Y. Hanawa, K. Ohishi, M. Kato, A. Takata, E. Kuriki et al., Auteur anonyme, Miscellanea Berolinensia ad incrementum scientiarum 1710, Advances in Inorganic Chemistry and Radiochemistry, pp.81-84, 1948.

R. Haser, C. E. De-broin, and M. Pierrot, , par diffraction des rayons X et des neutrons, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.28, issue.8, pp.2530-2537, 1972.
DOI : 10.1107/S0567740872006429

H. Bolvin, Octahedral Coordination Compounds:?? ab Initio Study of Potential Energy Curves, The Journal of Physical Chemistry A, vol.102, issue.38, pp.7525-7534, 1998.
DOI : 10.1021/jp982759r

R. K. Hocking, E. C. Wasinger, F. M. De-groot, K. O. Hodgson, B. Hedman et al., ]:?? A Direct Probe of Back-Bonding, Journal of the American Chemical Society, vol.128, issue.32, pp.10442-10451, 2006.
DOI : 10.1021/ja061802i

L. Pauling, THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS, Journal of the American Chemical Society, vol.54, issue.9, pp.3570-3582, 1932.
DOI : 10.1021/ja01348a011

W. A. Baker and H. M. Bobonich, Magnetic Properties of Some High-Spin Complexes of Iron(II), Inorganic Chemistry, vol.3, issue.8, pp.1184-1188, 1964.
DOI : 10.1021/ic50018a027

B. Gallois, J. A. Real, C. Hauw, and J. Zarembowitch, Structural changes associated with the spin transition in bis(isothiocyanato)bis(1,10-phenanthroline)iron: a single-crystal x-ray investigation, Inorganic Chemistry, vol.29, issue.6, pp.1152-1158, 1990.
DOI : 10.1021/ic00331a009

D. Papanikolaou, S. Margadonna, W. Kosaka, S. Ohkoshi, M. Brunelli et al., X-ray Illumination Induced Fe(II) Spin Crossover in the Prussian Blue Analogue Cesium Iron Hexacyanochromate, Journal of the American Chemical Society, vol.128, issue.25, pp.8358-8363, 2006.
DOI : 10.1021/ja061650r

D. Papanikolaou, W. Kosaka, S. Margadonna, H. Kagi, S. Ohkoshi et al., ], The Journal of Physical Chemistry C, vol.111, issue.22, pp.8086-8091, 2007.
DOI : 10.1021/jp068885+

P. V. Bernhardt, F. Bozoglián, B. P. Macpherson, and M. Martínez, Molecular mixed-valence cyanide bridged CoIII???FeII complexes, Coordination Chemistry Reviews, vol.249, issue.17-18, pp.1902-1916, 2005.
DOI : 10.1016/j.ccr.2004.11.014

M. A. Watzky, A. V. Macatangay, R. A. Van-camp, S. E. Mazzetto, X. Song et al., Spectroscopic and Electrochemical Probes of Electronic Coupling in Some Cyanide-Bridged Transition Metal Donor/Acceptor Complexes, The Journal of Physical Chemistry A, vol.101, issue.45, pp.8441-8459, 1997.
DOI : 10.1021/jp971914j

H. Ohtaki and T. Radnai, Structure and dynamics of hydrated ions, Chemical Reviews, vol.93, issue.3, pp.1157-1204, 1993.
DOI : 10.1021/cr00019a014

I. Abrahams, J. D. Donaldson, and Z. I. Khan, Nickel Bistrifluorostannate(II) Hexahydrate, [Ni(H2O)6](SnF3)2, Acta Crystallographica Section C Crystal Structure Communications, vol.51, issue.3, pp.345-346, 1995.
DOI : 10.1107/S0108270194011340

A. Benghalem, M. Leblanc, and Y. Calage, Room-temperature structure of iron(II) hexafluorostannate(IV) hexahydrate, Acta Crystallographica Section C Crystal Structure Communications, vol.46, issue.12, pp.2453-2454, 1990.
DOI : 10.1107/S010827019000378X

J. C. Gallucci and R. E. Gerkin, Structure of copper(II) perchlorate hexahydrate, Acta Crystallographica Section C Crystal Structure Communications, vol.45, issue.9, pp.1279-1284, 1989.
DOI : 10.1107/S0108270189000818

