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Abstract

This work is dedicated to present and validate a new and genalized macroscopic
nonlocal theory of sound propagation in rigid-framed porows media saturated with
a viscothermal uid. This theory allows to go beyond the limits of the classical
local theory and within the limits of linear theory, to take n ot only temporal
dispersion, but also spatial dispersion into account. In tke framework of the new
approach, a homogenization procedure is proposed to upse&the dynamics of
sound propagation from Navier-Stokes-Fourier scale to thezolume-average scale,
through solving two independent microscopic action-respose problems. Contrary
to the classical method of homogenization, there is no lengconstraint to be
considered alongside of the development of the new methodhts, there is no
frequency limit for the medium e ective properties to be valid. In absence of
solid matrix, this procedure leads to Kirchho -Langevin's dispersion equation for
sound propagation in viscothermal uids.

The new theory and upscaling procedure are validated in thre cases correspond-
ing to three di erent periodic microgeometries of the porousstructure. Employ-
ing a semi-analytical method in the simple case of cylindrial circular tubes lled
with a viscothermal uid, it is found that the wavenumbers an d impedances pre-
dicted by nonlocal theory match with those of the long-known Kirchho 's exact
solution, while the results by local theory (Zwikker and Kosten's) yield only the
wavenumber of the least attenuated mode, in addition, with asmall discrepancy
compared to Kirchho 's.

In the case where the porous medium is made of a 2D square netwko of
cylindrical solid inclusions, the frequency-dependent phse velocities of the least
attenuated mode are computed based on the local and nonlocapproaches, by
using direct Finite Element numerical simulations. The phase velocity of the
least attenuated Bloch wave computed through a completely derent quasi-exact
multiple scattering method taking into account the viscothermal e ects, shows
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a remarkable agreement with those obtained by the nonlocal eory in a wide
frequency range.

When the microgeometry is in the form of daisy chained Helmhtz resonators,
using the upscaling procedure in nonlocal theory and a planavave modelling
lead to two e ective density and bulk modulus functions in Fourier space. In
the framework of the new upscaling procedure, Zwikker and Keten's equations
governing the pressure and velocity elds' dynamics averagd over the cross-
sections of the di erent parts of Helmholtz resonators, are enployed in order to

coarse-grain them to the scale of a periodic cell containinggne resonator. The
least attenuated wavenumber of the medium is obtained throgh a dispersion
equation established via nonlocal theory, while an analyttal modelling is
performed, independently, to obtain the least attenuated Boch mode propagating
in the medium, in a frequency range where the resonance phemena can be
observed. The results corresponding to these two di erent mthods show that

not only the Bloch wave modelling, but also, especially, themodelling based
on the new theory can describe the resonance phenomena origting from the

spatial dispersion e ects present in the macroscopic dynanus of the matarial.

Keywords: porous media, rigid frame, viscothermal uid, nonlocal theory, local
theory, homogenization, Bloch wave, Kirchho equation, Kirchho -Langevin
equation, temporal dispersion, spatial dispersion, circlar tube, rigid cylinders,
Helmholtz resonators



Resume

Ce travail pesente et valide une treorie nonlocale nouvdle et gereraliee, de la

propagation acoustique dans les milieux poreuxa structue rigide, satues par
un uide viscothermique. Cette treorie lireaire permet d e tepasser les limites
de la treorie classique base sur la theorie de I'homoggeisation. Elle prend

en compte non seulement les ptenorenes de dispersion teropelle, mais aussi
ceux de dispersion spatiale. Dans le cadre de la nouvelle amzhe, une nouvelle
proedure d’homogereisation est propose, qui permet de trouver les proprees

acoustiques a lechelle macroscopique, en esolvant dax probemes d'action-

eponse incependants, poesa lechelle microscopique de Navier-Stokes-Fourier.
Contrairement a la nethode classique d'homogereisati on, aucune contrainte
de sparation dechelle n'est introduite. En l'absence de structure solide, la
proedure redonne lequation de dispersion de Kirchho -L angevin, qui cecrit la

propagation des ondes longitudinales dans les uides vistioermiques.

La nouvelle treorie et proedure d'homogereisation no nlocale sont valicees dans
trois cas, portant sur des microgeornetries signi cative ment dierentes. Dans le
cas simple d'un tube circulaire rempli par un uide viscothermique, on montre que
les nombres d'ondes et les impedances pedits par la theoie nonlocale, cencident
avec ceux de la solution exacte de Kirchho, connue depuis logtemps. Au
contraire, les esultats issus de la theorie locale (celk de Zwikker et Kosten,
cecoulant de la theorie classique d'homogereisation) ne donnent que le mode le
plus attente, et encore, seulement avec le petit cesaccat existant entre la solution
simpliee de Zwikker et Kosten et celle exacte de Kirchho .

Dans le cas a le milieu poreux est constitte d'un eseau @re de cylindres rigides
paralkles, plonges dans le uide, la propagationetant regardee dans une direction
transverse, la vitesse de phase du mode le plus atene pduetre calcuke en
fonction de la fequence en suivant les approches locale etonlocale, esolues au
moyen de simulations nuneriques par la nethode des EeEmats Finis. Elle peut
étre calcuke d'autre part par une nethode compétement dierente et quasi-
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exacte, de di usion multiple prenant en compte les e ets viscahermiques. Ce
dernier esultat quasi-exact montre un accord remarquabk avec celui obtenu par
la theorie nonlocale, sans restriction de longueur d'onde Avec celui de la treorie
locale, I'accord ne se produit que tant que la longueur d'ond reste assez grande.

Enn, dans le cas ai la microgonetrie, formee de portio ns de conduits
droits, est celle de esonateurs de Helmholtz plaes en drivation sur un guide
principal, on peut, en appliguant la nouvelle proedure d'homogereisation de
la treorie nonlocale, et en moctlisant les champs par des des planes aller-
retour dans chacune des portions droites, calculer les deufonctions de densie
et compressibilie e ectives du milieu dans l'espace de Fouier. Sans faire
d'erreur appeciable les ondes planes aller-retour en queion peuvent étre decrites
par les formules Zwikker et Kosten. Disposant ainsi des forions densie et
compressibilie e ectives, le nombre d'onde du mode le plusatenie peut étre
calcuk en esolvant uneequation de dispersionetablie via la treorie nonlocale.
Ce nombre d'onde peut étre incependamment calcue d'unemangere plus classique
pour les ondes de Bloch, sans passer par la treorie nonloeglmais en faisant les
mémes simpli cations consistanta introduire dans les dierentes portions, des
ondes planes decrites par les formules Zwikker et Kosten. @ observe alors,
encore, un accord remarquable entre le nombre d'onde caleutlassiquement, et
le nombre d'onde calcuk via la proedure nonlocale: le conportement esonnant
exact est reproduit par la theorie nonlocale. 1l s'interprete comme un simple e et
de la dispersion spatiale, montrant la puissance de la noulle approche.
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Introduction

In this work, we present and validate a new macroscopic nonlcal theory of
sound propagation in an unbounded rigid-framed porous medi saturated with
a viscothermal uid. The porous medium is either isotropic or having a wave
guide symmetry axis, and macroscopically homogeneous. Date the success of
the local theory to predict the macroscopic behaviour of log-wavelength sound
propagation in such a medium with relatively simple microgeometries, it remains
far to describe correctly the coarse-grained dynamics of t& medium when the
wave length become smaller than, or even comparable to a chacteristic length
of the medium, or when the microgeometry of the porous mediunbecome more
complex. These can be observed, practically, either in higlirequency regime, or
when the microgeometry is formed in a way to exhibit the resomance behaviour
at not necessarily high frequencies. It will be shown throubout this work that
the origin of these di culties is that the classical theory, which is based on
the asymptotic approach of the so-called two-scale homogération method, is
not capable to describe the macroscopic non local e ects, cdrary to the new
proposed non local theory.

In the framework of the non local theory allowing for spatial dispersion,
a new homogenization method is suggested by an analogy with &kwell's
electromagnetic theory and the establishment of a thermodwpamic identi cation,
in order to upscale the dynamics of viscothermal uids from pore level to
macroscopic level. The spatial dispersion is incorporatedn the new theory by
considering that in Fourier space, the the two acoustic suseptibilities { e ective
density and bulk modulus{, depend not only on the frequency,as in local theory,
but also on the wavenumber. We provide an upscaling procedw to obtain these
two e ective properties of the medium in terms of the spatial-averaged values of
the microscopic elds which can be computed through solvingtwo independent
action-response problems at the pore level. The theory is Valated in several
cases with di erent microgeometries.



2 Introduction

We present the non local theory in chapter 1. It is shown that the equations
governing the longitudinal wave motions in a viscothermal uid can be put in a

Maxwellian nonlocal form. The procedure to derive the correponding nonlocal

density and compressibility which is introduced there, then serves as a guide,
when the solid structure is present, to obtain the correct nalocal theory upscaling

procedure.

In chapter 2, a successful test of this theory is presented irthe simple case of
cylindrical circular tubes lled with a viscothermal uid . It is found that the
wavenumbers and impedances predicted by nonlocal theory nbeh with those of
the long-known Kirchho 's exact solution. On the contrary, the results by local
theory (Zwikker and Kosten's), yield only the wavenumber ofthe least attenuated
mode, with a small discrepancy compared to Kirchho 's. Zwikker and Kosten's
local theory is derived in Appendix A, using the language of eEmporal and spatial
dispersion. To evaluate the Zwikker and Kosten quantities n chapter 2, the
formulae reported in Appendix A are used.

In chapter 3, the nonlocal theory is veri ed in the case wherethe microgeometry
of the porous medium is nontrivial, in the form of an unbounded two-dimensional
square lattice of rigid cylinders permeated by a viscothermal uid. On the one

hand, we will compare the complex frequency-dependent phasvelocity associated
with the least attenuated plane wave, predicted by the new treory using Finite
Element Method simulations, with that of the corresponding least attenuated
Bloch mode, obtained by the quasi-exact multiple scatterig method, and show
that the two are in remarkable agreement. The main microsco equations
to be solved numerically, in order to compute macroscopic pperties of the
porous medium according to local and nonlocal theory, are hey reviewed.

The essential elements of calculation to obtain Bloch waveambers through the
multiple scattering method are also presented in this chapér.

In chapter 4, the theory will be validated when the the geomety of the porous
medium is in the form of a daisy chained Helmholtz resonators Firstly, an

analytical plane wave modelling is employed to obtain the tre least attenuated
Block mode of the medium. Secondly, using the upscaling praxiures in nonlocal
theory and using the plane wave modelling lead to two e ectivedensity and bulk
modulus functions in Fourier space. Once we have these furions, we are able to
nd, in particular, the least attenuated mode propagating i n the medium, through
a dispersion equation coming from the macroscopic equati@in nonlocal theory.

The chapters 1 and 2, and 3, can be considered as relatively dependent texts
and have been written in a article style. Chapter 1 is the text of an article which
has been submitted recently to the journalWave Motion. Therefore, throughout
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the chapters 2, 3, and 4, chapter 1 has been cited as a referento this submitted
paper.






Chapter 1

Nonlocal theory of sound
propagation in homogeneous
rigid-framed porous media

1

Elaborating a Maxwellian representation of longitudinal wave propagation in
a viscothermal uid, a new general nonlocal macroscopic thery of sound
propagation in homogeneous porous media saturated with viothermal uid is

proposed here in the case where the solid frame is rigid andasopic. Allowing in

the most general manner for temporal and spatial dispersiothis theory, contrary

to the conventional two-scale homogenization theory, is sitable to homogenize
the so-called metamaterials. Moreover, for propagation inperiodic media along
a symmetry axis, the complete Bloch mode spectrum is expectkto be achieved
without any frequency constraint.

1.1 Introduction

What are the equations governing small-amplitude sound prpagation in a uid-
saturated porous material, at the macroscopic level? Hereye propose an answer
to this question in the form of a new nonlocal theory of sound popagation,
applicable in the case where the macroscopically homogeng® and isotropic
material is rigid-framed and permeated by a viscothermal uid. It is clear
that a macroscopically homogeneous medium is also necesgarunbounded.
Macroscopic homogeneity and isotropy are assumed here in Rsako 's sense
of volume averaging [1].

1This chapter in its current form has been recently submitted as a paper to Wave Motion.

5



6 1 Nonlocal theory of sound propagation in porous media

In the framework of this theory, we are able to upscale succafully the dissipative
uid dynamics in a medium with periodic microstructure, as well. In this case,
the coarse-grained propagation is considered along a simgsymmetry axis.

The solid phase need not be necessarily connex. Thus the updimg procedure
is also valid for an homogeneous, isotropic or periodic disibution of motionless
rigid scatterers of arbitrary shape, embedded in the viscdtermal uid.

The main existing homogenization method that may be used to pedict the

macroscopic properties of sound propagation in the above nia is the so-
called two-scale asymptotic homogenization method [2, 3,,45, 6] which assumes
wide scale separation between characteristic macroscopveavelengths and typical

correlation lengths of the solid and uid phases. Applied to most sound
absorbers used in practice, it consistently leads to local mdels taking into account
temporal dispersion. The temporal dispersion e ects are maiiested in frequency-
dependent density and bulk modulus, describing the e ectiveproperties of the

medium, which can be well-approximated by simple formulae nvolving a few

geometrical parameters of the pore space [7, 8, 9].

This homogenization method, however, does not appear to g&v the general
solution of the problem. For instance, in geometries with stuctures in the form
of Helmholtz's resonators, it does not predict the charactestic metamaterial
behavior related to the Helmholtz's resonance [10], whichs expressed in a
resonant bulk modulus. Moreover, in ordinary periodic geonetries, it does not
predict, beyond the Rayleigh scattering regime, the high+fequency behavior of
the Bloch mode spectrum and the presence of the band gaps. Raaly, powerful
high-frequencies extensions of the conventional homogez#tion method have been
introduced [11, 12, 13]; high-frequency meaning here the aence of two-scale
separation in the usual sense of homogenization. These extgions may be suitable
to homogenize periodic media in the vicinity of "cell resonaces’, however, a new
sort of two-scale separation is required once again.

The present general physical solution to the aforementiong@ wave propagation
problems do not require any explicit scale separation. It tkes advantage of
an analogy with electromagnetics and a thermodynamic identcation. In three
forthcoming papers, it will be shown to successfully predit the Kirchho 's radial
mode wavenumbers and impedances in a circular tube lled wi a viscothermal
uid [14], the Bloch's wavenumbers and impedances in perioit square arrays
of rigid cylinders permeated by a viscothermal uid [15], and the metamaterial
behavior of a line of daisy-chained Helmholtz's resonator$10].

The new feature in the theory which explains its absence of nitation for
propagation in macroscopically homogeneous materials, ithat it accounts both
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for temporal dispersion and spatial dispersion, without m&ing any perturbative
simpli cation or introducing any explicit scale-separation condition. The only
scale separation that subsists is an unavoidable one. Givethe nite spatial width
of Russako 's test function employed to smooth-out the material irregularities,
the material properties are necessarily subjected to remaing small point-to-
point uctuations. The description of the propagation of macroscopic waves
with wavelengths comparable to the correlation length of these uctuations
will no longer be possible in terms of an equivalent homogemeis frequency-
and-wavenumber-dependent medium. This problem does not ésts for periodic
geometries, since these uctuations entirely disappear byaveraging over periods.
In this case, waves of typical wavelengths smaller than the rreducible cell
dimension can be treated by the present nonlocal macroscapitheory.

The paper is organised as follows. Sound propagation in a \isthermal uid is
rst revisited in section 1.2, where it is shown that the equations governing the
longitudinal motions are susceptible to be put in a Maxwellian nonlocal form.
After making the appropriate thermodynamic identi cation which implies that
the acoustic counterpart of the electromagneticH eld is the thermodynamic
pressure eld, we conclude that the longitudinal wave motins derive from an
equivalent nonlocal density and an equivalent nonlocal corpressibility. The
nonlocal density which plays the role of electric permittivity depends only on
inertial and viscous e ects, and the nonlocal bulk modulus whch plays the role
of magnetic permittivity depends only on elastic and thermd e ects.

It is remarkable that, once this thermodynamic identi cati on of the acousticH
eld is made, the corresponding density and bulk modulus opeators are directly
related to the solutions of two independent action-respone problems. On the one
hand, the density operator re ects the nonlocal response othe uid subjected
to an external force. On the other hand, the bulk modulus opeator re ects the
nonlocal response of the uid subjected to an external rate heat supply.

These fundamental observations are next directly used in sgion 1.3, when
the viscothermal uid is permeating a macroscopically hom@eneous porous
structure. Generalizing the electromagnetic recasting othe equations, and the
aforementioned thermodynamic identi cation as well, we cajecture that there is,
now, a macroscopic density operator which re ects the nonloal response of the
permeating uid subjected to an external force, and a macrosopic bulk modulus
operator which re ects the nonlocal response of the permeatg uid subjected
to an external rate of heat supply. This leads to stating de nite recipes for
determining the operators from the microgeometry.
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1.2 Electromagnetic recasting of the acoustic equa-
tions in a viscothermal uid

Within the approximations used in ordinary near-equilibrium uid-mechanics,
small amplitude wave motions in viscothermal uids can be aralysed in terms
of two disconnected types of motion: shear motions with trarsverse velocity
variations and no condensation, pressure, and temperaturevariations, and
longitudinal motions with longitudinal velocity variatio ns and nonvanishing
condensation, pressure, and temperature variations [16].

In section 1.3 we consider macroscopic sound propagation enhomogeneous, thus
unbounded, uid-saturated porous medium. In practice the material is nite and
the macroscopic perturbation comes from a source placed ifhe external free uid.
The source may generate shear waves and longitudinal waveslowever, since we
intend to describe the propagation of sound waves in the mateal, we are not
concerned by the shear waves which, by nature, involve no pssure variations?

Thus in this section, we are interested to investigate only he longitudinal motions.
Within the ordinary Navier-Stokes-Fourier model of a viscahermal uid, the
linearised equations of longitudinal motions are written & [19, 20, 21]

oo Tpr(EE o W) (1.12)
@b
=4+ = .
ot r v=0 (1.1b)
op=b+ o (1.1¢)
@ @p 2
—_ = — + .
T oTo ot (1.1d)
where the wave variablesv, b, p, , are the uid velocity, condensation,
thermodynamic excess pressure, and excess temperature pestively, and the
uid constants o, , , , o0, o0, Cs To, , represent the ambient density,

rst viscosity, second viscosity, ratio of heat coe cients c,=¢,, adiabatic
compressibility, thermal expansion coe cient, speci ¢ heat coe cient at constant
pressure, ambient temperature, and thermal conduction coeient, respectively.

Regarding these equations we observe that, if we make absirdon of our
knowledge that the condensationb represents the quantity % o, where 9is
the excess density, we may view the equation (1.1b) as a sortf @e nition of

2Shear motions will be present at the pore scale in the material, but only as a result of
longitudinal into shear wave conversion, occurring at the p ore walls. This conversion is due to
the fact that the longitudinal motions in the bulk uid canno t satisfy the no-slip conditions at
the pore walls, if they keep their initial type of motion.
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a eld b which is interestingly similar, in its philosophy, to the macroscopic
electromagnetic equation-de nition valid in any material medium

@

6t+ r E=0 (1.2)
To express it in more detail, we note that an enlightening way of looking at
the above equation (1.2) is to observe that, to any macroscdp electromagnetic
eld present in a material medium { in a given rest state of thermodynamic
equilibrium {may be associated a 3-vector potential macrosopic eld A. In fact,
the medium de nes its own privileged rest frame in which we waok, therefore
the time component of the electromagnetic potential can alvays be set to zero
by the jauge invariance. What we call, in this rest frame, the electric and
magnetic elds E and B, are nothing but the quantities which are related to
this 3-potential by the equation-de nitions E = @\=@tand B = r A.
Eq.(1.2) then is a direct consequence of the de nitions ofE and B in terms
of the electromagnetic potential. The physics is expressedn the additional
electromagnetic eld equation

@

— = H 1.3

o (13)
and the constitutive relations

D = ~E (1.4a)

H = ~ 1 (1.4b)

where *and » are two constitutive permittivity operators in which the ph ysical
properties of the medium are encoded. For su ciently small amplitudes and in
an homogeneous medium, these are linear di erence-kernel epators [22].

Here, the particle displacement eld a which is a 3-vector as well, can be viewed
as the acoustic counterpart of the 3-potential A from which, may be derived the
elds v and b, by the equation-de nitions v = @=@tndb= r a, respectively.
Eq.(1.1b) then is a direct consequence of these de nitions.

This suggests that we can complete the Eq.(1.1b) by expressy the acoustic
equations analogous to (1.3) and (1.4)

@

e 'h (1.5)
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and

= Ny (1.6a)
h = ~1p (1.6b)

where “and ” are two constitutive linear di erence-kernel operators in which the
uid physical properties are encoded.

The operator » 1 or the eld h can always be arbitrarily chosen. The physics
then is wholly expressed by the operator * Indeed, this is the customary choice
utilized in electromagnetic theory in presence of spatial éspersion [24, 22, 23],

which consists in setting by de nition ~ 1 = 0 1. Here we could set by de nition

Al — 1
O-

However, in electromagnetism a di erent choice exists whichseems to be more
natural, and which is based on the fact that the Poynting vector S = E H is
interpreted as the electromagnetic part of energy current eénsity [25]. Although,
this point of view is usually considered in the case where the is no spatial
dispersion, we believe that one should go beyond and geneiz its validity in
presence of spatial dispersion. Thus, a general nontriviaH eld exists which is
de ned through S.

Here, we borrow this concept from electromagnetism and brig it to acoustics.
As such, the acoustic Poynting vectors

<= hy (1.7)

is interpreted as the acoustic part of energy current densit. Taking for this
acoustic energy current density the expression-de nition suggested by Schoch
[26]s pv, the above condition requires that the eld h identically matches the
thermodynamic excess pressure

h p (1.8)

Accounting for the fact that the operators ~ and ~' must be expressed via
di erence-kernels functions, allowing to respect time and pace homogeneity, the
nonlocal Maxwellian acoustic equations then take the form
@b
—+r v=0 1.9
o (1.9
@

@t: rp (2.10)
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with
Z, z

dt® dx® (@t t®x  xYv(®x9 (1.11a)
z, Z

dt®  dx® ¢t t%x  x9Ybt%x9 (1.11b)

d(t; x)

p(t; x)

We now intend to determine these kernel functions. It turns ait that the direct
determination of the functions (t;x) and  (t; x) is not possible due to some
mathematical singularities. Their physical origin is related to the missing terms
in the Newton-type and Fourier constitutive laws introduced in the fundamental
momentum and energy balance laws leading to (1.1a) and (1.)d Nevertheless,
working in Fourier space it is easy to nd the Fourier kernels (!; k) = (!;k ) and

11 k) = (1;k) such that the wave physics described by Egs.(1.1a-1.1d),
namely

il v = ikp+(%+ Yk?v (1.12a)
lb+k v=0 (1.12b)
op=b+ o (2.12¢)

il oGy =il oTop+ k2 (1.12d)

be exactly the same as that described by Egs.(1.9-1.11), nagly

k v=1b (1.13a)

kp=1!d (1.13b)
with

d = (Lk)v (1.14a)

p = k)b (1.14b)

Comparing the two sets of equations (1.12) and (1.13-1.14)we obtain the
following expressions for the Fourier density and bulk-modilus kernels

(k)= (k)= o 1+ — (1.15)

K= k)= b1 1 (116)
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where the following general thermodynamic identity [27] ha been used

2
To g

0 0Cp

1= (1.17)

Although, this will not be our concern in this paper, we note that the above
Maxwellian recasting cannot express totally its power within the too-simpli ed
Newton and Fourier constitutive laws utilized here. Its degenerate character may
be seen through the above expressions in di erent related mamers.

First, the above expressions depend ork only via the modulus k. With more
complete constitutive laws not leading to degeneracies, neomplete decoupling
would exist between shear and longitudinal motions, and (!; k) would be a
tensor j (!; k) having the general form [24]

i (5 k)= 5k kik =k + (5 k kik =k (1.18)

where ; and | are transversal and longitudinal kernels which depend only
on the magnitude of the wave vector (and on! ). Here, the transverse part
disappears and the longitudinal part reduces to ((!;k ) j, because they are
contracted just by longitudinal velocities, which nally | eads to a scalar verifying

(k)= (k).

