Q% = 8.6 GeV2.
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Figure 2.33: Predictions for the ratios To;/Too as a function of |t| for M = 1 GeV, for
different values of A, compared with H1 data [99]: the blue (solid) line is for A = 0 GeV, the
red (dashed) line is for A = 0.2 GeV, and the green (dash-dotted) line is for A = 0.4 GeV.
The experimental errors are taken to be the quadratic sum of statistical and systematical
errors. Left panel: Q2 = 3.3 GeV2. Right panel: Q% = 8.6 GeV?2.

For completeness, as we did for the ratio T3, /Ty, we also display in fig. 2.33 the effect
of varying the cutoff A on kp for the ratio To; /Tpo. Again, the prediction does not change
significantly when A is around Agep. One obtains the same kind of values for M and A when
comparing with the data for the two ratios 111 /Ty and Ty /Th0. However, due to a lack of
precision of the data for the ratio Ty /Tyo, the parameters M and A are mainly constrained
by the ratio T11/Too-
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2.8.5 Discussion of the results

This model provides a fairly good description of the data despite the simplicity of the nucleon

impact factor for reasonable values of M. Let us sum up the characteristics of this model,

e the predictions are not very sensitive to the typical transverse scale M of the dipole

configuration inside the nucleon,

e the predictions are not very sensitive to the choice of the renormalization scale pp that

we used,

e the A\—dependence of the predictions shows that the dominant contribution is given by
the exchange of hard gluons in t—channel (£* > A%cp), but also that the effects of

soft gluons are sizable.

This last point justifies the QCD twist expansion based on the dominance of the scattering
on the target of small transverse-size quark-antiquark and quark-antiquark-gluon colorless
states. It also justifies the fact that a sizable contribution is given by large dipole configura-
tions and should be decreased by saturation effects in the nucleon. So what we can learn from
this first approach is that we can describe the HERA data with pQCD but this description
have to be improved in order to implement the dynamics of larger dipole sizes.

This approach could be generalized to access other scattering amplitude ratios that have
also been measured and should be confronted with a kp-factorization approach. This requires
nontrivial analytical calculations for ¢ # t,,;, of the twist-3 amplitudes (which was not needed
for the ratio Ty1/Tho) which is a hard task, since it involves, in particular, the computation
of the v — pr impact factor. This deserves a separate study.

Data also exist for ¢ leptoproduction. In this case quark-mass effects should be taken
into account, in particular, because this allows the transversely polarized ¢ to couple through
its chiral-odd twist-2 DA. The fact that the ratio 711 /Ty is not the same (after trivial mass
rescaling) for p and ¢ mesons suggests that it is an important effect.

In the next chapter we will make the connection of the twist expansion of the impact
factor with the color dipole formalism. The color dipole scattering amplitude in the forward
limit being well known from models fitting DIS data, this will allow to get a much more
sophisticated model including the saturation dynamics of the nucleon, involving no free pa-
rameter and able to predict the normalizations and the energy dependences of the helicity

amplitudes in the forward limit.
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Chapter 3

LCCF in the impact parameter

representation

3.1 Introduction

In the previous section we have built a phenomenological model for the helicity amplitudes of
the process v*(\,) p = p(A,) p based on the computations of the impact factors of Refs. [130,
131] in the collinear approximation. This model relies on the models for the DAs given in
[142] based on conformal expansion and a model for the proton impact factor [143] with a
free parameter M. Despite the fact that this model allows to get a fairly good agreement
with the data from HERA, this model does not provide the normalizations of the helicity
amplitudes as well as their energy dependences. It seems also that the saturation effects
could lead to sizable modifications of the predictions when the t—channel gluon momenta is
smaller than the saturation scale.

In this chapter, we will present a way to improve the previous model by connecting the
computation performed in the collinear factorization scheme with the color dipole model

approach. As a result, we will get a model without free parameter which is able to,
e predict the normalization of the helicity amplitudes,
e predict the energy dependence of the helicity amplitudes,
e include the saturation dynamics of the nucleon target.

The comparison with HERA data of the normalizations, the Q*— and the z—dependencies,
is a test for both the dipole models and the collinear factorization beyond the leading twist
of the p—meson.

This chapter is split in two parts. In the first part of the chapter we present the com-
putation in the impact parameter representation of the two- and three-parton impact factor
contributions, factorizing in the impact factor when it is possible, the wave function of the
virtual photon. These results in the impact parameter representation are strictly equivalent

to the results in momentum space presented in the chap. 2. We will see however that this

19K
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approach is more natural to generalize the twist expansion of the impact factor as it does not
involve hard part derivative terms and it makes clearly appear the moments of the p—meson
wave functions which are parameterized by the DAs. A non-trivial result of this approach is
that the results are consistent with the dipole picture only after using the EOMs of QCD.
It is also shown that the interaction of the two t—channel gluons with the quark antiquark
gluon intermediate state, involves only color dipole interactions at finite N, (no quadrupole

term).

In the second part of the chapter, we present the predictions for the polarized cross-
sections o, and op of the processes v;p — prp and v} p — pr p, obtained from the results of
the first part of the chapter, in combination with dipole cross-section models. These predic-
tions are compared with HERA data and we discuss the role of the higher twist corrections
and the role of the saturation effects in the predictions of the model. Particularly we com-
pare the distributions of dipole sizes obtained from the twist expansion of the p—meson, to
distributions obtained with | —dependent models for the overlap of the wave functions of

the virtual photon and the p—meson.

3.2 The ¢¢ intermediate state contributions

3.2.1 Equivalent LCCF procedure in impact parameter representa-

tion

In the color dipole picture the dipole scattering amplitude depends on the transverse dipole
size r, while in the LCCF approach described in the chap. 2, the Taylor expansion around
the light-cone direction does not exhibit the transverse parton momentum dependence, being
Fourier conjugate to r. We can nevertheless get information about the transverse space due
to the presence of the transverse momenta k; of the {—channel gluons that gives to the
quark antiquark pair a transverse size r in the hard part of the process. Note that in
principle one could take the Fourier transform with respect to k of the impact factor results
eqs. (2.276, 2.277) of chap. 2 to combine them with a dipole model, however one would
miss the underlying dynamics of the dipoles behind a complicated Fourier transform. In our
approach we first express the hard parts in terms of their Fourier transforms in the transverse
impact parameter space and then we perform the Taylor expansion of the hard part around

the dominant light-cone direction.

We first factorize spinor and color indices using Fierz identity,

Y=e o L% _ _ :_1 d' t(H. -(OT%) SLe
AL = / i a0 Sull) = =3 / )i T Haa(OT7) S (). (3.1)

Using Sudakov variables for the loop momentum ¢ = ap + fn + £, and for its Fourier
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conjugate coordinates z = a,p + f.n + z,, the ¢ integration reads

d*l d d
1Ay = __/dy/ J_ Hyq(y, L1) Fa/ ae/ BZ/ eMae=y)

« /ﬁ%eM%MMW@ﬂhw®m>

: &, . |
- Z/ / qq y’fl)ra]/?e—ﬂy/dzzj_ e~ WL zL
T
{p(p

X |1p()\n+21) 1(0)]0) , (3.2)

where we kept the information about the transverse momentum in the hard part. Note that
this is the main difference at this point with the steps described in Sec. 2.2.4 of the chap. 2.
The main point is now to keep a trace of this transverse dynamics by expressing the hard part
in terms of its Fourier transform in the impact parameter space. We use the same shorthand
notations than in chap. 2,

F“(ngl) = tI‘[ qli(yva-)Fa] )

and we define its Fourier transform in the transverse plane,

- P »
Ly ) = [ sty (.0

The expression we get for the amplitude reads

1 dz@_ 2 T iz, [ AN )

x/#anﬂunwm+a> H0))0) (3.3)

For now, the integral over £ links the hard and soft parts and in order to factorize the
amplitude we use the Taylor expansion of the hard part around the dominant light-cone

direction,

1 8 k I_‘(¥
]{f' (ﬁ yp) 85 qu (yvol)

T
3
=
e
|
HMgg

a k
I_‘(¥
— i {h (%} Hyg (y,01)

= /dQEFIqF;(y,

Up to twist 3, the Taylor expansion is truncated at k = 1. All the information about the two-

1 (3.4)

k=0

parton hard part contribution is encoded in H sz (y,71) which involves only the computation
of six Feynman diagrams. In the momentum space approach in Sec. 2.2.4, one would need

to compute the derivative of the hard part in the limit ¢ — yp,

HFQ (y7 OJ_)
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which using the collinear Ward identity leads to a number of diagrams to compute which
increases with the number of derivatives. The price we pay is the integral over r the transverse
dipole size and to compute the hard part with the parton transverse momenta.

Replacing the hard part (3.4) in (3.3) leads to

@Aqq———/dy/dleH (y,71)
S o
< [ Gm M P F A+ 1) Ta v O)).

Z[J_ . .I'J_)k e—ZZL'ZL

¢|»~

Note that the Taylor expansion terms of exp(—if, - x,) are giving the moments of the

p—meson wave function. After integration by parts with respect to the integral over z, the

2 <y d? ‘
/dy/d%l HF y,xl)/ —(Qgiz/d?zl e Lz
s

k;' = azl) /;ljr\ e {p(p)[ (A + 21) Ta v (0)[0)

amplitude reads

X
wM
—
=)

1
- 1
zqfw/wﬁ@@mz@
k_

2 < g2 | d\ . L
| e [ pwlitn + 21 (- 0T, 00)0).

It can be then parameterized by the DAs as

/dy /dleHF y,m)/Z L gf)l /d2 ‘Z“'Zl/;li iy
. (< DIFO-+ 20 00 + 2 T + 1) 0 T, w(0)0))
= mpf”/dy /d w1 {(e* - n)or (y; i) Hoy(y, 1) (3.5)
+a(ys p2) Hig (1) +ioa(ys ) Hi P (g, 1)
—i(zy - e) o] (s pi) Higlys v0) + (e RY) @ (ys i) Hig (s 1)}

with ﬁgaa = f[ga“.
In the following part we will compute the hard parts H;Y; (y,¢1) and H;}?w(y,ﬁl), and
then we will derive the expressions of their Fourier transforms in the transverse coordinate

space HJ (y,2,) and H)2" (y,x,).

3.2.2 Impact factor calculation for the ¢gq contribution

We now compute the hard parts in momentum space H,; “(y,¢,) and H;qu’Y“ (y,01) for the
Yi(Ay) = pr(Ar) impact factor. The partons are kept on the mass-shell and in the collinear
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limit (¢, — 0), this kinematics is the same than in the chap. 2 which allows to compare the
final results after integration over z of the Fourier transforms.

We recall the Sudakov decompositions of the momenta

€2
b = yp1+L1+—p2,
ys
€2
by = yp1— L1+ —p2,
ys
1
= ——Dps. 3.6
Pp pt P (3.6)
The momentum of the incoming photon is
2
q9=p1— P2 (3.7)
while the momenta of the gluons in ¢-channel are
K+ E+ Q2
ki = -, P +ki,
K+ EQ _ p2
]{?2 = %pg + ]{?J_ . (38)

The six diagrams of the hard part involving the ¢q intermediate state are similar than the
diagrams of fig. 2.7 in the Sec. 2.2.1 and we use the same labeling. After computing all the 6
diagrams (a), (b), (¢), (d), (e), (f), we perform the integral over x by the method of residues
to get the contribution to the impact factor, according to the definition of the impact factor

(2.237) in sec. 2.7 of chap. 2. Four poles in k appear,

e Diagram (a) and (e) : k3 = _(ﬁ—y@;&? —
e Diagram (b) and (c) : kg = % —in

o Diagram (b) and (e) : rz = =+ ((k +£)* — 4+ §(k* 4+ Q) +in

e Diagram (d) and (f) : w1 = S ((k—£)* - C+yE*+ Q%) +in.

Figure 3.1: Integral contour C~ along the lower k— complex plane.
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The hard sub-process amplitudes denoted iM, associated to each diagrams (a), (b), (c)
and (e) that will give a non-zero contribution when we integrate over  closing the contour in
the lower x plane C_ illustrated in fig. 3.1, read for the different structures I'® = {~*, y#7°}

e diagram (a):

e g20% 2 el (=g + Ly + ) fa(— 9ol
V2 2N, s —2(C )k~ )
2ie g*0° Trlgy(=gpr + {1)paT"]

. e
iM,

V2N T ) ) o
e diagram (b)
M _ e g?0" 2 Tx[(ypr + Ko + £0)¢ (=0h1 + Ku +£1)poT7]
’ V2 2N, s yy(k — K2) (K — K3)
B %925@ 1
V2 2N, yy(k — ko) (K — ka)
X AT (Pa(Fr +f0)¢ 1) — ytr(dy (KL +£0)P217)} (3.10)
e diagram (c)
o re 2ie g0 Tx[pa(ypr + f1)¢- 1]
iM, ~ /5 9N, ] -+ 15 (s — o) (3.11)
e diagram (e)
2ie g26 1

. @
iML

V2 2N, gk — k) (K — Ka)
XAy tr(pa(kL = f0¢,07) — y Te(fy (kL — )P} (3.12)

Computing the impact factor hard part contribution with residue method along the contour
c-,

a1 dk . pa T
Hy, = % /. %z./\/qu = —gResn(quq), (3.13)
with
f—r = (=P ), (3.14)
ko= ks = —((L+E)+ ), (3.15)
vy
leads to
ra eg®0®  [ytrld, (L — 1)l ] — g tr[pa(ypy + £1)¢, 17
B WD = s { Ot 2
Cytrldy (L — F)pel] — gtrfpe(fe — Ko
(L —Ek)*+ p?

bl (L + FO)Pl] — gtr[pa(fL + k)¢ 1] } .

(L+ k)% + p?
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The vector and the axial-vector hard parts read respectively
2 5ab = 2 5ab
#" vy =
H-(y,0) = —4—— K —14
qq <y7—) \/§2NC€7£2+M \/72N (y y)p2
4 L+ E (—k
X {57_—27 (L _)—_7 (L _)} (3.16)
Cp? (kP + e L=k +p?
and
2 ab
THs _ g 0
H): " (y,0) = 4@8\/_2N
x  ghvpo (ewgeLpp?U . ey (lip+ kip)p2o _ ey (l1p — klp)pza) (3.17)
T Ry (R .

The Fourier transforms of propagators in (3.16, 3.17) are related to the modified Bessel

functions K, (x)

1 d*x

m = Q—KO(M|'T|> (3-18)
4 &z =z

m = —@/2—M| |K1(M|$D (3.19)

The Fourier transforms of the vector and axial-vector hard parts read thus

2 5ab

. ey
H@(%z%—4@WM@QN»(yy Ko(plz|)el

<mgwu—amw1—a@%—u), (3.20)

60X
+p5(y — §)ip—
|z
o
H(;Y(I ” (y7 g) -
2 ab
€y vpo Lip ik-x —ik-x
d——————nK(p)z|) |e"P7 ey —poo | [(1 — e™E)(1 — e ™E) — 1] 3.21
D) [ e (1 -t et 1) o)
The previous results (3.20, 3.21) for the hard parts integrated over s can be inserted in
q. (3.5) to obtain the impact factor ¢¢ contribution as the soft parts are independent of .
Decomposmg the result into the vector contribution (IDVT 7V that will lead to term propor-
tional to 3, ¢! and, axial-vector contribution (IDVT pria that leads to term proportional to

@4 and %, we get

. v C«abQ2 d2£ -
oY = -5 [y [ SE 2w Kol e, e

+y— D) ) (e, z) ﬁ;mm(um\) [(1— ebo)(1 — ik — 1}} (3.22)

—C“sz/ /d:cL r

< K (plal) (1= e®2)(1 - 6_””) -1, (3.23)

and

(p’\/’z —PT, A

5%6 » pip2&z e, ipip2
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where we define sab
w €9 @1
c?” = \/,mp fPQN Q2
Note that the term with ¢4 in eq. (3.5) vanishes due to the structure of the expression (3.21).
Using the fact that

(3.24)

82

Ezier pip2€rieyipipr = 1 (1'3_ (eye - e;J_) — ey @i )(zy - 6;J_)) )

the axial-vector contribution takes the form

o EE fuf i -S4

€p Ey —

x ulfrlKl(quEI)( et (1 —ehE) — 1), (3.25)

The whole 2-parton contribution thus reads

(I)’Y;ip—mtr _ (I)'y}—mT,V (I)fy;—mT,A (326)
- @ Q / /—{ 2yps(y) Ko(plz) e, - e
+ {((y—y)sol (y)—m(y)) & i%'@ﬂ +oh(y) e e,

X plz Ky (plz]) (1= e®) (1 — e — 1)} (3.27)
This result does not seem to be proportional to the familiar dipole factor
N(z, k) = (1 — e®2)(1 — e72) (3.28)

describing the coupling to the two t—channel gluons.

