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RESUME en francais

Plusieurs cancers sont associés a des concentrations sériques anormales de marqueurs
tumoraux, tels que le prostate specific antigen (PSA) dans le cancer de prostate, I'alfa-
foetoproteine (AFP) ou 'human chorionic gonadotrophin (hCG) dans les tumeurs germinales
ou les maladies trophoblastiques gestationnelles (MTG). Le traitement du cancer doit
s’accompagner d’'une chute de leurs concentrations. Les valeurs prédictives de nhombreux
parameétres cinétiques censés caractériser la décroissance des marqueurs ont été publiées
dans la littérature (nadir, valeur seuil, demi-vie, temps a normalisation etc...) Cependant trés
peu de ces parametres sont utilisés en pratique par manque de reproductibilité.

La modélisation en approche de cinétique de population, déja utilisée dans les études
pharmacocinétiques, permettrait de caractériser de fagon dynamique la décroissance des
marqueurs tumoraux sériques et de compenser les limites des autres méthodes. Nous avons
étudié la faisabilité et I'intérét de cette approche dans 4 études portant sur le PSA aprés
chirurgie d’'adénome ou de cancer de la prostate, 'hCG-AFP dans les tumeurs germinales
non-séminomateuses traitées par polychimiothérapie de type Bléomycine-Etoposide-
Cisplatine (BEP) et 'nCG dans les MTG traitées par méthotrexate. La modélisation de la
décroissance des marqueurs tumoraux a été possible dans toutes les études en adaptant la
méthodologie aux spécificités de chaque marqueur. Il apparait que les clairances apparentes
du PSA et de I'nCG permettraient d’identifier les patients ayant des profils cinétiques
défavorables et donc a haut risque de rechute. Des études de validation sur des cohortes

indépendantes sont nécessaires.



TITRE en anglais

Dynamic analysis of serum tumor marker decline during anti-cancer treatment using
population kinetic modelling approach.

RESUME en anglais

Several cancers are associated with abnormal serum concentrations of tumor markers
such as prostate specific antigen (PSA) in prostate tumor diseases, alfa-fetoprotein (AFP) or
human chorionic gonadotrophin (hCG) in germ cell tumors or persistent gestational
trophoblastic diseases (GTD). Cancer treatment should induce decline of serum tumor
marker concentrations. The predictive values of many kinetic parameters supposed to
characterize tumor marker declines such as nadir, time-point cutoff, half-life, time to
normalization etc..., have been reported in previous studies. However very few of them have
been used in routine due to the lack of outcome reproducibility.

Population pharmacokinetic approach-based modeling is already used in
pharmacokinetic studies. It might be helpful to characterize tumor marker decline equations
dynamically and overcome limitations of previous studies. The feasibility and the relevance of
this approach were assessed in 4 studies involving: PSA titers in patients with prostate
adenoma or cancer treated with surgery; hCG-AFP in non-seminomatous germ cell tumor
patients treated with BEP regimen (Bleomycin-Etoposide-Cisplatin) and hCG in GTD patients
treated with methotrexate. Tumor marker decline modeling was feasible in all studies
provided the methodology was adjusted to marker specificities. Apparent clearance of hCG
and PSA might enable identification of patients with unfavorable decline profiles and thereby
with high risk of relapse. Confirmatory studies with independent cohorts of patients are

warranted.



DISCIPLINE

Médecine (Oncologie) ; Modélisation

MOTS-CLES

Marqueur tumoral ; Cancer de prostate ; Adénome de prostate ; Tumeurs germinales non-
séminomateuses ; Tumeurs trophoblastiques gestationnelles ; Prostate specific antigen ;
PSA ; Alfa-foetoproteine ; AFP ; Human chorionic gonadotrophin; hCG; Cinétique de
population ; Modélisation ; Décroissance ; Pronostique ; Facteur prédictif; Rechute;
Résistance.

KEY-WORDS

Tumor markers ; Prostate cancer ; Prostate adenoma ; Non-seminomatous germ cell tumors;
Gestational trophoblastic disease; Prostate specific antigen ; PSA ; Alfa-fetoprotein ; AFP ;
Human chorionic gonadotrophin ; hCG ; Population kinetics ; Modeling ; Decline ; Prognosis ;
Predictive factor ; Relapse ; Resistance.

INTITULE ET ADRESSE DE L'U.F.R. OU DU LABORATOIRE :

EMR UCBL/HCL 3738 : Ciblage Thérapeutique en Oncologie (CTO)

Equipe 2 : Modélisation de la biologie tumorale et optimisation de I'effet des anticancéreux
Faculté de Médecine et de Maieutique Lyon-Sud — Charles Mérieux