Another way to see the existing degeneracies is to note thatfor the reasons
relating to the causality, the above expression for (!; k ) should satisfy Kramers-
Kronig dispersion relations [24, 28]

Z,

<[ (:K)]  o= 2PV 1 L;!k)]d (1.19)

Z .
o= ey SLGH)

Y (1.20)
1 !
and similarly for ~ %(!;k ), but without the pole. For the density , these
relations are veri ed in a trivial way. The only nonzero term in the right-hand
side of (1.19) and (1.20) is the pole relating to (k) = (4 =3+ )k2.

For the bulk modulus 1 the degeneracy is not directly apparent in the
frequency and wavenumber dependencies (1.16). It is expresd by the very fact
that we are dealing with a scalar rather than a tensor: the vetors H and B are
replaced by scalarsh (or p) and b. In reality, H should not be viewed as a vector
but an antisymmetric tensor of rank two with contravariant i ndexes and weight
W = 1 [25]. The eld h should not be viewed as a scalar but a symmetric
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tensor of rank two with contravariant indexes and weight W = 1, akin to a
contravariant stress eld. That is precisely the tensorial character of the quantity
h, which would allow to be a tensor. In the same mannerB should not be
regarded as a vector but an antisymmetric tensor of rank two vith covariant
indexes and weightW = 0. The eld b should not be regarded as a scalar
but a symmetric tensor of rank two with covariant indexes and weight W = 0,
representing a covariant strain eld. The nondegenerate t@sor operator * ! that
could be written within a su ciently general thermodynamic framework for the
uid mechanics equations, would therefore become a tensorperator (» )ikl
As such, the shear and compressional motions would be mergeshd treated
simultaneously, instead of being arti cially disconnected.

To get a glimpse of some of the deep consequences of the Maxireal recasting
sketched above, we notice that in electromagnetics, when # elds vary

su ciently rapidly, the dissipation processes have no time to occur and the
general operator relationsD' = AV E; and HT = (» 1)IX By reduce to the
ones implying that D and H are determined byE and B in the same space-time
position. With material homogeneity, isotropy, and center symmetry taken into

account, the only available tensor is jj (in Cartesian coordinates) [24] and the
only relations compatible with the characteristic antisymmetry in H and B are,

Di = ojEj and Hjj = 01%( ik jl i jk)Bw, i:e:, they are proportionality

relations D = gE, and H = olB, with ¢ and ¢, the physical constants
named electric and magnetic permittivity, respectively.

Here in acoustics, similarly, we suppose that when the eldsvary su ciently
rapidly, the dissipation processes have no time to take plag, and the general
operator relations d = Ay, and hi = (~ 1)kl b, reduce to the ones implying
that d and h are determined by v and b in the same space-time position. As
before, the only available tensor is jj, and the only relations compatible with
the characteristic symmetry in h andbared; = o jv; and hj = 01 i kg +

o ik jit+ il jk % i ki)ba, with o, 01, and o, physical constants interpreted
as density, compressibility modulus, and rigidity modulus respectively [29]. It
may be checked that the latter identically vanishes within the degenerate recasting
we discuss here, whereas the former two yield the ambient deity and adiabatic
bulk modulus.

Regarding the above considerations, it seems that Frenked' idea in phonon
theory of uid thermodynamics [30], reported long ago, stating that uids should

behave like elastic solids at very short times, is automatially recovered. In this
connection we note that, recently, a phonon theory of thermalynamics of liquids
has been developed using Frenkel's theoretical frameworkf the phonon states in
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a liquid, which has shown good agreement for the calculatios of heat capacity
coe cients of di erent liquids in a wide range of temperature and pressure [31].

Although, the present Maxwellian description shows to havedegeneracies and,
apparently, could be well-de ned only in a larger uid-mechanics thermodynamic

framework, we shall not care about this issue, as our purposis to use this theory

to have a generalized description of sound propagation in id-saturated porous

materials. In this case, describing the uid behavior at the level of the ordinary

Navier-Stokes-Fourier equations, will be entirely su cient for the noise control

applications of the theory.

The fact that the correct longitudinal Navier-Stokes-Fourier wave physics [16]
is encoded in the degenerate expressions (1.15-1.16), cae basily checked by
writing the dispersion equation corresponding to the systen (1.13-1.14)

(k) (hk) 2=k (1.21)

Substituting in the above equation, the expressions (1.13-16), we get the known
Kirchho -Langevin's dispersion equation of longitudinal waves [20, 19]
" ., 1# " i, #
124 @2 il + 3 k2 8

. il
oCv 0 oCv il

k*=0 (1.22)

with ¢ the adiabatic sound speed squared de ned by2 1= ¢ o, and & the
isothermal sound speed squared de ned by? c2= . Therefore, it is veri ed

that the correct sound normal modes, and heat conduction namal mode [16], are
encoded in the given expressions.

We arrive now at the fundamental two important elements which will be used
in the next section. Let e be the direction along which we study the sound
propagation, andx = x e be the coordinate along this direction. It will be shown
next that the two functions (!;k ) and  (!;k ) are related to the solutions of
two independent action-response problems obtained by puthg, respectively, a
ctitious harmonic pressure term P(t;x) = Pge " **€X in the Navier-Stokes
Eqg.(1.1a), or the Fourier Eqg.(1.1d).

Firstly, adding the potential bulk force f = r P = ikPe to the right-hand
side of Eq.(1.1a) belonging to the equation system (1.1a-1d), and writing the
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elds as
v(t; x) = ve "t tikex (1.23a)
b(t; x) = be "t *ikex (1.23b)
p(t; x) = pe "t +ikex (1.23c)
(tx)= e " *ikex (1.23d)

we can easily get the response amplitudeg, b, p, . We then observe that the
same expression as in (1.15) for(!;k ) is obtained through the equation

(k)i v=ike(p+ Po) (1.24)

In this problem, the response pressure is added to the ctitious deriving pressure
amplitude Pg to represent a sort of total e ective pressure eld h.

This establishes a direct relation between the Fourier coecient (!;k) (1.15)
of the operator density, and the response of the uid subjeced to an external
harmonic bulk potential force.

Secondly, putting the bulk rate of heat supply Q= (To@ =@t i TP in
the right-hand side of Eq.(1.1d) belonging to the equation gstem (1.1a-1.1d),
and writing the elds as before, we get the response amplitugs, v, t° p, {
with a prime on the condensation for later convenience. We tkn observe that
the same expression as in (1.16) for (!;k ) is obtained through the equation

p+Po= (k)(EP+  oPo) (1.25)

In this problem, the response pressur is again added to the ctitious deriving
pressure amplitudePg to represent a sort of total e ective pressure eld h, and the
term  oPp is added to the response condensatiok’, in order to represent a sort
of total eld b, related to h by the constitutive relation (1.6b). The interpretation
of the corresponding decomposition obin two terms is that b’is a nonisothermal
part of the response, while ¢Pg is an isothermal response part; ¢ being the
isothermal compressibility.

This establishes in turn a direct relation between the Fourer coe cient k)
(1.16) of the operator bulk modulus, and the response of the uid subjected to
an external harmonic bulk rate of heat supply.

These relations are employed directly in the next section taarrive at the wanted
new macroscopic theory of sound propagation.
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1.3 Generalization to uid-saturated rigid-framed por-
ous media

We consider, now, that the viscothermal uid which is pervading the connected
network of pores of a rigid-framed porous material, is set tovibrate following

an incident small-amplitude sound wave. Assume that a charateristic length L

exists, allowing to smooth out the irregularities of the porous structure. The aim
is to describe the sound propagation in this complex medium.

As stated in general terms, this problem directly reminds the linear theory of
electromagnetic wave propagation in matter, investigatedby H.A. Lorentz in his

theory of electrons [17]. In the same way as Lorentz could nohope to follow in

its course each electron, here we do not intend to analyse théetail of the wave
propagation at the pore level. Following Lorentz we remark hat it is not the

microlevel wave eld that can make itself felt in the experiments, that are carried
out at the macroscopic level, but only the resultant e ect produced by some
macroscopic averaging. A macroscopic description of the sad propagation in

the medium will be possible if we x from the outset our attention not on the pore
level irregularities, but only on some mean values. We procsd now to clarify it

through some de nitions.

1.3.1 Basic de nitions

The homogeneous porous medium occupies the whole space asdcomposed of
two regions: the void (pore) regionVs which is a connex region permeated by the
uid, and a solid-phase regionVs. The pore-wall region or solid- uid interface is
denoted by @/. The characteristic function of the pore region is de ned by

)= (1.26)

Given a eld a(t; x) in the uid, such as the velocity eld, a macroscopic mean
value A = hai may be de ned by volume-averaging in a sphere of typical radis
L=2, as was done by Lorentz [17]. Since the purpose of the aveiag is to get rid
of the pore-level irregularities, the lengthL is taken su ciently large to include a
representative volume of the material. This Lorentz's avernging was subsequently
re ned by Russako [1] who replaced the integration in a sphee by a convolution
with a smooth test function f| of characteristic width L
z

At x)= hai(tx)=  dxdx%a(t; xOf (x  x9 (1.27)
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which is a much better smoothing procedure from a signal angkis standpoint,
especially on account of the fact that the material homogeniy is in general only
approximately realized over the distanceL.

The presence of characteristic functionl in (1.27) ensures that the integration is
taken in the only uid region. The test function f_ is normalized over the whole
space
z
dxfL(x)=1 (1.28)

The so-called spatial averaging theorem [18] is written as
z
brai=r hai+  dx%(t;xInx9fF (x x9 (1.29)
@/

relating the average of the gradient of a microscopic elda to the gradient of the
averaged eld. The macroscopic homogeneity implies that tle quantity

= hj (1.30)

is a constant independent of the position. It represents theuid volume fraction
or the porosity of the medium. Thus for a macroscopically honogeneous medium,
the commutation relation (1.29) results in
z
dxhx9fL(x x9=0 (1.31)
@/

The constancy of or the vanishing of the integral (1.31) cannot exactly be
realized because of the irregularities of the medium; somaherent indeterminacy
is generally associated with the notion of spatial averagig. In practice, however,
the integral (1.31) often decreases su ciently to be negleted for all practical
purposes, as soon as the averaging lengit=2 reaches the value of some typical
coarse graining radius. This is the situation implicitly considered here.

Spatial periodicity is an important particular case where exact homogeneity (1.31)
is gained, but at the cost of an inde niteness in the choice othe averaging length
L. Indeed, considering wave propagation along a single symrtrg axis, and
denoting by P the irreducible period peculiar to this axis, we may take forthe
smoothing test function f_, any of the following functions f,, n =1;2;:::
z z
fa(x) = frn(xX)g(y;z); with dydz gy;z)=1; dxfh(x)=1
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and

1=nP; iXj <nP=2
fn(x) = P
0; X]>nP=2
These functions in turn de ne a series of di erent macroscopc averaged elds
hai, performed with coarse-graning averaging lengthL = nP.

Now that the volume-average operation has been de ned inclding the above
points concerning the periodic case, given a small amplitue wave perturbation to
the ambient equilibrium in the uid, it is time to establish a Lorentz macroscopic
theory of wave propagation of averaged wave eld quantities

1.3.2 Pore-level equations

At the pore-level the linearized uid-mechanics equations describing the uid
motion are written as

@ _ 4
o@t_ r p+( 3 + )r (r v) r (r V) (1.32a)
@b _
@t+ r v=0 (1.32b)
op=b+ o (1.32c)
oCp %t: 0%%% r? (1.32d)
in V¢, and
v=0 (1.33a)
=0 (1.33b)

on @.

Comparing to the preceding equations in the free uid (1.1a4.1d), a rotational
viscous term has been added in (1.32a) to account for the sheenotions generated
at the pore walls by virtue of the no-slip condition (1.33a). The condition (1.33b)
comes from the fact that the solid frame which is much more themally-inert than
the uid, is assumed to remain at the ambient temperature.
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1.3.3 Macroscopic equations

Given the pore-level equations, we seek the macroscopic egfions governing wave
propagation of the averaged quantities

V hvi;and B hhb (1.34)

Since the velocity vanishes at the pore walls, the followingdirect commutation
relation always holds true

br vi=r hvi=r V (1.35)

Thus, the Eq.(1.32b) is immediately translated at the macroscopic level

@B _
ot V=0 (1.36)

The electromagnetic analogy then suggests that the system fomacroscopic
equations can be carried through by introducing new Maxwellan elds H and
D, and also operators “and ” 1, such that

@ _

it T H (1.37)
with

D = A~V (1.38a)

H = ~ 1B (1.38b)

As we have seen in the previous section, such form of equatienwith the scalar H
and scalar , is suitable to treat nonlocal propagation of longitudinal waves in an
isotropic medium. Assuming scalarH and scalar , we disregard the propagation
of macroscopic shear waves. Another case that is adapted tdiis form concerns
the propagation of longitudinal waves along a symmetry axis< set in the direction
e. In the former case, accounting for the time homogeneity andthe material
macroscopic homogeneity, the nonlocal relations (1.38) & written

Z, z

D(t;x)= dt® dx°(t t%x  x9v(t®xH (1.39)
1
Z, z

H(t; x) = d® dx® Yt t%x x9B(t%xH (1.40)
1
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with scalar kernels (t;x)and  (t; x) whose Fourier amplitudes verify (!; k) =

(k),and 1(I; k)=  (I;k). Inthe latter case with a symmetry axis along
e, we haveD = De and V = Ve, then the constitutive relations become
Z, z
D(t;x) = dt® dx®(t t%x  xYv(t%x9 (1.41)
1
Z, z
H(t;x) = dt® dx° (¢t t®x x9B(t%x9 (1.42)

1

with scalar kernels (t;x) and  (t;x) whose Fourier amplitudes are (!;k),
and (k).

In the above, the integrations over timet%in one hand, and over space coordinate
x%or x%in another hand, convey the image of the so-called temporal idpersion
e ects and spatial dispersion e ects, respectively. They canbe served here as
de nitions for these e ects.

We need now to identify the macroscopic eldH .

1.3.4 Identi cation of the eld H

It results directly from writing the following macroscopic version of the relation
(1.7) used in the viscothermal uid to identify the eld h

S=HV (1.43)

provided that S = hpvi. Thus H is identi ed as the eld satisfying the relation-
de nition

Hhi h pvi (1.44)

This identi cation of an e ective macroscopic pressure eld H dierent from
the usual uid-volume-averaged mean pressurg = < Ipi, appears very natural.
Generalized to the case of a bounded open material, it yielda eld H that is
continuous at the macroscopic interface of the material. Ths follows from the
continuity of the normal component of the eld V which is required by mass
ow conservation and the continuity of the normal component of the acoustic
part of the energy current density that may be supposed to hall true, provided
no resistive surface layer exists at the boundary of the mateal. Thus, in the
present electromagnetic-acoustic analogy, it may be notedhat the continuity of
the normal component of velocity V replaces the continuity of the tangential
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components of the eld E, and the continuity of the scalar H replaces the
continuity of the tangential components of H [24].

1.3.5 Identi cation of constitutive operators

Generalizing the relations established for the longitudiral motions in viscothermal
uids to the present case, leads us to suggest now that the ab@ Fourier
coecients (I;k)and I(!;k) are directly related to the macroscopic response
of the permeating uid subjected to a harmonic ctitious pre ssure termP (t;x) =
Poe " *ikex added to the pressure, either in the Navier-Stokes Eq.(1.39), or
the Fourier Eq.(1.32d).

Thus to determine the kernel (!;k ) we rst consider solving the action-response
problem

O%t: r p+(% + )r (r v) r (r wv)+f (1.45a)
@b _
@t+ r v=0 (1.45b)
op=Db+ o (1.45c¢)
@ _ @p 2
oCp @t oTO@t+ r (1.45d)
in V¢, and
v=0 (1.46a)
on @/. The external force appears as before in the form of
f= rP= ikePge " *ikex (1.47)

The unique solutions to the above system (1.45a-1.47), forhe elds v, b, p, ,
take the form

v(t;x) = v(I;k; x)e "t tikex (1.48a)
b(t; x) = b(l;k; x)e "t *ikex (1.48b)
p(t; x) = p(l; k; x)e "t rikex (1.48c)
(tx)= (Lk; x)e " +ikex (1.48d)

The response amplitudesv(!; k; x), b(!;k; x), p(';k; x), and (I;k; x) are
bounded functions which are uniquely determined by the micogeometry.
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The above problem, once solved, we can extract of the respoagpressurep(t; X) =
p(l;k; x)e " +kex “its macroscopic part, denoted by

P(t;x) = P(l;k )e " *ikex (1.49)
whose amplitude P(!; k ) is determined through the equation

(' k; x)v(h k; x)i e

Atk) = vl k; x)i:e (1.50)
This expression comes from the relation-de nition
Phvi = hpvi (1.51)
which has been inspired by (1.44). Then using the following elation
il (k)i = ik(P( k) + Po)e (1.52)

delivered from (1.24), gives rise immediately to nonlocal uivalent- uid density

(k)

k(P(!;k ) + Po)
vl k; x)ice

(k)= (1.53)

As this point, we see that the elds p(!;k; x) and v(!;k; x) are needed to be
known in order to determine from microgeometry the e ective density of the

uid-saturated porous medium. Hence, instead of solving (145a-1.46b) we have
just to solve the following system of equations to get the amfitudes of the elds

in (1.48)

it ov= (r +ike)p+(%+ )(r +ike)(r v+ike v) (1.54a)
(r +ike) (r +ike) v ikePg

ilb +r v+ike v=0 (1.54b)
ob=Db+ o (1.54c)
ocpi! = oToilp + (r +ike) (r +ike) (1.54d)

in V¢, and
v=0 (1.55a)
=0 (1.55b)

on @.
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The procedure to determine the kernel (!;k ) is quite similar. We consider
again, initially solving the action-response problem with an excitation appearing
this time in the energy balance equation, such that

@ _ 4
o%@t— r p+( 3 + )r (r v) r (r V) (1.56a)
@ _
@t+ r v=0 (1.56b)
op= B+ o (1.56¢)
0% G OTO%I} rz2 +qQ (1.56d)
in V¢, and
v=0 (1.57a)
=0 (1.57b)

on @/, with the external heating

Q= oTOQ: il oToPge " *kex (1.58)

@t
The solutions to the above problem take the same form as speed before
through EQs.(1.48). As previously done, we extract of the rgponse pressure
p(t; x) = p(l;k; x)e " *kex its macroscopic part P(t;x) = P(I;k )e " *tikex
whose amplitudeP(!; k ) is determined by the equation

oy ks x)v(h k; x)i e
Atk) = hv(l;k; x)i:e

(1.59)

expressing a relation-de nition Prvi = hpvi inspired by (1.44). Then generalizing
Eq.(1.25) to the present case, results in

Pk )+ Po= (k) Bk x) +  oPg (1.60)
where the factor of porosity is inserted in the last term to acount for the fact that
hPoi = Po. That gives rise to nonlocal Equivalent- uid bulk modulus  (!;k )

I.
k)= Pk )+ Po (1.61)

ho(!; k; x)i + oPo

Obviously, we need to know the elds p(!;k; x) and v(!;k; x), and BY!;k; x)
in order to determine the e ective bulk modulus of the uid-saturated porous
medium. Substituting (1.48) in (1.56a-1.57b), we have subsquently the following
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system whose solutions are the eld amplitudes we seek

ol v= (r + ike)p+(%+ )(r +ike)(r v+ike v) (1.62a)

(r +ike) (r +ike) v

ilb%r v+ike v=0 (1.62b)
op= 1+ o (1.62¢)
ocpi! = oToilp + (r +ike) (r +ike) it oToPo (1.62d)
in V¢, and
v=0 (1.63a)
=0 (1.63b)

on @.

The new upscaling procedures speci ed by Egs.(1.50) and (%3-1.55b) allowing
to determine nonlocal density (!;k ), and Egs.(1.59) and (1.61-1.63b) allowing
to determine nonlocal bulk modulus  (!;k ), combined with the Maxwellian
acoustic equations (1.36-1.38), represent the essentiaésults of this paper. They
wholly express the proposed new nonlocal theory.

1.3.6 Periodic media

In the special case of periodic media the response amplitude(1.48), in both
density and bulk modulus relating action-response problers, are now periodic
functions of x = x e, wheree is the symmetry axis along which the propagation
is considered. To x the solution, it is necessary to preciséts supercell irreducible
period L, which can be any integral multiple L = nP of the geometric irreducible
period P of the medium along direction e. Thus we now write, e.g., for the
velocity solution eld

Vn(t;x) = vp(l k; x)e "t rikex (1.64)
with the periodicity condition
vh( ks x + nPe) = vp(lk; Xx) (1.65)

stated on the boundary of the supercell, being understood tht nP is an
irreducible period of the considered amplitude, and so on fothe other elds

pnv h'], and n-

Moving on to the determination procedures of the operators,there follows that
a discrete in nite set of branches of an Equivalent- uid density (!;k;n ) are
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produced, such that

hon (5 ks X)va(hk; X)i, e
tvn (L ks x)i, e

Pa(h k)= (1.66)

and

ik (Pn(!;k )+ Po)
it (ks x)i, e

n(hk)= (1.67)

and likewise, a discrete in nite set of branches of an Equivéent- uid bulk modulus
1(1;k; n ) are produced, such that

Pn(;k )+ Po
Pk x)iy+ o Po

where the symbolhi, represents the averaging over the supercell constituted of
n geometric periodsP in the propagation direction.

n (k)=

(1.68)

1.3.7 Characteristic wavenumbers and impedances of the nor mal
mode solutions

The characteristic feature of the present macroscopic thewy is that, without any
simpli cations, it allows for both temporal and spatial dis persion. Within the
classical local equivalent- uid theory which only accounts for temporal dispersion,
for a given frequency! , there is only one single normal mode that can propagate in
the given positive x direction. With this single mode is associated a wavenumber
q(! ) verifying the relation ¢?= (1) (!)!' 2, =(q) > 0, where (!)and (!) are
the local density and compressibility functions. Here, site we fully take into
account the spatial dispersion, several normal mode solutihs might exist, with
elds varying as e "t Tl X At this time, each of these solutions should satisfy
the following dispersion equation

(a) (Ga)?=df (1.69)

If we label | = 1;2;:::; the dierent solutions g(!), =(g) > 0, to the Eq.(1.69),
the corresponding \Have impedance&, = H=V for propagation in the direction
+xwillbe Zi(t) =" (Gai(t))=(t2 (5ai*)).

When the geometry is periodic, the indexn will have to be added in these
formulae. In our forthcoming papers, we show on di erent exanples, that the
present theory predicts the adequate wavenumbersy (! ) and impedancesZ(! ).
We note that the nonlocal functions (!;k) and (!;k ) will not be found to
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systematically reduce to the local ones at long wavelengths The asymptotic
relations of the type (! )=Ilimy o (;k), (') =Ilmy o (! k), which are in
line with the perturbative philosophy of conventional homogenization theory and
are also often assumed without proof for the electric permitivity [22], will not
hold true in the vicinity of Helmholtz's resonances.

1.4 Conclusion

Following a general line of reasoning inspired by the elecomagnetic theory, we
have proposed a de nite new procedure to perform nonlocal hmogenization
for sound propagation in rigid-framed homogeneous unbounefl porous media
saturated with a viscothermal uid, either for general isotropic materials, or for
propagation along a symmetry axis in periodic material. This procedure has
been claried rst in a viscothermal uid, leading to the Kir chho -Langevin's
dispersion equation, and has been next generalized when aiil porous matrix is
embedded in this uid. Contrary to the usual two-scale homogenization approach
[2], or its recent high-frequency extensions [11, 12, 13]he proposed theory makes
no perturbative simpli cation and will be valid as long as th e medium can be
considered macroscopically homogeneous in Lorentz-Rudsa's volume-average
sense.

In practice, the randomness of the medium, which cannot entely be smoothed-
out by the averaging procedure, will prevent constructing meaningful macroscopic
description of the propagation, at wavelengths su ciently small compared to
typical correlation lengths involved in the medium properties uctuations. But for
periodic media, exact smoothing of microscopic variationsan be achieved, and
the nonlocal macroscopic theory will not be limited. Spatid variations of averaged
elds, much smaller than the period, will be described as wdlby the macroscopic
theory. There, a longstanding misconception might be expresed, once again, in
connection with the notion of Lorentz-Russako 's averaging. Contrary to what
Lorentz mentioned in his theory of electrons, it is not necesary that the radius
of the averaging sphere be so small that the state of the bodyso far as it is
accessible to our means of observation, may be considered @siform throughout
the sphere. Therefore, one does not need to assume that maspic wavelengths
must be signi cantly greater than the length L. The ideal periodic case shows
that no scale separation is required to establish a macrosgac theory.