Using the following relations,

d’x d’x 2
Sz K - o[ 22, - = 2
[ Sruladiiuizh = 2 [ GERlulal) = o (3.29)
d*z i'—'y . [z
e k) = e ep [ GERp), (330)
we can rewrite ®,7 """ in the form,
. Casz dx
— L
T =~ /dyfg (3.31)
x {[-Cuuesy) + (v — 7)ot + i) Kolulzl)e, - €

+[[(y —9)¢i (v) — ¢aly)] % +h(v)e; - e,

X pl| Ky (p]z )N (2, k) }-

The term in the r.h.s.

[~y 5 es(y) + (v — Dl +9ay)] Kolulz)e, - ¢,
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vanishes in the WW approximation. This is due to the EOMs of QCD egs. (2.129) and
(2.130) relating the WW solutions of the DAs as shown in Sec. 2.4.1. Combining eqs. (2.129)
and (2.130), one can get the relation,

20508 () + (=)ot "V + "W (y) = 0. (3.32)

This term also vanishes for the genuine twist 3 solutions of the DAs as we will show in

Sec. 3.4.1 after computing the ¢gg contributions. At the end the ¢g contribution reads

. ab )2
S Q/ / (3.33)

|- 96t - AW E S e

X pu|z| K (pelz| )N (2, k) },

where the dipole scattering amplitude factorizes out.

3.2.3 Interpretation of the result obtained in the WW approxima-
tion

The WW approximation which consists in neglecting all contributions from the qgg Fock

state, reads

pp Cab 2
QI WW Q/ /—{ y = () - 3" ()]

y (Q’; . Q‘)ﬂ(f@y) X S0£M/V{/(y) }u\$|K1(M\$|) (z,k). (3.34)

Similarly to the momentum space analysis, one can split the result (3.34) into the spin non-flip

&' and the spin flip /77”7 contributions

qq,n.f. qq; f.
¢Z§:/}TWW _ _Ca;Q2/dy( TWW | () ) TV
T ey el e V(. ) (3.5
and
o = _Ca;QZ / dy (5" = (y = et ™")
<[5 (Geren %) Wl () N (e k). (336)

Both spin flip and spin non-flip impact factors can be put in an elegant form similar to the

overlaps of virtual photon wave functions in the case of DIS,

Oy (k, Q, %) (3.37)

2—parton

5ab —>T )
5 [ / dp Y EOI OO (0 2) Al k).
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with,
Ao
Al k) = =N (2B, (3.39)
the dipole scattering amplitude according to our definition of the impact factors and
myf, Ap) o)
Va1 Qs ) = N3 > ) W (1 Q%) (3.39)
(h,h)

the overlap of the wave function of the virtual photon \I/E’Z R ( y,r; Q%) with the moments of

the wave function of the p—meson <bf}f h()‘ YW 12). We remind that the indices h and h

denote the quark antiquark helicities, spin 4+1/2 corresponds to h = 4. Note that we put

apart the factor ‘%b = Tr(t%t*) that will contribute to a global color factor in the helicity
Ni-1 The coefficient \;fp, explicitly factorized out, is related to the partonic

content of the p’—meson as a “ﬁ\/_idd state such that the meson involved below is understood

amplitude of

as a one flavor quark—antiquark state. For clarity, we recall the expressions of the virtual
photon wave functions following the conventions of Ref. [65] used for the GBW saturation

model,

‘I’Z;fh (Y, 1; Q = Op, —ho - \/ Ko (nlrl) (3.40)
w0 Q2) = 5 ( B} h) ) K 3.41
(h,R) Y, r, — CUhp, h2 YOnny +y h, >\«/> ‘ ‘ 1% 1(:u ‘TD ( . )

We can extract from our result the relevant twist 3 moments of the p—meson wave function,

)\ . s .

x (0" (ys 1) + (Onn, — Onon )1 Y (ys i) - (3.42)

Note that these combinations of "¢l 4+ ¢ " are directly linked to the auxiliary DAs g?
and g1 of [142],

— (@5 () + (6np, — Sn-r)er " ()
= 7" W) + NV W) ona, +y (V" (W) = N (W) h-a,
= 59" (y)on, A T yg”( )0h,—x,
= 2y Z g3 POV (E) Bn -, + T POV (E) Ghn, ) (3.43)

with £ =y —y. As we have decomposed the combination of DAs in the sum of the contribu-
tions for each quark and antiquark pair of specific helicity states, it is natural that we found
a parameterization proportional to the auxiliary DAs g? and gf which are the twist 3 DAs

of fixed spin projection on the light-cone.

We want to emphasize the fact that the results for gbf}fh(’\” VW are the same for the spin
non-flip (A, = A,) and spin flip (A, = —\,) impact factors. This fact is not obvious at

all from the results of Sec. 2.7.4 in the chap. 2 for the spin non-flip and spin flip results in
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momentum space (see for example below the expressions (3.45, 3.46)). We see again that the
results come more naturally in the impact parameter representation. The obtained factorized
structures (3.37) are illustrated in fig. 3.2.

Figure 3.2: The 2-parton contribution to the v* — pr impact factor in the dipole factorized

form.

3.2.4 Equivalence of momentum and impact parameter calculations

We want now to derive the results in the momentum space representation of Ref. [131]
presented in Sec. 2.7.4 in chap. 2, by integrating over the dipole size x. For this aim, we shall

use the following formula,

Pz z1; we 1 Le
[ S s = s (02 , (3.44)

0+ 2

which leads us to the same results as in eqs (2.276, 2.277), sec. 2.7.4 in the chap. 2,

yr—pr WW CabQ2 TWW TWW
Pogny = 5 [ WA+ y—9a ")
2 K2k + 212
« Tpp S E T207) (3.45)
e (B 4 p?)?
WW CabQ2
T = - / dy (5" = (y =77 ")
—4k?
o Y — 3.46
"+ )2 340

This fact can be seen as a self-consistency check of our calculation.

3.2.5 The impact parameter representation of the y; — p; impact

factor

Using the eq. (3.5), in the case of longitudinally polarized p—meson and virtual photon, leads

to
M = —1 i [ @i 15w [ e )T 0 70 000
= —mpf”/dwl(y pz)(e” - )/d2m qul(y,:u). (3.47)
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The hard part reads
H (y.0) = 4Qeg*0™ ( 2 1 1 ) (3.48)
Pl TN, PN Uk =k e) |
Its Fourier transform reads
~ 4Qe
q” ) = ———— oy Ko(plz])g® 6N (z, k
BE) = o v Rl N (. 8)
yab 2
= Ak WZ‘I/hhy, (3.49)
The impact factor reads then
P, Q) ( ) [av [y wmeum Acn,  650)
where ’(/)ZqqupL is the overlap,
G Qi) = TS g (i) W (.02 Q) (3.51)
(¢9) :uF \/i . (hh) YR (h,R)\7> = . .
(h,h)
The extracted relevant moment of p—meson longitudinal wave function reads
P L .2 = s m * .2 3.52
(h,ﬁ)(ynuF) AV, (er - n)o1(y; ) - (3.52)

Comparing eqgs. (3.52) and (3.42), we can see that the only difference between all these results

are the choice of the DAs. This in fact is due to the simple form of eq. (3.5) in the impact

parameter space, where the hard parts factorize and are contracted with different Lorentz

structures.

Performing the integral over x we recover, as expected, the same result as in momentum

space

2 cab 2
X 696 fQ d 2 . —ik-x
griven — 9010 / yyien(y / S o (ulz) (1 — 2y (1 — )

V22N, 2
26g26abfp ]{52
vang ) YW s

3.3 The ¢qg intermediate state contribution to the ~; —

pr impact factor

The gqg intermediate state, where the gluon carries a sizable amount of energy of the virtual

photon (y, ~ y1 ~ ¥2), participates to the full twist 3 result of the impact factor. Its

contribution involves several color dipole configurations that can interact with the t—channel

gluons.
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In sec. 3.3.1, we first present the factorization procedure to get a factorized form involving
the transverse Fourier transforms of the three-parton hard parts and the twist 3 moments of
the meson wave function. Then, in sec. 3.3.2 we prove by analyzing the color structure of the
diagrams that there are only dipole interactions and no other multipole interactions. After
that, we classify in sec. 3.3.2 the hard sub-process Feynman diagrams in order to identify the
relevant dipole configuration that interacts with the ¢—channel gluons, we explain in sec. 3.3.3
how the collinear approximation simplifies the computations of the Fourier transforms of the
hard parts. Finally, in sec. 3.3.4 the result is split into a spin flip and a spin non-flip

contribution as for the two-parton contribution.

3.3.1 LCCF in impact parameter representation for the ¢ggg ampli-
tude

The steps here are essentially the same as for the ¢g contribution. Using the Fierz decompo-

sition one gets

, d*, d* o
iy = /(2%) (27T)g tr[qug@l?gg)Sqffga(gl’gg)]

1 d4£1 d4€ o
= _1/ (27)1 (27r)g tr[Hgy (41, €)T°] Sy

We use the Sudakov decomposition of the momenta of the partons i, {; = a;p+ Bin+ {;1

(01,0,). (3.53)

and of the Fourier conjugate coordinates z; = a,,p+[3.,n+2z;, in the argument of the non-local
correlator defining the soft part S,5,. We factorize the amplitude in the momentum space,
and we reduce it to a convolution in the longitudinal fractions y; of the p meson momentum

p carried by the partons. It reads

A d*l d€ poor?
iAgy = /dyl yg/ = gl qqgF (ylaygaglivggi)

% d)\l —z)\lyl 9 e—zAgyg d2 —Mll'ZlL d2zgle—ifgl-zgl
o 27r

<(p(p)[b(Min + z11) il 5 g A5 (Agn + 241 )1(0)]0) , (3.54)

a,'H
with qug (yu yg, gllu gjl)

Let us introduce its Fourier transform qug(yi, Yj, Ti1, w1 ) defined as

al"
H g (yiuyjugilung_)

= /dzxudejLHo‘F (Yi, Yj, Tit, 1) e liL-wintliiwjl) (3.55)

qaq9

At twist 3, the Taylor expansion of the ggg hard part around the dominant ligh-cone

direction gives the contribution

HZ; (vi,95,01,01) :/d2x1ld2ng_qug (Y1,Yg, T11,Tg1) (3.56)
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and the amplitude simplifies as,
qqg /dyldyg /d l'lJ_d ng_ qIIg (yl ygvle_ang_)
dn d\ i .
. / e [ e () GAm) i A O O)0) - (35)
We recall the parameterization of the ¢gg correlators appearing in eq. (3.57),
dA; dA =iy - _
0 S i (o) [ (M) i AL )90 [0)5
= —im, f, C?Yp(ﬂ%) B(ylay%,u%) Prépla, (3.58)
dA; dA =iy - ,
SR (o) [ (Aym) 757, g A (Agn)(0)10) 1
= _imp fp Cﬁéy(ﬂ%) i D(y17 Y2; N%) Pu€ae, pn (3-59)
leading to
. m
'L.Aqqg = —pfp /dyldyg /d2l’1ld2$gl
X [Hqu ﬁ(ybyg,fll, Tgl) C?YpB(ylayl + 1)
gy g 11, 201 G D 1 + )| (3.60)
where we use our usual shorthand notation
ra a,l"“bu . o, ITH
Hagy ™ = Higg" aa by, (3.61)
The 3-parton contribution (3.60) in terms of S(y1,v2), M(y1,y2) reads
, m
iAggy = pfp /dyldyg /d2371¢d2$g¢
Sy +y 5L
%(qu; (yl, Ygy T11, ng_) + 1 qu; mg,(yb Yg, T11, ng_))
M(y1, 91 +y s
+ ( . 21 9) (qu; (ylayg7x1lasz) qu; ﬁpy{)(yl)ygal’llaxgl)) . (362)
The next section is mainly devoted to the computations of the Fourier transforms
qu;; (y17 Yg, T11, ang_) ) qu; e (yh Yg, T11, 'rgJ_) .
3.3.2 The color dipole configurations of the hard part
Diagrams and kinematics
The kinematics of the qgg intermediate state, illustrated in the fig. 3.3, reads
EZ
b = yipr+ b+ == po, (3.63)
s
EZ
by = fop1+ Lol + == po, (3.64)
Y2s
€2
ﬁg = Ygh1 + ggj_ + y_—gspz 5 (365)

g



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 139

Figure 3.3: The kinematics for 3-parton contributions.

with ¥ + %2 +y, = 1 and ¢;; + lo, + £, = 0. Each parton is on-shell and this kinematics
simplifies to the kinematics of the Sec. 2.7.4 in the collinear limit ¢, — 0.

The momentum of the p meson which is the sum of the momentum of the partons reads

1 (2 2 2 P2
Pp = p1+—<i+i—2+—g p2=p1+ Lps, (3.66)
SA\Y1 Y2 Yy S

and the invariant mass squared of the partonic system is

2
g8 6

= . 3.67
Y1 Y2 Yg ( )

P =
Note that the collinear limit, £, = £, = £, = 0, implies that we neglect higher twist effects
from the p—meson mass. The momenta of the {—channel gluons and virtual photon are still
defined by eqs. (3.7) and (3.8).

The "extended" amplitude defined as function of ¢;, and ¢,

. m
iAggg,eat. (11, 4g1) = —pf’)/dyldyg

4
Sy, y1+y ey p - R pys
%(qu; (ybyga guaggL) + quq; ” (yla yg>£u, ggJ_))
My, p1 +y es )b R,
+ ( g) <qu;_ (ybygaglJ_?ggJ_) - ZquJg_ Isfy{)(yl?yg?gllaggl)) ) (368)

2

gives back the twist 3 contribution of the amplitude A4, in the limit {¢;, , ¢, } — 0. Note
that this extended amplitude A,y co¢. mixes twist 3 terms (which are the only one remaining
in the collinear limit ¢, = ¢, = 0), with higher twist terms induced by the non-vanishing
transverse momenta {1, and ¢,;. The computation of Az, ez relevant when taking the
collinear limit involves all the three-parton diagrams displayed in figs. 2.8, 2.9 and 2.10 in

Sec. 2.2.1 of the chap. 2. These diagrams were divided into the following types,
e the 12 "abelian" diagrams (e.g. aG1 shown in fig. 3.4),
e the 12 "non-abelian with a single triple gluon vertex" (e.g. atGl, fig. 3.5),
e the 4 "non-abelian with two triple gluon vertex" (e.g. gttG1, fig. 3.6).

Similarly to the computation in the ¢¢ intermediate state contribution, we perform the inte-

gral over k of iA,z,, using the residue method applied to the contour C_ to get the impact
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€1+€g—q

Figure 3.4: The detailed structure of the diagram (aG1).

b

Figure 3.5: The detailed structure of the "non-Abelian* (with one triple gluon vertex) diagram
(atG1).

(I)'Y% —pr

qig.ext.» Which contains the relevant

factor contribution of the "extended" impact factor

dependence on the transverse momenta.

We show below the explicit results of the a(G1 vector and axial contributions to the

Figure 3.6: The detailed structure of the diagram (gttG1).
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extended impact factor (I)Zgg M after integration over k. The aG1 vector contribution reads
yab /
eq g° a
(I)Zl/Gl,ext. q fp my dy dy B(yh yz)
2N,
0
x{es e (ol —yily b+ Q) +yi (G - e) (b )+ (G )l e) }

ylyg
X )
(43 + 13) (ygly &5 + 201y Ly - L+t ﬁ; + Y1721y Q2)

and the aG1 axial contribution reads
1

(3.69)

ab
€ 9
(I):?Gl,emt. = q fp my s>+ 2N, dy, dys D(yb yz)

0
x{e; e, (72 G+yily -+ 52Q%) — [(4 e,) Uy ep)+ (- e) (L e}
ylyg
(52 + 13) (YgTglT + 201yl - Ly + 07l + 1172y, Q)

(3.70)

Classification of the diagrams in color dipole configurations

R

2
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Figure 3.7: The {qq}, {qg} and {qg} dipoles interacting with the t—channel gluons.