T. Kellersohn, R. G. Delaplane, I. Olovsson, and G. J. Mcintyre, The experimental electron density in monoclinic cobalt sulfate hexahydrate, CoSO4.6D2O, at 25 K, Acta Crystallographica Section B Structural Science, vol.49, issue.2, pp.179-192, 1993.
DOI : 10.1107/S0108768192008991

K. Stadnicka, A. M. Glazer, and M. Koralewski, Structure and absolute optical chirality of zinc selenate hexahydrate, Acta Crystallographica Section B Structural Science, vol.44, issue.4, pp.356-361, 1988.
DOI : 10.1107/S0108768188002253

A. Torii, K. Ogawa, H. Tamura, and K. Osaki, Room-Temperature Form of Manganese Hexafluorosilicate Hexahydrate: a New Model with Submicroscopic Twinning, Acta Crystallographica Section C Crystal Structure Communications, vol.53, issue.7, pp.833-836, 1997.
DOI : 10.1107/S0108270196015454/oh1098_83538sup2.pdf

G. L. Gutsev, B. V. Reddy, S. N. Khanna, B. K. Rao, and P. Jena, Optically induced magnetism in cobalt iron cyanide, Physical Review B, vol.58, issue.21, pp.14131-14134, 1998.
DOI : 10.1103/PhysRevB.58.14131

T. Kawamoto, Y. Asai, and S. Abe, Novel Mechanism of Photoinduced Reversible Phase Transitions in Molecule-Based Magnets, Physical Review Letters, vol.86, issue.2, pp.348-351, 2001.
DOI : 10.1103/PhysRevLett.86.348

M. Nishino, Y. Yoshioka, and K. Yamaguchi, Effective exchange interactions and magnetic phase transition temperatures in Prussian blue analogs: a study by density functional theory, Chemical Physics Letters, vol.297, issue.1-2, pp.51-59, 1998.
DOI : 10.1016/S0009-2614(98)01081-1

M. Atanasov, P. Comba, and C. A. , DFT Studies on the Magnetic Exchange Across the Cyanide Bridge, The Journal of Physical Chemistry A, vol.110, issue.49, pp.13332-13340, 2006.
DOI : 10.1021/jp066020q

L. Kabalan, S. F. Matar, C. Desplanches, J. F. Létard, and M. Zakhour, Molecular and all-solid DFT studies of the magnetic and chemical bonding properties within KM[Cr(CN)6] (M=V, Ni) complexes, Chemical Physics, vol.352, issue.1-3, pp.85-91, 2008.
DOI : 10.1016/j.chemphys.2008.05.014

URL : https://hal.archives-ouvertes.fr/hal-00322473

T. Kawamoto and S. Abe, Photoinduced phase transition accelerated by use of two-component nanostructures: A computational study on an Ising-type model, Physical Review B, vol.68, issue.23, p.235112, 2003.
DOI : 10.1103/PhysRevB.68.235112

M. Kabir, K. J. Van, and . Vliet, Reversible mechanism for spin crossover in transition-metal cyanides, Physical Review B, vol.85, issue.5, p.54431, 2012.
DOI : 10.1103/PhysRevB.85.054431

J. Luzon, M. Castro, E. J. Vertelman, R. G. Gengler, P. J. Van-koningsbruggen et al., ] by Density Functional Theory, The Journal of Physical Chemistry A, vol.112, issue.25, pp.5742-5748, 2008.
DOI : 10.1021/jp800210j

J. C. Wojdel, I. D. Moreira, S. T. Bromley, and F. Illas, On the prediction of the crystal and electronic structure of mixed-valence materials by periodic density functional calculations: The case of Prussian Blue, The Journal of Chemical Physics, vol.128, issue.4, pp.44713-044719, 2008.
DOI : 10.1063/1.2824966

J. C. Wojdel, I. D. Moreira, and F. Illas, Periodic density functional theory study of spin crossover in the cesium iron hexacyanochromate prussian blue analog, The Journal of Chemical Physics, vol.130, issue.1, pp.14702-014707, 2009.
DOI : 10.1063/1.3046686