We believe that the present nonlocal acoustic theory also idicates some
misconceptions in electromagnetics regarding the nature fothe eld H in
presence of spatial dispersion. Contrary to what is often aserted, a meaningful



1.4 Conclusion 27

H eld certainly exists in presence of spatial dispersion, een if we lack the
adequate knowledge of thermodynamics necessary to de ne.itThis problem is
not encountered in acoustics which is a theory supported by ear-equilibrium
thermodynamics.

It is also suggested that the acoustic-electromagnetic arlagy that we have used
here, is a degenerate version of a much deeper one. The deepersion might be
totally consistent with Frenkel's long overlooked idea [3Q 31], stating that a uid
behaves like a solid at very short times. The uid capability to support solid-like
shear waves at very short times is automatically implied by te tensor symmetry
of the equations and the electromagnetic analogy.
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Chapter 2

Nonlocal theory of sound
propagation in porous media: case
of circular pores

Elaborating on a Maxwellian representation of longitudinal wave propagation
in a viscothermal uid, a new general nonlocal macroscopic lieory of sound
propagation in homogeneous porous media saturated with vithermal uid

has been recently proposed. The present paper validates thinew nonlocal
Maxwellian theory by showing that, in the case of the propagdion in straight

circular tubes, it is in complete agreement with the long knavn Kirchho -

Langevin's full solutions.

2.1 Introduction

In a recent paper [1], by using Kirchho -Langevin's description of compressional
wave propagation in a uid, and an electromagnetic analogy as a powerful
heuristic guide, we introduced two new upscaling procedurgallowing to compute
two “acoustic permittivities' from microstructure of poro us media. These describe
in a nonlocal "Maxwellian' manner, the phenomenon of macrapic sound
propagation in rigid-framed homogeneous porous materialssaturated with a
viscothermal uid. The rst is a macroscopic e ective density playing the
role of macroscopic electric permittivity, the second a maooscopic e ective
compressibility playing the role of macroscopic magnetic prmittivity. By
‘macroscopic’ we mean that the theory is not concerned with hie values of
the acoustic elds at every microscopic spatial position, ut only, with their
“macroscopic' e ective values, obtained by averaging in a wato be precised. In
the proposed theory, an energetic "Umov-Poynting' de nition of the macroscopic

33



34 2 Nonlocal theory of sound propagation in a circular pore

pressure is introduced, and the permittivities are fully nonlocal, i:e: they are
frequency and also wavenumber dependent.

The physical motivation of the new nonlocal theory is the remgnition that spatial

dispersion e ects are not well described by the existing thedes. Indeed, at the
zero'th order of the asymptotic two-scale homogenization heory [2] and in all
existing macroscopic models such as [3] and [4, 5], spatialspersion e ects are
entirely absent. In the full asymptotic two-scale homogentation theory [2, 6], or
its recent variants [7, 8, 9], some spatial dispersion e ectare present, but in a
limited manner.

The limited possible uses of the latter and other asymptotic methods, were
in recent years highlighted by their inability to cope simultaneously with all
geometries and frequencies, and in particular, to describéhe whole dynamics
of metamaterial structures with Helmholtz resonators [10Jon one hand, and the
complete Bloch mode spectrum in periodic structures on the ther hand. With
the proposed new "Maxwellian' approach, these limitationsdisappear and no
restrictions on periodic geometries or frequencies subsjseven if we have so far
formulated the solution only for the case of propagation almg a symmetry axis of
an unbounded material. Therefore, it is important to note that the new theory is
suitable to predict the exact properties of the so-called meamaterials [10], from
microstructure.

As the new nonlocal theory is intended to provide the true physico-mathematical
solution of the macroscopic wave propagation problem, it neds to be mathem-
atically checked in unequivocal precise manner.

A proper checking is especially desirable, also, because &tdiled veri cation of
the general ideas of the theory cannot be performed in eleabmagnetics, where
the counterpart of the upscaling procedures proposed cannde formulated yet.
In electromagnetics, the nonlocal Maxwell macroscopic thery comparable to the
present acoustic one, is elusive. We believe that its very copletion is not possible
yet, because the necessary thermodynamics of electromadite elds in matter is
missing.

In this paper we concentrate on a simple example for which anxact mathematical
veri cation of the general physical considerations used toconstruct the nonlocal
theory is possible. This example concerns sound propagatioin straight ducts.
For ducts of circular cross-section the exact solution, acaunting in the framework
of near-equilibrium ordinary uid mechanics for the e ects of viscous losses and
thermal conduction in the uid, is known since G. Kirchho [1 1]. Kirchho''s
investigation had been in the thermodynamic framework of the ideal gas theory.
Langevin [12, 13] later showed that Kirchho 's solution applied more generally,
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to a viscothermal uid obeying an arbitrary equation of state. This available
long known solution of the viscothermal wave propagation poblem, o ers the
possibility to directly check in simple but nontrivial mann er the nonlocal theory's
physical considerations.

This paper is organized as follows. In section 2.2 we presefirchho -Langevin's
solution of the problem of small-amplitude sound propagaton in a tube of
circular cross-section lled with a viscothermal uid. We r ecall how this solution
allows to compute at given real angular frequency! , the complex wavenumbers
k(m;n)(! ) of the axisymmetric normal modesm = 0, n = 0;1;2;:::, wherem
and n are azimuthal and radial mode indexes. The corresponding weenumbers
k(') = Kkoa p(*), I = 1;2;:, are obtained as the complex roots of the
transcendent Kirchho -Langevin's dispersion Eq.(2.47).

Anticipating on the Maxwellian theory's de nition of a macr oscopic pressure eld
H by means of the fundamental thermodynamic equation-de nition

hovi = H hvi (2.1)

{ which we call the "Umov-Poynting' de nition since hpvi is interpreted as
the acoustic part of macroscopic energy current density { wlere p is excess
thermodynamic pressure,v velocity, and hi is the averaging operation over a
cross-section, we then introduce at a given real angular figuency! , the following
complex impedance factorsZ|(! ), | =1;2;:::

H=2Zhi e (2.2)

where ey represents the unit vector along thex-axis.

These frequency-dependent Kirchho -Langevin's wavenumbes k(! ) and imped-
ancesZ(! ) enable us to evaluate two frequency-dependent Kirchho -Langevin's

permittivities, namely the densities (! ) and bulk modulii (1) associated
with the di erent radial modes n=1 1,1=1;2;::
(M) = kiZi=h ) =122k (2.3)

In section 2.3 we recall the principles of the proposed macszopic Maxwellian
nonlocal theory. There, two permittivities are introduced which are funda-
mentally nonlocal. They are expressed through two nonlocaldensity and bulk
modulus operators, also described in Fourier space by fregmcy-dependent and
wavenumber-dependent complex amplitudes (!;k ) and  (!;k ). These func-
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tions (;k)and (!;k) are independently computable thanks to the two con-
jectured upscaling procedures.

It will be shown that the Kirchho -Langevin's complex wavenu mbers and
impedancesk; and Z; still make sense in the framework of the macroscopic theory.
The wavenumbersk, are the solutions of the "Maxwell-Kirchho ' dispersion

equation

(k) (;k)2=k? (2.4)
and the impedancesZ, then can be computed by
p
Zi = (hky) k) (2.5)

They may be referred as Maxwell-Kirchho 's wavenumbers and impedances.
The coincidence between Kirchho -Langevin's and Maxwell-Kirchho 's complex

wavenumbers and impedances serves as a test of the exactnesthe two upscaling
procedures of the new theory. Equivalently this can be exprssed through the
coincidence of Kirchho -Langevin's and Maxwell-Kirchho ' s densities and bulk
modulii

M= Gk M= Mk (2.6)

A successful numerical checking of the above performed in sgon 2.4 will

clearly indicate that the two nonlocal upscaling procedures described in [1]
are exact, irrespective of the microgeometry. In forthcomng papers, similar
successful numerical veri cations will be made when the gawoetry is nontrivial

but su ciently simple to allow again for relatively easy det ailed solutions. This
will complete the numerical demonstration of the exactnessand generality of the
nonlocal upscaling procedures conjectured in [1].

We notice that Kirchho -Langevin's theory has been scarcely used in practice.
For the least attenuated plane mode which is most often the oly one of
importance, it gives the results indistinguishable from those of the simple
approximate theory developed much later by Zwikker and Kosen [14]. Extended
to arbitrary geometries this simpler treatment is nothing but that of the zero'th
order homaogenization theory. The propagation models ordiarily used in acoustic
studies of porous media [4, 5, 15], are all developed in thistal-theory framework.
In electromagnetism, it would correspond to the widely usedsimpli cation
which consists in assuming that the permittivities have no dependencies on the
wavenumber. This simpli cation, however, is clashing with the complete wave
nature of the problem which implies to some extent spatial dspersion as well as
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temporal dispersion. Even if Zwikker and Kosten's theory waks very well for
the least-attenuated plane wave mode, it never provides theeomplete physical
solution of the macroscopic (i.e. cross-section averagedyvave propagation
problem. In particular, it lacks predicting the existence of the higher order
modes, and also, the change of nature of the propagation in vg¢ wide tubes,
illustrated by the change of nature of the fundamental mode, which tends to
become surface-wave like.

Zwikker and Kosten's local theory is derived in Appendix A, using the language
of temporal and spatial dispersion. It will be clear that the present complete
"Maxwell-Kirchho ' description of sound propagation in a straight circular duct,
is nothing but a Zwikker and Kosten's treatment generalizedto include spatial
dispersion.

2.2 Kirchho -Langevin's theory of sound propagation
in a tube of circular cross-section

Kirchho 's original investigations on the e ects of viscosity and heat conduction
on sound propagation in free air, and also, air inside a holl solid tube, were
conducted by treating the air as an ideal gas [11]. Langevin ampleted much
later Kirchho 's theory by considering air having the second viscosity and a
general equation of state [12]. We commence by recalling thicomplete Kirchho -
Langevin's theory, which is usually not presented without smpli cations in the
acoustic literature.

2.2.1 Linearized equations, in the Navier-Stokes-Fourier model

We are given a homogeneous viscothermal uid which obeys anrhitrary caloric
equation of state

"=r(s ) (2.7)

with " the speci c internal energy per unit mass, s the speci c entropy, and =
1= the specic volume. The thermodynamic pressurep, absolute temperature
T, and specic heats at constant pressure and constant volumeg, and ¢, are
de ned by

@n . @n ] @S @S

T 22 ., T 2
% T, a@T

(2.8)
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Eqgs.(2.7) and (2.8) and elimination of s results in a thermal equation of state
p= p(T; ). The uid thermal expansion coe cient is de ned by

1 @

© et (2.9)

Let us de ne two xed reference sound speed valueg, and ¢, resp. adiabatic
and isothermal, by

@p @p
—_ ‘ — 2.1
c @ . c e - (2.10)

An application of general thermodynamic methods [16] show hat the quantities
introduced in (2.8), (2.9), and (2.10), are not independent They are related by
the following thermodynamic identities

T 2c2
Cp

where Co=G, is the speci ¢ heat ratio.

1= , 2= c? (2.11)

With v, the Euler's uid velocity, the stress tensor, andq the heat
ux, the equations of mass conservation, momentum conserv#on, and energy
conservation, are expressed by

%ﬁ r (v)=0 (2.12a)
@@\;};) F@(vivi  )=0 (2.12b)
@@"D't) Fro("vig)= @y (2.12c)

TEQs.(2.7) and (2.8) results in the following relation
d"= pdl=)+ Tds (2.13)

As such, Eg.(2.12c) may be put in the following equivalent fom of a balance law
for entropy

@s)
@t

In the right-hand side, one sees the density of local entropyources in the uid,
which is required to be positive by the second law.

1(ij+|0ij)@Vi+CI r Tl (2.14)

+r SV+:L =
T4 =7
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Now substituting in Egs.(2.12a), (2.12b) and (2.12c), the btal elds

(t:x)= o+ qt;x) (2.15a)
jGx)= py+ §= (Po+pitx) i+ P(tx) (2.15b)
s(t; x) = sg+ sqt; x) (2.15¢)
Ttx)= To+ (tx) (2.15d)

where o, Pg, So, Tp represent the constant thermodynamic equilibrium values,
and p® the thermodynamic excess pressurg® = p(T;1=) p(To;1= o) =

p(T;1=) Py, the following linearized equations governing the small arplitudes
perturbations are immediately obtained

0
%t+ of v=0 (2.16)
0%:: @™+ @ O (2.17)
@% 1
O@t_ T—Or (218)

To close the system of equations, there remain to precise theonstitutive laws
which give the deviatoric stresses i? and the heat ux g in terms of other
variables. In the Navier-Stokes-Fourier theory used in ths paper, it is assumed
that the ﬁ’ are purely viscous; the Maxwell's stress terms [17] appearg in
nonisothermal uids and required by the kinetic theory of gases are neglected.
In addition, molecular relaxation phenomena will not be corsidered. If necessary

they may be incorporated as done ine:g: [18].

Within these simpli cations, the constitutive equations are written, in the
following Newton-Stokes form

2
9= @vi+ @y STV + rw (2.19)
and Fourier form

G= @T (2.20)

The coe cients of thermal conductivity , rst and second viscosity and
are constants to be evaluated in the ambient state Po; Tp). The second law of
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thermodynamics results in the inequalities
0; 0; 0 (2.21)

The precise values of these uid constitutive parameters ae di cult to obtain by
molecular theories; they are generally best found by expement.

Inserting the constitutive equations (2.19-2.20) in the 5 alance equations (2.12a),
(2.12b) and (2.14), we nd for the system of 5 linearized consrvation equations
of mass, momentum, and energy

0

@étJr of V=0 (2.22a)
Qv _ 0 _ 2 o 2.22b

O@t— @p '+ @ @Vl + @‘/J 3l rv .+ 5rv (2. )
@8 2

ooy T (2.22¢)

In what follows, we keep using the 6 variables velocity, condnsation b &,

excess pressure, and excess temperature. To obtain a closggtem of equations
on these 6 variables we employ the equation of state = (p; T), whose linearized
version gives

b:O:

P o (2.23)
0

0=
Cc

DN

where the coe cients being evaluated in the ambient state, represented by the
index 0. The linearized version of the state equationT = T(p;s) gives

= T_ pO + T SO

Cp o [
where the coe cient (@T=@p= T=c ; is expressed using Maxwell's relation
(@ =@3 = (@T=@p the identity (@ =@5 = (@ =@R(@p=@s and the
general thermodynamic identity (2.11). Using (2.24) to eliminate s®in (2.22c),

and rewriting the rst coe cient in (2.23) by introducing th e adiabatic ambient
bulk modulus

(2.24)

o 1=ci, (2.25)
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our complete system of six linearized viscothermal equatios on the six variables
v, b, p® ,is nally written as follows

2

_ 0

o P rAvE ot r v) (2.26a)

@b _

CRR (2.26b)
0p0: b+ o (226C)
Ocp%t: OTO@@E:J, ;2 (2.26d)

Equations (2.26a) and (2.26d) are the linearized Navier-Sikes and Fourier equa-
tions, respectively. Egs.(2.26) are our starting linearized viscothermal equations.
For simplicity in what follows the prime over the excess themodynamic pressure
p°is omitted.

2.2.2 Propagation in the circular tube

The solutions of the viscothermal uid equations were givenby Kirchho , for the

case of axisymmetric wave propagation in a circular tube lled with ideal gas,
taking into account viscous losses and thermal exchangesi]L Kirchho made

the simpli cation that the solid walls remain at ambient tem perature due to the
large heat capacity and conduction coe cient of the solid canpared to the uid.

This is in general a well-veri ed simpli cation which is used in the following as
well. Here, we derive the axisymmetric “Kirchho -Langevin's' solutions of the
above equations (2.26), more general than Kirchho 's as thg are written for a
uid having arbitrary equation of state (thus ¢ is di erent from the ideal gas
value 1=Ty) and nonzero value of the second viscosity.

We notice that the reason to study only the axisymmetric soluions, is that
we later intend to use the macroscopic nonlocal theory to deve anew the
macroscopic characteristics of these solutions { wavenundrs and impedances.
But this macroscopic theory, by de nition, concerns the regonse to a
‘macroscopic stirring' whose variations over the transvese cross-section of the
pores are smoothed out and must not be considered. Therefori circular
pores, by symmetry, the elds meaningful to consider in the famework of the
macroscopic theory are microscopically axisymmetric.

Following Rayleigh's presentation of Kirchho 's theory [19], we rst substitute
the state Eq.(2.26¢) in Fourier's equation (2.26d) and use he thermodynamic
identity (2.11) and de nition (2.25) to obtain the followin g alternative form of
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(2.26d)

@ 1@b 2
= = =% 2.27
@t 0 @t+ var (2.:27)

The equations are simpli ed, using the variable

0_ 0
= 1 (2.28)

With this variable, Egs.(2.26¢) and (2.27) become

Pobe(@ @0 (2.29)
0
and
0 b

Then, assuming that the variablesv, b, p, 0 are varying with time as e "t the
equations (2.26) yield

ol v= rp+ r v+ tgilrb (2.31a)
i'b +r v=0 (2.31b)
Poco(E PO (2.31c)
0
it %= b+ —r20 (2.31d)
oCv

Eliminating the pressure and condensation, give rise to thefollowing velocity-
temperature equations

ilv —r?v= r X (2.32a)
0
=+ +
X = ¢ it 0 _ ¢ it r20 (2.32b)
0 oCyi! 0
rov it © —r20=p (2.32¢)
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Elimination of the velocity by taking the divergence of (2.32a) and using (2.31b)
results in the temperature equation

" I#

4
S+
1204 2 il + 3

oCv 0

" #

4
@ it ="

— r2r20=0 (2.33)
oCyi! 0

Let 1 and ; be the two, small and large, solutions of the associated Kitdtho -
Langevin's characteristic equation
m !# m #

4
@ it =7

+— 2-0 (2.34)
oCv 0 oCyl!

The small solution { mainly real { describes propagating acastic waves with
small bulk absorption, the large solution { purely imaginary { highly damped
di usive entropic waves.

The eld Osolution to (2.33) will have the form
0= Ay 1+ Ay > (2.35)
with functions ' 1 and ' ; verifying
ray= 11 %= 2 (2.36)
The velocity v will write
v=vl+ Bir "1+ Bor ' (2.37)

with vOthe vortical part, such that

il
r2y0= 100 0-g (2.38)

The relation between coe cients B and A follows from (2.32c)

il
Bio= ——+ — Ay 2.39
12 oCv 1;2 L2 ( )
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In summary, the viscothermal elds are generally decomposg as

_\,0 ' .
v=v'+ —+ — Aygr + —+ — Aor 2.40a
oCv 1 ! ! oCv 2 2 2 ( )
= + A1+ 1+ - As' 2.4
b o 1 AT o 2 A2 (2.40b)
p 1
= + Al 1+ G2+ _ A 2.40
; 2+ 2 o L A 2+ 2 o 2 A2 (2.40c)
O= A" 1+ Ay 5 (2.40d)

Concerning the application to axisymmetric elds propagating in the right-going
x direction in a tube of circular cross-section, we wish to detrmine normal modes
as functions ofx, proportional to e" X, where thek; s, =(k) > 0,1 = 1;2;::,
are complex constants to be speci ed. In what follows for comenience the index
[, labeling the di erent axisymmetric modes solutions, will be omitted.

For these modes, the operator can be replaced byik ey + @@rer (er representing
the radial unit vector) and the operator r 2 by @@; + @@r k2, and the di erent
elds a(t; x) by their amplitudes a such that a(t;x) = a(r)e " ** _ There
follows that the corresponding' 1 and ' » will be described by Bessel functions

q___
12=Jdo T 12 k2 (2.41)

Writing the vortical velocity vCin the form v®= u%, + g%, with axial and radial
amplitudes u® and ¢ independent of azimuthal angle#, it is easy to see that
Eqgs.(2.38) imply u®is the solution to

@ @ o_ il 2 0
where = o is the kinematic viscosity and q®is determined by the relation
oo __k_@8
9= - 2 @r (2.43)

As a result, u®and g® will be written as

: k @
W= AL a0 A G (249
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where' is the Bessel function
r !
"=Jo r — k2 (2.45)

Finally, writing the total velocity in the form of v = uex + ger, u and q are
obtained as

. .
u= A" + ik —+|'— A1+ ik —+|'—
oCv 1 oCv 2

ik @' il @'1 i! @’
T 4+ o+ A==+ —+ 2 A,—% (2.46b
14 k2 @r oo 1 @r oo 2 Ca@r ( )

Ao » (2.46a)

q= A

The tube being assumed su ciently inert thermally to remain at ambient

temperature, no temperature-jump occurs on the tube wallr = R. On the

other hand no-slip condition is applied on the wall. Thus, (246a-2.46b) and
(2.40d) vanish on the uid-solid boundaries. These three hanogeneous equations
have non vanishing solutions only if their determinant is zeo, which consequently
yields the following Kirchho 's dispersion equation

oCv 1w @y oCv 2 " ow @

k2 il il 1 @'
_ = — ——— =0 (247
4 K2 1 2w @ ( )

i! 1 @4 N i! 1 @4

referred here as Kirchho -Langevin equation to remind its validity for a general
viscothermal uid. The index w indicates that the functions and derivatives are
evaluated at the tube wall ry, = R.

Eq.(2.47) has a series of discrete complex solutionls, =(k;) > 0,1 = 1;2;::,
which can be sorted by convention in ascending manner relatig the values of
=(k) such that =(ky) < =(kp) < ... . To determine the solutionsk;, the Newton-
Raphson root- nding method may be employed, with initial values kg taken as
if the dissipation e ects are neglected. In this ideal lossles case, Eq.(2.47) will
be considered in the limit ; ; ! 0, and thereforekq will be the solutions to

s !

|12

Ji R —=
1 2
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that means

N
P
-N

kg = - (2.49)

2
py)
N

where x; 0 are the successive zeros of the functiodi(x). As J1(0) = 0 i:e:
x1 = 0, the rst solution is always kg1 = !=c4, which corresponds to the plane
wave mode. At a given frequency, there are one (plane wave medo;) or more
real positive solutions describing right-going propagathg waves, and an in nite
discrete set of purely imaginary solutions with=(kg) > 0, describing evanescent
waves which attenuate ase= (o)X glong positive x-axis.

In general, a few Newton-Raphson iterations suce to make these starting
losseless purely real or purely imaginary solutionsky converge towards the
complete complex solutionsk;. In this process, the solution with positive
imaginary part is retained, as we consider waves propagatiy in the direction

+ x which can be created by a source placed on the left. The conddn that the

imaginary part is positive, automatically xes the sign of t he real part. We note
that, for a given solution | and on account of the two independent conditions
expressing the vanishing of ®and u at the tube wall r, = R

A" wt A2 oy =0 (2.50a)
i! i!
A wt+tik —+— Apf'qwtik —+ — Ay =0 2.50b
w oGy 1 1 1w oGy ) 2 2w ( )
the solution may be xed in terms of only one arbitrary amplit ude (related to
the arbitrary sound pressure level). We denote it byA and write
oo i, L .
A = Aik —1 —2 w' 2ws A= Ay ows A= A"y 1w (251)
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In summary, with this notation the di erent elds write as fol lows

u — I! L 1 1 1 + L 1 1 1
ik A - 1 ) w 2w —OCv 1 w 2w 1
i!
+ E-'- —2 woiw 2 (2.52a)
g_ it o, . K @ i, @)
A 1 2 M Ivieer oo 1 " Mar
i! @'’
+ —+ — "W 2.52b
oGy ) w 1w @I’ ( )
b
_ = + _ 1 1 1 + 1+ _ 1 1 L} 2-52C
A vaI' 1 w 2w 1 OCv” 2 w 1w 2 ( )
p — < 1 L}
A o a+c'zoc\,i! 1w 2w 1
toard——r 2 Twlw' 2 (2.52d)
0
"wiaw 1t T wl w2 (2.52e)

K:

The key step to determine the above eld patterns is to speciy the wavenumber
k. Suitable averaging of the above elds will then allow to conpute the quantities
making sense in the forthcoming macroscopic theory.

