
HAL Id: tel-00849402
https://theses.hal.science/tel-00849402v1
Submitted on 30 Jul 2013 (v1), last revised 25 Sep 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Synthesis of Mediators in Ubiquitous
Environments
Amel Bennaceur

To cite this version:
Amel Bennaceur. Dynamic Synthesis of Mediators in Ubiquitous Environments. Ubiquitous Comput-
ing. Université Pierre et Marie Curie - Paris VI, 2013. English. �NNT : �. �tel-00849402v1�

https://theses.hal.science/tel-00849402v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Amel BENNACEUR

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Synthèse dynamique de médiateurs dans les

environnements ubiquitaires

Dynamic Synthesis of Mediators in Ubiquitous Environments

soutenance prévue le 18 juillet 2013

devant le jury composé de :

Pr. Benôıt Baudry Rapporteur
Pr. Elisabetta Di Nitto Rapporteur
Pr. Paola Inverardi Examinateur
Pr. Sébastien Tixeuil Examinateur
Dr. Yérom-David Bromberg Examinateur
Pr. Valérie Issarny Directrice de thèse

Abstract

Given today’s highly dynamic and extremely heterogeneous software systems, au-
tomatically achieving interoperability between their software components —without
modifying them— is more than simply desirable, it is fast becoming a necessity. Al-
though much work has been carried out on interoperability, existing solutions have
not fully succeeded in keeping pace with the increasing complexity and heterogeneity
of modern software, and meeting the demands of runtime support. These solutions
either require developers to implement mediators, which are software entities that
reconcile the differences between the implementations of software components so as
to enable them to work together, or generate mediators based on declarative specifica-
tions of the composition of components or correspondences between the components’
interfaces. Due to their dependency on such specifications, existing solutions are in-
sufficient for ubiquitous environments where software components meet dynamically
and interactions take place spontaneously.

The main contribution of this thesis is to define an approach and provide a sup-
porting tool for the automated synthesis and deployment of mediators in order to
enable heterogeneous software components, with compatible functionalities, to inter-
operate. The synthesised mediators reconcile the differences between the interfaces
of the components and coordinate their behaviours from the application down to the
middleware layers.

In this thesis, we show that ontology reasoning, constraint programming, and
automata techniques can provide the basis for a practical and sound solution to
automate the synthesis of mediators at both design time and runtime. The full
automation of mediator synthesis removes the need for solutions requiring declarative,
often detailed, specifications of how to perform mediation. We validate our approach
through the development of a tool, MICS, and its experimentation with a number of
case studies ranging from heterogeneous chat applications to emergency management
in systems of systems. Through these case studies, we demonstrate the viability and
efficiency of the automated synthesis of mediators to enable functionally-compatible
software components to interoperate seamlessly.

Keywords: Interoperability, Mediators, Middleware, Software Composition, Au-
tomation, Behaviour, Ontology, Reasoning.

A papa, mama et les shadis

Acknowledgements

It is not so much our friends’ help that helps us as the confident
knowledge that they will help us.

— Epicurus, philosopher (c. 341-270 BCE)

First and foremost, I would like to express my deep gratitude to my
supervisor, Valérie, for her constant encouragement and staunch support.
Valérie, merci du fond du cœur.

I am deeply indebted to my reviewers, Benoît Baudry and Elisabetta Di
Nitto for their invaluable suggestions and feedback. I would also thank
the rest of my thesis committee, Paola Inverardi, Sébastien Tixeuil, and
Yérom-David Bromberg for their encouragement, insightful comments,
and hard questions.

My sincere thanks go to ARLES members, past and present, for putting
up with half-baked ideas and for your openness and support that has made
my stay here a pleasant one. And additional thanks to Animesh, Roberto,
Sara, Alessandra, Nikolaos, Nelly, Manel, Thiago, Daniel, Georgis, and
Georgios for thought-provoking discussions and valuable advice.

To the Inria RH and MIRIAD teams, especially Martine, Catherine,
Miriam, Stéphanie, Florence, Sylvie, Philippe, Alain, Xavier et Isabelle:
You have always been there to help make things possible. To my partners
of AGOS activities: Steven, Thierry, Sylvain, Szymon, Ines, Céline, Anne-
Céline, and Jelena: I really enjoyed spending the lunch breaks playing and
dancing. To my friends from INI or Algiers: Akram, Souad, Insaf, Nadia,
Steph, Lina: Your presence made me really feel like home. To Richard,
without whom I would never had been able to write my thesis in English:
you were more than a teacher, you were also a friend.

To the Connect team, thank you! you handled my buggy prototypes
and turned them into something real. And special thanks to Gordon,
Paul, Chris, Romina, Massimo(s), Charles, and Bengt.

Finally, I am inexpressibly grateful to my parents and the not-so-little
brothers for their love and care and for putting up with me when my
nerves were on edge.

Contents

Contents viii

List of Figures xii

List of Tables xvi

1 Introduction 1
1.1 Motivation . 2
1.2 Case Studies . 7
1.3 Influences . 9
1.4 Contributions . 13
1.5 Thesis Outline . 15

2 Interoperability: A Landscape of the Research Field 17
2.1 The Software Architecture Perspective: Understanding Interoperability 19

2.1.1 Formal Reasoning about Interoperability 22
2.1.2 Mediators to Support Interoperability 27
2.1.3 Mediation in Ubiquitous Computing Environments 29

2.2 The Middleware Perspective: Implementing Mediators 30
2.2.1 Universal Middleware . 31
2.2.2 Middleware Bridges . 32
2.2.3 Service Buses . 34

2.3 The Formal Methods Perspective: Synthesising Mediators 37
2.3.1 Mediator Synthesis Using a Specification of the Composed System 37
2.3.2 Mediator Synthesis Using a Partial Specification 40

2.4 The Semantic Web Perspective: Mediation at Runtime 43

viii

CONTENTS

2.4.1 Ontological Modelling and Reasoning 44
2.4.2 Semantic Web Services . 46
2.4.3 Semantic Mediation Bus. 49

2.5 Summary . 50

3 Achieving Eternal Interoperability: The Role of Automated
Mediator Synthesis 53
3.1 The Connect Approach to Eternal Interoperability 54
3.2 Modelling Components . 56
3.3 Emergent Middleware . 59
3.4 Emergent Middleware Enablers . 60

3.4.1 Discovery Enabler: Locating Components 60
3.4.2 Learning Enabler: Completing Component Models 62
3.4.3 Synthesis Enabler: Synthesising Mediators 64

3.5 Summary . 66

4 Automated Synthesis of Mediators 67
4.1 The File Management Example . 68
4.2 Specification of Interface Matching 72

4.2.1 One-to-One Matching . 74
4.2.2 One-to-Many Matching . 75
4.2.3 Many-to-Many Matching . 77

4.3 Computation of Interface Matching using Constraint Programming . 79
4.3.1 Complexity of Interface Matching 80
4.3.2 Interface Matching as a Constraint Satisfaction Problem . . . 81
4.3.3 Leveraging Constraint Programming for Ontological Reasoning 82

4.4 Synthesising Correct-by-Construction Mediators 86
4.5 Summary . 93

5 From Abstract to Concrete Mediators 95
5.1 The Case of the Same Middleware . 96

5.1.1 From Ontological Relations to Data Translation Functions . . 98
5.1.2 Application to the File Management Example 101

5.2 The Case of Different Middleware Based on the Same Interaction Pattern104
5.2.1 Ontology-based Modelling of Middleware Interaction Patterns 105

ix

CONTENTS

5.2.2 Application to the Weather Example 111
5.3 The Case of Middleware Based on Different Interaction Patterns . . . 112

5.3.1 Coordination across Interaction Patterns 113
5.3.2 Application to the Positioning Example 116

5.4 Summary . 118

6 Implementation & Assessment 119
6.1 The MICS tool . 119
6.2 Case Studies . 122

6.2.1 Instant Messaging: One-to-One Matching 125
6.2.2 File Management: One-to-Many Matching 129
6.2.3 Purchase Order: Mediation of Semantic Web Services 131
6.2.4 Event Management: Unified Application-Middleware Mediation 136
6.2.5 GMES: Runtime Mediation 140

6.3 Performance of MICS . 142
6.4 Summary . 144

7 Conclusion 145
7.1 Contributions . 145
7.2 Future Work . 147

7.2.1 Mediator Synthesis as a Service 147
7.2.2 Mediator Evolution . 150

7.3 One More Thing... 151

Appendix A FSP Syntax & Semantics 153

Appendix B DL Syntax & Semantics 157

References 159

x

List of Figures

1.1 The different perspectives on interoperability 10
1.2 Middleware . 11
1.3 A multifaceted approach for interoperability 13

2.1 The weather example . 18
2.2 Interoperability barriers . 19
2.3 C2, Weather Service, and associated connector in Country 1 20
2.4 Weather Station, its client, and associated connector in Country 2 . . 21
2.5 Mediator solving an architectural mismatch between C2 and Weather

Station . 27
2.6 Illustrating the use of universal middleware in the weather example . . 31
2.7 Illustrating the use of a middleware bridge in the weather example . . . 33
2.8 Illustrating the use of an ESB in the weather example 36
2.9 Illustrating the synthesis of mediators using a specification of the com-

posed system . 38
2.10 Illustrating the synthesis of mediators using a partial specification of the

mediator . 41
2.11 Extract of the OWL-S Ontology . 46
2.12 Extract of the WSMO Ontology . 48

3.1 The Connect approach for creating emergent middleware 55
3.2 Emergent middleware between C2 and Weather Station 60
3.3 Emergent middleware enablers . 61
3.4 Overview of the discovery enabler . 61
3.5 Illustrating capability learning . 63
3.6 Learning the behaviour of C2 . 64

xii

LIST OF FIGURES

3.7 Overview of the synthesis enabler . 65

4.1 Making WebDAV client and Google Docs service interoperable 69
4.2 The file management ontology . 70
4.3 One-to-one matching process: M1−1(α, β) 74
4.4 One-to-many matching process: M1−n(α,X2) 76
4.5 Many-to-many matching process: Mm−n(X1, X2) 79
4.6 Illustrating ontology encoding on an extract of the file ontology 85
4.7 Representative cases for mediator synthesis 88
4.8 Illustrating the synthesis of a mediator between WDAV and GDocs . . 92

5.1 Illustrating data translation for one-to-one matching 96
5.2 Concretising M1−n(α,X2) . 98
5.3 Illustrating concretisation in the file management example 101
5.4 The RPC ontology with SOAP specialisation 106
5.5 The DSM ontology specialised with Lime 108
5.6 Event middleware ontology specialised with JMS 109
5.7 Illustrating concretisation in the weather example 112
5.8 Mapping interaction patterns to required/provided actions 114
5.9 Illustrating concretisation in the positioning example 117

6.1 Overview of MICS . 120
6.2 Using MICS as a standalone tool . 123
6.3 Making XMPP and MSNP components interoperable 125
6.4 The IM ontology . 126
6.5 Latency for mediated and non-mediated interactions between IM

components . 128
6.6 Latency for mediated and non-mediated interactions between WebDAV

and Google Docs . 130
6.7 Making Blue and Moon interoperable 131
6.8 The purchase ontology . 132
6.9 Making Amiando client and RegOnline service interoperable 137
6.10 The event management ontology . 138
6.11 Latency for mediated and non-mediated interactions between Amiando

and RegOnline . 139

xiii

LIST OF FIGURES

6.12 Illustrating interoperability in GMES 140
6.13 Latency for mediated and non-mediation interaction between GMES

components . 141
6.14 Comparison of the time necessary for each mediation step 143

7.1 A multifaceted approach for interoperability 146
7.2 Mediator Synthesis as a Service . 148
7.3 Towards mediator evolution . 150

xiv

List of Tables

2.1 Summary of approaches to interoperability 51

6.1 Summary of the case studies . 124
6.2 Comparing our automated mediation solution with the solutions partic-

ipating in the SWS challenge . 135
6.3 Processing time (in milliseconds) for each mediation step 142

xvi

Chapter 1

Introduction

“BABEL! BABEL! BABEL! - Between the mind that plans and the hands
that build there must be a mediator.”

— in Metropolis by Fritz Lang, filmmaker (1890-1976)

How can I chat with my friend on Yahoo! using my enterprise messaging service?
How can I open my Google Docs files using the Finder application on my Mac? How
can a company use the same application to order products from different providers?
How can the command and control centre of one country effectively use the resources
offered by another country in emergency situations? All the answers come down to
interoperability. Whether it be expressed in terms of compliance to industry stan-
dards, in terms of sharing and reusing information across different systems, or in
terms of the ability of several components to work together to reach a common goal,
interoperability is, and remains, a key concern in software engineering and distributed
systems. The challenge we address in this thesis is to make software components in-
teroperate seamlessly, even though they were not designed and implemented to work
together, provided that the functionality required by one can be provided by the
other. As software systems grow increasingly complex, heterogeneous, and dynamic,
automatically achieving interoperability is fast becoming a central challenge.

In this introductory chapter, we look into the need for interoperability and show
why, despite extensive interest and intensive work, interoperability remains an open
problem, especially in ubiquitous computing environments. Next, we show how the
various approaches for interoperability, which have been proposed across the fields of

1

Chapter 1. Introduction

software engineering and distributed systems, inspired us when defining a solution to
enforce interoperability by means of the automated synthesis of intermediary software
entities, mediators. We then summarise our contributions. The chapter concludes by
an outline of the structure of this document.

1.1 Motivation

To software developers, life may sometimes seem like a scene from “Modern Times”
where Charlie Chaplin is labouring away at an assembly line, frantically tightening
bolts over and over again. Modern software systems are increasingly built by assem-
bling, and re-assembling, existing components —possibly distributed among many
devices— so as to create innovative services. Since the components of a software sys-
tem are often designed and implemented independently, software developers spend
a lot of time, and effort, adding pieces of code so as to allow these components to
work together and satisfy the requirements of the software system. The rapid pace of
technological change combined with the increasing demands for high-quality software
in reduced time and at lower cost, may overwhelm developers who have to deal with a
multitude of details just to make components work together. Besides being a complex
and error-prone task, enabling independently-developed components to work together
is both daunting and tedious. Developers should be free to spend more time creating
new services and designing innovative software systems and less time tightening and
re-tightening bolts. The goal of our work is to enable independently-developed soft-
ware components to work together, if need be, despite the many differences in their
implementations. In other words, we aim to achieve interoperability between exist-
ing software components that were not designed or implemented to operate together
automatically.

Let us first explain what interoperability means. In a broad sense, interoperability
simply refers to the ability of different systems (both hardware and software), organ-
isations, and people to operate together to achieve a common goal [Tol03, KC09,
JGGA+13]. In this thesis, we focus on interoperability between software components
that may be distributed across multiple, possibly mobile, devices communicating
through the network. In this context, let us consider representative definitions of
interoperability from software engineering and distributed systems:

2

Chapter 1. Introduction

Definition 1: “The ability of two or more systems or components to exchange infor-
mation and to use the information that has been exchanged.” [IEE90, pp.42]

Definition 2: “Interoperability characterises the extent by which two implementa-
tions of systems or components from different manufacturers can co-exist and
work together by merely relying on each other’s services as specified by a com-
mon standard.” [TVS06, pp.8]

Definition 3: “Interoperability is about the degree to which two or more systems can
usefully exchange meaningful information via interfaces in a particular con-
text.” [BCK12, pp.104]

These definitions set out several key concepts that underlie interoperability. First,
all the definitions stress that interoperability is not specific to one component but
should be considered between several components. Hence, the first question is be-
tween which components should interoperability take place? Definition 2 emphasises
the idea of services: interoperability takes place between components that can rely
on each other’s services. But the term service is a very vague one. To make it clearer,
we distinguish between a macroscopic view of the service, that is the functionality of
the component and a more refined view, that is the interface of the component, also
referred to in Definition 3. The functionality specifies the high-level role of the com-
ponent, e.g., Google Docs provides the functionality of managing files. It makes sense
for two components to interoperate if the functionality required by one can be pro-
vided by the other, i.e., if the components are functionally compatible. The interface,
on the other hand, is specific to the implementation of the component. It describes
the set of actions performed by/on the component to implement its functionality and
allows components to exchange information.

The second question is what does working together mean? Definitions 1 and 3
stress useful information exchange. First, the way a component exchanges infor-
mation defines its observable behaviour. Specifically, the component’s observable
behaviour defines how the component uses the actions of its interface to achieve its
functionality. Still, a software system can only satisfy its requirements if the com-
ponents that form this system can successfully exchange information. Hence, the
components of a software system need to combine their behaviours such that when-
ever one of the components requires some action, another component is ready to
provide it.

3

Chapter 1. Introduction

Definition 2 highlights the reliance on a common standard. Let us first consider
standards in the strict sense of the term, i.e., as a “document, established by consensus
and approved by a recognised body, that provides, for common and repeated use, rules,
guidelines or characteristics for activities or their results, aimed at the achievement
of the optimum degree of order in a given context” [ISO11]. Internet standards, like
TCP/IP, SMTP, UTF-8, XML, and HTML, are certainly the most obvious example
of the role that standardisation can play in achieving a significant level of inter-
operability. However, the evolution of the Internet into what is called the “Future
Internet” challenges existing standards [PSDZ12]. Internet standards only ensure
that components on different computers can pass data over, but do not guarantee
that the components exchange meaningful information as stressed by Definition 3. In
this direction, the Semantic Web [BLHL+01] promotes the vision in which Web re-
sources are augmented with machine-processable metadata expressing their meaning.
This vision is supported by ontologies, which provide a machine-processable means to
represent and automatically reason about the meaning of data based on the shared
understanding of the domain [Gru09].

Another downside of standards is that there are so many to choose from [TW10,
pp.702]. For example, one can use FTP or WebDAV, both of which are standards,
for file sharing, but a user of one standard cannot share files with a user of the
other standard, unless there is some intermediary software that enables them to work
together. In conclusion, there is no doubt about the importance of standards to
facilitate interoperability but they are neither necessary nor sufficient to guarantee
interoperability [LMSW08].

Let us now consider standards from a broader perspective, just as a form of agree-
ment between parties [TMD09]. Due to the increasing ubiquity of modern software
systems and the high demand on runtime support, such an agreement is often im-
possible to reach. Many connected devices such as smartphones, tablets, and laptops
are an integral part of our lives and assist us in a wide range of daily tasks. But to
take full advantage of the digital ecosystem, the software components within these
devices should be able to discover the services around them dynamically and inter-
act with them at runtime. It is impossible to predict all possible interactions, and
hence impossible to agree on the rules that would enable them to work together.
Reaching a common agreement may also be impossible due to the complexity of the
components involved, which can be systems in themselves. This is the case of inter-

4

Chapter 1. Introduction

operability in the context of systems of systems [MLM+04]. Examples include the
military systems of different countries [Lar03], or several transportation companies
within a city [SEC12]. The components of systems of systems are completely au-
tonomous systems, which are designed and implemented independently and do not
obey any central control or administration. Nonetheless, there are real incentives for
these components to work together, e.g., to allow international cooperation during
conflicts, or ensure users can commute. In this context, it is not enough to simply
assess the ability of the components to work together but rather we should make
them work together.

In the light of the above observations, we revise the definition of interoperability
as follows:

Definition (Interoperability). Interoperability characterises the extent to which two
software components from different manufacturers, which are functionally compatible,
can be made to work together correctly by reconciling the differences in their interfaces
and behaviours.

In order to make functionally-compatible components work together, without
modifying them, intermediary software entities, called mediators, are used [Wie92].
Mediators achieve interoperability by reconciling the differences in the implementa-
tions of the components involved. Designing and implementing mediators requires
dealing with many concerns: (i) coordination of the behaviours of the components so
as to guarantee their correct interaction (e.g., absence of deadlocks), (ii) data trans-
lation so as to ensure meaningful information exchange between the components, and
in the case of distributed components (iii) communication between the components
so as to address the issues inherent in their distribution across the network (e.g.,
concurrency and fault tolerance).

The enabling technology that facilitates the development of mediators by address-
ing the issues inherent in the distribution of components is middleware. Middleware
is a software entity logically placed between the application and the operating system
that provides an abstraction that facilitates the communication and coordination of
distributed components [TVS06]. Middleware provides mediation at the infrastruc-
ture layer as it makes components work together by hiding the differences in hardware
and operating systems. For example, SOAP-based clients deployed on Mac, Windows,
and Linux machines can seamlessly access a SOAP-based Web Service deployed on

5

Chapter 1. Introduction

a Windows server. However, there is the problem of differences between middleware
technologies themselves. For example, a CORBA client cannot access a SOAP-based
Web Service. Still, while SOAP and CORBA respect a similar pattern for interac-
tion —typically a client sends a request to the service, which processes it and returns
the corresponding response to the client— there are other examples of middleware
that rely on a fundamentally different type of interaction, e.g., JavaSpaces whose
components interact via a shared memory. Hence, not only do current middleware
solutions not fully solve the interoperability problem, but they may even aggravate
it by adding differences at the middleware layer.

Furthermore, even applications developed using the same middleware are not
guaranteed to work together so long as there are differences in their interfaces and be-
haviours. This is, for example, the case of interoperability in Web Services [NBCT06].
Even though both services and clients use SOAP middleware, the differences between
their interfaces, which include differences in the operation names, input/output mes-
sage names and types, the granularity of operations, and the order in which these
operations are invoked (or expected to be invoked) hamper independently-developed
clients and Web Services from working together. A mediator is required to enable
them to interoperate. Given the countless number of potential cases where a media-
tor is necessary, any static solution is doomed to fail. We need to generate mediators
automatically.

The ultimate goal of this thesis work is to achieve interoperability between
functionally-compatible components by automatically synthesising mediators that
reconcile the differences between the implementations of these components. Our
thesis statement is the following:

“Components with compatible functionalities should be able to interoperate
despite differences in their respective implementations. By reasoning about
the meaning of the information they exchange and analysing their behaviours,
we can automatically synthesise and dynamically deploy mediators so as to
achieve interoperability between these components. The mediators solve the
differences between the interfaces of the components and coordinate their be-
haviours at both the application and middleware layers.”

Our approach for the automated synthesis of mediators relies on the adequate spec-
ifications of the components, which describe the meaning of the actions of the com-
ponents’ interfaces together with the components’ behaviours. Once deployed, the

6

Chapter 1. Introduction

mediators reconcile the differences between component implementations at both ap-
plication and middleware layers. The systematic approach for generating mediators
makes our solution applicable at both design time and runtime, and suitable for
future and unforeseen components. Furthermore, since a solution for achieving inter-
operability can only be useful if it can be successfully applied to complex, real-world
problems, we investigate many case studies where interoperability is a major concern
and show how it can be efficiently solved using the automated synthesis of mediators.

1.2 Case Studies

The need for interoperability is encountered in many domains such as instant mes-
saging, collaborative file management, e-business, event management, and emergency
management. We present the major use cases that we investigated during this thesis
in order of increasing complexity ranging from the simplest case, where the media-
tor just translates each message sent by one of the components into a message that
the other component expects, to the most complex case, which involves a system of
systems for the management of emergency situations. By considering several case
studies, we gauge the problems frequently encountered when achieving interoperabil-
ity and validate the assumptions that can be made.

The first case study relates to Instant Messaging (IM). IM is a popular appli-
cation for many Internet users —over 3.1 billion users in 2012 and over 3.8 billion
users predicted for 2016 [Rad12]— with an increasing emphasis on mobility —30%
of smartphones had IM applications installed in 2012 [Rad12]. However, users of one
IM application cannot exchange messages with the users of another application. Al-
though this situation may be frustrating from a user perspective, it reflects the way
IM, like many other applications, has evolved. There exist many solutions that in-
tegrate the disparate applications but they often require developing and maintaining
mediators manually. Even though these mediators are simple —often just intercept-
ing the messages from one client application and translating them into messages of
the interacting application— they are impractical in the long term as new versions
and standards keep emerging. However, the existence of these solutions, and their
widespread use, demonstrate the need for interoperability in the IM domain. Yet,
despite this need for interoperability and despite the existence of a W3C standard,

7

Chapter 1. Introduction

XMPP1, the situation seems unlikely to change.
We move to the case of interoperability between file management systems. Users

may use different applications to organise, search, and manipulate their files, and
share them with other users. We concentrate on two systems: WebDAV2, which
is an IETF standard, and Google Docs3. Although these two systems offer similar
functionalities and use HTTP as the underlying transport protocol, they are unable
to interoperate. For example, a user cannot access his Google Docs documents using
his favourite WebDAV client (e.g., Mac Finder). This is mainly due to the syntactic
naming of data and operations used in each system, and the order in which these
operations are performed. This case study also illustrates the case of one-to-many
correspondence between the actions of the two components, i.e., one action required
from a component is translated into a sequence of actions provided by the other
component.

We also consider the Purchase Order scenario proposed as part of the Semantic
Web Service (SWS) Challenge [PMLZ08]. The scenario represents a typical real-
world problem that is close to industrial reality. It is intended as a common ground
to discuss semantic (and other) Web Service solutions and compare them according
to the set of features that a mediation approach should support.

We move on to the case of differences spanning both the application and mid-
dleware layers. We consider the case of interoperability between event management
systems, which are concerned with the organisation of events like conferences, semi-
nars, and concerts. We concentrate on the case of Amiando4 and RegOnline5, which
were built as REST and SOAP Web Services respectively. They further exhibit dif-
ferences in the name and granularity of the operations they propose.

Finally, to highlight the interoperability challenge in systems of systems, we con-
sider one representative application domain, that of global monitoring of the natural
environment, as illustrated by the GMES6 initiative, which we investigated in the con-
text of the Connect European Project [Con12]. GMES is the European Programme
for the establishment of a European capacity for Earth Observation. Special interest

1Extensible Messaging and Presence Protocol – http://www.xmpp.org/
2Web Distributed Authoring and Versioning – http://www.ietf.org/rfc/rfc2518.txt
3http://docs.google.com
4http://developers.amiando.com/
5http://developer.regonline.com/
6Global Monitoring for Environment and Security – http://www.gmes.info/

8

 http://www.xmpp.org/
http://www.ietf.org/rfc/rfc2518.txt
http://docs.google.com
http://developers.amiando.com/
http://developer.regonline.com/
http://www.gmes.info/

Chapter 1. Introduction

is given to the support of emergency situations across different European countries.
In emergency situations, the context is highly dynamic and involves highly hetero-
geneous components that interact in order to perform the different tasks necessary
for decision making. The tasks include, among others, collecting weather informa-
tion, and capturing video using different devices. GMES makes a strong case for
the need for on-the-fly solutions to interoperability in systems of systems. Indeed,
each country defines an emergency management system that encompasses different
components, which interact according to standards specific to the country. However,
in special circumstances, assistance may come from other countries, which bring their
own components defined using different standards. Besides demonstrating the need
for mediation at runtime, GMES also requires achieving interoperability between
middleware with different interaction patterns, namely remote procedure call and
publish/subscribe.

We use these case studies throughout the document to illustrate our approach
and also to validate and assess the solution in a dedicated chapter.

1.3 Influences

Interoperability has received a great deal of interest and led to the provision of a
multitude of solutions, both theoretical and practical, albeit primarily oriented to-
ward design time. The approach for the automated synthesis and deployment of
mediators we propose in this thesis takes its inspiration from the extensive work on
interoperability seen from the perspective of its underpinning fields: software archi-
tecture, middleware, formal methods and Semantic Web. Figure 1.1 depicts, for each
perspective, the specific focus and the main technique for supporting interoperability
as well as how mediators are considered.

• Software architecture. Software architecture focuses on composition: several
software entities are put together to build a system and define its structure as
a whole [Sha93]. Interaction between components is abstractly described using
software connectors. In other words, connectors model the exchange of infor-
mation between components and the coordination of their behaviours. Hence,
mediators can be conveniently represented as connectors. One critical issue
for software architecture is the design and implementation of the connectors

9

Chapter 1. Introduction

Stru
ctu

ral
 Ana

lys
is

Beh
av

iou
ral

 Ana
lys

isOntologies

Soft
ware

 Arch
ite

ctu
re

Pers
pe

ctiv
e

Form
al

Meth
od

s P
ers

pe
ctiv

eSemantic Web Perspective

Middleware PerspectiveCom
po

siti
on

Abs
en

ce
 of

 er
ror

s

Distribution across the network

Meaning of Information

Med
iat

ors
 as

Con
ne

cto
rs

Med
iat

ors
 as

Con
tro

ller
s

Mediators as

Middleware

Mediators as

Translators

Interoperability

Implementation

Figure 1.1. The different perspectives on interoperability

that permit the various software components to work together properly. While
middleware offers convenient services that facilitate the implementation of con-
nectors, the design and specification of mediators remain the responsibility of
developers.

• Middleware. Middleware provides an abstraction that facilitates the devel-
opment of distributed applications despite the heterogeneity of the underlying
infrastructure [TVS06], as depicted in Figure 1.2. On the one hand, middleware
makes applications agnostic to the differences between the operating systems
and the hardware of the devices on which software components are deployed.
On the other hand, applications implemented using different middleware solu-
tions are not able to work together.

Therefore, other middleware solutions have been proposed in order to reconcile
the differences between middleware. In this case, the proposed middleware acts
as a mediator between different middleware implementations. In the simple case
of middleware obeying the same interaction pattern, the differences can simply
be solved by translating the messages sent using one middleware into suitable

10

Chapter 1. Introduction

messages expected by the other middleware. However, when the middleware
implementations follow different interaction patterns, e.g., shared memory and
publish/subscribe, then the differences are such that they cannot always be
solved [CMP08]. What is needed is to further consider the characteristics of
the applications so as to verify whether the differences can indeed be reconciled.

Considering the innumerable cases of potential applications, defining some mid-
dleware that ensures interoperability by considering the application character-
istics and associated middleware is unfeasible. It is necessary to define solutions
able to reason about the characteristics of applications automatically in order
to infer the necessary actions for reconciling the differences between component
implementations. As sketched below, formal methods focus on reconciling the
behaviours of the components while Semantic Web technologies focus on the
meaning of the information exchanged between components.

Local OS 2 Local OS 3

Application 2

Local OS 1

Application 1

Computer 1 Computer 2 Computer 3

Local OS 4

Application 3

Computer 4

Middleware

Network

Figure 1.2. Middleware

• Formal methods. Formal methods are mathematically-based languages, tech-
niques, and tools for specifying and verifying hardware and software sys-
tems [CW96]. Formal methods focus on the behaviour of software systems,
which they rigorously analyse in order to reveal potential inconsistencies, ambi-
guities, and incompleteness. In other words, formal methods help to verify the
absence of execution errors in software systems. Once potential execution er-
rors (a.k.a. mismatches) are detected, they can be solved either by eliminating
the interactions leading to the errors or by introducing a controller that forces
the components to coordinate their behaviours correctly. Only the introduction
of a controller can keep the functionality of the system intact by enabling its
components to achieve their individual functionalities.

11

Chapter 1. Introduction

Existing solutions for the generation of controllers (e.g., [YS97, BBC05, Sal10,
MPS12]) often operate on a high-level abstraction, which makes turning the
generated controller into an implementation very challenging. Moreover, they
either assume that the behaviours of the functionally-compatible components
are described using the same set of actions, a specification of the composed sys-
tem is given, or the correspondence between the actions of components’ inter-
faces is provided [DG09]. This assumption does not hold in the case of today’s
ubiquitous computing environments, where interactions between components
can only be known at runtime [CK10].

• Semantic Web. The Semantic Web is an extension of the Web in which infor-
mation is given well-defined meaning, better enabling computers and people to
work in cooperation [BLHL+01]. Ontologies play a key role in the Semantic
Web by formally representing shared knowledge about a domain of discourse
as a set of concepts, and the relationships between these concepts [Gru93].
Ontologies have been extensively used to automate the reasoning about the
information exchanged between software components, especially in ubiquitous
computing environments, so as to infer the translations necessary to recon-
cile the differences in the syntax of this information [MSZ01]. However, these
translations solve interoperability only at the application layer.

To sum up, software architecture provides us with techniques to understand inter-
operability and reason about the composition of software components but does not
specify how to achieve interoperability automatically. Middleware gives us reusable
solutions that facilitate the implementation of mediators but these solutions do not
reconcile the differences between components at the application layer. Formal meth-
ods provide us with the foundations for coordinating the behaviours of components in
order to guarantee the absence of errors in their interactions, but assume that either
the components use the same set of actions, a specification of the composed system
is given, or the correspondence between their actions is provided. Finally, Semantic
Web technologies allow us to infer the translations necessary to ensure meaningful
exchange of information between components, but do not deal with the differences
between components at the middleware layer.

12

Chapter 1. Introduction

1.4 Contributions

We posit that interoperability should neither be achieved by defining yet another
middleware nor yet another ontology but rather by exploiting existing middleware
together with knowledge encoded in existing domain ontologies to synthesise and
implement mediators automatically. We define a multifaceted approach to interoper-
ability, which brings together and enhances the solutions that tackle interoperability
from different perspectives, as depicted in Figure 1.3. The mediators we synthesise
act as (i) translators by ensuring the meaningful exchange of information between
components, (ii) controllers by coordinating the behaviours of the components to en-
sure the absence of errors in their interaction, and (iii) middleware by enabling the
interaction of components across the network so that each component receives the
data it expects at the right moment and in the right format.

Synthesising
Correct-by-Construction

Mediators

From Abstract to

Concrete Mediators
Generating Interface

Translators

Interoperability

Middleware
Controllers

Matchings Automatically

Figure 1.3. A multifaceted approach for interoperability

The inputs of our approach are two functionally-compatible components, which
are described using their interfaces and behaviours together with a domain ontology
that represents the shared knowledge of the application domain. In order to enable
interoperability between functionally-compatible components, we make the following
contributions:

• Generating interface matchings automatically. A significant role of the media-
tor is to translate information available on one side and make it suitable and
relevant to the other. This translation can only be carried out if there exists a

13

Chapter 1. Introduction

semantic correspondence between the actions required by one component and
those provided by the other component, that is, interface matching. The main
idea is to use the domain-specific information embodied in the domain ontology
in order to select from sequences of actions of the components’ interfaces only
those which retain the meaning of the information exchanged and for which
translations can automatically be computed. The generated interface match-
ings not only specify one-to-one correspondences between the actions of compo-
nents but also many-to-many correspondences, which makes their computation
very complex. By using constraint programming, which we leverage to support
ontology reasoning, we are able to calculate interface matchings efficiently.

• Synthesising correct-by-construction mediators. We explore the behaviours of
the functionally-compatible components in order to generate the mediator that
composes the computed interface matchings to guarantee the correct interaction
between the components. The algorithm deals with the potential ambiguity of
interface matching, i.e., when the same sequence of actions of one component
matches with different sequences of actions from the other component. The me-
diator, if it exists, guarantees that the two components progress synchronously
and reach their final states.

• From abstract to concrete mediators. Ensuring interoperability from applica-
tion down to middleware often requires dealing with many concerns, some of
which are specific to the application at hand while the others relate to the
distribution and coordination of the components. We perform the automated
synthesis of mediators at the ontological and behavioural levels where reasoning
and inference can be realised. Then, we refine the mediators by considering the
interaction patterns of the middleware involved. Finally, we use middleware
libraries to create concrete network messages based on these middleware primi-
tives. Only when the mediator includes all the details about the communication
of components, can interoperability be achieved.

• Experimenting with real-world cases. We demonstrate the validity of our ap-
proach through the development of the MICS (Mediator Synthesis to Connect
Components) tool and illustrate its large applicability using real-world scenar-
ios involving heterogeneous existing systems. We show that our approach is

14

Chapter 1. Introduction

able to automatically generate the appropriate mediators automatically. The
mediator enables the components to interoperate while introducing only a small
overhead.

Much of this work has been either published or submitted for publication, but this
thesis should be regarded as the definitive and uniform exposition of the approach.

• In [IBB11, IB13], we review literature on interoperability and present the foun-
dation for the automated synthesis of mediators to achieve interoperability from
application down to middleware.

• In [BBG+11], we focus on the role of ontologies to support interoperability in
distributed systems.

• In [BBG+13], we present the approach from the perspective of models at run-
time.

• In [BRA+11, BIR+11, BIS+12], we explore the role of learning techniques to
complete the model of software components based only on their syntactic in-
terfaces.

• In [BCI+13], we investigate the use of quotient and ontology reasoning for the
of synthesis of correct-by-construction mediators.

• In [BI13], we introduce the automated generation of interface matching using
constraint programming and the related synthesis of correct-by-construction
mediators.

• In [BIST12], we present the results of using automated synthesis of mediators
to enable interoperability across different instant messaging applications.

1.5 Thesis Outline

This thesis is organised as follows:

• Chapter 2 surveys existing approaches to reason about and achieve interop-
erability from its four underpinning perspectives: (i) software architecture to
understand and reason about interoperability, (ii) middleware to investigate

15

Chapter 1. Introduction

methods for the implementation of mediators, (iii) formal methods to analyse
the behaviours of the components and synthesise mediators, and (iv) Semantic
Web technologies to represent and reason about domain knowledge and ensure
meaningful data exchange between components.

• Chapter 3 introduces the context in which the approach is the most relevant.
It explains the foundations of the Connect approach for achieving interoper-
ability in today’s and future software systems by discovering the components
spread over the network, completing their specifications, and synthesising the
appropriate mediators that enable them to interoperate.

• Chapter 4 details the approach for the automated synthesis of mediators. It
presents a solution based on ontology reasoning and constraint programming
so as to compute interface matchings efficiently. It also describes the algorithm
used to generate the mediator that guarantees that the components interact
successfully.

• Chapter 5 considers the concretisation of the synthesised mediator further con-
sidering heterogeneous middleware implementations, including those based on
different interaction patterns.

• Chapter 6 presents the MICS tool that is the implementation of our approach
for the automated synthesis of mediators. It also demonstrates the viability
and wide applicability of the approach through different case studies.

• Chapter 7 emphasises the contribution of this work and identifies challenges
and research gaps that require further exploration.

16

Chapter 2

Interoperability: A Landscape of the
Research Field

“The world is moved along, not only by the mighty shoves of its heroes,
but also by the aggregate of the tiny pushes of each honest worker.”

— Helen A. Keller, lecturer and author (1880-1968)

Ask a software architect about interoperability, and he will answer that it is about
the development of the software connector that enables components to interact suc-
cessfully. Ask a middleware developer and he will tell you that it is about defining an
appropriate middleware. Ask a formal methods expert and he will say that it is about
computing a controller that forces the components to interact without errors. Ask a
Semantic Web expert and he will tell you that it is about defining an ontology that
enables reasoning about the meaning of the information exchange. In this chapter,
we review the literature on interoperability from these four perspectives. We first
adopt a software architecture perspective to present the concepts underpinning inter-
operability. Next, we concentrate on middleware for the implementation of concrete
software solutions to achieve interoperability. Then, we describe formal solutions
that analyse the behaviours of components in order to synthesise the mediator that
guarantees that they can interact without errors. Finally, we present solutions based
on ontologies so as to represent and reason about the meaning of the information
exchanged between components at runtime, as is required by ubiquitous computing.