N. M. Harrison, B. G. Searle, and E. A. Seddon, An ab initio study of the magnetic coupling in bi-metallic CrIII cyanides, Chemical Physics Letters, vol.266, issue.5-6, pp.507-511, 1997.
DOI : 10.1016/S0009-2614(97)00033-X

D. S. Middlemiss and C. C. Wilson, Ferromagnetism and spin transitions in prussian blue: A solid-state hybrid functional study, Physical Review B, vol.77, issue.15, p.155129, 2008.
DOI : 10.1103/PhysRevB.77.155129

T. Krah, N. Suaud, A. Zanchet, V. Robert, and N. B. Amor, Vacancy-Induced Deformation in a CoFe Prussian Blue Analogue - A Theoretical Investigation, European Journal of Inorganic Chemistry, vol.46, issue.35, pp.5777-5783
DOI : 10.1002/ejic.201200857

URL : https://hal.archives-ouvertes.fr/hal-00865311

F. Aquilante, L. De-vico, N. Ferré, G. Ghigo, P. Malmqvist et al., MOLCAS 7: The Next Generation, Journal of Computational Chemistry, vol.104, issue.331, pp.224-247, 2010.
DOI : 10.1002/jcc.21318

URL : https://hal.archives-ouvertes.fr/hal-01460198

M. L. Green, A new approach to the formal classification of covalent compounds of the elements, Journal of Organometallic Chemistry, vol.500, issue.1-2, pp.127-148, 1995.
DOI : 10.1016/0022-328X(95)00508-N

J. T. Dunning, B. H. Botch, and J. F. Harrison, states of the transition metal atoms, The Journal of Chemical Physics, vol.72, issue.5, pp.3419-3420, 1980.
DOI : 10.1063/1.439529

K. Pierloot, B. Dumez, P. Widmark, and B. O. Roos, Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions, Theoretica Chimica Acta, vol.101, issue.2-3, pp.87-114, 1995.
DOI : 10.1007/BF01113842

M. Kepenekian, V. Robert, and B. L. Guennic, What zeroth-order Hamiltonian for CASPT2 adiabatic energetics of Fe(II)N6 architectures?, The Journal of Chemical Physics, vol.131, issue.11, pp.114702-114708, 2009.
DOI : 10.1063/1.3211020

B. O. Roos and K. Andersson, Multiconfigurational perturbation theory with level shift ??? the Cr2 potential revisited, Chemical Physics Letters, vol.245, issue.2-3, pp.215-223, 1995.
DOI : 10.1016/0009-2614(95)01010-7

N. Forsberg and P. Malmqvist, Multiconfiguration perturbation theory with imaginary level shift, Chemical Physics Letters, vol.274, issue.1-3, pp.196-204, 1997.
DOI : 10.1016/S0009-2614(97)00669-6

G. Ghigo, B. O. Roos, and P. Malmqvist, A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2), Chemical Physics Letters, vol.396, issue.1-3, pp.142-149, 2004.
DOI : 10.1016/j.cplett.2004.08.032

D. A. Johnson and P. G. Nelson, Ligand Field Stabilization Energies of the Hexaaqua 3+ Complexes of the First Transition Series, Inorganic Chemistry, vol.38, issue.22, pp.4949-4955, 1999.
DOI : 10.1021/ic990426i

N. Vannerberg, The OD Structures of K3Fe(CN)6 and K3Co(CN)6., Acta Chemica Scandinavica, vol.26, pp.2863-2876, 1972.
DOI : 10.3891/acta.chem.scand.26-2863

Z. Li, A. Yeh, and H. Taube, Mixed-Valence Molecules Based on Monohydridobis(ethylenediamine)osmium(IV) and Metal Cyano Complexes, Inorganic Chemistry, vol.33, issue.13, pp.2874-2881, 1994.
DOI : 10.1021/ic00091a031

C. Cartier-dit-moulin, F. Villain, A. Bleuzen, M. Arrio, P. Sainctavit et al., = Alkali Cation). 2. X-ray Absorption Spectroscopy of the Metastable State, Journal of the American Chemical Society, vol.122, issue.28, pp.6653-6658, 2000.
DOI : 10.1021/ja000349m