Let us denote by a brackethf i the average of a eldf , performed over the cross-
section of the tube
Zr 2,

1
Hi=— dr ra#f 2.53
RZ , . (2.53)
For later use in the macroscopic theory, we introduce the fdbwing notion of
macroscopic mean pressuréi

hpvi = Hhvi (2.54)

Thermodynamic{relating reasons to de ne in such a way the maroscopic pressure
were given in [1]. The notation H comes from the a nity of this concept with
that of Maxwell magnetic eld H . In accordance with this general de nition, a
characteristic complex impedance factorZ, can be de ned for a given mode, by
setting

H = Z/tui; suchthatZ, = — (2.55)
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where the averages are computed knowing the wavenumbds.

It may be noted that, by knowing the complex wavenumberk, (! ) and impedance
Z,(!) for a given radial mode solutionl, an equivalent- uid complex density (! )
and bulk modulus | 1(1') might be de ned through setting raations having the

usual form (see e.g. 7)) ky = '=c| = ! P frandZ, = g = L Lier
kibpui | fpui
1)Y= — 1Yy= — L
(1) = ZI T2 ()= Zl K TuiZ (2.56)

Indeed, for a given model, this means that we may write classical macroscopic
equivalent- uid equations of motion
@ @ @

(! —hu|: ot gh= g

To verify this, consider one wavee "t *kix in the + x direction, we have
()i hi = ikH ()iH =ik b (2.57)
By introducing the de nitions (2.55) the above gives the relations (2.56).

There are known formulae giving the averageh i of Bessel functions , ' ; and' »
and their products, in terms of other Bessel functions. Thus when k; is known,
the above Kirchho -Langevin's impedance factors Z, (2.55), and densities and
bulk modulii (! ) and | L(1) (2.56) are all known in closed form.

2.3 General nonlocal theory applied to sound propaga-
tion in a tube with circular cross-section

Applying the general nonlocal theory of sound propagation pesented in [1], to
the case of sound propagation in a tube of circular cross-seon, the macroscopic
averaging operation in the sense of [1] evidently becomesétcross-section average
(2.53). In fact, the elds relating to the harmonic action-r esponse problems [1]
have the form a(!;k;r )e "t & with amplitudes a(!;k;r ) independent of x,
and thereby, needed to be averaged only over a cross-section

2.3.1 Linearized macroscopic equations in Maxwellian nonl ocal
theory

Then introducing the macroscopic variablesV = V e, = hui and B = hoi,
where u is the axial velocity, the nonlocal theory (chapter 1) predicts that wave
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propagation of the averaged quantitiesV and B is described by the following eld
equations (see Egs.(1.36), (1.37), (1.41) and (1.42))

@B @V_
@t-'- @x 0 (2.58)
@D_ @H
@ @x (2.59)
and constitutive relations
z, zZ
D(t;x) = dt® dx® (@t t%x xYv®x9 (2.60)
1
z, Z
H(t;x) = d® dx® t t%x x9B(t%x9 (2.61)
1

where (t;x) and L(t;x) are constitutive kernel functions independent of
temporal and spatial variations of the elds. They are determined only by the

uid constants and the microgeometry of the porous medium,i:e: here, the tube
radius R. The integrations over t° determine the so-called temporal dispersion
e ects and the integrations over x° determine the so-called spatial dispersion
e ects [20, 21]. The upscaling recipes, seen in chapter 1, ldato specify the

Fourier coe cients (!;k ) and  (!;k ) of these constitutive functions, and will

be described in the next two sections.

2.3.2 Determination of the nonlocal density (" k)

To compute (!;k ) we rst consider the response of the uid subjected to the
action of an external stirring force-per-unit-volume f, which derives from a
ctitious harmonic pressure waveform inserted in Navier-Sokes equation. Thus
we consider solving the action-response problem (see Egs.45-1.47))

@ 1 _ o (3+ ) @b 1

e PTTY T el (2628)

@b _

ok v=0 (2.62b)
op=b+ o (2.62¢)

@ _ olo@p > (2.62d)
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forr<R, and

v=0 (2.63a)
=0 (2.63b)

at r = R, with the deriving force given by
f= rP= ikePge "+ (2.64)

With calculations entirely similar to those which have been done before, the
equations (2.32) become

. 1
ilv r?v= r X+ =f (2.65a)
0
=+ =+
X= & =—it %% _ ¢ 2y r20 (2.65b)
0 oCvl! 0
rov it © —r20=0 (2.65¢)
oCv
and the temperature equation (2.33) becomes
mn !#
4
!2 0 z il + 3 r 20
oCv 0
mn 4 # 2
o7t k
_ ¢ 13 rer2% Zp=0 (2.66)
oCyi! 0 0

A particular solution of the above equation is

0 k?
g=c-p (2.67)
with
( 2 "02 4?'* I# 2 " 4?'* #4) '
c= | T K2+ —— & il k
a oCv 0 oCyi! A 0
(2.68)

The general solution of EQ.(2.66) is this particular solution added to the general
solution (2.35) of the homogeneous equation (2.33)

k2
0= 0+ J= Ay 1+ Ay 2+ C—P (2.69)
0
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Similarly, the general expression of the velocity will be
V = uey+ ger = Vot Vp (2.70)

where vg is written as in (2.40a), and vp = Upey is the particular solution with
up determined by (2.65¢), and °= § iie:, ikup = (il k 2= ocy) 5. Only
the x component u will be required to compute (!;k ). However, the radial
componentq needs also to be written as it is involved in the boundary condions,
by means of which the amplitudesA; A 1; A, are nally xed. Both components

write accordingly

il
u=A +ik —+ — A" 1+ik —+ — A,
oCv 1 v oCv 2 2 2
+ +—Cvk2 CKP (2.71a)
0 0
ik @' il @'1 il @
- A =+ v Ay T A= 2 (2710
AT e T Mert et Maer BT

Now, we seek the excess pressure solution as the last requirguantity. It has
the general form

P= Po+ Pp (2.72)

where po is given by (2.40c), and the particular solution p, is determined by
(2.26¢c) with %= S b= by, andilb , = ikup. Thus

P G+ 1 A1t G+
0

ol 2 Ao

g

oCvl!

LS
k2 cSp 73
oCyl! 0

The boundary conditions imply that the three quantities excess temperature and
the two components of velocity (2.69), (2.71a) and (2.71b),should vanish at
the tube wall r = ry, = R. This yields a linear system whose solution uniquely
determines the three response amplitudes, A; and A,, in terms of the arbitrary
deriving pressure amplitudePg.

Knowing the response elds (2.71a) and (2.73) as functionsfo!;k and r, is all
we need to compute the density (!;k ). According to the conjectured upscaling
procedure we assume that in the action-response problem @), the role of the
macroscopic eld H in Egs.(2.58-2.61) is played by the eldP+ P wherePis the
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macroscopic part of the response pressure elg, which is de ned by (see chapter
1)

hovi = Phvi; i.e. hpui = Phui (2.74)
This assumption leads to Eqgs.(1.50) and (1.53) in chapter 1which give here

k(P+ Po)

(k)= T (2.75)

A direct veri cation of this conjectured upscaling procedure would be to see
whether or not, when the amplitudes A and Py are adjusted so that the
gradient r H = ikjexH in section 2.2.2 is the same as the gradient (P+
P) = ikjex(P+ P) in this section, the averages of the velocitiesv appearing
respectively in EQs.(2.26) and (2.62) turn out to be exactly the same. This
macroscopic coincidence of the two mean velocities obtaidein two di erent
problems, is highly nontrivial even in the present simplestcase of straight duct
geometry. In principle, the two problems have fundamentaly di erent nature;
one is an eigenvalue problem and the other is an action-respse problem. In the
two problems, the corresponding sets of microscopic eld p#erns are not the
same; but after averaging, the two mean velocities divided 1 the corresponding
two gradients are conjectured to be exactly the same.

A comparison between the rst Eq.(2.57) and Eq.(2.75) showshat this matching
is expressed in explicit equivalent form by the following egation

()= (k) (2.76)

It is in this last convenient form, which must be valid for all di erent modes, that
the validity of the upscaling procedure for (!;k ) will be directly checked.

We may name "Maxwell-Kirchho 's' the nonlocal density function (2.75). There
are known formulae giving the average of Bessel functions, ' ; and ' , and their
products, in terms of other Bessel functions, which allow towrite the nonlocal
density function (2.75) in closed form. This function is a canplicate ratio of
sums containing many terms, each involving the product of 6 Bssel functions,
multiplied by factors involving ! , k?, 1, . To save time, instead of seeking its
most compact nal expression, we have made a direct Matlab pogramming of it
with ! and k as input arguments.
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2.3.3 Determination of the nonlocal bulk modulus k)

The same type of calculations seen before to obtain(!;k ), can be performed
to directly compute  (!;k ). Here, we need rst consider the response of
the uid subjected to the action of an external stirring rate of heat supply per
unit volume and unit time Q, which derives from a ctitious harmonic pressure
waveform inserted in Fourier equation. Thus we consider seing the action-
response problem (see Egs.(1.56-1.58))

@, 1 5, (zt ) @b

@t+ —Or p= r “v Tr ot (2.773a)

@b _

@t+ r v=0 (2.77b)
ob=Db+ o (2.77¢)

@ _ oTo@p 2 1

— = =+ — — 2.77d

@t oGy @t+ onr * onQ ( )

forr<R , and

v=0 (2.78a)

=0 (2.78b)

at r = R, with the stirring rate of heat supply given by

Q= OTO%t: il oToPge M *ikx (2.79)

Through similar calculations as seen before, Egs.(2.32) nobecome

ilv r?v= rX (2.80a)
=+ =+
X= & 3 - it O+ =i ¢ 3 - it r20 (2.80b)
rov it © - 2 0= O%t (2.80c)
and the temperature equation (2.33) becomes
" " I#
!2 0 CE21 il + 3 r 20
oGy 0
" #
4+
¢ it =2 r2r20 (it k2 it P=0 (2.81)

oCyl!
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A particular solution to the above equation will be
0= C(@l k? oiP (2.82)

with the same constantC as before.

The general excess temperature solution is this particulasolution added to the
general solution (2.35) of the homogeneous equation (2.33)

0= O+ 0= Ay 1+Ay, C@l k2 il P (2.83)

Likewise, the general velocity solution is in the form
V=uex+ ger = Vot Vp (2.84)

where v writes as in (2.40a), andvp = upey is the particular solution with ujp
determined by (2.80c) and °= 0 ie:, ikup= (il k?=oc) J it oP. We
obtain for the two components of the velocity

u=A +ik —+ — A'1+ik —+ — Ay

oCv 1 v oGy 2 22

|
+ il + —k% Cc(i' k? 1 —P 2.85
I+ — ok C( ) 0 (2.852)

k @ i! @" i! @
- A_ -4+ —+ = Aj——+ —+ — A,—= (2.85b
AT e T Mert e s Mar B
The general pressure solution, similarly is written as

P=Po+ Pp (2.86)

where pp writes as in (2.40c) andp, is determined by (2.26¢) with 0= IC?and
b= by, i'b , = ikup. We will have

BO: C621+CI27 1 A1t C621+C|27 2 A2 2
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The general condensation solution will now also be requiredit may be written
from (2.31c) and the expressions (2.83) and (2.87), which gid

b= 1+

- A1+ 1+ -
oot b0t oCy!

c@ k?it 1

2 A >

=i k?  oP oP (2.88)

As before, the boundary conditions imply that the three quartities excess
temperature and the two components of velocity (2.83), (2.8a) and (2.85b)
should vanish at the tube wallr = r,, = R. This yields a linear system whose
solution uniquely determines the three response amplitude A, A; and Az, in

terms of the arbitrary deriving amplitude Po.

Knowing the response elds (2.85a), (2.87) and (2.88) as fuctions of !;k and
r, is what we need to compute the bulk modulus *(!;k ). According to the
conjectured upscaling procedure in chapter 1, we assume thdn the action-
response problem (2.77), the role of the macroscopic eldd in Egs.(2.58-2.61) is
played by the eld P+ P wherePis the macroscopic part of the response pressure
eld p, which is de ned by

hovi = Plvi; ie. hpui = Phui (2.89)

and, at the same time, the role of the macroscopic eldB is played by the averaged
eld b+ oPi. This leads to Eqs.(1.59) and (1.61), which writes here

P(l;k )+ Py
(' k;r )i+ oPo

k)= (2.90)

A direct veri cation of this, would be to see whether or not, when the amplitudes
A and Pg are adjusted so that the amplitude H in section 22 is the same as
the amplitude P+ Pg in this section, then, the average of the condensatiorb
appearing in Egs.(2.26) and the average of the condensation+ oP, whereb
is the quantity appearing in (2.77), turn out to be also exactly the same. Again,
this macroscopic accordance is by no means trivial, even inhe present simplest
case of straight duct geometry. A comparison between the sead equation of
(2.57) and Eq.(2.90) shows that this matching is also expresed by the following
equation which must be valid for all di erent modes

)= (k) (2.91)
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It is in this last convenient form, that the validity of the up scaling procedure for
L(1:k ) will be directly checked.

As for the nonlocal density, we may name "Maxwell-Kirchho 's' the nonlocal
bulk modulus function (2.90). As before, this Maxwell-Kirchho ‘s nonlocal bulk
modulus is known in closed form as a complicate ratio of sumsontaining many
terms, each involving the product of 6 Bessels. Again to savéime, a direct
programming of the function (!;k ) was made, with! andk the input arguments.

2.3.4 Dispersion equation, wavenumbers, and impedances

The above nonlocal theory predicts that, at a given frequeng, normal mode
solutions with averaged elds varying ase "t *kx will exist, for k solution to the
dispersion equation

(k) (hk) 2=k (2.92)

Indeed, this equation comes from Eqs.(2.58-2.61), making s¢ of macroscopic
elds having the dependenciese " *kx Hereafter we refer to this dispersion
equation as to the nonlocal Maxwell-Kirchho 's dispersion equation.

For the proposed nonlocal theory to be correct, Maxwell-Kirchho 's dispersion
equation (2.92) must be mathematically equivalent to the oiginal Kirchho -
Langevin's dispersion Eq.(2.47). In particular, both equaions must have the
same set of solutionsk; at given ! . Moreover, the macroscopic impedances of
the corresponding modes must also be the same. Recall thatrfany eld freely
propagating in the tube, the nonlocal theory de nition of th e macroscopic eld
H (t; x) originates from the fundamental "Umov-Poynting' identi cation

hp(t; x; r)u(t;x;r)i = H(tx)hu(t; x;r)i (2.93)

Since we have employed this expression to de ne “Kirchho -Lagevin's' macro-
scopic impedance factorsZ| (2.55), Kirchho -Langevin's and Maxwell-Kirchho
wavenumbers and macroscopic impedances match automatigalprovided the fol-
lowing aforementioned relations

Kk !
()= FZi= Gk M= zis k) (2.94)
The calculations to be performed in order to show the mathemécal equivalence

between (2.47) and (2.92) appear very tedious, because of éhlarge number of
terms to be collected and rearranged to express the mean terrpui.
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In what follows, to check the validity of the theory, the easier way of direct
numerical checking of relations such as (2.94) has been engyked. The problems
relating to the precision in the Matlab computations would limit the number of
modes that can be valuably checked. The results which will bgpresented next,
however, clearly validate the theory.

2.4 Check on the nonlocal theory

In order to validate the theory, we detail three signicant dierent cases,
representative of three main types of duct wave regimes, refred to the "narrow'
tube, "wide' tube, and ‘very wide' tube, respectively in acaistic literature [22].

In section 24:1 we will consider the case of low frequencies or "narrow' tugs.
In this low frequency range, the viscous skin depth = (2 =! )2 and thermal

skin depth { having the same order for air { are greater thanR. Calculations are
performed at frequencyf = 100Hz for a tube of radius R =10 “*m. This is the

narrow tube con guration considered in [23]. The valueR =10 “m is typical for

the pore size dimensions found in ordinary porous materialsised in noise control
applications [15] { such as pore-size parameter of dynamially connected pores
in [3]. With a viscous skin depth equal to two times the radius the fundamental

plane-wave like mode is mostly di usive and the higher order nodes are highly
attenuated.

Certainly due to insu cient accuracy of Matlab Bessel's fun ctions, only the rst
mode appears to be numerically very well characterized. Hoewer, it provides a
rst check of the theory: Kirchho -Langevin's and Maxwell-K irchho 's results
for this mode are found to be identically the same, up to the numerical accuracy.

In section 24:2 we consider the case of high frequencies or "wide' tubes. In
this frequency range, the viscous skin depth and thermal ski depth become
signi cantly smaller than R. The calculations are done at frequencyf = 10kHz
for a tube of radiusR =10 3m. This is the "wide' tube con guration considered
in [23]. With the radius now being more than 50 times the viscais skin depth, the
fundamental plane-wave like mode is a well-propagating moe, whose macroscopic
characteristics may be followed with great numerical accuacy by the Matlab
nonlocal theory computations. Several higher order modesra also successfully
described by the present numerical computations, whether ltey are below or
above the cuto frequency. Again, the results provide unequvocal validation of
the proposed nonlocal theory.

Finally, in section 2:4:3, taking a tube radius of Icm, and a frequencyf =
50kHz, we consider the case of 'very wide' tubes. Here, the fundamtal
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least attenuated mode is no longer plane-like as predicted yo Zwikker and
Kosten theory. Sound energy tends to concentrate near the wks. Once again
Kirchho -Langevin's results are exactly reproduced by the nonlocal Maxwell-
Kirchho 's theory and provide unequivocal validation of th e theory. In all
foregoing calculations the parameters of the air are set tohe values shown in
Table 2.1.

Table 2.1: Fluid properties used in all computations.

0 To Co 0 Co
(kg=m®)| (K) | (m=s) | (kgms ) |(kgms )j(Wm 'K 1) (Pal) |Jkg 'K b

[ 1.205 [293.9340.139]1:8369 10 °] 0.6 [2:57 10 2[7:173 10 °| 997.5422 [1.4

Given the radius R and the frequencyf , we proceed as follows to evaluate the
di erent quantities. To evaluate the Zwikker and Kosten quantities, the formulae
reported in Appendix A are used. To evaluate the Kirchho -Langevin's and
Maxwell-Kirchho 's wavenumbers kg, and kyk , a Newton-Raphson scheme is
used to solve, Eq.(2.47) and EQ.(2.92), respectively. In tbB Kirchho case, as
we dispose of the explicit analytical expression of the funwon F(!;k ) = 0, we
have an explicit analytical expression for its derivative with respect to k. In the
Maxwell case, the expressions are too lengthy, thereby we rka use of a numerical
derivative. This is carefully done by evaluating the function F at two close values
of the wavenumberk(l 4=2 € ), with 4 a very small and adjustable parameter
(e.9. ¢=10 °), and then averaging over several random orientations between
0 and 2 . The results which are reported below have been shown to be $ensitive
to the variation of 4. Our stopping condition of the Newton scheme is that the
relative error between two successive evaluations dx; or kmk should be less
than a very small xed value s (e.g. s =10 '?). The Newton scheme is more
stable and converges in fewer iterations for Kirchho -Langesin's equation (2.47)
than for Maxwell-Kirchho 's equation (2.92).

Given a wavenumberk = kgL = kwk , the eld patterns in the Kirchho -
Langevin source-free propagation problem, and Maxwell-Kichho action-
response problems, can be explicitly written.

For the Kirchho -Langevin's quantities, the impedance Zx, has been computed
rst, using the explicit expression (2.55). The density k. and bulk modulus
KE were then obtained using the relations (2.56).

For the Maxwell-Kirchho quantities, the density and bulk m odulus were

computed rst, using the direct programming of the relations (2.74-2.75) and



2.4 Check on the nonlocal theory 59

(2.89-2.90), and as input argumentk, the mode wavenumber, either coming
from the Newton solution of the Kirchho -Langevin's equatio n, or the Newton
solution of the Maxwell-Kirchho 's equation. As the two wav enumbers may
not coincide exactly due to nite precision and existing inaccuracies in Matlab
Bessel functions, this does not produce exactly the same va¢s of density
and bulk modulus. Corresponding end-values will be distingished by using
indexesMK k. or MK yk respectively. Corresponding impedances could then
be computed from (2.5), and corresponding wavenumbers, by2(4). If the theory
is correct, we expect to see consistency between these di erequantities, when
no numerical problems arise; what will be shown below.

2.4.1 Narrow tubes: R =10 “m, f = 100Hz

In order to distinguish between Zwikker and Kosten's, Kirchho -Langevin's, and
the di erent Maxwell-Kirchho 's values, we put subscripts ZW, KL , MK , and
MK k. and MK ymk , on the various quantities.

For the least attenuated plane wave mode, the values obtairge of the
wavenumbers, impedances, densities and bulk modulii are

kzw 7:01099685499484 + $1504658906530
Kk 7:01099585405403 + $15047642507 14
Kmk 7:01099585405408 + $1504764250749
KMK . 7:01099585405402 + $1504764250743
Kmk | 7:01099585405407 + %15047642507 45
<( k=k) <10 14
=( k=Kk) <10 ™

Zzw 1:122582910810147 10° + 1:037174340699598 10°i
ZKkL 1:122582790953336 10° + 1:037174463077600 10°i
ZMK o 1:122582790953338 10° + 1:037174463077570 10°i
ZMK wk 1:122582790953347 10° + 1:037174463077563 10°i
<( Z=2) <10 ¥
=( Z2=2) <10 @

Zwikker and Kosten's wavenumber di ers from the exact wavenunber on the 6th

decimal. Kirchho -Langevin's and Maxwell-Kirchho 's valu es of the wavenumber
are the same: the dierence expresses on the 14th decimal, wdhi is not

meaningful numerically.
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W 1:60661929116825 + 239190009091347
KL 1:60661313808787 + 239190042443754
MK «L 1:60661313808802 + 239190042443739
MK wmk 1:60661313808843 + 239190042443734

<( =) <10
= = ) < 10 14
Z\:ILV 9:962016440824576 10 1:043527914142315 10°i
KI} 9:962016409534546 10* 1:043531769001552 10°i
Mi o 9:962016409534367 10* 1:043531769003892 10°i
Mi i 9:962016409534391 10* 1:043531769003666 10°i
:( I— 1) < 10 14

Kirchho -Langevin's value kg is relatively insensitive to the starting value.
Convergence to the given solution is obtained by starting fom the lossless case
solution k = !=c 4, the Zwikker-Kosten solution, or the value k =6 + 2 i taken in
[23]. On the contrary, Maxwell-Kirchho 's value kyk is sensitive to the starting
value. Not reported here, a meaningless unattenuated valukyk is found, when
using as starting value the lossless-relating solutiok = I=c 4.