165, chemin du Petit Revoyet ; BP 12

69921 Oullins Cedex

France

O

= 774
EA 3738
UNIV. LYON |

W

UNIV=RSIT= D= LYON Université Claude Bernard ‘Lyon1

///I



RESUME substantiel en francais

Les marqueurs tumoraux sont des molécules retrouvées en quantités anormales
dans certains tissus, tels que le sang, les urines ou le tissu tumoral, chez des patients
atteints de cancer. lls sont généralement produits par les cellules tumorales mais peuvent-
étre également sécrétés par l'organisme en réponse a la présence d'un cancer. Les
marqueurs tumoraux sont plus ou moins spécifiques des cancers qu’ils sont supposés
caractériser. Par exemple le prostate specific antigen (PSA) est trés spécifique du tissu
prostatique mais pas du cancer de prostate. En effet, il peut-étre produit par les cellules
normales, par les cellules adénomateuses ou par les cellules cancéreuses a des taux
différents. Le traitement du cancer doit s’accompagner d’'une chute des marqueurs tumoraux
dont on peut suivre les cinétiques de décroissance. Ainsi de nombreux auteurs ont cherché a
caractériser la décroissance des marqueurs tumoraux aux moyens de différentes
techniques. Certains investigateurs se sont intéressés a une valeur spécifique de
concentration sur la courbe de décroissance, telle que la valeur basale pré-thérapeutique, le
nadir, la normalisation du marqueur ou une valeur seuil a un temps t. D’autres auteurs ont
utilisé des approches cinétiques basées sur un minimum de 2 valeurs de concentration telles
que le pourcentage de décroissance, la pente de décroissance, la demi-vie d’élimination, le
temps au nadir ou encore le temps a normalisation. Enfin l'aire sous la courbe des
concentrations en fonction du temps (area under the curve ou AUC) a été analysée dans une
étude portant sur le CA 125 chez des patientes traitées pour un cancer de I'ovaire. Dans la
plupart des études, les investigateurs ont cherché a mettre en évidence une valeur prédictive
aux marqueurs cinétiques étudiés par rapport au risque de rechute ou a la survie globale.
En revanche, le réle de la modélisation mathématique pour analyser la décroissance de
marqueurs tumoraux en cours de traitement a été trés peu évalué.

Dans ce projet de recherche, nous proposons d’utiliser la modélisation en approche
de cinétique de population pour étudier la décroissance de marqueurs tumoraux a la suite ou
pendant un traitement anticancéreux. En effet cette technique permet de modéliser
I'équation de la décroissance d’'un marqueur tumoral dans une population de patients, de
quantifier les variabilités inter et intra-individuelles, d’évaluer linfluence de covariables
individuelles sur la variabilité inexpliquée et de prédire le profil de décroissance individuel
chez chaque patient. Cette méthode présente un certain nombre d’avantages puisqu’elle
permet de travailler dans des conditions de sparse data (peu de points par patient) et de
travailler rétrospectivement sur des données hétérogénes, provenant de patients non

sélectionnés.



Dans 4 travaux publiés, la modélisation en approche de cinétique de population a été
utilisée avec succés pour étudier la décroissance de marqueurs tumoraux, en adaptant la
méthodologie aux caractéristiques du marqueur étudié. Dans la premiére étude, la faisabilité
de la modélisation de la décroissance du PSA aprés adénomectomie de prostate selon la
technique de Millin a été évaluée. Deux méthodologies basées sur une approche similaire
(modéle basé sur la clairance du PSA et modéle multiparamétrique) ont été comparées.
L’approche multiparamétrique a permis d’évaluer la production de PSA par les différentes
zones prostatiques ainsi que la production de PSA résiduelle aprés adénomectomie.
L’approche basée sur la clairance apparente du PSA est apparue plus simple et plus
précise. La deuxiéme étude a confirmé la décroissance bi-exponentielle du PSA aprés
prostatectomie radicale chez des patients atteints de cancer de prostate. La clairance
apparente du PSA était le seul facteur prédictif significatif indépendant de rechute biologique.
Dans la mesure ou ce paramétre a pu étre défini précocement dans le mois qui suivait la
chirurgie, nous pensons qu'il pourrait étre utilisé pour adapter le traitement chez les patients
présentant un profil de décroissance défavorable du PSA. Dans la troisieme étude, les
cinétiques particuliéres de 'AFP et 'hCG, comportant une ascension initiale du marqueur
durant la premiére semaine de traitement suivie d’'une décroissance, ne nous a pas permis
d’analyser la clairance apparente du marqueur comme dans les études antérieures. Nous
avons donc caractérisé l'aire sous la courbe des concentrations en fonction du temps des 2
marqueurs. Deux groupes pronostiques ont pu étre définis en fonction des AUCs de chaque
marqueur tumoral. Les résultats de la quatrieme étude impliquant des patientes atteintes de
maladies trophoblastiques gestationnelles traitées par méthotrexate ont suggéré que la
clairance apparente de I'hCG pourrait permettre de prédire le risque de résistance au
méthotrexate. L’identification des patientes présentant un faible risque de résistance
permettrait de réduire la dose-intensité de la chimiothérapie, comme cela a été proposé par
certains experts.