17

Chapter 2. Interoperability: A Landscape of the Research Field

To illustrate existing solutions and show their benefits and limitations, we use
a simple example from the GMES case study (see Figure 2.2). In Country 1, the
Command and Control centre (C2) obtains weather information by interacting with
Weather Service using SOAP. In Country 2, Weather Station provides specific in-
formation such as temperature or humidity and is implemented using CORBA. C2
requires a weather functionality that can be provided by Weather Station, however,
they cannot interact successfully without a mediator that reconciles the differences
in their implementations.

Country 1 Country 2

Weather Service Weather Station Client

CORBA

Weather StationC2_Weather

MediatorSOAP

Figure 2.1. The weather example

The successful interoperation of components is often hampered by differences in
their implementations at both the middleware and application layers. At the appli-
cation layer, components may define different data types and operations, and have
divergent behaviours. At the middleware layer, components may rely on various mid-
dleware technologies (e.g., SOAP, CORBA, or JMS) that use distinct data represen-
tation formats, and define disparate interaction patterns. As the differences between
components span both the application and the middleware layers, interoperability
becomes a cross-cutting concern and must be achieved from the application down to
the middleware, while we consider that differences between operating systems and
network protocols are handled by the middleware.

Figure 2.2 illustrates a classification of the differences between the components
that can prevent them from interoperating in the case of the weather example. At
the application layer, C2 uses the Weather data type whereas Weather Station defines
the Temperature and Humidity data types. C2 performs a single action getWeather

while Weather Station provides two actions getTemperature and getHumidity, which
can be performed independently. At the middleware layer, C2 sends a SOAP request

18

Chapter 2. Interoperability: A Landscape of the Research Field

 Application

 Middleware

BehaviourData

prov.getTemperature
prov.getHumidity

prov.logoutprov.login

req.getWeather

req.logoutreq.login
Weather

Humidity

Temperature

SOAP Request CORBA Request

SOAP Response CORBA Response
RPC RPC C2

Legend

Weather Station

Figure 2.2. Interoperability barriers

to invoke an action and expects a SOAP response in return, whereas Weather Station
expects CORBA requests, and sends the results in CORBA responses. Consequently,
C2 is unable to invoke the actions of Weather Station even though the interaction
pattern is the same, i.e., Remote Procedure Call (RPC).

This classification of interoperability barriers shows that differences between com-
ponents span both the application and middleware layers, and concern both the data
manipulated by components and the behaviours of these components. This classifica-
tion is by no means exhaustive as our aim is not to introduce yet another classification
of interoperability barriers —plenty have already been proposed [BOR04, UCJ09]—
but rather to set up a framework that will help us understand, discuss, and compare
the different approaches to interoperability.

2.1 The Software Architecture Perspective:
Understanding Interoperability

Software architecture abstractly describes the structure of software systems in terms
of components and connectors: components are meant to encapsulate computation
while connectors are meant to encapsulate interaction [Sha93].

In order to facilitate software composition and reuse, a component encapsulates
some functionality to which it restricts access via an explicit interface [TMD09]. The
interface of a component specifies the set of observable actions that the component
uses to interact within its running environment in order to perform its functionality.

19

Chapter 2. Interoperability: A Landscape of the Research Field

This set is partitioned into required and provided actions, with the understanding
that required actions are received from and controlled by the environment, whereas
provided actions are emitted and controlled by the component.

The architectural element tasked with effecting and regulating interactions be-
tween components is a connector [TMD09]. The implementation of a connector is
often based on middleware [MDT03] since middleware provides reusable solutions
that facilitate communication and coordination between components. For this pur-
pose, middleware defines [ICG07]: (i) an Interface Description Language (IDL) for
specifying the interfaces of components and the associated operations, and data types,
(ii) a discovery protocol to address and locate the components that are available in
the environment, (iii) an interaction protocol that coordinates the behaviour of dif-
ferent components and enables them to collaborate, and (iv) additional protocols to
manage non-functional requirements such as dependability, security, fault-tolerance,
and performance optimisation. However, while components and connectors are con-
ceptually separate, the middleware used to implement a connector is often invasive in
that it influences the implementation of the components. For example, the language
used to describe the component’s interface differs according to the middleware im-
plementation used, e.g., CORBA IDL in the case of CORBA-based middleware and
WSDL in the case of SOAP-based middleware.

Figure 2.3 depicts the interaction between C2 and Weather Service. The inter-
face of C2 includes three required actions req.login, req.getWeather, and req.logout.
The interface of Weather Service encompasses three provided actions prov.login,
prov.getWeather, and prov.logout. The connector Weather_Connector1 models the
interaction between C2 and Weather Service. Weather_Connector1 is implemented
using SOAP, which also implies that C2 acts as a SOAP client when performing its

Weather_Connector1
prov.login

prov.getWeather

prov.logout

req.login

req.getWeather

req.logout

C2 Weather Service

SOAP

Figure 2.3. C2, Weather Service, and associated connector in Country 1

20

Chapter 2. Interoperability: A Landscape of the Research Field

required actions and Weather Service acts as a SOAP service when providing these
same actions.

Similarly, Figure 2.4 depicts the interaction between the Weather Station com-
ponent and its specific client. The interface of Weather Station specifies four pro-
vided actions prov.login, prov.getTemperature, prov.getHumidity, and prov.logout.
Weather Station Client exhibits the dual interface with required actions. The in-
teraction between Weather Station and Weather Station Client is abstracted using
Weather_Connector2. The use of CORBA to implementWeather_Connector2means
that Weather Station Client carries out its required actions by sending CORBA re-
quests and receiving CORBA responses while Weather Station provides its actions
by receiving CORBA requests and sending CORBA responses.

Weather_Connector2 prov.getTemperature
prov.getHumidity

prov.logout

prov.login
req.getTemperature

req.getHumidity
req.logout

req.login

Weather Station Client Weather Station

CORBA

Figure 2.4. Weather Station, its client, and associated connector in Country 2

Let us now consider the case of C2 willing to interact with Weather Station. The
former requires a weather functionality that is provided by the latter. However, nei-
ther Weather_Connector1, nor Weather_Connector2 can readily be used to manage
their interaction. Intuitively, we can state that C2 and Weather Station cannot oper-
ate together. This is known as an architectural mismatch. Architectural mismatches
occur when composing two, or more, software components to form a system and those
components make conflicting assumptions about their environment [GAO95], thereby
preventing interoperability. These assumptions relate to: (i) the interfaces and be-
haviours of the components involved, (ii) the behaviours and implementations of the
connectors used, and (iii) the operating systems and the hardware of the devices on
top of which the components are deployed.

Architectural mismatches represent barriers to interoperability that must be solved
in order to enable functionally-compatible components to work together. To achieve
interoperability automatically, this intuitive notion of architectural mismatches must

21

Chapter 2. Interoperability: A Landscape of the Research Field

be made more precise. First, we present the formal foundation of software architec-
ture so as to allow us to reason about interoperability. Then, we introduce mediators
as a means to achieve interoperability. Finally, we discuss the synthesis of media-
tors at runtime in order to enable interoperability in highly-dynamic environments,
including ubiquitous computing environments.

2.1.1 Formal Reasoning about Interoperability

The first step towards reasoning about interoperability is by formalising component
interactions. The behaviour of a component specifies its interaction with the envi-
ronment and models how the actions of its interface are coordinated to achieve its
functionality.
Different languages may be considered for the specification of a component’s be-
haviour. Formal languages are a prerequisite for automated analysis of the compo-
nent’s behaviour while standard, well-established languages (e.g., BPEL1 and CDL2)
are easier for developers to deal with. We build upon pioneering work by Allen
and Garlan [AG97], which uses process algebra to model the behaviours of compo-
nents together with their interaction. More specifically, we use FSP (Finite State
Processes) [MK06] based on the follow-up work by Spitznagel and Garlan, which in
particular considers the transformation of connectors in order to address dependabil-
ity as well as interoperability concerns [SG03]. It is worth noticing that there further
exists a tool, WS-Engineer [Fos08], to convert BPEL and CDL specifications into
FSP descriptions automatically. In this section, we present FSP and show how it is
used to model interactions between components and reason about interoperability.

2.1.1.1 Finite State Processes

FSP [MK06] is a process algebra that has proven to be a convenient formalism for
specifying concurrent components, analysing, and reasoning about their behaviours.
Briefly stated, FSP processes describe actions (events) that occur in sequence, and
choices between action sequences. Each process has an alphabet, αP , of the actions
that it is aware of (and either accepts or refuses to engage in). There are two types of
processes: primitive processes and composite processes. Primitive processes are con-

1http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
2http://www.w3.org/TR/ws-cdl-10/

22

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/ws-cdl-10/

Chapter 2. Interoperability: A Landscape of the Research Field

structed through action prefix a → P , choice a → P |b → Q, and sequential compo-
sition P ;Q. Composite processes are constructed using parallel composition P‖Q or
process relabelling a : P . The replicator forall is a convenient syntactic construct used
to specify parallel composition over a set of processes. Processes can optionally be pa-
rameterised P (X =′ a) and have re-labelling P/{new_1/old_1, ..., new_n/old_n},
hiding P\{a1, ..., an} or extension P + {a1, ..., an} over their alphabet. A composite
process is distinguished from a primitive process by prefixing its definition with ‖.

The semantics of FSP are given in terms of Labelled Transition Systems
(LTS) [Kel76]. The LTS interpreting an FSP process P can be regarded as a di-
rected graph whose nodes represent the process states and each edge is labelled with
an action a ∈ αP representing the behaviour of P after it engages in a. P

a→ P ′

then denotes that P transits with action a into P ′, and P
s⇒ P ′ is shorthand for

P
a1→ P1

a2→ P2...
an→ P ′ where s = 〈a1, a2, ..., an〉 , ai=1..n ∈ αP . There exists a start

node from which the process begins its execution. The END state indicates a success-
ful termination. When composed in parallel, processes synchronise on shared actions:
if processes P and Q are composed in parallel, actions that are in the alphabet of
only one of the two processes can occur independently, but an action that is in the
alphabets of both cannot occur until both processes are willing to engage in it.

We provide an overview of the syntax and semantics of FSP operators in Ap-
pendix A and refer the interested reader to [MK06] for further details.

2.1.1.2 Formalising Components and Connectors using FSP

Based on pioneering work for formalising component interactions in software architec-
ture [AG97], the behaviour of a component is modelled using ports while a connector
is modelled as a set of roles and a glue. The roles specify the expected behaviours
of the interacting components while the glue describes how the behaviours of these
components are coordinated. More specifically, we consider the specification of the
ports, roles, and glue as FSP processes.

To return to the example in Figure 2.4. To achieve the required weather func-
tionality, C2 first logs in, invokes getWeather several times, and finally logs out. We
specify this behaviour as follows:

C2_weather_port = (req.login→ P1),
P1 = (req.getWeather → P1 | req.logout→ C2_weather_port).

23

Chapter 2. Interoperability: A Landscape of the Research Field

Since C2 interacts using SOAP, then each of the required actions is realised by invok-
ing the appropriate operation op, which belongs to the set {login, getWeather, logout},
by sending a SOAP request and receiving a SOAP response, which is formalised as
follows:

SOAPClient (X =′ op) = (req.[X]→ sendSOAPRequest[X]→ receiveSOAPResponse[X]

→ SOAPClient).

The Weather_Connector1 connector managing the interactions between C2 and
Weather Service defines a role associated with each of them, that is, C2_weather_role
and WeatherService_role, respectively. The connector also defines how these actions
are realised using SOAP. More specifically, the SOAPClient process specifies that
each required action corresponds to the sending of a SOAP request, which includes
the name of the SOAP operation as a parameter, and the reception of the correspond-
ing SOAP response. Dually, the SOAPServer process specifies that each provided
action corresponds to the reception of a SOAP request, which includes the name of
the SOAP operation as a parameter, and the sending of the corresponding SOAP
response. The SOAPGlue process specifies that for each operation belonging to the
set {login, getWeather, logout}, a request sent by the SOAP client is received by
the SOAP server, and then the response sent by the SOAP server is received by
the SOAP client. Weather_Connector1 is specified as the parallel composition of all
these processes:

set weather_actions1 = {login, getWeather, logout}

C2_weather_role = (req.login→ P1),
P1 = (req.getWeather → P1 | req.logout→ C2_weather_role).

WeatherService_role = (prov.login→ P2),
P2 = (prov.getWeather → P2 | prov.logout→WeatherService_role).

SOAPClient (X =′ op) = (req.[X]→ sendSOAPRequest[X]→ receiveSOAPResponse[X]

→ SOAPClient).
SOAPServer (X =′ op) = (prov.[X]→ receiveSOAPRequest[X]→ sendSOAPResponse[X]

→ SOAPServer).
SOAPGlue (X =′ op) = (sendSOAPRequest[X]→ receiveSOAPRequest[X]

→ sendSOAPResponse[X]→ receiveSOAPResponse[X]

→ SOAPGlue).
...

24

Chapter 2. Interoperability: A Landscape of the Research Field

...
‖Weather_Connector1 = (C2_weather_role

‖ WeatherService_role
‖ (forall[op : weather_actions1]SOAPClient(op))

‖ (forall[op : weather_actions1]SOAPGlue(op))

‖ (forall[op : weather_actions1]SOAPServer(op))).

Let us now consider the example in Figure 2.4. Weather Station expects clients
to login first, then ask for the temperature or humidity several times, and log out to
terminate. Note that the two actions prov.getTemperature and prov.getHumidity
are performed independently. For each provided action, Weather Station receives a
CORBA request, which it processes, and then sends the corresponding response. The
port of Weather Station is specified as follows:

WeatherStation_port = (prov.login→ P2),
P2 = (prov.getTemperature→ P2

| prov.getHumidity → P2

| prov.logout→WeatherStation_port).

CORBAServer (X =′ op) = (prov.[X]→ receiveCORBARequest[X]

→ sendCORBAResponse[X]→ CORBAServer).

The Weather_Connector2 connector models the interaction between Weather Station
and the corresponding client. It is implemented using CORBA. Weather_Connector2
is specified as follows:

set weather_actions2 = {login, getTemperature, getHumidity, logout}

WeatherStationClient_role = (req.login→ P1),
P1 = (req.getTemperature→ P1

| req.getHumidity → P1

| req.logout→WeatherStationClient_role).

WeatherStation_role = (prov.login→ P2),
P2 = (prov.getTemperature→ P2

| prov.getHumidity → P2

| prov.logout→WeatherStation_role).

CORBAClient (X =′ op) = (req.[X]→ sendCORBARequest[X]

→ receiveCORBAResponse[X]→ CORBAClient).
CORBAServer (X =′ op) = (prov.[X]→ receiveCORBARequest[X]

→ sendCORBAResponse[X]→ CORBAServer).
...

25

Chapter 2. Interoperability: A Landscape of the Research Field

...
CORBAGlue (X =′ op) = (sendCORBARequest[X]→ receiveCORBARequest[X]

→ sendCORBAResponse[X]→ receiveCORBAResponse[X]

→ CORBAGlue).
‖Weather_Connector2 = (WeatherStationClient_role

‖ WeatherStation_role
‖ (forall[op : weather_actions2]CORBAClient(op))

‖ (forall[op : weather_actions2]CORBAGlue(op))

‖ (forall[op : weather_actions2]CORBAServer(op))).

2.1.1.3 Reasoning about Architectural Mismatches

A component can be attached to a connector only if its port is behaviourally com-
patible with the connector role it is bound to. Behavioural compatibility between a
component port and a connector role is based upon the notion of refinement, i.e., a
component port is behaviourally compatible with a connector role if the process spec-
ifying the behaviour of the former refines the process characterising the latter [AG97].
This refinement implies the inclusion of the traces of the expected behaviour of the
component in those of the observed behaviour of the component. In other words,
it should be possible to substitute the role process by the port process. Refinement
gives an intuitive notion of correctness (at least for safety properties), and it has
been applied in the stepwise design and implementation of software systems, starting
from their more abstract specification. Such reasoning exploits the expressive and
deductive power of the mathematics of sets and sequences [Hoa04].

For example, C2 can be attached toWeather_Connector1 since C2_weather_port
refines C2_weather_role —they are actually defined the same way. Likewise,
WeatherStation_port refines WeatherStation_role defined by Weather_Connector2.
However, WeatherStation_port cannot be attached to Weather_Connector1 since
it does not refine any of its ports, nor can C2_weather_role be attached to
Weather_Connector2. Hence, in the case of C2 willing to interact with Weather
Station, none of the available connectors can directly be used, resulting in an archi-
tectural mismatch.

Verifying behavioural compatibility between components’ ports and connectors’
roles allows us to check the presence or absence of architectural mismatches and also
to suggest a solution. To solve architectural mismatches, we must find or create a
connector whose roles are refined by components’ ports. Such a connector is called
a mediator.

26

Chapter 2. Interoperability: A Landscape of the Research Field

2.1.2 Mediators to Support Interoperability

To enable interoperability between functionally-compatible components, the media-
tor must solve architectural mismatches by reconciling the conflicting assumptions
that the components make about their environment. We recall that these assump-
tions relate to: (i) the interfaces and behaviours of the components involved, (ii)
the behaviours and implementations of the connectors used, and (iii) the operating
systems and the hardware of the devices on top of which the components are de-
ployed. To solve the differences between the interfaces of components, the mediator
must translate the actions required by each of them into actions provided by the
other. Note that the mediator facilitates interaction —it is a connector— but does
not provide any action itself since it does not encapsulate computation. To solve
the differences between the behaviours of components, the mediator must coordinate
the exchange of information between these components by controlling which action
should be delivered to which component at which time. To solve the differences be-
tween the behaviours and implementations of connectors, the mediator must provide
a concrete solution to coordinate the interaction patterns of these connectors act-
ing as middleware, which not only makes the application agnostic to the operating
systems, but also to the middleware used by other components.

For example, Figure 2.5 depicts a mediator between C2 andWeather Station. This
mediator translates the getWeather action required by C2 into the getTemperature
and getHumidity actions provided by Weather Station. The mediator also ensures
that whenever C2 requires getWeather, both getTemperature and getHumidity

are executed. Finally, the mediator transforms the SOAP requests emitted by C2

C2

prov.getTemperature
prov.getHumidity

prov.logout

prov.loginreq.login

req.getWeather

req.logout

Weather Station

SOAP CORBA

Mediator

Middleware
SOAP-CORBA

SOAP Request

SOAP Response

CORBA Request

CORBA Response

Translate req.login into prov.login

Translate req.getWeather into prov.login
followed by prov.getHumidity

Translate req.logout into prov.logout

Control

Figure 2.5. Mediator solving an architectural mismatch between C2 and Weather
Station

27

Chapter 2. Interoperability: A Landscape of the Research Field

into CORBA requests that can be processed by Weather Station, and transforms the
CORBA responses sent by Weather Station into SOAP responses expected by C2.

It is not always possible to find an existing connector for managing interaction
about functionally-compatible components and it is difficult and time consuming to
design and implement a new connector from scratch, especially if the components
already exist and are implemented using different middleware solutions [MDT03].
Compositional approaches for connector construction facilitate the development of
mediators by reusing existing connector instances.

Spitznagel and Garlan [SG03] introduce a set of transformation patterns (e.g.,
data translation and action aggregation), which a developer can apply to basic con-
nectors (e.g., RPC or data stream) in order to construct more complex connectors.
The authors use the approach to enhance the reliability of component interactions,
but state that this approach can also be used to construct mediators that solve ar-
chitectural mismatches. Each transformation pattern is given a formal definition in
FSP, which allows the verification of the properties of the resulting connectors. As
developers are responsible for defining the transformation patterns, they must specify
both the necessary translations and behavioural coordination that must be performed
by the mediator, but they can easily verify that the mediator produced ensures that
the interaction between components is free from deadlocks. The approach is also
equipped with a tool that facilitates the implementation of mediators by reusing and
composing the implementation of existing connectors, assuming existing connectors
were implemented using the same middleware.

Inverardi and Tivoli [IT13] define an approach to compute a mediator that com-
poses a set of pre-defined patterns in order to guarantee that the interaction of compo-
nents is deadlock-free. These patterns represent simple mechanisms that the mediator
executes to solve differences between the interfaces or behaviours of components and
consist of: (i) renaming an action, (ii) translating one action into a sequence of ac-
tions, (iii) translating a sequence of actions into one action, (iv) re-ordering sequences
of actions, (v) dropping an action, and (vi) introducing a new action. This last pat-
tern has to be taken with reserve as it implies that the mediator is able to produce
an action. The mediator either only replays the action or it can perform extra com-
putation; the latter case being beyond interoperability achievement. However, the
specification of the patterns to be used must still be done by the developers. Indeed,
developers specify the necessary translations based on which the approach synthesises

28

Chapter 2. Interoperability: A Landscape of the Research Field

the mediator that coordinates the behaviours of the components. Furthermore, the
implementation of the resulting mediator is completely left up to the developer as
the mediator is generated from scratch without reusing existing connector implemen-
tations. The approach also ignores differences at the middleware layer.

Even though these compositional solutions facilitate the development of media-
tors, they are only applicable at design time. By requiring the intervention of the
developer to specify the patterns necessary for the creation of mediators, they can-
not cope with the increasing ubiquity and complexity of modern software systems
together with the high demand for runtime support.

2.1.3 Mediation in Ubiquitous Computing Environments

Building mediators is already a difficult task when the developer provides the neces-
sary translations. It is even more difficult when the mediators have to be synthesised
and deployed dynamically as components are discovered and composed at runtime.

Chang et al. [CMP09] define a framework that allows component developers to
define connectors, called healing connectors, to recover from common failures of the
component. The healing connectors enable the component to operate in environments
that do not verify the assumptions made during the design and implementation of
this component. At runtime, whenever an exception rises due to the misuse of a
component, the framework deploys, on the fly, the corresponding healing connector.
The framework also maintains a log of the exceptions in order to help developers
create new healing connectors. Denaro et al. [DPT09] apply the same approach
to detect and repair disparities in different implementations of standard Web 2.0
APIs. The healing connectors are not defined by the developers but are included in
a centralised catalogue that inventories the common errors that may occur when the
API is used.

However, the proposed solutions only react to errors during the execution of a
single action and do not consider the behaviours of the components. Hence, they
solve architectural mismatches which are due to conflicting assumptions regarding
the components’ interfaces, but not due to conflicting assumptions about the compo-
nents’ behaviours. Furthermore, healing connectors act as translators for the case of
common misuse based on the experience of developers and are not able to deal with
unforeseen interactions. The implicit knowledge used by the developer to specify the

29

Chapter 2. Interoperability: A Landscape of the Research Field

translator should be modelled explicitly in order to allow computers to reason about
the information exchanged by the components and infer the translations automati-
cally.

Another issue relates to the evaluation of the functional compatibility between
components; it is unreasonable to make (or try to make) any two components work
together. Interoperability should only be considered if one component requires a
functionality that the other component provides. When interoperability is achieved
automatically, this intuitive notion must be made precise. The explicit modelling of
domain knowledge and the definition of component functionality is often supported
by ontologies, as explained in Section 2.4.

Analysis. Considering interoperability from a software architecture perspective al-
lows us to define the fundamental concepts to understand interoperability and achieve
it using mediators. Mediators are connectors that enable functionally-compatible
components to work together by translating the actions of their interfaces and coordi-
nating their behaviours at both the application and middleware layers. In ubiquitous
computing environments, mediators must be generated on the fly to deal with the
high-degree of dynamism inherent in these environments. In the following, we first
consider the middleware solutions that facilitate the implementation of mediators
by masking the differences at the middleware layer. Then, we present the formal
solutions to synthesising mediators that coordinate the behaviours of functionally-
compatible components in order to guarantee their successful interaction. Finally, we
consider semantics-based solutions to infer the translations necessary for meaningful
exchange of information between components and enable the synthesis of mediators
at runtime.

2.2 The Middleware Perspective: Implementing
Mediators

Middleware provides an abstraction that facilitates communication and coordination
between components in distributed systems. It naturally follows that middleware
plays a crucial role in the implementation of connectors [MDT03]. Mediators being
connectors, their implementation should also be realised using middleware.

30

Chapter 2. Interoperability: A Landscape of the Research Field

Traditionally, middleware promotes the use of a single technology based on which
all components are built. However, given the diversity of modern software systems
that need to be dealt with, ranging from small-scale sensors to large-scale Internet
applications, there is no one-size-fits-all middleware capable of coping with them
all [BPGG11]. As a result, new middleware solutions have been proposed to enable
interaction across middleware and hence facilitate the implementation of mediators
between independently-developed components that feature differences at both the
application and middleware layers. We first present solutions based on the definition
of middleware that provides developers with an abstraction which allows them to
build components that are able to interact using different middleware solutions, i.e.,
universal middleware. We then consider solutions to directly translate messages from
one middleware to the other, i.e., middleware bridges. Finally, we consider solutions
to translate between different middleware solutions using an intermediary model or
infrastructure, i.e., service buses.

2.2.1 Universal Middleware

Universal middleware solutions provide the developer with an abstraction that masks
the differences that may exist at the middleware layer. For example, if C2 was
developed using some universal middleware, then it would have selected the appro-
priate middleware, CORBA, to communicate with Weather Station as depicted in
Figure 2.6. We now discuss two key examples of universal middleware.

CORBA

C2

req.login

req.getWeather

req.logout

 Universal Middleware

SOAP Request

SOAP Response

CORBA Request

CORBA Response

JMS Publish

JMS Subscribe

prov.getTemperature
prov.getHumidity
prov.logout

prov.login

Weather Station

CORBA
CORBA Request

CORBA Response

Figure 2.6. Illustrating the use of universal middleware in the weather example

31

Chapter 2. Interoperability: A Landscape of the Research Field

PolyORB. PolyORB [VHPK04] is a middleware solution that decouples the in-
teraction pattern used to implement the application from the middleware used for
the actual achievement of this interaction. First, PolyORB supports several inter-
action patterns, called application personalities, based on which applications can be
developed. Second, PolyORB supports different communication protocols called pro-
tocol personalities, e.g., SOAP and GIOP. The relation between the application and
protocol personalities is handled via an intermediary protocol into which any appli-
cation personality can be translated and which can be translated into all protocol
personalities. Before deploying the component, it is configured with the appropriate
personalities. Hence, it is not possible to select the appropriate protocol personality
dynamically according to the running environment.

ReMMoC. ReMMoC (Reflective Middleware for Mobile Computing) [GBS03] is
a reflective middleware solution that provides a WSDL-based interface to develop
components. ReMMoC implements a set of plugins to transform the primitives of
the WSDL interface into calls to other middleware technologies, in particular SOAP,
CORBA, and STEAM (a publish/subscribe middleware). At runtime, a component
implemented using ReMMoC can discover and interact with components implemented
using different middleware solutions by dynamically loading the necessary plugin.

An approach based on universal middleware has many flaws. First, it cannot be
applied to legacy components, as it requires at least one of the interacting components
to be developed using the universal middleware. Second, the universal middleware
must support any possible middleware and hence requires continual maintenance in
order to cope with the evolution of middleware solutions or the emergence of new ones.

2.2.2 Middleware Bridges

To deal with interoperability between existing components, the most straightforward
solution is to develop a middleware solution that implements direct translation be-
tween the messages of two middleware solutions. The middleware bridge takes mes-
sages from one middleware in a specific format and then marshals them to the format
of the other middleware. Figure 2.7 depicts the example of interaction between C2
and Weather Station using a SOAP2CORBA bridge.

32

Chapter 2. Interoperability: A Landscape of the Research Field

CORBA

C2

prov.getTemperature
prov.getHumidity
prov.logout

prov.loginreq.login

req.getWeather

req.logout

Weather Station

SOAP-based Middleware CORBA-based MiddlewareMiddleware
Bridge

SOAP Request

SOAP Response

CORBA Request

CORBA Response

SOAP Request

SOAP Response

SOAP CORBA Request

CORBA Response

Figure 2.7. Illustrating the use of a middleware bridge in the weather example

Compiled Middleware Bridges. There exist several examples of middleware
bridges: OrbixCOMet1 is a middleware bridge between DCOM and CORBA and
SOAP2CORBA2 ensures interoperability between SOAP and CORBA in both di-
rections. However, the implementation of middleware bridges is a complex task:
developers have to deal with a lot of details involving the format of the messages
used by each middleware and their correlation; therefore, developers must have a
thorough understanding of the middleware at hand. As a result, solutions that help
developers define middleware bridges have emerged. These solutions consist in defin-
ing a framework whereby the developer provides a declarative specification of the
message translation between middleware, based on which the actual transformations
are computed. z2z [BRLM09] introduces a domain-specific language to describe the
message format and the communication protocol of each middleware as well as the
translation logic to make them work together, and then generates the corresponding
bridge. The approach has several benefits. First, it increases the level of reusability
as the developer can use the individual specifications of middleware to develop differ-
ent bridges. Second, the developer does not have to deal with all the message fields
since z2z is able to complete default and optional fields automatically. Finally, z2z
verifies that all the required fields of a message have been treated before sending it.
However, the bridge cannot be modified at runtime.

Interpreted Middleware Bridges. Starlink [BGR11] uses the domain-specific
models defined by z2z to specify bridges, but it deploys and interprets them at run-
time. More specifically, Starlink uses the message specification associated with each

1http://documentation.progress.com/output/Iona/orbix/gen3/33/html/orbixcomet33_
pguide/

2http://soap2corba.sourceforge.net/

33

http://documentation.progress.com/output/Iona/orbix/gen3/33/html/orbixcomet33_pguide/
http://documentation.progress.com/output/Iona/orbix/gen3/33/html/orbixcomet33_pguide/
http://soap2corba.sourceforge.net/

Chapter 2. Interoperability: A Landscape of the Research Field

middleware to generate a parser, which is able to process the messages sent using
this middleware into an abstract message, and a composer, which is able to produce
the appropriate middleware message out of an abstract message. In other words,
parsers and composers mask the differences between middleware through the con-
cept of abstract messages. The translation logic specifies how to convert the abstract
messages of one middleware into abstract messages of the other middleware. This
approach decouples the detailed specification of the middleware, which is used to
generate the corresponding parsers and composers, from the abstract specification of
the translations between middleware solutions.

Summing up, middleware bridges provide a transparent solution to interoperabil-
ity but are impractical in the long term given the development effort necessary to
implement or specify the translation between middleware solutions. Furthermore,
in the case of middleware based on different interaction patterns, this translation
may become unfeasible in all situations, for example, if one middleware is based on
asynchronous communication while the other relies on synchronous communication.

2.2.3 Service Buses

Like middleware bridges, service buses enable existing components implemented us-
ing different middleware to exchange messages transparently, but unlike middleware
bridges, the translation between messages is performed through an intermediary rep-
resentation. This representation can be an abstract proprietary protocol, as is the
case with middleware buses, or a message-oriented abstraction layer, as is the case
with enterprise service buses.

Middleware Buses. Georgantas et al. [GIBM+10] define an approach where the
developer specifies a set of semantic events common to different middleware. Then,
each middleware is associated with a parser that processes the messages of this mid-
dleware to produce a semantic event, and a composer that generates a middleware
message based on a semantic event. Parsers and composers of different middleware
then synchronise based on shared semantic events. For example, to achieve inter-
operability between SOAP and CORBA, developers define the request and response
events. Then, parsers and composers are created per protocol: a SOAP parser trig-
gers a request (respectively response) event upon the reception of a SOAP request

34

Chapter 2. Interoperability: A Landscape of the Research Field

(respectively response) and a SOAP composer produces a SOAP request (respectively
response) out of a request event (respectively response). The same is true for CORBA
parsers and composers. Hence, when a SOAP request is received, the SOAP parser
triggers a request event, which the CORBA composer intercepts and transforms into a
CORBA request. Once the CORBA response has been returned, the CORBA parser
triggers a response event, which the SOAP composer intercepts and transforms into
a SOAP response. However, this approach is inapplicable for middleware based on
different interaction patterns since it is also necessary to coordinate the message ex-
change as well as the translation between messages. Furthermore, the approach does
not provide any support for the specification or implementation of application-level
mediators.

Enterprise Service Buses. Enterprise Service Buses (ESBs) represent the most
mature and widespread solution to enable components using different middleware
to interoperate, as is shown by the large number of available industrial implemen-
tations, e.g., Oracle Service Bus1 and IBM WebSphere Enterprise Service Bus2. An
ESB [Men07] is an open standard, message-based middleware solution that facilitates
the interactions of disparate distributed applications and services. ESBs generally in-
clude built-in conversion across standard middleware technologies (e.g., SOAP, JMS)
and provide a set of predefined patterns that can be used to create customised medi-
ators. Figure 2.8 illustrates the use of an ESB to achieve interoperability between C2
and Weather Station. The integration patterns facilitate the development of media-
tors while the SOAP and CORBA plugins help to implement these mediators between
components using different middleware.

However, ESBs consider the interoperability problem from an enterprise perspec-
tive, where interactions are planned and long-lived. Hence, the solutions are typically
restricted to a set of known middleware standards, and the development effort re-
quired to extend them for new protocols or to specify mediators is significant. They
are not well suited to situations where interactions must be solved on the fly as in
ubiquitous computing environments, which involve short-lived interactions and un-
foreseen compositions.

1http://www.oracle.com/technetwork/middleware/service-bus/
2http://www-01.ibm.com/software/integration/wsesb/

35

http://www.oracle.com/technetwork/middleware/service-bus/
http://www-01.ibm.com/software/integration/wsesb/

Chapter 2. Interoperability: A Landscape of the Research Field

C2

prov.getTemperature
prov.getHumidity
prov.logout

prov.loginreq.login

req.getWeather

req.logout

Weather Station

SOAP CORBA
SOAP Request

SOAP Response

CORBA Request

CORBA Response

SOAP Request

SOAP Response

CORBA Request

CORBA Response

Enterprise
Service Bus

Integration patterns

AMQP Publish

AMQP Subscribe

JMS Publish

JMS Subscribe

Translate

Merge Split

SOAP CORBA

Figure 2.8. Illustrating the use of an ESB in the weather example

Analysis. There exist many middleware solutions to achieve interoperability be-
tween functionally-compatible components that feature differences at the middleware
layer. However, while the implementation of new middleware might be sufficient to
deal with the differences at the middleware layer, it is insufficient for dealing with
differences at the application layer. First, even applications developed using the same
middleware are not guaranteed to work together so long as there are differences in
their interfaces and behaviours. This is, for example, the case of interoperability in
Web Services [NBCT06]. Even though both services and clients use SOAP middle-
ware, the differences between their interfaces, which include differences in the oper-
ation names, input/output message names and types, the granularity of operations,
and the order in which these operations are invoked (or expected to be invoked) ham-
per independently-developed clients and Web Services from working together. Given
the countless number of potential cases where a mediator is necessary, any static so-
lution is doomed to fail. We need to generate mediators automatically. Second, while
in the case of middleware obeying the same interaction pattern, it suffices to translate
the messages sent using one middleware into messages expected by the other middle-
ware, when middleware solutions follow different interaction patterns, e.g., a shared
memory and publish/subscribe, the differences can only be solved by considering the
characteristics of the applications [CMP08]. Hence, it is necessary to define solu-
tions that are able to reason about the characteristics of applications automatically
in order to synthesise the mediator that reconciles the differences between compo-
nent implementations and enables them to interoperate. In the following section, we
present solutions to analyse the behaviours of the components and semi-automatically
generate the appropriate mediator that enables their correct interaction.

36

Chapter 2. Interoperability: A Landscape of the Research Field

2.3 The Formal Methods Perspective: Synthesising
Mediators

While middleware solutions aim to facilitate the implementation of mediators, formal
methods aim to relieve developers of the burden of designing or specifying mediators,
with a special focus on coordinating the behaviours of the components so as to guar-
antee their correct interaction. Correct interaction may be specified as: (i) the ability
of the components to coordinate their behaviours in order to achieve the requirements
of the composed system, or (ii) the ability to preserve the meaning of the information
exchanged between the components and guarantee that the composed system is free
from deadlocks.

2.3.1 Mediator Synthesis Using a Specification of the
Composed System

The successful interaction of components results in a composed software system that
has specific properties or achieves certain user requirements. By enabling functionally-
compatible components to interact with each other, even though they were not de-
signed and implemented to do so, mediators can be seen as the missing behaviour
necessary to achieve the specific properties or user requirements of the composed
system.

Going back to the weather example, a user may specify that in the software
system composed of C2 and Weather Station, whenever C2 invokes getWeather,
Weather Station executes both getTemperature and getHumidity, which results in
the definition of a Goal property as follows:

Req = (C2.req.getWeather → P1),

P1 = (WeatherStation .prov.getTemperature→WeatherStation .prov.getHumidity → Req

| WeatherStation .prov.getHumidity →WeatherStation .prov.getTemperature→ Req).

property ‖Goal = Req.

Figure 2.9 illustrates the approach on the weather example: C2_weather_port
defines the observable behaviour of C2, WeatherStation_port defines the observable
behaviour of Weather Station, and Goal represents a user-defined specification of the
composed system. The aim is to compute the process M such that the composition

37

Chapter 2. Interoperability: A Landscape of the Research Field

Mediator prov.getTemperature
prov.getHumidity
prov.logout

prov.loginreq.login

req.getWeather

req.logout

prov.getTemperature
prov.getHumidity

prov.logoutprov.login

req.getWeather

req.logoutreq.login M
??

req.getWeather prov.getTemperature

ERROR
prov.getHumidity

prov.getTemperature
prov.getHumidity

req.getWeather

prov.getTemperature prov.getHumidity

prov.getTemperature
req.getWeather

prov.getTemperature
req.getWeather

Goal

C2_weather_port WeatherStation_port

Figure 2.9. Illustrating the synthesis of mediators using a specification of the com-
posed system

(C2_weather_port ‖M‖WeatherStation_port) satisfies Goal. In this case, M repre-
sents the behaviour of the mediator. In the following, we describe approaches to syn-
thesise the mediator M based on the definition of the behaviours of two functionally-
compatible components P1 and P2 together with a specification of the composed
system Goal.

Quotient. Calvert and Lam [CL89] formulate mediator synthesis as the problem
of finding quotient. In a similar way to division and product in arithmetics, quotient
can be regarded as the adjoint (roughly “inverse”) of parallel composition. Given a
specification for a system S, together with a component’s behaviour P , the quotient
yields the behaviour Q such that P‖Q satisfies S. Applied to mediator synthesis, the
mediator M is the quotient of the specification of the composed system Goal and
the parallel composition of the components’ behaviours P1‖P2. The authors assume
Goal to be deterministic and synthesise M by first building the set of all possible
coordinations of the actions of the components’ interfaces, and then keeping only

38

Chapter 2. Interoperability: A Landscape of the Research Field

those that satisfy Goal. In more detail, the algorithm is as follows.