A. Bleuzen, C. Lomenech, A. Dolbecq, F. Villain, A. Goujon et al., Photo-Induced Electron Transfer and Magnetic Switching in CoFe Cyanides: Study of the Metastable State, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, vol.335, issue.1, pp.253-262, 1999.
DOI : 10.1021/j100194a021

V. Eyert, B. Siberchicot, and M. Verdaguer, Ni) from first principles, Physical Review B, vol.56, issue.14, pp.8959-8969, 1997.
DOI : 10.1103/PhysRevB.56.8959

C. Avendano, F. Karadas, M. Hilfiger, M. Shatruk, and K. R. Dunbar, Cyanide Lability and Linkage Isomerism of Hexacyanochromate(III) Induced by the Co(II) Ion, Inorganic Chemistry, vol.49, issue.2, pp.583-594, 2009.
DOI : 10.1021/ic901681e

H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O, Inorganic Chemistry, vol.16, issue.11, pp.2704-2710, 1977.
DOI : 10.1021/ic50177a008

O. Sato, Y. Einaga, A. Fujishima, and K. Hashimoto, Photoinduced Long-Range Magnetic Ordering of a Cobalt???Iron Cyanide, Inorganic Chemistry, vol.38, issue.20, pp.4405-4412, 1999.
DOI : 10.1021/ic980741p

M. Okubo, D. Asakura, Y. Mizuno, T. Kudo, H. Zhou et al., Ion-Induced Transformation of Magnetism in a Bimetallic CuFe Prussian Blue Analogue, Angewandte Chemie International Edition, vol.155, issue.28, pp.6269-6273, 2011.
DOI : 10.1002/anie.201102048

D. F. Mullica, W. O. Milligan, G. W. Beall, and W. L. Reeves, O, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.34, issue.12, pp.3558-3561, 1978.
DOI : 10.1107/S0567740878011589

J. N. Behera, D. M. D-'alessandro, N. Soheilnia, and J. R. Long, Synthesis and Characterization of Ruthenium and Iron???Ruthenium Prussian Blue Analogues, Chemistry of Materials, vol.21, issue.9, pp.1922-1926, 2009.
DOI : 10.1021/cm900230p

F. M. Crean and K. Schug, Decomposition of aqueous hexacyanoruthenate(III) ions, Inorganic Chemistry, vol.23, issue.7, pp.853-857, 1984.
DOI : 10.1021/ic00175a012

C. K. Jørgensen, Absorption Spectra and Chemical Bonding in Complexes, 1962.

R. S. Mulliken, Electronic Population Analysis on LCAO???MO Molecular Wave Functions. I, The Journal of Chemical Physics, vol.23, issue.10, pp.1833-1840, 1955.
DOI : 10.1063/1.1740588

O. Sato, Y. Einaga, T. Iyoda, A. Fujishima, and K. Hashimoto, Cation-Driven Electron Transfer Involving a Spin Transition at Room Temperature in a Cobalt Iron Cyanide Thin Film, The Journal of Physical Chemistry B, vol.101, issue.20, pp.3903-3905, 1997.
DOI : 10.1021/jp9701451

A. Bleuzen, V. Escax, A. Ferrier, F. Villain, M. Verdaguer et al., Thermally Induced Electron Transfer in a CsCoFe Prussian Blue Derivative: The Specific Role of the Alkali-Metal Ion, Angewandte Chemie International Edition, vol.43, issue.28, pp.3728-3731, 2004.
DOI : 10.1002/anie.200460086

URL : https://hal.archives-ouvertes.fr/hal-00087524

T. Matsuda, J. Kim, and Y. Moritomo, Symmetry Switch of Cobalt Ferrocyanide Framework by Alkaline Cation Exchange, Journal of the American Chemical Society, vol.132, issue.35, pp.12206-12207, 2010.
DOI : 10.1021/ja105482k

J. C. Slater, Atomic Radii in Crystals, The Journal of Chemical Physics, vol.41, issue.10, pp.3199-3204, 1964.
DOI : 10.1063/1.1725697

M. Pink and J. Sieler, Diverse coordination modes in solvated alkali metal phenolates: The crystal structures of rubidium phenolate??3 phenol and cesium phenolate??2 phenol, Inorganica Chimica Acta, vol.360, issue.3, pp.1221-1225, 2007.
DOI : 10.1016/j.ica.2006.06.025