Les études présentées ici présentent un certain nombre de limites susceptibles de
réduire I'intérét de l'approche utilisée. La complexité des analyses pourrait contribuer a
réduire la faisabilité et I'extension de cette approche pour I'étude d’autres marqueurs
tumoraux. De plus, contrairement aux études classiques de pharmacocinétique, il n’était pas
possible de caractériser les taux de production de marqueur tumoral par le cancer. C’est la
raison pour laquelle nous avons dd poser des hypothéses concernant ces productions. Par
ailleurs, la précision des paramétres cinétiques estimés a pu étre réduite par le caractére
non-centralisé des mesures de concentration des marqueurs tumoraux. En effet en dehors
de I'étude portant sur les tumeurs germinales non-séminomateuses, les concentrations
avaient été mesurées dans plusieurs laboratoires en utilisant des trousses de dosage

différents. Ceci pourrait avoir contribué a augmenter I'hétérogénéité des données et les



variabilités inter et intra-individuelles des estimations. Cependant la modélisation en
approche de cinétique de population, capable d’évaluer les paramétres cinétiques de fagon
dynamique, indépendamment des points de temps-concentration, et de quantifier ces
variabilités, a d0 étre moins pénalisée par ce probleme que les autres méthodes rapportées

antérieurement.

L’intérét de I'approche de cinétique de population dans I'analyse de la cinétique des
marqueurs tumoraux doit étre encore confirmé sur les données d’études rétrospectives ou
prospectives impliquant des cohortes de patients indépendantes. Une étude prospective a
été prévue avec le service d’urologie du Centre Hospitalier Lyon-Sud. Prés d’'une centaine
de patients, dont les PSA ont été mesurés a 4 reprises dans le mois qui suivait la chirurgie,
ont été inclus dans une étude prospective entre octobre 2007 et octobre 2008. De plus des
collaborations ont été mises en place avec des équipes internationales pour confirmer la
faisabilité de la modélisation de 'hCG ainsi que la valeur prédictive de la clairance apparente
de I'nCG dans les tumeurs trophoblastiques.

Enfin, nous avons prévu d’analyser les cinétiques des marqueurs tumoraux avec des
modeéles mécanistiques. Cette approche permettra de décrire la production de marqueur
tumoral par la tumeur au moyen d’'un set d’équations alors que la cinétique d’élimination du
marqueur sera décrite par un autre set d’équations. L’interaction entre les 2 systémes sera
caractérisée par une inhibition du taux de production de marqueur tumoral induite par le

traitement.

En conclusion, les cinétiques de décroissance des marqueurs tumoraux, supposées
refléter I'efficacité des traitements anticancéreux, ont été trés largement étudiées avec des
stratégies différentes. Cependant trés peu des marqueurs cinétiques rapportés jusqu'a ce
jour sont reconnus et utilisés en routine. La modélisation mathématique pourrait permettre de
mieux caractériser la décroissance des marqueurs tumoraux. De plus elle pourrait permettre
de distinguer des groupes de patients selon leurs risques de rechute en vue d’'un ajustement

thérapeutique.
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|. Introduction and Background
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Tumor markers are molecules, generally proteins, which are associated with cancers.
They can be measured at normal or abnormal titers in different tissues including tumor, urine
or blood. Tumor markers are generally produced by cancer cells or can be released by

organism in response to cancer’s presence .

Depending on their features and activities, 3 types of tumor markers can be distinguished
2 Cancer antigens (CA) represent the majority of tumor markers and include
carcinoembryonic antigen (CEA); alfa-fetoprotein (AFP); CA 125; CA 19-9; CA 15-3; CYFRA
21-1 and squamous cell carcinoma (SCC). Hormone tumor markers characterized by
endocrine functions include human chorionic gonadotropin (hCG); thyrocalcitonin;
thyroglobulin and chromogranin A. Enzyme tumor markers comprise lactate deshydrogenase

(LDH); prostate specific antigen (PSA) and neuron specific enolase (NSE).

Tumor markers are more or less specific of cancers that they are supposed to
characterize. For instance, PSA is a 33 kDa glycoprotein released by prostate cells. If PSA
is very specific of prostate tissue, it is not specific of prostate cancer. Indeed it is produced by
prostate normal cells, adenoma cells and cancer cells at different rates **. High blood PSA
titers frequently found in cancer patients can be understood by the higher PSA release rate
by prostate cancer cells. Changes in PSA titers are generally linked to alteration in prostate
cancer growth induced by treatment. However high PSA values can also be related to benign
prostate inflammation such as prostatitis °.

HCG is a 37.5 kDa glycoprotein produced by placenta syncitiotrophoblastic cells during
pregnancy. This marker is frequently released by seminomatous or non-seminomatous germ
cell tumors (NSGCTs) and gestational trophoblastic diseases (GTD), rarely by breast, small
cell lung, gastro-intestinal and urothelial cancers °”.

CA 125 is a 200 kDa protein which is expressed in 80% of epithelial ovarian cells. This
marker is poorly specific of ovarian cancer. Indeed high CA 125 serum titer can be found in
patients with ovarian carcinoma, endometrial cancer, breast cancer or lung cancer along with
benign diseases such as endometriosis, renal failure, pancreatitis, pregnancy or any

peritoneal inflammation ®°.