1. Define the alphabet (interface) of the mediator as the set of actions that belong
to the specification of the system but not to the alphabet of P1‖P2, i.e., αM =

αGoal − (αP1 ∪ αP2). The rationale of this definition is that the interaction
between the mediator and the components is hidden in the behaviour of the
composed system.

2. Calculate the set of all possible traces (a.k.a., executions) over the actions of
M , i.e., AM = (αM)∗ as well as the set of all possible traces over the actions
of Goal, i.e., AGoal = (αGoal)∗.

3. Build the trace set that represents the behaviour of M as follows: let t be a
trace in AM and t′ a trace in AGoal. if: (i) t is equal to the projection of t′

onto the alphabet of M , i.e., the trace obtained by keeping in t′ only actions
that belong to αM is equal to t, (ii) the projection of t′ onto (αP1 ∪ αP2) is
a possible trace of P , and (iii) t′ satisfies Goal, then t belongs to the trace set
of M .

Even though the approach can, in theory, always produce a mediator if one exists,
it is clear from the algorithm that it is computationally very expensive as it requires
exploring all possible traces over the set of actions of both Goal andM . Furthermore,
it assumes that the same actions are used to define the specification of the composed
system as well as the components’ behaviours.

Planning. Similarly to quotient computation, the planning-based approach defined
by Bertoli et al. [BPT10] builds the mediator by identifying among all possible in-
teractions with the components, only those that satisfy Goal. Nevertheless, they
optimise the search by using a heuristic in order to explore only the interactions that
are likely to satisfy Goal and use a planning algorithm in order to calculate the traces
of M more efficiently.

Controller Synthesis. Gierds et al. [GMW12] formulate mediator synthesis in
terms of controller synthesis. Besides the components’ behaviours and the specifica-
tion of the composed system, they also require the definition of a set of translation
patterns between the actions of the components. They create a component whose

39

Chapter 2. Interoperability: A Landscape of the Research Field

behaviour E is extracted from the specified translation patterns: E represents the be-
haviour of a component able to execute the translation patterns in any order. Then,
they use available tools for controller synthesis to generate a controller C for the
composition P1‖P2‖E to satisfy Goal. Finally, they compose the behaviour of the
controller together with the behaviour of the translation component to obtain the
mediator, i.e., M = E‖C.

Summing up, solutions to mediator synthesis based on quotient computation,
planning or controller synthesis are guaranteed to find the mediator if it exists and
state its non existence otherwise. However, they require the user to have an intu-
itive understanding of the behaviour of the composed system, which can only emerge
through the correct interaction of its components. This might be a reasonable as-
sumption when developing a software system by integrating several components, but
it is unreasonable to require such understanding from regular users who only seek to
interact with the services in their environment, as is the case in ubiquitous computing
environments. Hence, solutions that directly relate the two components to be made
interoperable are more suitable.

2.3.2 Mediator Synthesis Using a Partial Specification

The solutions proposed in this section assume that a specification of the correspon-
dence between the actions of the components’ interfaces is available and use it to
coordinate the components’ behaviours in order to guarantee that their interaction
is free from deadlocks. This correspondence defines the translations that the me-
diator must perform in order to reconcile the differences between the components’
interfaces. Therefore, we refer to the specification of these correspondences as partial
specifications of the mediator.

Going back to the weather example, we can specify that the getWeather action
required by C2 corresponds to the sequence of the getTemperature and getHumidity
actions provided by Weather Station. Based on this specification together with the
behaviours of C2 and Weather Station, a mediator can be synthesised, as depicted in
Figure 2.10.

Projection. Lam [Lam88] defines an approach for the synthesis of mediators based
on the technique of projections. A projection of a component’s behaviour P , noted

40

Chapter 2. Interoperability: A Landscape of the Research Field

Mediator prov.getTemperature
prov.getHumidity

prov.logout

prov.loginreq.login

req.getWeather

req.logout

prov.getTemperature
prov.getHumidity

prov.logoutprov.login

req.getWeather

req.logoutreq.login

C2_weather_port WeatherStation_port

M ??

req.getWeather
⟼ prov.getTemperature
 -> prov.getHumidity

Figure 2.10. Illustrating the synthesis of mediators using a partial specification of
the mediator

Proj[P] is performed by aggregating some of its states, which induces the definition
of an equivalence relation on the actions of the component’s interface. Two actions
are equivalent if they cause identical state change in Proj[P] while actions that do
not cause any state change are not represented in Proj[P]. Hence, the projection
can be seen as applying relabelling and hiding functions to P .

If one can define a useful common projection of the behaviours of the two com-
ponents P1 and P2, then a stateless mediator M can be synthesised. Useful means
that the common projection defines a behaviour to achieve some functionality of in-
terest. Both the definition of the common projection and the functionality are the
responsibility of the developer. The stateless mediator simply transforms an action
required by one component into an action provided by the other component if they
cause identical state change in the common projection, and ignores the actions that
do not cause any state change. However, the stateless mediator is able to deal with
only one-to-one correspondences between actions. It cannot, for example, manage in-
teraction between C2 and Weather Station. Furthermore, no systematic approach for
the definition of the common projection is proposed, it solely depends on developers
and their understanding of the components’ behaviours.

Interface Mapping. Yellin and Strom [YS97] define a synthesis algorithm that,
besides the behaviours of the components P1 and P2, must be given an interface map-
ping S, which specifies the correspondence between the actions of the components’

41

Chapter 2. Interoperability: A Landscape of the Research Field

interfaces. The interface mapping is required to be complete and non-ambiguous. An
interface mapping is complete if for every required action of one component, there
corresponds a provided action from the other component. It is non-ambiguous if
for every required action of one component, there corresponds at most one provided
action from the other component. Each correspondence in the interface mapping
defines an ordering constraint between the required and provided actions. The syn-
thesis algorithm constructs a mediator in two main phases. During the first phase, an
initial process A is created which represents all possible coordinations of P1 and P2

that verify the ordering constraints imposed by the interface mapping. In the second
phase, any execution in A leading to a deadlock is removed. As a result of the second
phase, either A is empty, in which case the mediator does not exist, or it is a valid
mediator M .

Model Checking. While interface mapping only specifies one-to-one correspon-
dences between actions, there often exist more elaborate correspondences relating
them. In the general case, a sequence of actions of one component may be translated
into another sequence of actions of the other component. To specify complex cor-
respondences, Mateescu et al. [MPS12] use an adaptation contract, which is an LTS
S whose alphabet is a vector composed of the actions of the components’ interfaces.
The authors then construct the mediator by selecting among all possible executions
of the composed system C = P1‖S‖P2 only those that do not lead to deadlocks. In-
stead of constructing C then removing the erroneous executions, they use on-the-fly
model checking to prune, as early as possible, the executions leading to deadlocks.

Semi-automated Mapping Generation. Nezhad et al. [NBM+07, NXB10] de-
fine a semi-automated approach to the synthesis of mediators which, rather than
considering that the correspondences between the actions of the components are pro-
vided, define a series of heuristics to facilitate their computation. First, they focus
on the syntax, expressed using XML schema, of the data embedded in the actions.
They use existing XML schema matching techniques to evaluate the degree of simi-
larity between sequences of actions in the components’ interfaces. Then, they update
this similarity based on the first position at which the actions can appear in the
behaviours of the components: the similarity score of required and provided actions
increases if they are at the same position. The last heuristic consists in selecting the

42

Chapter 2. Interoperability: A Landscape of the Research Field

pair of actions with the highest degree of similarity according to the matching of their
XML schema and then updating the similarity scores of the other pairs of actions
according to their positions relative to the selected pair of actions. The same pair of
actions is never selected twice so that the heuristic is guaranteed to terminate. Once
the correspondences between actions have been computed, the behaviours of the two
components are simultaneously explored in order to identify possible deadlocks. The
user is presented with the deadlocks that may occur and has to figure out the appro-
priate translations that may solve them. The algorithm cannot apply the mapping
directly as there is no guarantee that even the actions with the highest similarity
score have the same meaning.

Analysis. Formal methods enable a rigorous analysis of components’ behaviours in
order to synthesis the mediator that allows the components to interoperate. Never-
theless, besides the description of components’ behaviours, the synthesis of mediators
using formal methods also requires the specification of the properties of the composed
systems or the correspondence between actions. The properties of the composed sys-
tem are hard to define by regular users, who only seek to make use of the services
surrounding them. The definition of the correspondences between the actions of
components’ interfaces may also be error-prone, and perhaps as difficult as providing
the mediator itself, given the size and the number of parameters of the interfaces
involved. For example, the Amazon Web Service1 includes 23 operations and no less
than 72 data type definitions and eBay2 contains more than 156 operations. Given all
possible combinations, methods that automatically compute these correspondences
are necessary.

2.4 The Semantic Web Perspective: Mediation at
Runtime

A crucial part in the synthesis of mediators is defining the correspondences between
the actions of the components’ interfaces. When the components are dynamically
discovered, and interact spontaneously, as is the case in ubiquitous computing envi-

1http://soap.amazon.com/schemas2/AmazonWebServices.wsdl
2http://developer.ebay.com/webservices/latest/ebaysvc.wsdl

43

http://soap.amazon.com/schemas2/AmazonWebServices.wsdl
http://developer.ebay.com/webservices/latest/ebaysvc.wsdl

Chapter 2. Interoperability: A Landscape of the Research Field

ronments, the synthesis of mediators must take place at runtime. In this case, the
correspondences between the actions of components’ interfaces must also be elicited
at runtime since the components to be mediated are not known beforehand. To do
so, the meaning of these actions and their relations must be made explicit in order to
allow their automated analysis. Furthermore, since users should not be involved, a
systematic approach to identify functionally-compatible components must be defined.
Similarly to the meaning of actions, the meaning of the functionality of a component
must also be made explicit.

In this direction, the Semantic Web [BLHL+01] promotes the view that Web re-
sources are augmented with machine-processable metadata expressing their meaning.
This vision is supported by ontologies, which provide a machine-processable means
to represent and automatically reason about the meaning of data based on the shared
understanding of the domain [Gru09]. After introducing ontologies, we describe how,
by relying on ontologies, Semantic Web Services improve the discovery, composition,
and mediation of Web Services. Finally, we present a solution that promotes the
convergence between ontologies and ESB.

2.4.1 Ontological Modelling and Reasoning

Ontologies allow experts to formalise knowledge about domains as a set of axioms
that make explicit the intended meaning of a vocabulary [Gua04]. Hence, besides
general purpose ontologies, such as dictionaries (e.g., WordNet1) and translators (e.g.,
BOW2), there is an increasing number of ontologies available for various domains such
as biology [ABL+07], geoscience [RP05], and social networks [GR08]. The increasing
number of available ontologies has further fostered the development of search engines
for finding ontologies on the Web [dN12].

Ontologies are supported by a logic theory to reason about the properties and
relations holding between the various domain entities. In particular, OWL3 (Web
Ontology Language), which is the W3C standard language to model ontologies, is
based on description logics. More specifically, we focus on OWL DL, which is based
on a specific description logic, SHOIN (D) [BCM+03]. In the rest of this document,
DL refers to this specific description logic. Although traditional formal specification

1http://www.w3.org/TR/wordnet-rdf/
2http://BOW.sinica.edu.tw/
3http://www.w3.org/TR/owl2-overview/

44

http://www.w3.org/TR/wordnet-rdf/
http://BOW.sinica.edu.tw/
http://www.w3.org/TR/owl2-overview/

Chapter 2. Interoperability: A Landscape of the Research Field

techniques (e.g., first-order logic) might be more powerful, DL offers crucial advan-
tages: it excels at modelling domain-specific knowledge while providing decidable and
efficient reasoning algorithms.

DL specifies the vocabulary of a domain using concepts, attributes of each con-
cept, and relationships between these concepts. Each concept is given a definition as
a set of logical axioms, which can either be atomic or defined using different operators
such as disjunction (CtD), conjunction (CuD), and quantifiers (∀R.C, ∃R.C) where
C and D are concepts and R is an object property .The attributes of a concept are de-
fined using an object property, which associates the concept with a built-in data type.
DL can also be used to describe the aggregation of concepts using the W3C recom-
mendation for part-whole relations1 (hasPart), where different concepts are composed
together to build a whole. A concept E is an aggregation of concepts C andD, written
E = C⊕D, provided both C andD are parts of E, i.e., E = ∃hasPart.C u ∃hasPart.D.
For example, the Weather concept is defined as the aggregation of the Temperature
and Humidity concepts, meaning that each weather instance t ∈ Weather encompasses
a temperature instance (∃f ∈ Temperature∧(t, w) ∈ hasPart) as well as a humidity in-
stance (∃h ∈ Humidity∧(w, h) ∈ hasPart). The syntax and semantics of DL operators
are summarised in Appendix B, while the interested reader is referred to [BCM+03]
for further details.

Traditionally, the basic reasoning mechanism in DL is subsumption, which can
be used to implement other inferences (e.g., satisfiability and equivalence) using pre-
defined reductions [BCM+03]. Intuitively, if a concept C is subsumed by a concept D
(written C v D), then any instance (also called individual) of C also belongs to D.
In addition, all the relationships in which D instances can be involved are applicable
to C instances, i.e., all properties of D are also properties of C. Subsumption is a
partial order relation, i.e., it is reflexive, antisymmetric, and transitive. The result
is that the ontology can be represented as a hierarchy of concepts. It is important
to note that the hierarchy is not created manually. Rather, each concept is given
a definition as a set of logical axioms. An ontology reasoner infers a hierarchy of
concepts. This offers more flexibility by making the hierarchy evolve naturally as
new concepts are added. Furthermore, there exist efficient reasoners to automate the
inference task [DCtTdK11].

1http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

45

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

Chapter 2. Interoperability: A Landscape of the Research Field

2.4.2 Semantic Web Services

Web Services are processes that expose their interfaces to the Web so that users
can invoke them. Semantic Web Services provide a richer and more precise way
to describe the services through the use of knowledge representation languages and
ontologies. In the following, we present the two major efforts for modelling and using
Semantic Web Services.

OWL-S (Semantic Markup for Web Services). OWL-S [MBM+07], which
was previously named DAML-S [BHL+02], is an ontology for formally defining Web
Services. As depicted in Figure 2.11, the OWL-S ontology is structured around three
main concepts: Profile, Process, and Grounding. The service profile describes what
the service does, i.e., the functionality it provides to its clients. The service profile,
also called service capability, has a name and a textual description, and is associated
with a category, which refers to a concept in an ontology of service categories. The
profile is also associated with some inputs (Input), outputs (Output), pre-conditions
(Condition), and post-conditions (Result). Inputs and outputs are defined as the set of
all the inputs and outputs with which the service process is associated while pre- and
post-conditions are selected among the pre- and post-conditions of the service process.
The service process describes the service’s behaviour, i.e., how the service achieves
its capability. A process has some input, which defines the information necessary

<<OWLClass>>
Simple Process

<<OWLClass>>
Atomic Process

<<OWLClass>>
Composite Process

<<OWLClass>>
ControlConstruct

≐ Sequence � Split � Split-Join � Any-Order � Choice

� If-Then-Else � Iterate � Repeat-While � Repeat-Until

<<OWLClass>>
Input

<<OWLClass>>
Output

hasInput

hasOutput

composedOf

<<OWLClass>>
Process

<<OWLClass>>
Service

describedBy

<<OWLClass>>
Profile

∃serviceName.String
∃textDescription.String

hasInput

hasOutput

<<OWLClass>>
Condition

<<OWLClass>>
ResulthasResult

hasPrecondition

presents

<<OWLClass>>
Category

hasCategory

hasResult

hasPrecondition

<<OWLClass>>
Grounding

∃hasType.String

∃hasType.String

Subsumption
Ontological relation

Ontological concept

property{cardinality}

...<<OWLClass>>

Legend

Figure 2.11. Extract of the OWL-S Ontology

46

Chapter 2. Interoperability: A Landscape of the Research Field

for its execution, and produces some output. The Input and Output concepts are
associated with a URI that defines the type of the input/output data. A process is
also associated with some pre- and post-conditions. A process can be Atomic, if it can
be invoked, Simple if it does not have a corresponding grounding, or Composite, if it
is composed of other processes using some ControlConstructs. The control constructs
are similar to those used in process algebra for the specification of the component’s
behaviour, with the exception of the parallel composition that is not supported as
a control construct. The service grounding describes the information necessary to
invoke the service.

An ontology-based description of Web Services has many advantages. First, it
promotes the discovery of functionally-compatible components through the notion
of a capability. In this sense, pioneering work by Paolucci et al. [PKPS02] defines
an approach to assess functional compatibility between a provided service (adver-
tisement) and a required service (request) by comparing the semantics of the inputs
and outputs specified in their respective profiles: an advertisement matches with a
request if every input in the request profile subsumes some input in the advertise-
ment profile, and every output in the advertisement profile subsumes some output
in the request profile. Second, it eases the construction of composition of services by
making explicit the input, output, pre- and post-conditions of the services as well as
their behaviours. Finally, and most importantly, it facilitates mediation by formal-
ising both the meaning of the input/output and the behaviour of services. Vaculín
et al. [VNS09] define an approach for generating mediators between functionally-
compatible client and service, both of which are modelled using OWL-S. First, they
extract a set of representative executions of the client using its process specification.
For each execution, they simulate the service process and use a planning algorithm
in order to find the corresponding execution such that the client and the service can
progress simultaneously. Then, for each pair of client and service executions, they
use existing data mediators to perform the translations necessary to compensate for
the differences between their input/output.

However, OWL-S only has had a qualified success because it specifies yet another
model to define services. In addition, solutions based on process algebra and automata
have proven more suitable for modelling and analysing the behaviour of components.

47

Chapter 2. Interoperability: A Landscape of the Research Field

WSMO (Web Service Modelling Ontology). WSMO [CM05] is an ontology
for modelling Semantic Web Services. As illustrated in Figure 2.12, it is based on
four main concepts: Web Service, Goal, Ontology and Mediator. Web Service defines
the computation entity providing some functionality, which is described using the Ca-
pability concept. The semantics of the capability is given in terms of several axioms:
pre- and post-conditions, assumptions, and effects. Goal describes the computation
entity requiring some functionality. Interface defines the behaviour of the Web Service
or the Goal with Choreography describing the necessary information to interact with
the service from the client point of view, and Orchestration describing how the service
makes use of other services in order to achieve its capability. The Ontology concept
represents the semantics of the concepts used for the definition of the WSMO element,
which can be a Web service, goal or mediator. The Mediator concept specifies how
differences between WSMO elements are solved: ooMediator for differences between
ontologies, wwMediator for differences between services, wgMediator for differences
between a service and a client, ggMediator for differences between clients. The im-
plementation of mediators is supported by a runtime framework, the Web Service
Execution Environment (WSMX), which executes the specified mediators, thereby
allowing independently-developed clients and services to interoperate.

As for OWL-S, the formal description of the capabilities and behaviours of services
facilitates the discovery and composition of services. But WSMO has also several dif-
ferences with OWL-S. First, there is a clear distinction between service provision

<<OWLClass>>
Goal

<<OWLClass>>
Web Service

<<OWLClass>>
Ontology

<<OWLClass>>
WSMO Element

<<OWLClass>>
Mediator

<<OWLClass>>
Capability

<<OWLClass>>
Interface

hasCapability RequestInterface
hasInterface

requestCapability

<<OWLClass>>
Axiom

hasAssumption
hasPrecondition

hasPostCondition
hasEffect

<<OWLClass>>
Orchestration

<<OWLClass>>
Choreography

hasOrchestration hasChoreography

importsOntologyimportsOntology

importsOntology

<<OWLClass>>
wwMediator

<<OWLClass>>
ooMediator

<<OWLClass>>
ggMediator

<<OWLClass>>
wgMediator

Subsumption
Ontological relation

Ontological concept

property{cardinality}

...<<OWLClass>>

Legend

Figure 2.12. Extract of the WSMO Ontology

48

Chapter 2. Interoperability: A Landscape of the Research Field

represented using the Web Service concept, and service consumption represented us-
ing the Goal concept. Second, specific concepts are used to define ontologies and
mediators.

2.4.3 Semantic Mediation Bus.

Instead of defining yet another ontology for Web Services, SA-WSDL [KVBF07]
proposes a cost-effective solution to incorporate ontology reasoning in Web Services
by augmenting service descriptions with annotations to: (i) define the semantics of
operations and data by referring to concepts in a domain ontology, (ii) map the data
syntax to the semantic definition of the associated concept using XSLT1, i.e., lifting,
and (iii) derive the specific data structures from semantic concepts using XSLT also,
i.e., lowering.

Even though SA-WSDL does not have the expressive power of OWL-S or WSMO
as it represents neither the capability of services nor their behaviours, it is easier to
integrate in existing systems including ESBs.

The Alion Semantic Mediation Bus [Zhu12] brings together SA-WSDL and ESB.
While the ESB provides various plugins to support different middleware interaction
protocols, services are described using SA-WSDL specifications, which enables the
runtime translation of the actions of clients’ and services’ interfaces using the lifting
and lowering functions. Nevertheless, as SA-WSDL does not support the modelling of
behaviour, the Alion Semantic Mediation Bus focuses on action translations and does
not coordinate the behaviours of clients and services. Moreover, as the capabilities are
not represented either, the discovery of functionally-compatible clients and services
cannot be achieved automatically.

Analysis. Semantic Web technologies, and ontologies in particular, enable the pre-
cise modelling of and reasoning about the meaning of the information exchanged
between components. Semantic Web Services illustrate how ontologies can help to
automate the discovery and composition of Web Services and facilitate mediation
between them. In addition, through the capability concept, functionally-compatible
components can be selected automatically. However, mediation is often based on the
definition of new ontologies and their use to infer the translations necessary to ensure
the meaningful exchange of information between components. Furthermore, while

1Extensible Stylesheet Language Transformations – http://www.w3.org/TR/xslt

49

http://www.w3.org/TR/xslt

Chapter 2. Interoperability: A Landscape of the Research Field

modelling the behaviour of components is recognised as being essential, the logical
theory behind ontologies is inappropriate for analysing components’ behaviours. In
addition, even though initial attempts to handle differences between components at
the middleware layer are beginning to emerge through the concept of semantic media-
tion buses, they only deal with translations of actions and do not manage behavioural
differences between components, at either the application or the middleware layers.

2.5 Summary

Interoperability is a very challenging topic. Over the years, interoperability has been
the subject of a great deal of work, both theoretical and practical. First, to under-
stand and formalise interoperability, then to implement mediator-based solutions to
achieve it with an increasing shift towards runtime. In this chapter, we surveyed
the solutions to interoperability from its four underpinning perspectives. Table 2.1
summarises the solutions presented in this chapter. We can notice that none of the
proposed solutions is able to synthesise and implement mediators that deal with both
application and middleware differences and guarantee that the interaction between
functionally-compatible components is error-free.

Interoperability is a complex challenge that can only be solved by appropriately
combining different techniques and perspectives. These techniques include formal ap-
proaches for the synthesis of mediators with the support of ontology-based reasoning
so as to automate the synthesis, together with middleware solutions to realise and
execute these mediators. In the next chapter, we introduce a multifaceted approach
to interoperability, which brings together and enhances the solutions that tackle in-
teroperability from different perspectives.

50

Chapter 2. Interoperability: A Landscape of the Research Field
P
er
s.

A
pp

ro
ac
h

T
he

m
ai
n
id
ea

E
va
lu
at
io
n

Software
Architecture

Fo
rm

al
R
ea
so
ni
ng

ab
ou

t
in
te
ro
pe

r-
ab

ili
ty

[G
A
O
95
,A

G
97
]

Fo
rm

al
de
fin

it
io
n
of

co
m
po

ne
nt

in
te
ra
c-

ti
on

to
de

te
ct

ar
ch
it
ec
tu
ra
lm

is
m
at
ch
es

+
Fo

rm
al

ba
si
s
fo
r
un

de
rs
ta
nd

in
g
in
te
ro
pe

ra
bi
lit
y

—
N
o
su
pp

or
t
fo
r
di
ffe

re
nc
es

at
th
e
m
id
dl
ew

ar
e

la
ye
r

—
N
o
au

to
m
at
ed

ge
ne
ra
ti
on

of
m
ed
ia
to
rs

C
om

po
si
ti
on

al
ap

pr
oa
ch
es

fo
r
co
n-

ne
ct
or

de
ve
lo
pm

en
t
[S
G
03
,I
T
13
]

C
re
at
in
g
m
ed
ia
to
rs

fr
om

ex
is
ti
ng

co
nn

ec
-

to
r
in
st
an

ce
s

Se
lf-
he
al
in
g

co
nn

ec
to
rs

[C
M
P
09
,

D
P
T
09
]

R
ec
ov
er
y
fr
om

co
m
po

ne
nt

m
is
us
e
by

de
-

pl
oy
in
g
co
nn

ec
to
rs

on
th
e
fly

Middle-
ware

U
ni
ve
rs
al

m
id
dl
ew

ar
e

[G
B
S0

3,
V
H
P
K
04
]

P
ro
vi
de

an
ab

st
ra
ct
io
n

th
at

m
as
ks

th
e

di
ffe

re
nc
es

at
th
e
m
id
dl
ew

ar
e
la
ye
r

+
Su

pp
or
t
di
ffe

re
nc
es

at
th
e
m
id
dl
ew

ar
e
la
ye
r

—
D
ev
el
op

er
s
ne
ed

to
sp
ec
ify

or
im

pl
em

en
t
m
ed
i-

at
or
s
at

th
e
ap

pl
ic
at
io
n
la
ye
r

M
id
dl
ew

ar
e

br
id
ge
s

[B
R
LM

09
,B

G
R
11
]

D
ir
ec
t
tr
an

sl
at
io
n

be
tw

ee
n

m
id
dl
ew

ar
e

m
es
sa
ge
s

Se
rv
ic
e
bu

se
s
[M

en
07
,G

IB
M

+
10
]

D
ea
lin

g
w
it
h

di
ffe

re
nt

m
id
dl
ew

ar
e
so
lu
-

ti
on

s
vi
a
an

in
te
rm

ed
ia
ry

in
fr
as
tr
uc
tu
re

FormalMethods

U
si
ng

a
sp
ec
ifi
ca
ti
on

of
th
e

co
m
po

se
d

sy
st
em

[C
L8

9,
B
P
T
10
,G

M
W

12
]

Sy
nt
he
si
se

th
e
m
ed
ia
to
rb

y
se
le
ct
in
g
fr
om

al
l

po
ss
ib
le

co
or
di
na

ti
on

s
of

th
e

be
-

ha
vi
ou

rs
of

co
m
po

ne
nt
s
on

ly
th
os
e
th
at

sa
ti
sf
y
th
e
sp
ec
ifi
ca
ti
on

of
th
e
co
m
po

se
d

sy
st
em

+
A
ut
om

at
ed

an
al
ys
is

an
d
co
or
di
na

ti
on

of
co
m
-

po
ne
nt
s’

be
ha

vi
ou

rs
+

G
ua

ra
nt
ee
d

co
rr
ec
tn
es
s
of

th
e
in
te
ra
ct
io
n

be
-

tw
ee
n
co
m
po

ne
nt
s

—
R
eq
ui
re

a
de
cl
ar
at
iv
e
sp
ec
ifi
ca
ti
on

of
th
e
co
rr
e-

sp
on

de
nc
es

be
tw

ee
n
th
e
ac
ti
on

s
of

co
m
po

ne
nt
s’

in
te
rf
ac
es

—
N
o
su
pp

or
t
fo
r
di
ffe

re
nc
es

at
th
e
m
id
dl
ew

ar
e

la
ye
r

U
si
ng

a
pa

rt
ia
l

sp
ec
ifi
ca
ti
on

[L
am

88
,Y

S9
7,

N
X
B
10
,M

P
S1

2]
R
eq
ui
re

th
e
co
rr
es
po

nd
en
ce
s
be

tw
ee
n
ac
-

ti
on

s
to

be
av
ai
la
bl
e,

an
d
sy
nt
he
si
se

th
e

m
ed
ia
to
r
th
at

gu
ar
an

te
es

th
at

in
te
ra
c-

ti
on

be
tw

ee
n
co
m
po

ne
nt
si
sd

ea
dl
oc
k-
fr
ee

SemanticWeb

Se
m
an

ti
c
W
eb

Se
rv
ic
es

[B
H
L+

02
,

C
M
05
,M

B
M

+
07
]

D
efi
ni
ng

an
on

to
lo
gy

to
su
pp

or
tt

he
in
fe
r-

en
ce

of
th
e
ne
ce
ss
ar
y
tr
an

sl
at
io
ns

of
th
e

ac
ti
on

s
re
qu

ir
ed

by
on

e
co
m
po

ne
nt

an
d

pr
ov
id
ed

by
th
e
ot
he
r

+
A
ut
om

at
ed

di
sc
ov
er
y

of
fu
nc
ti
on

al
ly
-

co
m
pa

ti
bl
e
co
m
po

ne
nt
s

+
A
ut
om

at
ed

re
as
on

in
g
ab

ou
t
th
e
m
ea
ni
ng

of
in
-

fo
rm

at
io
n

—
P
ar
ti
al

su
pp

or
t
fo
r
be

ha
vi
ou

ra
ld

iff
er
en

ce
s

—
P
ar
ti
al

su
pp

or
t
fo
r
m
id
dl
ew

ar
e
di
ffe

re
nc
es

Se
m
an

ti
c
m
ed
ia
ti
on

bu
s
[Z
hu

12
]

U
si
ng

se
m
an

ti
c

te
ch
no

lo
gi
es

w
it
hi
n

an
E
SB

to
au

to
m
at
e
m
es
sa
ge

tr
an

sl
at
io
n

T
ab

le
2.
1.

Su
m
m
ar
y
of

ap
pr
oa

ch
es

to
in
te
ro
pe

ra
bi
lit
y

51

Chapter 3

Achieving Eternal Interoperability:
The Role of Automated Mediator
Synthesis

“The practical upshot of all this is that if you stick a Babel fish in your
ear you can instantly understand anything in any form of language.”

— in H2G2 by Douglas Adams, author and satirist, (1952-2001)

Despite extensive interest and intensive work, interoperability remains an open
problem, especially in ubiquitous computing environments. The previous chapter
highlighted the fact that a great deal of progress has been made in achieving interop-
erability by providing solutions for the synthesis and implementation of mediators.
However, existing solutions have not fully succeeded in coping with the increasing
complexity of modern software systems, both in terms of the level of heterogene-
ity and the degree of dynamism. We claim that only a multifaceted approach that
brings together and enhances the solutions that tackle interoperability from different
perspectives is viable in the long term. In this thesis we define a solution to interop-
erability which, rather than defining yet another middleware or yet another ontology,
exploits existing middleware together with knowledge encoded in existing domain
ontologies to synthesise and implement mediators automatically. In this chapter, we
present the context in which our solution takes its full significance. Our solution
plays a central role in the approach to eternal interoperability among highly hetero-
geneous distributed systems, and systems of systems, developed within the Connect

53

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

project. Eternal interoperability emphasises the fact that the proposed approach is
not restricted to today’s components, i.e., components based on existing middleware
and standards, but should be applicable to future and unforeseen ones as well. We
present the principles and techniques for supporting eternal interoperability and show
the key role of the automated synthesis and implementation of mediators therein.

3.1 The Connect Approach to Eternal
Interoperability

The Connect project1 aims at breaking down the interoperability barriers in highly
dynamic and extremely heterogeneous environments such as ubiquitous computing
environments or systems of systems. Ubiquitous computing promotes a view of com-
ponents, distributed across many, possibly mobile, devices discovering one another
dynamically and interacting on the fly. Systems of systems integrate existing compo-
nents, which are autonomous and so complex that they can be considered as systems
in themselves. The components of a system of systems are designed and implemented
independently, and can be extremely heterogeneous with differences spanning the ap-
plication and middleware layers, which makes their subsequent integration very com-
plicated. Achieving interoperability in these environments is extremely challenging
because the components already exist, can be very complex, are heterogeneous, and
discover one another dynamically. To address this challenge, Connect advocates an
approach to interoperability based on emergent middleware. Emergent middleware is
a dynamically generated implementation of a mediator for the current operating envi-
ronment and context, which makes functionally-compatible components interoperate
seamlessly. Hence, an emergent middleware solution requires the ability to identify
functionally-compatible components dynamically as well as to synthesise and imple-
ment mediators at runtime. The former can be achieved by explicitly modelling the
functionality required or provided by components. The latter necessitates the precise
description of the meaning of the actions required or provided by the components as
well as the components’ behaviours. In other words, an emergent middleware solution
relies on the appropriate modelling of components.

However, while the appropriate modelling of the functionality and behaviour of
1http://www.connect-forever.eu

54

http://www.connect-forever.eu

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

components has been recognised as being essential to reason about interoperability
and synthesise mediators automatically, as presented in Chapter 2, such models are
often unavailable in practice. Most components only display their syntactic interfaces,
which describe, using some textual notation or XML, the actions through which the
components interact. Therefore, it is often necessary to use the syntactic interface of
the component to complete its model.

Mediator

Component 1 Component 2

Model
Completion

Model of
Component 1

Model of
Component 2

Automated Synthesis and
Implementation of Mediators

Running-System
Level

Model Level

Emergent
Middleware

3

2

1 Component
Discovery

Figure 3.1. The Connect approach for creating emergent middleware

Figure 3.1 outlines the overall Connect approach for creating emergent mid-
dleware. The approach operates at two levels: the running-system level, where the
implementations of software components are defined and the interactions between
components take place, and the model level, where the models of software compo-
nents are defined and the synthesis of mediators takes place. The first step starts at
the running-system level by discovering the components available in the runtime en-
vironment (see Figure 3.1-¶). Most discovery protocols (e.g., SLP1, WS-Discovery2,
UPnP-SSDP3, and Jini4) only support the description of the syntactic interface of
components. Therefore, the second step is to complete the component model (see

1Service Location Protocol – http://www.openslp.org/
2http://docs.oasis-open.org/ws-dd/discovery/1.1/
3Universal Plug and Play-Simple Service Discovery Protocol – http://www.upnp.org/
4http://www.jini.org/

55

http://www.openslp.org/
http://docs.oasis-open.org/ws-dd/discovery/1.1/
http://www.upnp.org/
http://www.jini.org/

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

Figure 3.1-·). Based on the completed models of components, the third step con-
sists in identifying pairs of functionally-compatible components and synthesising the
appropriate mediator that guarantees their correct interaction. Then, the synthesised
mediator is implemented as emergent middleware (see Figure 3.1-¸).

The Connect approach is fully automated, does not require a priori knowledge
of the components, and creates the emergent middleware at runtime. This approach
is not only suitable for achieving interoperability between today’s components but
also future components, which are based on yet-to-be applications and middleware
solutions.

In the following sections, we introduce the component model in more detail. Then,
we present the architecture of emergent middleware and describe the Connect ar-
chitecture for generating it at runtime.

3.2 Modelling Components

We build upon the work on interoperability presented across the different perspec-
tives, as surveyed in Chapter 2, to define a component model that captures all the
information necessary to achieve interoperability automatically. We recall that both
the software architecture and the formal methods perspectives require describing the
behaviour of the component using a rigorous formalism. The Semantic Web perspec-
tive also promotes the precise description of the functionality and the meaning of
actions in the component’s interface using ontologies. Finally, the middleware must
also be specified so as to facilitate the implementation of mediators. The component
model is made up of capability, interface, and behaviour.

Capability

The component’s capability (Cap) gives a macro-view of the component by specifying
the functionality it requires from or provides to its environment. A capability is
specified as: Cap = 〈type, F 〉 where:

• type ∈ {Req, Prov,Req_Prov} specifies whether the component expects some
functionality to be provided by the environment, i.e., Req; it produces the
functionality itself, noted Prov; or both requires and provides the functionality,
as is the case in peer-to-peer interactions.

56

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

• F gives the semantics of the functionality by referring to a concept in an on-
tology of domains D, which is a general ontology representing the different
categories of services components may require or provide, in a similar way to
the UNSPSC taxonomy1. Every concept in D is associated with a domain
ontology O, which models knowledge about the specific domain.

A component may have several capabilities, each of which represents some func-
tionality required or provided by the component and relates to a specific domain.
For example, in the GMES case study [Con12], the Command and Control centre C2
has to interact with different components to make the decisions necessary for crisis
management; it needs to get weather information, the location of firemen, and to
manage vehicles remotely. As a result, C2 has several capabilities, each of which is
related to a specific interaction.

Interface

The interface signature, or simply interface (I), of the component gives a finer-
grained description of the actions that the component manipulates. Actions are
described both syntactically, using XML schema, and semantically using ontological
annotations. Annotations offer a simple technique to include domain knowledge by
simply referring to ontology concepts. The annotations of a component’s interface
refer to a single ontology O specific to the domain that the component belongs to.

More specifically, a required action α =<op, i, o> (op, i, o ∈ O) represents an in-
vocation of an operation op by providing the appropriate input data i and consuming
the corresponding output data o. While we represent the required action using the
ontology concepts representing the operation and data, the syntax of the input and
output data (i and o) is given using the associated XML schema, which we denote
S(i) and S(o) respectively. The dual provided action2 β =<op, i, o> uses the inputs
and produces the corresponding output.

Finally, the interface also specifies the middleware used to implement the required
and provided actions. When a standard middleware solution is used, e.g., SOAP, it
is straightforward to realise the required and provided actions. However, when some

1United Nations Standard Products and Services Code – http://www.daml.org/ontologies/
106

2We use the overline as convenient shorthand for provided actions.

57

http://www.daml.org/ontologies/106
http://www.daml.org/ontologies/106

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

proprietary solution is used or when the standard middleware is customised, for
optimisation purposes for example, we rely on a domain-specific language, Message
Description Language [BGR11] (MDL), to describe how the actions are realised. MDL
describes the exact structure of messages to be sent on the network. Each message
is described as a sequence of fields. The definition of each field describes its length
in bits, its type, and its value if it is constant. For example, the following listing is
an extract of the definition of a Yahoo! instant message:

<Message>
<Name>SDG</Name>
<Field>
<PrimitiveField>
<label>Tag</label>
<length>24</length>
<type>Str ing </type>
<mandatory>true </mandatory>
<value>SDG</value>

</PrimitiveField>
</Field>
<Field>
<PrimitiveField>
<label>User</label>
<length>0</length>
<type>Str ing </type>
<mandatory>true </mandatory>

</PrimitiveField>
<Field>
<PrimitiveField>
<label>Conversation </label>
<length>0</length>
<type>Str ing </type>
<mandatory>true </mandatory>

</PrimitiveField>
</Field>
. . .
</Message>

It specifies that the SDG message includes a Tag field of 24 bits whose value is set
to SDG. The two other fields, User and Conversation, are both mandatory. Their
length is set to 0 as it is variable and described in another field.