R. Diniz, L. R. De-sá, B. L. Rodrigues, M. I. Yoshida, N. L. Speziali et al., Crystal structure and vibrational spectra of cesium salts of bis(dicyanomethylene)croconate (croconate violet) ion, Journal of Molecular Structure, vol.876, issue.1-3, pp.1-8, 2008.
DOI : 10.1016/j.molstruc.2007.06.001

B. Wilde, A. Jaenschke, and F. Olbrich, Komplexe der Alkalimetalltetraphenylborate mit makrocyclischen Kronenethern, Zeitschrift f??r anorganische und allgemeine Chemie, vol.72, issue.1, pp.166-172, 2008.
DOI : 10.1002/zaac.200700351

T. B. Faust, P. G. Heath, C. A. Muryn, G. A. Timco, and R. E. Winpenny, Caesium ion sequestration by a fluoro-metallocrown [16]-MC-8, Chemical Communications, vol.224, issue.34, pp.6258-6260, 2010.
DOI : 10.1039/c0cc01188f

R. O. Lezna, R. Romagnoli, N. R. De-tacconi, and K. Rajeshwar, Cobalt Hexacyanoferrate:?? Compound Stoichiometry, Infrared Spectroelectrochemistry, and Photoinduced Electron Transfer, The Journal of Physical Chemistry B, vol.106, issue.14, pp.3612-3621, 2002.
DOI : 10.1021/jp013991r

K. H. Schmidt and A. Müller, Skeletal vibrational spectra, force constants, and bond properties of transition metal ammine complexes, Inorganic Chemistry, vol.14, issue.9, pp.2183-2187, 1975.
DOI : 10.1021/ic50151a031

J. Ceponkus, P. Uvdal, and B. Nelander, Far-Infrared Band Strengths in the Water Dimer:?? Experiments and Calculations, The Journal of Physical Chemistry A, vol.112, issue.17, pp.3921-3926, 2008.
DOI : 10.1021/jp711178w

J. Ceponkus, P. Uvdal, and B. Nelander, Intermolecular vibrations of different isotopologs of the water dimer: Experiments and density functional theory calculations, The Journal of Chemical Physics, vol.129, issue.19, pp.194306-194307, 2008.
DOI : 10.1063/1.3009620

J. Ceponkus, P. Uvdal, and B. Nelander, and Ne Matrices, The Journal of Physical Chemistry A, vol.114, issue.25, pp.6829-6831, 2010.
DOI : 10.1021/jp1022218

J. Ceponkus, P. Uvdal, and B. Nelander, Acceptor switching and axial rotation of the water dimer in matrices, observed by infrared spectroscopy, The Journal of Chemical Physics, vol.133, issue.7, pp.74301-074311, 2010.
DOI : 10.1063/1.3460457

A. Bleuzen, V. Escax, J. Itié, P. Münsch, and M. Verdaguer, Photomagnetism in CxCo4[Fe(CN)6](8+x)/3??n H2O Prussian blue analogues: looking for the maximum photo-efficiency, Comptes Rendus Chimie, vol.6, issue.3, pp.343-352, 2003.
DOI : 10.1016/S1631-0748(03)00043-2

M. H. Huynh and T. J. Meyer, Proton-Coupled Electron Transfer, Chemical Reviews, vol.107, issue.11, pp.5004-5064, 2007.
DOI : 10.1021/cr0500030

G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman, ruby fluorescence line to 195 kbar, Journal of Applied Physics, vol.46, issue.6, pp.2774-2780, 1975.
DOI : 10.1063/1.321957

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry -Introduction to Advanced Electronic Structure Theory, 1996.