Parallel evolution of serum tumor marker titers and cancer growth has been reported in
many cancers. The role of tumor markers in screening or staging of cancer has been
extensively analyzed and is still under debate. The kinetics of tumor marker titers following

cancer treatment, considered as a reflection of treatment efficacy, has also been largely

14



investigated. Indeed the need for prognostic or predictive factors able to inform on treatment

efficacy early and on risk of relapse/progression prompted the development of such studies.

« Prévoir consiste & projeter dans 1l’avenir ce qu’on a perg¢u dans le passé »
« Prediction is projecting in the future what has been seen in the past»

Henri Bergson, French philosopher (1859-1941)
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ll. Approaches Used to Analyze Tumor
Marker Declines During Anti-Cancer
Treatment in the Literature
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Different approaches have been used to analyze tumor marker decrease following anti-
cancer treatment. However the most adequate method has not been determined yet. Figure

1 is an illustration of the kinetics of a serum tumor marker to be investigated.

Tumor marker concentration

P
o
Normal : . (]
titersof o =] = - - e e - = = o e e -
tumor '[ o - [ ] R
marker t1t2 t3 t4 5 6 Time
Sart of
treatment

Figure 1. Typical example of serum tumor marker concentration decline profile to be
analyzed.

I1.1. Approaches based on a single time-point

Several authors reported the predictive value of one specific time-point supposed to
characterize the tumor marker decline profile, including baseline titer; normalization of tumor

marker value; nadir and cut-off at a time t.

I1.1.1. Baseline (pre-treatment) titer

The predictive or prognostic value of the baseline concentration measured prior to the

start of treatment has been described for most tumor markers (Figure 2). Indeed it has been

10-11

reported for ACE in colorectal cancers : CA 125 in ovarian cancers '*'*; AFP in

7,16

hepatocellular carcinoma " '® and germ cell tumors '’; CA 15-3 in breast cancers '®%'; CA 19-

22-23

9 in colorectal cancer and pancreatic cancers ?*?°; CYFRA 21-1 in lung cancers *; SCC

in head and neck carcinomas %%, hCG in germ cell tumors " and trophoblastic tumors ?°;
chromogranin A in neuroendocrine tumors *°; LDH in germ cell tumors '’; PSA in prostate

5, 31-32 3

cancers or NSE in lung cancers **. Across studies, the reported cut-offs were

heterogeneous.
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Figure 2. Prognostic value of the baseline tumor marker concentration. According to a cut-off,
patients are classified into favorable or unfavorable groups regardless of further tumor
marker kinetics.

Only the baseline serum concentrations of hCG & AFP in germ cell tumors and hCG in
trophoblastic tumors have been consensually recognized. They are now used for treatment
decision making in routine ' %. The baseline values of the other tumor makers have not
been considered reliable enough to be used for treatment adjustment.

This approach, although being simple to apply, presents several limitations able to
explain the lack of reproducibility of reported results. First it relies on a time-point measured
before the start of treatment but not on further tumor marker titers. As a result, the tumor
marker baseline value does not integrate the effect of treatment, and thereby embodies a
prognostic factor rather than a predictive factor. Moreover this strategy relies on the value of
a single time-point prone to unexplained inter- and intra-individual variability. A single time-
point outside normal decline curve might lead to wrong conclusions of abnormal decrease.
As a consequence this approach is static and inaccurate to assess the decrease of tumor

marker concentrations following anti-cancer treatment.
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11.1.2. Normalization of tumor marker

Using this approach, a tumor marker titer is supposed to be in the normal range at a time
t that is the end of treatment or another time frame defined by the authors (Figure 3). A tumor
marker value outside normal values at that time means treatment failure and thereby higher
risk of relapse. This strategy was mainly used for analysis of CA 125 decline during
chemotherapy treatment. For instance, the predictive value of CA 125 normalization in
ovarian cancers was described in 3 studies: at the end of 6 chemotherapy cycles in a review
of 7 Gynecology Oncology Group (GOG) trials ** or by the third cycle in 2 other studies 3*3¢.
Similar conclusions were drawn with CA 125 concentration measured after neo-adjuvant

chemotherapy in ovarian cancer patients 3"

and CA 125 after 3 chemotherapy cycles in
endometrial cancers *°. In another study including pancreatic cancer patients treated with
surgery, normalization of CA 19-9 within 2 months after surgery was a positive predictor of
survival *°. The predictive value of tumor marker normalization was also reported with CA 15-
3 in breast cancer patients *'*? as well as with CEA, CA 19-9 and CA 125 in non-small cell

43

lung cancer patients along with SCC in cervix carcinoma patients treated with

chemotherapy *.
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Figure 3. Predictive value of tumor marker normalization at a time t. Patients are classified
into favorable or unfavorable groups according to normalization of tumor marker (yes/no) at a
time t.

None of these parameters are currently used in routine due to the lack of reproducibility
of this approach. It might be understood by some limitations. First this strategy is static and

relies on a single time-point prone to inter- and intra-individual variability. Moreover
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normalization can be expected in curative intent treatment only. As a consequence, this

approach can not be applied in the cases of most of metastatic cancer patients.