58

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

Behaviour

The behaviour of a component specifies its interaction with the environment and
models how the actions of its interface are coordinated to achieve its functionality.
We build upon FSP and the related LTS semantics to specify the component’s be-
haviour. The interface of the component defines the alphabet of the FSP process P
representing the behaviour of the component, i.e., αP = I. We assume synchronous
semantics, i.e., a component can only perform a required action a if another com-
ponent is in a state that enables it to perform the dual provided action a, since the
required action can only be carried out if its output data are available; similarly, a
component can only perform a provided action b if another component is in a state
that enables it to perform the dual required action b, since the provided action can
only be carried out if its input data are available. The reason is that behavioural
analysis under asynchronous semantic is in general undecidable [BZ83]. Note, though,
that the realisation of the actions may be asynchronous, as is the case when using a
publish/subscribe middleware.

3.3 Emergent Middleware

The emergent middleware is the realisation of the mediator. In Connect, Star-
link [BGR11] is used to enact mediators as emergent middleware. Starlink uses a
mediator engine to interpret and execute the coordination and the translations spec-
ified by the mediator. While the mediator engine manipulates required and provided
actions, these actions must be transformed into concrete network messages exchanged
with the components. The format of these messages depends on the middleware used
by the component. Therefore, Starlink uses a parser and a composer to communicate
with each component. The parser analyses the messages received by the emergent
middleware and transforms them into actions that can be understood by the media-
tor engine. The composer is responsible for transforming actions into messages that
the emergent middleware can send. Starlink generates parsers and composers based
on the MDL descriptions of how the actions are realised. While this solution is very
flexible as it can deal with any middleware solution, whether it be standard or propri-
etary, it is somewhat tedious as it requires the developer to know and specify the exact
structure of the messages sent or received by the components. Therefore, we inves-

59

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

tigated an approach whereby parsers and composers can be generated by combining
and reusing existing middleware libraries. This technique is generally more efficient
as it reuses optimised libraries for processing messages. Furthermore, the developer
need not know the exact structure of the messages but only the middleware used.

Figure 3.2 illustrates an emergent middleware solution in the case of the weather
example. The mediator engine executes the mediator in order to perform the transla-
tions and the coordinations necessary to enable C2 and Weather Station to interact.
To communicate with C2, the emergent middleware uses a SOAP parser and com-
poser. It uses a CORBA parser and composer to communicate with Weather station.

Weather
StationC2

Emergent Middleware

GetHumidity
Logout

Login

GetWeather

Logout
Login

GetTemperature4
SOAP Parser

SOAP Composer CORBA Parser

CORBA Composer

Mediator Engine

Figure 3.2. Emergent middleware between C2 and Weather Station

3.4 Emergent Middleware Enablers

The Connect approach is implemented using several software entities, called en-
ablers that collaborate in order to produce an emergent middleware solution, as
depicted in Figure 3.3. The discovery enabler is responsible for locating the com-
ponents available in the environment. When a component is discovered which only
describes its syntactic interface, the discovery enabler invokes the learning enabler in
order to complete the model of the component. Based on the completed models of
components, the discovery enabler identifies functionally-compatible components and
invokes the synthesis enabler to generate and implement the mediator that makes it
possible for them to interoperate. We describe each enabler in the following.

3.4.1 Discovery Enabler: Locating Components

The discovery enabler is responsible for identifying functionally-compatible compo-
nents and enabling them to discover one another, assuming that these components

60

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

Synthesis Enabler

Synthesise

Learn
Learning EnablerDiscovery Enabler

Component
Repository

Legend

Enabler
Provided Interface
Required Interface

Mediator
Repository

Figure 3.3. Emergent middleware enablers

make use of some discovery protocol (a.k.a. service discovery protocol) to adver-
tise their presence in the environment and also receive the advertisements of other
components.

Figure 3.4 gives an overview of the discovery enabler. First, the discovery en-
abler uses a set of plugins, each of which is associated with some existing discovery
protocol (e.g., SLP, WS-Discovery, UPnP-SSDP, and Jini), to locate the components
joining the runtime environment and which use these discovery protocols to advertise
their presence. The advertisement often contains only the description of the syntac-
tic interface of the component. Consequently, the discovery enabler uses the Learn
interface provided by the learning enabler to complete the model of this component.

Discovery Manager

Component
Repository

Mediator
Repository

Capability
Matching

Plugin Manager

SL
P

SS
D

P

...W
S-
D
is
co
ve
ry

Component
Repository

Mediator
Repository

Learn

Synthesise

Figure 3.4. Overview of the discovery enabler

61

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

Given the completed models of components, the discovery enabler identifies
functionally-compatible components using capability matching. More precisely, we
say that a required capability CapR = 〈Req, OpR〉 semantically matches a provided
capability CapP = 〈Prov, OpP 〉 iff OpP v OpR in the ontology of domains D. The
idea behind this condition is that the functionality required by one component is less
demanding that the functionality provided by the other component. Once a pair of
functionally-compatible components has been identified, the discovery enabler uses
the Synthesise interface provided by the synthesis enabler to generate and implement
the mediator that enables them to interoperate.

The discovery enabler maintains a repository of component models and a reposi-
tory mediators to which it gives access using the eponymous interfaces. Both repos-
itories are organised according to the subsumption relation between the capabilities
of components in order to accelerate the search for components’ models and reduce
the time necessary to identify functionally-compatible components.

3.4.2 Learning Enabler: Completing Component Models

Although capabilities and behaviours have been acknowledged as essential elements
of component specification, it is the exception rather than the rule to have such rich
component descriptions available on the network. Given the description of a com-
ponent’s interface, the learning enabler uses statistical learning to infer the ontology
concept representing the functionality required or provided by the component, and
automata learning to extract its behaviour.

Statistical Learning for Inferring the Component’s Capability

Since the interface is typically described by textual documentation, e.g., XML doc-
uments, we capitalise on the long tradition of research in text categorisation. Text
categorisation enables the classification of a textual document into a predefined set
of categories. One of the main techniques for text categorisation is Support Vector
Machines (SVM) [Joa98], which is a learning algorithm that has the ability to infer a
categorisation function based on a set of features. For text categorisation, the stan-
dard representation of features is a bag of words [SYY74]. In this method, words are
associated with dimensions of the vectors used by the SVM. For example, a textual
document consisting of the string “get Weather, get Station” could be represented

62

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

as the vector (2, 1, 1, . . .) where 2 in the first dimension is the frequency of the “get”
token. The SVM algorithm is first given a training set that consists of textual doc-
uments, each of which is associated with the appropriate category. As a result it
produces the categorisation function, which associates a textual document to a cate-
gory according to its features. We use SVM to infer the categorisation function that
relates an interface, which is considered as a textual document, to a semantic concept
from the ontology of domains D, which represents the set of possible categories. At
runtime, the interface is analysed in order to infer the appropriate functionality, as
illustrated in Figure 3.5. Note that while learning is used to infer the ontology con-
cept representing the functionality of the capability, the type of the capability (Req,
Prov, or Req_Prov) is set by the discovery enabler based on whether the component
is advertising its interface or looking for a component to interact with.

Statistical
Learning

SVM
Categorisation

function

Design time Runtime

Training
examples

Ontology

Categorisation
function

Interface
description

Ontology
concept

b c

a
d

Thing

Interface 1 ⟼"a
Interface 2 ⟼"b
Interface 3 ⟼"d

Figure 3.5. Illustrating capability learning

Automata Learning For Inferring the Component’s Behaviour

A learning technique based on Angluin’s seminal L∗ algorithm [Ang87] is used to
extract the behaviour of a component when only its interface is known. It is based on
an iterative process by which a hypothesis component’s behaviour is incrementally
refined by actively testing interactions with the corresponding component. Hence,
unlike passive learning algorithms [LMP08, KBP+10] that only observe the inter-
action traces, L∗ chooses the sequences of actions to execute in order to learn the
behaviour in minimal time. In Connect, the learning technique is provided by
LearnLib [MSHM11], a framework for automata learning, which implements various

63

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

improvements to the L∗ algorithm such as abstraction/refinement or dealing with
data values in order to be able to learn the behaviour of realistic components in
minimal time.

Going back to the weather example, let us consider learning C2 ’s behaviour as
illustrated in Figure 3.6. At time t0, the interface of C2 is discovered, and the learning
algorithm initiates by assuming that C2 is able to perform any action in any order,
that is its behaviour is represented using one single state where all the actions can
be performed. However, when trying to interact with the system by performing, for
example, req.getWeather and then req.login, an error (or exception) is raised. At
time t1, the model is updated so as to forbid this erroneous trace. Similarly, when
performing req.login, req.logout, then req.getWeather, an error occurs, therefore the
learning algorithm updates the model, which continues to be refined to obtain the
model at time t3. LearnLib verifies the data types of actions in order to refine the
initial behaviour. Hence, it would directly start with the behaviour specified at t1.

req.login req.logout

req.getWeather

req.getWeather
req.login

req.logout

req.getWeatherreq.login

req.login

req.logout

req.getWeather

req.logout

req.login

req.getWeather

req.logout

C2

req.getWeather req.login

req.logout req.login

Counterexamples 1

Counterexamples 2

t0

t1

t2

Figure 3.6. Learning the behaviour of C2

3.4.3 Synthesis Enabler: Synthesising Mediators

The automated synthesis of mediators between functionally compatible components,
which is the main role of the synthesis enabler, lies at the heart of the creation of

64

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

the emergent middleware. It is based on our approach for the automated synthesis
of mediators, which is the central focus of this thesis.

Interface Matching

Generation of Correct-by-construction Mediator

Concretisation

Synthesise

Figure 3.7. Overview of the synthesis enabler

In order to allow components to interoperate seamlessly, it is important to find
the right level of abstraction so as to reason about the interaction of these systems
automatically while keeping enough details to turn the conclusions drawn during the
reasoning phase into a concrete artefact. It is difficult to deal with implementation-
level interoperability, as it involves managing many details that, although crucial,
make the reasoning very difficult, if not impossible. But an excessive abstraction
is also useless as the decision space toward refining the result of the reasoning and
turning it toward a concrete solution would be immense. Furthermore, knowledge
about the domain in which the components evolve is necessary in order to capture
the meaning of the information they exchange. Therefore, the synthesis enabler is
composed of several modules (see Figure 3.7). First, we use domain knowledge, which
is represented using the adequate domain ontology, to calculate the correspondences
between the actions required by one component and those provided by the other,
that is interface matching. The interface matching must be complete in the sense
that every required action is involved in at least one correspondence. The interface
matching might be ambiguous, that is the same sequence of required actions may
correspond to different sequences of provided actions. We use the interface matching
to build a correct-by-construction mediator that guarantees that the components are
able to work together at the application layer. Finally, we concretise the mediator
in order to take into account the characteristics of the middleware solutions used
to implement the components. We detail interface matching and the generation of
correct-by-construction mediators in Chapter 4 and the concretisation in Chapter 5.

65

Chapter 3. Eternal Interoperability: The Role of Automated Mediator Synthesis

3.5 Summary

In this chapter, we presented the Connect approach to achieve interoperability in
highly dynamic environments. The approach does not require any human interven-
tion as it discovers the components dynamically, learns their behaviours automat-
ically, and produces the emergent middleware that enables functionally-compatible
components to interoperate seamlessly. We also highlighted the role of the automated
synthesis and implementation of mediators in the creation of emergent middleware.
In this context, we can reasonably assume the component models to be available and
that functionally-compatible components have been identified. In the next chapters,
we focus on the synthesis and implementation of mediators.

66

Chapter 4

Automated Synthesis of Mediators

“When you and I speak or write to each other, the most we can hope for is
a sort of incremental approach toward agreement, toward communication,
toward common usage of terms.”

— Douglas Lenat, researcher and CEO of Cycorp, (1950-)

To enable two functionally-compatible components to interoperate, the mediator
must solve the differences between the interfaces of these components and coordinate
their behaviours at both the application and middleware layers. In this chapter, we
focus on the automated synthesis of mediators at the application layer as it provides
the appropriate abstraction to reason about the meaning of the actions of compo-
nents’ interfaces using a domain specific ontology. We define the formal methodology
to establish semantic correspondences between the actions of components’ interfaces
(i.e., interface matchings) where ontologies serve as a central reference point for trans-
lation and reconciliation of the meaning between actions. We also show how these
correspondences can be efficiently computed using constraint programming. We then
describe the algorithms used to generate the mediator by exploring the behaviours of
the components and composing the generated interface matchings so as to guarantee
that these components interact successfully. To illustrate the approach, we consider
an example from the file management domain which shows the need for interoper-
ability between a WebDAV client and the Google Docs service. This case study
also illustrates the case of one-to-many correspondence between the actions of the
two components, i.e., one action required from a component is translated into a se-

67

Chapter 4. Automated Synthesis of Mediators

quence of actions provided by the other component. Furthermore, both components
are based on HTTP, which allows us to focus on their differences at the application
layer.

4.1 The File Management Example

The migration from desktop applications to Web-based services is scattering user
files across a myriad of remote servers (e.g., Apple iCloud1 and Microsoft Skydrive2).
This dissemination poses new challenges for users, making it more difficult for them
to organise, search, and share their files using their preferred applications. This
situation, though cumbersome from a user perspective, simply reflects the way file
management applications have evolved. As a result, users are forced to juggle be-
tween a plethora of applications to share their files rather than using their favourite
application, regardless of the service it relies on or the standard on which it is based.

Among the standards allowing collaborative management of files, WebDAV (Web
Distributed Authoring and Versioning) is an IETF specification that extends the
Hypertext Transfer Protocol (HTTP) to allow users to create, read and change docu-
ments remotely. It further defines a set of properties to query and manage information
about these documents, organise documents using collections, and defines a locking
mechanism in order to assign a unique editor of a document at any time. Another
example is represented by the Google Docs service that allows users to create, store,
and search Google documents and collections, and also to share and collaborate on-
line in the editing of these documents. These functionalities can be accessed using a
Web browser or using the Google proprietary API.

Although these two systems offer similar functionalities and use HTTP as the
underlying transport protocol, they are unable to interoperate. For example, a user
cannot access his Google Docs documents using his favourite WebDAV client (e.g.,
Mac Finder) as depicted in Figure 4.1. This is mainly due to the syntactic naming of
the data and operations used in WebDAV and Google Docs, together with the order
according to which these operations are performed. In particular, differences exist in:

• The names and types of input/output data and operations. For example, re-
source containers are called folders in Google Docs and collections in WebDAV.

1http://www.apple.com/icloud/
2http://windows.microsoft.com/skydrive/

68

http://www.apple.com/icloud/
http://windows.microsoft.com/skydrive/

Chapter 4. Automated Synthesis of Mediators

Google Docs also distinguishes between different types of documents (e.g., pre-
sentation or spreadsheet) whereas WebDAV considers them all as files.

• The granularity of operations. WebDAV provides an operation for moving files
from one location to another whereas Google Docs does not. However, the move
operation can be carried out using existing operations to achieve the same task,
i.e., by performing the upload, download, and delete operations offered by the
Google Docs service.

• The ordering of operations. WebDAV requires operations on files to be preceded
by a lock operation and followed by an unlock operation. Google Docs does not
have such a requirement. Still, it allows users to restrict or release access to a
document by changing its sharing settings. Hence, although the operations of
the two systems can be mapped to one another, the sequencing of operations
required by WebDAV is not respected by Google Docs .

WDAV-GDocs
Mediator

HTTP

prov.Authenticate

prov.DeleteDocument

prov.UploadDocument

prov.SetSharingProperties

prov.DownloadDocument

req.Authenticate

req.Lock

req.Move

req.Read

Figure 4.1. Making WebDAV client and Google Docs service interoperable

The File Management Ontology

In the interoperable file management scenario, we build upon the NEPOMUK File
Ontology1, which defines the vocabulary for describing and relating information el-
ements and operations that are commonly used in file management applications.
Figure 4.2 shows an extract of this ontology once the classification has been per-
formed. A Resource has some ResourceProperties and is defined as the union of File
and Collection. In DL, this would be written: Resource .

= File t Collection. The dot
above the “equals” symbol designates a declarative axiom. In addition, a Resource

1http://www.semanticdesktop.org/ontologies/nfo/

69

http://www.semanticdesktop.org/ontologies/nfo/

Chapter 4. Automated Synthesis of Mediators

<<OWLClass>>
MoveFile

≐ ∃hasPart.Download ⊓ ∃hasPart.Replace

<<OWLClass>>
Document

≐ Presentation � SpreadSheet � TextDocument

� MindMap � BolbDocument

isPartOf{some}

<<OWLClass>>
Resource

≐ File � Collection

<<OWLClass>>
ReplaceFile

≐∃hasPart.Upload ⊓ ∃hasPart.Delete

<<OWLClass>>
TextDocument

<<OWLClass>>
SpreadSheet

<<OWLClass>>
Presentation

<<OWLClass>>
MindMap

<<OWLClass>>
BolbDocument

<<OWLClass>>
ResourceProperties

∃Title.String
∃CreationDate.Date
∃LastUpdate.Date
∀Notes.String

hasProperties{some}

<<OWLClass>>
Metadata

<<OWLClass>>
Content

hasPart{some}

hasPart{some} <<OWLClass>>
ReadFile

<<OWLClass>>
WriteFile

<<OWLClass>>
DeleteFile

<<OWLClass>>
File

≐∃hasPart.Metadata ⊓ ∃ hasPart.content

<<OWLClass>>
Collection

hasPart{some}

hasPart{some}hasPart{some}

Subsumption
Ontological relation

Ontological concept

property{cardinality}

...<<OWLClass>>

hasPart{some}

<<OWLClass>>
DownloadDocument

<<OWLClass>>
UploadDocument

<<OWLClass>>
DeleteDocument

<<OWLClass>>
URI

<<OWLClass>>
DestinationURI

<<OWLClass>>
SourceURI

hasURI{some}

Legend

Figure 4.2. The file management ontology

concept has some resource properties: Resource v̇ ∃hasProperties.ResourceProperties.
The ResourceProperties has several data properties, e.g., Title of type String. It can
then be inferred that a File is a Resource: File v Resource and that a File also has
some properties File v ∃hasProperties.ResourceProperties

In a similar way, when one states that MoveFile is made up of ReadFile and
ReplaceFile, which in turn is made up of WriteFile and DeleteFile, the ontology rea-
soner can infer that MoveFile is defined as the aggregation of the three concepts, i.e.,
MoveFile = ReadFile ⊕ WriteFile ⊕ DeleteFile where = is equivalent to a double
subsumption. Hence, by giving a formal definition to each concept, the reasoner can
infer a hierarchy of concepts.

Behavioural Specifications of the File Management Components

The behavioural specification of the WebDAV client (WDAV) in FSP is as follows:

WDAV = (<Authenticate, {Username,Password}, {Authorisation} >→ P1),

P1 = (< Lock, {SourceURI}, {Acknowledgment} >→ P2

| <Logout, ∅, {Acknowledgment} >→ END),
...

70

Chapter 4. Automated Synthesis of Mediators

...
P2 = (<ListFolder, {SourceURI}, {FileList} >→ P2

| <ReadFile, {SourceURI}, {File} >→ P2

| <WriteFile, {File}, {Acknowledgment} >→ P2

| <DeleteFile, {File}, {Acknowledgment} >→ P2

| <MoveFile, {SourceURI,DestinationURI}, {Acknowledgment} >→ P2

| <Unlock, {SourceURI}, {Acknowledgment} >→ P1).

First, clients start an interaction by logging in. Then, before executing any operation,
clients have to lock the resource, perform the desired operation and then unlock it
again. Finally, they log out to terminate. The behaviour of the Google Docs service
(GDocs) is defined as follows:

GDocs = (<Authenticate, {Username,Password}, {Authorisation} >→ P1),

P1 = (<SetSharingProperties, {SourceURI,SharingProperties},
{Acknowledgment} >→ P1

| <ListCollection, {SourceURI}, {DocumentList} >→ P1

| <DownloadDocument, {SourceURI}, {Document} >→ P1

| <UploadDocument, {Metadata,Content,DestinationURI},
{Acknowledgment} >→ P1

| <DeleteDocument, {SourceURI}, {Acknowledgment} >→ P1

| <Logout, ∅, {Acknowledgment} >→ END).

GDocs expects clients to authenticate themselves first. Then, they can list collections
of documents or download, upload and delete documents. Finally, they log out to
terminate.

To achieve interoperability between WDAV and GDocs, a mediator must be syn-
thesised which solves the differences between the interfaces of these components and
coordinates their behaviours in order to ensure their successful interaction. To that
end, we first compute interface matchings, which specify how the actions required by
WDAV can be performed using actions provided by GDocs. Note that, even though
we compute the interface matching both ways, it is unnecessary to match the in-
terface of GDocs against that of WDAV since GDocs does not require any action.
Then, we synthesise the mediator that composes the interface matchings in a way
that guarantees that the two components progress and reach their final states without
errors (e.g., deadlock).

71

Chapter 4. Automated Synthesis of Mediators

4.2 Specification of Interface Matching

To enable WDAV and GDocs to interoperate, the mediator must translate the ac-
tions required by the former into actions provided by the latter. This translation
is only possible if there is a semantic correspondence between the actions required
by WDAV and those provided by GDocs. Establishing the semantic correspondence
between the actions of the components’ interfaces is a crucial step towards the syn-
thesis of mediators. In this section, we specify the conditions under which such a
correspondence, i.e., interface matching, may be established.

Let us consider two components’ interfaces I1 and I2. Matching I1 with
I2, written Match (I1, I2), consists in finding all pairs (X1, X2) where X1 =

〈α1, α2, . . . , αm〉 , αi=1..m ∈ I1 and X2 =
〈
β1, β2, . . . , βn

〉
, βj=1..n ∈ I2 such that X1

matches with X2, denoted X1 7→ X2, if the required actions of X1 can be safely
performed by calling the provided actions of X2. In addition, this pair is minimal,
that is, any other pair of sequences of actions (X ′1, X

′
2) such that X ′1 matches with

X ′2 would have either X1 as a subsequence of X ′1 or X2 as a subsequence of X ′2. The
interface matching is then specified as follows:

(X1, X2) ∈Match (I1, I2) =

{ (X1, X2)|
X1 = 〈α1, α2, . . . , αm〉 , αi=1..m ∈ I1
∧X2 =

〈
β1, β2, . . . , βn

〉
, βj=1..n ∈ I2

∧X1 7→ X2

∧ 6 ∃ (X ′1, X
′
2) | X ′1 = 〈α1, α2, . . . , αm′〉, αi=1..m′ ∈ I1
∧X ′2 =

〈
β1, β2, . . . , βn′

〉
, βj=1..n′ ∈ I2

∧ (X ′1 7→ X ′2)

∧ (m′ < m) ∧ (n′ < n)

}
Likewise, Match (I2, I1) represents the set of all pairs (X2, X1), where X2 is a se-
quence of required actions of I2 and X1 is a sequence of provided actions of I1, such
that X2 matches with X1 and this matching is minimal.

Let X1 = 〈α1, . . . , αm〉 be a sequence of required actions and X2 =
〈
β1, . . . , βn

〉

be a sequence of provided actions. To facilitate the definition of a matching of X1

with X2, we consider the following cases:

72

Chapter 4. Automated Synthesis of Mediators

• m = 1 and n = 1. This is a one-to-one matching, denoted X1
1−17−→ X2,

and it states that an action required by one component can be safely per-
formed by an action provided by the other component. For example, the
<ReadFile, {SourceURI}, {File}> action required by WDAV can be performed
using the <DownloadDocument, {SourceURI}, {Document}> action provided by
GDocs.

• m = 1 and n ≥ 1. This is a one-to-many matching, denoted
X1

1−n7−→ X2, and refers to action split/merge, i.e., when an action re-
quired by one component is provided by a sequence of actions from
the other. For example, the <MoveFile, {SourceURI,DestinationURI},
{Acknowledgment}> action required by WDAV can be per-
formed using the <DownloadDocument, {SourceURI}, {Document}>,
<UploadDocument, {Metadata,Content,DestinationURI}, {Acknowledgment}>,
and <DeleteDocument , {SourceURI}, {Acknowledgment}> actions provided by
GDocs.

• m ≥ 1 and n ≥ 1. This is the most general case and refers to a many-to-many
matching, denoted X1

m−n7−→ X2. It is used to specify the case where one sequence
of actions corresponds to another sequence of actions.

Each matching is associated with a process that specifies how the sequences of actions
are coordinated. In the following, we specify the conditions that must be satisfied
by sequences of actions in order to match. We first give a formal definition in the
one-to-one case, which we extend to the one-to-many and many-to-many cases. Note
that we do not distinguish between the aggregation (⊕) and disjunction (t) con-
structors when computing interface matchings as they both represent compositions
of concepts. The distinction is however maintained at the ontological level, and also
for data translations: in the case of disjunction E .

= C tD, the translation consists
in producing an instance of E by assigning to it either an instance of C or an instance
of D. While in the case of aggregation E .

= C ⊕D, an instance of E is produced by
combining its parts, i.e., both C and D instances, in the appropriate way.

73

Chapter 4. Automated Synthesis of Mediators

4.2.1 One-to-One Matching

A required action α = 〈a, Ia, Oa〉 ∈ I1 matches with a provided action β =
〈
b, Ib, Ob

〉
∈

I2, written α 1−17−→ β, iff:

1. b v a

2. Ia v Ib

3. Ia tOb v Oa

The idea behind this matching is that a required action can be achieved using
a provided one if the former supplies the required input data while the latter pro-
vides the needed output data, and the required operation is less demanding than the
provided one. This coincides with the Liskov Substitution Principle [LW94] where
ontological subsumption can be used in ways similar to type subsumption.

As a result, we generate the matching process M1−1 that synchronises with each
component by executing its dual action in order to let the two components progress
as depicted in Figure 4.3. Hence, the one-to-one matching process corresponding to
α

1−17−→ β is defined as follows: M1−1(α, β) = (β → α→ END).

12

11

2

1

2'

1'

22

α

α

Component 1 Component 2

β

Matching Process
M 1− 1 (α, β)

β

Figure 4.3. One-to-one matching process: M1−1(α, β)

Let us consider the <ReadFile, {SourceURI}, {File}> action required by WDAV
and the <DownloadDocument, {SourceURI}, {Document}> action provided by GDocs.
We can verify from the file management ontology in Figure 4.2 that:

1. DownloadDocument v ReadFile,

74

Chapter 4. Automated Synthesis of Mediators

2. SourceURI v SourceURI since subsumption is reflexive, and

3. Document v File.

As a result, we generate a corresponding matching process M1−1(ReadFile,

DownloadDocument)=(<DownloadDocument,{SourceURI}, {Document}>→<ReadFile,
{SourceURI}, {File}>→END). M1−1(ReadFile, DownloadDocument) requires
DownloadDocument and provides ReadFile. Therefore, it needs to: (i) receive
the URI from WDAV, (ii) transform it into that expected by DownloadDocument,
(iii) send the translated URI to GDocs, (iv) receive the appropriate document, (i)
transform it into a file, and (iv) send it back to WDAV.

4.2.2 One-to-Many Matching

Following the same idea, a required action α = 〈a, Ia, Oa〉 ∈ I1 matches with a
sequence of provided actions X2 =

〈
βi =

〈
bi, Ibi , Obi

〉
∈ I2

〉
i=1..n

, written α
1−n7−→〈

β1, . . . , βn
〉
, iff:

1.
n⊔
i=1

bi v a

2. Ia v Ib1

3. Ia
⊔
(
i−1⊔
j=1

Obj

)
v Ibi

4. Ia
⊔
(

n⊔
j=1

Obj

)
v Oa

The first condition states that the operation a can be appropriately performed
using bi operations, that is, the disjunction of all bi is subsumed by a. The second
ensures that the sequence of provided actions can be initiated since the input data
of the first action Ib1 can be obtained from the input data of the required action Ia.
The third condition specifies that the input data of each action can be produced from
the data previously received either as input from α or as output from the preceding
βj (j < i). This is necessary since an action can only be executed if its input data is
available. The fourth condition guarantees that the required output data Oa can be

75

Chapter 4. Automated Synthesis of Mediators

obtained from the set of data accumulated during the execution of all the provided
actions.

As a result, we generate the matching processM1−n(α,X2), depicted in Figure 4.4,
which consumes all the provided actions so as to provide the action α. The matching
process corresponding to α

1−n7−→
〈
β1, . . . , βn

〉
is as follows: M1−n(α,X2) = (β1 →

β2 → · · · → βn → α→ END).

11

2

1

2'

1'

α

α

β1

Component 1 Component 2

n+1'

...

12

1(n+1)

...

β2

βn

β2

βn

β1

2(n+1)

Matching Process
M 1− n (α, X 2)

Figure 4.4. One-to-many matching process: M1−n(α,X2)

Let us consider the <MoveFile, {SourceURI, DestinationURI}, {Acknowledgment}>
action required by WDAV and the three actions <DownloadDocument, {SourceURI},
{Document}>, <UploadDocument, {Metadata, Content, DestinationURI},
{Acknowledgment}>, and <DeleteDocument, {SourceURI}, {Acknowledgment}>
provided by GDocs. First, the condition on the semantics of the operations is veri-
fied, that is, DownloadDocument ⊕ UploadDocument ⊕ DeleteDocument v MoveFile.
Then, both DownloadDocument and the DeleteDocument can be performed as they
only expect a SourceURI as input, which is produced by MoveFile. UploadDocument

requires input data, which can only be provided by DownloadDocument since
Document v Metadata⊕ Content (see Figure 4.2) and can only be executed after the
UploadDocument operation. Hence, we can have the following matching:

76

Chapter 4. Automated Synthesis of Mediators

<MoveFile, {SourceURI,DestinationURI}, {Acknowledgment}>
7→<<DownloadDocument, {SourceURI}, {Document}>

<UploadDocument, {Metadata,Content,DestinationURI},{Acknowledgment}>,
<DeleteDocument, {SourceURI}, {Acknowledgment}>>

We can generate a corresponding matching process M1−n(MoveFile,

<DownloadDocument, UploadDocument, DeleteDocument>), which: (i) receives
the URI from the WebDAV client, (ii) transforms it into that expected by the
DownloadDocument action using a translation function f1, (iii) sends the translated
URI to the Google Docs service, (iv) receives the appropriate document, (v) builds
the parameters of the UploadDocument action by transforming the received document
and the destination URI, (vi) sends the parameters and receives the acknowledgment,
(vii) creates the source URI expected by the DeleteDocument, (viii) sends it back
to the Google Docs service, (viii) receives the corresponding acknowledgment, (ix)
generates the acknowledgment expected by the MoveFile action, and (x) sends it
back to the WebDAV client.

Note that since there is no data dependency between the upload and delete actions,
there exists another matching using the same actions in a different order:

<MoveFile, {SourceURI,DestinationURI}, {Acknowledgment}>
7→<<DownloadDocument, {SourceURI}, {Document}>

<DeleteDocument, {SourceURI}, {Acknowledgment}>,
<UploadDocument, {Metadata,Content,DestinationURI}, {Acknowledgment}>>

4.2.3 Many-to-Many Matching

In the same vein, a sequence of required actions X1 = 〈αi = 〈ai, Iai , Oai〉 ∈ I1〉i=1..m

matches with a sequence of provided actions X2 =
〈
βj =

〈
bj, Ibj , Obj

〉
∈ I2

〉
j=1..n

,

written 〈α1, . . . , αl, . . . , αm〉 m−n7−→
〈
β1, . . . , βn

〉
, iff:

1.
n⊔
j=1

bj v
m⊔
i=1

ai

2.
l⊔

i=1

Iai v Ib1

3.

(
l⊔

j=1

Iaj

)
⊔(i−1⊔

h=1

Obh

)
v Ibi

77

Chapter 4. Automated Synthesis of Mediators

4. ∀h ∈ [1, l[, Oah = ∅

5. ∀h ∈ [l,m],

(
h⊔
i=1

Iai

)⊔(n⊔
k=1

Obk

)
v Oah

The first condition states that the ai operations can be appropriately performed
using bj operations. The second condition states that the execution of provided
actions can be initiated if the necessary input data Ib1 can be computed based on the
data previously received. The third ensures that the input data of each action can be
acquired by considering the received input and the output of the preceding actions.
Since we assume synchronous semantics, a required action can only be achieved if
its output is available, and analogously a provided action can be executed only if
its input is available. However, we can accumulate the data produced by required
actions and allow them to progress if they do not require any output. Hence, the
fourth condition specifies that the first l − 1 actions do not require any output and
can be executed before the provided actions. Finally, the last condition states that
the output of the remaining required actions, i.e., from l to m, can be ascertained
by taking into account the previous inputs as well as the outputs generated by the
provided actions.

Consequently, we generate the matching process Mm−n(X1, X2) depicted in Fig-
ure 4.5. Mm−n(X1, X2) first synchronises with the l − 1 first required actions since
no output data is necessary for them to be executed. But only after consum-
ing all provided actions, can Mm−n(X1, X2) synchronise with the subsequent re-
quired actions —from l to m— since the output data necessary for their achieve-
ment are produced by the provided actions. The matching process corresponding to
〈α1, . . . , αl, . . . , αm〉 m−n7−→

〈
β1, . . . , βn

〉
is as follows: Mm−n(X1, X2) = (α1 → · · · →

αl−1 → β1 → · · · → βn → αl → αl+1 · · · → αm → END).

To sum up, the conditions state that: (i) the functionality offered by the provided
actions covers that of the required actions, (ii) each provided action has its input
data available (in the right format) at the time of execution, and (iii) each required
action has its output data available (also in the appropriate format) at the time of
execution. Even though these matchings do not cover every possible mismatch —this
would mean that we are able to prove computational equivalence— they cover a large
enough set of mismatches with respect to practical and real case studies and other
automated approaches for inferring interface matchings.

78

Chapter 4. Automated Synthesis of Mediators

11

2'

1'

�1

Component 1 Component 2

n+1'

l1

l2

...

�n�n

�1

↵1

↵l�1

↵l

↵m

21

l(n+1)

m(n+1)

...

↵2

...
2

1

l

m

...
...

↵1

↵2

↵l�1

↵l

↵m

�2�2 ...

Matching Process
Mm�n(X1, X2)

Figure 4.5. Many-to-many matching process: Mm−n(X1, X2)

4.3 Computation of Interface Matching using Con-
straint Programming

Matching interface I1 to interface I2 consists in searching, among all the possible
pairs of sequences of required actions of I1 and sequences of provided actions of I2,
those that verify the matching conditions specified in the previous section. Further-
more, each pair is minimal in the sense that is made up of the smallest sequences
of actions verifying the matching conditions. We prove that interface matching is
an NP-complete problem and use Constraint Programming (CP) [RVBW06] to deal
with it effectively.

Many arithmetical and logical operators are managed by existing CP solvers.
However, although there are some attempts to integrate ontologies with CP [JM03,

79

Chapter 4. Automated Synthesis of Mediators

Lab03], none supports ontology-related operators such as subsumption or disjunction
of concepts. In order to use CP to compute interface matching, we need to enable
ontology reasoning within CP solvers. Therefore, we propose to represent the onto-
logical relations we are interested in using arithmetic operators supported by existing
solvers. In particular, we devise an approach to associate a unique code to each onto-
logical concept and where disjunction and subsumption relations amount to boolean
operations.

In the following, we begin by proving that interface matching is an NP-complete
problem. We formulate the interface matching as a constraint satisfaction problem
and show how CP can be used to solve it efficiently. We further propose an ontology
encoding that considers subsumption and union in order to translate ontology rea-
soning into finite-domain constraints and thereby speed up the reasoning at runtime.

4.3.1 Complexity of Interface Matching

We prove that interface matching is NP-complete using polynomial-time reductions
from the set cover problem [Kar72]. We recall that in the set cover problem, we are
given a set of n elements U and a finite family of its subsets C = {S1, . . . , Sm} such
that Si ⊆ U and

m⋃
i=1

Si = U , and we must find a smallest collection of these subsets

whose union is U , i.e., a family of subsets C ′ = {T1, . . . , Tk} such that Tj ⊆ C and
k⋃
j=1

Ti = U .

The first step is to transform an instance of the set cover problem into an instance
of interface matching. We start by building an ontology made up of disjoint concepts,
each of which represents an element of U . Then, the first interface includes a unique
required action whose operation is the disjunction of all the ontology concepts repre-
senting elements of U and input and output data are void. I1 = {< ⊔

x∈U
x, ∅, ∅>}. The

second interface I2 is made up only of provided actions. Each action βi is associated
with a subset Si ∈ C and where the operation of βi is the disjunction of the ontology
concepts representing Si’s elements and its input and output data are void. Hence,
I2 =

⋃
Si∈C
{< ⊔

s∈Si

s, ∅, ∅>}.
Since the input and output data are void, interface matching specifies the pairs

(α, β1 . . . βk) ∈ I1 × (I2)k verifying
k⊔
i=1

(⊔
s∈Si

s

)
v ⊔

x∈U
x. To get a solution to the set

80

Chapter 4. Automated Synthesis of Mediators

cover, it suffices to pick the subsets associated with the shortest sequence, which can
be performed in polynomial time. Therefore, interface matching is NP-hard.

Further, we can verify the subsumption relations between a pair of sequences
of actions in polynomial time, we can state that interface matching computation is
NP-complete.

4.3.2 Interface Matching as a Constraint Satisfaction Problem

Constraint programming is the study of combinatorial problems by stating constraints
(conditions, qualities) which must be satisfied by the solution(s) [RVBW06]. These
problems are defined as a Constraint Satisfaction Problem and modelled as a triple
(X,D,C):

• Variables : X = {x1, x2, ..., xn} is the set of variables of the problem.

• Domains : D is a function which associates to each variable xi its domain D(xi),
i.e., the set of possible values that can be assigned to xi.

• Constraints : C = {C1, C2, ..., Cm} is the set of constraints. A constraint Cj is
a mathematical relation defined over a subset xj = {xj1, xj2, . . . , xjnj} ⊆ X of
variables, which restricts their possible values. Constraints are used actively to
deduce unfeasible values and delete them from the domains of variables. This
mechanism is called constraint propagation. Efficient algorithms specific to each
constraint are used in this propagation.

Solving a constraint satisfaction problem consists in finding the tuple (or tuples)
v = (v1, ..., vn) where vi ∈ D(xi) and such that all constraints Cj are satisfied.
Thus, CP uses constraints to state the problem declaratively without specifying a
computational procedure to enforce them. The latter task is carried out by a solver.
The constraint solver implements intelligent search algorithms such as backtracking
and branch and bound which are exponential in time in the worst case, but may be
very efficient in practice. They also exploit the arithmetic properties of the operators
used to express the constraint to quickly check, discredit partial solutions, and prune
the search space substantially.