We want to extract the relevant color dipoles made of a color-anticolor singlet pair in
the fundamental representation, constructed either from a ¢ pair, denoted by {¢q}, or from
a quark and the "antiquark part" of the gluon (denoted by {qg}), or from an antiquark
and the "quark part" of the gluon (denoted by {Gg}), as the gluon belongs to the adjoint
representation of SU(N,).

The diagrams are collected depending on the pair of partons that interacts with the
t—channel gluons, see fig. 3.7. Due to the topology of the associated diagrams, the dipole
{qq} is suppressed by 1/N? the corresponding diagram being non-planar. The 6 diagrams
corresponding to the interaction of the {Gg} system with the t—channel gluons are the contri-
butions in %C— of aG1, httG1, atG1l, etG1, dtG1, btG2, shown in fig. 3.8. The results of the
diagrams associated to the {qg} system, cG1, gttG1, ctG1, ftG1, btG1, dtG2 are obtained

from the diagrams of the {gg} system by exchanging the role of the quark and the anti-quark.

2N.
bG2, dG1 and the symmetric diagrams under exchange of the quark and the anti-quark, cG1,

dG2, bG1, shown in fig. 3.9.

. . _ . . . gab N,
The diagrams associated to the {qg} system are the contributions in - (CF —2) of aGl1,

Dipole interactions

We will show that the color structure of the diagrams associated to the factorized hard part

of the gqqg intermediate state can be simplified into the color structure of a single dipole that
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Figure 3.9: The {qg} dipole content.

interacts with two t—channel gluons. We need for this to consider the abelian diagrams and

the non-abelian diagrams. For the abelian type of diagram, one gets

g

DO | =

(3.71)
while the non-abelian structure reduces to
= N, X
(3.72)
This second identity can be easily derived based on the relation
Tr(t* #14) = 5 fuse. (3.73)

which can be represented graphically as

a a
7
e O O 0
b c b c

thus allowing to pass from the adjoint representation to the fundamental one. We thus
conclude from eqgs. (3.71, 3.72) that in color space we only expect color dipole contributions
even at finite V..
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3.3.3 Fourier transforms of the 3-parton diagrams in the collinear
limit

In the following parts, we respectively denote z; and ¢; the transverse position and momentum
of the parton i. Using the analogy that exists [53| between a Lorentz sub-group in the infinite
momentum frame that leaves invariant the hypersurface orthogonal to the dominant light-
cone direction with the Galilean transformations in two-dimensional mechanics, the idea to
simplify the computation is to make a change of variables dictated by the two-body problem
in classical mechanics. The qgg system defined by {y1, 6}, {¥2,6} and {y,,£,} can be
simplified by considering the center of mass

Gij={yi + ijLij ={; ‘|‘£j} )
and the reduced particle

_ iy, Q yil; — y;L;
R = {my; = ' ! jgij:%}7
Yi + v (yi +v5)

variables, where ¢ and 7 are the partons forming the system that interacts with the t—channel
gluons. This simplifies the expressions of the extended impact factor results. It turns out
that in the collinear limit the relevant momentum is associated to the reduced particle of
the two-parton system that interacts with the t—channel gluons. As an example, the Fourier
transform of the hard part associated to the 2-parton system {gg}, reads

g{ég} (£17 £27 zg) = H{qg} (L) g E )62 (L)

(2m)? (2m)? (2m)? o
X exp(—i((L - gz - ﬁg) -y + gz “ Ty + ﬁg : £g>>
2, Pl
— = Hlag}
/ (2m)% (27)? (&2 £5)
x exp(—i(Lgy - (Zg,, — 1) + gy - ), (3.75)

/ L d*¢, d*C

with L = 0, + 0, + £, and 15 = y1 2, + §> 25 + Yy 2, the momentum and the position of the

center of mass G' of the 3-parton system. We now perform the change of variables (£,, £,) —

(£4g> Lg,), which involves the Jacobian (2 + y4)/91 = 1, leading to
r7iag} d%@ dQing {qg} :
HY (1), 19, 1,)= (QW)QWH (Lag» Lgg)exp(—i(Lgy - (g, — 1) + Lz - 2)) . (3.76)

Let us denote Fégérvv(ﬁ L;;,yi,y;) and Fégérﬂ(ﬁ- L;;,yi, y;) respectively the integrands

=450 = =359 =4

of the vector and axial-vector contributions of the diagram ’Diagr’ related to the 2-parton

system {ij}, to the "extended" impact factor.

Taking the diagram atGl as an example for clarity, its vector contribution Fa{ngiV and
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its axial vector contribution F, a{thgi 4 read explicitly,

CabQ2 N, 1 1
TCF§ (S(y1,y2) + M(y1,v2)) m

L2 L., (., +k
xqe e | 52y 1@ 2 e th) _<fg )
2u7/Q 2 20192Q

(L(jg ' Q’y)(Q: ’ (ﬁtjg + E))) (L(jg ' Q:)(Q'y ’ (ﬁtjg + E)) }

Pl (L, L )

49’ =qg> Y2, Yg

212y4Q/ (i1 + 2) 29,0

1
X 2

12 Q L2 Q | Wy tk)*\ "’
(2u§q/gQ + 5) (zu%% 31 2E0 )

(3.77)

C’“bQ2 N.1 1
TCF§ (S(y1>y2) - M(?Jl»?b)) @

Ft;{tqgiA (ﬁ(jg7 L(jg) g27 yg)

% * Ltzig _'_Q_ Lég‘(gég_'_@
Sra\ 20" 2 202y,Q/ (1 + ¥2)
(Lo - €5)(ey - (Ugg + K)) + (Lo €,)(¢] - (bgg + F)) }
202y Q/ (U1 + 12) 2@
1

X
L3, Q) ( Ly, ,Q (£Qg+ﬁ>2> ’
<2u%/Q T3)\sie T2 T g

+

(3.78)

with pf = p15:Q%, ug, = ;’;’TQEQ 2. We will denote for an arbitrary pair of partons i, j,

As our treatment aims to get the proper result only in the collinear approximation, we
cannot have access to the full transverse information about the dipoles dynamics but only
about dynamics of the dipole which is probed by the t—channel gluons. In other words, the

information carried by is only partial and not relevant in the collinear approximation so

Lgy

we can send the non-interacting dipole momentum to zero to simplify the result of the

Ly,
extended impact factor. This gives,

{a9) . C* N 1
FatGl,v(ﬁqg, 0, Y2, yg) = 2 Cp ) (S<y1> yz) + M(yb yz))
My S & (3.79)

2 (Mg + (Lgy +K)?)
C® N, 1
9 CF§ (S(y1>y2) - M(ylayZ))
X'u_ég QZ &y .
i1 2 (g + (g + K)?)

F(j:thgiA (gzjga Qa g27 yg) =

(3.80)

We can now express eqs. (3.79, 3.80) in terms of their Fourier transforms to get the
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Figure 3.10: The relevant momentum £;, of the interaction with ¢—channel gluons in the

collinear approximation.

information about the interacting dipole dynamics,

F 0 0.0y, = o el g M
atG1, V( Lggr o y27yy) = ( (y17y2) + (ylay2))
2 Cp2

Q: / d2l' :qu i(l-,+k)z
x 299 Ko (g Lo Hh) 2
C® N, 1

F (L, 0,52, yg) = = (S, y2) — M(y1,92))
2 Cr2

*

e* e d2x 12 .
X -, = = 49 K _ Z(ﬁqg +E)§

Finally, what remains in the collinear limit is

C*® N.1
FJEV(O 0,%2,yy) = 2 Cno = (S(y1, y2) + M(y1,92))

& & &z ig, ik
K _ KL
S [ K g o)

{ag) ; C* N 1
FatGl A(07Q7 y27yg) = 5 _(S<y17y2) - M(?Jb?h))
2 Cp2
€& d’z ng ik
X — Ko (g e
5 | G K b e
The total contribution of the diagram atG1 is the sum of the above vector and axial vector
contributions
Ce N, s 2z p2 .
FY 0,0 - 2°S = ‘7/ ~99 [0 (1 bz 3.81
atGl( s Y2, yg) 9 C (ylv y2) 9 (271_) U O(,qu |£|) € ( )
Let us emphasize that the integral over 7, and y, of ijg{(o 0, Y2, Yy) given in eq. (3.81) is

the twist 3 impact factor contribution of the diagram atG1l for the {gg} dipole, where we
have extracted the relevant information about the interacting dipole of size x.

The computations of contributions of all the other 3-parton diagrams proceed in the same
way. We first compute the diagrams associated to a dipole configuration, in terms of the
center of mass and the reduced particle momenta and masses, to obtain F{”}(ﬁw, Ly, i, vj)-
We compute then the Fourier transform fU7}(z,y;, y;) of FU9}((;, L;; = 0,y;,y;) as Ly; is

=179 =
never shifted by the t—channel gluon transverse momenta k. Flnally, the impact factor is
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expressed in terms of f{7}(z, y;,y,), where z = z, — x; is the size of the dipole {ij}, i.e. the

variable conjugated to the momentum £;;. The impact factor has thus the general form

»—pr {ij}
Doty 7T = Y T (3.82)
{ij}
= dyz dyj {ZJ} L, Yi, y;) . (383)
{ij}

The results of the diagrams in momentum space exhibit two kinds of structure denoted
by Sl(£7 IU/) and San(£7 HA, ,LLB)

2

M
Sl (Ev ,u) - £2 T ,LL2 5 (384)
[y

(C+p2)(C+ p3)’

S2mn<£7 ,uAmuB) (385)

where m and n are 2-dimensional euclidean indices and u, p4, pp are the energies scales at
stake. The Fourier transforms of formulas (3.84) and (3.85) are

Sie.) = [ Gt Kalulal) o=, (3.56)
and
Sumlinin)= [ G5 (f (Ko(pale) ~ Ko(ps la)) =
NI Kouala) oo
_/(%)ui—u%{ { palzl +K°<MA|_D)

(S )]

o (Gt [ (S0 )

2 |z fa |z]

iy (22— i) |} (3.87)

1B |£|

This expression can be simplified by noting that the modified Bessel function K, ()) satisfies

the equation
MK (A 4+ MK, (N = (A2 + 1)K, (). (3.88)

The expression (3.87) thus reads

Pz etz

Somn (L, fa, 1bp) = /—7
(2m) p2 — pig

{5% WA Ko (palz]) — 1 Ko |z))]

- <6an - ﬁg?) [ Kapalz]) — pg Ko(us |£|ﬂ} ; (3.89)
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where we have used the relation
1
_XK(I)()\) + Ké’(A) = Ky(\) (3.90)

implied by the standard Bessel recursion formulas [172]. Let us note that the Fourier trans-

forms in eqs. (3.86, 3.89) lead to the appearance of two functions in the 3-parton impact
(I)'y%—mcr

gq0.ni and one associated to the spin

factor, one associated with the spin non-flip transition
VP AT,

flip transition ®

qqg,
Cotgnt. < HEKo(plz) (3.91)
Popt X Ko () (3.92)

3.3.4 Spin non-flip and spin flip ¢qg impact factor

In this section we show the results we obtain for each color dipole configuration interacting

with the gluons in t—channel.

The sum of the contributions in %é\; of the diagrams (cG1), (ctG1), (ftG1), (httG1),

(btG1l) and (dtG2), associated with the scattering amplitude of the {gg} system on the

t—channel gluons, leads to the impact factor

prrerlagd _ C_ab Ne
999 2 CF

y {g; " Ey {M<y17y2)
2

d2
dy1dy; /ﬁ/\/’@,@
_ S(y1,y2)

'ulegKO(/iqg @D M%KO(NI |£|)

Y
b Ay [P Ko L) — 12, Koty m)]]

Y1y
" (QZ'QV B Q}ky&&'g) <5(y1,y2) B M(ylayZ))
2 || (7 U2
X [Hag Ko (g |2]) — p Ko (1 z])] }
Cab N, dzl' S(yl yg)
—= [ dy,d —T, ’ 2K, .
+ Gor [ andn [ GET T K ). (3.99)

with 3 = 1292Q*. Note that %% = Yoo is associated to the analogous reduced mass of
the 2-body system constituted by the antiquark and the center of mass of the quark and the
gluon. We show in the tab. 3.1, the kinematic variables associated to the center of mass G
and the reduced particle R of the system {gg} that we use to obtain, after simplifications
described previously, the result (3.93).

The result for the {gg} dipole is straightforward by exchanging the role of the quark and
the antiquark i.e. exchanging y; and s in (3.93). Adding the results for the {gg} and for the
{qg} dipoles and using the symmetry properties of S(y1,y2) and M (y1, y2) under the exchange
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{qg} Center of mass G Reduced particle R
o . ol —ygly il —ygly
momenta | L, = 4+ ﬁg =—/, ﬁqg = = »
g _ y1£1+yg£g o
positions o= "0 T=2,— 1
0 Y1ygQ
masses mag = Y2Q mpr = 4= =5

Table 3.1: Kinematic variables of the center of mass GG and of the reduced particle R of the
system {qg}

of y1 — ¥, the spin non-flip part @Zg;np'f’{ng{@} and the spin flip part @Z;Fg_}pT AagkHag) o
ab 2 *
Aagh+{agy _ —C* N d”z &
@Z;Fg_;”f B 2 Or didys / Nz, k) 5
S(ybyz)
{T 12 Ko ) + 122, Kolpag Izl)}
M(ylay2)
— 2 [ Ko |z]) 4 12 Kot |2])]
i1\ SW1,v2) 2
b () SO s ) — K )]
Y1\ M(y1,92) 2
= () M) iy ) — 2 Ko )]
c® N, d’z €,
+ 5 Op dyldyQ/ 2
S(yy, M (y1,
. {Mu%(m m)—MuQKO(m |x|>} (3.94)
and
c® N, d’z e, e ef-rx-e
prr—rerlagtiasy _ dud / L Sy Zp =y
qq9,f. 2 CF Yy1ay2 .’,U )( 9 |£‘2 )
Sy, y M(y1,y
( Wuv) - M9 12 g1 ) — 2 K |
n Y2
g Ko (g |2]) — P32 12])] - (3.95)

The spin non-flip and spin flip impact factors associated to the scattering amplitude of the

dipole {¢q} on the t—channel gluons are given by the contributions of type 2 (% —2) from
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the diagrams (aGl), (cG1), (bG1), (dG2), (bG2), (dG1). The results read

C® [N, d2x e e
rr—rrladt _ Ne / d / T €, €,
qqg,n.f. 2 CF dyl Y2 (27T)N(£7 E) 9

S(y1,y M(y1,y
{% W2 Koy J2]) — %uémuz 2])

_ S(y1,y2) [(

) i Ko zl) — pga Ko (taq 121))
g

)
2 (3 ) o ol |z|>)}

M(yl, y2)
M

+ pa Koz 2l) — 15sKo(haq 121))

—|-y1 (ulKO(ul |Zlf|) M?]qKO(Mq«i |£|)):| }

Y1
c® (N, d’z €, ¢€,
T (CF )/ iy | 2n) 2

S b M b
. (% 12 Koy |2]) — % W2 Ko (s Izl)) | (3.96)

and

Loy C® d*x ‘TT-e
) prian —(——2)/dy1dy2/ Nz, k) (=5 m =

<S(ylay2) _ M(?Jl,yz)) [9_2( e

2
_ ~xr|) — K X
U1 gz yg :uqq 2(#‘1‘1 |—|) :ul 2(M1 |—|))

2 0 Kol ) = 3o m»] . (3.97)

We show in tab. 3.2 the kinematic variables associated to the system {qg}. The total 3-parton

{qq} Center of mass G Reduced particle R
_ _ _ Z72£1—y1£2 _ 372£1—y1 EQ
momenta | L, =0+l =—L, | L ;= = %
ps _ Y1xy tYezy _
ositions Ton = r=x,—x
P Hife T L =X 2
_ pis 72Q
masses me = Y,Q mp =34 = ylgj