[1.1.3. Nadir

In this case, normalization of tumor marker is not necessarily expected. The minimum
titer observed at a time t, frequently at the end of treatment, during the period of observation
is considered as a predictive factor of treatment efficacy (Figure 4). This strategy has mainly
been used for analysis of CA 125 concentrations in patients with ovarian cancer and of PSA

values in patients with prostate cancer.
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Figure 4. Predictive value of tumor marker nadir. According to the minimum tumor marker
value observed during tumor marker concentration monitoring, patient are classified into
favorable or unfavorable groups.

The predictive value of CA 125 nadir regarding overall survival was reported in patients
with ovarian cancer at the end of neo-adjuvant chemotherapy (20 1U/mL*); after surgery (5
IU/mL “%; 10 IU/mL *); at the end of adjuvant chemotherapy (10 IU/mL “***%) or before
maintenance chemotherapy (10 IU/mL “*°).

Different predictive PSA nadirs were reported in prostate cancer patients treated with
radiotherapy regarding biochemical relapse free survival or disease free survival® (0.2 ng/mL
*1: 0.4 ng/mL °% 0.4-2.0 ng/mL °3; 0.5 ng/mL ***%; 1.0 ng/mL>**%; 1.2 ng/mL *°, 1.5 ng/mL®’; 3
ng/mL ' or nadir + 2 ng/mL ® measured 3 months to 5 years after start of treatment). PSA
nadirs predictive of biochemical recurrence were also reported in prostate cancer patients

treated with radical prostatectomy (no cut-off due to continuous predictive value ; 0.01
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ng/mL%; 0.4 ng/mL®) or treated with hormonotherapy (0.1 ng/mL®®®"; 0.2 ng/mL %% 0.4
ng/mL ). In addition, a PSA nadir less than 0.2 ng/mL during first line treatment was
described as a predictor of second line treatment efficacy in metastatic prostate cancer
patients .

The CA 19-9 nadir after radiotherapy was also described as a predictive factor of survival
(162.5 IU/mL ") in patients with pancreatic cancers, as was the CEA nadir during

chemotherapy in patients with colorectal cancer regarding disease free survival (DFS) ".

None of these parameters are currently used in routine. Indeed the nadir-based strategy
is limited by dependence on a single time-point prone to inter- and intra-individual variability.
Moreover it is necessarily influenced by the time frame of observation. Outside a clearly
defined monitoring time window, it is difficult to know if tumor marker nadir has been reached

or not.

11.1.4. Cut-off at atime t

A threshold, different from assay normal limit or nadir, is sought as a predictive factor

(Figure 5). The cut-off time is generally arbitrarily defined by authors.
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Figure 5. Predictive value of tumor marker threshold at a time t. Patients are classified into
favorable or unfavorable groups depending on the value of their tumor marker with respect to
this cut-off.

Different methodologies have been used to determine the cut-offs reported so far:
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- Arbitrarily set thresholds. Authors compared the predictive values of different time-point
cut-offs that they consider of interest and then selected the best one to predict the risk of
relapse or death *® 7476,

- Thresholds determined according to distribution of tumor marker concentrations at a
time t. Authors calculated the distribution of tumor marker values at a time t to select some
percentiles of interest. Subsequently they assessed the predictive values of these cut-offs
using different tests ”’.

- Corridor-based approach (Figure 6). Distributions of tumor marker concentration time
curves were calculated in patients with favorable outcomes and/or in patients with
unfavorable outcomes. Time-point cut-offs able to discriminate patients with adequate and
patients with inadequate decline profiles were inferred from observation of corridors. The
predictive values of these cut-offs were sometimes subsequently tested using receiver

operating characteristic (ROC) curve analyses "®7°.
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REG cut-off at 97,5% speacificity

Sarum hea (U L)

15t percentie study group
Mormal WG cut-off level

MTX course number

Figure 6. Typical example of tumor marker corridor analysis in patients with gestational
trophoblastic disease treated with methotrexate. Distributions of serum hCG titers at different
times were represented in patient population to identify cut-offs able to discriminate patients
with favorable tumor decreases and those with unfavorable tumor marker declines ™.
Time-point cut-offs were reported for PSA in patients with prostate cancer after surgery
regarding the risk of relapse (0.2 ng/mL ™). As well, CA 125 cutoffs predictive of overall
survival were found at the end of adjuvant chemotherapy (35 IU/mL "*; 10 IU/mL “®) or before

maintenance chemotherapy (10 1U/mL"® #°

) in patients with ovarian cancers. Predictive cut-
offs were also described for post-operative CA 19-9 in patients with pancreatic cancer
regarding overall survival (37 IU/mL ""; 90 or 180 IU/mL 8'). Different predictive thresholds
were reported for 7" week hCG titers in patients with trophoblastic tumors treated with
methotrexate regarding the risk of relapse or resistance (56 pg/L "% 737 IU/L " or 500

mlU/mL ).
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None of reported cut-offs are used in routine. As mentioned above with other single time-
point-based parameters, this approach is limited by dependence on the unique value of
tumor markers prone to inter- and intra-individual variability. Moreover thresholds and times
were arbitrarily selected by authors in most studies. It may explain the high inconsistency in

cut-offs reported so far.