We represent interface matching Match (I1, I2) as a constraint satisfaction prob-
lem below:

81

Chapter 4. Automated Synthesis of Mediators

• Variables : X = {x1, x2} where x1 represents a sequence of required actions of
I1 and x2 represents a sequence of provided actions of I2.

• Domains : x1 and x2 can be any ordering of any length of the actions of I1 and

I2 respectively. Hence, D(x1)=
|I1|⋃
k=1

Pk(I1) and D(x2)=
|I2|⋃
k=1

Pk(I2) where Pk(S)

denotes the set of k-permutations of the elements of the set S. Indeed, x1 is a
sequence of actions (hence the permutations) of I1 of length k varying between
1 and the cardinality of I1, i.e, 1 < k < |I1|. This is also the case for x2.

• Constraints : the constraints are defined by the matching conditions specified in
Section 4.2. As for the minimality of the matching, we eliminate interchangeable
solutions [Fre91] using the subsequence relation, which is a partial order relation
defined on the domain of each variable. Let us consider two sequences of actions
A =<ai>i=1..m and B =<bj>j=1..n. A is a subsequence of B iff m < n and
∀k ∈ 1..m, ak = bk. Exploiting this partial order relation for the branch and
bound algorithm used to solve the CSP allows us to keep only minimal matching
verifying the rest of the constraints.

The solutions of the constraint satisfaction problem are the smallest, according to
the subsequence relation, pairs of action sequences (α, β) ∈ D(x1)×D(x2) such that
the required actions of α can be safely achieved using the provided actions of β.

4.3.3 Leveraging Constraint Programming for Ontological
Reasoning

Since none of the existing CP solvers supports ontology reasoning, our goal is to use
the arithmetical and logical operators supported by these solvers in order to represent
ontological relations. To do so, we define a bit vector encoding of the ontology,
which is correct and complete regarding the subsumption and disjunction axioms.
Correctness means that if the encoding asserts that a concept subsumes another
concept or that a concept is a disjunction of other concepts, then these relations
can be verified in the ontology. Completeness signifies that the subsumption and
the disjunction relations specified in the ontology can be verified by the encoding.
Specifically, we define the relations Rv and Rt such that:

C v D ⇐⇒ Rv(C,D)

E = C tD ⇐⇒ Rt(E,C,D)

82

Chapter 4. Automated Synthesis of Mediators

Since we do not distinguish between the aggregation (⊕) and disjunction (t)
constructors when computing the interface matching, the aggregation relation is also
encoded using the Rt relation as follows:

E = C ⊕D ⇐⇒ Rt(E,C,D)

The algorithm for encoding an ontology (Algorithm 1) takes the classified ontology
as its input, i.e., an ontology that also includes inferred axioms, and returns a map

Algorithm 1 : Ontology Encoding
Require: Classified ontologyO
Ensure: Code[]: maps each concept C ∈ O to a bit vector
1: for all C ∈ Concepts(O) do
2: Set[C]← {NewElement()}
3: end for
4: for all C ∈ Concepts(O) do
5: for all Des ∈ Descendants(C) do
6: Set[C]← Set[C] ∪ Set[Des]
7: end for
8: end for
9: disjunctionAxiomList = Sort(DisjunctionAxioms(O))

10: for all A .
=

n⊔
i=1

Ai ∈ disjunctionAxiomList do

11: D ← Set[A] \
n⋃
i=1

Set[Ai]

12: for all d ∈ D do
13: Set[A]← Set[A] \ {d}
14: for all Ai do
15: di ← {NewElement()}
16: Set[Ai]← Set[Ai] ∪ {di}
17: for all Asc ∈ Ascendants(Ai) do
18: Set[Asc]← Set[Asc] ∪ di
19: end for
20: end for
21: for all Des ∈ Descendants(A) | d ∈ Set[Des] do

22: Set[Des]← (Set[Des] \ {d})⋃
(

n⋃
i=1

di

)

23: end for
24: end for
25: end for
26: Code[]← SetsToBitV ectors(Set[])
27: return Code[]

83

Chapter 4. Automated Synthesis of Mediators

that associates each concept with a bit vector. We first use sets to encode the ontology
concepts such that subsumption coincides with set inclusion and disjunction with set
union. Then, we represent the sets using bit vectors whose size is the number of
elements of all sets. Each bit is set to 1 if the corresponding element belongs to the
set and to 0 otherwise. The type of elements of the sets does not matter, they are
just temporary objects used to perform the encoding.

The first step of the encoding algorithm is to assign a unique element to the
set that represents each concept (Lines 1−3). Then, we augment the set of each
concept with the elements of the sets associated with the concepts it subsumes, i.e.,
its descendants (Lines 4−8) since subsumption essentially comes down to set inclusion
of the instances of concepts.

We then move to disjunction axioms. We sort the axioms so that each element
is made up of simple concepts or preceding concepts in the list (Line 9). For each

disjunction axiom A
.
=

n⊔
i=1

Ai, we consider the set D of elements that belong to the

set representing A but which are not included in any of the sets of its composing
classes Ai (Line 11). These elements are either the distinguishing element of A, or
put into A’s set by one of its sub-concepts during the previous step. The latter case
represents the case where a concept is subsumed by the disjunction A but not by
any of its individual concepts. To preserve the subsumption, each element d ∈ D
is divided into n elements, each of which is added to one of the composing classes
Ai=1..n. Hence, we first remove d from A (Line 13). Then, we create a new element di
and add it to Ai’s set as well as to the sets of its subsuming concepts, which include A
(Lines 14−20). We also replace the element d in A’s descendants by the new elements
it was divided into (Lines 21−23). Finally, we encode the sets using bit vectors where
each bit indicates whether or not an element belongs to the set (Line 26).

As a result, subsumption can be performed using bitwise AND as follows:

C v D ⇐⇒ Code[C] ∧ Code[D] = Code[C]

and corresponds to the Rv relation we were looking for. The Rt relation correspond-
ing to disjunction is represented by bitwise OR:

C =
n⊔
i=1

Ai ⇐⇒ Code[A] =
n∨
i=1

Code[Ai]

C =
n⊕
i=1

Ai ⇐⇒ Code[A] =
n∨
i=1

Code[Ai]

84

Chapter 4. Automated Synthesis of Mediators

Example. Let us consider the extract of the file management ontology depicted
in Figure 4.6. File subsumes Document which is defined as the disjunction of
Presentation, SpreadSheet, and TextDocument. During the first step, we associate an
element, which we represent as a natural number, to each concept and put it into its
ascendants. The element ‘1’ represents the bottom concept ⊥ subsumed by all con-
cepts. Then, we consider the Document

.
= PresentationtSpreadSheettTextDocument

disjunction. The ‘5’ element belongs to Document but not to any of its composing
concepts, so we split it into three elements (‘51’, ‘52’, and ‘53’) and assign each
of them to the composing elements and to all its ascendants during step 2. Then
during step 3, we encode sets as bit vectors. For example, Presentation includes 1 at
the position of ‘1’, ‘2’, and ‘51’ elements; and 0 at all other positions. The bitwise
AND between the codes of File and Document corresponds to the code of Document

(11111111 ∧ 1111111 = 1111111), which is equivalent to stating that File subsumes
Document. We can then write Rv(Document,File). The bitwise OR between the
codes of Presentation, SpreadSheet, and TextDocument is 1111111, which corresponds
to the value of Document. We can then writeRt(Document,Presentation, SpreadSheet,

TextDocument).

Presentation
{1,2}

SpreadSheet
{1,3}

TextDocument
{1,4}

Document
{1,2,3,4,5}

File
{1,2,3,4,5,6}

Presentation
{1,2,51}

SpreadSheet
{1,3,52}

TextDocument
{1,4,53}

Document
{1,2,3,4,51,52,53}

File
{1,2,3,4,51,52,53,6}

Presentation
10011

SpreadSheet
100101

TextDocument
1001001

Document
1111111

File
11111111

Step 1: Considering the hierarchy Step 2: Considering disjunction

Step 3: Encoding into bit vectors

Figure 4.6. Illustrating ontology encoding on an extract of the file ontology

The encoded ontology is used by the CP solver when comput-
ing the interface matching to check if a constraint is verified. For

85

Chapter 4. Automated Synthesis of Mediators

example, to match <ReadFile, {SourceURI}, {File}> from IWDAV with
<DownloadDocument, {SourceURI}, {Document}> from IGDocs, the CP solver
verifies the subsumption between output data, i.e., File should subsume Document.
This verification is performed using the code associated with each concept.

4.4 Synthesising Correct-by-Construction Mediators

To enable functionally-compatible components to interoperate, the mediator must
not only solve the differences between their interfaces but also coordinate their be-
haviours in order to ensure their correct interaction. Hence, givenMatch (I1, I2) and
Match (I2, I1), where every required action is involved in at least one matching, we
must either generate a mediator M that composes the associated matching processes
in order to allow both components to interact correctly, or determine that no such
mediator exists. Assuming that the components’ behaviours are represented using P1

and P2 processes, to allow the components to interact correctly, the mediatorM must
coordinate their behaviours so as to ensure that the parallel composition P1‖M‖P2

successfully terminates by reaching an END state. If a mediator exists, then we say
that P1 and P2 are behaviourally compatible through a mediator M , written P1↔M P2.

We incrementally build a mediator M by forcing the two processes P1 and P2 to
progress consistently so that if one requires the sequence of actions X1, the other pro-
cess is ready to engage in a sequence of provided actions X2 with which X1 matches.
Given that an interface matching guarantees the semantic compatibility between the
actions of the two components, then the mediator synchronises with both processes
and compensates for the differences between their actions by performing the necessary
translations. This is formally described as follows:

if P1
X1⇒ P ′1 and ∃ (X1, X2) ∈Match (I1, I2)

such that P2
X2⇒ P ′2 and P ′1 ↔M ′ P

′
2

then P1 ↔M P2 where M = Mm−n(X1, X2);M
′

Similarly, in the other direction:

if P2
X2⇒ P ′2 and ∃(X2, X1) ∈Match (I2, I1)

such that P1
X1⇒ P ′1 and P ′2 ↔M ′ P

′
1

then P1 ↔M P2 where M = Mm−n(X2, X1);M
′

86

Chapter 4. Automated Synthesis of Mediators

The mediator further consumes the extra provided actions so as to allow processes
to progress. Extra provided actions are actions offered by one component that are not
required by the other but need to be invoked to allow the component to continue its
interaction. As long as the input data necessary to invoke the action is available, the
mediator can call it and ignore the output produced. On the other hand, we do not
handle extra required actions because that would involve offering some functionality,
which the mediator cannot handle by itself. The support of extra provided actions is
specified as follows:

if P1
β→ P ′1, and ∃P2 such that P ′1 ↔M ′ P2

then P1 ↔M P2 where M = (β → END);M ′

if P2
β→ P ′2, and ∃P1 such that P ′2 ↔M ′ P1

then P1 ↔M P2 where M = (β → END);M ′

Finally, when both processes terminate, i.e., reach an END state, then the mediator
also terminates:

END ↔END END

Note that the interface matching is not necessarily a function since an action (or a
sequence of actions) can be matched with different actions (or sequences of actions).
In the following, we present various cases the synthesis algorithm has to deal with (see
Figure 4.7). Most of these cases are encountered within the case studies we present
in Chapter 6. These cases, although simple, serve to give an intuitive notion of how
to synthesise the mediator.

Case 1: Ambiguous interface matching but only one matching is applicable
at a given state. Let us consider that a required action b1 can be matched with
either a2 or c2. When both processes are at their initial states (1 and 1′ respectively),
the only applicable matching is b1 7→ a2 since P2 is only able to perform this action.
After applying this matching, P1 moves to state 4, P2 to state 2′, and we can create
a partial trace of the mediator from 11 to 42. Then, P2 requires d2, which matches
with the provided action c1 and in which P1 can engage. The result is that P1 moves
to state 5 and P2 to 3′, which are both final states. Consequently, we validate the

87

Chapter 4. Automated Synthesis of Mediators

a1##########a2
b1########a2
b1###########c2
d2############c1 35

11

14
b2

5312a2

24

42

25

52

c2

c1b1

a1

d2

b1
5'

1'

4'

3'2'

b2 c2

a2 d2

P1 Interface MappingP2 Mediator

46

11

35

14
c2

36

24 34

d2

b1a1

c1
b2

6'

1'

4'

3'2'

c2 b2

a2
b2

5'
d2

C
as

e
1

C
as

e
2

5

1

4
b1 c1

32a1 b1

1 42
a1 b1 3

c1
a1##########a2
a1###########c2
b2########b1
c1########d2

C
as

e
3

1 2
a1
b1 a1##########c2

b1###########c2

C
as

e
4

1'
c2

1 2
a1

4'

1'

3'

2' c2
a2

b2 a1#########<a2,#b2>
a1#########<a2,#c2>

2311 12
a2

13
b2 a1

2411 12
a2

14
c2 a1
or

c2 b1a1

c2

11 11a 21a 11b

C
as

e
5 a1##########a2

c1###########c2
43

11 12
a2

42

22 32

c1

b1a1

c2
1' 3'

a2 2'
c21 42

a1 b1 3
c1

Figure 4.7. Representative cases for mediator synthesis

constructed trace and make state 53 final. We then continue exploring the other
branch; a1 only matches with a2, which leads P1 to state 2, P2 to 4′ and the partial
mediator to 24. Then, b1 is again required by P1 but at this point, it matches with c2.
Finally, the two processes reach their final states and we can validate the mediator
since we successfully explored all outgoing transitions with required actions.

Case 2: Ambiguous interface matching, multiple matchings applicable at
a given state but only one leading to a final state. In Case 1, although an
action can match with two actions, only one matching was applicable at a given state.
In Case 2, the required action a1 matches with both a2 and c2. Let us assume that
the former matching is selected. P1 and P2 move to states 2 and 2′ respectively, then
to 3 and 3′ after applying the c1 7→ a2 matching. However, P1 requires an action
c1 whereas P2 reaches its final state. Consequently, we have to backtrack and select

88

Chapter 4. Automated Synthesis of Mediators

an alternative matching. At the previous step, only b2 7→ b1 was applicable but at
the initial state, the a1 7→ c2 matching has not been tested. We select this matching
and continue the exploration until we reach states 4 and 6′, which are the final states
of both processes. Hence, it is crucial in each state to keep track of the matchings
that have been examined since for each outgoing transition with a required action,
we need to select the appropriate matching that enables both processes to reach their
final states.

Case 3: Ambiguous interface matching, multiple matchings applicable at a
given state and all are valid. In this case, two matchings are both valid and allow
the processes to reach their final states. However, we need to select only one of them
to generate the mediator since the mediator cannot make a non-deterministic choice
on the actions to invoke. The selection of the matching to use may be motivated
by some non-functional property or the length of the matching but, for instance, let
us assume that we select the first valid matching. Indeed, we regard the functional
concerns as paramount and non-functional concerns as secondary. The result is that
a correct mediator is not unique. Hence, there are two possible valid mediators: the
first translates a1 to the sequence a2 → b2 while the second translates a1 to a2 → c2.

Case 4: Multiple required actions matching with the same provided action.
In the previous cases a required action is involved in different matchings. In Case 4,
a provided action is involved in different matchings: both a1 and b1 match with c2.
After performing the a1 to c2 matching, P1 moves to a new state that needs to be
explored as well, while P2 returns to its initial state. After the second matching
b1 7→ c2, P1 also returns to its initial state but all the outgoing transitions have been
treated and it is also a final state, so the mediator is validated.

Case 5: Extra provided action. In the previous cases, the mediator was created
so as to coordinate the actions required by one component with the actions provided
by the other. The underlying assumption is that the mediator is not able to provide
actions itself (only components do). The mediator may however consume extra pro-
vided actions in order to allow the processes to progress as long as the input data of
this provided action is available. In Case 5, when P1 is in state 2 and P2 in 2′, c2 is
required but P1 cannot perform its matching action c1 at this state, so we add the

89

Chapter 4. Automated Synthesis of Mediators

dual action to partial trace so as to allow P1 to progress and reach state 3. In state 3,
P1 can synchronise with P2 using the matching c1 7→ c2.

These simple cases illustrate the gist of the recursive algorithm we devise to syn-
thesise the mediator (see Algorithm 2). The algorithm starts by checking the basic
configuration where both processes reach their final states and where the mediator
is the END process (Lines 1−3). Then it considers the states of both processes and

Algorithm 2 : Mediator Synthesis
Require: P1, P2

Ensure: A mediator M
1: if P1 = END and P2 = END then
2: return END
3: end if
4: M ← END
5: for all Pi

a→ P ′i=1,2 do
6: matchingList←FindEligibleMatchings(a, Pi, P3−i)
7: while ¬found and matchingList 6= ∅ do
8: Match(X1, X2)← selectMatching(matchingList)

such that Pi
X1⇒ P ′′i and P3−i

X2⇒ P ′3−i
9: M ′ ← SynthesiseMediator(P ′′i , P

′
3−i)

10: if M ′ 6= fail then
11: found← true
12: Mm−n(X1, X2)←GenerateMatchingProcess(X1, X2)
13: M ′′ ←Mm−n(X1, X2);M

′

14: end if
15: end while
16: if ¬found and ∃β | P3−i

β→ P ′3−i then
17: M ′ ←SynthesiseMediator(Pi, P ′3−i)
18: if M ′ 6= fail then
19: found← true
20: Mβ ← GenerateExtraProvidedActionProcess(β)
21: M ′′ ←Mβ ;M ′

22: end if
23: end if
24: if ¬found then
25: return fail
26: end if
27: M ←M |M ′′
28: end for
29: return M

90

Chapter 4. Automated Synthesis of Mediators

for each enabled required action a, it calculates the list of matchings that can be
applied, i.e., pairs (X1, X2) such that X1 starts with a and P2 is ready to engage
in X2 (Line 6). It selects one of them and makes a recursive call to test whether
it can lead to a valid mediator (Lines 8−9). If that is the case, it generates the
matching process associated with the selected matching and puts it in sequence with
the returned mediator. Otherwise, it tries another matching until a valid matching
is found or all the possible matchings have been tested (Lines 7−15). In the latter
case, it checks whether the mediator can bypass a provided action in order to obtain
a valid mediator, which corresponds to Case 5 in Figure 4.7. In this situation, it
generates the appropriate process Mβ and puts it in sequence with the generated
mediator (Lines 16−23). If the required action does not match with any action given
the states of both processes, the algorithm fails (Lines 24−26). Otherwise, it adds the
new trace to the previously calculated mediator (Line 27). The algorithm explores all
the outgoing transitions labelled with required actions (Lines 5−28) in order to make
sure that whatever execution components perform, it will not lead to a deadlock. we
do not systematically explore transitions labelled with provided actions because the
synchronisation is triggered by required actions, which initialise the interaction by
sending the input data.

The mediator M hence synthesised guarantees that P1 and P2 interact correctly,
i.e., that the parallel composition P1‖M‖P2 is deadlock free.

Theorem 1. if P1 ↔M P2 then the parallel composition P1‖M‖P2 is deadlock free.

Proof. By construction, the mediator is synthesised only if both P1 and P2 reach
an END state. In addition, at any given state s of any of P1 or P2, any transition
associated with a required action α such that s α⇒ s′ is involved in some matching
α 7→ β and hence is associated with some matching process Mm−n(α, β) that is ready
to engage in the sequence of dual provided actions, i.e.,Mm−n(α, β) is in state sm such

that sm
α⇒ s′m. Any transition associated with a provided action β such that s β⇒ s′:

(i) synchronises with a matching processMm−n(α, β) if there exists a matching α 7→ β

involving it, (ii) is an extra provided action, in which case it is associated with s β⇒ s′

from the Mβ process, or (iii) is never triggered.

91

Chapter 4. Automated Synthesis of Mediators

Example. Figure 4.8 depicts an extract of the LTSs representing the behaviour
of WDAV and GDocs. To simplify the presentation, the actions are represented
using just the operation concept. As a result of the interface matching computa-
tion, Lock and Unlock match with SetSharingProperties, and MoveFile matches with
DownloadDocument, UploadDocument, and DeleteDocument while the last two actions
can be executed in any order. When both processes are at their initial states (1 and
1′ respectively), the only applicable matching is Lock 7→ SetSharingProperties since
WDAV is only able to perform this action. After applying this matching, WDAV goes
to state 2, GDocs remains in state 1′, and a partial trace of the mediator is created
from 11→ 11a→ 21a. This is similar to Case 4 described in Figure 4.7. Then,WDAV
can loop on theMoveFile required action, one of the possible matchings is chosen since
both are applicable as GDocs loops on the three provided actions, DownloadDocument,
UploadDocument, and DeleteDocument. WDAV stays in state 2, GDocs also remains
in 1′ while the mediator is augmented with the trace 21a→ 21b→ 21c→ 21d→ 21a.

WDAV

Interface Mapping

1 2

Lock

Unlock

MoveFile

GDocs

Lock!!!!!!!!!!SetSharingProperties
MoveFile!!!!!!!!<DownloadDocument, UploadDocument, DeleteDocument>
MoveFile!!!!!!!!!!!<DownloadDocument, DeleteDocument, UploadDocument>
Unlock!!!!!!!!!!SetSharingProperties

SetSharingProperties
11 11a 21a 21b

DownloadDocument

21c21d

UploadDocument
DeleteDocument

11b

SetSharingPropertiesUnlock

Lock

MoveFile

Mediator

SetSharingProperties /
UploadDocument /
DownloadDocument /
DeleteDocument

1'

Figure 4.8. Illustrating the synthesis of a mediator between WDAV and GDocs

92

Chapter 4. Automated Synthesis of Mediators

This is similar to Case 3 represented in Figure 4.7. WDAV can also branch on Unlock

, which matches with SetSharingProperties and results in the trace 21a → 11b → 11

in the mediator. This is again similar to Case 4 described in Figure 4.7. Finally, both
processes reach their final states and the mediator is successfully created.

4.5 Summary

In this chapter, we presented an automated approach for the synthesis of mediators
that guarantee the correct interaction between functionally-compatible components at
the application layer. The synthesis of mediators is performed in two steps. First, we
infer the semantic correspondence between the actions required by one component and
those provided by the other by using constraint programming and ontology reasoning.
Therefore, we incorporated the use of ontology reasoning within constraint solvers by
defining an encoding of the ontology relations using arithmetic operators supported
by the solvers. Then, we analyse the behaviours of components so as to generate the
mediator which combines the mapping processes in a way that guarantees that the
two components progress and reach their final states without errors. Nevertheless,
only when mediators include all the details about the interaction of components, can
interoperability be achieved. Hence, the next chapter describes how the synthesised
mediators are refined in order to include the middleware details.

93

Chapter 5

From Abstract to Concrete Mediators

“The artist makes things concrete and gives them individuality.”

— Paul Cézanne, painter (1839-1906)

Finding the right level of abstraction to achieve interoperability is crucial. On
the one hand, reasoning about the meaning of the actions used by the components
and analysing components’ behaviours formally is essential to synthesise correct me-
diators. On the other hand, only when mediators include all the details about the
interaction of components, can interoperability be achieved. The concretisation of
mediators bridges the gap between the application level, which provides the abstrac-
tion necessary to reason about interoperability and synthesise mediators, and the
middleware-level, which provides the techniques necessary to implement these me-
diators. Concretisation entails the instantiation of the data structures expected by
each component and their delivery according to the interaction pattern defined by
the middleware, based on which the component is implemented. We first consider the
concretisation of mediators in the case of components implemented using the same
middleware. As an illustration, we use the file management example introduced in
the previous chapter, where both components, the WebDAV client and Google Docs
service, are based on HTTP. We move to the concretisation of mediators between
components implemented using different middleware solutions, which are based on
the same interaction pattern. We illustrate the approach using the weather example
introduced in Chapter 2, where C2 is a Web Service client and Weather Station is
a CORBA service. Finally, we present the most general case of components imple-
mented using middleware that are based on different interaction patterns. As an

95

Chapter 5. From Abstract to Concrete Mediators

illustration, we use an example from the GMES case study which consists of two
positioning components based on RPC and publish/subscribe respectively.

5.1 The Case of the Same Middleware

When both components are implemented using the same middleware, the mediator
is only responsible for reconciling the differences in the components’ interfaces and
behaviours at the application layer. As no further mediation is necessary at the
middleware layer, it suffices for the mediator to transform the required and provided
actions used at the application layer into network messages, which is performed using
the appropriate parsers and composers, as explained in Chapter 3. During the auto-
mated synthesis of mediators, presented in Chapter 4, we focused on the semantics
of the actions of the components’ interfaces to generate matching processes, which
specify how sequences of actions required by one component can be achieved using
sequences of actions provided by the other component. Reconciling the differences
in the components’ interfaces implies making explicit how the input/output data of
these actions are actually translated in order to provide each component with the
data it expects at the right moment and in the right format. In other words, the
matching processes have to be made more concrete by incorporating the data trans-
lations necessary to solve syntactic differences between the input and output data
included in the actions required/provided by the components.

To give basic understanding of the necessary data translation, let us first consider
a one-to-one matching process M1−1

(
α, β

)
between an action α = 〈a, Ia, Oa〉 ∈ I1

required by one component and an action β =
〈
b, Ib, Ob

〉
∈ I2 provided by the other

component. M1−1
(
α, β

)
must translate the input data produced by the required

action into the input data expected by the provided action. While the subsumption
relation between the ontological concepts associated with the input data guarantees

↵

S(Ia) S(Ib)

S(Ob)S(Oa) �
f

g

M1�1

�
↵, �

�

Figure 5.1. Illustrating data translation for one-to-one matching

96

Chapter 5. From Abstract to Concrete Mediators

that this translation is possible, since Ib subsumes Ia, the implementation of this
translation must consider the syntax of the data. We recall that the XML schema
that defines the syntax of the input/output data represented by the ontology concept
C as S(C). The concretisation of M1−1

(
α, β

)
involves calculating a function f such

that S(Ib) = f(S(Ia)). Likewise, the output data returned by the provided action
must be translated into the output data expected by the required action. In addition,
the input data previously produced by α can also be used, resulting in a function g
such that S(Oa) = g (S(Ia),S(Ob)), which is defined since Ia t Ob v Oa. Figure 5.1
illustrates the use of the f and g translation functions in the concretisation of the
M1−1

(
α, β

)
matching process.

Let us now consider a many-to-many matching process Mm−n(X1, X2) between
a sequence of actions X1 = 〈αi = 〈ai, Iai , Oai〉 ∈ I1〉i=1..m such that Oai=1..l−1

= ∅,
1 ≤ l ≤ m required by one component and a sequence of actions

X2 =
〈
βj =

〈
bj, Ibj , Obj

〉
∈ I2

〉
j=1..n

provided by the other component.
In this case, we postulate the existence of functions fi=1..n and gj=l..m such that:

1. S(Ib1) = f1 (S(Ia1), . . . ,S(Ial)),

2. S(Ibi) = fi
(
S(Ia1), . . . ,S(Ial),S(Ob1), . . . ,S(Obi−1

)
)
for i = 2..n, and

3. S(Oaj) = gj
(
S(Ia1), . . . ,S(Iaj),S(Ob1), . . . ,S(Obn)

)
for j = l..m.

The translation function f1 indicates that the mediator uses the data produced
by the l first required actions to compute the input data necessary to execute the
first provided action β1. Each translation function fi=2..n serves to calculate the input
data for executing the provided action βi based on the data produced by the l first
required actions together with the output data resulting from the execution of the
preceding i − 1 provided actions. Once the n provided actions have been executed,
the output data for the remaining required actions can be produced. Finally, each
translation function gj=l..m computes the output data for the jth required action based
on the cumulated input data of the j required actions together with the output data
of the n provided actions.

Consider, for example, the matching process between the <MoveFile,

{SourceURI,DestinationURI}, {Acknowledgment}> action required by the Web-
DAV client and the sequence of provided actions <<DownloadDocument,

97

Chapter 5. From Abstract to Concrete Mediators

f1

f2

f3

g1

{S(SourceURI), S(DestinationURI)}

{S(Acknowledgment)}

{S(SourceURI)}

{S(Document)}
{S(Metadata), S(Content), S(DestinationURI)}

{S(Acknowledgment)}
{S(SourceURI)}

{S(Acknowledgment)}

MoveFile

DownloadDocument

UploadDocument

DeleteDocument

Figure 5.2. Concretising M1−n(ReadFile, <DownloadDocument, UploadDocument,
DeleteDocument>)

{SourceURI}, {Document}>, <UploadDocument, {Metadata, Content,

DestinationURI},{Acknowledgment}>, <DeleteDocument, {SourceURI},
{Acknowledgment}>> defined by the Google Docs service. As depicted in
Figure 5.2, the concrete matching process must have a translation function f1 that
produces the input data S(SourceURI), for DownloadDocument to execute. The
translation function f2 must compute the input data required by UploadDocument

based on the input data of MoveFile together with the Document returned by
DownloafDocument. Likewise, f3 must calculate the input data of DeleteDocument

based on the input data of MoveFile together with the output data returned by both
DownloafDocument and UploadDocument. Finally, g1 computes the output data,
S(Acknowledgment), necessary for the MoveFile action.

5.1.1 From Ontological Relations to Data Translation
Functions

To compute the translation functions fi=1..n and gj=l..m, in addition to the domain
ontology, we also use XML schema matching techniques to identify related elements
between the schema of the data given as input to the translation function and the
schema of the data that should be returned as output. The use of ontologies to-
gether with XML schema matching techniques is motivated by several observations.
First, it is often tedious to annotate the simple types or the attributes of the XML
schema associated with the input/output data. Rather, annotating complex types
is both more common and more relevant. For example, it is both more common
and useful to annotate Metadata instead of individual attributes such as Title or
CreationDate. Second, even though there are many off-the-shelf schema-matching

98

Chapter 5. From Abstract to Concrete Mediators

tools, they are often able to detect only one-to-one correspondences between the at-
tributes of the schema automatically and require user intervention for more complex
correspondences [SE05]. The reason is that schema-matching tools often compute
the correspondences by estimating the similarity of attribute names or types, while
more knowledge of the domain is necessary to calculate complex correspondences.
Ontologies are more suitable for expressing complex correspondences. Therefore, we
use the ontology relations that we used during the generation of matching processes
to compute complex correspondences, as explained in the following.

Subsumption. We are given two data concepts Ds and Dt such that Ds v Dt.
Each data concept is associated with an XML schema, S(Ds) and S(Dt) respectively,
which defines the concrete structure of the data. The aim is to find a translation
function f that specifies how the XML elements of S(Dt) are computed using the
XML elements of S(Ds), i.e., S(Dt) = f(S(Ds)).

In the case where both S(Ds) and S(Dt) are simple types, they are either described
using the same built-in XML data type (e.g., string, integer, boolean, float, decimal),
in which case the translation function f is a simple assignment; or a conversion
function is necessary to transform the data type of the source schema into that of the
target schema. In the latter case, we use pre-defined conversion functions to perform
this task. Specifically, as we implemented the concretisation using Java, we use the
facilities it provides to perform data type conversions.

In the case where S(Ds) or S(Dt) include complex types, we use a schema match-
ing tool, Harmony [SMH+10], to identify correspondences between the elements of
S(Ds) and S(Dt). Harmony is a schema-matching tool that combines multiple al-
gorithms to evaluate correspondences between a source and a target schema. Each
algorithm identifies correspondences using a different strategy. For example, one
strategy consists in counting the words appearing in the definitions or documenta-
tion of XML elements. Another strategy consists in comparing the names of the
XML elements using a thesaurus. For each pair of elements from the source and
target schema, an algorithm establishes a confidence score ranging from -1 to +1
where -1 indicates that there is definitely no correspondence, +1 indicates a definite
correspondence, and 0 that there is not enough evidence to make any assertion about
the relation between the two elements. Then, the confidence scores of the individ-
ual algorithms are combined into a single confidence score according to two criteria.

99

Chapter 5. From Abstract to Concrete Mediators

First, the weighted sum of the confidence scores of all the algorithms is calculated.
The weights can be customised but by default they are all given the same weight (for
k algorithms, the weight is 1\k). Then, the confidence score is adjusted based on
structural information: positive confidence scores propagate up to parent elements,
and negative confidence scores trickle down to sub-elements. Intuitively, two elements
are unlikely to match if their parent elements do not match. Once all the confidence
scores have been identified, for each element ei=1...n in the target schema, we select
a corresponding element e′i=1...n in the source schema with the highest confidence
score. We calculate the function fi to transform ei=1...n into e′i=1...n, which is either
an assignment if they are of the same data type or a data type conversion. The
translation function f is then defined as the composition of individual functions, i.e.,
f = f1 ◦ f2 ◦ · · · ◦ fn.

Disjunction. We are given data concepts Dsi=1..n
and Dt such that Dt =

n⊔
i=1

Dsi .

Disjunction indicates that every instance of Dsi=1..n
is also an instance Dt. The

aim is to compute the translation function f that specifies how the XML elements
of S(Dt) are computed using the XML elements of source schemas, i.e., S(Dt) =

f (S(Ds1), . . . ,S(Dsn)).
First, we compute for each Dsi=1..n

a translation function S(Dt) = fi(S(Dsi)).
We use the same solution as subsumption: we distinguish between the case of simple
types and that of complex types and use conversion functions between different data
types. Then, we build a function select that chooses the translation functions fi to
execute according to the data received. Specifically, we use the instanceof operator
of Java to implement the select function. Hence, the translation function f is defined
as f = select (f1, . . . , fn).

Aggregation. We are given data concepts Dsi=1..n
and Dt such that Dt =

n⊕
i=1

Dsi .

Aggregation indicates that every instance of Dt includes an instance of every Dsi=1..n
.

We have to find the translation function f that specifies how the XML elements
of S(Dt) are computed using the XML elements of source schemas, i.e., S(Dt) =

f (S(Ds1), . . . ,S(Dsn)).
We start by creating the XML schema that concatenates all the schemas, that

is, Sagg = concat ((S(Ds1), . . . ,S(Dsn)). Then, as for subsumption, we rely on XML

100

Chapter 5. From Abstract to Concrete Mediators

schema matching to define the function fagg that specifies how the XML elements of
S(Dt) are computed using the XML elements of Sagg. Hence, the translation function
is the composition of the two functions, i.e., f = fagg ◦ concat.

5.1.2 Application to the File Management Example

In the previous chapter, we used the file management example to illustrate the auto-
mated synthesis of mediators at the application layer. The mediator enables a Web-
DAV client (WDAV) to interact successfully with the Google Docs service (GDocs).
As depicted in Figure 5.3, although both WDAV and GDocs are based on HTTP, the
mediator has to further include translation functions to convert the data included in
the HTTP messages sent by one component into that expected by the other compo-
nent.

Mediator

f2

f3

g1

f1

f0

f4

g0

g4

prov.DeleteDocument

prov.UploadDocument

prov.SetSharingProperties

prov.DownloadDocument

req.Lock

req.Move

req.Unlock

HTTP Request

HTTP Response

HTTP Request

HTTP Response

HTTP Parser

HTTP Composer HTTP Parser

HTTP Composer

Figure 5.3. Illustrating concretisation in the file management example

Let us consider the case of the translation function between Document, used
by GDocs, and File, used by WDAV, such that Document v File (see Figure 4.2
illustrating the file ontology), which is for example necessary for M1−1(ReadFile,

DownloadDocument). The XML schema for Document is as follows:

<entry xmlns : gd="http :// schemas . goog l e . com/g/2005"
gd : etag="’HhJSFgpeRyt7ImBq’">

<ref>https : // docs . goog l e . com/ f e ed s / id /pdf%3AtestPdf</ref>
<publ ished >2012−04−09T18 : 2 3 : 0 9 . 0 3 5Z</publ i shed>
<updated>2012−04−09T18 : 2 7 3 : 0 9 . 0 3 5Z</updated>
<app : ed i t ed xmlns : app="http ://www.w3 . org /2007/app">

2009−06−18T22 : 1 6 : 0 2 . 3 8 8Z
</app : ed i ted>

101

Chapter 5. From Abstract to Concrete Mediators

<t i t le>PDF’ s Ti t l e </t i t le>
<content type="app l i c a t i o n /pdf "

s r c="https : // doc−04−20−docs . goog l eu s e r conten t . com/docs /
s ecure /m71240 . . . U1?h=1630126& ; e=download& ; gd=true"/>

<l i n k r e l="a l t e r n a t e " type="text /html"
h r e f="https : // docs . goog l e . com/ f i l e v i ew ?
id=tes tPd f& ; h l=en"/>

<author>
<name>benamel</name>
<email>benamel@gmail . com</email>

</author>
<gd : resourceId>pdf : testPdf </gd : resourceId>
<gd : lastViewed >2012−06−18T22 : 1 6 : 0 2 . 3 8 4Z
</gd : lastViewed>
<gd : quotaBytesUsed >108538</gd : quotaBytesUsed>
<docs : wr i t e r sCanInv i t e va lue=" f a l s e "/>
<docs :md5Checksum>2b01142f7481c7b056c4b410d28f33cf
</docs : md5Checksum>

</entry>

while the associated XML schema for File is the following:
<w: response>

<w: href>https : // docs . goog l e . com/ f e ed s / id /pdf%3AtestPdf</w: href>
<w: propstat>

<w: status>HTTP/1 .1 200 OK</w: status>
<w: prop>

<w:displayname>tes tPd f . pdf</w:displayname>
<w: author>benamel</w: author>

</w: prop>
</w: propstat>

</w: response>

The bold tags represent the assignments that are performed by the translation func-
tion. For example, the value of ref defined by GDocs is assigned to href used by
WebDAV. Likewise, the value of the name tag, within the author complex type, de-
fined by GDocs is assigned to author used by WDAV. Note though that the status
tag does not have an equivalent, but it supports a default value, which we assign
to it.

The translation functions are internal to the mediator and cannot be perceived
by an external observer. Let us now consider the observable behaviour of the whole

102

Chapter 5. From Abstract to Concrete Mediators

system. Using HTTP to implement component interactions means that each required
action is realised by sending an HTTP request and receiving an HTTP response
while a provided action is realised by receiving an HTTP request and sending the
corresponding HTTP response. This interaction is specified as follows:

HTTPClient (X =′ op) = (req.[X]→ sendHTTPRequest[X]

→ receiveHTTPResponse[X]→ HTTPClient).
HTTPServer (X =′ op) = (prov.[X]→ receiveHTTPRequest[X]

→ sendHTTPResponse[X]→ HTTPServer).
HTTPGlue (X =′ op) = (sendHTTPRequest[X]→ receiveHTTPRequest[X]

→ sendHTTPResponse[X]→ receiveHTTPResponse[X]

→ HTTPGlue).

‖HTTPImplementation = (HTTPClient ‖ HTTPServer ‖ HTTPGlue).