Table 3.2: Kinematic variables of the center of mass G and of the reduced particle R of the
system {qq}
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results for the spin non-flip amplitude is thus

ab
Bttt = / dyydys / Nz, k)~ QQ”
S(yi,y M(y1,y
x {2 {%M () — %M (1 lz)

Ne [S(y1,12) M (y1, y2)
C—F [# MggKO(/irig |z]) — ma NggKO(/iqg |z)

Y2y Sy, y
(2 s () (i) = o )]
Y21 Y1

_M(ylayZ) [

+

pt Koy [2]) = 113y Fo (g @Mﬂ

N. S(y1,v2) /1 o 2
i (CF - 2) [T (2 Ko () = 12, Ko (j1qq 1))

g

Y2
+ 2 (3 Rofa ) ~ uquowqq@m)

_ M (y1, y2) ([

g

paKo(pz zl) — 1gaKolhgq I2])]

K ) = b o g W)] }

c S M
4 e ~§7/dy1dy2 ( (yi’w) _ (y1>y2)) ’
2 hn Y2

while the spin flip 3-parton impact factor is

ooy C¥ d*z e e (g-z)(z-e)
(I)qu fp = 2 /dyldyZ /%N<£7E)< p2 T - . |x‘2 . )

S(yi,y2)  M(y1,y2) N,
( ) _ 5 2y Kaliag la]) = it )

12, Ko pigg |z]) — p3 K2 (2 |2))]

; (JCV _ 2) B (424 o (j1qq 2]) — 18K )

g

(2 Kot e]) — Rl m))ﬂ |

g

(3.98)

(3.99)

In the formula (3.98), the last line is not proportional to the dipole factor N(z, k). In
the following part, we will show that putting together the 2-parton result (beyond WW

approximation) and the 3-parton result, all parts of the impact factor which do not have
the dipole form cancel each others using the QCD EOM. This will extend to the full twist 3

result, the reasoning leading in the WW approximation from eq. (3.31) to eq. (3.34).
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3.4 The twist 3 v — pr impact factor in the dipole pic-

ture

In the sec. 3.4.1, we show that the EOMs of QCD are essential to get a factorized form of the
impact factor at the full twist 3 level. Next, in sec. 3.4.2, we show that the spin non-flip and
spin flip results are equivalent to the treatment in momentum space presented in sec. 2.7.4 and
finally, in sec. 3.4.3, we combine two- and three-parton impact factor contributions leading
to the final full twist 3 result.

3.4.1 The dipole picture arising from the equations of motion of
QCD

Let us recall the two relations (2.113, 2.114) between DAs due to the QCD EOMs,

Yos(y; 1e) + Uealy; 1) + o1 (v; 1) + o4 (y; 1y)

1
= —/ dy2S(y, yo; 1) (3.100)
Y
yos(y; uh) — yealy; ni) — @1 (i 1) + 04 (y; 17
1
=/ dys M (y, ys; i) - (3.101)
Yy

Adding (3.100) multiplied by y and (3.101) multiplied by g, gives the relation

yies(y) + (v — et (y) + ©4(y)
= —y/dyzs(y,yz) +y/dsz(y,yz)- (3.102)

Multiplying (3.102) by 1/(yy) and integrating over y gives finally the relation

/ Zy (2yges(y) + (y — )t (y)ﬂm(y))

M
2

with p(y) = "W (y) + ¢9*(y) being the complete DAs, i.e. which include both the WW
and the genuine twist 3 contributions. The 2-parton impact factor (3.31), before using the
relations due to QCD EOMs, reads

—>T _Cab 2
v = e, [y / L ulxl Nz, k)

x ([(.y—y)sol W) - )] e £_|£7+<p£(y)

- CTabQ: ' Qv/z_z[@y?? es(y) + (y— )1 +ea)] - (3.104)



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 152

Collecting all terms arising from eqgs. (3.98) and (3.104) which are not proportional to the

dipole factor we obtain

2y (y) + (y — 9)et () + ¥4 (y))

/dylfdy ( ynye) _ M(i’”))} —0, (3.105)

Cab
Ep Eyo 9 [/

S|&
Q|

i.e. we observe that they cancel due to the relation (3.103). The final 2-parton impact factor

is thus

Bor " = — Cab@?/ /—{ y— )¢t (y) — Phv)]

o 0] hu)ey e el ) Nz ) (3.106)

and it can be decomposed into the spin non-flip and the spin-flip parts

Spr CabQ2 B

o= /dy (¢h + (v = 9)el)

d°z 1
X/Q__E ey plzl K (ulz) Nz, &) (3.107)
and
Spr CabQ2 )
T = - /dy (2= (—9)e1)
z (1, (e - 2)(e, - 2)

. / 2 <§§p "y T T) plz| K (plz) Nz, k) - (3.108)

The results (3.106, 3.107, 3.108) are the extension of the formula (3.34, 3.35, 3.36) to the full
solution of the QCD EOMs for the DAs, including the genuine twist 3 solutions.
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The 3-parton spin non-flip result after using the relation (3.103) is thus

ab
q):]}/;pg—;P? o /dyldy2 / .’,U ]{7 —P2Q'Y
S(y17y2> 2 M(y1,y2)
X 92 T P Ko (e |z]) — TMQK o(p2 |z])

Nc S(ybyQ)
Cr {T 112, Ko(pgg |z]) —

(L) s (T 0 ) — i ot )

Y21
- M(y17 y?) |:

M(yh 92)

+ Hag Ko (hgq |2])

ﬁMMMF@MWMmQ

*’(N @f%ﬁﬁﬂﬁ%wmmﬂ@mwmm}

g

+Z2 [ K(](,MQ |.TD ngKO(thi ‘QD})

_ M(y1, y2) ([

g

+ 2 ol ) s K l2)] )|}

p3Ko(z z]) — pgaBopaq 121)]

(3.109)

and it can be rewritten in a more compact way, using the symmetry properties of the DAs

under exchange of y; and s, as

Pz e e
Borot = —C / dydy / ﬁ/\f (2, k) =5=5(y1,2)
1 N,
< (20 alin ) + 5 1 ol o)

n (W_y_l) x [p2Ko(us |z]) — uﬁgKo(qulil)]D

Y291

1 (N,
# = (e —2) (Kol e s o o))

+fmmwmoummMmﬂ}.

(3.110)

3.4.2 Equivalence with the results obtained in momentum space in

the light-cone collinear factorization scheme

The integration of the spin non-flip result over z is straightforward by using the relation

2k

/d_/\/'(x B) i Ko(lal) = 15—

(27)

(3.111)
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The result after integration over x is

@Zgg—;p? — _(O%b / dyldyge S (y1,Y2)

% { ( Ne ) o < Y I Y2 Y2 )
Cr) g+ e \a+ 19171 @+ Yl

N, « « N 2 o }

Crafy + %y, +y2¥ G a+ i

(3.112)

with o = k*/Q?. The result (3.112) is, as expected, identical to the one obtained in Ref. [131]
using the light-cone collinear factorization in the momentum space representation.
For the spin flip result, using the symmetry of the amplitude under the exchange of ¥,

and 72, we get

. A’z ee. (ef-z)(z-e)

YV5—poT ab L p =y \&p y
(I)qqg £, C /dyldy2 / (271_)-/\/‘(&7 E) < 2 |£‘2 )
% (S(y17y2)

n

N,
) {CF [Mgng(ng |z]) — H%K2(M1 |z|)
"‘Mgng(qu |z]) — N§K2(/~L2 @D]

+ (G —2) |2 02 Kl ) Rt o)

+zl (g2 (bgq l2]) — 13 (e Izl))” : (3.113)

We now integrate over z = (|z| cos(0), |x| sin(0)), with k = (|k| cos(¢), |k| sin(¢)) . Using the

fact that only the spin flip contributions are non zero, and based on the following identities

[(Qp_)*'i]z[&‘@ﬂ _ (_Z.I%I/g"e)< ZI%\I[ ) ‘; __%em, (3.114)

] [z Jz[e™N [lzle”™N 1 1 o
= (=) (i) & =2 3.115
2 ( N AN AT (3.115)

resulting from the explicit definitions of the polarizations in eq. (2.241), we obtain

[ LN 1) ot (“QE’F ! 'é)z@ & ))

= —/d)\)\K2()\)/%2 (1 — cos {Z—)\ cos(6 — gb)])% +i20
= —%eiﬁqb/d)\)\[(g()\)/;l_ez (1_COS [_ cos( D +i20

_ _%eiiwz/de(A)JQ (kA)

I
((ef) k) (k-e7) 2k

) 3.116
|E|2 E2+M2 ( )
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with A = p |z|. Hence the spin flip impact factor integrated over x reads

(I)Zgg?pT = _2Cabe/dy1 dys S(y1,y2)

o £ P S
Cr (@ +y101) (e +11y,y) (@ + 1) (Gra + Goy,)

N, U Y
+< —2) {_ vz ( A . )H (3.117)
Cr Yo + Y192 \ @+ y1y1 @+ Y2l

which is the same result as the one obtained in Ref. [131].

3.4.3 Complete twist 3 result of the 5 — pr impact factor

Combining all the 2-parton and 3-parton results for the spin non-flip and spin flip impact
factors ®1 7", &7 77 of the 4% — pp transition, we finally obtain

x A2z e e
(I>’YT_>PT _ _(ab / E2 k =p =
n.f. ¢ (271‘) N(£7 _) 2

. {% / dy (&5) + (v — 9T () el K (ul))

1 N,
+ [ s S0, (y— (2 W2 Ko J2)) + e [ k2, Koy L)

Cr
+ @2‘;) X [13Eo (2 |2]) — 12, Ko (pigq @mD
- yig (g; - 2) [[pA Ko(p |zl) — 1gaBohq 12])]
+% (15K o (s |2]) — 1135 Ko(gq @MD } : (3.118)

and

. d’z ee  (e-x)(z-e,)
YPPT __ vab p =y \Ep ol
o= [ e (55 )

< {=F [ (6500 - - el ) el Kals)

S(y1, N,
[ e (D) |2 (i Rty ) ~ oo )
1 F

"‘Mgng(qu |z]) — N§K2(/~L2 ‘&m

N, Y
# (20 2) |2 (g ) — 2oty o)
F yg

+'Zl (1 52 pgg |2]) — 13K (1 @D)H} . (3.119)

g
The eqs. (3.118) and (3.119) are the full twist 3 results the ~v;(\y) = pr(A,) impact factors,
in the forward limit. These results are consistent with the dipole picture, as the coupling

with the t—channel gluons with a dipole of transverse size z factorizes out.



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 156

Note that the three-parton contribution could, in principle, be rewritten in a factorized
form with a photon wave function characterizing the dissociation of the photon into a quark
antiquark gluon intermediate state, and the p— meson DAs. Unfortunately, to the best of

our knowledge, the 3-body wave function of the photon is unknown.

3.5 Helicity amplitudes and polarized cross-sections

The full twist 3 results egs. (3.118) and (3.119) of the previous section allow us to build
a model for the helicity amplitude 77, based on one hand on the previous twist expansion
calculations and on the other hand on a dipole model for the dipole scattering amplitude
which is known from the fit of DIS data.

We are interested in the two dominant helicity amplitudes Too and 777 in the forward
limit. Ty and 77, involve respectively the ®27PL given by eq. (3.120) and ®7 7»2% given

by eq. (3.118). We can put the two results in the compact form,

ab *
virwoud) = (%) [ [aoi wnomawn, B

ab
O (K, Q, i) = <6 )/dy/dr VT (13 Q, 1) Al k) (3.121)

( ab) /dyz/dy1/dr G (g1 s Qi) Al K)

The functions ¢7L pr wzlg—m T Wqﬂ ) T are respectively the amplitudes of production of a

p—meson from a quark antiquark (quark-antiquark gluon) system produced far upstream the

target in the fluctuations of the virtual photon. We recall their expressions,

L L m f L L
Wiy "o i) = \;{ N i ) Wi (4,1 Q%) (3.122)
(h,h)
T . m 5 .
%Z Y. 1) pf,, Z¢ Yi p )‘I’Zhé Ny, Q%) (3.123)
For mpyJ, [ S(y1, yo; 7 .
w?qqu R 'LLF) \;ﬁp [( 4N, =z 22 o) FT(y1, 92,1 Q)
T My, yo; 2 .
_ ( oy (yl 2yQ MF)) f7T<y2ay17£; Q):| , (3124)

where the function F77 describes the fluctuations of the transversely polarized photon into
a quark-antiquark-gluon color singlet. The function F7 can be expressed in terms of the

longitudinally polarized photon wave function

* I N :uz
V(15 Q) = 3 Wiy =25 Kol ), (3.125)
(h,h)
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as

Fr(y1, Y2, 15 Q) = ! {2 [w}

2 1Q
LN [‘I’”z(quyz; Q) , (y2 171) y <‘I’”Z(uz,£; Q) Wi(ugyr; Q))}
Cr 710 U2 Y1 71Q 711Q
N (Nc B 2) [(\Iﬂz(ﬂbﬂ Q) (g, 1 Q))
Cr YgQ YgQ
Yo (Wi (p2, 15 Q) Ui (g, 1 Q)
5 < e 5,Q ) H | (8.126)

Note, that in the large N, limit 7 simplifies as

* 1
Fo(y1,y2,75,Q) —— I aQ

X {%%‘Iﬂz (11,73 Q) + Y21 U2 (1, 73 Q) — ?Jg‘wz (Hgg: T3 Q)} .

(3.127)

In our convention, the helicity amplitudes within the impact factor representation read

T 5ab d2k‘ *
w00 R (1,0, 1) Fia ), (3.128)

with F(x, k) is the unintegrated gluon distribution as defined in Ref. [22]. Note that we have
adapted the coefficient of the dipole scattering amplitude in the impact factor such as that
the dipole cross-section defined in Ref. [22] is simply

N2 -1 [d%

olx,r) = C4 X —F (v, k)AL, 1) . (3.129)

Inserting the expressions for the impact factor ®" 7" of egs. (3.120, 3.122), one gets

T .

20— [y [l Qi) o), (3.130)
T

2 [y [ s @) o) (3.131)

/dyz/dyl/dmb(qqg (Y1, y2,15Q, ) o, 1) -

We can separate T1; in the WW contribution and the genuine contribution

TWW W
= fay [y s @) o). (3.132)
T Ly i

y [ vl g Qi) o) (3.133)

/dyz/dyl/dmb(qqg (Y1, 92,75 Q, i) (1) -

As announced, the formulas (3.130, 3.131) allow us to combine various models of the scat-

tering amplitude of a dipole on a nucleon with the results obtained by the twist expansion of



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 158

the v* — p impact factor. We will use the GBW-model and the AAMQS-models described
in the chap. 1.3.4.
At t = t,,;, the contributions to the longitudinal and transverse differential cross-sections

dg—tL and dg—tT are respectively related to the helicity amplitudes Ty and 17,

doy, | Too(s,t = 0)[°

t = = 134
dt (t=0) 16752 ' (3.134)
dO’T |T11(S,t: 0)|2

t = d
dt ( O> 16752 (3 35)

The t—dependency is expected to be governed by non-perturbative effects of the nucleon
which can be phenomenologically parameterized by an exponential dependence of the differ-

ential cross-sections J J
o o
LT (1) = =@t ZZLT
dt dt
Integrating over ¢ leads to the following results in the polarized cross-sections

=0). (3.136)

1 |Too(s,t =0))?
_ 3.137
oL b(Q?)  16ms? ’ ( )
1 |Ty(s,t =0))?
p— . .]_
or b(Q?)  16ms? (3.138)

The b(Q?) slope has been measured by ZEUS and H1. We will use here quadratic fits of the
b(Q?) slope data of Ref. [99] shown in fig. 3.11 to determine the cross-section. Note that this
t—dependence is obtained by fitting the differential cross-section by the factor exp(—b|t|) for

several values of Q% giving the dependence b(Q?). The agreement of the fits with the H1 data
in shown in fig. 3.12.

b(Q?)
10r-

Fit  —
5 FitError - ---
H1 -

Figure 3.11: Quadratic fits of the b—slope H1 data.