The errors f=f indicate the relative di erences computed between Maxwell-
Kirchho 's values and Kirchho -Langevin's reference values. Their small values
show that they are numerically insignicant. There is complete matching
of wavenumbers, impedances, densities, and bulk moduluspif the rst least

attenuated mode. For the rst higher order mode, the imaginary part of the

wavenumber is already in the order 5 10%. This leads to a large imaginary
part in the complex arguments of the Bessel functions and' ;.. The resulting
loss of precision prevents making precise checks with Matta

2.4.2 Wide tubes: R =10 °m, f =10kHz

For the least attenuated plane wave mode, the values obtairg: of the wavenum-
bers, impedances, densities and bulk modulii are:

The deviations are not signi cant owing to the calculation precision. This is again
a clear validation of the nonlocal upscaling procedures. Th cuto frequency of
the rst higher order axisymmetric mode is a little above 10kHz. While this
mode is still very signi cantly attenuated, its macroscopic characteristicsk, Z,



2.4 Check on the nonlocal theory

61

Kzw 1:877218171102030 107 + 3:047328259173055
Kkl 1:877217761268940 107 + 3:050105788888088
KMk 1:877217761268940 107 + 3:050105788888080
kmk | 1:877217761268940 107 + 3:050105788888080
kmi | 1:877217761268940 107 + 3:050105788888122
<( k=k) <10 17
=( k=k) <10 7
Zzw 4:122429513133025 107 + 2:490000257701453
ZkL 4:122428467151478 107 + 2:490594992301288
Zmk | 4122428467151478 107 + 2:490594992301361
Zvk g | 4122428467151476 107 + 2:490594992301310
<( Z=2) <10
=( Z=2) <10
ZW 1:23153152867920 + 2743301182273
KL 1:23153080833621 + 2745300551283
MK « | 1:23153080833621 +02745300551283
MK wx | 1:23153080833621 +02745300551283
Re( =) <10 B
= = ) <10 b
7w 1:379578791782648 10° 1:406078512972857 10°i
KL 1:379578235612869 10° 1:407920077798555 10°i
MK 1:379578235612869 10° 1:407920077798545 10°i
MK i 1:379578235612869 10° 1:407920077798562 10°i
<( 1 l) < 10 15
=( 1_— l) <10 15

nevertheless, are obtained with a precision which, once agg shows the exactness
of the upscaling:

It may be noted that the negative real part of the bulk modulus is the type of
behaviour described for metamaterials [10], the negativeeal part of wavenumber
also being present and associated with negative group veliy
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Kk L 4:306909087685141 10 + 3:869321168683033 10°i
Kmk 4:306909087685137 10 + 3:869321168683033 10°i
KMK . 4:306909090003509 10 + 3:869321168690618 1C°i
KMK vk 4:306909081646905 10 + 3:869321168665630 10°i
<( k=k) <10 B
=( k=k) <10 P
ZxL 1:776687018193479 10° + 3:970076285107318 10i
ZNK 1:776687018218434 10° + 3:970076291590705 10i
ZNMK wx 1:776687018142111 10° + 3:970076267272126 10i
<( Z=2) <10 1®
=( Z=2) <10 ®
KL 3:662717005908636 10° 1:093850090017855 10Pi
MK «L 3:662717010578706 1P 1:093850090034776 10Pi
MK e | 3:662716993171710 1P  1:093850089982904 10°i
<(=) <10 ™
= = ) < 10 10
KL 3:235050540472611 10° + 2:885427853699511 100i
MK 3:235050549225333 10° + 2:885427853735547 10
MK i 3:235050516110349 10° + 2:885427853625859 10"
<( 1— 1) < 10 10
:( - 1) < 10 10

2.4.3 Very wide tubes:

Recall that in this new regime of the wave propagation the leat attenuated mode
is no longer a plane mode. It tends to concentrate near the wéd. The values

R =10 ?m, f =500kHz

obtained of the wavenumbers, impedances, densities and dumodulii are

They show the exactness of the upscaling procedure in this géme, as well. Since
spatial nonlocality plays an essential role here, there areonsiderable di erences
between Zwikker and Kosten values and the exact ones. Recathat the local
Zwikker and Kosten theory assimilates the eld H with mean pressurehpi and
the mean pressure with the pressure itself. But here, the pr&sure is no longer
a constant over the section, so that the local approach is lagely in error. The
proposed theory, with its fundamental Umov-Poynting de ni tion (2.1) of the H

eld, properly takes into account the nonlocal behaviour.
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kzw 9:238319493530025 10° + 2:120643432935189
KkL 9:230724176891270 10° + 6:352252888390387
Kmk 9:230724176891270 10° + 6:352252888390393
KMK w0 9:230724176891188 10° + 6:352252888364898
KMK wk 9:230724176891185 10° + 6:352252888365807
<( k=k) <10 18
=( k=K <10 ®

Zzw 4:099012309061263 10” + 3:362191197362033 10 i
ZkL 2:443313123663708 10° 1:548257724791978 10°i
ZNK «. 2:443313123674136 10° 1:548257724791633 10°i
ZNMK ik 2:443313123674066 10° 1:548257724791642 10°i
<( Z=2) <10 2
=( Z=Z) <10 2

ZW 1:20537538699515 + 0037556247686
KL 0:72103233188038 4:54864444048231
MK o 0:72103233188342 4:54864444048145
MK wk 0:72103233188340 4:548644440481248

<( =) <10
= = ) <10 2
W 1:393914394285537 10° 2:056360890188126 10i
KL 8:279327305799672 10* 5:269923491004282 10°i
MK oL 8:279327305835388 10" 5:269923491003154 10°i
MK i 8:279327305835144 10* 5:269923491003189 10°i
<( 1 l) <10 12
=( 1_— l) <10 12

2.5 Conclusion

The exact matching between the macroscopic translation of kichho -Langevin's
results and the results obtained on the basis of the new nontml theory proposed
in [1], provides a clear validation of the nonlocal-relating upscaling procedures.

The important concept, which leads us in [1] to these exact hmogenization
upscaling procedures, is the "Umov-Poynting-Heaviside'ancept of “acoustic part
of energy current density’. Using an analogy with electromgnetics, we had to
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identify exactly this acoustic part with the quantity s = pv, where p is the

thermodynamic pressure. This served in turn as a basis to dene a macroscopic
pressure eld, through the macroscopic relation de nition hpvi = Hhvi. And

this thermodynamic de nition can be recognized nally a key to make use
of the solutions of two simple action-response problems, irthe appropriate

way, which lead to the independent computation of the two norocal acoustical
susceptibilities and

In forthcoming papers it will be shown that the proposed nonbcal Maxwellian
theory, providing exact homogenization procedures, is vadl also in the case of
nontrivial geometries.

We believe that the present theory highlights the unsatisfatory thermophysical
state of aairs in macroscopic electromagnetic theory, whee a comparable
de nition of the macroscopic magnetic eld H cannot yet be proposed,
because of lacking thermodynamic variables allowing to exgss the concept
of “electromagnetic part of energy current density’. For ths reason, no
electromagnetic analogue of the present acoustic upscalinprocedures can yet
be proposed.
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Chapter 3

Nonlocal theory of sound
propagation in porous media; case
of two-dimensional arrays of rigid

cylinders

3.1 Introduction

A new nonlocal theory of sound propagation in rigid-framed prous media
saturated with a viscothermal uid has been recently proposd [1], which is
considered to provide for the rst time an exact homogenizaton procedure. By
this theory we can treat, in particular, the media which are microscopically
periodic, and macroscopically homogeneous, and the propatgon is along a
symmetry waveguide axis. A rst successful test of this theoy has been made
in the simple case of cylindrical circular tubes lled with a viscothermal uid
(see chapter 2). It was found that the wavenumbers and impedaces predicted
coincide with those of the long-known Kirchho 's full solution [2]. Here, we
want to verify the validity of this new nonlocal theory in the case where the
microgeometry of the porous medium is nontrivial, in the fom of an unbounded
two-dimensional square lattice of rigid cylinders permeagd by a viscothermal
uid (see Fig. 3.1). This geometry allows a direct quasi-andytical calculation
of the medium properties by a multiple-scattering approachtaking into account
viscous and thermal e ects [3]. If, as guessed, the theory isxact, a matching
will be observed between the multiple scattering predictims and the new theory
predictions, independently of the frequency range consided.

To verify this, on the one hand, we will compare the complex fequency-dependent
phase velocity associated to the least attenuated plane way predicted by a FEM
implementation the new theory, with that of the corresponding least attenuated

67
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Bloch mode, obtained by the quasi-exact multiple scatterirg method, and show
that the two are in remarkable agreement. On the other hand, omparison with
the single mode complex phase velocity obtained by the prewusly existing local
theory, will show the domain of validity of the local description and its limit in
terms of frequency.

By local theory we refer to space locality. Nonlocality in time, or temporal
dispersion, has been already taken into account for wave ppgagation in porous
media [4, 5, 6, 7]. That means, in Fourier space the e ective desity and bulk
modulus depend on the frequency . In other terms, the eld dynamics at one
location retains a memory of the eld values at this location but is not a ected by
the neighboring values. The local description is usually baed on retaining only
the leading order terms in the two-scale homogenization métod [8, 9, 7] using
an asymptotic approach in terms of a characteristic length ¢ the medium, the
period L in periodic media, supposed to be much smaller than the wavehgth
[10].

The nonlocal theory we propose takes not only temporal dispesion but also
spatial dispersion into account. Here, the medium is assunte unbounded
and homogeneous, so that spatial dispersion refers to the gendence of the
permittivities { e ective density and bulk modulus { on the wa venumberk [11].
The materials susceptible to show the nonlocal behaviour mabe classi ed into
two main groups regarding their microgeometry. The rst comprises the materials
who exhibit this behaviour in su ciently high frequency reg ime. The second one
concerns materials with microgeometry constituting the resonators, which exhibit
the spatial dispersion phenomena even at not very high fregencies; the resonance
phenomena act as a source generating nonlocal behaviour. flihis chapter we
investigate the rst type of these geometries, and will see he second one in a
forthcoming chapter where the geometry of daisy chained Hehholtz resonators
will be treated.

The nonlocal theory we use here takes advantage of an analogyith electro-

magnetics to give a coarse-grained description of dynamicef small amplitude
perturbations in the porous media; expressing the macrosgic governing equa-
tions in a Maxwellian form. The homogenization method emplged in the present
nonlocal theory results in the remarkable point that considerations on length-scale
constraints inherent in local theory, originated from asymptotic approach, do not
exist any more. For the microgeometry considered in this chpter, the latter is

explicitly shown by the fact that the whole dynamics is descibed through the
nonlocal Maxwellian approach; the normal mode related phas velocity is pre-
cisely predicted by this approach in a large frequency range
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Figure 3.1: Two-dimensional array of rigid cylinders with identical radius R. The
nearest neighbours in this lattice are distanced with the lengthL. The periodic
cell considered is shown by the square of length.

The chapter is organized as follows. In section 3.2 microsp equations of a
small perturbation in viscothermal uids including balanc e laws and constitutive
relations are expressed. Here, microscopic scale refers tbe scale in which
Navier-Stokes and Fourier equations are valid. In section 3 we will see how
the macroscopic elds are de ned through a spatial averagimg in the present
periodic media. In section 3.4 we review briey the macroscpic governing
equations and constitutive relations in local theory. The procedure to determine
e ective frequency-dependent density and bulk modulus thraugh two action-

response problems, is presented as well. Once these two e et properties are
known, we can get directly the phase velocity of the single mde propagating
and attenuating in the medium. In section 3.5 the nonlocal theory [1] is brie y

presented for this case of periodic media and propagation aording to a symmetry
axis, here considered the positivex-axis with the unit vector ex. It will be

shown how the wavenumber and frequency dependent e ective desity and bulk

modulus are determined by solving two distinct systems of ngroscopic equations,
coming from two independent action-response problems. Omcthese two e ective
functions are known, we can have access after solving a digjsén equation, to the
phase velocity of the possible Bloch wavemodes propagatingnd attenuating in

the medium. In section 3.6 we introduce the multiple scatteing method including

viscothermal e ects, allowing to obtain the spectrum of Bloch wavenumbers for
the geometry shown in Fig. 3.1. The aforementioned microsquc systems of
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equations leading to determine the e ective properties of the medium in the
framework of local and nonlocal theories are solved by Fing Element Method
(FEM) using FreeFem++ [12]. The phase velocities coming fran these two
theories are compared to those obtained by the quasi-exact uitiple scattering
method in section 3.7, where we will observe clearly the powef the new nonlocal
theory.

3.2 Microscopic equations

At the microscopic scale, the linear equations governing te dynamics of small-
amplitude disturbances in a homogeneous viscothermal uidcome from balance
equations of mass, momentum and energy, the constitutive dations of Navier-
Stokes and Fourier, and the state equation of the uid. These governing
equations describe the small deviations of thermodynamic gessurep, density

, temperature T, velocity v and entropy s, from their rest state pp, o, To,
Vo = 0 and sg, up to the terms of rst order. The two constitutive relation s are
written as

9 2 g %(r V) o+ (r V) (3.1a)

q= T (3.1b)

The rst one, is a linear relation between the shear stress i? and strain rate,

where g; = %(@\/j + @v;) is the symmetric part of the strain rate tensor, is

the Kronecker symbol, and and are the rst and second viscosity of the uid.

The second one, is the heat conduction Fourier's law, withg the heat ow, and
coe cient of thermal conductivity.

Using these constitutive relations, the conservation equtions of mass, momentum
and energy in the bulk uid V' for a uid particle give

@b
— + = .
Frov=0 (3.2a)
1
= - 2 =
o@t rp+ r “v+ + 3 r(r v) (3.2b)
@ @p 2
— = — 4+ .
0% @t oTo @t r (3 2C)
where b & 5 with ©the density deviation, is the excess temperature,

0 o[@1=)=@Tp and ¢, To(@s=@/ represents the coe cient of thermal
expansion and the specic heat at constant pressure, which @ evaluated at
the uid rest sate. For convenience in future writing, we denote also by p the
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pressure deviation. When we expand the thermodynamic equains of state,
= (p;s)and T = T(p;s) near the rest state up to the rst term [13], then by
omitting s in these equations and making use of the thermodynamic ideities
(@ =@s = 0 0=G, (@T=@Pp= oTo= 0Cp: ¢ (@p=@s representing the
adiabatic sound speed squared, we conclude the followingate equation in V'

op=b+ o (3.3)

where g 01(@ =@p is the coe cient of adiabatic compressibility at rest
state, Cp,=G, the relative specic heats at constant pressure and constan
volume, involved in the thermodynamic identity 1= 2To= 0Cp.

In the solid phase regionV® energy balance equation is reduced to

S s_ Sy 2°s
CS@— r (3.4)

where 3 is the constant solid density, ° solid excess temperature, and ° solid
coe cient of thermal conductivity.

On the solid- uid interface @/, we have the conditions of the continuity of the
temperature = S and heat ow r = Sr 5. We admit in the following
that the speci c heat and coe cient of heat conductivity of t he solid phase are
su ciently large to allow that the latter conditions combin ed with Eq.(3.4) are
reduced to a single boundary condition = 0. Taking into account the no-slip
condition on the uid-solid interface, the boundary conditions for the velocity
and excess temperature or@ are nally written as

v=0 (3.5a)
-0 (3.5b)

The equations (3.2) and (3.3) with boundary conditions (3.9 establish a closed
system with the eld variables v, b, p and

3.3 Averaging

We need rst to de ne our macroscopic elds in order to describe their dynamics,

specializing to the case of periodically structured porousnedia. We use here the
spatial averaging method following Lorentz [14] and re ned by Russako [15].

Let I be the uid indicator function

L r2Vf
[(r)= 3.6
(r) 0 r2vs (3.6)
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Given a microscopic eld a(t; r) in the uid region, its macroscopic value is de ned
by the following integration over the whole space
z
hai(t;r)=  drA@r9a(t;r9f (r r9 (3.7)

where f is a test function with a typical width L, which is de ned as the
homogenization length. In periodic media, L}, is usually taken to be equal to
a period, function f then being constant inside and zero outside. However, this
homogenization length can include more than one spatial péod which results
in a dierent value for hai [1]. Here we choose to take the average just over
one irreducible spatial period according to the direction d propagation, which
gives the e ective properties of the porous medium dependin®f this choice. The
presence of the characteristic function in the above, enses that the integrand
be non-zero only in the uid region. In addition, the test fun ction is chosen to
be normalized over the whole space

y
drf(ry=1 (3.8)

The macroscopic homogeneity of the medium implies that the glume fraction of
the uid, i:e:, the porosity = hi is constant all over the medium. The so-called
spatial averaging theorem [16] is written as

z
trai=r i+ drlErOnr% e r9H (3.9)
@

relating the average of the gradient of a microscopic elda to the gradient of the
averaged eld, wheren (r 9 is the outward normal from the uid, on the solid- uid
interface @v.

These de nitions are employed next to formulate the macrosopic local and
nonlocal theory.

3.4 Local theory

As the nonlocal theory is presented in the form of Maxwell acastic equations,
we present the macroscopic equations of local theory in a Maxellian form as
well, in order to compare these two theories and see more cldg the di erence
between them.
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The macroscopic velocity and condensation are de ned as

V = hvi (3.10a)
B = Hi (3.10b)

Since the velocity vanishes on the pore walls, the followinglirect commutation
relation always holds

br vi=r hvi=r V (3.11)

Thus, the averaged form of Eq.(3.2a) become

@B _
ot VO (3.12)

The electromagnetic analogy then suggests that the system fomacroscopic
equations can be carried through by introducing new Maxweilan elds H and
D, and also operators “and ~ 1, such that [1]

% - ¢H (3.13)
with

D =7V (3.14)

H=~ 1B (3.15)

Eqgs.(3.12) and (3.13) represent the eld equations which ae completed by two
constitutive equations (3.14) and (3.15). The operators ~and "~ ! are called
density and bulk modulus, describing the e ective properties of the medium.

Assuming that H and are scalars, we disregard the propagation of macroscopic
shear waves. Here, the propagation of longitudinal waves isonsidered along the
symmetry axis ey, we haveD = Dey and V = Vey, then the constitutive local
relations are written as
Z
D(t;x) = dt® (t tYv(t°®x) (3.16)
1

Z

H(t;x) = d® t t9B(t%x) (3.17)
1
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We see in the above relations that temporal dispersion is ta&n into account, i:e:,
the elds D andH at a given placex and time t depend on the history of the elds
V and B at the same place. The time invariance of the problem resultsn the
particular t and t°time-di erence dependence of the density and bulk modulus
kernels.

In the local theory it turns out that the abstract "Maxwell' m acroscopic eld H
is the mean pressurdpi. Indeed, we shall always de ne this eld H by writing:

hpvi (t;x) = H (t;x)hvi(t; x) (3.18)

As p is the thermodynamic excess pressure, angv is interpreted as the acoustic
part of the energy current density [17], this equality (3.18 may be viewed as a
thermodynamic de nition. The vector S = HV plays the role of an acoustic
macroscopic “Poynting' vector.

Now, in the local theory, because the motion is almost divergnce-free at the
pore scale, the microscopic pressure gradients are always dghe order of the
macroscopic pressure gradients, and, because scale sepiama is assumed, the
pressure can be viewed in rst approximation as a slowly varable quantity equal
to the mean pressure. Thus in (3.18),p can be replaced byhpi and extracted
from the average; this leads to identifyingH = hpi.

The Fourier transform of the constitutive relations (3.16) and (3.17) are written
as

D(x)= (1)V(;x) (3.19)

H(x)=  )B(x) (3.20)

We proceed next to review briey how one can have access to the ective
functions (! )and (! ) from microscopic elds.

3.4.1 Determination of constitutive operators

The procedure to obtain e ective properties of the medium in local theory
logically derives from the only assumption that, because otcale separation, the
motion may be viewed as divergence-free in rst approximaton, at the pore
scale. There is however no complete generality in this assyption. It is a sort of

simpli cation of the true wave problem which may be in error in geometries with
resonators.



3.4 Local theory 75

The two-scale homogenization using asymptotic analysis igisually employed
to justify the procedure. This technique provides a powerfu mathematical
formalization of the above tacit physical assumption.

Two characteristic lengths are introduced: the wavelength and characteristic

length of the unit cell L. There, it is supposed that the wavelength is much bigger
than the characteristic unit cell length: " L= 1. The microscopic elds are
expanded involving the parameter”, leading further to derive two independent
sets of equations by which we can compute e ective density andulk modulus.

As such, the Fourier kernels density and bulk modulus are oldined via two

independent action-response problems.

When a harmonic bulk forcef (t) = foe " e,, with constant f g, is applied on the
uid, we will have the following action-response problem irvolving the amplitudes
of the elds

r.v=0 (3.21a)
ilv=rp+ r?v+fy (3.21b)

in Vf
v=0 (3.22)

on @/, where the elds are the amplitudes of the solutions

v(tir)=v(; r)e ™ (3.23a)
p(t;r) = p(’; rye ™ (3.23b)

This problem is one of the two independent problems, obtaind at leading order,
by the aforementioned homogenization method. It is suitabé to determine the
density (!) in the local theory because, the above-mentioned tacit phgical
assumption is encapsulated in (3.21b), and, coherent withhis simpli cation, the
neglect of spatial dispersion is apparent in the fact thatf is taken as a spatial
constant.

Considering a periodic square cell with the lengthL, containing a single cylinder
(Fig.3.1) and bounded inx 2 [O;L],y 2 [ L=2;L=2], there are unique amplitude
elds v(!; r) and p(!; r) solutions to Egs.(3.21a-3.22), which are periodic with
the period L, such that they give the same values on the cell boundaries = 0
and x = L, 8y; and also on the cell boundariesy = L=2 andy = L=2, 8x.
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From the solution eld v the equivalent- uid density is obtained as

fo
v (1)

()= (3.24)

Applying an excitation in the form of a stirring heating Q(t) = Qoe " , whereQq
is a constant, leads to the following action-response prolkeim [7] for the amplitude
of the excess temperature eld (t;r)= (!; r)e ™

il ocp = r? +Q (3.25)
in Vf

=0 (3.26)
on @.

This problem is the second one obtained at leading order, byhe mentioned
homogenization. It turns out suitable to determine the compressibility (! ) in
the local theory because, the tacit physical assumption thaithe pressure eld is
a slowly variable quantity that may be viewed in rst approxi mation as equal
to the mean pressure, is encapsulated in (3.25) in the very fa that Qg is taken
as a spatial constant. This is directly the consequence of # neglect of spatial
dispersion.

Considering as before the periodic square cell with the leth L, containing a
single cylinder (Fig.3.1) and bounded inx 2 [O;L], y 2 [ L=2;L=2], there is a
unigue amplitude eld (!; r) solution to Egs.(3.25-3.26), which is periodic with
the period L such that it gives the same value on the cell boundaries = 0 and
x = L, 8y; and also on the cell boundarieyy = L=2 andy = L=2, 8x.

From the solution eld , a factor %analogous to the previous is obtained as

_ Qo
)= iT (1) (3:27)

whereT = hi.

In the framework of nonlocal theory, the following direct relation exists between
the two functions ®and

= o ( 122 (3.28)
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The reasoning to obtain this relation has been given in Appedix A; indeed, the
fact that we were considering cylindrical circular tubes wa not explicitly used.

The bulk modulus is thus written as

. . . 1
)= ot o+ proentl) (329)

3.4.2 Phase velocity

Once the density (! ) and bulk modulus (1) (or compressibility (!)) are
determined, we can obtain the constant of the medium for eactfrequency. For
a given frequency! , there is only one single normal mode that can propagate in
the given positive x direction. With this single mode is associated a wavenumber
q(! ) verifying the relation

(1) (ynz=¢ (3.30)

such that =(g) > 0. The complex phase velocityc(! ) associated with this
frequency! is immediately written as

o)=" I 1) (33D)

3.5 Nonlocal theory

We intend here to write the macroscopic equations in a Maxweian form allowing

for both temporal and spatial dispersion. The eld equations in nonlocal theory
will be the same as in local theory. As before, the macroscopicondensation and
velocity are de ned as

V = hvi (3.32a)
B = Hi (3.32b)

The relation r  vi=r i =r V is as well valid because of the boundary
condition on the velocity on the pore walls. Thus, the averagd form of Eq.(3.2a)
become

@B _
ot VO (3.33)
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Here also, the electromagnetic analogy then suggests thathe system of
macroscopic equations can be carried through by introducig new Maxwellian
elds H and D, and also operators “and ~ 1, such that [1]

%t: r H (3.34)
with

D =7V (3.35)

H=r 1B (3.36)

Egs.(3.33) and (3.34) represent the eld equations which ag@ completed by two
constitutive equations (3.35) and (3.36).

The operators ~and ~ ! are density and bulk modulus, describing the e ective
properties of the medium. They are uniquely xed in principle, through the
condition that H is to be identi ed through the acoustic part of energy current
density S = hpvi, by setting [1]

hpvi = Hhvi (3.37)
The propagation of longitudinal waves is considered alonghie symmetry axis ey,

we haveD = Dey and V = Vey, then the nonlocal constitutive relations, this
time, are written as

z, Z

D(t;x) = di® dx® @ t%x xOv(®x9 (3.38)
1
z, zZ

H(t;x) = dt® dx° (¢t t®x x9B(t%x9 (3.39)

1

We see in the above relations that not only temporal dispergin but also spatial
dispersion is taken into account,i:e:, the elds D and H at a given time t depend
on the elds V and H at all previous time and all points of the space. The time
invariance and macroscopic homogeneity of the problem redin the dependence
of the kernels on the dierencest t%and x x° The Fourier transform of the
constitutive relations (3.38) and (3.39) are written as

D(hk)= (Gk)V(;k) (3.40)



3.5 Nonlocal theory 79

H(:k)=  (:k)B(:k) (3.41)

We proceed next to review briey how one can have access to the ective
functions (I;k ) and  1(!;k ) from microscopic elds.