To facilitate the presentation, we represent each action using only its name. We
consider part of the behaviour of WDAV, which involves locking a file, moving it and
unlocking it again, which is specified as follows:

WDAV = (req.lock → P),
P = (req.moveF ile→ P | req.unlock →WDAV).

The actions provided by GDocs can be executed in any order:

GDocs = (prov.setSharingProperties→ GDocs
| prov.uploadDocument→ GDocs
| prov.downloadDocument→ GDocs
| prov.deleteDocument→ GDocs).

The mediator coordinates the behaviours of WDAV and GDocs as follows:

Mediator = (g.req.setSharingProperties→ w.prov.lock → P2),
P = (g.req.downloadDocument→ g.req.uploadDocument

→ g.req.deleteDocument→ w.prov.moveF ile→ P2

| g.req.setSharingProperties→ w.prov.unlock → Mediator).

The behaviour of the resulting composed system is then the following:

103

Chapter 5. From Abstract to Concrete Mediators

set WDAV_operations = {lock,moveF ile, unlock}
set GDocs_operations = {setSharingProperties, uploadDocument, downloadDocument,

deleteDocument}

‖FileManagementSystem = (w : WDAV
‖ g : GDocs
‖ Mediator
‖ (forall[op : WDAV_operations] w : HTTPImplementation(op))

‖ (forall[op : GDocs_operations] g : HTTPImplementation(op))).

We use the prefixes w and g to decouple the behaviours of WDAV and GDocs
since they only interact through the mediator. We can easily check that
‖FileManagementSystem is free from deadlocks.

5.2 The Case of Different Middleware Based on the
Same Interaction Pattern

Communication in distributed systems is always based on low-level message passing
as offered by the underlying network. Expressing communication through message
passing is harder than using primitives proposed by middleware solutions [TVS06].
Middleware facilitates communication and coordination between components in dis-
tributed systems by defining [ICG07]: (i) an Interface Description Language (IDL)
for specifying the interfaces of components and the associated operations, and data
types, (ii) a discovery protocol to address and locate the components that are avail-
able in the environment, and (iii) an interaction protocol that coordinates the be-
haviour of different components and enables them to collaborate. While middleware
solutions and implementations define diverse IDLs and message formats, their inter-
action protocols follow comparably few interaction patterns, a.k.a., communication
paradigms/types [CDKB12] or coordination models/paradigms [ICG07]. An interac-
tion pattern defines the rules to coordinate the behaviours of the components. We
start by presenting the principles and characteristics of each interaction pattern. We
also introduce, for each interaction pattern, an ontology that models the essential
primitives of this interaction pattern, which we use to specify the behaviours ex-
pected by the components implemented using a middleware solution based on this
interaction pattern as well as how these behaviours are coordinated. A specific mid-

104

Chapter 5. From Abstract to Concrete Mediators

dleware solution is modelled using the ontology (or ontologies) that represents the
interaction pattern on which the middleware solution is based. Finally, we show how
the ontology can be used to concretise mediators between components implemented
using different middleware solutions based on the same interaction pattern and use
the weather example from Chapter 2 to illustrate the approach.

5.2.1 Ontology-based Modelling of Middleware Interaction
Patterns

5.2.1.1 Remote Procedure Call

The concept of a remote procedure call (RPC) [BN84] represents the most common
interaction pattern in distributed systems. This approach directly and elegantly
supports client/server interactions with servers offering a set of operations through a
service interface and clients calling these operations directly as if they were available
locally. The interaction is supported by a pairwise exchange of messages from the
client to the server and then from the server back to the client, with the first message
containing the operation to be executed at the server and associated arguments and
the second message containing any result of the operation. To interact according
to RPC, the client and the server must agree on the format of the messages they
exchange as well as the encoding of the data, which represent the arguments and
results, enclosed in these messages.

An RPC-based middleware hides the encoding and decoding of arguments and
results as well as the passing of messages using communication modules, stubs, that
permit the client and server to use the operations as if they were local. RPC-based
middleware solutions are often associated with libraries to generate, either at compile
time or runtime, the client and server stubs based on the interface definition. The
strict request-reply message exchange is unnecessary when there is no result to return.
RPC middleware solutions may also provide facilities for what are called asynchronous
RPCs, by which a client immediately continues its execution after issuing the RPC
request.

Figure 5.4 depicts the RPC ontology that makes explicit the main concepts under-
pinning RPC middleware solutions. The ontology defines the primitives that support
message exchange. On the client side, the invocation of an operation is achieved
using sendRequest, which specifies the operation invoked using methodName and the

105

Chapter 5. From Abstract to Concrete Mediators

<<owlClass>>
RemoteProcedureCallAPI

<<owlClass>>
receiveResponse

<<owlClass>>
receiveRequest

<<owlClass>>
sendResponse

<<owlClass>>
methodName

<<owlClass>>
argument

<<owlClass>>
returnValue

0..1 + follows {some}

+hasInput {some}

+hasOutput {some}

+hasOutput {some}

+hasInput {some}

+hasOutput {some}

<<owlClass>>
SendSOAPResponse

<<owlClass>>
ReceiveSOAPResponse

<<owlClass>>
ReceiveSOAPRequest

<<owlClass>>
SOAPRequest

<<owlClass>>
SOAPResponse

<<owlClass>>
SendSOAPRequest

<<owlClass>>
sendRequest

0..1 + follows {some}

+hasInput {some}

Figure 5.4. The RPC ontology with SOAP specialisation

associated argument data argument, possibly followed by a receiveResponse, which
includes the operation invoked methodName together with the results returnValue.
The server gets the operation call using the receiveRequest primitive, which includes
methodName and argument, if the result of this operation is not empty, the server
returns it using the sendResponse primitive. Figure 5.4 further shows an example
of the use of SOAP request/response middleware to implement RPC. Even though
SOAP supports the sending and reception of messages independently, it is often used
to realise RPC-based interactions, especially in the context of Web Services.

The client and server behaviours are then coordinated as follows:

Client (X =′ op) = (sendRequest[X]→ receiveResponse[X]→ Client).

Server (X =′ op) = (receiveRequest[X]→ sendResponse[X]→ Server).

RPCGlue (X =′ op)= (sendRequest[X]→ receiveRequest[X]

→ sendResponse[X]→ receiveResponse[X]→ RPCGlue).

‖RPCInteraction = ((forall[op : Interface]Client(op))
‖ (forall[op : Interface]RPCGlue(op))

‖ (forall[op : Interface]Server(op))).

where op defines the operation signature that is made up of themethodName, argument,
and returnValue. The precise definition of the Interface set is specific to the appli-
cation implemented on top of the middleware.

106

Chapter 5. From Abstract to Concrete Mediators

RPC represents an interaction pattern that implies a direct relationship between
components explicitly sending and receiving messages, where the client initialises the
interaction by sending the request. In contrast, a number of techniques have emerged
whereby interaction is indirect, through a third entity, allowing a higher degree of
decoupling between components. In particular, components may not need to know
the destination of their messages, i.e., space decoupling, and they also do not need
to exist at the same time, i.e., time decoupling.

5.2.1.2 Distributed Shared Memory

While RPC allows developers to invoke operations as if they were available locally,
Distributed Shared Memory (DSM) provides developers with a familiar abstraction of
reading or writing (shared) data structures as if they were in their own local address
spaces. DSM is primarily intended for parallel applications but is also used for any
distributed application in which individual shared data items can be accessed directly.
DSM is in general less appropriate for client/server interactions, where clients usually
access server-held resources using an explicit interface (for reasons of modularity and
protection). Still, servers can provide DSM that is shared between clients.

A DSM-based middleware enables components to read and write data in the
shared memory, regardless of the exact location of the data. Nevertheless, the struc-
ture of the shared data is defined at the application layer and the middleware does
not provide any guarantee about when data is made available and how long it will
reside in the shared memory. In other words, the synchronisation between the readers
and writers also needs to be managed at the application layer.

Figure 5.5 illustrates the DSM ontology we create to represent the main con-
cepts of this interaction pattern. Two primitives are used: write, which adds data

to the shared memory and read, which retrieves data from the shared memory. The
dataChannel concept defines how to select the data to read. Figure 5.5 also shows how
the ontology can be used to specify Lime [MPR06]. Lime is a tuple space middleware
intended for mobile applications. Data is structured as tuples, which are sequences
of fields, each of which has a specific data type. The write primitive can take two
forms: out for writing a single tuple or outg to write a set of tuples. Likewise, the
read primitive can also take many forms: it can delete or not the tuple once read
(in or rd), block until a tuple is available (inp and rdp), and read a set of tuples (ing
and rdg). In order to select the tuples to read, a tupleTemplate must be specified.

107

Chapter 5. From Abstract to Concrete Mediators

<<owlClass>>
SharedMemoryAPI

<<owlClass>>
read

<<owlClass>>
write

<<owlClass>>
dataChannel

<<owlClass>>
data

+hasIntput {some}
+hasOutput {some}+hasInput {some} +hasOutput {some}

+hasOutput {some}

+IsAssociatedWith {some}

<<owlClass>>
in

<<owlClass>>
inp

<<owlClass>>
ing

<<owlClass>>
rd

<<owlClass>>
rdp

<<owlClass>>
rdg

<<owlClass>>
out

<<owlClass>>
outg

<<owlClass>>
tupleTemplate

<<owlClass>>
tuple

Figure 5.5. The DSM ontology specialised with Lime

tupleTemplate defines a filter over the tuples by specifying either a value that a field
must have, or the type of the field.

The coordination of the behaviours of components, which can be considered as
readers or writers, is achieved through the shared memory as follows:

Writer(X =′ data) = (write[X]→Writer).

Reader(X =′ data,Y =′ dataChannel)= (read[X][Y]→ Reader).

SharedMemory(X =′ data) = (write[X]→ P [X]),
P [X][a : DataChannels] = (if (X matches a) then read[X][a : DataChannels]

→ P [X]).

‖DSMInteraction = ((forall[data : Data]Writer(data))

‖ (forall[data : Data]SharedMemory(data))

‖ (forall[data : Data][dataChannel : DataChannels]

Reader(data, dataChannel))).

As FSP supports only finite state models, we must represent data and dataChannel
as sets. The precise definition of these sets depends on the application that uses the
DSM. Note that there is one process P per data item, which deals with the several
reads assuming that the data are persistent, i.e., the data can be read infinitely
often. The matches function indicates whether the data channel specified in the read
corresponds to the data managed by P . It is the role of the middleware to implement

108

Chapter 5. From Abstract to Concrete Mediators

the matches function. Note that in DSM, the writer initialises the interaction by
making the data available on the shared memory.

5.2.1.3 Publish/Subscribe

Many applications require the dissemination of information or items of interest from
a large number of producers to a similarly large number of consumers. Publish/sub-
scribe middleware solutions provide an intermediary service, a broker, that efficiently
ensures that information generated by producers is delivered to the consumers that
want to receive it. In other words, publish/subscribe middleware solutions (sometimes
also called distributed event-based middleware) allow subscribers to register their in-
terest in an event, or a pattern of events, and ensure that they are asynchronously
notified of events generated by publishers. The task of the publish/subscribe mid-
dleware is to match subscriptions against published events and ensure the correct
delivery of event notifications. A given event will be delivered to potentially many
subscribers, and hence publish-subscribe is fundamentally a one-to-many interaction
pattern.

The expressiveness of publish/subscribe middleware solutions is determined by
the type of event subscriptions they support: either subscriptions are made using
specific topics (also referred to as subjects) which the events belong to, or based on
the content of the event.

Figure 5.6 depicts the event middleware ontology representing the main concepts

<<owlClass>>
EventAPI

<<owlClass>>
subscribe

<<owlClass>>
getEvent

<<owlClass>>
publish

<<owlClass>>
eventType

<<owlClass>>
event

0..1 + follows {some}

+hasOutput {some}

+hasIntput {some} +hasOutput {some}+hasOutput {some}

+hasOutput {some}

<<owlClass>>
JMSTopic

<<owlClass>>
JMSMessage

<<owlClass>>
JMSCreateSubscriber

<<owlClass>>
JMSPublish

<<owlClass>>
JMSGetMessage

<<owlClass>>
unsubscribe

0..1 + follows {some}

Figure 5.6. Event middleware ontology specialised with JMS

109

Chapter 5. From Abstract to Concrete Mediators

related to the publish/subscribe interaction pattern. A publisher disseminates an
event event using the publish primitive and subscribers express an interest in a set
of events using the subscribe primitive, which is parameterised by eventType that
defines a filter over the set of all possible events. The events are delivered to sub-
scribers using the getEvent primitive. Subscribers can later revoke this interest using
the unsubscribe primitive. Figure 5.6 also illustrates how this ontology can be used
to specify JMS. An event is represented as JMSMessage and belongs to a specific
JMSTopic. Events are published using the JMSPublish primitive. Subscribers reg-
ister to topics using JMSCreateSubscriber, and receive notifications using a callback
method, JMSGetMessage.

Coordinating the behaviours of publisher and subscriber is achieved using a broker
as follows:

Publisher(X =′ event) = (publish[X]→ Publisher).

Subscriber(X =′ event,Y =′ eventType)= (subscribe[Y]→ getEvent[Y]→ Subscriber).
Broker =P ,
P = (subscribe[eventType : EventTypes]

→MATCH[eventType]

| publish[Events]→ P),
MATCH[eventType : EventTypes] = (publish[event : Events]→

if (event matches eventType) then
getEvent[event]→MATCH[eventType]

else MATCH[eventType]).

‖PubSubInteraction = ((forall[event : Events]Publisher(event))
‖ (Events : Broker){publish/Events.publish}
‖ (forall[event : Events][eventType : EventTypes]

Subscriber(event, eventType))).

Similarly to DSM, we represent event and eventType as sets while the precise defi-
nition of these sets depends on the application that uses the publish/subscribe mid-
dleware. Note that we define several MATCH processes, each of which manages
the subscriptions related to one specific event type. The matches function indicates
whether the published event is of the type managed by the specificMATCH process.
The middleware is in charge of implementing this function. Note that the publisher
initialises the interaction by pushing the event to the broker.

To sum up, there are different interaction patterns that define specific rules to
coordinate the behaviours of components. While we present and formalise the inter-

110

Chapter 5. From Abstract to Concrete Mediators

actions patterns most commonly used in the development of middleware solutions,
we are aware that some middleware are not represented, e.g., stream-based middle-
ware solutions. The case of streaming solutions is to be explored in future work. We
also stress that many modern middleware solutions tend to support a combination
of interaction patterns. For example, CORBA offers distributed event services to
complement support for remote procedure calls.

When components are implemented using middleware solutions that are based on
the same interaction pattern, besides the translations and behavioural coordination
at the application layer, the mediator is also responsible for message translations at
the middleware layer. Therefore, the middleware ontologies serve as intermediary
for the necessary translations. Assuming that appropriate parsers and composers,
associated with specific middleware solutions, can be used to extract the necessary
data from the network messages, as well as to create network messages given the
necessary data, the synthesised mediator thus perceives a uniform interface offered
by the middleware layer.

5.2.2 Application to the Weather Example

Going back to the weather example introduced in Chapter 2 where the goal is to
achieve interoperability between, C2, which invokes a single SOAP operation to get
weather information, and Weather Station, which is a CORBA server that provides
temperature and humidity measures. The mediator must transform the getWeather

action required by C2 into the sequence of actions getTemperature and getHumidity
provided by Weather Station. The implementation of the mediator also requires
dealing with differences between the SOAP requests/responses used by C2 and the
CORBA requests/responses used by Weather Station. Even though the format of the
requests/responses is different, the interaction pattern is the same. Consequently, by
using the appropriate parsers and composers, they can be transformed into primitives
from the RPC ontology, as depicted in Figure 5.7.

We can further verify that using the software system composed of C2, Weather
Station, and the synthesised mediator (‖WeatherSystem), as described in the follow-
ing, is free from deadlocks.

111

Chapter 5. From Abstract to Concrete Mediators

C2

prov.getTemperature
prov.getHumidity

prov.logout

prov.loginreq.login

req.getWeather

req.logout

Weather Station
Mediator

RPC Ontology
SOAP Request

SOAP Response

CORBA Request

CORBA Response

g1

f1

f0

f4

g0

g4

SOAP Parser

SOAP Composer CORBA Parser
CORBA Composer

f2

SOAP CORBA

Figure 5.7. Illustrating concretisation in the weather example

set C2_weather_actions = {login, getWeather, logout}
set WeatherStation_actions = {login, getTemperature, getHumidity, logout}

C2_weather_role = (req.login→ P1),
P1 = (req.getWeather → P1 | req.logout→ C2_weather_role).

WeatherStation_role = (prov.login→ P2),
P2 = (prov.getTemperature→ P2

| prov.getHumidity → P2

| prov.logout→WeatherStation_role).

Mediator = (c2.req.login→ c2.prov.login→ P),
P = (c2.req.getWeather → ws.prov.getTemperature

→ ws.sendCORBARequest.getHumidity → P

| c2.req.logout→ ws.prov.logout→Mediator).
‖WeatherSystem = (c2 : C2_weather_role

‖ ws : WeatherService_role
‖ Mediator

‖ (forall[op : C2_weather_actions] c2 : SOAPImplementation(op))

‖ (forall[op : WeatherStation_actions] ws : CORBAImplementation(op))).

5.3 The Case of Middleware Based on Different
Interaction Patterns

While middleware solutions are abound, there are comparably very few interaction
patterns. Our approach to mediator concretisation seeks to identify, capture and
separate the core of the middleware represented by the interaction pattern it uses
from specific details related to the format of messages. We hypothesise that simple
transformations between different interaction patterns can be elucidated through em-

112

Chapter 5. From Abstract to Concrete Mediators

pirical study. Therefore, we define a generic mapping of all interaction patterns into
required/provided actions, and illustrate the transformations necessary to coordinate
different interaction patterns.

5.3.1 Coordination across Interaction Patterns

Whether expressed as operation calls, data read and write, or event publication,
component interactions mainly consists in the production and consumption of infor-
mation. The production of information in the environment is modelled using provided
actions while the consumption from the environment is modelled using required ac-
tions. All middleware solutions, regardless of the interaction pattern they are based
on, provide an abstraction that represents required and provided actions. Figure 5.8
shows how the primitives associated with each interaction pattern, and defined in the
associated ontology, are mapped to required/provided actions. In RPC, the server
provides an action whose functionality is expressed by the methodName, it uses as
input argument and generates returnV alue. The associated client requires this same
action. In DSM, it is the writer that provides an action while the functionality is
enclosed in the data itself as data is associated with a specific dataChannel. The
reader selects data available on some dataChannel. In publish/subscribe, the pub-
lisher provides an action whose functionality is represented by the event type. The
subscriber selectively consumes these events by subscribing to a specific eventType.
Similarly to the DSM case, each event is associated with an event type.

Each matching process used during the generation of the mediator, associates a
sequence of required actions from one component with a sequence of provided actions
from the other component. Let us now present the different cases that need to be
considered to concretise these matching processes.

RPC Client – DSM Writer. In this case, the mediator intercepts the request and
converts the methodName and arguments into dataChannel. The mediator then
uses dataChannel to read data, which it transforms into the appropriate returnV alue
and sends the response back to the client. This is formally specified as follows:

113

Chapter 5. From Abstract to Concrete Mediators

op = methodName
i = argument
a = returnV alue

op = dataChannel
i = data
a = data

op = eventType
i = eventType
a = event

Server

Client

Writer

Reader

Publisher

Subscriber

Provided Action

Required Action

RPC DSM Publish/Subscribe

ReceiveRequest[methodName][argument]

ReceiveResponse[methodName][returnV alue]

SendResponse[methodName][returnV alue]

Write[data]

Read[dataChannel][data]

Publish[event]

Subscribe[eventType]

GetEvent[event]

Unsubscribe

SendRequest[methodName][argument]

<op, i, a>

<op, i, a>

Figure 5.8. Mapping interaction patterns to required/provided actions

Client (X =′ op) = (sendRequest[X]→ receiveResponse[X]→ Client).

Writer(Y =′ data)= (write[Y]→Writer).

RPC2DSMGlue(X =′ op, Y =′ dataChannel, Z =′ data) = (receiveRequest[X]→ translate[X][Y]

→ read[Y][Z]→ translate[Z][X]→ sendResponse[X]

→ RPC2DSMGlue).
‖RPC-DSM = ((forall[op : Interface]Client(op))

‖ (forall[op : Interface]RPCGlue(op))

‖ (forall[data : Data]Writer(data))

‖ (forall[data : Data]SharedMemory(data))

‖ (forall[op : Interface][data : Data][dataChannel : DataChannels]

RPC2DSMGlue(op, data, dataChannel))).

where the sets Interface, Data, and DataChannels are specific to the application,
as well as the translations performed by the RPC2DSMGlue. We can easily verify
that ‖RPC-DSM is free from deadlocks. Note though that we assume the availability
of the shared memory.

114

Chapter 5. From Abstract to Concrete Mediators

RPC Client – Publisher. The mediator intercepts the request and converts
the methodName and arguments into the appropriate eventType to which it sub-
scribes. Once the mediator receives a notification of a new event, it transforms it into
returnV alue and sends the response to the client. This is specified as follows:

Client (X =′ op) = (sendRequest[X]→ receiveResponse[X]→ Client).

Publisher(X =′ event)= (publish[X]→ Publisher).

RPC2PSGlue(X =′ op, Y =′ eventType, Z =′ event) = (receiveRequest[X]→ translate[X][Y]

→ subscribe[Y]→ getEvent[Z]→ translate[Z][X]

→ sendResponse[X]→ RPC2PSGlue).
‖RPC-PS = ((forall[op : Interface]Client(op))

‖ (forall[op : Interface]RPCGlue(op))

‖ (forall[event : Events]Publisher(event))
‖ (Events : Broker){publish/Events.publish}
‖ (forall[op : Interface][eventType : EventType][event : Events]

RPC2PSGlue(op, eventType, event))).

where the sets Interface, Events, and Event are application-specific. However,
‖RPC-DSM may deadlock if the event was published before the subscription. To
remedy this case, if the event middleware is topic-based, the mediator can anticipate
the interaction and subscribe to the topic beforehand. Another possibility, although
very inefficient, is to subscribe to all events and cache them. Finally, some middleware
solutions (e.g., JMS) allow subscriptions to past events.

DSM Reader – RPC Server. This is a problematic case as neither the reader nor
the server initiates the interaction. If the action provided by the server does not need
any input data, the mediator may perform a polling and write the data returned in
the shared memory. Otherwise, the mediator should be able to intercept the network
message representing the read request, and invoke the server accordingly. Hence, the
concretisation cannot be achieved using the primitives provided by the middleware
solutions.

DSM Reader – Publisher. Unless operating at the network layer, the mediator
cannot be concretised in this case. The reason is that in order to synchronise with the
reader, the mediator must write the appropriate data in the shared memory. On the
other hand, it can only get the output data to write if it subscribes to the appropriate

115

Chapter 5. From Abstract to Concrete Mediators

event type, which can only be performed by getting the read request. Fortunately,
DSM-based middleware solutions (e.g., Lime and JavaSpaces) increasingly support
publish/subscribe interactions as well.

Subscriber – RPC Server. As in the case of DSM Reader – RPC Server, both
components are passive, meaning that neither of them initialises the interaction.
Unless the mediator is able to intercept the network messages associated with sub-
scriptions and then periodically poll the server, this situation cannot be handled.

Subscriber – DSM Writer. In this case as well, the mediator must be able to
intercept the network message associated with the subscription to be able to read the
corresponding data, which means that the concretisation cannot be achieved using
available middleware primitives alone. The other alternative, although highly ineffi-
cient is for the mediator to read all data available and publish them periodically. Prior
work, both theoretical and practical, focusing on the equivalence between publish/-
subscribe and tuple space middleware solutions has shown that only by adding extra
functions (or ‘hacks’) can the two interaction patterns be coordinated [BZ01, CMP08].

To sum up, coordinating different interaction patterns is only possible in certain
cases. The main issue is that, due to the increased decoupling (in space and time)
between components, the mediators simply cannot synchronise with the components.
Fortunately, many modern middleware solutions support several of these interaction
patterns at the same time. Further investigation is also necessary in order to assert
the possibility for coordination by making explicit some common ‘hacks’.

5.3.2 Application to the Positioning Example

To illustrate the case of components implemented using middleware solutions based
on different interaction patterns, we use a simple example from the GMES case study,
the positioning example. In Country 1, C2 obtains the location of firemen directly
by interacting with their devices using SOAP. The firemen coming in support from
Country 2 are equipped with devices that publish their location periodically using
AMQP, which is a publish/subscribe middleware solution. C2 cannot access the posi-
tion of Country 2 firemen. A mediator is necessary to enable interoperability between
C2 and the Country 2 firemen (noted Positioning-B), as depicted in Figure 5.9. This

116

Chapter 5. From Abstract to Concrete Mediators

positioning example serves as a proof of concept rather than a full case study.

C2 Positioning-B
Mediator

SOAP Request

SOAP Response
AMQP
Broker

f0

g0

SOAP Parser

SOAP Composer AMQP Parser
AMQP Composer

SOAP AMQP

prov.getPositionreq.getPosition

Figure 5.9. Illustrating concretisation in the positioning example

The behaviours of C2 and Positioning-B are simple, as is the mediator at the
application layer, but it has to be further concretised as follows:

set C2_positioning_actions = {getPosition}
set Positioning −B_actions = {getPosition}

C2_positioning_role = (req.getPosition→ C2_positioning_role).

Positioning-B_role = (prov.getPosition→ Positioning-B_role).

Mediator = (c2.receiveRequest.getPosition→ pos.subscribe.getPosition

→ pos.getEvent.getPosition→ c2.sendResponse.getPosition

→Mediator).

‖PositioningSystem = (c2 : C2_positioning_role
‖ pos : Positioning-B_role
‖ (forall[op : C2_positioning_actions] c2 : SOAPImplementation(op))

‖ (forall[op : Positioning −B_actions] pos : AMQPImplementation(op))).

We do not specify the formal description of ‖AMQPImplementation as it is very
similar to ‖PubSubInteraction since AMQP is based on the publish/subscribe inter-
action pattern. Although ‖PositioningSystem is not formally free from deadlocks, the
Positioning-B was continually publishing the position, and the synthesised mediator
was able to make C2 and Positioning-B interoperate. This would be considered as a
fairness requirement on the publisher.

117

Chapter 5. From Abstract to Concrete Mediators

5.4 Summary

In this chapter, we presented the steps necessary to implement the synthesised media-
tor. During the first step, we compute the translation functions necessary to reconcile
the differences in the syntax of the input/output data used by each component. This
step is sufficient to implement the mediator that ensures interoperability between
components featuring differences only at the application layer. In the second step,
we classified middleware solutions according to the interaction pattern they use to
coordinate components’ behaviours and defined an ontology per interaction pattern
to make explicit the main concepts of the pattern. The two steps are sufficient to
implement mediators that enable interoperability between components featuring dif-
ferences at the application layer and which are based on different middleware solutions
using the same interaction pattern. The third and last step consists in coordinating
different interaction patterns. We showed that some transformations can be defined
so as to enable the implementation of mediators that achieve interoperability be-
tween components with differences at the application layers and which are based on
middleware using different interaction patterns. However, such transformations can-
not always be found. Therefore, we aim to broaden this work to fully ascertain the
correctness of the transformations defined and incorporate new ones.

Overall, unlike reasoning at the application layer, the correctness of the trans-
lations at the concrete level depends on the implementations involved and cannot
always be proven correct. Our aim at this stage is to keep the implementation as
good as a developer or an expert would perform it. We also showed that achieving
interoperability from application down to middleware must be more than a localised
process of accumulating mediators at the application and middleware layers.

118

Chapter 6

Implementation & Assessment

“Les chiffres s’impriment car ils sont clairs, on s’en souvient donc on les
croit."

— in L’Art Français de la Guerre by Alexi Jenni, novelist (1963-)

A solution to interoperability can only be useful if it can easily be applied to
a large number of cases. While previous chapters presented the theoretical aspects
of the automated synthesis and implementation of mediators, this chapter presents
its practical aspect. We describe the MICS tool that implements our approach for
the automated synthesis and implementation of mediators and experiment it with
different case studies, each of which highlights a feature of the tool. Through these
case studies, we demonstrate the viability and wide applicability of our approach.

6.1 The MICS tool

We developed the MICS (Mediator Synthesis to Connect Components) tool to carry
out the automated synthesis and implementation of mediators. This tool is avail-
able at http://www-roc.inria.fr/arles/software/mics/. MICS takes as input
the models of two functionally-compatible components together with a domain on-
tology that represents the shared knowledge of the application domain. The model
of a component is that presented in Section 3.2, which describes the interface of
the component, both syntactically and semantically, and its behaviour. As output,
MICS produces the concrete mediator that enables the two functionally-compatible
components to interoperate.

119

http://www-roc.inria.fr/arles/software/mics/

Chapter 6. Implementation & Assessment

As depicted in Figure 6.1, MICS is made up of four modules, each of which
executes one step of the mediation approach:

Interface Matching

< α , <δ, λ> >, < β , <ρ> >
….

Mediator Synthesis

Mediator

α
δ λ

β

ρ

δ λ ρ
α β

Thing

Nothing

α = [01000] β = [10001]
….

Ontology Encoding

M
IC

S

Component 2 Model

δ, λ, ρ
 Prov B

δ

δ
λρ

ρ

Component 1 Model

 α, β
 Req A

α β

α

Ontology

Concretisation

read(β1)sendRequest(ρ1)

read(ρ2) sendResponse(β2)
read(δ2)

sendResponse(α2)

sendResponse(δ1)
read(α1)

read(λ1)

t1

t2 t3

t4

Concrete Mediator

1

2

3

4

Figure 6.1. Overview of MICS

¶ The ontology encoding module first builds the hierarchy of the concepts of
the domain ontology given as input using Pellet1, which is an open-source Java
library for OWL DL reasoning. Then, it associates a bit vector to each concept
in the ontology according to Algorithm 1 in Chapter 4. Representing ontology

1http://clarkparsia.com/pellet/

120

http://clarkparsia.com/pellet/

Chapter 6. Implementation & Assessment

concepts using bit vectors allows us to check subsumption between concepts
using bitwise AND, while disjunction and aggregation are checked using bitwise
OR. The benefit of this encoding of ontology concepts is twofold. First, we
invoke the ontology reasoner just once and then simply use logical operators
to verify ontological relations. Second, we can express ontological constraints
using logical operators, which are supported by any constraint solver.

· The interface matching module computes the correspondences between
the actions of components’ interfaces. As described in Section 4.3 of Chapter 4,
we formulate interface matching as a constraint satisfaction problem whose
solution is obtained using Choco1, which is an open-source Java library for
constraint solving and constraint programming. We begin by encoding the
interfaces using the bit vector representation of the ontological concepts. We
represent the sequences of actions of each interface using a vector of variables,
each of which can take a value between 0 and the cardinality of the interface.
This value indicates the position of the action in the sequence, 0 meaning that
the sequence does not contain the action. We allow two variables within the
same sequence to have the same value to indicate that they may be executed
in any order. We encode the constraints for matching sequences of actions by
referring to the encoding of the interfaces. Finally, we search for all possible
values that verify these constraints. Choco performs a backtracking search by
selecting a value for each variable and propagating such a value throughout
the search space by updating the lower and upper bounds of other variables.
Constraint propagation aims to contract domains by taking all constraints into
account sequentially, the goal being to reduce the search space.

¸ The mediator synthesis module uses the generated matchings to build a
correct-by-construction mediator according to Algorithm 2 in Chapter 4. The
mediator is incrementally constructed by forcing the two processes representing
the behaviours of the components involved to progress synchronously so that
if one requires the sequence of actions X1, the other is ready to engage in a
sequence of provided actions X2 with which X1 matches. The mediator also
consumes extra provided actions when necessary to allow the components to
progress.

1http://choco.emn.fr/

121

http://choco.emn.fr/

Chapter 6. Implementation & Assessment

¹ The concretisation module refines the synthesised mediator by computing
the translation functions necessary for reconciling the differences between the
data received from one component and the data that must be sent to the other
component and coordinating the components’ behaviours at the middleware
layer. To compute the translation functions we use, besides the ontology rela-
tions, the Harmony tool1 for matching the XML schema representing the syntax
of the data embedded in the actions of the components’ interfaces. The mid-
dleware ontologies described in Chapter 5 are an integral part of the tool and
are used to coordinate the components’ behaviour at the middleware layer.

MICS can be used as a standalone tool or integrated in the Connect architecture
where it plays the role of the synthesis enabler. In the former case, users select the
models of two functionally-compatible components, which they can visualise. The
same ontology must be used to annotate the actions of the components’ interfaces
and must be accessible through the URI specified in the annotations. Once the me-
diator is synthesised (if it exists), users can visualise the interface matchings together
with the behaviour of the mediator. Finally, users can configure the deployment of
the mediator. Figure 6.2 illustrates the use of MICS as a standalone tool. When
integrated in the Connect architecture, MICS is directly invoked by the discovery
enabler with the models of functionally-compatible components, and the deployment
is based on the Starlink framework, as explained in Chapter 3.

6.2 Case Studies

This section reports the results of the experiments we conducted using MICS to gen-
erate mediators in different case studies, which were briefly outlined in Chapter 1.
Table 6.1 summarises the differences at the application and middleware layers be-
tween the components of each case study. We begin with the instant messaging case
study to illustrate one-to-one matchings. Although very similar from a behavioural
aspect, instant messaging applications define different message formats that prevent
users of one application from interacting with users of other applications. In addition,
this case highlights the need to take into account interaction with third party com-
ponents, i.e., the servers with which the users of each instant messaging application

1http://openii.sourceforge.net/index.php?act=tools&page=harmony

122

http://openii.sourceforge.net/index.php?act=tools&page=harmony

Chapter 6. Implementation & Assessment

Select the models of the
components to be mediated

Visualise the behaviour
of the components

Visualise the interface matchings
and behaviour of the mediator

Configure the deployment of the mediator

Figure 6.2. Using MICS as a standalone tool

123

Chapter 6. Implementation & Assessment

Case Studies Differences at Differences at
the Application Layer the Middleware Layer

Instant Messaging one-to-one —

File Management one-to-many —

Purchase Order one-to-many & loops —

Event Management one-to-many SOAP vs. HTTP (REST)

G
M
E
S

Weather one-to-many SOAP vs. CORBA

Positionning one-to-one SOAP vs. AMQP (RPC vs. Pub/Sub)

Vehicle one-to-many & extra actions —

Table 6.1. Summary of the case studies

have to login. We then move to the file management case study, which we previously
used to illustrate the computation of one-to-many matchings and concretisation be-
tween components implemented using the same middleware. The third case study
is the Purchase Order Mediation scenario defined in the context of the Semantic
Web Service (SWS) Challenge [PMLZ08]. This case study has been the subject of
extensive investigation in the SWS domain and hence it permits us to evaluate our
solution for the synthesis of mediators against several mediation solutions from the
SWS domain. The fourth case relates to interoperability between event management
systems, which are concerned with the organisation of events like conferences, sem-
inars, concerts. Besides one-to-many matchings at the application layer, this case
illustrates differences at the middleware layer as the components involved were built
using SOAP and REST Web Services respectively. Finally, we present the experi-
ments we conducted within the European Connect project using GMES. The aim
of the GMES experiment is to illustrate our solution in the context of systems of
systems and highlight its integration in the Connect approach for eternal interop-
erability. GMES requires achieving interoperability between components that feature
differences at the application and middleware layers, including dealing with different
interaction patterns, namely RPC and publish/subscribe. GMES also demonstrates
the need for mediation at runtime between components that are dynamically discov-
ered and whose models are automatically completed using learning techniques. In
the following, we describe each case study in more detail. Whenever applicable, we

124

Chapter 6. Implementation & Assessment

present the ontology, the models of the components involved and the performance of
the synthesised mediator.

6.2.1 Instant Messaging: One-to-One Matching

The first case study relates to interoperability between different Instant Messaging
(IM) applications. Popular and widespread IM applications include Windows Live
Messenger1 (commonly called MSN Messenger), Yahoo! Messenger2, and Google
Talk3, which is based on the XMPP4 standard protocol. These IM applications offer
similar functionalities such as managing a list of contacts or exchanging textual mes-
sages. However, a user of MSN Messenger is unable to exchange instant messages
with an XMPP user (see Figure 6.3). As a result, users have to either install many
applications or to use third party applications (e.g., Pidgin5 or Adium6) to be able to
chat with one another. This situation, though cumbersome from a user’s perspective,
unfortunately reflects the way IM —like many other existing applications— has de-
veloped. Our aim is to let users install their favourite IM applications and synthesise
a mediator that performs the necessary translations to make different IM applica-
tions interoperable. Each IM application represents a component in the composed
IM system, which can only achieve users’ requirements to exchange messages if the
two components can interoperate.

XMPP-MSNP
Mediator

prov.InstantMessagereq.InstantMessage

req.InstantMessageprov.InstantMessage

Figure 6.3. Making XMPP and MSNP components interoperable

Even though IM components are simple and quite similar from a behavioural
point of view, each one defines its own message format. For example, Windows
Live Messenger (MSNP) uses text-based messages whose structure includes several
constants with predefined values whereas Yahoo! Messenger (YMSG) uses binary

1http://explore.live.com/windows-live-messenger/
2http://messenger.yahoo.com/
3http://www.google.com/talk/
4Extensible Messaging and Presence Protocol – http://www.xmpp.org/
5http://www.pidgin.im/
6http://adium.im/

125

http://explore.live.com/windows-live-messenger/
http://messenger.yahoo.com/
http://www.google.com/talk/
http://www.xmpp.org/
http://www.pidgin.im/
http://adium.im/

Chapter 6. Implementation & Assessment

messages that include a header and key-value pairs. As for XMPP messages, they
are defined according to a given XML Schema.

The Instant Messaging Ontology

To enable the automated synthesis of mediators between IM components, we started
by defining the IM ontology depicted in Figure 6.4. An InstantMessage has at least one
sender hasSender, one recipient hasRecipient, and one message hasMessage. hasSender
and hasRecipient are object properties that relate an instant message to a sender or a
recipient while hasMessage is a data property that specifies the content of an instant
message. Sender and Recipient are both subsumed by the User. A Conversation is
performed between a sender (who initialises it) and a recipient, and the conversation
has its own identifier. A Conversation is an aggregation of instant messages. A
ChatRoom represents a venue that multiple users can join to exchange messages.
The IM ontology also represents the operations used by the IM components such as
Authentication and Logout. Note though that while both MSN_Authentication and
XMPP_Authentication are subsumed by Authentication, there is not any direct relation
between them. The same is true for Logout.