Note that the t—dependence being given by a decreasing exponential function, we can
estimate from the b—slope values that the differential cross-section is dominated by the range
1
b(Q?)

1



CHAPTER 3. LCCF IN THE IMPACT PARAMETER REPRESENTATION 159

Op —
% af W =75 GeV
O 10 E
< 10% ) . Q’ [GeV?] §
= .\\\-\\ 33(x4) |
s " \\'\i\‘\' 66(x2)
5 g : ]
S '\'\v\\v\i 115(x 1) o
) @\e%\g\é\ 17.4 (x 0.5) |
A 5 33.0(x05) ]
10 F_ oo oon E
" E fit D‘e | | Hl E
104 0.2 0.4 0.6 0.8
It] [GeV?]

Figure 3.12: t—dependence of the differential cross-section measured by H1 collaboration [99]

for several Q? values and with a center of mass energy W = 75 GeV.

3.6 Comparison with the HERA data

In this section, we compare to H1 [99] and ZEUS [98| data our predictions for,

or o4 €

or, oL, R:E androozm.
We denote o the total cross-section, o = o, + or according to ZEUS convention in ref. [9§]
or 0 = eoy, + or following H1 notation [99]. We recall that ¢ is the photon polarization
parameter, (¢) = 0.98 for H1 and () = 0.996 for ZEUS. We remind that the dipole models
we will use are the GBW and the AAMQS dipole models.

We prefer to present 7’83 instead of the ratio 7177 /Ty as the data are available from both H1
and ZEUS collaborations. As the difference between the b—slopes of o, (br) and o7 (br) is
small compared to the value of the b—slope measured by fitting the t—dependence of the total
differential cross-section, we will assume that b = by, = by. The direct consequence of this is
that the ratios of differential cross-sections are constant functions of ¢. This assumption on

the b—slopes allows to relate rJ3 to the polarized cross-sections,

04 _ 0L

T = —.
0 ="
As it is shown in fig. 3.13, the data of rJ3 as a function of |¢|, support this assumption as
they are weakly sensitive to the t—value.
The results for o7 and oy are shown in figs. 3.14(a), 3.14(b). As one can see the nor-

malizations of the cross-sections are in very good agreement with the data for large Q?,
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Figure 3.13: Ratio r{j as a function of [¢| for different values of Q? from ZEUS collaboration
Ref. [98].

independently of the dipole model used. This is a non trivial result as the overall normaliza-
tions of the predictions are on one hand due to the normalization of the dipole cross-section
and on the other hand, based on the coupling constants evaluated from QCD sum rules.
The success to reproduce the right normalization at large Q% indicates that the factorization
procedure we used works properly. The fact that at low Q? there is a discrepancy appearing
between the data and the predictions, is due to higher twist effects. Indeed, the twist expan-
sion is justified only up to certain value of Q? as the neglected terms are expected to be of
the order m,/Q. It is also interesting to observe that thanks to HERA data we can evaluate
when the higher twist corrections become important. We see that for Q* ~ Q?,,, ~ 5 GeV?,
the leading twist corrections are not enough to describe the data. Unfortunately the satura-
tion regime which in this kinematics is expected for Q* < Q? ~ 1 GeV? is not accessible with
our twist expansion, but as it is shown in fig. 3.15, the dipole models are giving the good
r—dependence. We recall that the s dependence of the amplitude is only given by the dipole
scattering amplitude as the impact factors are s—independent.

The different contributions, namely the WW (for o7 only) contribution, the total contri-
butions at,

py = gt m :
4

and the asymptotic contributions p% — oo are displayed for op and o in figs. 3.17(a),
3.17(b). As in the GS-model of the chap. 2, the WW contribution dominates the genuine
contribution and the AS contribution is close to the other contributions. Comparing the
curves of the AS and the total contributions allows to get a good estimation of the dependence

of the results in the choice of the factorization scale. Indeed we will see in the next part that
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Figure 3.14: Predictions for o7 and o7 vs Q?, for W = 75 GeV, using the AAMQSa (red solid
line), AAMQSDH (blue large dashed line) and GBW (green dashed line) models compared to
the data of H1[99].

this dependence is quite important at the level of the overlap of the v* and p—meson wave
functions but it is hidden by the convolution with the dipole cross-section which filters the
range of dipole size where this yr—dependence is important.

In figs. 3.18(a), 3.18(b) are shown the total and AS results with the uncertainty due to
the error bars on the b—slope values in fig. 3.11.

The results with the AAMQSa dipole model for the ratios R and r{; are shown in figs. 3.19,
3.20. The predictions are compared with both H1 with W = 75 GeV and ZEUS with
W = 90 GeV collaborations. The ratios are independent of the normalization of the dipole
cross-section, we can thus only check if we get the good scaling between the transverse,
longitudinal and total cross-sections.

The results with the other dipole models are fairly close to the results obtained with the
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Figure 3.15: Total contribution to the total cross-section ¢ as the function of W compared to
H1 data [99] obtained with the AAMSQa dipole model. The uncertainty due to the b—slope

error bars is taken into account.
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Figure 3.16: Total contribution to the total cross-section o as the function of W compared
to ZEUS data [98] obtained with the AAMSQa dipole model. The uncertainty due to the

b—slope error bars in taken into account.

AAMQSa model, they are shown in Ref. |20].

3.7 Interacting dipole distributions

In this section we study the radial distributions of dipoles in the intermediate states that

interact with the nucleon via the dipole scattering amplitude.
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Figure 3.17: Predictions for o7 and oy, vs Q?, for W = 75 GeV, using the AAMQSa-model,
compared to the data of H1[99].

3.7.1 Overlaps and distributions

In Sec. 3.5 we have found the factorized expressions eqs. (3.130, 3.131) for the helicity am-

plitudes, that we can rewrite as

Ty,
s

= My, / dr Py, (r, Q% pz) 6(x,7) (3.139)
0

with Py, (7, Q?, %) being the amplitude of probability to find an intermediate state with
a dipole configuration of size r = |r| that can interact with the two t—channel gluons and

N, is a normalization factor. The distribution P, ., (r, Q% p7) reads

1
PAPA—Y(rv anu%‘) = ./\/'—T/dy }W,\W(y,r;u%,QQ)

P

: (3.140)
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Figure 3.18: Full twist 3 and asymptotic predictions with the b—slope uncertainty, using
AAMQSa model.

and

Ny, = / drr/dy W, 1.y, 75 41, Q) (3.141)
0

where the function }WAW (y,7; u%, Qz)‘ is the overlap of the wave functions of the incoming

virtual photon state and the final p—meson state. The functions Wy and Wiy, read explicitly,

Wao(y, 75 13, Q%) = 0" (y,15.Q, 13) (3.142)
Wit (y,r; py, Q%) = sz)pT(ya Q. 1) (3.143)

/ dys VU (g, Qi)
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Figure 3.20: Predictions for ris vs W and Q* compared respectively with H1]|99] data (figure
(a)) and ZEUS|98| data (figure (b)), using the AAMQSa-model.
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The overlap Wiy can be split in the WW and the genuine contributions

wWw
WY (v 13, Q%) = o Y (g Qud) (3.144)
W (g, 7313, Q%) = U5 (13 Q. i) (3.145)

+ / dylwz(fq?))pT (y17 Yy, 1, Qv /’Li—') .
0

As the r and the ) dependences of the radial distributions enter the amplitudes only
through the variable "\ = r@". We can rescale the distribution by changing the variable r
by A,

P, (52 Q% 1)
Q

The distribution Py, (A, u%) only depends on @ by the choice of the renormalization scale

. (3.146)

Py, (A, 1)

_ @+

2 S

So in the asymptotic case, Py, (A, 00) = P{L‘iv()\) depends only on A.
Helicity amplitudes read,

T\ >
; T o= Ny, / dX Py, (A, pa) ez, \), (3.147)
0
with \
glx,\) =0 <x, —) (3.148)
Q
the rescaled dipole cross-section.
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Figure 3.21: Full twist 3 (Total) Pyo(\, u%(Q?)) for Q* = 1GeV? (solid red) and Q? =
10 GeV? (dashed blue), AS P{*(X) (dotted purple) and &(x,A) at W = 90 GeV? for
Q* = 1 GeV?(dotted-dashed black) and @Q* = 10 GeV? (dashed black).
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Figure 3.22: The Total Py; (A, p%(Q?)) (red solid lines) results and their WW (blue dot-dashed
lines) and genuine (Gen) (orange dashed lines) contributions, as well as the AS (purple long-
dashed line) result Pl(lA S)()\) and the dipole cross-sections ¢ (z, A) (black dot-dot-dashed lines)
at W =90 GeV?, for Q? = 1 GeV? (thick lines) and Q? = 10 GeV? (thin lines).

In figs. 3.21 and 3.22 are shown the different contributions to the distributions Py, and
Pyy for two different values of Q% Q* = Q? = 10 GeV? and Q* = Q7 = 1 GeV2 As
Qs(z) = Ry'(z) ~ 1 GeV, the case Q> = Q? corresponds to the diluted regime while the case
Q* = Q% is at the boundary with the saturation regime.

The dipole cross-section from the GBW-model is also shown in order to see which dipole
sizes are filtered by the interaction with the nucleon. We will refer to the "dipole bandwidth"
for the range of dipole which have a size above 2Ry(x), i.e. r > 2Ry(x), or equivalently by
multiplying both sides by Q, A > \5%(Q? W) = 2Ry(z)Q. Indeed we can see that the dipole
cross-section will play the role of a filter for the large dipoles and as one can note looking at
the figs. 3.21 and 3.22, A% (Q? W) are good estimates of the inferior bounds of the dipole
cross-section bandwidth.

In fig. 3.21, the AS and the total contributions to Py, for both virtualities @), and @), are
shown and we can see that the distribution Py, is not sensitive to the factorization scale. We

can then consider only the AS case as it has a simple analytic form,

P00 = 5P (5000 =6 [ dy A Kl (3.149)

For the distribution P;; we see in fig. 3.22 that the distribution is sensitive to the factor-
ization scale. For the small values, p% = u%(Q3?), the genuine contribution is as important
as the WW-contribution. This fact is not visible on the results for helicity amplitudes be-
cause the genuine distribution selects mostly small dipoles that are not in the bandwidth
of the dipole cross-section compared to dipoles produced by the WW-contribution. This
analysis of the dipole distributions indicates that the genuine contribution, i.e. the quark

antiquark gluon intermediate state contribution, should not be omitted in the production
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of a transversely polarized p—meson at the level of the overlap of the wave functions. This
is in contradiction with the usual assumptions of dipole models to assume the transversely
polarized p—meson state to be saturated by the valence quark antiquark degrees of freedom,
leading to the normalization relation (3.150) [55, 145] and the electronic decay width relation
eq. (3.151) [115, 145,

2
V= Y fay [ |vwn] (3.150)
h,h
chmles-e) = 3 [dy [ e Wi, (3.151)
h,h

Indeed, the r.h.s. of eq. (3.151), if one expands at large Q* the p meson wave function
around r = 0, is our WW result, which therefore misses the genuine contributions arising
from three-parton correlators, which can have a significant effect even for large Q? values.

We give in tab. 3.3 the average A defined as,
M, (HR(Q%) = / dXX Pyx, (N i) - (3.152)
0

Comparing these values with A% (Q? W), allows to determine which contribution will

Total | WW | genuine AS
<)‘>00 (M%) ~ 3.7 X X % ~ 37
Ny (13(1GeV?) | 63 | 87| 32 |22 ~83
(A (0310 GeV?)) | 7.3 | 8.5 3.5 ~ 8.3

Table 3.3: Average values of (\) = (r @) for the different contributions to the radial distri-

bution for two values of p%(Q?).

dominate when convoluted with the dipole cross-section. We can also give an estimation, see
tab. 3.4, of the percentages V. s of dipoles for a given distribution that are in the bandwidth

of the dipole cross-section,

Ny, (Q°, W) = / dAPyx, () - (3.153)
)\S“t‘(Q2,W)

AS
Noo(1,90) | 70%
Noo(10,90) | 10%
N1 (1,90) | 90%
N11(10,90) | 35%

Table 3.4: Estimation of the percentages of dipoles that have sizes above the saturation scale
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As expected, the more the virtuality ) is high, the weaker is the overlap between the
dipole cross-section bandwidth with the distributions leading to a decreasing Ny, with Q.
The fact that the Ny »,’s vary from ~ 90% to ~ 10% on the range Q* € [QF, Q2], indicates
that the dipole cross-section is scanning the dipoles distributions with a high sensitivity. This
means that the result is very sensitive to the dipole cross-section &(x,r) and to the radial
distributions Py, . (r, Q% pf) profiles.

It is interesting to get information on the longitudinal fraction of momentum dependences
of the overlaps of the wave functions. In other words, do we get more symmetric jet (y ~
y ~ 3) or aligned jet (y ~ 1 or § ~ 1) configurations? The overlaps of the wave functions

are given in figs. 3.23, 3.24. We restrict ourselves to the study of the AS case. =~ We can

y 0.0

Figure 3.23: Profile of the overlap of the wave functions for the v; — py, transition as function
of y and .

see that we have a symmetric configuration for the v; — pp transition while the 75 — pr
transition involves more aligned jet configurations. Note that the aligned jet configurations
are important for large values of A and the oscillations for these large A—values in the fig. 3.24
are surely due to numerical instabilities. For fixed A, the y—shape of the overlap is in part
due to the shape of the DAs. It is then good to remind that the oscillatory shape of the DAs
is due to the fact that the conformal expansion is truncated up to a given conformal spin
[142].

In figs. 3.25 and 3.26 are respectively shown the product of the dipole cross-section with
the distributions Py and Pp;. The integrands of Ty and T3, are globally close to the satura-
tion radius 7 ~ 2Ry(z) and the peaks are moving on larger dipole sizes when Q? decreases.
These plots are giving an important information about the k; —behavior of the integrands.
Indeed the dipole size r is the Fourier conjugate of the momentum %; meaning that the
dominant k; are of the order 1/r, with r the size corresponding to the maximal value of
the integrands shown in figs. 3.25 and 3.26. We can see that the range of &k that gives a
significant contribution to the amplitude is of order 1/Ry(z) for large Q? and of order @ for

() ~ 1/Ry(x). This behavior indicates that within our assumptions, the process is dominated
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Figure 3.24: Profile of the overlap of the wave functions for the . — pp transition as a

function of y and .

by some effective scale k, contained in the range [Qs, Q.

05 \
YLP - pLP !
04 o :
(b) Q2 = 10 GeV/2 i (@) @2 =1GeV?
03 Totdl —— / |\ Tota — —
AS ---- : AS -—-—-
02r o
: e 2R®@(x)
01 2Ro®(%) —
/ - L .
e ho 4o s me TGV

Figure 3.25: The normalized integrand of Toy, i.e. Poo(r, @2, %) 6 (x, 7). The Total integrands
at p2.(Q?) for Q* = 1 GeV?(blue long-dashed line) and Q* = 10 GeV? (red solid line), and
the AS integrands for Q% = 1 GeV?(blue dot-dashed line) and Q% = 10 GeV? (red dashed
line) integrands of Ty for W = 90 GeV.

3.7.2 Comparison of overlaps

The overlaps we have considered above involve the p—meson DAs. Let us compare our model

for the wave function overlaps to two other models,

e the "Boosted Gaussian" (BG) model [118],
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Figure 3.26: The Total contributions at u%(Q?) for Q* = 1 GeV? (blue long-dashed line)
and Q% = 10 GeV? (red solid line), and the AS contributions for @? = 1 GeV? (blue dot-
dashed line) and Q? = 10 GeV? (red dashed line) to the normalized integrands of 71, i.e.
Pri(r, Q% pu%)o(z,r), for W =90 GeV.

e the "Gaus-LC" model [74].