I1.2. Kinetic approach based on minimum 2 time-points

Many authors reported the predictive values of kinetic parameters calculated with at least
2 time-points and supposed to characterize the tumor marker concentration-time profile. The
following parameters were reported: percentage change in tumor marker concentrations;
decline slope; decline half-life(ves); time to normalization, time to nadir and area under the

curve.

11.2.1. Percentage change in tumor marker concentrations

Using this strategy, the tumor marker percentage decrease was assessed, with or without
consideration of time frame required to observe this decline. A predictive percentage cut-off
was sought to discriminate patients with favorable decline and those with unfavorable decline
(Figure 7).
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Figure 7. Predictive value of tumor marker decrease percentage. According to decrease
percentage, patients are classified into favorable or unfavorable groups.

CA 125 decrease percentage by 50% or 75% correlated with response to chemotherapy
in ovarian cancer patients 3¢, A reduction of CEA, CA 15-3 or NCC-ST-439 levels by 10 or
20% or more during the 8th or 12th week of treatment was associated with better time to

progression (TTP) in patients with localized or metastatic breast cancers . A decline of
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CA 19-9 by 20% or more was the only predictor of survival in advanced pancreatic cancer
patients treated with chemotherapy °'.

Percentage change in tumor marker value is mainly used for assessment of tumor
response in prostate cancer patients. Several studies showed that the decrease of PSA more
than 50% over a 8-12 week treatment period was associated with longer median survivals in
castration-resistant prostate cancer patients treated with systemic treatments %, In 1999,
PSA working group declared PSA decline = 50% on 2 measurements separated by = 4
weeks was the official definition of PSA biochemical response for clinical trials % Since then,
this surrogate marker has been widely used to assess the efficacy of systemic treatments in

prostate cancer patients %%

For instance, a PSA decrease of = 50% during at least 1
month was associated with better overall survival (OS) and progression free survival (PFS) in
patients with advanced prostate cancer treated with suramine %.

This strategy enables an easy quantification of tumor marker value decrease and
comparison of decline profiles among patients, especially if times frames of measurements
are homogeneous. However the calculation of tumor marker percentage decrease requires 2
time-points. It is also influenced by the inter- and intra-individual variability of tumor marker
values. Because it is not possible to integrate more that 2 time-points to calculate tumor
marker percentage decline, a dynamic assessment of tumor marker decline using this

strategy is impossible.

11.2.2. Decline slope

The predictive value of the tumor marker decrease slope has been reported in a few

studies (Figure 8). It was always determined using linear regression tests.
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Figure 8. Predictive value of tumor marker decline slope calculated using linear regression.
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The linear regression slope of CA 15-3 correlated with PFS in 122 patients with
metastatic breast cancer treated with chemotherapy '”’. In addition, the linear regression
slope of CA 125 correlated with overall survival in 126 patients with ovarian cancer treated by
chemotherapy "%¢'%.

No tumor marker decline slope is currently used in routine for treatment adjustment.
Although this strategy might offer an interesting assessment of tumor marker decline profile
in some situations, it has been poorly used. Indeed if the studied tumor marker decrease is
linear or mono-exponential, linear regression may enable an accurate assessment of tumor
marker decrease rate provided several time-points have been measured to counterbalance
variability. However the interpretation of tumor marker decrease slopes would not have been
clear to clinicians and patients. This might have contributed to investigation of other time-

dependent kinetic parameters.

11.2.3. Time to events

This strategy, which has been the most widely used, relies on calculation of the time
required to observe a tumor marker event such as:

- Decrease by 50%: Half-life (HL)

- Minimum value: Time to nadir

- Normalization: Time to normalization (TTN)

[1.2.3.1.  Half-life/lives (HL)

The half-life is the length of time required to observe a decrease of tumor marker values
by 50%. Depending on the shape of tumor marker decline, one or more elimination half-lives
can be sought. If the decrease curve is mono-exponential, only one half-life can be found
(e.g. Titer (t) = A * e ~ ' + B). A bi-exponential decline profile can be characterized by two
HLs (e.g. HL, and HLg if Titer () = A*e ~“'+ B * e ' + C). As shown in Figure 9, HL value
may depend on time-points selected to calculate it in the case of multi-exponential decline

curve.
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Figure 9. Predictive value of tumor marker half-lives (HLs). Half-life value depends on the
time-points selected to calculate it.