<<OWLClass>>
InstantMessage

∃hasMessage.String

<<OWLClass>>
Conversation

∃hasConversationID.String

<<OWLClass>>
Sender

∃hasSenderID:String

<<OWLClass>>
Recipient

∃hasRecipientID:String

hasSender{some} hasRecipient{some}

<<OWLClass>>
User

∃hasUserID:String

isPartOf{some}

<<OWLClass>>
ChatRoom

∃hasID.String

hasUser{some}

<<OWLClass>>
XMPP_Authentication

<<OWLClass>>
MSN_Authentication

<<OWLClass>>
Authentication

<<OWLClass>>
XMPP_ Logout

<<OWLClass>>
MSN_ Logout

<<OWLClass>>
Logout

Subsumption
Ontological relation

Ontological concept

property{cardinality}

...<<OWLClass>>

Legend

Figure 6.4. The IM ontology

126

Chapter 6. Implementation & Assessment

Behavioural Specifications of the Instant Messaging Components

We used the IM ontology to annotate the interfaces of the two IM components and
describe their behaviours as follows:

MSNP = (<MSN_Authentication_Request, {UserID}, {Challenge} >

→ <MSN_Authentication_Response, {Response}, {Authentication_ok} >

→ ExchangeMsgs),

ExchangeMsgs = (<CreateChatRoom, {UserID}, {ConversationID} >

→ <JoinChatRoom,{UserID},{Acceptance} >→ P1

| < JoinChatRoom, {UserID}, {Acceptance} >

→ < {ChatRoomInfo, ∅, {ConversationID} > → P1),

P1 = (<InstantMessage, {UserID, ConversationID, Message}, ∅ > → P1

| <InstantMessage, {UserID, ConversationID, Message}, ∅ > → P1

| <MSN_Logout, {UserID}, ∅ > → END).

XMPP = (< XMPP_Authentication_Request, {UserID}, {Challenge } >

→ <XMPP_Authentication_Response, {Response}, {Authentication_ok} >

→ ExchangeMsgs),

ExchangeMsgs = (<InstantMessage, {SenderID, RecepientID, Message}, ∅ >→ ExchangeMsgs

| <InstantMessage, {SenderID, RecipientID, Message}, ∅ >

→ ExchangeMsgs

| < XMPP_Logout, {UserID}, ∅ >→ END).

Each IM component performs authentication and logout with the associated
server. Before exchanging messages, the MSNP component has to configure a chat
room where the MSN conversation can take place between the user that initiates this
conversation (sender) and the user who accepts to participate in this conversation
(recipient). XMPP simply includes the sender and the recipient identifiers in each
message.

The Instant Messaging Mediator

There are only one-to-one matchings between the actions of
IM components. If we consider, for example, the action
α=<InstantMessage, {UserID,ConversationID,Message}, ∅> required by MSNP and
β=<InstantMessage, {SenderID,RecipientID,Message}, ∅> provided by XMPP. The
IM ontology indicates that: (i) Sender is subsumed by User, and (ii) ConversationID
identifies a unique Conversation, which includes InstantMessage that is associated with

127

Chapter 6. Implementation & Assessment

Recipient identified by a RecipientID attribute. Consequently, α 7→ β. Note however
that some actions, e.g., MSN_Authentication_Request, XMPP_Authentication_

Request, or JoinChatRoom, are not subject to mediation as they are exchanged with
proprietary servers rather than between the two components. The mediator simply
translates the InstantMessage exchanged between the components. For the imple-
mentation of the mediator, we used Starlink as it allows us to manage proprietary
protocols. However, we were faced with two problems. First, IM components do
not support dynamic discovery or binding but directly exchange messages with the
corresponding server. Nevertheless, all of them support the configuration of a proxy
that can be used as an intermediary. As a result, we had to configure the proxy
settings of each IM component with the address of the computer where Starlink,
which executes the mediator, is deployed. Second, the list of contacts is sent directly
to the IM component by the corresponding server and cannot include users from
other IM systems. More specifically, while the mediator can enable the IM user to
add a contact, it cannot manage the persistence of contact lists by itself. So we
manually added the software code necessary to intercept and save lists of contacts
across systems.

Once the mediator has been synthesised and the IM components configured, we
measured the time required to exchange a 100-character message between any com-

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

MS
NP
/M
SN
P	

YM
SG
/YM

SG
	

XM
PP
/X
MP
P	

MS
NP
/YM

SG
	

MS
NP
/X
MP
P	

YM
SG
/X
MP
P	

Ro
un

d	

Tr
ip
	
 +
m
e	

w
ith

	
 1
00
	
 c
ar
	
 m

es
sa
ge
	
 (m

s)
	

Na5ve	

Automated	

Figure 6.5. Latency for mediated and non-mediated interactions between IM
components

128

Chapter 6. Implementation & Assessment

bination of MSNP, YMSG, and XMPP. We repeated the experiments 50 times and
report the average time in Figure 6.5. Besides native interactions between the IM
components, we also have native interactions between MSNP and YMSG through
a proprietary gateway, which was developed following an agreement between Yahoo
and Microsoft [Mic10]. To distinguish between the overhead due to the mediator
itself and that related to the parsers and composers, we deployed a mediator be-
tween the IM components that are already interoperable. The mediator in this case
simply receives and sends back the message unchanged. The overhead introduced
by parsers and composers depends on the encoding of the instant messages: while
the overhead is negligible for the XML-based XMPP components, it is significant in
the case of the binary YMSG protocol. Nevertheless, guidelines for response time in
interactive applications specify that 1s is the limit to keep the user’s flow of thought
seamless [Nie93]. Hence, the overhead of the mediator execution is acceptable. Fur-
thermore, the mediator itself only introduces negligible overhead, hence the latency
in the case of MSNP and YMSG interacting with XMPP remains close to that of
XMPP.

6.2.2 File Management: One-to-Many Matching

This case study relates to interoperability between WebDAV and Google Docs. It was
used in Chapters 4 and 5 to illustrate the synthesis of mediators and their implemen-
tation in the case of differences between components at the application layer only, as
both components are based on HTTP. In this section, we evaluate the performance
of the generated mediator.

We deployed the mediator over an Apache Tomcat1 container in order to intercept
and filter out the HTTP messages. We measured the time it took to perform a simple
conversation consisting of an authentication, moving a file from one folder to another,
and listing the content of the two folders. As for performance measurements, the file
is a 4KB text document to lessen the network delay. We used a WebDAV client
developed using the Sardine library2 and our enterprise WebDAV repository. Note
that we accessed our enterprise WebDAV repository via the Internet since the Google
Docs service can only be invoked via the Internet. We repeated each conversation 50

1http://tomcat.apache.org/
2http://sardine.googlecode.com/

129

http://tomcat.apache.org/
http://sardine.googlecode.com/

Chapter 6. Implementation & Assessment

times and report the average execution time in Figure 6.6. In the case of the WebDAV
client interacting with the Google Docs Service, the overhead is negligible compared
to the Google Docs interactions, while it is 75% more than the WebDAV service. This
is mainly due to the communication time since the former requires 3 actions (i.e., 6
messages) while the latter requires only one action (i.e., 2 messages). In the case of
a Google Docs client interacting with the WebDAV service, the mediator introduces
an 18% time overhead compared to native Google Docs interactions while it is twice
the time compared to native WebDAV interactions. This increase in time is due to
the fact that the Google Docs actions are translated on a one-to-one basis, that is a
DownloadDocument to a ReadFile, UploadDocument to WriteFile, and DeleteDocument

to DeleteFile, and not merged into one MoveFile action. In other words, when the
Google Docs client performs the three actions to move a file, then these actions are
translated one by one and not merged into a single action. Such an optimisation
is however hard to predict as the behaviour of the Google Docs client specifies that
these three actions can be performed in any order.

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

WebDAV/WebDAV	
 GDocs/GDocs	
 WebDAV/GDocs	
 Gdocs/WebDAV	

Ti
m
e	

to
	
 p
er
fo
rm

	
 a
n	

in
te
ra
c.
on

	
 (m
s)
	

Figure 6.6. Latency for mediated and non-mediated interactions between WebDAV
and Google Docs

130

Chapter 6. Implementation & Assessment

6.2.3 Purchase Order: Mediation of Semantic Web Services

The Purchase Order Mediation scenario [PMLZ08] has been proposed in the context
of the SWS challenge to provide a common ground to discuss semantic (and other)
Web Service solutions and compare them according to the set of features that a
mediation solution should support.

Blue-Moon
Mediator

prov.SearchCustomer

prov.CreateNewOrder

prov.AddLineItem

prov.CloseOrder

prov.ConfirmLineItem

MoonBlue

SOAP

req.PurchaseOrder

Figure 6.7. Making Blue and Moon interoperable

The scenario highlights the need for mediation in the eBusiness domain. It de-
scribes a Web Service client, called Blue, that is used to purchase some product from
a Web Service, called Moon. However, although Moon provides the functionality
required by Blue, their interfaces and behaviours are different as they were developed
independently (see Figure 6.7). In particular, Blue uses a single action to make its
purchase. The input of this action contains all the information necessary for placing
the order including the customer information and the list of items that the customer
wishes to purchase. On the other hand, Moon provides many actions to perform the
same task; customer must get an identifier, create an order, add items to the order,
and perform a confirmation for each items. Hence, a mediator is needed to enable
Blue and Moon to interoperate.

The Purchase Ontology

We build upon the purchase order ontology, which is publicly available as part of
the WSDL-S specification1, and we extend it in order to include concepts represent-
ing the operations of Blue’s and Moon’s interfaces. Figure 6.8 shows an extract of
the purchase ontology. The ontology shows the relations holding between the vari-
ous concepts used by two purchase order components. It specifies the attributes of

1http://www.w3.org/Submission/WSDL-S/

131

http://www.w3.org/Submission/WSDL-S/

Chapter 6. Implementation & Assessment

<<OWLClass>>
ProductItem

∃ItemID.String
∃ItemQuantity.String

<<OWLClass>>
AddLineItem

≐∃hasPart.SelectItem ⊓ ∃ hasPart. SetItemQuantity

<<OWLClass>>
SelectItem

<<OWLClass>>
SetItemQuantityisPartOf{some}

<<OWLClass>>
Order

∃OrderID.String
∃Validity.DateTime
∃ShippingAddress.String
∃BillingAddress: String

<<OWLClass>>
Customer

∃CustomerID.String
∃CustomerName.String
∃CustomerAddress.String
∃MainEmail.String
∃MainTelephone.String

makeOrder{some}

isPartOf{some} isPartOf{some}

<<OWLClass>>
PurchaseOrder

<<OWLClass>>
CreateNewOrder

<<OWLClass>>
ConfirmLineItem

<<OWLClass>>
SearchCustomer

<<OWLClass>>
CloseOrder

<<OWLClass>>
ItemAcknowlegment

<<OWLClass>>
ItemAcknowlegmentList

isPartOf{some}
Subsumption
Ontological relation

Ontological concept

property{cardinality}

...<<OWLClass>>

Legend

Figure 6.8. The purchase ontology

each concept; for example Order is characterised by several data properties: OrderID,
ShippingAddress, and Billing defined as strings and Validity specified using the OWL
built-in dateTime type. An order contains one or many ProductItem, each of which is
associated with an identifier and some quantity. The operation AddLineItem is defined
as the aggregation of the SelectItem and SetItemQuantity.

Behavioural Specifications of the Purchase Order Components

Blue initiates the purchasing process by sending the customer information and the list
of products he wants to purchase. Blue expects an acknowledgement which confirms
the items that can be delivered. Its behavioural description is as follows:

Blue= (<PurchaseOrder, {CustomerName, ShippingAddress,BillingAddress,

ItemList},{ItemAcknowledgmentList} >→ END).

Moon decouples the management of customers from the management of orders.
To use Moon’s service, clients must first retrieve relevant customer details including
his identifier. Moon also verifies that the customer is authorised to create a new
order. The customer can then add items to the newly created order. Once all the
items have been added, the customer closes the order and asks Moon to confirm the
delivery of each item. Its behavioural specification is the following:

132

Chapter 6. Implementation & Assessment

Moon= (<SearchCustomer, {CustomerName}, {Customer} >

→ <CreateNewOrder, {CustomerID, ShippingAddress,BillingAddress},

{OrderID} >→<AddLineItem, {OrderID, ItemID, ItemQuantity}, ∅>→ P1),

P1 = (<AddLineItem, {OrderID, ItemID, ItemQuantity}, ∅>→ P1

| < CloseOrder, {OrderID}, {OrderAcknowledgment} >→ P2),

P2 = (<ConfirmLineItem, {OrderID, ItemID},{ItemAcknowledgment}>→ P2

| <ConfirmLineItem, {OrderID, ItemID},{ItemAcknowledgment} >→ END).

The SWS Challenge provides relevant information about the components using
WSDL and natural language descriptions. Blue and Moon are provided by the SWS
Challenge organisers and cannot be altered, although their descriptions may be se-
mantically enriched. We attached semantic annotations to the interfaces of Blue and
Moon. We specified the behaviour of each component based on the textual descrip-
tions and sequence diagrams given on the SWS Challenge Web site1 and the related
book [PMLZ08]. Even though there are techniques to associate semantic annotations
to the interface description of a component or to extract the associated behaviour,
we did it manually since we focus on mediation between components rather than on
the inference of the semantic annotations or the behaviour of a component. Fur-
thermore, during the SWS Challenge participants were asked to extend the syntactic
descriptions in such a way that their solutions could perform the necessary mediation.

Comparison with Solutions for the Purchase Order Mediation Scenario

In the following, we compare our solution for automated synthesis of mediators to
those presented at the SWS challenge. Table 6.2 summarises this comparison.

First, Brambilla et al. [BCV+08] define the SWE-ET framework, which eases the
description of the components as well as the refinement and deployment of the me-
diator. SWE-ET facilitates the implementation and maintenance of the mediator by
following a software engineering process rather than generating the mediator auto-
matically. Our aim is rather to generate the mediator automatically while relying on
existing tools to annotate the interfaces of the components and define the associated
behaviour, and also to execute the mediator.

Vitar et al. [VZMM08] build upon the WSMO conceptual model for mediation,
1http://SWSChallenge.org/wiki/

133

http://SWS Challenge.org/wiki/

Chapter 6. Implementation & Assessment

which includes the use of WSML to describe components and WSMX for the execu-
tion of mediators. The authors assume one ontology per component instead of using
a common ontology to annotate both components. We agree that the components
may be defined using heterogeneous ontologies, but in this case subsumption between
concepts is associated with some confidence score, and the synthesis algorithm should
deal with the varying confidence about concept relations and manage the imprecision
involved. Rather, the WSMO solution assumes the translation to be manually speci-
fied at design time. Unlike WSMO, we use the ontology to reason about the semantics
of the actions of components’ interfaces and compute the translations automatically.
Furthermore, although the schema translations cannot be proved correct in theory, it
turns out that the computed translation function was sufficient to translate the data
exchanged between Blue and Moon.

Kubczak et al. [KMSN08] use process algebra to model the behaviour of Blue and
Moon, utilise constraints to ensure safety and consistency of the mediation, and ab-
straction/concretisation to deploy the mediator model using various communication
standards. The authors assume that the user specifies an SLTL (Semantic Linear-
time Temporal Logic) formula that describes the goal that needs to be fulfilled by
the system, based on which they compute the mediator. The use of goals can in-
deed facilitate the synthesis of mediators but it also raises other issues about the
management of these goals: users have to write an SLTL formula to make use of the
components. We believe that this might be a somewhat restrictive requirement.

Finally, Gomadam et al. [GRW+08] augment component descriptions with pre-
condition/effects and use planning techniques to compute the mediator. First the
authors specify that it is certainly not enough to consider only precondition/effect
(as is usually done with planning algorithms) but also the input/output data as well.
However, they do not specify how this should be performed. Another drawback of
the approach, although not visible from the challenge example, is that it only works
with a unique one-to-many matching and cannot handle interactions where both
components require and provide actions, as is the case in peer-to-peer interactions.

While the Purchase Order Mediation Scenario provides us with a common case
study to evaluate our solution for the synthesis of mediators against several solutions
from the SWS domain, we cannot evaluate the implementation of mediators. In-
deed, we cannot evaluate the performance of the generated mediators, as the services
involved no longer maintained.

134

Chapter 6. Implementation & Assessment

S
ol
u
ti
on

K
ey

Fe
at
u
re
s

S
im

il
ar
it
ie
s

D
iff
er
en

ce
s

SW
E
-E

T
[B
C
V

+
08
]

•
A
n
M
D
E
ap

pr
oa
ch

fo
r
th
e
de
si
gn

an
d

co
de

ge
ne
ra
ti
on

of
th
e
m
ed
ia
to
r

•
Se
m
i-a

ut
om

at
ed

sp
ec
ifi
ca
ti
on

an
d
re
-

fin
em

en
t

of
th
e

m
ed
ia
to
r

us
in
g

W
eb
M
L/

B
P
M
N

•
C
om

bi
ne
d
da

ta
an

d
be

ha
vi
ou

ra
l

m
ed
ia
ti
on

•
M
ed
ia
to
r
sp
ec
ifi
ed

by
th
e
de
ve
lo
pe

r

•
D
at
a
m
ed
ia
ti
on

th
ro
ug

h
lo
w
er
in
g
an

d
lif
ti
ng

W
SM

X
[V

ZM
M
08
]

•
B
ui
ld

up
on

th
e
W

SM
O

on
to
lo
gy

to
sp
ec
ify

co
m
po

ne
nt
s
an

d
re
as
on

ab
ou

t
th
ei
r
in
te
ro
pe

ra
bi
lit
y

•
C
om

bi
ne
d
da

ta
an

d
be

ha
vi
ou

ra
l

m
ed
ia
ti
on

•
U
se

of
m
an

y
on

to
lo
gi
es

•
D
at
a
m
ed
ia
ti
on

th
ro
ug

h
lo
w
er
in
g
an

d
lif
ti
ng

•
N
o
gu

ar
an

te
e
ab

ou
td

ea
dl
oc
k
fr
ee
ne
ss

K
ub

cz
ak

et
al

.
[K

M
SN

08
]

•
M
ed
ia
to
r
ex
tr
ac
te
d
fr
om

th
e
go
al

•
M
od

el
ch
ec
ki
ng

to
ve
ri
fy

sa
fe
ty

pr
op

-
er
ti
es

on
th
e
m
ed
ia
to
r

•
U
se

of
pr
oc
es
s
al
ge
br
a

•
U
se

of
co
ns
tr
ai
nt
s

to
en
su
re

sa
fe
ty

•
SL

T
L
fo
rm

ul
a
to

de
fin

e
th
e
go
al

•
C
on

st
ra
in
ts

de
fin

ed
m
an

ua
lly

G
om

ad
am

et
al

.
[G

RW
+
08
]

•
P
la
nn

in
g
al
go
ri
th
m
s
to

sy
nt
he
si
se

th
e

m
ed
ia
to
r

•
C
om

bi
ne
d
da

ta
an

d
be

ha
vi
ou

ra
l

m
ed
ia
ti
on

•
U
se

of
pr
ec
on

di
ti
on

s
an

d
eff

ec
ts

in
co
m
po

ne
nt

sp
ec
ifi
ca
ti
on

s

•
D
at
a
m
ed
ia
ti
on

th
ro
ug

h
lo
w
er
in
g
an

d
lif
ti
ng

T
ab

le
6.
2.

C
om

pa
ri
ng

ou
r
au

to
m
at
ed

m
ed
ia
ti
on

so
lu
ti
on

w
it
h
th
e
so
lu
ti
on

s
pa

rt
ic
ip
at
in
g
in

th
e
SW

S
ch
al
le
ng

e

135

Chapter 6. Implementation & Assessment

6.2.4 Event Management: Unified Application-Middleware
Mediation

In this case study we consider mediation in the event management domain. Event
management systems provide various services such as ticketing, attendee manage-
ment, and payment for various events like conferences, seminars, concerts, etc. Event
organisers usually rely on existing and specialised event management systems to pre-
pare their events as they generally offer an economical and better quality solution
compared to building their own system. In order to use an event management ser-
vice, an organiser has to include within its application a client implementing the API
defined by the service provider.

However, depending on the event they are in charge of, organisers may have to in-
tegrate with multiple event management providers. Event management systems often
exhibit different APIs and are implemented using different middleware technologies.
Our solution intends to simplify and automate the support of multiple services be-
longing to the same application domain, e.g., event management. We investigated
this case study with an industrial partner Ambientic1. Ambientic provides a suite of
services to facilitate the organisation of events (e.g., conferences, trade shows, and
exhibitions) and improve collaboration between the different stockholders (organis-
ers, visitors, and speakers). Ambientic expressed the need to interface with existing
event management services as required by the customers. However, while developing
one client is feasible, developing a client for each event management service rapidly
becomes fastidious.

We consider that a client for Amiando2 has been developed and synthesise a
mediator that enables this client to interact with the RegOnline3 service as depicted
in Figure 6.9. The Amiando client is developed according to the REST architectural
style, uses HTTP as the underlying communication protocol, and relies on JSON4

for data formatting. On the other hand, the RegOnline service is implemented on
top of SOAP, which implies using WSDL5 to describe the application interface, and
is further bound to the HTTP protocol.

1http://www.ambientic.com/en/
2http://developers.amiando.com/
3http://developer.regonline.com/
4http://www.json.org
5http://www.w3.org/TR/wsdl

136

http://www.ambientic.com/en/
http://developers.amiando.com/
http://developer.regonline.com/
http://www.json.org
http://www.w3.org/TR/wsdl

Chapter 6. Implementation & Assessment

prov.Loginreq.EventFind

prove.GetEventreq.EventRead

Amiando-RegOnline
Mediator

HTTP SOAP

Figure 6.9. Making Amiando client and RegOnline service interoperable

In addition, these differences at the middleware layer, Amiando and RegOnline
also differ at the application layer. To search for a conference with a title containing
a given keyword, the Amiando client simply specifies the keyword in the title param-
eter, which is of the String type. The RegOnline GetEvents operation has a Filter
argument used to specify the keywords to search for and which is also of the String
type. However, the RegOnline developer documentation specifies that this string is
in fact a C# expression and can contain some .NET framework method call (such
as Title.contains(“keyword”)), which is incompatible with the Amiando search
string. Regarding behavioural differences, the GetEvents operation of RegOnline re-
turns a list of conferences with the corresponding information. To get the same result
in Amiando, two operations need to be performed. First, we perform EventFind to
get a list of conference identifiers. Then, for each element of the list we call the
EventRead operation with the identifier as a parameter to get information about the
conference.

The Event Management Ontology

We built upon the eBiquity event ontology1, which defines the vocabulary for describ-
ing and relating information elements that are commonly used in event management
systems. Figure 6.10 shows an extract of this ontology once the classification has
been performed. Event is described using several attributes (e.g., identifier, start and
end dates, and title), each of which is represented as a data property. EventList is the
aggregation of many events. The eBiquity event ontology does not define the seman-
tics of operations, which we added ourselves. GetEvent is described as the aggregation
of EventFind and EventRead.

1http://ebiquity.umbc.edu/ontology/event.owl

137

http://ebiquity.umbc.edu/ontology/event.owl

Chapter 6. Implementation & Assessment

isPartOf{some} <<OWLClass>>
GetEvent

≐∃hasPart.EventFind ⊓ ∃hasPart.EventRead

<<OWLClass>>
Event

∃Title.String
∃StartDate.Date
∃EndDate.Date
∃Location.String
∀Abstract.String

<<OWLClass>>
Login

<<OWLClass>>
EventFind

<<OWLClass>>
EventRead

hasPart{some}hasPart{some} Subsumption
Ontological relation

Ontological concept

property{cardinality}

...<<OWLClass>>

Legend

<<OWLClass>>
EventList

Figure 6.10. The event management ontology

Behavioural Specifications of the Event Management Components

The interfaces of Amiando and RegOnline include more than 50 operations each.
Therefore and to make the presentation easier, we consider a simplified scenario.
Still, we strictly follow the publicly available APIs of the two providers. In this
scenario, the client searches for events that include some keywords in their title,
and then examines the information about the found events. In Amiando, the clients
have to send an EventFind request with the keywords to search for. Any Amiando
client is given a unique and fixed ApiKey, which is an authentication token that must
be included in any interaction with the Amiando service. The EventFind response
includes a list of event identifiers. To get the information about an event, clients
issue an EventRead request with the event identifier as a parameter. In RegOnline,
clients must first perform a Login action and get an authentication token represented
by the ApiToken field, which must be included in the following requests. After that,
they send a GetEvents request, which includes a Filter argument specifying the
keywords to search for. In return, the client gets the list of events, each with the
associated information, verifying the search criteria.

The behavioural specifications of the components are as follows:

Amiando= (<EventFind, {AuthentificationToken,Title}, {EventIDList} >→ P1),

P1 = (< EventRead, {EventID}, {Event} >→ P1

| < EventRead, {EventID}, {Event} >→ END).

RegOnline= (<Login, {Username,Password}, {AuthentificationToken}>→ P1),

P1 = (<GetEvent, {Title}, {EventList}>→ END).

138

Chapter 6. Implementation & Assessment

The Event Management Mediator

As well as synthesising a mediator between the Amiando client and the RegOnline
service, we also synthesised a mediator between the RegOnline client and the Amiando
service. In both cases we performed a simple conversation, which consists of a search
based on a substring of the title of events, then getting a list of 10 events with the
corresponding description for each event. We repeated each conversation 30 times and
report the average execution time in Figure 6.11. Even natively, Amiando necessitates
3 times more time than RegOnline. This is due to the fact that it must send several
messages on the network, each of which contains the information of one event whereas
in RegOnline, the description of all events is sent in a single message. This is reflected
in the case of RegOnline client interacting with the Amiando service as the mediator
has to make many requests in order to create the message required by the client.
One way to remedy this overhead is to send requests in parallel, but the synthesised
mediator is not equipped for that and performs the translations only in sequence.
For an Amiando client, using the RegOnline service is even more efficient than using
its own service because the mediator invokes RegOnline once and keeps the results;
hence when the Amiando client sends an EventRead the response is ready and no
extra processing is necessary.

0	

500	

1000	

1500	

2000	

2500	

Re
gO
nli
ne
/R
eg
On
lin
e	

Am
ian
do
/A
mi
an
do
	

Re
gO
nli
ne
/A
mi
an
do
	

Am
ian
do
/R
eg
On
lin
e	

Ti
m
e	

to
	
 p
er
fo
rm

	
 a
n	

in
te
ra
c.
on

	
 (m
s)
	

Figure 6.11. Latency for mediated and non-mediated interactions between Amiando
and RegOnline

139

Chapter 6. Implementation & Assessment

6.2.5 GMES: Runtime Mediation

We conclude the analysis with the GMES case [Con12], which we use mainly to il-
lustrate integration within the Connect approach and to highlight the need for me-
diation at runtime in the context of systems of systems. GMES further exemplifies
interoperability between components relying on middleware that implements hetero-
geneous interaction patterns. In this experiment, rather than specifying the compo-
nent models manually, the discovery enabler is used to locate the components and
complete their models by invoking the learning enabler. The synthesis of mediators
is also triggered by the discovery enabler when it identifiies functionally-compatible
components.

Country 1 Country 2

Weather Service

Positioning-A

Weather Station Client

Positioning-BC2 Positioning-B Subscriber

UAV ClientUAVUGV

SOAP

SOAP

SO
AP

CORBA

AMQP

SOAP

Me
dia
tor

Mediator

Mediator

Weather Station

Figure 6.12. Illustrating interoperability in GMES

Figure 6.12 depicts the GMES case study. Besides mediation between C2 and
either Weather Station or Positioning-B, which we described in Chapter 5, we also
need to mediate interactions between C2 and UAV (Unmanned Aerial Vehicle). In
this latter case, C2 natively interacts with UGV (Unmanned Ground Vehicle) using
SOAP. UAV also uses SOAP but differs from UGV at the application layer: UGV
requires the client to login, then it can move in the four cardinal directions whereas
UAV is required to take off prior to any operation and to land before logging out,
which is the case of extra provided actions. We recall that the components are
dynamically discovered and their interactions take place at runtime without a priori
knowledge about their respective interfaces and behaviours. As a result, to enable
C2 to use the components provided by Country 2, with which it is functionally

140

Chapter 6. Implementation & Assessment

compatible, mediators have to be synthesised and deployed at runtime.

0	

100	

200	

300	

400	

500	

600	

Weather	
 Posi3oning	
 Vehicle	
 Control	

Ti
m
e	

to
	
 p
er
fo
rm

	
 a
	
 c
on

ve
rs
a0

on
	
 	
 (
m
s)
	

Country	
 1	
 Systems	

Country	
 2	
 Systems	

Country	
 1	
 →	
 Country	
 2	

Figure 6.13. Latency for mediated and non-mediation interaction between GMES
components

For each example, we measured the average time necessary to perform a meaning-
ful conversation. In the weather example, the conversation includes authentication,
obtaining weather information using a single getWeather operation in Country 1 and
two operations, getTemperature and getHumidity in Country 2, and then logging
out. In the positioning example, a single operation getPosition is performed. In the
vehicle control example, conversations consist in authentication, takeoff (in the case
of UAV only), moving and turning both left and right, landing (in the case of UAV
only), and logging out. We repeated each conversation 50 times and computed the
average duration. The results are presented in Figure 6.13. We can see that in the
case of positioning, the overhead is almost non-existent since there is no processing
time on the server as the data are already published. In the weather example, the
mediated conversation takes twice the time required to interact with the service us-
ing the native client. This is due to the use of Starlink underneath. While Starlink
provides a very flexible and generic approach for the generation of parsers and com-
posers, it comes with a considerable performance cost. This is one of the reasons that
led us to reuse existing libraries to generate parsers and composers that, although

141

Chapter 6. Implementation & Assessment

they are less generic, provide better performance. This problem is exacerbated in the
case of vehicle control where mediated conversations require 2.6 times more time to
be performed. The reason is the way that Starlink deals with extra actions (takeoff
and land).

6.3 Performance of MICS

In the previous section, we showed that automatically synthesised mediators enable
heterogeneous components to interoperate while introducing an acceptable overhead.
In Chapter 4, we proved that the synthesised mediator guarantees that the composed
system is deadlock-free. Let us now consider the time taken to synthesise mediators.
Table 6.3 summarises the time to perform each mediation step —ontology encod-
ing, interface matching, and synthesis of correct-by-construction mediators— for the
aforementioned case studies.

MSNP- WDAV - Blue- Amiando- GMES
XMPP GDocs Moon RegOnline Weather Positioning Vehicle

Number of concepts (Disjunctions) 10 (0) 78 (7) 34 (2) 8 (2) 283 (2) 283 (2) 283 (2)

Time for encoding (ms) 300 2502 1476 834 9689 9689 9689

|I1| × |I2| 9 × 5 9 × 7 1 × 5 2 × 2 3 × 4 1 × 1 7 × 11

Time for matching (ms) 37 672 481 247 342 20 567

|States(P1)| × |States(P2)| 7 × 4 3 × 2 2 × 6 2 × 3 2 × 2 1 × 1 2 × 4

Time for synthesis (ms) 4 5 5 5 2 <1 7

Table 6.3. Processing time (in milliseconds) for each mediation step

First, the time for ontology encoding mainly depends on the size, i.e., the number
of concepts, of the ontology. The greater the size of the ontology, the more time
it takes to encode it. The number of disjunctions also influences the encoding, for
example the ontology used for event management includes 8 concepts while the IM
ontology includes 10 concepts but it takes 3 times longer to encode the former as it
also includes disjunction concepts. The time to perform interface matchings depends
mainly on the type of matching encountered. In the case of one-to-one matching, this
time is minimal even with larger interfaces. In fact, computing one-to-one matchings
can be performed in polynomial time, which the constraint solver is able to detect

142

Chapter 6. Implementation & Assessment

and hence calculate the matching more efficiently. Finally, the time for the synthesis
is marginal even though theoretically complex. This is because the behaviour of
each component remains simple while the complexity emerges from the interaction
between components.

Figure 6.14 illustrates the time ratio for each mediation step. It can be seen that
the ontology encoding is the most time-consuming step. Still, ontologies are static
entities since they represent knowledge and understanding of the application domain
and are not specific to the components to be made interoperable. Hence, the ontology
encoding can be performed beforehand and used when the need arises. The time ratio
for interface matching varies greatly between case studies according to the type of
matching: whether one-to-one or one-to-many. Finally, the time for generating the
mediator based on the computed matchings represents only a small part of the overall
processing time and is negligible compared to ontology processing. So, although the
use of ontology allows us to reason about the semantics of data and operations and
hence increases the level of automation, it comes with a cost. While standards such
as OWL-S or WSMO amalgamate data semantics and behaviour and use ontology
to represent and reason about both, our approach only uses ontologies when needed
and relies on appropriate formalisms for behaviour analysis thereby making the best
use of both formalisms.

88%#

11%# 1%#
Ontology#Encoding# Interface#Matching# Mediator#Synthesis#

87,98%	

10,85%	
 1,17%	

Instant	
 Messaging	

78,70%	

21,14%	

0,16%	

File	
 Management	

75,23%	

24,52%	

0,25%	

Purchase	
 Order	

87,34%	

12,41%	
 0,25%	

Event	
 Management	

96,57%	

3,41%	
 0,02%	

GMES-­‐Weather	

99,78%	

0,21%	
 0,01%	

GMES-­‐Posi<oning	

94,41%	

5,52%	
 0,07%	

GMES-­‐Vehicle	
 Control	

Figure 6.14. Comparison of the time necessary for each mediation step

143

Chapter 6. Implementation & Assessment

6.4 Summary

In this chapter, we presented the MICS tool and used it for the synthesis and im-
plementation of mediators in various case studies. The experiments have shown that
MICS achieves the main goal of this thesis; that is, automatically enabling interop-
erability between functionally-compatible components that have different interfaces
and interact according to different behaviours at both the application and middleware
layers. In addition, the synthesised mediators only introduce a small overhead. More
specifically, the different case studies serve to justify the following claims:

• We automatically generate mediators that not only translate one action required
by one component into an action provided by the other component, but also
sequences of actions between components.

• We manage differences between the components’ interfaces and behaviours.
While interface matching identifies correspondences between the actions of the
components’ interfaces, the matching processes specify how the translation is
performed. During mediator synthesis, we consider how the matching processes
must be composed based on the components’ behaviours in order to guarantee
that the composed system is deadlock-free.

• We handle differences in the implementations of components at both the appli-
cation and middleware layers. The main idea is first to synthesise the mediator
using knowledge about the application domain, then to refine it by taking into
account the characteristics of the middleware solutions underneath.

• We synthesise mediators at runtime without requiring any human intervention.
When integrated in the Connect architecture, the synthesis of mediators may
obtain the models of functionally-compatible components using discovery and
learning to locate the components available in the environment dynamically
and complete their model automatically. The Connect approach enables in-
teroperability to be achieved in a future-proof manner.

Furthermore, although we did not concentrate on the performance of mediators per
se, we showed that the synthesised mediators introduce only a small overhead.

144

Chapter 7

Conclusion

“ To accomplish great things, we must not only act, but also dream; not
only plan, but also believe.”

— Anatole France, poet, journalist, and novelist (1844-1924)

At the beginning of this thesis, we asked a number of questions. How can I chat
with my friend on Yahoo! using my enterprise messaging service? How can I open
my Google Docs files using the Finder application on my Mac? How can a company
use the same application to order products from different providers? How can the
command and control centre of one country effectively use the resources offered by
another country in emergency situations? We subsequently defined an approach to
synthesise and implement mediators that enable interoperability in all the above
examples, thereby answering these questions. Our aim is to enable users to take
advantage of the services surrounding them seamlessly and to let developers focus
on creating innovative services rather than on plumbing to enable components to
interoperate. But on our way to answering the aforementioned questions, new ones
arise opening up perspectives for further research. In this concluding chapter, we
summarise our contributions and present future work.

7.1 Contributions

This thesis tackles interoperability between software components in ubiquitous com-
puting environments. We presented an approach to achieve interoperability based on

145

Chapter 7. Conclusion

the automated synthesis and implementation of mediators. Our contribution beyond
the state-of-the-art primarily lies in handling interoperability from the application
to the middleware layer in an integrated way. As depicted again in Figure 7.1, the
mediators we synthesise act as: (i) translators by ensuring the meaningful exchange
of information between components, (ii) controllers by coordinating the behaviours
of the components to ensure the absence of errors in their interaction, and (iii) mid-
dleware by enabling the interaction of components across the network so that each
component receives the data it expects at the right moment and in the right format.

Synthesising
Correct-by-Construction

Mediators

From Abstract to

Concrete Mediators
Generating Interface

Translators

Interoperability

Middleware
Controllers

Matchings Automatically

Figure 7.1. A multifaceted approach for interoperability

The synthesis and implementation of mediators is performed in several steps. The
first step is interface matching, which identifies the semantic correspondence between
the actions required by one component and those provided by the other. We incor-
porated the use of ontology reasoning within constraint solvers, by defining an en-
coding of the ontology relations using arithmetic operators supported by widespread
solvers, and use it to perform interface matching efficiently. For each identified corre-
spondence, we generate an associated matching process that performs the necessary
translations between the actions of the two components’ interfaces. The second step
is the synthesis of correct-by-construction mediators. To do so, we analyse the be-
haviours of components so as to generate the mediator that combines the matching
processes in a way that guarantees that the two components progress and reach their
final states without errors. The last step consists in making the synthesised mediator
concrete by incorporating all the details about the interaction of components. To do
so, we compute the translation functions necessary to reconcile the differences in the

146

Chapter 7. Conclusion

syntax of the input/output data used by each component and coordinate the different
interaction patterns that can be used by middleware solutions.

We developed the MICS tool to carry out the automated synthesis and implemen-
tation of mediators and experimented it with a number of case studies that demon-
strated that the synthesised mediators enable components to interoperate while intro-
ducing only a small overhead. The systematic approach for mediator synthesis lays
firm foundations for dealing with interoperability in an increasingly heterogeneous
world.

7.2 Future Work

Automated mediator synthesis and implementation offers opportunities both in the
short term for investigating extensions and enhancements to the approach and the
MICS tool, and in the long term for exploring new research directions.

7.2.1 Mediator Synthesis as a Service

In this thesis, we identified the several roles a mediator must play: translator, con-
troller, and middleware. We then defined a multifaceted approach that deals with
them all: automated generation of interface matchings to realise translation, compu-
tation of correct-by-construction mediators to deal with control, and implementation
of the mediator to deal with middleware concerns. Our approach handles all the steps
without human intervention. Nonetheless, we require rich models of the components
and extract matching for which automated translation can be generated. Another
alternative would be to accept additional transformations by the developers. This
raises the issue of the validity of user-specified matchings but could enable a more
flexible way to perform the synthesis. In fact, we can augment the matching com-
putation with an interactive and graphical environment, such as that proposed by
ITACA [CMS+09], to allow developers to specify additional matchings.