3.5.1 Determination of constitutive operators

The above Fourier coe cients (I;k ) and 1(!;k ) are directly related to the
macroscopic response of the permeating uid subjected to adrmonic ctitious
pressure termP (t;x) = Pge " *kx added to the pressure, either in the Navier-
Stokes Eq.(3.2b), or the Fourier Eq.(3.2¢).

Thus to determine the kernel (!;k ) we rst consider solving the action-response
problem

@b _
95 ¢ v=o (3.42a)
oot p+ r v+ + :—1 r(r v)+f (3.42b)

@_ .@n .
D= oTooh | (3.42¢)
Pz bt o (3.42d)
in Vi, and

v=0 (3.43a)
0o (3.43b)

on @/. The stirring force appears in the form of

f= rP= ikePge "tk (3.44)

The unique solutions to the above system (3.42a-3.44), forhe elds v, b, p, ,
take the form

v(t;r) = v(l;k; r)e Mt Tk (3.45a)
b(t;r) = b(l;k; r)e "t +ikx (3.45b)
p(t;r) = p(l;k; r)e " *ikx (3.45¢)
(tr)= (L;k; r)e " ik (3.45d)

The response amplitudesv(!;k; r), b(';k; r), p(l;k; r), and (!;k; r) are
bounded functions which are uniquely determined by the micogeometry. For
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the special case of periodic geometry, the solution is not ugue, however. The
unique formulation of the action response problem also incides a speci cation
of the periodic cell. The condition that the response ampliudes are bounded
functions is replaced by the condition that they are periodic over the chosen
cells. This indeterminacy was absent in the case of the locaheory, because the
solutions were independent of the choice of the periodic delHere, in all foregoing
calculations, the irreducible cell as illustrated in Figs 1and 2 will always be chosen
as the period.

The above problem, once solved, we use the fundamental "UmdRoynting'
relation (3.37) to write

Phvi = hpvi (3.46)

where P = P(I;k )e " *** is the macroscopic part of the pressure response
p(t;r) = p(l;k; r)e " *k< whose amplitude is determined by

(L ks r)v(l ks r)itex
V(k)

Pk ) = (3.47)

Then using the Fourier transform of Eq.(3.34), applying Eq.(3.40), and admitting
that the two parts P and Pg just add to form the eld H, viz:

it (Lk)V(G k)= k(P k) + Po) (3.48)
gives rise immediately to nonlocal Equivalent- uid density (!;k )

k(P(';k ) + Po)
IV (LK)

(k)= (3.49)

The strong motivation for this conjectured expression (3.8), is its simplicity and
the fact that it is explicitly veri ed in absence of solid [1]. It has been exactly
veri ed in cylindical circular tubes (chapter 2). Thus it mu st provide the exact
upscaling procedure.

At this point, we see that the elds p(!;k; r) and v(!;k; r) are needed to be
known in order to determine from microgeometry the e ective density of the uid-
saturated porous medium. Hence, instead of solving (3.428:43b) it is su cient
to solve the following system of equations to get the amplitdes of the elds in
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(3.45)
i'b +r v+ ikvy =0 (3.50a)
il gv= r p ikpex+ r 2v+2ik %x (3.50b)
K2+  +2 ¢ (r )+ ik + 1 (r v)ex
3 3
. 1 1 .
+ik o+ 3 "W * 3 K2veex  ikegPo
il = jl 2 K @ 2
i ocp = i oTop+ r +2ik @x k (3.50c¢)
op=b+ o (3.50d)
in V¢, and
v=0 (3.51a)
=0 (3.51b)
on @.

As in local case, considering a periodic square cell with theength L, containing
a single cylinder (Fig.3.1) and bounded inx 2 [O;L], y 2 [ L=2;L=2], the
amplitude elds v(;k; r), b(I;k; r), p(';k; r), and (};k; r) are periodic with
the period L, such that they give the same values on the cell boundaries = 0
and x = L, 8y; and also on the cell boundariesy = L=2 andy = L=2, 8x.

The procedure to determine the kernel  1(!;k ) is quite similar but slightly less
direct, as was already the case in local theory. We now deal Wi the eld B,
and the way the latter is thought to be connected with the elds appearing in
the new action-response problem, requires a little re ecton.

We consider again, initially solving the action-response poblem with an harmonic
ctitious term P(t;x) = Pge " ¥ added to the pressure, but appearing this
time in the energy balance equation

@b _
@t+ r v=0 (3.52a)
1
- 2
O@t_ rp+ r v+ + 3 r(r v) (3.52b)
oCp %t: OTO%?+ rz2 +Q (3.52¢)

=B+ o (3.52d)
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in V¢, and
v=0 (3.53a)
=0 (3.53b)

on @/, with the stirring heating

Q.: oTo%t: i! oToPoe M+ ikx (354)

The solutions to the above problem take the same form as speed before through
Egs.(3.45) and the same comments can be made regarding the espal case of
periodic microstructure. This problem, once solved, we aga use the fundamental
"Umov-Poynting' relation-de nition (3.37) to write

Phvi = fpvi (3.55)

and thus

(L ks r)v(l ks r)itex

Atk = V(K)

(3.56)

for the amplitude of the macroscopic partP = P(!;k )e " *&* of the pressure
responsep(t; r) = p(l;k; r)e Mt +ikx,

Then using the Fourier transform of Eq.(3.39), and admitting as before that the
two parts P and Pg just add to form the eld H, viz:

P(k)+ Po= (k)B(k) (3.57)

it remains to identify the eld B.

This identi cation is obtained from the thermodynamic unde rstanding that the
eld K in the action-response problem (3.52-3.53), as it is xed inparticular by
the Laplacian term expressing thermal conduction in Eq.(352c), is to be viewed
as determining anonisothermal response part in the macroscopic condensation
eld B. The latter is thus seen as the direct sum of two contributiors: B =
hi = H°+ B°?, with B° a nonisothermal response part determined by the above
action-response problem, ando®®a complementary isothermal response part, by
de nition given by the isothermal relation b=  gPy. On account of the fact
that hPgi = Py, this results in the following relation [1]

P(:k )+ Po= (k) BYLk;r) + oPo (3.58)
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That gives the nonlocal equivalent- uid bulk modulus  (!;k )

P k) + Po
AL k; )i + oPo

k) = (3.59)

Again, the strong motivation for the above simple ansatz (359) is its simplicity,

and the fact that it is explicitly veri ed in absence of solid [1] and in cylindrical

circular tubes (chapter 2). Thus we expect that it provides the exact upscaling
procedure.

At this point, to determine the e ective bulk modulus of the u id-saturated
porous medium, we have to look for the amplitude eldsp(};k; r)and v(!;k; r),
and BY!;k; r). These elds can be obtained by substituting (3.45) in (3.Ra-
3.53b) which gives the following system

ilb %+ r v+ ikvy, =0 (3.60a)
il gv= r p ikpex+ r 2v+2ik %X (3.60b)
k2v+  + % r(rv)tik o (rv)e

+ik o+ % vy + % k2vy ey
il ocp = i oTop+ r ? +2ik %X k? il oToPo (3.60c)
op=Ht+ ¢ (3.60d)

in V¢, and

v=0 (3.61a)

=0 (3.61b)

on @.

Similarly, here also, considering a periodic square cell wh the length L,
containing a single cylinder (Fig.3.1) and bounded inx 2 [O;L],y 2 [ L=2;L=2],
the amplitude elds v(!;k; r), b(l;k; r), p(';k; r), and (!;k; r) are periodic
with the period L, such that they give the same values on the cell boundaries
x =0and x = L, 8y; and also on the cell boundariesy = L=2 andy = L=2,
8x.
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3.5.2 Phase velocities

Contrary to the case of local theory, here, since we fully tak into account spatial
dispersion, several normal mode solutions might exist, wh elds varying as
e " *iax Each solution should satisfy the following dispersion eqgation

:q) g ?=df (3.62)

With each frequency! , several wavenumbery(! ), =(g) > 0, | = 1;2;:::, may
be associated. The complex phase velocity corresponding t® given solution is
written as

!
a(t)= W (3.63)

3.6 Multiple scattering method

For the simple geometry represented in Fig. (3.1) a relativey simple calculation

of the possible wavenumberg, is feasible by a multiple scattering approach [3].
In this calculation, which is presented in some more detail m what follows, we
adopt a description of the uid motion in terms of three velocity potentials, the

acoustic potential 2, entropic potential € and vorticity potential

v=r (+ S+ (3.64)

The vorticity potential has just one component, which is directed along the
z-axis and is denoted by V. In harmonic regime, three independent Helmholtz
equations

r2+(k)> =0; = aje;v (3.65)

are satis ed in V', where k )2, = a;e;v, are the wavenumbers associated to
acoustic, thermal and viscous waves, respectively. The faner two (k?)? and (k®)?
are the opposite of the small and large solutions 1 and » of Kirchho -Langevin's
dispersion equation (see Eq.(2.34) in chapter 2); the latteis (k¥)? il=

Using Egs.(2.40a), (2.40d), and (2.28) in chapter 2, it is egy to express the excess
temperature in terms of potentials

i! !
o) P e (3.66)

The boundary conditions at the solid- uid interface for the potentials come from
the fact that the displacement and excess temperature eldson @ are such that
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u=20 (3.67a)
-0 (3.67b)

These boundary conditions establish the coupling betweenhte potentials, which
results in the fact that a wave carried by one potential is scétered on the three
types of waves on interacting with the solid.

In this chapter, because we investigate only the least attenated mode and are
not concerned with the terms of minor importance that concen the intrinsic bulk
uid propagation, the bulk attenuation will be neglected for the acoustic mode.
This simpli cation will allow direct use of known results on Schlemilch series.

Thus we set as a simplication 2@ = (k?)?2 (I=cg)2. Moreover, we also
neglect the higher order terms governing the attenuation ofentropic waves, and
set as another simpli cation e=(k®? il oCp= . Consistent with the rst
simpli cation, we need not account for the thermal conductivity term in the rst
parenthesis in (3.66). After straightforward calculation using the thermodynamic
identity 1= Ty 4c%=6, the following relation is obtained

- Tooy a, % e (3.68)
Cp 0

Considering one row of in nite number of cylinders, as is shwn in Fig.3.2, we
expand the potentials in terms of right and left going plane waves

R _ ,
o(r) = Aj ekt AL e Kn (3.69a)

L(r): Atn eikr,:(r Leyx) + ALn e ikn:(r Lex) (3.69b)

n=1

The ingoing or outgoing meaning of the four types of amplituces A is apparent
on the gure. Theindex refers to the typea, e, or v of potential eld. Itis clear

that the periodicity of the potential elds with respect to y coordinates implies
that for each n the y component of the wavevectorsk,, should bek,, =2 n=L ,
thus (k )2 = (kny)?+(2 n=L )2. Another symmetry consideration of the problem
is that we are interested only with the solutions leading to a uid motion

symmetric around each cylinder. In this, we restrict to the motions that can
be created by a ‘macroscopic stirring'. This is analogous taur restriction in
chapter 2, for the same reason, to axisymmetric motions. T restriction implies
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that the elds 2 and € are even functions, and v an odd function with respect
to y coordinates. Thus, with regard to the terms in (3.69), after combining the
up and down componentsn and n there will appear cos(2ny=L ) y-dependency
for acoustic and entropic potentials, and sin(2ny=L ) y-dependency for vorticity
potential. To account explicitly for this symmetry in the no tation, instead of
(3.69) we employ the following condensed form of the potentils

b3

o= G(y) Af, X+ Ay e KmX (3.70a)
n=0

L) = Gy Al e DA e kL) (3.70b)
n=0

where

8
<cos 2 ;  =ae

Gy = (3.71)
bsin 2 =y

We note also, that to eachn, , and! , we may associate a characteristic incidence
angle ,,, such that

k sin( )= ZT”; k cos(,)= (3.72)
For the acoustic type = a, this angle will be real when the frequency is such
that 2 n=(k L) < 1, and complex, equal to =2 i at higher frequencies, with

> 0 ensuring that =(k,,) > 0. For the entropic and vorticity types, this angle
will be complex, chosen such that=(k,,) > O.

The rst step in the calculation is to obtain the re ection an d transmission
properties of the row of cylinders, by the following scatteing matrix, which relates
the outgoing waves to the ingoing ones

0 1 O 10 1
Ay T R AL
@ A-=-@ A@ A (3.73)
AE R T Ag
where
0 1 0
AOa A[a
Ay = AOe : A’[ = A[e (3.74)
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Figure 3.2: One row of in nite number of rigid cylinders.

and so on for the vectorsAg and A . Each of the vectorsA| , A5 , A,

and A, contains the whole ensemble of plane wave amplitudes with = a;e;v,

each of which had been indexed by. The re ection and transmission matrices
R and T thus have elements of the typeRpn and Tpn, where the indexes
on the right refer to ingoing waves and the index on the left to outgoing
ones. The presence of the dierent elements results from thenteractions and
transformations of the dierent kinds of potentials into one another, due to
the boundary conditions (3.67). To compute R and T and thus construct the
scattering matrix, the analysis of the scattering problem & divided in di erent

elementary parts, combined in the end.

Consider a given ingoing potential ., (r) = G (y)€¥m* coming from the left
on the row, with n arbitrary and  which is set to be replaced by eithera, e or
v. This ingoing potential of type ;n , by the scattering e ects and through the
boundary conditions, creates outgoing potentials of all othe three typesa, e and
v, and indexesp. These outgoing potentials can be interpreted either as reected
or transmitted elds by the row

3 .
R = Ry G(y)e *»*  =aev; x' 0 (3.75a)
p=0

wr ()= T GEE L =aev; x' L (3.75b)
p=0
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where . and . refer to the re ected and transmitted potentials of type

which have been created by the ingoing; n - eld. The coe cients Tpn and Rpn
are the above-mentioned elements of the matriceR and T.

On the other hand, the same re ection and transmission eldscan be expressed
in terms of the potential elds scattered by all cylinders belonging to the row.
The scattered eld from the j -th cylinder at the position rj can be expanded on
the basis of Hankel functions of the rst kind

* :
niscat (T3 7)) = Brni™Hm(k jr rjpe™ i (3.76)

m=1

where r is the azimuthal angle of the vectorr r; relative to ey, and Bmn
is the unknown weighting coe cient, associated with the scatered or Hankel
divergent wave H,. The row of cylinders being in nite, this coe cient is
independent of the cylinder under consideration. Thus, thescattered eld by
the row is written by summing the above expression over all cinders

% R _ _ i
n:scat () = BrnimHm(k jr rjje™ " "i: (3.77)

We can now identify the re ected and transmitted elds throu gh the following
relations

n;R (M) = nscar(r); x' 0 (3.78a)
nT ()= nsca(r)+ nin (F); X' L (3.78b)

where represents the Kronecker symbol. It is clear that with the hdp of the
addition theorem of Bessel functions these relations detenine in principle the
re ection and transmission coe cients Rpn and Tpn in terms of the coe cients
Bmn. To determine the coe cients Bmn, we proceed as follows.

With the same ingoing potential |, (r) = G (y)€¥m= X coming from the left on
the row, we can analyze the eld incident on an arbitrary cylinder situated at r,
in terms of the convergent Bessel waves. The three types = a;e; v of incident
potentials will be present because of the row scattering, ath each can be expanded
in the basis of Bessel functions centred at| as

R .
ninc (F371) = Crni™Im(k jr e r (3.79)

m=1
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Again, the unknown weighting coe cient Cnyn, associated with the incident or
convergent Bessel wavdp,, is independent of the cylinder under consideration.

Alternatively, this incident eld on cylinder r, can be regarded as the sum of
the ingoing eld, and the elds scattered by cylinders j 6 |. According to this
viewpoint, the incident eld on cylinder r is given by

X
n;inc (rir)= n;scat(r 1T )+ n;in (rir) (3.80)
i6l

For each ingoing ; n -potential, we now apply the boundary conditions (3.67) to
the total eld resulting from the superposition of incident (3.79) and scattered
(3.76) elds around one arbitrary cylinder. This allow to re late the coe cients

Bmn to the Cmn as follows

X
Bmon = D Cins = a;e;Vv (3.81)

=a,ev

through the coe cient Dy which is de ned by

0
k2H 2 (kR) KHQ(KSR)  MHpy(k'R)

10
Df
rHm(K?R) rHm(K°R) KYHY, kVR)g %Dﬁq =K (3.82)

T0iH m(k*R)  2PHm(k°R)

for = a;e;v, where the vectorsKk are de ned as
1 0 1
k239 (k3R) keJ2 (keR)
K@ rIm(KR) € K€ rIm(K°R) &
Tg—poi!J m(k2R) % I (k°R)
o 1
BIm(kK'R)
and KV kV39 (kVR)

0
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Substituting (3.81) in (3.77), (3.80) for = a;e;vand = a;e;v, yields

XX
n;inc (rir)= Dm Con Gm(r;r)+ n;in (riri) (3.83)
m=0 =ae,v
where,
8 X
3 iMHm(k jrrjjcosm ¢ r)); = aje
Gn(rir)= _¥" _ o (3.84)
m 2 iMHm(k jr o rjj)sin(m ¢ )); =v

isl

which can be rewritten using the addition theorem of Besseldnctions as

8
R 1
% im (kK L)+ miqk L) i9q(k jr rjj)cos@ )1 > Q);
g=0
Gpn(rin)= )4: >e
im (K L) meqk L) ik jrrij)sin(g r,);
g=0
=v
(3.85)

where (k L) is a function representing the series of Hankel functions fothe
rst kind de ned by the relation

1
m(k L) = mk L)=@a+( 1M Hm(jk L); = a.ev (3.86)
j=1

which vanishes for the odd values ofm. Notice that for the reason of better
convergence, it is necessary to expand theses series in texrof the Schbmilch
series [18]. In this expansion it is assumed that the wavenubrer k? is real, which
is the case as we neglect as explained before the bulk attertizn in the uid.

Finally, the relation (3.80) is expressed in the basis of Besel functions with
[pspect to the coordinates centered ar . First, the known formula gkt ) =
L iMIn(kjir rij)@™Cx ) for the expansion of the plane waves on the
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basis of Bessels functions is used to express the ingoing par

8% n | |
2  mo)e™2cosm ) iMIm(k jr rij)cos(m r ));
m=0
= aje
nin (T = (% h _ i
21 mo)e™=2sin(m ) i™Im(k jr rij)sin(m ¢ 1))
m=0
Sy

(3.87)

Next, the addition theorem of Bessel functions is used to exgess the scattered
part.

We obtain in this manner three series of algebraic equationseach of which
corresponds to either an ingoing acoustic, entropic or voitity eld, to determine
the coe cients Cyn and, as a resultBmn :

8 | R X
(2  mo)km=2cosm )+ Dgq Cq Fmg( ); = ajey,
g=0 =ajeyv
= aV
Cn = ‘ X X
2 ekmlF2gin(m o)+ Dq Cq Frg( ); = aeV,
=0 =ajev
(3.88)
where,
1
Fng( ) = (1 > mo)( a * e)[ mrq(k L)+ m q(k L)] (3.89)
+ v [ meg(k L)+ m g(k L)]; = aje;v

By identifying the Eqgs.(3.75) and the resulting (3.78), we ®nclude the explicit
expressions for the re ection and transmission coe cients Rpn and Tpn for all

-potential

;ﬂ n;R (01 y) COos Zﬂ dy, = a,e
an = 1+ DO) I—ZOL:2 L (3.90)
3 4 2 py _y

@1 po)E . nr (0;y)sin I dy;
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g 1 4l 2 py
3 pn€Knc L+ A7 oL a1 (Liy)cos - dy; = aje
Ta - ( pO) 0 Z . _
pn 2 L 4 L=2 ) 2py
- pn(l po)€m = +(1 o) . nr(Ly)sin —= dy; =v
(3.91)

At this point, re ection and transmission properties of one row are entirely
determined.

Now, we consider an in nite number of rows separated by the dstanceL. We
make use of the concept of scattering matrix which we have jusstudied for an
arbitrary row, and apply the Bloch condition for this case of periodic medium.
We have

+ +
Al _ ksl Ag

Al AL (3.92)

wherekg denotes the Bloch wavenumber to be determined. The use of sitaring
matrix relation relation (3.73) and the Bloch condition (3.92) leads to the
following eigenvalue problem

T R A} )

o1 A R T A (3.93)
where 0 and | are the are the zero and identity matrices, respectively. Sice at
this stage the re ection and transmission matricesR and T are known, we are
able to solve the above eigenvalue problem numerically andej the macroscopic
Bloch wavenumbers of the medium. As in the nonlocal theory, lere also, with
each frequency! there might be associated several Bloch wavenumberkg,,
| =1;2;3;:::; and their corresponding complex phase velocities will be

()= k:za—-l (3.94)

3.7 Results

In this section, we will present the results concerning the pase velocity of the
single mode obtained through the local theory, the phase vekity of the least
attenuated mode obtained using the nonlocal theory, and thephase velocity of
the least attenuated Bloch mode coming from the multiple scé&ering method.
These results are shown in a large frequency range for the tbe di erent values
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of porosity = 0:99,0:9 and Q7. F(H a constant period lengthL = 10 m , the
corresponding cylinder radiusR = L (1 )= for the three values of porosity
becomesR = 0:56m; 1.78m , and 3.1 m , respectively. Fluid properties for all
computations are presented in Table 3.1. We note that we havdéaken = 0O for
the second coe cient of viscosity, involved in nonlocal theory computations, in
order to be closer to multiple scattering calculation in which the dissipation due
to compression/dilation motions is not taken into account. As we have seen in
section 3.4 the phase velocity in local theory is given by E¢3.31) which requires
the Fourier e ective density (! ) and bulk modulus (! ) of the medium. These
two functions are computed through two independent sets of quations (3.21a-
3.22) and (3.25-3.26).

Table 3.1: Fluid properties used in all computations.

0 To | Co 0 Co
(kg=m®)|(K )|m=s|(kg ms 1)|(kgms )|(Wm K 1| (Pa ) |(Jkg K )
[ 12 [293343[18 109 0 |26 10Z[71 10 ° 1005 |14

The equations, for local and nonlocal theory, are solved in geriodic square cell
including a single cylinder (Fig.3.2), by Finite Element Method using FreeFem++
as a free software to solve partial di erential equations nunerically, based on
Finite Element Method which can be used for coupled systems.This software
has the possibility to generate mesh automatically and is cpable of a mesh
adaptation, handling the general boundary conditions, to nclude, now, periodic
boundary conditions which is required to solve the present sts of equations.
However, the presence of a bug, relating to the handling of bundary conditions,
without receiving any error message, created a very long day to obtain the
correct results. This bug has been corrected, nally, by intrvention of the
developer of the software. FreeFem++ provides us with a poweful tool when the
solution of the problem varies locally and sharply, creatirg a new mesh adapted
to the Hessian of the solution. The weak form of the equationdo be solved is
rstly needed in order to implement the FEM simulations thro ugh the software.

To obtain the phase velocity of the least attenuated wave acording to nonlocal
theory, rst we have to obtain the Fourier kernels (;k) and  1(!;k ), via
solving separately two sets of equations (3.50a-3.51b) an@8.60a-3.61b) by FEM
using FreeFem++. For a given k which is involved in excitations (3.44) and (3.54)
we solve the two systems of equations for a large frequencymge. A priori, we
can continue this procedure for severalk to approximate nally the complex

functions (I;k)and 1(!;k ) and then using the dispersion relation (3.62) to
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Figure 3.3: Real and imaginary parts of the phase velocities according to local
theory, normal mode nonlocal theory and normal mode multiple scétering method
for =0:99.

nd the natural constants of the medium g and subsequently the corresponding
phase velocities by (3.63). However, these functions do naeem to have a simple
form, especially at su ciently high frequencies where the patial dispersion e ects
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become important. Thus, to nd the complex normal modes of the medium, we
have proceeded through Newton-Raphson method.