The number of exponentials was arbitrarily defined on the basis of authors’ assumptions
or on observations of concentration-time curves. Across studies, the methodologies used to
calculate tumor marker elimination half-lives differed significantly. Indeed the method was
sometimes poorly reported """ In other studies, graphical representation of tumor marker
concentrations versus time were used to estimate one or two decline slopes (“s”) depending
on author assumptions regarding tumor marker decrease profiles ''#""*. Then half-life could
be calculated using Formula 1:

HL=Ln2/s (Formula 1)

An example of graphical calculation of tumor marker HL is shown in Figure 10.
In some studies, HL between time-point A and time-point B was calculated using the
following Formula 2 "¢

HL = (Ln 2 * (Time A — Time B)) / (Ln (Titer A) - Ln (Titer B)) (Formula 2)

Elsewhere, linear regression tests were applied to assess decline slopes using multiple time-
points when tumor maker decline profiles were assumed to be mono-exponential '2'-122 123 124-
129 Reported HL values were inferred from Formula 1. An example of linear regression

approach is shown in Figure 10.
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Figure 10. Typical example of half-life calculation using graphical representation and linear
regression of tumor marker concentrations versus time ™. CA 125 were measured after
surgery (time-point 1), before chemotherapy (ct) (time-point Il) and during chemotherapy (last
time-point Ill) in patients with ovarian cancers. Different half-lives were calculated during pre-
chemotherapy period (11/2(c)), during chemotherapy (t1/2(a)) or between the first and the last
time-point (t1/2(b)) using graphical representation. Linear regression was used to assess
decline slope using all time-points (t1/2(d)).

Non-linear least-square regression analyses were occasionally used to fit tumor decline
profiles according to mono- or bi-exponential equations and then to calculate 1 or 2 decline
Slopes 130 131-134
Half-lives were frequently calculated to assess PSA, CA 125 and hCG-AFP declines

following anti-cancer treatments.

11.2.3.1.1. PSA in patients with prostate cancer

Decrease of PSA after prostate cancer surgery or radiation treatment has been
extensively analyzed using half-lives. The first study was reported in 1988 by Oesterling et al.
who reported a mono-exponential decrease using a log-linear regression model in 178
patients with prostate cancer. The HL was 3.15 +/-0.09 days '?®. Other authors subsequently

reported different values of PSA HL ranging from 1.9 days to 3.4 days (Table 1).
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Table 1. Results of studies in which PSA decline in patients with prostate cancer after radical
prostatectomy was investigated using mono-exponential models.

Study Equation Number of | HL Disease Predictive value
lI('-t’SA(t)=PSAo « e | patients (SD) days
%asterling et al. | k=0.219 178 3.15(0.09) Prostate cancer Not assessed
Haab etal. "™* ND 10 1.92 (1.20) Bladder cancer Not assessed
10 2.50 (1.33) Prostate cancer
Ravery et al. ™ ND 27 3.39 (2.33) Prostate benign Not assessed
2.15(1.79) hypertrophia
Prostate cancer
Vollmer et al. "> k=0.216 27 3.20 (ND) Prostate cancer Not assessed

PSAo: Initial value of PSA; HL: Half-life; SD: Standard Deviation; ND: Not Defined

When PSA decrease after radical prostatectomy was fit to bi-exponential decline curves,
the 2 HLs (HL, and HLg) were reported in between 1.4 and 45.4 hours and 52.8 and 182.9

hours respectively (Table 2).

Table 2. Results of studies in which PSA decline in patients with prostate cancer after radical
prostatectomy was investigated using bi-exponential models.

Study Equation Number | HLy (SD) | HLg (SD) | Predictive
PSA(t)= Ae™ + Be™ of hours hours value;
patients cut-off
Stamey etal. '° ND 378 12.60 52.80 Not
(19.7) (ND) assessed
Van Straalen etal. "° | ND 8 1.63 111.12 Not
(ND) (ND) assessed
Haab etal. '** ND 7 22.56 182.88 Not
(19.2) (152.0) assessed
Lein etal. ™’ ND 11 6.30 85.60 Not
(6.1) (11.0) assessed
Brandle et al. ™° PSA(t)=51.5e """ +48 .5¢ """ 11 1.45 65.26 Not
(0.3) (ND) assessed
Gregorakis etal. "> | PSA(t)=3,34°7%%+0,167°0 %™ 9 1.75 71.96 Not
(0.26) (ND) assessed
May etal. '™ N.D. 77 45.36 81.36 RFS; 3.8
(0.7) (8.4) days

PSAo: Initial value of PSA; HL: Half-life; ND: Not Defined; SD: Standard Deviation; RFS: Relapse free survival

Mono-exponential models were used to describe PSA decrease after radiation treatment.

In many studies, an additional exponential rate rise was incorporated in the equation. PSA
HL ranged in between 0.33 and 6.93 months (Table 3).