The p—meson wave functions are separated in spinor parts and scalar parts ¢ and ¢y,

\Ilfm)\ _alyr) = :l:\/QN {wiwr [YOn,+0% = — YOnx05, 4]0 (3.154)
+mf5hﬂ:6hj:}¢T(ya r),
o mf \
Viiagmo07) = VN |mo + 6= | Gl (3.155)

The scalar parts read

2

¢%auss—LC (y’ T) - Np <y g)Z e_ﬁ 7 (3.156)
)2
¢%auss—LC (y’ T) = N; Yy 6_ 2R} 7 (3157)
2 P2 — 2 2 P2
BG _ myRy » 2ygr mi Ry o
_ N _ _ . 3.158
Lr(y.r) LTYY €Xp ( 8y7 R, T 2 ( )

We follow here the conventions and take the values for the parameters of ref. [76]. The values

of the parameters are given in tab. 3.5. The overlaps with the virtual photon wave function

Model Ny | R5 GeV™2 | Ny | R GeV 72| f
Gaus-LC 4.47 21.9 1.79 10.4 fo
Boosted Gaussian | 0.911 0.853 12.9 R? 0.182

Table 3.5: Parameters of the "Gaus-LC" and the "Boosted Gaussian" models taken from
ref.[76], for M, = 0.776 GeV, f, = 0.156 GeV, m; = 0.14 GeV and with pr =f,.
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are

Z\Ifff,f v D)V (1) o

meo(W)ch(y, r) = (y* + 5 K () 0, (y, 1) (3.159)
IR UEE

2 w2

ykalur) (mpon( ) + 8" Lon ) ) (3.160)

p

with 6 = 0 for the Gaus-LC model and § = 1 for the BG model. The longitudinal and
transverse radial distributions thus read

PLT LT
Prr(r NLT /dyZ\If )5 (y, ), (3.161)

where the factors N 1 normalize the distributions Pp r(r). The comparison of our results
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Figure 3.27: The Gauss-LC (green, long dashed), BG (blue, dot-dot-dashed), Total (red,
solid) and AS (red, dashed) radial distributions for the ; — pr, transition (top) and for the
Y4 — pr transition (bottom), vs r for Q? = 1 GeV? (left) and Q* = 10 GeV? (right), as
well as the dipole cross-section &(x,r) rescaled by the factor 5og for W = 90 GeV (black,
dot-dashed).

with the phenomenological models "Gaus-LC" and "BG" allows to understand the role of
higher twist corrections on the distributions. We see for example in figs. 3.27(b) that all

the results are quite close to each other for Q* = @2, leading all to a good description of
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the data. For Q* = Q3F, we see in fig. 3.27(a) that the distribution Py spreads more than
the distributions from the two other models. The difference is certainly due to higher twist
corrections which should be needed for such small virtualities. In fig. 3.27(d) the overlaps
are in good agreement for large dipoles in the bandwidth of the cross-section, which means
that higher twist corrections are washed out by the dipole cross-section. At small Q?, we see
in fig. 3.27(c) that the choice u3 ~ @Q?* allows to get closer from the Gaus-LC an BG models
compared to the AS result. Note that the higher twist corrections would play also a role on

the normalizations Ny, values.

3.8 Discussion

We have presented a phenomenological model for the helicity amplitudes and the polarized
cross-sections of the diffractive p—meson electroproduction. The r—dependence of our pre-
dictions is encoded in the dipole cross-section model while the Q?>—dependence comes from
the twist 2 and twist 3 calculations of the v* — p impact factors. Finally the t—dependence of
the differential cross-section is taken from the more recent fits of HERA data. This model does
not have free parameter as the dipole cross-section model we use is completely determined by
the DIS structure functions. The results have a weak dependence in the factorization scale
choice. As expected from many studies (see for example [113] where it is argued that pQCD
treatment should be valid for @* > 20 — 30 GeV?), the model matches the data at large
Q? and the process can be described in terms of pQCD. Two different effects could generate
the discrepancy with the data, the skewness effects which are not included in our study as
we took the dipole cross-section from inclusive processes, and the higher twist effects in the
p—meson factorization. As our predictions are in good agreement with the data at large Q?
where higher twist corrections can be neglected, we can expect that skewness effects does
not change dramatically the predictions. Indeed, the skewness is expected to become large
for large Q®/m? ratio and our predictions agree with data for large @ which indicates that
these effects are negligible. Our guess is then that the higher twist corrections should be
the dominant corrections to our treatment and thanks to HERA data we can identify the
virtuality Q*™" ~ 5 GeV? where the higher twist corrections become important. The fact
that this scale is larger than the saturation scale Q*(z) ~ 1 GeV?, indicates that we cannot
yet get information on the genuine saturation regime because of higher twist corrections.

The t—dependence of the polarized cross-sections includes the contributions of the other
helicity amplitudes that violate the SCHC. The study of the t—dependence of the impact
factors would be nice in order to combine the results of dipole models with impact parameter
dependence [85, 76] as the DVMP allows to probe the proton shape [145], in particular
through local geometric scaling [173, 174].

The next-to-leading order effects - both on the evolution and on the impact factor - should

be studied, since it is now known that both may have an important phenomenological effect
[175, 176, 177, 178, 179|.
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On the experimental side, the future Electron-Ion Collider [180] and Large Hadron Elec-
tron Collider |181] with a high center-of-mass energy and high luminosities, as well as the
International Linear Collider |182, 183, 184 will hopefully open the opportunity to study in
more detail the hard diffractive production of mesons [185, 186, 175, 187, 176, 188, 177, 189).



Conclusions

We have presented different techniques used to unravel the hadronic properties uncovered in
exclusive processes. The interesting aspect of the approach we pursued here is that it com-
bines two different schemes to model the p—meson interactions and the nucleon interactions.
The first one involves an extended collinear factorization approach with regularization of the
end-point singularities by the transverse momenta k; of the t—channel gluons. It provides
an interesting way to study the moments of the p—meson wave functions. The second one
involves dipole models and confirms the factorization of the interaction of color dipole config-
urations with the nucleon target. The extension up to twist 3, involving an additional gluon
which can take a large amount of energy of the virtual photon, can be interesting in order to
study interactions beyond the quark antiquark pair intermediate state approximation.

The new results obtained in this thesis are,

e predictions for the ratios of helicity amplitudes Ty, /T and 711 /T [18] combining the

twist 2 and twist 3 v* — p impact factors with a model of impact factor for the nucleon,

e expressions in impact parameter space representation for the v; — pr and v — pr

impact factors that are shown to be consistent with the color dipole picture [19],

e predictions for the helicity amplitudes Ty and 77, as well as for the polarized cross-
sections oy, and op [20], combining the impact parameter representation of the v* — p

impact factors with dipole cross-section models.

While the first set of predictions using a nucleon impact factor model depends on one free
parameter, which is the transverse scale of the nucleon target dynamics M, the second set of
predictions has no free parameters and is in good agreement with data for large virtualities.
Within this model, we can learn that the qgg Fock state plays an important role at the level of
the overlap of the virtual photon and the p—meson wave functions, while it can be neglected
at the level of the helicity amplitude 7}; due to the convolution with the dipole cross-section.

Many perspectives in order to extend this study are possible. We can make predictions for
the future collider projects EIC and LHeC. This study offers also the perspective to combine
higher twist calculations of the vector meson productions with impact parameter dependent
dipole models, by extending the kinematics to the non-forward limit ¢ # ¢,,;,. Indeed the
diffractive production of vector meson is a very good process to probe the impact parameter
dependence of the dipole-target scattering amplitude and the photon wave function is well-
known in the non-forward limit [145]. Another perspective would be also to extend this
treatment to the violating s-channel helicity conserving helicity amplitudes that are measured
at HERA. A higher twist calculation could be performed to get information on the higher
twist corrections in the model presented in chap. 3 for the low values of Q2. One could also
repeat the calculations including quark mass effects and consequently chiral odd and chiral
even DAs to get a similar analysis of other vector mesons such as the ¢—meson. Another

interesting perspective, which we have left for a further study, is to relate the combinations



of DAs that appear in this first principle treatment of the impact factor, to the numerous
models that exist for the p—meson wave functions. It would provide a test for these models

of p—meson wave functions.



Appendix

QED and QCD lagrangians, Feynman rules

In our studies we work at energy scales where we can mostly neglect the weak interaction
contributions compared to electromagnetic and strong interactions. The weak interaction
could contribute for example through the exchange of a Z°—boson instead of a virtual photon
in e —p collisions but these kinds of contributions can be safely neglected in our present study.
We then restrict ourselves to the strong and the electromagnetic interactions involving QCD
and QED Lagrangian terms.

Let us recall the Lagrangians and the Feynman rules which are used all along this thesis,

we choose to follow the conventions of the Peskin and Schroeder book [190].

QED Feynman rules

Let us consider the QED lagrangian for a theory with only electron, of electric charge e =
— |e], and photon fields. The generalization of the following Lagrangian terms and Feynman
rules for fermions with electric charge @ |e| is straightforward and consists in replacing e —

@ |e|. The covariant derivative reads
D, = 0, +ieA, (3.162)

with A, the gauge field of the photon.

The abelian Yang-Mills Lagrangian in the covariant gauge reads

1

1
Lopp = —7 (F)* — —

Y (0" Ay)* + P(ip — m)yp (3.163)

where F,, = 0,A, — 0,4, is the field strength tensor of the photon, the term —2—15 (B“AM)2
is the gauge fixing term, where ¢ is an arbitrary finite number. The choices to fix £ = 0 and
¢ = 1 correspond respectively to the Landau and the Feynman gauges. The lagrangian can

be decomposed in:

e the photon kinematic term,
Fu)* = 57 (0"4,)" (3.164)
e the electron kinematic term,

V(id —m), (3.165)

e the interaction term,

—Y(eAu). (3.166)



This leads to the following Feynman rules for the propagators of the photon and the electron,

H v —i Pup
NN ——— g — (1 =2 3.167
Pl p? +ie Gpw = (1 =€) P2 ( )
p
P ! 3.168
- p—m’ (3.168)
and for the vertex
L

4—§—e —deyt. (3.169)

The external lines of the Feynman diagrams for fields of fermions and photons are re-
spectively given by the spinors u(*)(p) for particles and v(®)(p) for antiparticles of spin s and

momentum p and polarization vectors e*(p) with A the polarization,

incoming fermion u® (p)

outgoing fermion
(3.170)
outgoing antifermion
incoming photon

outgoing photon

p .
. p
incoming antifermion o) (p)
—=
p
o-
p
~@
p
1
=
p

which comes from the projection of the free fields on the incoming and outgoing states.



QCD Lagrangian

The strong interaction is described by QCD which is a local gauge field theory based on the
non-abelian SU(3)-color symmetry!, involving quarks, antiquarks and gluons as elementary
constituents of the hadronic matter. The quarks and the antiquarks belong to the funda-
mental representation of the SU(N)-color group and are carrying a color charge. They couple
with the N? — 1 gauge boson fields (gluons) of SU(N)-color A#*t* that belong to the adjoint
representation of SU(N), {t*},-1. n2_1 being the generators of SU(N). The matrices t* are
traceless hermitian N x N matrices. Note that the gluons are carrying color charges of the
adjoint representation which means that contrary to the abelian case of QED where the pho-
tons do not care an electric charge, the gluons can interact between themselves. This fact
will lead to new terms in the Yang-Mills lagrangian of (QCD compared to the one of QED.

The generators t* verify the Lie algebra structure relation
[t 7] = i fobete, (3.171)

where f%¢ are the structure constants which are completely antisymmetric under the ex-
change of the indices a, b, c. The field strength tensor for the gluon fields is given by,

Fp, = 0,40 = 0,45 + g fanc AL AT, (3.172)
and the covariant derivative reads
D, =0, - igt“AZ. (3.173)

In the covariant gauge the Yang-Mills QCD Lagrangian reads

iFuv - %(BMAZ)Q + (v D, —m) +c0c+ 99" ¢ foecaApCe s (3.174)
where the fields denoted c are the fields of the Fadeev Popov ghosts that are introduced to
represent the functional determinant that appears when inserting in the Lagragian the gauge-
fixing condition. These fields are not associated to physical particles as they are Grassmann
fields, i.e. they anticommute as fermionic fields, but in the same time they are scalar fields,
i.e. bosons of spin zero. As a consequence they are appearing only when computing loops.

The Feynman rules in the covariant gauge are

'We work from now with N colors instead of 3 in order to keep more general formulas.



i J L
p—m"
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| k1
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d, Vy b, %]
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E —gf*p"

p
where the dotted lines are the Fadeev-Popov ghosts.
In this thesis we work in most of the cases in the light-cone gauge instead of the covariant

gauge. Let us define first the general case of axial gauge where the gauge fixing term is given
by

1
Lgauge fix. = _E(nuAf)z ) (3175)

with n an arbitrary fixed vector. In this gauge there is no ghost but the price to pay is that

the gluonic propagator DZ?, (p) expression is more complicated

—ioab nupy +nup,  EpE+n?
D (p) = , — e e e 3.176

The light-cone gauge corresponds to the choice £ = 0 and n? = 0, i.e. n is a light cone vector.



In this case the gluonic propagator simplifies in

—i6aP NPy + nup
ab — , — R 3.177
) = (g - PR ) (3.177)

which verifies, n, D" (p) = 0 and the on-shell transversity condition when p* = 0, p, D" (p) =

0. Note that the off-shell transversity condition appears clearly when writing D/‘jﬁ(p) as

—1 n,n,
Dy = —— (g,fy—pQ%‘ ) (3.178)



References

[1] R. P. Feynman, Very high-energy collisions of hadrons, Phys.Rev.Lett. 23 (1969)
1415-1417.

[2] J. D. Bjorken, Asymptotic Sum Rules at Infinite Momentum, Phys. Rev. 179 (1969)
1547-1553.

[3] D. J. Gross and F. Wilczek, ULTRAVIOLET BEHAVIOR OF NON-ABELIAN
GAUGE THEORIES, Phys. Rev. Lett. 30 (1973) 1343-1346.

[4] D. Gross and F. Wilczek, Asymptotically Free Gauge Theories. 1, Phys.Rev. D8 (1973)
3633-3652.

[5] H. D. Politzer, RELIABLE PERTURBATIVE RESULTS FOR STRONG
INTERACTIONS?, Phys. Rev. Lett. 30 (1973) 1346-1349.

6] K. G. Wilson, Nonlagrangian models of current algebra, Phys.Rev. 179 (1969)
1499-1512.

[7] N. H. Christ, B. Hasslacher, and A. H. Mueller, Light cone behavior of perturbation
theory, Phys. Rev. D6 (1972) 3543.

[8] N. N. Nikolaev and B. G. Zakharov, Colour transparency and scaling properties of
nuclear shadowing in deep inelastic scattering, Z. Phys. C49 (1991) 607-618.

[9] N. Nikolaev and B. G. Zakharov, Pomeron structure function and diffraction
dissociation of virtual photons in perturbative QCD, Z.Phys. C53 (1992) 331-346.

[10] A. H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL
pomeron, Nucl. Phys. B415 (1994) 373-385.

[11] A. H. Mueller and B. Patel, Single and double BFKL pomeron exchange and a dipole
picture of high-energy hard processes, Nucl. Phys. B425 (1994) 471-488,
|hep-ph/9403256].

[12| J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, The Wilson
renormalization group for low x physics: Towards the high density regime, Phys. Rev.
D59 (1999) 014014, |hep-ph/9706377|.

[13| J. Jalilian-Marian, A. Kovner, and H. Weigert, The Wilson renormalization group for
low © physics: Gluon evolution at finite parton density, Phys. Rev. D59 (1999) 014015,
[hep-ph/9709432].

[14] A. Kovner, J. G. Milhano, and H. Weigert, Relating different approaches to nonlinear
QCD evolution at finite gluon density, Phys. Rev. D62 (2000) 114005,
[hep-ph/0004014].



[15] H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A703 (2002) 823-860,
|hep-ph/0004044|.

[16] E. Iancu, A. Leonidov, and L. D. McLerran, Nonlinear gluon evolution in the color
glass condensate. I, Nucl. Phys. A692 (2001) 583-645, [hep-ph/0011241].

[17| E. Ferreiro, E. Tancu, A. Leonidov, and L. McLerran, Nonlinear gluon evolution in the
color glass condensate. II, Nucl. Phys. AT03 (2002) 489-538, |hep-ph/0109115].

[18] I. Anikin, A. Besse, A., D. Ivanov, B. Pire, L. Szymanowski, and S. Wallon, A
phenomenological study of helicity amplitudes of high energy exclusive leptoproduction
of the p meson, Phys. Rev. D84 (2011) 054004, |[arXiv:1105.1761]|.