F. Jensen, Introduction to Computational Chemistry, 2007.

S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, and H. Tokoro, Light-induced spin-crossover magnet, Nature Chemistry, vol.11, issue.7, pp.564-569, 2011.
DOI : 10.1038/nchem.1067

. Le-choix-de-la-nature-de-z-+-repose-sur-plusieurs-critères-assez-exigeants, En effet, les ABP étant très versatiles, la modification d'un paramètre au cours de leur synthèse peut avoir d'importants effets sur leurs propriétés finales. Ainsi, le cation Z + choisi : -ne doit pas être un cation alcalin

K. La-métathèse-de, Fe(CN) 6 ] nécessite la séparation des cations potassium et des anions [Fe(CN) 6 ] 3-, ainsi que l'introduction des cations (Bu 4 N) + . La séparation du système ionique (3 K + ; [Fe(CN) 6 ] 3-) est réalisée par une séparation de phases : une espèce est conservée en solution tandis que la seconde est précipitée à l'aide d'un contre-ion. La métathèse en une seule étape de K 3 [Fe(CN) 6 ] en (Bu 4 N) 3 [Fe(CN) 6 ] nécessiterait donc l'introduction dans le milieu réactionnel d'un sel de (Bu 4 N)Q, avec Q un anion permettant la précipitation de KQ. Malheureusement, les sels de potassium présentent des produits de solubilité très élevés en milieu aqueux

A. Le-sel-de, Fe(CN) 6 ] a été retenu, celui-ci présentant un faible produit de solubilité en phase aqueuse. De plus, les cations argent Ag + peuvent former des sels présentant des produits de solubilité en phase

. Le-solide-orange-de-ag, Fe(CN) 6 ] formé précipite immédiatement Ce solide est récupéré par centrifugation du milieu réactionnel. Le solide de Ag 3 [Fe(CN) 6 ] est ensuite lavé plusieurs fois à l

. Le-solide-orange-de-ag, Fe(CN) 6 ] disparaît rapidement lors de la formation du solide gris de AgBr. Le milieu réactionnel est centrifugé et le surnageant jaune de (3 (Bu 4 N) + ; [Fe(CN) 6 ] 3-) est récupéré. La concentration de la solution d'hexacyanoferrate(III)

L. Protocole and K. 'étape-de-métathèse-de, Le protocole de synthèse est le suivant : -Précipitation de Ag 3 [Fe(CN) 6 ] : 25 g de nitrate d'argent AgNO 3 (0,15 mol) dans 100 mL d'eau distillée sont additionnés par goutte à goutte lent à 33 g d'hexacyanoferrate(III) de potassium K 3 [Fe(CN) 6 ] (0,10 mol) dans 200 mL d'eau distillée, sous agitation magnétique

. Cette-métathèse, Bu 4 N) 3 [Fe(CN) 6 ] en solution aqueuse. L'objectif de cette synthèse étant avant tout l'obtention d'une solution de

+. Ag and K. , le rendement de synthèse n'est pas déterminé ici. La concentration de la solution de, Fe(CN), vol.3, issue.6

U. Le-spectre, ] 3-présente une bande caractéristique centrée sur 419 nm (Figure A37) Cette bande a été utilisée pour déterminer la concentration des solutions de (Bu 4 N) 3 [Fe(CN) 6 ] par application de la loi de Beer-Lambert. Les mesures UV-visible ont été effectuées au moyen d'un spectromètre UV-visible de marque Varian (modèle Cary 5000) disponible au LCI. Une échelle de concentration de solutions de K 3 [Fe(CN) 6 ] a été utilisée afin de vérifier le domaine de validité de la loi de Beer-Lambert et d'étalonner celle-ci (Figure A38) La concentration des solutions obtenues lors de l

A. Figure and U. Spectre, ion [Fe(CN) 6 ] 3-enregistré pour une solution de K 3 [Fe(CN) 6 ] (trait plein) et pour une solution de (Bu 4 N) 3 [Fe(CN) 6 ] (trait pointillé) La ligne verticale indique l'absorption maximale de la solution

A. ?. Figure, Absorbance d'une solution de K 3 [Fe(CN) 6 ] en fonction de sa concentration à ? = 419 nm

A. A. Synthèse-des, C. La-synthèse-des, and A. A. Cofe, CoFe ? s'effectue par addition lente d'une solution aqueuse de nitrate de cobalt(II) Co(NO 3 ) 2 sur une solution aqueuse d'hexacyanoferrate(III) de tétrabutylammonium (Bu 4 N) 3 [Fe(CN) 6 ], éventuellement en présence d'une quantité variable d'un sel de nitrate d'alcalin(I) ANO 3