350
340 Local--- |
330 Nonlocal » i
Multiple Scattering—
320
£ 310
)
‘> 300
o
290
280
270
2607 | | | | | |
0.05 0.1 0.2 0.3 0405 1 2
kL=
0 ‘ \
Local---
-10- Nonlocal 7

Multiple Scattering—

Im [c] (m/s)
5

1
0.05 0.1 0.2 03 0405 1 -2
kL=

Figure 3.4: Real and imaginary parts of the phase velocities according to local
theory, normal mode nonlocal theory and normal mode multiple scttering method
for =0:9.
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Initial values ¢ are chosen for each given frequency to compute the complex
functions (!;go) and 1(!;qo) for a large range of frequency , by setting the
two excitations and solving the two corresponding systems foequations through
FEM simulations. Then, the complex function F(;q) = (5;q) (;q9)!'? &
and its derivative @K!;q)=@aare calculated at these initial valuesq = @, to
start a Newton iteration th+1 = gn  F(!;qn)9@R!;q)=@N=4, Which converges
quickly to yield the value of q at which F vanishes. As such, the phase velocity
can be immediately determined. In this study, for the choserfrequencies we take
for the initial values of g, the fundamental mode obtained by multiple scattering
with a discrepancy of 20%. The fundamental modes obtained irsuch a way by
nonlocal theory are found to be in remarkable agreement wittthose corresponding
to multiple scattering method.

In Figures (3.3), (3.4), and (3.5) referring to the three values of porosity = 0:99,

=0:9, and = 0:7, respectively, real and imaginary parts of phase velocids
predicted by local theory, nonlocal theory, and multiple sattering method, are
depicted in function of the reduced frequencykgL= = IL=c ¢ . Regarding the
multiple scattering related curves as those showing the mdsprecise values, in
all three Figures we observe that the phase velocity predietd by local theory is
limited up to a frequency satisfying the condition gL , which has resulted
in particular, in the microscale incompressibility of the uid r :v = 0. For all
three cases of porosity the rapid variations around reducedrequencykol= =1
correspond to the location of the rst band gap. This may be viewed as a cell
resonance which occurs when the length of the cell is around 2.

For more concentrated media the discrepancies between locneory and multiple
scattering predictions are larger and commence at lower frguencies. As a matter
of fact, when the medium becomes more concentrated, the bandaps include
larger frequency intervals and the resonance phenomena bames more in uential.
These are considered as the signatures of spatial dispersi@ ects which can be
precisely described by quasi-exact multiple scattering daulation.

Contrary to local theory, results issued from nonlocal appoach show excellent
agreement with those from multiple scattering, regarding the above Figures.
These agreements appear to be insensitive to the frequency which the phase
velocity is computed. That was expected by the fact that in nanlocal approach, no
length constraint, such asqL , has been considered. However, we note that as
the frequency is increased and the medium becomes more contmted, because
of the signi cant e ects due to of spatial dispersion in these cases, the behaviour
of wave propagation become more complicated to describe arambnsequently more
precision is required concerning the FEM computations to hae an appropriate
convergence stability, in the framework of nonlocal theory



3.8 Conclusion 97

350 ‘ \
Local---

Nonlocal »

300~ Multiple Scattering—

250

Re|c] (m/s)

200

150 | | | | | |
0.05 0.1 0.2 0.3 0405 1 2
kL=
0 T T
Local---
Nonlocal - ,
-20L i

Multiple Scattering—

Im [c] (m/s)

-10 | | |
0.05 0.1 02 03

kL=

|
0.4 0.5 1 2

Figure 3.5: Real and imaginary parts of the phase velocities according to local
theory, normal mode nonlocal theory and normal mode multiple scttering method
for =0:7.

3.8 Conclusion

The nonlocal theory in rigid-framed porous media, recently proposed [1], has
been here put into evidence through comparing the phase vebity of the least



98 3 Case of two-dimensional arrays of rigid cylinders

attenuated mode predicted by this theory, and a quasi-exactmultiple scattering
method, in the case where the microgeometry of the porous meam is in the
form of a two-dimensional array of rigid cylinders and the propagation is along
one of the perpendicular axis with which the square lattice an be constructed.
The phase velocity according to local theory is computed as w®ll in order to
observe its domain of validity and its limits in terms of frequency, comparing to
aforementioned approaches capable to take into account thepatial dispersion
e ects.

The quasi-exact multiple scattering calculation of the least attenuated wavenum-
ber including viscothermal e ects, which has been already vadated [3], is de-
scribed here in more details. Concerning the local and nontmal approaches, the
two di erent ways to compute the corresponding wavenumber, ly applying the
corresponding local and nonlocal procedures to determine ective density and
bulk modulus, have been reviewed. We have seen that these predures lead to
solving four independent action-response microscopic pkldems, each of which as-
sociated with a local or nonlocal e ective property of the porous medium. These
microscopic cell-problems have been solved here throughrdct numerical simu-
lations by Finite Element Method using FreeFem++, to give th en the frequency
dependent phase velocities according to local and nonloc#heories.

The results of computations show that with the geometry con&ered in this
chapter, contrary to local theory, nonlocal theory succeshkully describes the whole
dynamics, including high frequency one, where the band gapare present. In
the future we will try to show that by nonlocal theory we can obtain the other

axisymmetric modes of the medium, as expected by the nonlotdheory through

its resulting dispersion relation.
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Chapter 4

Nonlocal theory of sound
propagation in porous media; case
of two-dimensional arrays of rigid
Helmholtz Resonators

4.1 Introduction

In this section we will show that by the nonlocal theory presented in chapter
1 [1], we will be able to predict the behaviour of sound propagtion in the
structures exhibiting the resonance phenomena. To illustate this we consider
{ see Fig.4.1 { a 2D medium with embedded structures of Helmhtiz-resonators'
type [2]. Macroscopic propagation is considered along the aweguide axisx.

Figure 4.1: 2D arrays of rigid Helmholtz resonators.

In sections 2 and 3, using a Zwikker and Kosten approximation[3], usual in
duct acoustics, we will show how to make a simpli ed modellirg of the frequency
and wavenumber dependent density (!;k ) and bulk modulus  *(!;k ) of the

101
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medium. Given these functions, a Newton-scheme solution ofhe dispersion
equation (;k) (I;k)!? = k2, allows nding the medium wavenumbers k(! ).
We focus here on the least attenuated mode. The Zwikker and Ksten
approximation consists in assuming that in the various elenentary duct portions,
the propagation of the sound eld may be described in terms ofZwikker and
Kosten e ective density and compressibility [3, 4].

Within the same approximations a direct simpli ed modellin g of the propagation

of normal modes in the medium will be made in section 4. This mdelling will be

called here the Bloch-wave modelling. It predicts a typicalresonance behaviour
of the least attenuated solution. The classical local theoy cannot describe this
behaviour. On the contrary, the calculations based on nonloal theory are found

to accurately predict the resonance behaviour. This, once gain, will provide an

unambiguous validation of the proposed general theory.

The two di erent problems, the action-response one related 6 nonlocal theory,
and the other, which is an eigenvalue problem related to Blol-wave modelling,
are solved in a single periodic square cell of the medium ofrigth L. In Fig.4.2
this cell is illustrated with the lengths corresponding to its di erent parts. The

widths of the main tube, neck and cavity of the resonator are é&noted by ,
and L 2, respectively. The lengths of the tube, neck, and cavity are_, I,
andL |.

Figure 4.2: A periodic cell of the structure.
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4.2 Determination of nonlocal e ective density

Considering the periodic cell of Fig.4.2 and the correspondg cell average
operation h i, we look for the response ofthe uid when a harmonic stirring
force f (t;x) = foe " *K* in the direction of ey is applied in the medium. The
direction y goes downward in the neck. For later convenience, we note thaur

coordinate system ;y) will be taken such that the point (0;0) is located at the
center of the neck portion. The indicated positions (5) and @) in Fig.4.3 will

have the coordinates (Q 1=2) and (0; I=2) respectively.

If we can determine the microscopic response elds velocity and pressurep then
we will have the function (!;k ) through the relation (see chapter 1, Eq.(1.53))

o fo kP
k)= = @
with
L i
Pk ) = o (4.2)

where the v is the x-component of the microscopic velocityv.

In what follows, we make this calculation in analytical simplied manner. We
proceed to determine the functions (I;k ) and  1(!;k ) su ciently precise to
give an appropriate modelling of the least attenuated mode. To this aim, we
need not consider in full detail the microscopic eldsv and p. In the waveguide
and cavity, instead of the microscopic elds, we can use withthe mean values
Vx = V ex and P = p, where the overline denotes the average (at a given)
over the waveguide or the cavity width; and in the neck, we canuse with the
mean valuesVy = Vv ey and P = p, where the overline denotes the average (at
a giveny) over the neck width. At the same time, we make some simpli cdions
consistent with describing the propagation of these averagd quantities in terms of
the Zwikker and Kosten densities (! ) and bulk modulii ~ %(!), in the di erent
slit portions. These depend only on the slit half-widths, which we shall denote
by s, sn, and s¢, in the tube, neck, and cavity. The dierent slit-like tube
portions are illustrated in Fig.4.3. The main tube t is divided in two Zwikker
and Kosten ducts, a left duct, and a right duct, oriented in the x direction. The
same separation is made for the cavityc, whereas the neckn is not divided but
seen as one Zwikker and Kosten duct oriented ity direction.

In Appendix A, the Zwikker and Kosten local theory is expresed for tubes
of circular cross-section. For 2D slits, exactly the same geeral principles of
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e

Figure 4.3: lllustration of slit portions. Di erent positions are indicated by ( n),
and di erent amplitudes by A,, n=1;::;10:

modelling may be used; only some details of the calculationsire changed.
The cross-section averages become the aforementioned dimes, and the bessel
functions Jo and J; are replaced by cosh and sinh functions. Zwikker and Kostes'
e ective densities (! ) and bulk moduluii (! ) in the guide, neck and cavity,

will be [4]

" tanhp il os2= Fa
()= o 1 p— 0> = .= tnc (4.3a)
il os2=
n p —# 1
tanh il s?=
y= Po 1+( 1) A . =tnc  (4.3b)
il 0CpS?=
where the indexed, n, and c are related to the tube, neck, and cavity respectively,
Cp is the heat capacity at constant pressure, = C,=G, the ratio of the heat

capacities at constant pressure and constant volume, the coe cient of thermal
conductivity, ¢ the uid density at rest, and Py the uid pressure at rest.
The corresponding wavenumberk (! ) and characteristic admittancesY (! ) are
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expressed as

|
k = =tn 44
. n;c (4.4)
Y (1)= 2%; = t;n;c (4.5)
wherec = 1=IO , is the corresponding Zwiker and Kosten's phase velocity.

Notice that we include the slit width 2s in the de nition of the characteristic
admittance, because it simpli es the subsequent writing ofcontinuity conditions;
in what follows we replace directly the Z by their values ; , and L 2.

Now, we start writing the Zwikker and Kosten's equations in the di erent parts
of the periodic cell. In the main tube, we have

il t(')vt: %i+f (4.6a)
il t(!)Ptz%; (4.6b)

where, V; = Vi is the ow rate eld in the tube, with Vi the x-component of
the velocity in the sense of Zwikker and Kosten (averaged ovethe section), and
P; is the Zwikker and Kosten's pressure in the tube. In the neckthe external
excitation having no y-component

T )vn = %F”; (4.7a)
il a(1)Py = % (4.7b)

where, V,, = V, is the ow rate, with V, the y-component of the velocity, and
Pn is the Zwikker and Kosten's pressure in the neck. In the cavy

!
L), _ @R
i! 1 2 Ve @x+f (4.8a)

: @
it (L 21) (')Pc= @\{( (4.8b)
where, Ve = Vy (L 2l) is the ow rate and P; the Zwikker and Kosten's

pressure in the cavity.

The general solution of the non homogeneous equations (4.8 written as the sum
of the general solution P, ; Vin) of the homogeneous equations and a particular
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solution (Pyp; Vip) of the non homogeneous equations

Pt IDt;h IDt;p

= + 4.9
Vt Vt;h Vt;p ( )
A general solution of the homogeneous equations (4.6) is wtén as
Pth 1 v kex 1 ik x
o= A" et + A e™ 4.10
Vin Y, Y, (4.10)

whereA* and A are the amplitudes of the plane waves in direction of the posive
x-axis and negativex-axis, respectively. The following particular solution can be
considered

I:’t'p Bt ikx

voo= foe 411
Vi c, o (4.11)
where B; and C; are two constants (for each! ) to be determined. Substituting
(4.11) in (4.6) gives the two constants

By = k ,* (4.12a)
t k2 . 1 | 2 . .
i!

The particular solution is the same in the left and right portions. On the contrary
and because of the presence of the neck, the general solutionll have di erent
amplitude constants in the left and right portions. Thus, th e general solution of
EqQ.(4.6) in the main tube can be written as

Py Bt

. 1 . .

= ikex 4 ikex 4 ikx
Vi Y, A;fpe Y, Aofge C fo€ (4.138.)
Pt ik 1 ik Bt ik

= Asf ge®tX + Aqfoe "X+ f o 4.13b
Ve y, Ae 0€ y, P4 o€ C, 0€ ( )

where (4.13a) corresponds to the left part of the tube, and (4L3b) to the right
part. The constants A1, A,, Az, and A4 are the amplitude-relating constants to
be determined.

The general solution of Egs.(4.7), Pn; V,) has the form

I:’n 1 ikny 1 ikny
= ny 4 n .
v, Y, Asf e Y, Agfoe (4 14)
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where As and Ag are the neck amplitude-relating constants to be determined
Similar to the case of the tube, the general solution of the no homogeneous
equations (4.8) is written as the sum of the general solutiorof the homogeneous
equation (P¢.n; Ve:n) and a particular solution of the non homogeneous equations
(Pc:p; Vep) in the right or left part of the cavity

Pc — IDc;h + I:>(:;p

4.15
Vc Vc;h Vc;p ( )

The general solution Pg; V) of the homogeneous equation is of the same form as
(4.10), both in the left and right part of the cavity but with d i erent amplitudes.
We can nd a particular solution as

PC'p Bc ikx

vo= fo€ 4.16

Ve c. o (4.16)
whereB. and C. are two constants to be determined. Substituting (4.16) in @.8)
will give the two constants

B.= _ Ko ¢ 4.17
¢~ k2 Cl | 2 c ( ' a)
b (L 21)
c= W (4.17b)
Thus, the general solution of Eq.(4.8) in the cavity can be witten as

Pc 1 ik ¢ X 1 ikex . Be ikx

= cA 4+ cX 4+ .
V, Y, A;foe Y, Agf e C. fo€ (4 188.)
Pc 1 ik 1 ik Bec ik

= Agf X + Ajofoe "X+ foe'* 4.1
V. Y, ol o€ Y, 101 o€ C. o€ (4.18b)

where (4.18a) corresponds to the left part of the cavity, and(4.18b) to the right
part. The constants A7, Ag, Ag and A are the amplitude-relating constants to
be determined.

Indeed, in the framework of our simple plane-wave modelling there are 10
relations concerning the ow rate and pressure, which are asumed to be veri ed.
These continuity relations involve the values of the elds a di erent locations
indicated by numbers (n =1;:::;10) in Fig.4.3. We now proceed to write them.

1- The Bloch condition results in P® = &kt Y then

j kil kel ikL kel j kel
Aze™2 + Aye "2 = ¢ Ae "2+ Aye 2 (4.19)
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2- Again, because of the Bloch conditionV,¥) = &kt /(Y | therefore
Skl skl ikL skel skl

Az Aze 'z =& Ae'T Az (4.20)

3- We assume the continuity of the pressure at the junction (2-(3), Pt(g) = Pt(z),
then

As+ Ag= A1+ A (4.21)
® - p@

4- We assume the continuity of the pressure at the junction (5-(2), Pn
then

iknl

Ase B+ Agd P = A+ Ap+ By (4.22)

5- The ow rate at the junction (2)-(3)-(5) is assumed to verify Vt(z) Vt(3) = Vn(5),
which yields

| ; |
j Xn

Y. A Ar Az+ A =Y, Ase ' A (4.23)

6- The continuity of the pressure at the junction (6)-(7), PrEG) = Pé7) results in

Ase'S + Age 'S = A+ Ag+ B (4.24)

7- The ow rate at the junction (6)-(7)-(8) is assumed to verify Vn(e) + Vn(7) = VC(S)

knl
2

Yo Ase 3 Age '3+ Ye(A7 Ag) = Ye(Ag Aug) (4.25)

8- The pressure is continuous at (7)-(8)Pé7) = PéS) then,

A7+ Ag= Ag+ Aqo (426)

9- The ow rate vanishes at the interface solid- uid, Vc(g) =0, we have
ske(L 1) Ske(L 1) Sk(L 1)
Yo A7e ' 2 Age z = Cee 'z (4.27)
10- The ow rate vanishes at the interface solid uid, Vc(g) =0, we have

ke(L 1) Cke(L 1) kLD

Ye Agel 2 Aqpe ) = Cce 2 (428)

As such, we have 10 equations (4.19-4.28) for 10 unknowns affitpdes A1;::; Ao.
Once these are determined, we will have all the Zwikker and Ksten's elds
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through Eqgs.(4.13), (4.14), and (4.18). At this point, we can easily obtain the
cell averageshvi and hpvi. Let us start with hvi regarding the fact that the
Zwikker and Kosten's ow rate has no component along thex-axis

|
1 %o Z - Z, Z (L =2 '
hvi = — V; dx + Vi dx + Ve dx + Vedx  (4.29)
L L=2 0 (L =2 0
Thus,
nvio= Cee + Y, A Aje KX dx (4.30)
L=2
1 Z=2h _ o
t Cee® + Yy Ageh* Age KX dx
0
1 Zy h _ o
5 Ce ™ + Yo AzeXeX  Age *eX  dx
L =2
12 @ n=h . i
t 5 Co€®™ + Yo Age®  Agge ®eX  dx

0

Similarly, we can compute hpvi through the following relation

I
1 Zy Z\- Zy Z (L =2 |
hovi = = Py dx + Py dx + PV, dx + PeVe dx
L L=2 0 (L =2 0
(4.31)
thereby, we have
1 Z o , , . . _ o
I"pvi = L_ Bte'kx + AlelktX + Ase ik tx Cte|kx +Y, Ale'ktx Ase ik ¢ X dx
L
125 2 i
iz B + AsdkX 4 Age KOO Cdk 1y, ALK Age KOO gy
1 ZOO : : . _ _ o
+F N Bce'kx + A7e'k°x + Age ik cx Cce|kx +Y, A7e'k°x Age keX gy
1 % iTl h i
.,.F Bce|kx + Agelch + A€ ik cx Cce|kx + Y, Agelch Aje kex gy
0

Now, we can obtain explicitly the e ective density function (!;k ) through
Eq.(4.1). In the next section, the e ective bulk modulus is camputed in a similar
way but with a di erent excitation term, and with exactly the s ame conditions
on the ow rate and pressure elds at di erent junctions.
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4.3 Determination of nonlocal e ective bulk modulus

Considering the periodic cell (Fig.4.3), when a harmonic gtring heating Q(t; x) =
Que " tikx = jI (ToPoe " *KkX s applied in the medium, we write the
Zwikker and Kosten's equations, in each part of the resonato tube, neck, and
cavity. The aim is to obtain the function  %(!;k ) (see chapter 1)

P k) + Po

1/). _
(k)= Y k; x)i + oPo (4.32)

In the main tube, we write
TS )vt = %i (4.33a)
it (M) 0) Po+ il (V)P = %}i (4.33b)

The rst term of the second equation might not seem to be obvias but follows
the very procedure (1.60) seen in nonlocal theory. In the ndg the equations are
written as

il (! )vn = %@ (4.34a)
it ( n() 0) Pogkx + il L (1)Py = %‘; (4.34b)

where the term Poek* comes from the averaging ofQ over the neck section. Here
also, the second equation might not appear obvious, but follws the procedure
(1.60) seen in nonlocal theory. In the cavity

|
o) - @B

2 “@x (4.35a)
@y

it (L 20)[C (M) 0)Pot c(!)Pc]= @x (4.35b)

The general solution of the non homogeneous equations (4.83s written as
the sum of the general solution of the homogeneous equationP{y; V.n) and
a particular solution of the non homogeneous equationsH; Vt,p) in the right or
left part of the tube

Pt - I:’t;h + I:’t;p

4.36
Vt Vt;h Vt;p ( )
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A general solution of the homogeneous equations (4.33) is vtten as

Peh 1+ kex 1 ik ¢ x
mo= AT e+ A e ™ 4.37
Vih Yi Yi (4.37)
whereA*™ and A are the amplitudes of the plane waves in direction of the posive
x-axis and negativex-axis, respectively. The following particular solution can be
considered
IDt;p Bt ikx

= Poe

4.38
Vi C, (4.38)

whereB; and C; are two constants to be determined. Substituting (4.38) in @.33)
gives the two constants

Bi= — Kt i 1 0 (4.39a)
b k2 t L 12 t t .
Ci = ! 1 0 ik (4.39b)
' k2 t 1 ! 2 t t '
Thus, the general solution Eq. (4.33) in the tube can be writien as
Py 1 ik x 1 kix , Bt ikx
= + + ,
Vi Y, A1Poe Y, AsPge C Po€ (4 408.)
Py ik x 1 ikix , Bt ikx
= + 7+ P 4.40b
Vi Y, AsPoe Y, A4Poe o, Poe ( )

where (4.40a) corresponds to the left part of the tube, and (40b) to the right
part. The constants A1, Ay, Az and A, are the amplitude-relating constants to
be determined.

As for the tube, the general solution of the non homogeneousqeations (4.34)
in the neck, is written as the sum of the general solution Ppp;Van) of
the homogeneous equations and a particular solution Ry.p; Vap) of the non
homogeneous equations

I:’n I:’n;h I:’n;p

= + 441
Vn Vn;h Vn;p ( )

We can nd a particular solution in the following form
o= B podix (4.42)

Vn;p Cn
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where B, and C,, are two constants to be determined. Substituting (4.42) in
(4.34) gives the two constants
2 0 .k
Bh=— — 1 sin— 4.43a
"k n 2 ( )
0

Cn = (4.43Db)

To obtain the above expression foB,,, the averagee®* has been easily calculated
zZ _,

1 : 2 .k
g = = e¥dx = = sin— (4.44)
_, Kk °"3

Thus, the general solution of Eq.(4.34) in the neck can be wtten as

I:’n 1 iKny 1 ikny Bn
— ny 4 ny 4 .
Vn Yn A5Poe Yc Aepoe 0 Po (4 45)

where As and Ag are amplitude-relating constants to be determined.