[19] A. Besse, L. Szymanowski, and S. Wallon, The Dipole Representation of Vector Meson
FElectroproduction Beyond Leading Twist, Nucl. Phys. B867 (2013) 19-60,
larXiv:1204.2281].

[20] A. Besse, L. Szymanowski, and S. Wallon, Saturation effects in exclusive rhoT, rholL

meson electroproduction, arXiv:1302.1766.

[21] M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation,
Phys. Rev. 123 (1961) 1053-1057.

[22] J. R. Forshaw and D. A. Ross, Quantum chromodynamics and the pomeron, Cambridge
Lect. Notes Phys. 9 (1997) 1-248.

[23] A. Donnachie and P. V. Landshoff, Total cross-sections, Phys. Lett. B296 (1992)
227232, [hep-ph/9209205].

[24] R. E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math.
Phys. 1 (1960) 429-433.

[25] H. Cheng and T. T. Wu, Photon-photon scattering close to the forward direction, Phys.
Rev. D1 (1970) 3414-3415.

[26] G. Frolov and L. Lipatov Sov. J. Nucl. Phys. 13 (1971) 333.
|27] V. Gribov, G. Frolov, and L. Lipatov Yad. Fiz. 12 (1970) 994.

[28] S. Catani, M. Ciafaloni, and F. Hautmann, Gluon contributions to small x heavy flavor
production, Phys. Lett. B242 (1990) 97.

[29] S. Catani, M. Ciafaloni, and F. Hautmann, High-energy factorization and small x heavy
flavor production, Nucl. Phys. B366 (1991) 135-188.

[30] J. C. Collins and R. K. Ellis, Heavy quark production in very high-energy hadron
collisions, Nucl. Phys. B360 (1991) 3-30.

[31] E. M. Levin, M. G. Ryskin, Y. M. Shabelski, and A. G. Shuvaev, Heavy quark



32]

3]

[34]

[35]

136]

137]

138]

139]

[40]

[41]

42]

[43]

|44]

[45]

|46]

147]

production in semihard nucleon interactions, Sov. J. Nucl. Phys. 53 (1991) 657.

J. Bartels, K. J. Golec-Biernat, and K. Peters, On the dipole picture in the nonforward
direction, Acta Phys. Polon. B34 (2003) 3051-3068, [hep-ph/0301192].

L. N. Lipatov, Small-z physics in perturbative QCD, Phys. Rept. 286 (1997) 131-198,
|hep-ph/9610276].

V. S. Fadin, E. A. Kuraev, and L. N. Lipatov, On the Pomeranchuk Singularity in
Asymptotically Free Theories, Phys. Lett. B60 (1975) 50-52.

E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Multi - Reggeon Processes in the
Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443-450.

E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, The Pomeranchuk Singularity in
Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199-204.

[. I. Balitsky and L. N. Lipatov, The Pomeranchuk Singularity in Quantum
Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822-829.

L. N. Lipatov, Pomeron in Quantum Chromodynamics, Adv. Ser. Direct. High Enerqgy
Phys. 5 (1989) 411-489.

F. Gelis, T. Lappi, and R. Venugopalan, High energy scattering in Quantum
Chromodynamics, Int.J.Mod.Phys. E16 (2007) 2595-2637, [arXiv:0708.0047|.

J. D. Bjorken and E. A. Paschos, Inelastic Electron Proton and gamma Proton
Scattering, and the Structure of the Nucleon, Phys. Rev. 185 (1969) 1975-1982.

J. Callan, Curtis G. and D. J. Gross, High-energy electroproduction and the constitution
of the electric current, Phys.Rev.Lett. 22 (1969) 156-159.

I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B463 (1996)
99-160, [hep-ph/9509348]|.

Y. V. Kovchegov, Small-x F'2 structure function of a nucleus including multiple
pomeron exchanges, Phys. Rev. D60 (1999) 034008, [hep-ph/9901281].

V. N. Gribov and L. N. Lipatov, Deep inelastic e p scattering in perturbation theory,
Sov. J. Nucl. Phys. 15 (1972) 438-450.

L. N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20
(1975) 94-102.

G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B126
(1977) 298.

Y. L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering

and ete™ Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov.



Phys. JETP 46 (1977) 641-653.

[48] V. L. Chernyak and A. R. Zhitnitsky, Asymptotic Behavior of Hadron Form-Factors in
Quark Model. (In Russian), JETP Lett. 25 (1977) 510.

[49] A. Vogt, S. Moch, and J. Vermaseren, The Three-loop splitting functions in QCD: The
Singlet case, Nucl.Phys. B691 (2004) 129-181, |hep-ph/0404111|.

[50] L. Motyka, K. Golec-Biernat, and G. Watt, Dipole models and parton saturation in ep
scattering, arXiv:0809.4191.

[51] J. Bartels and L. Motyka, Baryon scattering at high energies: Wave function, impact
factor, and gluon radiation, Eur.Phys.J. C55 (2008) 65-83, [arXiv:0711.2196].

[52] Z. Chen and A. H. Mueller, The Dipole picture of high-energy scattering, the BFKL
equation and many gluon compound states, Nucl. Phys. B451 (1995) 579-604.

[53| L. Susskind, Model of selfinduced strong interactions, Phys.Rev. 165 (1968) 1535-1546.

[54] J. D. Bjorken, J. B. Kogut, and D. E. Soper, Quantum Electrodynamics at Infinite
Momentum: Scattering from an Ezternal Field, Phys. Rev. D3 (1971) 1382.

[55] G. P. Lepage and S. J. Brodsky, Exclusive Processes in Perturbative Quantum
Chromodynamics, Phys. Rev. D22 (1980) 2157.

[56] D. Y. Ivanov and M. Wusthoft, Hard diffractive photon proton scattering at large t,
Eur. Phys. J. C8 (1999) 107-114, [hep-ph/9808455|.

[57] M. G. R. V. N. Gribov, E. M. Levin, Singlet structure function at small x:
Unitarization of gluon ladders, Nucl. Phys. B 188 (1981) 555-576.

[58] H1 Collaboration Collaboration, S. Aid et. al., A Measurement and QCD analysis of
the proton structure function f2 (xz, ¢**2) at HERA, Nucl. Phys. B470 (1996) 3-40,
|hep-ex/9603004].

[59] H1 Collaboration Collaboration, C. Adloff et. al., A Measurement of the proton
structure function f2 (z, ¢**2) at low x and low ¢**2 at HERA, Nucl. Phys. B497
(1997) 3-30, |hep-ex/9703012].

[60] ZEUS Collaboration Collaboration, M. Derrick et. al., Measurement of the F2
structure function in deep inelastic e+ p scattering using 1994 data from the ZEUS
detector at HERA, Z.Phys. C72 (1996) 399-424, lhep-ex/9607002).

[61] ZEUS Collaboration Collaboration, J. Breitweg et. al., ZEUS results on the
measurement and phenomenology of F(2) at low x and low Q**2, Eur.Phys.J. C7
(1999) 609-630, [hep-ex/9809005].

|62] K. Golec-Biernat, Saturation and geometric scaling in DIS at small z, J. Phys. G28
(2002) 1057-1068, |hep-ph/0109010].



|63]

|64]

|65]

|66]

167]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

7]

B. Kopeliovich, L. Lapidus, and A. Zamolodchikov, DYNAMICS OF COLOR IN
HADRON DIFFRACTION ON NUCLEI, JETP Lett. 33 (1981) 595-597.

G. Bertsch, S. J. Brodsky, A. Goldhaber, and J. Gunion, Diffractive Fxcitation in
QCD, Phys.Rev.Lett. 47 (1981) 297.

K. J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at
low ¢**2 and its implications on diffraction, Phys. Rev. D59 (1999) 014017,
[hep-ph/9807513].

A. M. Stasto, K. J. Golec-Biernat, and J. Kwiecinski, Geometric scaling for the total
gamma™® p cross-section in the low © region, Phys. Rev. Lett. 86 (2001) 596-599,
[hep-ph/0007192].

E. Tancu, K. Itakura, and L. McLerran, Geometric scaling above the saturation scale,
Nucl. Phys. A708 (2002) 327-352, |hep-ph/0203137|.

ZEUS Collaboration, J. Breitweg et. al., Measurement of the proton structure function
F2 at very low Q**2 at HERA, Phys. Lett. B487 (2000) 53-73, |hep-ex/0005018]|.

ZEUS Collaboration, S. Chekanov et. al., Measurement of the neutral current cross
section and F2 structure function for deep inelastic e+ p scattering at HERA, Eur.
Phys. J. C21 (2001) 443-471, [hep-ex/0105090|.

H1 Collaboration, C. Adloff et. al., Deep-inelastic inclusive ep scattering at low x and a
determination of as, Eur. Phys. J. C21 (2001) 33-61, [hep-ex/0012053].

J. Bartels, K. J. Golec-Biernat, and H. Kowalski, A modification of the saturation
model: DGLAP evolution, Phys. Rev. D66 (2002) 014001, |hep-ph/0203258|.

E. Gotsman, E. Levin, M. Lublinsky, and U. Maor, Towards a new global ¢)CD
analysis: Low x DIS data from nonlinear evolution, Eur.Phys.J. C27 (2003) 411-425,
|hep-ph/0209074].

E. Iancu, K. Itakura, and S. Munier, Saturation and BFKL dynamics in the HERA
data at small z, Phys. Lett. B590 (2004) 199-208, |hep-ph/0310338|.

H. Kowalski and D. Teaney, An Impact parameter dipole saturation model, Phys.Reuv.
D68 (2003) 114005, |hep-ph/0304189|.

J. L. Albacete, N. Armesto, J. G. Milhano, C. A. Salgado, and U. A. Wiedemann,
Nuclear size and rapidity dependence of the saturation scale from QQCD evolution and
experimental data, Eur.Phys.J. C43 (2005) 353-360, |hep-ph/0502167|.

H. Kowalski, L. Motyka, and G. Watt, Ezclusive diffractive processes at HERA within
the dipole picture, Phys.Rev. D74 (2006) 074016, [hep-ph/0606272|.

V. Goncalves, M. Kugeratski, M. Machado, and F. Navarra, Saturation physics at



78]

[79]

[30]

[81]

[82]

33

HERA and RHIC: An Unified description, Phys.Lett. B643 (2006) 273-278,
|hep-ph/0608063].

L. Frankfurt, A. Radyushkin, and M. Strikman, Interaction of small size wave packet
with hadron target, Phys. Rev. D55 (1997) 98-104, |hep-ph/9610274].

J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, The BFKL equation from
the Wilson renormalization group, Nucl. Phys. B504 (1997) 415431,
[hep-ph/9701284].

S. Munier and R. B. Peschanski, Geometric scaling as traveling waves, Phys. Rev. Lett.
91 (2003) 232001, hep-ph/0309177|.

S. Munier and R. B. Peschanski, Traveling wave fronts and the transition to saturation,
Phys. Rev. D69 (2004) 034008, |hep-ph/0310357|.

S. Munier and R. B. Peschanski, Universality and tree structure of high energy QCD,
Phys. Rev. D70 (2004) 077503, [hep-ph/0401215].

E. Tancu, A. H. Mueller, and S. Munier, Universal behavior of (QCD amplitudes at high
energy from general tools of statistical physics, Phys. Lett. B606 (2005) 342-350,
[hep-ph/0410018].

|84] Y. V. Kovchegov, Unitarization of the BFKL pomeron on a nucleus, Phys. Rev. D61

[85]

[36]

187]

138]

[89]

[90]

[91]

(2000) 074018, |hep-ph/9905214].

C. Marquet, R. B. Peschanski, and G. Soyez, Ezclusive vector meson production at
HERA from QCD with saturation, Phys. Rev. D76 (2007) 034011, [hep-ph/0702171].

J. L. Albacete, N. Armesto, J. G. Milhano, and C. A. Salgado, Non-linear QCD meets
data: A Global analysis of lepton-proton scattering with running coupling BK evolution,
Phys.Rev. D80 (2009) 034031, [arXiv:0902.1112].

J. L. Albacete, N. Armesto, J. G. Milhano, P. Quiroga-Arias, and C. A. Salgado,
AAMQS: A non-linear QCD analysis of new HERA data at small-z including heavy
quarks, Eur.Phys.J. C71 (2011) 1705, [arXiv:1012.4408].

L. D. McLerran and R. Venugopalan, Boost covariant gluon distributions in large
nuclei, Phys.Lett. B424 (1998) 15-24, [nucl-th/9705055|.

A. Mueller and D. Triantafyllopoulos, The Energy dependence of the saturation
momentum, Nucl. Phys. B640 (2002) 331-350, |hep-ph/0205167|.

J. L. Albacete and Y. V. Kovchegov, Solving high energy evolution equation including
running coupling corrections, Phys.Rev. D75 (2007) 125021, [arXiv:0704.0612].

J. L. Albacete, Particle multiplicities in Lead-Lead collisions at the LHC from
non-linear evolution with running coupling, Phys.Rev.Lett. 99 (2007) 262301,



larXiv:0707.2545|.

[92] J. R. Forshaw and G. Shaw, Gluon saturation in the colour dipole model?, JHEP 0412
(2004) 052, [hep-ph/0411337|.

[93] J. R. Forshaw, R. Sandapen, and G. Shaw, Further success of the colour dipole model,
JHEP 0611 (2006) 025, |hep-ph/0608161|.

[94] A. Shuvaev, K. J. Golec-Biernat, A. D. Martin, and M. Ryskin, Off diagonal
distributions fized by diagonal partons at small z and xi, Phys. Rev. D60 (1999) 014015,
|hep-ph/9902410].

[95] J. C. Collins, L. Frankfurt, and M. Strikman, Factorization for hard exclusive
electroproduction of mesons in QCD, Phys. Rev. D56 (1997) 2982-3006,
|hep-ph/9611433|.

[96] New Muon Collaboration Collaboration, M. Arneodo et. al., Ezclusive rho0 and phi
muoproduction at large ¢**2, Nucl. Phys. B429 (1994) 503-529.

|97] E665 Collaboration Collaboration, M. Adams et. al., Diffractive production of rho0
(770) mesons in muon - proton interactions at 470-GeV, Z.Phys. C74 (1997) 237-261.

[98] ZEUS Collaboration, S. Chekanov et. al., Ezclusive p° production in deep inelastic
scattering at HERA, PMC Phys. A1 (2007) 6, |arXiv:0708.1478|.

[99] H1 Collaboration, F. D. Aaron et. al., Diffractive Electroproduction of rho and phi
Mesons at HERA, JHEP 05 (2010) 032, [arXiv:0910.5831|.

[100] ZEUS Collaboration, J. Breitweg et. al., Exclusive electroproduction of p° and j /v
mesons at HERA, Eur. Phys. J. C6 (1999) 603-627, |hep-ex/9808020|.

[101] ZEUS Collaboration, J. Breitweg et. al., Measurement of the spin-density matriz
elements in exclusive electroproduction of rho0 mesons at HERA, Fur. Phys. J. C12
(2000) 393-410, |hep-ex/9908026].

[102] H1 Collaboration, C. Adloff et. al., Elastic electroproduction of rho mesons at HERA,
Eur. Phys. J. C13 (2000) 371-396, [hep-ex/9902019|.

[103] HERMES Collaboration, A. Airapetian et. al., Spin Density Matriz Elements in
Exclusive p° Electroproduction on 1H and 2H Targets at 27.5 GeV Beam Energy, Eur.
Phys. J. C62 (2009) 659695, [arXiv:0901.0701].

[104] HERMES Collaboration, A. Borissov, Spin density matriz elements from rho0 and
phi meson electroproduction at HERMES, AIP Conf. Proc. 1105 (2009) 19-23.

[105] The HERMES Collaboration, A. Airapetian et. al., Ratios of Helicity Amplitudes for
Exclusive rho-0 Electroproduction, Eur. Phys. J. C71 (2011) 1609, [arXiv:1012.3676|.

[106] CLAS Collaboration, S. A. Morrow et. al., Ezclusive p° electroproduction on the



proton at CLAS, Eur. Phys. J. A39 (2009) 5-31, [arXiv:0807.3834].

[107] COMPASS Collaboration, V. Y. Alexakhin et. al., Double spin asymmetry in
exclusive rhol0) muoproduction at COMPASS, Eur. Phys. J. C52 (2007) 255-265,
larXiv:0704.1863|.