It is our belief that the formal definition of mediator synthesis, as we presented
it, allows us to define a mediator synthesis service where each step of mediation
can be performed using different methods while the appropriate method is selected
according to the context, as depicted in Figure 7.2. Indeed, as described in Chapter 2,
many approaches have been proposed to perform one mediation step. Most of the

147

Chapter 7. Conclusion

time, these approaches differ in their requirements; for example, some require user
intervention either to define interface matching or goals. Such a service would also
allow us to compare existing approaches from both a qualitative and a quantitative
perspective.

Interface
Matchings

Computing
Matchings

Mediator
Synthesis

Interface matching
using

constraint
programming

Component
Repository

Mediator
Repository

Ontology
Repository

Goals

Bayesian matching
of service
interfaces

...

...
Mapping-driven

mediator
synthesis

ITACA
SMT-based

mediator
synthesis

< β1 , <ρ2> >
< α1 , <δ2, λ2> >
< <α1,β1> , <α2,δ2> >

MICS

+ Multi-Party Mediators

+ Multiple Ontologies

+ Partial Matching

+Non-Functional Properties

Figure 7.2. Mediator Synthesis as a Service

Furthermore, we can build upon existing solutions and extend the work of this
thesis, and MICS, in many directions as discussed below.

Multi-Party Mediators

With the advent of social-based interactions and the increased emphasis on collabo-
ration, interoperability between multiple —more than two— components is gaining
momentum. One simple solution to handle this case is by combining assembly meth-
ods (e.g., [SMK11]) with pairwise mediators. The former consider the structural
constraints and specify a coarse-grained composition of components based on their
capabilities, while the latter take care of enforcing this composition despite the in-
terface and behavioural differences that may exist between each pair of components.

148

Chapter 7. Conclusion

Dealing with Multiple Ontologies

It is crucial to think about ontologies as a means to interoperability rather than
universality. Hence, it is often the case that many ontologies co-exist and need
to be matched with one another. Ontology matching techniques primarily exploit
knowledge explicitly encoded in the ontology rather than trying to guess the mean-
ing encoded in the schemas, as is the case with XML schemas, for example. More
specifically, while XML schema matching techniques rely on the use of statistical
measures of syntactic similarity, ontologies deal with axioms and how they can be
put together [SE05]. This can further benefit from the existence of upper ontolo-
gies such as DOLCE [GGM+02] and SUMO [NP01], which are domain-independent
ontologies. Still, these matching techniques may induce some inaccuracy that the
synthesis algorithm must deal with. In the future, we aim to extend our model so as
to consider the heterogeneity of the ontologies themselves and reason about interface
matching based on imprecise information.

Partial Matching

In our approach, we postulate that all actions required by one component must
match with an action or sequence of actions provided by the other component. This
requirement allows us to prove that the mediated system is free from deadlocks.
Nevertheless, it is interesting to authorise partial correspondence between actions so
long as the task required by users or developers can be achieved. Indeed, the user may
be interested in achieving only one specific task and we can permit interaction between
components if we can mediate their behaviours in order to perform this specific task.
Therefore, we can use projections [LS84] to retain only the components’ behaviours
related to this task and then perform the mediation.

Dealing with Non-Functional Properties

In this thesis, we focused on the functional characteristics of components represented
by their capabilities, interfaces, and behaviours. Non-functional properties allow us
to represent how well the component achieves its functionality. There are some non-
functional properties that are very similar to functional ones and can be represented
using the same formalisms. For example, the work of Spitznagel and Garlan [SG03]
specifically targets dependability using FSP and connector transformations. However,

149

Chapter 7. Conclusion

some other non-functional properties, mainly quantitative ones, require changing the
formalism to be able to perform automated reasoning.

7.2.2 Mediator Evolution

The vision of eternal interoperability we presented in Chapter 3 claims that any
solution to interoperability may turn out to be inappropriate over time. Hence, the
mediator generated at a given time may become unsuitable as time passes or the
environment changes. The idea is to make the mediator evolve. Closed-loop systems
have been recognised as fundamental for dealing with change [BDNG06, Gar10].
Hence, the architecture of enablers supporting the creation of mediators can also be
used to make the mediator evolve, as depicted in Figure 7.3.

Discovery

Learning

SynthesisMonitoring

Evolution of the Component
or the Component's Model

Changes
in Ontology

New Components

Generating/Updating the
 Components' Models

Generating the
 Mediator

Figure 7.3. Towards mediator evolution

The main threat to the validity of the mediator is the inaccuracy in the models
of the components. Indeed, the correctness of the mediator is conditioned by the
correctness of the behaviours of the components for which it was synthesised. While
machine learning significantly improves automation by completing the model of the
component based on its interface, it also induces some inaccuracy that may lead the
system to reach an erroneous state. This inaccuracy is inherent in learning techniques
and cannot totally be removed. Hence, we should accept this imprecision and apply
engineering techniques that are intended to increase precision over time, such as a
control loop in which the system is continuously monitored so as to evaluate the
correspondence between the actual component and its model. Mediator evolution
aims at preserving/re-establishing a mediator that becomes invalid because of some
uncontrolled changes either in the components or their models.

150

Chapter 7. Conclusion

When the model of a component changes due to behavioural learning, the syn-
thesis of the mediator can be based on the previous interface matching and ontology
encoding, which are the most time-consuming phases. When one of the components
changes its interface, then the synthesis has to resume from interface matching. Fi-
nally, if the ontology evolves, the synthesis has to be restarted from the ontology
encoding. In this context, incremental re-synthesis would be very important to make
the mediator evolve at a low cost.

Inaccuracy may also be due to imprecision in the ontology, especially if it is built
by merging several ontologies. In this case, not only the mediator has to evolve,
but so must the ontology in order to reflect better understanding of the domain.
Hence, the automated synthesis and implementation of mediators open new research
perspectives yet to be explored.

7.3 One More Thing...

At school we were used to having teachers giving us rules (let us say for addition) and
asking us to apply them on several examples. Moving up to higher education, the
teachers started giving us more examples, which we had to investigate in order to find
the rules for ourselves. However, when doing a PhD, neither the examples nor the
rules are available. We have to define the problem, find representative examples and
infer the rules ourselves. Nevertheless, while we may be able to apply or extract rules
on our own, defining a problem for a PhD can only be done through discussion and
exchange with other people. Why am I telling you that? Let us go back to computers.
At the beginning, software development was simply giving rules or instructions to
computers in the form of programs; the computer executes the rules and gives us the
correct results. Nowadays, there is an increasing emphasis on learning as a means to
infer programs from examples. Enabling computers to learn is fast becoming reality
with some significant success stories, e.g., IBM Watson. But the computers of the
future should be able to observe the world, find their own examples and infer the
appropriate rules. They should be able to innovate, as PhD students seek to do.
Of course, this can only be done if computers can interact and share knowledge not
only with humans, as is the case with ontologies, but also with other computers.
While major research challenges remain, we hope that this thesis demonstrated the
potential of the automated synthesis and implementation of mediators to contribute
to this vision, by enabling the seamless interaction of computers.

151

Appendix A

FSP Syntax & Semantics

In this appendix we succinctly define the syntax and semantics of the FSP pro-
cess algebra. We refer the interested reader to [MK06] for a complete reference.

Definitions

αP The alphabet of a process P
END Predefined process, denotes the state in

which a process successfully terminates

set S Defines a set of action labels
[i : S] Binds the variable i to a value from S

Primitive Processes (P)

a→ P Action prefix
a→ P |b→ P Choice
P ;Q Sequential composition
P (X =′ a) Parameterised process: P is described using

parameter X and modelled for a particular
parameter value, P (a1)

P/{new_1/old_1, ..., new_n/old_n} Relabelling

153

Appendix A. FSP Syntax & Semantics

Composite Processes (‖P)

P‖Q Parallel composition
forall [i : 1..n] P (i) Replicator construct: equivalent to the par-

allel composition (P (1)‖...‖P (n)).

a : P Process labelling

FSP processes describe actions (events) that occur in sequence, and choices be-
tween event sequences. Each process has an alphabet of the events that it is aware of
(and either engages in or refuses to engage in). There are two types of processes:
primitive processes and composite processes. Primitive processes are constructed
through action prefix, choice, and sequential composition. Composite processes are
constructed using parallel composition or process relabelling. When composed in par-
allel, processes synchronise on shared events: if processes P and Q are composed in
parallel as P ||Q, events that are in the alphabet of only one of the two processes can
occur independently of the other process, but an event that is in the alphabets of both
processes cannot occur until the two of them are willing to engage in it. The replica-
tor forall is a convenient syntactic construct used to specify parallel composition over
a set of processes. Processes can optionally be parameterised and have relabelling,
hiding or extension over their alphabet. A composite process is distinguished from a
primitive process by prefixing its definition with ‖.

The semantics of FSP is defined in terms of Labelled Transition Systems (LTS).
The LTS associated with an FSP process P is a quadruple lts(P) = 〈S,A,∆, s0〉
where:

• S is a finite set of states,

• A = αP ∪ τ represents the alphabet of the LTS. τ is used to denote an internal
action that cannot be observed by the environment of an LTS,

• ∆ ⊆ S×A×S denotes a transition relation that specifies that if the process is
in state s ∈ S and engages in an action a, then it transits to state s′, written
s

a→ s′. s s⇒ s′, X = 〈a1, ..., an〉, ai ∈ I is a shorthand for s a1→ s1...
an→ s′, and

• s0 ∈ S indicates the initial state.

In addition, an LTS terminates if there is a state e ∈ S such that @(e, a, s0) ∈ ∆.

154

Appendix A. FSP Syntax & Semantics

Let lts(P) = 〈SP , AP ,∆P , s0P 〉 and lts(Q) = 〈SQ, AQ,∆Q, s0Q〉 be the LTSs asso-
ciated with P and Q respectively. The semantics of FSP is as follows.

FSP Semantics

END lts(END) =< {e}, {τ}, {}, e > where e is a terminating state

a→ P lts(a → P) =< SP ∪ {sn}, AP ∪ {a},∆P ∪ {(sn, a, s0P)}, sn > where
sn /∈ SP

a→ P |b→ Q lts(a→ P |b→ Q) =<SP ∪ SQ ∪ {sn}, AP∪
AQ∪{a, b},∆P ∪∆Q∪{(sn, a, s0P), (sn, b, s0Q)},sn> where sn /∈ SP and
sn /∈ SQ

P ;Q lts(P ;Q)=<SP ∪ SQ, AP ∪ AQ,∆P ∪∆Q, s0P > where s0Q = ep and ep
is terminating state of lts(P)

P‖Q lts(P‖Q) =< SP ×SQ, AP ∪AQ,∆,(s0P , s0Q) > where ∆ is the smallest
relation satisfying the rules

P
a→ P ′, 6 ∃a ∈ αQ
P‖Q a→ P ′‖Q

Q
a→ Q′, 6 ∃a ∈ αP
P‖Q a→ P‖Q′

P
a→ P ′, Q

a→ Q′, a 6= τ

P‖Q a→ P ′‖Q′

155

Appendix B

DL Syntax & Semantics

In this appendix we introduce the basic DL constructs used in the paper. In particu-
lar, we define how composite concepts can be built from them inductively with concept
constructors and role constructors. We refer the interested reader to [BCM+03] for a
complete reference.

An interpretation I consists of a non-empty set ∆I (the domain of the interpre-
tation) and an interpretation function, which assigns to every atomic concept C a set
CI ⊆ ∆I and to every atomic object property R a binary relation RI ⊆ ∆I ×∆I . C
and D are concepts and R is an object property. The interpretation is extended to
concept description following inductive definitions.

Syntax Semantics

Atomic concept A AI ⊆ ∆I

Top built-in concept > >I = ∆I

Bottom built-in concept ⊥ ⊥I = ∅
Complement ¬C (¬C)I = ∆I \ CI
Conjunction C uD (C uD)I = CI ∩DI
Disjunction C tD (C tD)I = CI ∪DI
Universal quantifier ∀R.C (∀R.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ RI ⇒ y ∈ CI}
Existential quantifier ∃R.C (∃R.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ RI ∧ y ∈ CI}
Aggregation C ⊕D (C ⊕D)I = {x ∈ ∆I | ∃y.(x, y) ∈ hasPartI ∧ y ∈

CI ∧ ∃z.(x, z) ∈ hasPartI ∧ z ∈ DI}

157

References

[ABL+07] M. E. Aranguren, S. Bechhofer, P. W. Lord, U. Sattler, and R. D.
Stevens. Understanding and using the meaning of statements in a bio-
ontology: recasting the gene ontology in OWL. BMC bioinformatics,
8(1):57, 2007. 44

[AG97] R. Allen and D. Garlan. A formal basis for architectural connection.
ACM Transactions Software Engineering Methodology, 6(3):213–249,
1997. 22, 23, 26, 51

[Ang87] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987. 63

[BBC05] A. Bracciali, A. Brogi, and C. Canal. A formal approach to component
adaptation. Journal of Systems and Software, 74(1):45–54, 2005. 12

[BBG+11] G. S. Blair, A. Bennaceur, N. Georgantas, P. Grace, V. Issarny,
V. Nundloll, and M. Paolucci. The role of ontologies in emergent mid-
dleware: Supporting interoperability in complex distributed systems.
In Proc. of Middleware, pages 410–430, 2011. 15

[BBG+13] N. Bencomo, A. Bennaceur, P. Grace, G. S. Blair, and V. Issarny. The
role of models@run.time in supporting on-the-fly interoperability. Com-
puting, 95(3):167–190, 2013. 15

[BCI+13] A. Bennaceur, C. Chilton, M. Isberner, , and B. Jonsson. Automated
mediator synthesis: Combining behavioural and ontological reasoning.
In Proc. of the 11th IEEE International Conference on Software Engi-
neering and Formal Methods, SEFM, 2013. to appear. 15

159

REFERENCES

[BCK12] L. Bass, P. Clements, and R. Kazman. Software Architecture in Prac-
tice. SEI Series in Software Engineering. Pearson Education, 2012. 3

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider. The Description Logic Handbook. Cambridge University
Press, 2003. 44, 45, 157

[BCV+08] M. Brambilla, S. Ceri, E. Valle, F. Facca, and C. Tziviskou. A software
engineering approach based on WebML and BPMN to the mediation
scenario of the sws challenge. In Semantic Web Services Challenge:
Results from the First Year, pages 51–70. Springer, 2008. 133, 135

[BDNG06] L. Baresi, E. Di Nitto, and C. Ghezzi. Toward open-world software:
Issue and challenges. IEEE Computer, 39(10):36–43, 2006. 150

[BGR11] Y.-D. Bromberg, P. Grace, and L. Réveillère. Starlink: runtime interop-
erability between heterogeneous middleware protocols. In International
Conference on Distributed Computing Systems, ICDCS, pages 446–455,
2011. 33, 51, 58, 59

[BHL+02] M. H. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, D. V. McDer-
mott, S. A. McIlraith, S. Narayanan, M. Paolucci, T. R. Payne, and
K. P. Sycara. Daml-s: Web service description for the semantic web. In
International Semantic Web Conference, ISWC, pages 348–363, 2002.
46, 51

[BI13] A. Bennaceur and V. Issarny. Automated synthesis of mediators to
support component interoperability. IEEE Transactions on Software
Engineering, 2013. Submitted. 15

[BIR+11] A. Bennaceur, V. Issarny, J. Richard, M. Alessandro, S. Romina, and
D. Sykes. Automatic service categorisation through machine learning in
emergent middleware. In Software Technologies Concertation on Formal
Methods for Components and Objects, FMCO, pages 133–149, 2011. 15

[BIS+12] A. Bennaceur, V. Issarny, D. Sykes, F. Howar, M. Isberner, B. Stef-
fen, R. Johansson, and A. Moschitti. Machine learning for emergent

160

REFERENCES

middleware. In Proc. of the Joint workshop on Intelligent Methods for
Software System Engineering, JIMSE, 2012. 15

[BIST12] A. Bennaceur, V. Issarny, R. Spalazzese, and S. Tyagi. Achieving inter-
operability through semantics-based technologies: The instant messag-
ing case. In 11th International Semantic Web Conference, ISWC, pages
17–33, 2012. 15

[BLHL+01] T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web. Scien-
tific american, 284(5):28–37, 2001. 4, 12, 44

[BN84] A. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM
Transactions Computing System, 2(1):39–59, 1984. 105

[BOR04] S. Becker, S. Overhage, and R. Reussner. Classifying software compo-
nent interoperability errors to support component adaption. In Proc.
of the 7th International Symposium on Component-Based Software En-
gineering, CBSE, pages 68–83, 2004. 19

[BPGG11] G. Blair, M. Paolucci, P. Grace, and N. Georgantas. Interoperability in
complex distributed systems. In M. Bernardo and V. Issarny, editors,
SFM-11: 11th International School on Formal Methods for the Design
of Computer, Communication and Software Systems – Connectors for
Eternal Networked Software Systems, pages 1–26. Springer Verlag, 2011.
31

[BPT10] P. Bertoli, M. Pistore, and P. Traverso. Automated composition of web
services via planning in asynchronous domains. Artif. Intell., 174(3-
4):316–361, 2010. 39, 51

[BRA+11] A. Bennaceur, J. Richard, M. Alessandro, S. Romina, D. Sykes,
R. Saadi, and V. Issarny. Inferring affordances using learning tech-
niques. In International Workshop on Eternal Systems, EternalS, pages
79–87, 2011. 15

[BRLM09] Y.-D. Bromberg, L. Réveillère, J. L. Lawall, and G. Muller. Automatic
generation of network protocol gateways. In Proc. of Middleware, 2009.
33, 51

161

REFERENCES

[BZ83] D. Brand and P. Zafiropulo. On communicating finite-state machines.
Journal of the ACM, 30(2):323–342, 1983. 59

[BZ01] N. Busi and G. Zavattaro. Publish/subscribe vs. shared dataspace co-
ordination infrastructures: Is it just a matter of taste? In Proc. of the
10th IEEE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises, WETICE, pages 328–333, 2001.
116

[CDKB12] G. F. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed
systems: concepts and design, Fifth Edition. Addison-Wesley Longman,
2012. 104

[CK10] R. Calinescu and S. Kikuchi. Formal methods @ runtime. In 16th Mon-
terey Workshop on Foundations of Computer Software. Modeling, De-
velopment, and Verification of Adaptive Systems, pages 122–135, 2010.
12

[CL89] K. L. Calvert and S. S. Lam. Deriving a protocol converter: A top-down
method. In Proc. of the Symposium on Communications Architectures
& Protocols, SIGCOMM, pages 247–258, 1989. 38, 51

[CM05] E. Cimpian and A. Mocan. WSMX process mediation based on chore-
ographies. In Proc. of Business Process Management Workshop, pages
130–143, 2005. 48, 51

[CMP08] M. Ceriotti, A. L. Murphy, and G. P. Picco. Data sharing vs. message
passing: synergy or incompatibility?: an implementation-driven case
study. In Proc. of the ACM Symposium on Applied Computing, SAC,
pages 100–107, 2008. 11, 36, 116

[CMP09] H. Chang, L. Mariani, and M. Pezzè. In-field healing of integration prob-
lems with COTS components. In International Conference on Software
Engineering, ICSE, pages 166–176, 2009. 29, 51

[CMS+09] J. Cámara, J. A. Martín, G. Salaün, J. Cubo, M. Ouederni, C. Canal,
and E. Pimentel. ITACA: An integrated toolbox for the automatic com-

162

REFERENCES

position and adaptation of web services. In Proc. of the International
Conference on Software Engineering, ICSE, pages 627–630, 2009. 147

[Con12] C. Consortium. Connect Deliverable D6.4: Assessment report: Ex-
perimenting with CONNECT in Systems of Systems, and Mobile Envi-
ronments. FET IP Connect EU project., 2012. 8, 57, 140

[CW96] E. M. Clarke and J. M. Wing. Formal methods: State of the art and
future directions. ACM Computing Surveys, 28(4):626–643, 1996. 11

[DCtTdK11] K. Dentler, R. Cornet, A. ten Teije, and N. de Keizer. Comparison of
reasoners for large ontologies in the OWL 2 EL profile. Semantic Web,
2(2):71–87, 2011. 45

[DG09] J. Davies and J. Gibbons. Formal methods for future interoperability.
SIGCSE Bulletin, 41(2):60–64, 2009. 12

[dN12] M. d’Aquin and N. F. Noy. Where to publish and find ontologies? a
survey of ontology libraries. J. Web Sem., 11:96–111, 2012. 44

[DPT09] G. Denaro, M. Pezzè, and D. Tosi. Ensuring interoperable service-
oriented systems through engineered self-healing. In Proc. of the 7th
joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/SIGSOFT FSE, pages 253–262, 2009. 29, 51

[Fos08] H. Foster. WS-Engineer 2008. In Proc. of the 6th International Con-
ference on Service-Oriented Computing, ICSOC, pages 728–729, 2008.
22

[Fre91] E. C. Freuder. Eliminating interchangeable values in constraint satis-
faction problems. In Proc. of the 9th National Conference on Artificial
Intelligence, AAAI, pages 227–233, 1991. 82

[GAO95] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or
why it’s hard to build systems out of existing parts. In Proc. of the
17th International Conference on Software Engineering, ICSE, pages
179–185, 1995. 21, 51

163

REFERENCES

[Gar10] D. Garlan. Software engineering in an uncertain world. In Proc. of the
Workshop on Future of Software Engineering Research, FoSER, pages
125–128, 2010. 150

[GBS03] P. Grace, G. S. Blair, and S. Samuel. ReMMoC: A reflective mid-
dleware to support mobile client interoperability. In Proc. of the OTM
Confederated International Conferences CoopIS/DOA/ODBASE, pages
1170–1187, 2003. 32, 51

[GGM+02] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider.
Sweetening ontologies with DOLCE. In Proc. of the 13th International
Conference on Knowledge Engineering and Knowledge Management,
EKAW, pages 166–181, 2002. 149

[GIBM+10] N. Georgantas, V. Issarny, S. Ben Mokhtar, Y.-D. Bromberg, S. Bianco,
G. Thomson, P.-G. Raverdy, A. Urbieta, and R. S. Cardoso. Middle-
ware architecture for ambient intelligence in the networked home. In
H. Nakashima, H. Aghajan, and J. Augusto, editors, Handbook of Am-
bient Intelligence and Smart Environments, pages 1139–1169. Springer,
2010. 34, 51

[GMW12] C. Gierds, A. J. Mooij, and K. Wolf. Reducing adapter synthesis to con-
troller synthesis. IEEE Transactions on Services Computing, 5(1):72–
85, 2012. 39, 51

[GR08] J. Golbeck and M. Rothstein. Linking social networks on the web with
foaf: A semantic web case study. In Proc. of the Twenty-Third AAAI
Conference on Artificial Intelligence, pages 1138–1143, 2008. 44

[Gru93] T. R. Gruber. A translation approach to portable ontology specifica-
tions. Knowledge Acquisition, 5(2):199–220, June 1993. 12

[Gru09] T. Gruber. Ontology. In L. Liu and M. T. Özsu, editors, Encyclopedia
of Database Systems, pages 1963–1965. Springer US, 2009. 4, 44

[GRW+08] K. Gomadam, A. Ranabahu, Z. Wu, A. Sheth, and J. Miller. A declara-
tive approach using SAWSDL and semantic templates towards process

164

REFERENCES

mediation. In Semantic Web Services Challenge: Results from the First
Year, pages 101–118. Springer, 2008. 134, 135

[Gua04] N. Guarino. Helping people (and machines) understanding each other:
The role of formal ontology. In CoopIS/DOA/ODBASE (1), page 599,
2004. 44

[Hoa04] C. A. R. Hoare. Process algebra: A unifying approach. In 25 Years
Communicating Sequential Processes, 2004. 26

[IB13] V. Issarny and A. Bennaceur. Composing distributed systems: Over-
coming the interoperability challenge. In HATS International School on
Formal Models for Components and Objects, HATS-FMCO. Springer
Verlag, 2013. to appear. 15

[IBB11] V. Issarny, A. Bennaceur, and Y.-D. Bromberg. Middleware-layer con-
nector synthesis: Beyond state of the art in middleware interoperability.
In M. Bernardo and V. Issarny, editors, SFM-11: 11th International
School on Formal Methods for the Design of Computer, Communica-
tion and Software Systems – Connectors for Eternal Networked Soft-
ware Systems, pages 217–255. Springer Verlag, 2011. 15

[ICG07] V. Issarny, M. Caporuscio, and N. Georgantas. A perspective on the fu-
ture of middleware-based software engineering. In Proc. of the Workshop
on the Future of Software Engineering, FOSE, pages 244–258, 2007. 20,
104

[IEE90] IEEE. IEEE standard glossary of software engineering terminology.
IEEE Standard, 610121990:121990, 1990. 3

[ISO11] ISO/IEC TR 29110-1. Software engineering–lifecycle profiles for very
small entities (vses)–part 1: Overview, 2.33. Technical report, ISO,
2011. 4

[IT13] P. Inverardi and M. Tivoli. Automatic synthesis of modular connectors
via composition of protocol mediation patterns. In Proc. of the 35th
International Conference on Software Engineering, ICSE, pages 3–12,
2013. 28, 51

165

REFERENCES

[JGGA+13] R. Jardim-Gonçalves, A. Grilo, C. Agostinho, F. Lampathaki, and
Y. Charalabidis. Systematisation of interoperability body of knowledge:
the foundation for enterprise interoperability as a science. Enterprise
IS, 7(1):7–32, 2013. 2

[JM03] U. Junker and D. Mailharro. The logic of ilog (j) configurator: Combin-
ing constraint programming with a description logic. In Proc. of IJCAI
Workshop on Configuration, volume 3, pages 13–20, 2003. 79

[Joa98] T. Joachims. Text categorization with suport vector machines: Learning
with many relevant features. In Proc. of the 10th European Conference
on Machine Learning, ECML, pages 137–142, 1998. 62

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Proc.
of a Symposium on the Complexity of Computer Computations, pages
85–103, 1972. 80

[KBP+10] I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic. Using
dynamic execution traces and program invariants to enhance behav-
ioral model inference. In Proc. of the 32nd International Conference on
Software Engineering, ICSE (2), pages 179–182, 2010. 63

[KC09] H. Kubicek and R. Cimander. Three dimensions of organizational in-
teroperability. European Journal of ePractice, 6, 2009. 2

[Kel76] R. M. Keller. Formal verification of parallel programs. Communications
of the ACM, 19(7):371–384, 1976. 23

[KMSN08] C. Kubczak, T. Margaria, B. Steffen, and R. Nagel. Service-oriented
mediation with jABC/jETI. In Semantic Web Services Challenge: Re-
sults from the First Year, pages 71–99. Springer, 2008. 134, 135

[KVBF07] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell. SAWSDL: Semantic
annotations for WSDL and XML schema. IEEE Internet Computing,
11(6):60–67, 2007. 49

[Lab03] F. Laburthe. Constraints over ontologies. In Proc. of the 9th Interna-
tional Conference on Principles and Practice of Constraint Program-
ming,CP, pages 878–882, 2003. 80

166

REFERENCES

[Lam88] S. S. Lam. Protocol conversion. IEEE Transaction Software Engineer-
ing, 14(3):353–362, 1988. 40, 51

[Lar03] E. Larson. Interoperability of us and nato allied air forces: Supporting
data and case studies. Technical Report 1603, RAND Corporation,
2003. 5

[LMP08] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of soft-
ware behavioral models. In Proc. of the International Conference on
Software Engineering, ICSE, pages 501–510, 2008. 63

[LMSW08] G. A. Lewis, E. J. Morris, S. Simanta, and L. Wrage. Why standards are
not enough to guarantee end-to-end interoperability. In Seventh Inter-
national Conference on Composition-Based Software Systems, ICCBSS,
pages 164–173, 2008. 4

[LS84] S. S. Lam and A. U. Shankar. Protocol verification via projections.
IEEE Transactions Software Engineering, 10(4):325–342, 1984. 149

[LW94] B. Liskov and J. M. Wing. A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems, TOPLAS,
16(6):1811–1841, 1994. 74

[MBM+07] D. L. Martin, M. H. Burstein, D. V. McDermott, S. A. McIlraith,
M. Paolucci, K. P. Sycara, D. L. McGuinness, E. Sirin, and N. Srini-
vasan. Bringing semantics to web services with OWL-S. In Proc. if the
World Wide Web conference, WWW’07, pages 243–277, 2007. 46, 51

[MDT03] N. Medvidovic, E. M. Dashofy, and R. N. Taylor. The role of middleware
in architecture-based software development. International Journal of
Software Engineering and Knowledge Engineering, 13(4):367–393, 2003.
20, 28, 30

[Men07] F. Menge. Enterprise Service Bus. In Proc. of the Free and open source
Software conf., 2007. 35, 51

[Mic10] Microsoft Press. Yahoo! and microsoft bridge global instant messaging
communities, 2010. online. 129

167

REFERENCES

[MK06] J. Magee and J. Kramer. Concurrency : State models and Java pro-
grams. Hoboken (N.J.) : Wiley, 2006. 22, 23, 153

[MLM+04] E. Morris, L. Levine, C. Meyers, P. Place, and D. Plakosh. System of
systems interoperability (sosi): final report. Technical report, Software
Engineering Institute, Carnegie Mellon University, 2004. 5

[MPR06] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A coordination
model and middleware supporting mobility of hosts and agents. ACM
Transactions Software Engineering Methodology, 15(3), 2006. 107

[MPS12] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of service proto-
cols using process algebra and on-the-fly reduction techniques. IEEE
Transactions Software Engineering, 38(4):755–777, 2012. 12, 42, 51

[MSHM11] M. Merten, B. Steffen, F. Howar, and T. Margaria. Next genera-
tion LearnLib. In Proc. of the 17th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS,
pages 220–223, 2011. 63

[MSZ01] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE
Intelligent Systems, 16(2):46–53, 2001. 12

[NBCT06] H. R. M. Nezhad, B. Benatallah, F. Casati, and F. Toumani. Web
services interoperability specifications. IEEE Computer, 39(5):24–32,
2006. 6, 36

[NBM+07] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati.
Semi-automated adaptation of service interactions. In Proc. of the 16th
International Conference on World Wide Web, WWW, pages 993–1002,
2007. 42

[Nie93] J. Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1993. 129

[NP01] I. Niles and A. Pease. Towards a standard upper ontology. In Proc. of
the 2nd International Conference on Formal Ontology in Information
Systems, FOIS, pages 2–9, 2001. 149

168

REFERENCES

[NXB10] H. R. M. Nezhad, G. Y. Xu, and B. Benatallah. Protocol-aware match-
ing of web service interfaces for adapter development. In Proc. of the
19th International Conference on World Wide Web, WWW, 2010. 42,
51

[PKPS02] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic
matching of web services capabilities. In Proc. of the First International
Semantic Web Conference, ISWC, 2002. 47

[PMLZ08] C. Petrie, T. Margaria, H. Lausen, and M. Zaremba. Semantic Web
Services Challenge: Results from the First Year, volume 8. Springer,
2008. 8, 124, 131, 133

[PSDZ12] D. Papadimitriou, B. Sales, P. Demeester, and T. Zahariadis. From in-
ternet architecture research to standards. In Future Internet Assembly,
pages 68–80, 2012. 4

[Rad12] Radicati Group. Instant Messaging Market 12-16, 2012. 7

[RP05] R. G. Raskin and M. J. Pan. Knowledge representation in the semantic
web for earth and environmental terminology (SWEET). Computers &
Geosciences, 31(9):1119–1125, 2005. 44

[RVBW06] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint program-
ming, volume 35. Elsevier Science, 2006. 79, 81

[Sal10] G. Salaün. Analysis and verification of service interaction protocols -
a brief survey. In Proc. of the 4th International Workshop on Testing,
Analysis and Verification of Web Software, TAV-WEB, pages 75–86,
2010. 12

[SE05] P. Shvaiko and J. Euzenat. A survey of schema-based matching ap-
proaches. Journal of Data Semantics IV, pages 146–171, 2005. 99,
149

[SEC12] C. SECUR-ED. Deliverable d22.1: Interoperability concept. fp7
SECUR-ED EU project., 2012. 5

169

REFERENCES

[SG03] B. Spitznagel and D. Garlan. A compositional formalization of connec-
tor wrappers. In Proc. of the 25th International Conference on Software
Engineering, ICSE, pages 374–384, 2003. 22, 28, 51, 149

[Sha93] M. Shaw. Procedure calls are the assembly language of software inter-
connection: Connectors deserve first-class status. In ICSE Workshop
on Studies of Software Design, pages 17–32, 1993. 9, 19

[SMH+10] L. Seligman, P. Mork, A. Y. Halevy, K. P. Smith, M. J. Carey, K. Chen,
C. Wolf, J. Madhavan, A. Kannan, and D. Burdick. Openii: an open
source information integration toolkit. In Proc. of the ACM SIGMOD
International Conference on Management of Data, SIGMOD, pages
1057–1060, 2010. 99

[SMK11] D. Sykes, J. Magee, and J. Kramer. Flashmob: distributed adaptive
self-assembly. In Proc. of the ICSE Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS, pages 100–109, 2011.
148

[SYY74] G. Salton, C. S. Yang, and C. T. Yu. Contribution to the theory of
indexing. In IFIP Congress, pages 584–590, 1974. 62

[TMD09] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software architecture:
foundations, theory, and practice. Hoboken (N.J.) : Wiley, 2009. 4, 19,
20

[Tol03] A. Tolk. Beyond technical interoperability - introducing a reference
model for measures of merit for coalition interoperability. In Proc. of the
International Comamand and Control Research and Technology Sympo-
sium, 2003. 2

[TVS06] A. Tanenbaum and M. Van Steen. Distributed systems: principles and
paradigms - Second Edition. Prentice Hall, 2006. 3, 5, 10, 104

[TW10] A. S. Tanenbaum and D. J. Wetherall. Computer networks (5th edition).
Prentice Hall, 2010. 4

170

REFERENCES

[UCJ09] J. Ullberg, D. Chen, and P. Johnson. Barriers to enterprise interop-
erability. In Proc. of the 2nd International Workshop on Enterprise
Interoperability, IWEI, pages 13–24, 2009. 19

[VHPK04] T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. PolyORB: A
schizophrenic middleware to build versatile reliable distributed appli-
cations. In Proc. of the 9th International Conference on Reliable Soft-
ware Technologies Reliable Software Technologies, Ada-Europe, pages
106–119, 2004. 32, 51

[VNS09] R. Vaculín, R. Neruda, and K. P. Sycara. The process mediation frame-
work for semantic web services. International Journal of Agent-Oriented
Software Engineering, IJAOSE, 3(1):27–58, 2009. 47

[VZMM08] T. Vitvar, M. Zaremba, M. Moran, and A. Mocan. Mediation using
WSMO, WSML and WSMX. In Semantic Web Services Challenge:
Results from the First Year, pages 31–49. Springer, 2008. 133, 135

[Wie92] G. Wiederhold. Mediators in the architecture of future information
systems. IEEE Computer, 25(3):38–49, 1992. 5

[YS97] D. M. Yellin and R. E. Strom. Protocol specifications and component
adaptors. ACM Transactions on Programming Languages and System,
TOPLAS, 19(2):292–333, 1997. 12, 41, 51

[Zhu12] W. Zhu. Semantic mediation bus: An ontology-based runtime infras-
tructure for service interoperability. In Proc. of the 16th International
on Enterprise Distributed Object Computing Conference Workshops,
EDOCW, pages 140 –145, sept. 2012. 49, 51

171

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Case Studies
	1.3 Influences
	1.4 Contributions
	1.5 Thesis Outline

	2 Interoperability: A Landscape of the Research Field
	2.1 The Software Architecture Perspective: Understanding Interoperability
	2.1.1 Formal Reasoning about Interoperability
	2.1.2 Mediators to Support Interoperability
	2.1.3 Mediation in Ubiquitous Computing Environments

	2.2 The Middleware Perspective: Implementing Mediators
	2.2.1 Universal Middleware
	2.2.2 Middleware Bridges
	2.2.3 Service Buses

	2.3 The Formal Methods Perspective: Synthesising Mediators
	2.3.1 Mediator Synthesis Using a Specification of the Composed System
	2.3.2 Mediator Synthesis Using a Partial Specification

	2.4 The Semantic Web Perspective: Mediation at Runtime
	2.4.1 Ontological Modelling and Reasoning
	2.4.2 Semantic Web Services
	2.4.3 Semantic Mediation Bus.

	2.5 Summary

	3 Achieving Eternal Interoperability: The Role of AutomatedMediator Synthesis
	3.1 The Connect Approach to Eternal Interoperability
	3.2 Modelling Components
	3.3 Emergent Middleware
	3.4 Emergent Middleware Enablers
	3.4.1 Discovery Enabler: Locating Components
	3.4.2 Learning Enabler: Completing Component Models
	3.4.3 Synthesis Enabler: Synthesising Mediators

	3.5 Summary

	4 Automated Synthesis of Mediators
	4.1 The File Management Example
	4.2 Specification of Interface Matching
	4.2.1 One-to-One Matching
	4.2.2 One-to-Many Matching
	4.2.3 Many-to-Many Matching

	4.3 Computation of Interface Matching using Constraint Programming
	4.3.1 Complexity of Interface Matching
	4.3.2 Interface Matching as a Constraint Satisfaction Problem
	4.3.3 Leveraging Constraint Programming for Ontological Reasoning

	4.4 Synthesising Correct-by-Construction Mediators
	4.5 Summary

	5 From Abstract to Concrete Mediators
	5.1 The Case of the Same Middleware
	5.1.1 From Ontological Relations to Data Translation Functions
	5.1.2 Application to the File Management Example

	5.2 The Case of Different Middleware Based on the Same Interaction Pattern
	5.2.1 Ontology-based Modelling of Middleware Interaction Patterns
	5.2.2 Application to the Weather Example

	5.3 The Case of Middleware Based on Different Interaction Patterns
	5.3.1 Coordination across Interaction Patterns
	5.3.2 Application to the Positioning Example

	5.4 Summary

	6 Implementation & Assessment
	6.1 The MICS tool
	6.2 Case Studies
	6.2.1 Instant Messaging: One-to-One Matching
	6.2.2 File Management: One-to-Many Matching
	6.2.3 Purchase Order: Mediation of Semantic Web Services
	6.2.4 Event Management: Unified Application-Middleware Mediation
	6.2.5 GMES: Runtime Mediation

	6.3 Performance of MICS
	6.4 Summary

	7 Conclusion
	7.1 Contributions
	7.2 Future Work
	7.2.1 Mediator Synthesis as a Service
	7.2.2 Mediator Evolution

	7.3 One More Thing...

	Appendix A FSP Syntax & Semantics
	Appendix B DL Syntax & Semantics
	References