In a similar manner, the general solution of Eq.(4.35) is writen as the sum of the
general solution for homogeneous equation and a particulasolution which can
be found as

PC'p Bc ikx
roo= Po€ 4.46
Ve c. o (4.46)
whereB. and C; are two constants to be determined. As it has been done before
substituting (4.46) in (4.35) gives the two constants
— ik [ ! 0

il (L 2L)

k2 Cl | 2

1 —2 ik (4.47b)

o] C

t:

The general solution, then, is expressed as

Pc 1 ik 1 ik B¢ ik

= A7Poe" e + AgPoe "X + Poe™ 4.48a
v, y, A7Po y, AsPo c. o ( )
Pc 1 ik 1 ik B¢ ik

= AgPoec* + AioPoe <X + Poe 4.48b
v, y, AoPo y, APo c. o ( )

where (4.48a) corresponds to the left part of the cavity, and(4.48b) to the right
part. The constants A7, Ag, Ag, and Ao are the amplitude-relating constants to
be determined.
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As in the previous section, in the framework of our modelling there are 10
relations which are assumed to be veri ed, allowing to relae the ow rate and
pressures at di erent indicated points in Fig.4.3. The assunptions for the ow
rate and pressure at di erent junctions are the same as consiered in the previous

section:
Pt(4) = gkl Pt(l)
V@ = gkt y®
p® = p@
P r25) — Pt(2)
Vt(2) Vt(3) =V n(5)
p(G) = p(7)
V(G) + V(7) V(8)
p(M = p®
v =0
vi0 =0

which, respectively, result in the following relations

skl Skl ikL skl k¢ L

Aze 2 + Ase 'z = ¢ Aje 'T+A2eT

=~

e
—
=~

. kgl . skl kel
A€z Age iz =& Ajel Tz A 2
Az+ Ax= A1+A2
kI s kn
Ase 'F + AgeF + By = Ay + Ay + By
s knl

Y, A1 Ay As+ A% =V, Ase ‘T Ag'd

iknl

A5e 2

=~

+ Age "3+ B, = A;+ Ag + By

Yo As€® Ace T+ Yo(A7 Ag)= Yo(Ag  Aio)
A7+ Ag= Ag+ Ajg

kc(L 1) ikc(L 1) ik(L 1)
Ye A7e ' 2 Age z = Cee 2

ke(L 1) Ske(L 1) k(L 1)
Yo Agd 2 Ape "z = Ce Tz

(4.49a)
(4.49b)
(4.49c)
(4.49d)
(4.49e)
(4.49f)
(4.499)
(4.49h)
(4.49i)
(4.49))

(4.50a)

(4.50b)
(4.50c)
(4.50d)
(4.50e)

(4.50f)
(4.50g)
(4.50h)
(4.50i)

(4.50j)

These 10 equations (4.50a-4.50j) on the 10 unknowr#sy; :::; A1o wholly determine
the latter. Once the amplitudes are determined, we have all he Zwikker and
Kosten's elds through the equations (4.40), (4.45) and (448). At this point, we
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can obtain the averagedwvi and hpvi through the following expressions

]
1 %o Z - Z, Z (L =2 '
hvi = 2 Vi dx + V; dx + Ve dx + Vedx  (4.51)
L=2 0 (L 1)=2 0
Thus,
140 h _ i
vio= Ce™®™ + Y, Ak Aje KX dx (4.52)
L=2
1 Z=2h _ o
o Cee™ + Y, Aged* Age X dx
0
1 Z h _ o
v Ce ™ + Yo Azeke*  Age kX dx
(L =2
1 Z  n=h _ o
5 Co€®™® + Yo Age®®  Ajge ®eX  dx
0
Similarly, hpvi will be computed by
1 Z, Z - Zy Z(L =2 !
hpvi = [z PiVt dx + PiV; dx + PV dx + P.Ve dx
L=2 0 (L 1)=2 0
(4.53)
thereby, we have
1 Z o . . _h . . oo
mVi — |__ Bte'kx + Alelktx + Aze ik x Cte'kx + Yt Alelktx Aze ik x dx
L
1 Zy i h i
+F Bte'kx + A3e|ktx + A4e ik¢x Cte'kx + Yt A3e|ktx A4e ik¢x dx
0
1 2o . . . h . . o
+F | Bcelkx + A7e'k°X + Age ik X Ccelkx + Yc A7e'k°X Age ik cX dx
L Z 'E’Tl h
+F Bcelkx + Agelkcx + Aloe ik cx
0

i
Cee®™ + Y, AgekeX  Ajge KeX  dx
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We need also the expression foni to obtain  (I;k ). We obtain it in the
following way

z
0 1
il b = z "V dxdy (4.54)
I
1 1
= F Vv ndS= F Vt(l) + Vt(4)
1 . .kl i . , :
- 1z 2'Ct5'nt7+Yt Are 1+ AT + AdT Age IF

where n is the normal unit vector outward from the border of integration. In
the above, the rst line comes from the microscopic mass balace equation. In
the second line the divergence theorem has been applied. Thetegral over the
normal component of the microscopic velocity is the di eren@ of the outgoing
and ingoing ow rates at the exit and entrance sections of thetube.

Now, we can obtain explicitly the e ective bulk modulus function  (!;k)
through Eq.(4.32).

4.4 Normal Bloch modes

In this section, we seek the macroscopic Bloch wavenumbekg of the least
attenuated wave propagating in the direction of positive x-axis, such that

I
4 1)°
P ik g L Pt()

4.55
e (4.55)

With a eld constituted of 10 Zwikker and Kosten's slit waves, as illustrated in

Fig.4.3, will be associated 10 complex amplitude#\q;:::; A1g. As before, on these
10 amplitudes there are the 2 relations (4.55) expressing # Bloch conditions,
and the 8 relations expressing the continuity equations. Al these relations are
now homogeneous relations, so that nontrivial solutions wi be obtained only if

the determinant vanishes. This condition will give the wavenumber kg .

The rst step is to determine the entrance admittance of the resonator Y, =

,1(5)= r§5). The general solution of the homogeneous form of Eqgs.(4.8) ithout
the forcing term, is written as

Pc 1 ik o 1 ik o X

= SRR c )
v, Y, A€ Y, Ase (4.56a)
Pe o 1 AzeleX + 1 Age KeX (4.56b)

Ve Ye Ye
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where (4.56b) corresponds to the left part of the cavity, and(4.56b) to the right
part. Regarding the above equations, the three conditions

p( = p® (4.57a)
v® =0 (4.57b)
v{i9 =0 (4.57¢)

result in the three following relations

A, = Aje ike(L 1) | (4.58a)
1+ e kelL 1)
A3 - A]_ m (458b)
A4 — Al (458C)
Using (4.56) combining with (4.58), gives
PO = Ay 1+ ket D (4.59a)
VC(7) = YA; 1+ eikc(l- D) (459b)
!

1+ e kel 1

@ — - @ -
Ve = YeA1 T+ okeL D 1 (4.59¢c)

Then, we can obtain the exprssions forPrEG) and Vn(G), through the following

already indicated continuity conditions

p® = p" (4.60a)
V® + v = v® (4.60Db)

which, subsequently, yields the impedancé/s = vi®=p®

1+e kel 1) ike(L 1)
== -——- 1 1 e

_ 1+ ekc(L 1)

Yo = Yc T+ 6 K@ D (4.61)
_ | sinke(L 1)
- “1+cosks(L )
Once, PrEG) and Vn(e) are known, we can obtainPrEE’) and Vn(5) through
! , !
,25) 3 coskp | Y'—n sinkpq| r§6) (4.62)

® 7 iY,sinkal  coskyl v/®
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Thus, Y, is expressed as

iY sinkpl + Yg coskpl
o
coskp | 'Y—ne sinkp|

Y, = (4.63)

Now, we look for the macroscopic wavenumbekg. The following relations are
satis ed in the right and left part of the tube

pe coskt v sin kL p¥ ' (4.640)
v® | iYesinKE  coskk v | '

N ) o N
pd _ cosk- v Sinkk p® (4.64b)
v ivesinkE  coskkE v

Making use of Eq.(4.55), the above equations result in
| |

3)° i 2) "
Pt( ) — ksl .COSl.(tL Yl_t sink¢L Pt( ) (465)
v® iYysinkiL  cosk;L v®

On the other hand, as we have seen before, the three followingonditions are
assumed in the resonator

pd = p@ (4.66a)
PO = p®@ (4.66b)
V@ O = ye (4.66¢)

We have immediately

3 2 1
Pt()zpt():Y_r

VASEIRVAS (4.67)
Writing the two equations resulting from (4.65), and eliminating Pt(g) and Pt(z)
in these equations, gives

_ . _ 1 !
% gks b % coskiL  y-sinkL % 1+ kel coskL Vt(2) 0
1

kel It sink, L Ve 0

(4.68)

ekel iJtsinkL coskil

The determinant of the coe cient matrix must vanish, if the a bove equations
have non-zeros solutions. This yields a second degree algale equation

e?ksl  pelkel +1=0 (4.69)
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with

D = 2coskiL iésinktL (4.70)
t
which gives immediately the Bloch wave number
r___ !
i D D2
kg = T In > T 1 (4.71)

45 Results

For the geometry considered, the functions (!;k ) and  (!;k ), with k involved
in the excitation terms, can be determined within the approximations in the
framework of our modelling. Given these expressions, we kmothat according to
nonlocal theory the possible wavenumbers in the medium wilbe the solutions of
the following dispersion relation as it has been mentionedn previous chapters

. . 2 _ 2
(t:g) (Ka) =g (4.72)
150 T T T T
- - = Bloch-wave calculation )
- = = Bloch-wave calculation p’c
O Nonlocal theory lge
O Nonlocal theory QD
oﬁ
100~ do 1
(]
-4
~ ﬂO
o
E g °
=~ ’ Q"‘q ﬁ
[~] PO ) ")
s 49 R g
50F  Re(k) ¢ o} [} 7
( )0 'l Q \0 0’
/ o [>) <]
,0 1 ’°~o-o'°'
o / Q
/
o ° %
1 9 %egy MK
°o? eseeeeeeeeeee
o AQGQQ I I I I I I I I 6eo
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
kL/p

Figure 4.4: Real and imaginary parts of the normal mode, computed by Bloch-
wave calculations, and nonlocal theory.
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Solving the equation (4.72) by a Newton scheme, we have chestt that the
obtained expressions of (I;k ) and  1(!;q) are such that a complex solution
q(! ) to (4.72) exists, very close to the valuekg (! ) in (4.71).

To perform the computations, we have setL =1cm, =0 2L and =0:019..
For the initial values of k(! ), we have chosen the values okg (! ) with a 10%
discrepancy. Fluid properties for all computations are presented in Table 4.1.
We see in Fig.4.4 that the real and imaginary parts ofq computed by nonlocal
theory via Newton's method converges exactly to the real andmaginary parts of
ks which has been computed by a simple Bloch-wave modelling whitbut any
use of nonlocal theory. The horizental axis is a reduced fragency equal to
IL=c ¢ , with ¢ the adiabatic sound speed. As such, through nonlocal theorthe
‘metamaterial' resonance behaviour of the medium can be péctly described.

Table 4.1: Fluid properties used in all computations.

0 To Co 0 Co
(kg=m®)| (K) | (m=95) | (kgms ') [(Wm K B (Pal) [Jkg 'K 1)
[ 1.205 [293.9340.13971:8369 10 °| 257 10 2[7.473 10 °| 997.5422 [1.4

4.6 Conclusion

The porous matrix with a microgeometry in the form of Two-dim ensional arrays
of Helmholtz resonators has been considered in this chapteio investigate the
validity of the proposed theory of sound propagation through porous media. We
have used the homogenization method in nonlocal theory andaking advantage
of a plane wave modelling to obtain the e ective density and buk modulus
functions in Fourier space. In the framework of the homogerdation method,
we have employed Zwikker and Kosten's equations governinghe pressure and
velocity elds' dynamics averaged over the cross-section®f the di erent parts
of Helmholtz resonators, in order to coarse-grain them to tle scale of a periodic
cell containing one resonator. Once these two e ective propeies have been
determined, the corresponding least attenuated wavenumhbeof the medium
could be obtained through a dispersion equation establistevia nonlocal theory.
The frequency range has been chosen such that the structutgased resonance
phenomena could appear.

Indeed, an analytical modelling, has been performed to obta the least
attenuated Bloch mode propagating in the medium. It has beenshown that,
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the values of Bloch modes obtained in such a way, match exagtlthose computed
by the nonlocal approach. Consequently, we have observed &t not only the
Bloch wave modelling, but also, especially, the modelling ABsed on the new
theory could describe the resonance phenomena, which can beterpreted as
a demonstration of the in uential e ects of the spatial dispersion in the medium.
The Finite Element numerical simulations allowing to compute the wavenumbers,
in the same manner as has been done in chapter 3, are in proges® con rm the
approximations which has been applied in our modelling here
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Conclusion

In this work, inspired by the electromagnetic theory and a paticular thermo-
dynamic consideration relating to Umov-Poynting-Heaviside-Schoch, concept of
acoustic part of energy current density, we have presented aew nonlocal theory
of sound propagation in unbounded homogeneous rigid-framporous media sat-
urated with a viscothermal uid. Contrary to the classical | ocal theory, this new
approach allows both for temporal and spatial dispersion, \kich appears in the
fact that the acoustic susceptibilities depend both on the fequency and wavenum-
ber. The theory has been formulated to be applied to either istropic materials, or
to periodic materials having a symmetry axis along which thepropagation is con-
sidered. In the framework of this theory, we have proposed admogenization pro-
cedure to upscale the dynamics of sound propagation from Naer-Stokes-Fourier
scale to the volume-average scale, through solving two ingrendent microscopic
action-response problems.

An important aspect of the new homogenization method is that contrary to
classical method, there is no lengh-constraint to be consiered alongside of its
development, thus, in principle, there is no frequency limi for the medium
e ective properties to be valid. In absence of solid matrix, this procedure leads to
Kirchho -Langevin's dispersion equation for sound propagdion in viscothermal
uids. This theory can be extended, in the future, to anisotropic, bounded media.

The new theory and upscaling procedure has been validated irihree cases
corresponding to three di erent microgeometries of the porais structure. A
successful test of this theory has been made by a semi-analgal method, in the
simple case of cylindrical circular tubes lled with a viscothermal uid. It has
been found that the wavenumbers and impedances predicted bgonlocal theory
match with those of the long-known Kirchho 's exact solutio n, while, the results
by local theory (Zwikker and Kosten's) yield only the wavenumber of the least
attenuated mode, in addition, with a small discrepancy comgred to Kirchho 's.
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Another validation case concerned the microgeometry of a tw-dimensional
array of rigid cylinders. The propagation has been considexd along one of
the perpendicular axis with which the square lattice can be onstructed. The
microscopic equations relating to di erent action-respon® problems, which lead
to the e ective density and bulk modulus of the medium according to nonlocal
and also local theories, have been solved by direct Finite Eiment numerical
simulations. These have been allowed to compute the correspding phase
velocities of the least attenuated mode according to localad nonlocal approaches.
On the other hand, the phase velocity of the least attenuatedBloch wave has
been computed through a completely di erent quasi-exact mutiple scattering
method taking into account the viscothermal e ects. The resuts of computations
based on these three approaches have shown a remarkable agreent between the
nonlocal and multiple scattering phase velocity predicticns in a wide frequency
range. Furthermore, the local theory which takes into accout only the temporal
dispersion, has shown its limits relating to the frequency,to predict correctly
the phase velocity. There, we have observed clearly that thenew upscaling
procedure, in fact, has imposed no length-constraint; whahas been expressed in
the correct predictions at high frequency regime. It is coneivable in the future,
by improving the performance of the numerical method, to obtin the phase
velocities of the higher modes by nonlocal theory and compar them with those
obtained by multiple scattering method.

The last case which has been investigated in order to valida the nonocal theory
has been related to the microgeometry in the form of a daisy chined Helmholtz
resonators. Using the upscaling procedure in nonlocal theg and a plane wave
modelling led to two e ective density and bulk modulus functions in Fourier space
(!; k). In the framework of this upscaling procedure, we have emmlyed Zwikker
and Kosten's equations governing the pressure and velocityelds' dynamics
averaged over the cross-sections of the di erent parts of Hehholtz resonators, in
order to coarse-grain them to the scale of a periodic cell caaining one resonator.
Once these two e ective properties have been determined, theorresponding least
attenuated wavenumber of the medium could be obtained throgh a dispersion
equation established via nonlocal theory. The frequency rage has been chosen
such that the structure-based resonance phenomena could ppar. Indeed, an
analytical modelling, then, has been performed to obtain tre least attenuated
Bloch mode propagating in the medium. It has been shown that,the values
of Bloch modes obtained in such a way, match exactly those coputed by the
nonlocal approach. Consequently, it has been observed thatot only the Bloch
wave modelling, but also, especially, the modelling basedmothe new theory could
describe the resonance phenomena, which can be interpretesd a demonstration
of the in uential e ects of the spatial dispersion in the medium. As a matter of
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fact, the need for a correct description of spatial dispergin e ects, has been the
motivation of the new macroscopic theory presented and vatiated here.






Appendix A

Zwikker and Kosten's simplified
local theory

The complete equations of the wave propagation problem in tlk circular tube are

2

O@t: rp+ r v+ + 3 r(r v) (A.1la)

@b _
@t+ r v=0 (A.1b)
ob=Db+ o (A.1c)

@ _ @p 2
Ocp@t— OTO@t+ r (A.1d)
forr<R, and

v=0 (A.le)
=0 (A.1f)

atr = R.

The aim of Zwikker and Kosten's theory is to nd zw (!) and zw (! ), such
that in harmonic regime

\% P

wn) o= 2 (A.22)
P \%

o= o (A.25)

whereV and P are the cross-section averages of velocity and pressure.
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Knowing zw (! ) and zw (! ) would entirely characterize the tube propagation
characteristics. It would give the propagation constant

kow = 1" 2w () 2w (D) (A3)

and the characteristic impedance of the progressive wave

q
Zow = zw(t) om () (A.4)

We note rst that, in addition to Egs.(A.2), it must also be as sumed a relation
between the cross-section average of excess temperaturedapressure. This
relation, between h i and hpi, would play the role of (A.2a) between V and P.
Using the similarity between (A.1a) and (A.1d) we write it as

P
ow (! %t oTo%t

We note next that, combining (A.1b) and (A.1c) and averaging over a Cross
section a general relation betweer@P=@® =@1tand @V =@ocan be obtained

er_ av, @
@t @x ‘et
Thus, putting in this equation the relation (A.5) and using t he general

thermodynamic identity (2.11), it is easy to verify that, on ce the functions zw
and 9, exist, they must be related by

(A.5)

(A.6)

w)= o ( D522 (A7)

2w (1)

Now we observe that Egs.(A.2) have exactly the same form as # Maxwellian
equations (2.58-2.61) with, however, the crucial di erencethat they are written
excluding spatial dispersion

@B @V_

ot ox =0 (A.8a)

@b_ @H

2= @( (A.8b)
t

D(t;x) = dt® zw (t YV (% x) (A.8¢)
1
Zt

H(t;x) = dt° b (t t9B(t%x); H P (A.8d)
1
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We explain later on in concluding paragraph, why, in this cortext, the eld

H coincides with the mean pressure. For the moment, we note tHaEqgs.(A.2-
A.8), local in space, are incompatible with Egs.(A.1). Indeed, as we have seen,
Egs.(A.1) consistently lead to Maxwellian acoustic equatons which are { contrary
to the above { nonlocal in time and also in space.

Thus, what Zwikker and Kosten's theory is doing to arrive at equations having
the local form (A.2), is not to solve the complete equations A.1), expressed
in the complete action-response problems (2.62-2.64) and2(77-2.79), but, by
introducing various simplifying approximations and idealizations, to solve only
some truncated simpli ed versions of these equations.

The approximations are made in a way to capture the characteistics of the plane-
wave component elds, in the limit where the wavelengths arelarge compared to
the duct transverse dimensions. It is only in this limit that the functions zw and

zx}v of Zwikker and Kosten's theory allow to describe with high precision the
propagation of the least-attenuated, plane wave mode. Theispli ed versions of
the equations, and action-response problems determiningzyw and Z\:/LV , can be

directly guessed through the fact that they have to neglect patial dispersion.

To compute the density, we consider that, since the wavelerijs are very large
compared to the duct transverse dimensions, the spatial vaation of the pressure
gradient term in Eq.(A.1a) can be neglected for the purpose bdetermining the
uid velocity pattern across a section. We thus look at the response of the uid
subjected to the action of an external driving force-per-unt-volume f , which
is a pure spatial constant, while harmonic in time (in any red physical wave
propagation problem, the temporal variation of the pressue gradient would mean
that this gradient is also, to some extent, spatially variable). In this circumstance
we have not only to replace the drivingf in (2.64) by a spatial constant f ge ™ |
but also to drop the response pressure gradient term in (2.62 Indeed, in the
cylindrical duct geometry and with constant driving force, no response pressure is
generated and no compression-dilatation of the uid occurs Thus, we also have
to drop the two other elds band . The resulting ctitious problem reads

@_ 3,1 (A.9a)
r v=0 (A.9b)
for r <R, with

v=0 (A.10a)
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at r = R, and the deriving force is given by
f= rP=edfoe™ (A.11)
The corresponding density zw (! ), such that
i zw (P)hvi = f (A.12)
or, to compare with (2.75)

f
2w ()= — s (A13)

is the wanted Zwikker and Kosten density. Straightforward calculations result in

1

1
zw (1) _o[:L ¢l (A1

where (!) is the following relaxation function

il p2\1=2
()=~ ZJl_(_R ,) - (A.15)
('-_RZ)l—ZJO (l-_R2)1—2
In a similar manner, to compute the compressibility, we now onsider that in the
long-wavelength limit, the pressure driving term in Eq.(A.1d) may be viewed as
a pure spatial constant for the purpose of determining the excess temperature
response pattern, across a section. Thus we consider that ith driving term acts
as a spatial constant (To@p=@t Qe " with Qg a constant. The resulting
ctitious heat conduction problem reads

@ 2 1
= - _ S A.l
ot Ocpr + onQ (A.16)
forr<R, and
=0 (A.17)
at r = R, with
_ @ _ it
Q= oTorg,= Qoe (A.18)

The corresponding function %w ('), such that

it 9y(Mhi=Q (A.19)
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through straightforward calculations is given by

11
0 o [1 (P (A.20)

where z(!) is the previous relaxation function (A.15) and Pr = cp= is the

Prandtl number. Finally, as gw is related to the compressibility zw by the

relation (A.7), the end Zwikker and Kosten's expression for zw (! ) is written as

zw ()= ofl+(C 1) (! P (A.21)

In conclusion, we note that, within the simplifying approxi mations made in
Zwikker and Kosten's local theory, as the excess pressure aglient term in
Eq.(A.1la) is represented by the constant termf , and as the excess pressure time
derivative term in Eqg.(A.1d) is represented by the constant term Q, the excess
pressure is replaced by a constant over the cross-section. hilis, when writing
the de nition hupi = Hhui of the H eld, the pressure can be extracted from
the averaging operation and it turns out that H = p, which also yieldsH = P
since the pressure is constant. We now see why, in the framewoof Zwikker and
Kosten's local theory, no distinction is to be made between he mean pressurd®
and the e ective macroscopic pressureéd . This remark extends more generally to
the case of the usual local description [8, Appendix A], whib generalizes Zwikker
and Kosten's local solution to the case of arbitrary geometies.
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This work is dedicated to present and validate a new and generalized atroscopic
nonlocal theory of sound propagation in rigid-framed porous mediasaturated with a

viscothermal uid. This theory allows to go beyond the limits of the classical local
theory and within the limits of linear theory, to take not only tempora | dispersion, but also
spatial dispersion into account. In the framework of the new appoach, a homogenization
procedure is proposed to upscale the dynamics of sound propadgan from Navier-Stokes-
Fourier scale to the volume-average scale, through solving two ingendent microscopic
action-response problems. Contrary to the classical method of dmogenization, there is
no length-constraint to be considered alongside of the developmeérmf the new method,

thus, there is no frequency limit for the medium e ective properties to be valid. In

absence of solid matrix, this procedure leads to Kirchho -Langevirs dispersion equation
for sound propagation in viscothermal uids.

The new theory and upscaling procedure are validated in three casecorresponding to
three di erent periodic microgeometries of the porous structure Employing a semi-
analytical method in the simple case of cylindrical circular tubes lled with a viscothermal
uid, it is found that the wavenumbers and impedances predicted by nonlocal theory
match with those of the long-known Kirchho 's exact solution, while t he results by local
theory (Zwikker and Kosten's) yield only the wavenumber of the leas attenuated mode,
in addition, with a small discrepancy compared to Kirchho 's.

In the case where the porous medium is made of a 2D square netwodf cylindrical solid
inclusions, the frequency-dependent phase velocities of the leasttenuated mode are
computed based on the local and nonlocal approaches, by using éict Finite Element
numerical simulations. The phase velocity of the least attenuated Boch wave computed
through a completely di erent quasi-exact multiple scattering meth od taking into account
the viscothermal e ects, shows a remarkable agreement with thee obtained by the
nonlocal theory in a wide frequency range.

When the microgeometry is in the form of daisy chained Helmholtz respators, using
the upscaling procedure in nonlocal theory and a plane wave modellindead to two
e ective density and bulk modulus functions in Fourier space. In the framework of
the new upscaling procedure, Zwikker and Kosten's equations goweing the pressure
and velocity elds' dynamics averaged over the cross-sections ahe di erent parts of
Helmholtz resonators, are employed in order to coarse-grain themo the scale of a
periodic cell containing one resonator. The least attenuated waweumber of the medium
is obtained through a dispersion equation established via nonlocal thory, while an
analytical modelling is performed, independently, to obtain the leastattenuated Bloch
mode propagating in the medium, in a frequency range where the remance phenomena
can be observed. The results corresponding to these two di erdnrmethods show that
not only the Bloch wave modelling, but also, especially, the modelling basd on the new
theory can describe the resonance phenomena originating from #éspatial dispersion
e ects present in the macroscopic dynamics of the matarial.
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