[108] V. S. Fadin, R. Fiore, and M. L. Kotsky, Gluon Regge trajectory in the two-loop
approzimation, Phys. Lett. B387 (1996) 593-602, [hep-ph/9605357].

[109] G. Camici and M. Ciafaloni, Irreducible part of the next-to-leading BFKL kernel, Phys.
Lett. B412 (1997) 396-406, [hep-ph/9707390|.

[110] M. Ciafaloni and G. Camici, Energy scale(s) and next-to-leading BFKL equation, Phys.
Lett. B430 (1998) 349-354, [hep-ph/9803389|.

[111] V. S. Fadin and L. N. Lipatov, BFKL pomeron in the next-to-leading approzimation,
Phys. Lett. B429 (1998) 127-134, [hep-ph/9802290].

[112] A. D. Martin, M. G. Ryskin, and T. Teubner, The QCD description of diffractive rho
meson electroproduction, Phys. Rev. D55 (1997) 4329-4337, |hep-ph/9609448|.

[113| I. Ivanov, N. Nikolaev, and A. Savin, Diffractive vector meson production at HERA:
From soft to hard QCD, Phys.Part.Nucl. 37 (2006) 1-85, |hep-ph/0501034].

[114| D. Schildknecht, G. A. Schuler, and B. Surrow, Vector meson electroproduction from
generalized vector dominance, Phys.Lett. B449 (1999) 328-338, [hep-ph/9810370].

[115] H. G. Dosch, T. Gousset, G. Kulzinger, and H. J. Pirner, Vector meson leptoproduction
and nonperturbative gluon fluctuations in QCD, Phys. Rev. D55 (1997) 2602-2615,
|hep-ph/9608203].

[116] J. Nemchik, N. N. Nikolaev, and B. G. Zakharov, Scanning the BFKL pomeron in
elastic production of vector mesons at HERA, Phys. Lett. B341 (1994) 228-237,
|hep-ph/9405355].

[117] J. Nemchik, N. N. Nikolaev, E. Predazzi, and B. G. Zakharov, Color dipole
phenomenology of diffractive electroproduction of light vector mesons at HERA, Z.
Phys. C75 (1997) 71-87, [hep-ph/9605231].

[118] J. R. Forshaw, R. Sandapen, and G. Shaw, Colour dipoles and p, ® electroproduction,
Phys. Rev. D69 (2004) 094013, [hep-ph/0312172).

[119] J. R. Forshaw and R. Sandapen, Eztracting the p meson wavefunction from HERA
data, JHEP 11 (2010) 037, [arXiv:1007.1990].

[120] J. Forshaw and R. Sandapen, Extracting the Distribution Amplitudes of the rho meson
from the Color Glass Condensate, JHEP 1110 (2011) 093, |[arXiv:1104.4753|.

[121] D. Y. Ivanov and R. Kirschner, Polarization in diffractive electroproduction of light



vector mesons, Phys. Rev. D58 (1998) 114026, [hep-ph/9807324].

[122| S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller, and M. Strikman, Diffractive
leptoproduction of vector mesons in QCD, Phys. Rev. D50 (1994) 3134-3144,
|hep-ph/9402283|.

[123| L. Frankfurt, W. Koepf, and M. Strikman, Hard diffractive electroproduction of vector
mesons in QCD, Phys. Rev. D54 (1996) 3194-3215, [hep-ph/9509311].

[124] A. V. Radyushkin, Nonforward parton distributions, Phys. Rev. D56 (1997)
5524-5557, [hep-ph/9704207|.

[125] H. nan Li and G. Sterman, The Perturbative pion form-factor with Sudakov
suppression, Nucl. Phys. B381 (1992) 129-140.

[126] M. Vanderhaeghen, P. A. M. Guichon, and M. Guidal, Deeply virtual electroproduction
of photons and mesons on the nucleon: Leading order amplitudes and power
corrections, Phys. Rev. D60 (1999) 094017, [hep-ph/9905372.

[127] S. V. Goloskokov and P. Kroll, Vector meson electroproduction at small Bjorken-z and
generalized parton distributions, Eur. Phys. J. C42 (2005) 281-301, |hep-ph/0501242)|.

[128] S. V. Goloskokov and P. Kroll, The longitudinal cross section of vector meson
electroproduction, Eur. Phys. J. C50 (2007) 829-842, lhep-ph/0611290].

[129] S. V. Goloskokov and P. Kroll, The role of the quark and gluon GPDs in hard
vector-meson electroproduction, Eur. Phys. J. C53 (2008) 367-384, [/08.3569.

[130] I. F. Ginzburg, S. L. Panfil, and V. G. Serbo, Possibility of the experimental
wnvestigation of the QCD Pomeron in semihard processes at the gamma gamma
collisions, Nucl. Phys. B284 (1987) 685-705.

[131] I. V. Anikin, D. Y. Ivanov, B. Pire, L. Szymanowski, and S. Wallon, QCD
factorization of exclusive processes beyond leading twist: v; — pr impact factor with
twist three accuracy, Nucl. Phys. B828 (2010) 1-68, [arXiv:0909.4090].

[132] 1. V. Anikin, B. Pire, and O. V. Teryaev, On the gauge invariance of the DVCS
amplitude, Phys. Rev. D62 (2000) 071501, [hep-ph/0003203|.

[133] 1. V. Anikin and O. V. Teryaev, Wandzura- Wilczek approzimation from generalized
rotational invariance, Phys. Lett. B509 (2001) 95-105, [hep-ph/0102209|.

[134]| 1. V. Anikin and O. V. Teryaev, Genuine twist 3 in exclusive electroproduction of
transversely polarized vector mesons, Phys. Lett. B554 (2003) 5163,
[hep-ph/0211028].

[135] A. V. Efremov and O. V. Teryaev, On spin effects in Quantum Chromodynamics, Sov.
J. Nucl. Phys. 36 (1982) 140.



[136] E. V. Shuryak and A. I. Vainshtein, Theory of Power Corrections to Deep Inelastic
Scattering in Quantum Chromodynamics. 1. Q* Effects, Nucl. Phys. B199 (1982) 451.

[137] E. V. Shuryak and A. I. Vainshtein, Theory of Power Corrections to Deep Inelastic
Scattering in Quantum Chromodynamics. 2. Q* Effects: Polarized Target, Nucl. Phys.
B201 (1982) 141.

[138] R. K. Ellis, W. Furmanski, and R. Petronzio, Unraveling Higher Twists, Nucl. Phys.
B212 (1983) 29.

[139] A. V. Efremov and O. V. Teryaev, The transversal polarization in Quantum
Chromodynamics, Sov. J. Nucl. Phys. 39 (1984) 962.

[140] A. V. Radyushkin and C. Weiss, Kinematical twist-3 effects in DVCS as a quark spin
rotation, Phys. Rev. D64 (2001) 097504, [hep-ph/0106059|.

[141] P. Ball and V. M. Braun, The p Meson Light-Cone Distribution Amplitudes of Leading
Twist Revisited, Phys. Rev. D54 (1996) 2182-2193, [hep-ph/9602323|.

[142| P. Ball, V. M. Braun, Y. Koike, and K. Tanaka, Higher twist distribution amplitudes of
vector mesons in QCD: Formalism and twist three distributions, Nucl. Phys. B529
(1998) 323-382, [hep-ph/9802299].

[143| J. F. Gunion and D. E. Soper, Quark Counting and Hadron Size Effects for Total
Cross- Sections, Phys. Rev. D15 (1977) 2617-2621.

[144] R. K. Ellis, W. Furmanski, and R. Petronzio, Power Corrections to the Parton Model
in QCD, Nucl.Phys. B207 (1982) 1.

[145] S. Munier, A. M. Stasto, and A. H. Mueller, Impact parameter dependent S-matriz for
dipole proton scattering from diffractive meson electroproduction, Nucl. Phys. B603
(2001) 427-445, |hep-ph/0102291].

[146] V. M. Braun, G. P. Korchemsky, and D. Mueller, The uses of conformal symmetry in
QCD, Prog. Part. Nucl. Phys. 51 (2003) 311-398, |hep-ph/0306057].

[147] S. Wandzura and F. Wilczek, Sum Rules for Spin Dependent Electroproduction: Test
of Relativistic Constituent Quarks, Phys.Lett. B72 (1977) 195.

[148| I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko, Radiative Decay Sigma+ — p
gamma in Quantum Chromodynamics, Nucl. Phys. B312 (1989) 509-550.

[149] V. M. Braun and 1. E. Filyanov, Conformal invariance and pion wave functions of
nonleading twist, Z. Phys. C48 (1990) 239-248.

[150] Y. L. Dokshitzer, D. Diakonov, and S. I. Troian, Hard Processes in Quantum
Chromodynamics, Phys. Rept. 58 (1980) 269-395.

[151] A. Ali, V. M. Braun, and G. Hiller, Asymptotic solutions of the evolution equation for



the polarized nucleon structure function g-2 (x, Q**2), Phys.Lett. B266 (1991)
117-125.

[152] A. Ali, V. M. Braun, and H. Simma, Ezclusive radiative B decays in the light cone
QCD sum rule approach, Z. Phys. C63 (1994) 437-454, [hep-ph/9401277].

[153| P. Ball and V. M. Braun, Higher twist distribution amplitudes of vector mesons in
QCD: Twist-4 distributions and meson mass corrections, Nucl. Phys. B543 (1999)
201-238, [hep-ph/9810475|.

[154] P. Ball and G. Jones, B — n) Form Factors in QCD, JHEP 0708 (2007) 025,
[arXiv:0706.3628).

[155] P. Ball, V. Braun, and A. Lenz, Twist-4 distribution amplitudes of the K* and phi
mesons in QCD, JHEP 0708 (2007) 090, |[arXiv:0707.1201]|.

[156] G. P. Lepage and S. J. Brodsky, Ezclusive Processes in Quantum Chromodynamics:
Evolution Equations for Hadronic Wave Functions and the Form-Factors of Mesons,
Phys. Lett. B87 (1979) 359-365.

[157] A. V. Efremov and A. V. Radyushkin, Factorization and Asymptotical Behavior of
Pion Form-Factor in QCD, Phys. Lett. B94 (1980) 245-250.

[158] F. M. Dittes and A. V. Radyushkin, Two loop contribution to the evolution of the pion
wave function, Phys. Lett. B134 (1984) 359-362.

[159] M. H. Sarmadi, The asymptotic pion form-factor beyond the leading order, Phys. Lett.
B143 (1984) 471.

[160] G. R. Katz, Two loop Feynman gauge calculation of the meson nonsinglet evolution
potential, Phys. Rev. D31 (1985) 652.

[161] S. V. Mikhailov and A. V. Radyushkin, Evolution kernels in QCD: Two loop
calculation in Feynman gauge, Nucl. Phys. B254 (1985) 89.

[162] T. Ohrndorf, Constraints from conformal covariance on the mizing of operators of
lowest twist, Nucl. Phys. B198 (1982) 26.

[163| I. I. Balitsky and V. M. Braun, Evolution Equations for QCD String Operators, Nucl.
Phys. B311 (1989) 541-584.

[164]| J. Kodaira, Y. Yasui, K. Tanaka, and T. Uematsu, QCD corrections to the nucleon’s
spin structure function g2 (xz, Q**2), Phys.Lett. B387 (1996) 855-860,
[hep-ph/9603377].

[165] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD and Resonance Physics.
Sum Rules, Nucl. Phys. B147 (1979) 385-447.

[166] V. L. Chernyak and A. R. Zhitnitsky, Ezclusive Decays of Heavy Mesons, Nucl. Phys.



B201 (1982) 492.

[167|] V. L. Chernyak and A. R. Zhitnitsky, Asymptotic Behavior of Exclusive Processes in
QCD, Phys. Rept. 112 (1984) 173.

[168| V. Novikov, L. Okun, M. A. Shifman, A. Vainshtein, M. Voloshin, et. al., Charmonium
and Gluons: Basic Experimental Facts and Theoretical Introduction, Phys.Rept. 41
(1978) 1-133.

[169] J. Gasser and H. Leutwyler, Quark Masses, Phys.Rept. 87 (1982) 77-169.

[170] K. Schilling and G. Wolf, How to analyze vector meson production in inelastic lepton
scattering, Nucl.Phys. B61 (1973) 381-413.

[171] H. Navelet, R. B. Peschanski, C. Royon, and S. Wallon, Proton structure functions in
the dipole picture of BFKL dynamics, Phys. Lett. B385 (1996) 357364,
[hep-ph/9605389].

[172| 1. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products. 1980.

[173| E. Ferreiro, E. Tancu, K. Itakura, and L. McLerran, Froissart bound from gluon
saturation, Nucl.Phys. A710 (2002) 373-414, |hep-ph/0206241].

[174] S. Munier and S. Wallon, Geometric scaling in exclusive processes, Eur. Phys. J. C30
(2003) 359-365, |hep-ph/0303211].

[175] D. Y. Ivanov and A. Papa, Electroproduction of two light vector mesons in the next-
to-leading approzimation, Nucl. Phys. B732 (2006) 183-199, [hep-ph/0508162].

[176] D. Y. Ivanov and A. Papa, Electroproduction of two light vector mesons in next-to-
leading BFKL: Study of systematic effects, Eur. Phys. J. C49 (2007) 947-955,
[hep-ph/0610042].

[177] F. Caporale, A. Papa, and A. S. Vera, Collinear improvement of the BFKL kernel in
the electroproduction of two light vector mesons, Eur. Phys. J. C53 (2008) 525-532,
larXiv:0807.0525].

[178| D. Colferai, F. Schwennsen, L. Szymanowski, and S. Wallon, Mueller Navelet jets at
LHC - complete NLL BFKL calculation, JHEP 12 (2010) 026, [arXiv:1002.1365|.

[179] B. Ducloue, L. Szymanowski, and S. Wallon, Mueller-Navelet jets at LHC: the first
complete NLL BFKL study, PoS QNP2012 (2012) 165, |[arXiv:1208.6111].

[180] D. Boer, M. Diehl, R. Milner, R. Venugopalan, W. Vogelsang, et. al., Gluons and the

quark sea at high energies: Distributions, polarization, tomography, arXiv:1108.1713.

[181] LHeC Study Group Collaboration, J. Abelleira Fernandez et. al., A Large Hadron
Electron Collider at CERN: Report on the Physics and Design Concepts for Machine
and Detector, J.Phys. G39 (2012) 075001, [arXiv:1206.2913|.



[182] ILC Collaboration, J. Brau, (Ed. ) et. al., ILC' Reference Design Report Volume 1 -
Ezecutive Summary, arXiv:0712.1950.

[183] ILC Collaboration, G. Aarons et. al., International Linear Collider Reference Design
Report Volume 2: PHYSICS AT THE ILC, arXiv:0709.1893.

[184| ILC Collaboration, T. Behnke, (Ed. ) et. al., ILC' Reference Design Report Volume 4 -
Detectors, arXiv:0712.2356.

[185] B. Pire, L. Szymanowski, and S. Wallon, Double diffractive p-production in v*v*
collisions, Eur. Phys. J. C44 (2005) 545-558, |hep-ph/0507038|.

[186] R. Enberg, B. Pire, L. Szymanowski, and S. Wallon, BFKL resummation effects in
Yv* — pp, Eur. Phys. J. C45 (2006) 759-769, [hep-ph/0508134|.

[187| B. Pire, M. Segond, L. Szymanowski, and S. Wallon, QCD factorizations in
Yy — pYpY, Phys. Lett. B639 (2006) 642651, [hep-ph/0605320].

[188] M. Segond, L. Szymanowski, and S. Wallon, Diffractive production of two p% mesons
in ete” collisions, Eur. Phys. J. C52 (2007) 93—-112, [hep-ph/0703166|.

[189] M. Segond, L. Szymanowski, and S. Wallon, A test of the BFKL resummation at ILC,
Acta Phys. Polon. B39 (2008) 25772582, [arXiv:0802.4128|. proceedings of the
School on QCD, low-x physics, saturation and diffraction, Copanello Calabria, Italy,
July 1-14 2007.

[190] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory
(Frontiers in Physics). Perseus Books, 2008.