Table 3. Results of studies in which PSA decline after radiotherapy in patients with prostate
cancer was investigated

Study Equation Number K HL of | Predictive
of decrease value
patients months (SD)

Meek et al. ™*° PSA(t)=PSAee™ 81 ND 1.43 (0.36) Not

assessed

Kaplan etal. ™* PSA(t)= PSAy*e™ 25 2.07 0.33 Metastatic

relapse

Ritter et al. ™ PSA(t)= PSAy+Be™ 63 ND 2.60 Not

assessed
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133

Zagars et al. PSA(t)= PSAe™ + Be" 154 ND 1.9 Not

Zagars etal. ' PSA(t)= PSAe™ + Be" 578 ND 1.60 ilséstessed
Hanlon et al. ™ PSA(t)= PSAe™ + B*(t-20)*It 153 0.10 6.93 ilis{essed
Vollmer etal. ™ PSA(t)= 22.8e™ +0.9¢" "™ 164 0.37 1.87 assessed

PSA: Initial value of PSA; HL: Half-life; ND: Not Defined; SD: Standard Deviation

Few studies investigated the predictive values of PSA half-lives during systemic anti-

cancer treatments. Treatments and results were heterogeneous among studies (Table 4).

Table 4. Results of studies in which PSA decline in patients with prostate cancer during
systemic treatment was investigated

Study Treatment Number | HL (months) Predictive value and cut-off
of
patients
Malik et al. ™ Neo-adjuvant 117 0.5 Biochemical relapse; 2 weeks
hormonotherapy
ﬁgnninen et al. | Chemotherapy 154 13.2 Overall survival; 70 days
Banu et al. ™** Chemotherapy 256 ND Time to failure; Not reported
Linetal. " Hormonotherapy 153 0.5 Overall survival; 0.5 months

ND: Not Defined, SD: Standard Deviation; HL: Half-life

11.2.3.1.2. CA 125 in patients with ovarian cancer

Assessments of CA 125 half-lives in patients with ovarian cancer treated with

chemotherapy were reported in several studies. CA 125 HLs along with predictive cut-offs

were inconsistent among studies (Table 5). Riedinger et al. first introduced the concept of CA

125 bi-exponential decrease. In a study involving 130 ovarian patients, a mono-exponential

decline profile was found in 54 patients and a bi-exponential decrease in 38 patients. They

concluded the initial half-life (cut-off = 14 days) and decline profiles (mono- versus bi-

exponential) were predictive factors of disease free survival and overall surviva

I 142

Table 5. Results of studies in which CA 125 decline during treatment in patients with ovarian
cancers was investigated.

Study Treatment Number Mono- Bi-exponential Predictive
of exponential value and cut-
patients off
HL (days) HLq HLg
(SD) (SD)
hours hours
Bulleretal. "™ | Surgery 10
Maﬂ(‘?wska et | Adjuvant chemotherapy 130 OS; ND
al.
m;dema et al. | Adjuvant chemotherapy 60 10 OS; 20 days
ﬁgdducci et al. | Palliative chemotherapy 225 25 OS; 25 days
Colakovic et al. | Palliative Chemotherapy 222 OS; 20 days
Mano et al. ™ [ Adjuvant chemotherapy 63 Not reported 0S; 16 days
ﬁgdducci et al. | Palliative chemotherapy 71 14 OS; 14 days
Riedinger et al. | Induction chemotherapy 631 15.8 DFS and OS;
+ 14 days
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OS; initial half-

Riedinger et al.
142 life 14 days

Induction chemotherapy 54 17.0
38 13.6 53.1

ND: Not defined; HL: Half-life; OS: Overall survival, DFS: Disease free survival
[1.2.3.1.3. hCG and AFP in germ cell tumor patients

Most works that have assessed the predictive value of tumor marker kinetics in patients

with non-seminomatous germ cell tumors relied on hCG and/or AFP half-lives (Table 6). The

126

leading HL-based model, described by Murphy et al. '**, was based on HL,cc and/or HLarp

calculated between day 7 (D7; day 1 was the first day of chemotherapy) and D42
(completion of the second cycle of treatment). It was used by the Memorial Sloan-Kettering

Cancer Center (MSKCC) in 2 chemotherapy dose-densification clinical trials "2 123145,

Table 6. Results of studies in which AFP and hCG declines following treatment in patients
with non seminomatous germ cell tumors were investigated.

Study Treatment Number of | Mono-exponential Predictive value and
patients cut-off
HL (days)
Lange etal. * | Surgery 36 AFP: 5.0-7.0 days Overall response rate
hCG: 0.5-2.0 days
Vogelzang et al. | Induction 37 AFP: 6.0-7.9 days Relapse rate
146 chemotherapy hCG: 3.1 days
Toneretal. """ | Surgery 198 0S; AFP 7 days, hCG 3
days
Murphy et al. *° | Salvage 54 0S; AFP 7 days, hCG 3
chemotherapy days
Gerletal. ™ Induction 263 AFP: 6.2 days 0S, PFS; AFP 7 days, hCG
chemotherapy hCG: 2.8 days 2.5 days
Inanc etal. *" | Induction 34 AFP: 3.3 days EFS, OS: AFP 7 days
chemotherapy hCG: 4.4 days
Stevens et al. | Induction 183 AFP: 6 days OS; AFP 7 days, hCG 3
“ chemotherapy hCG: 2.6 days days
Mazumadar et | Induction 189 OS, EFS; AFP 7 days, hCG
al. '*® chemotherapy 3.5 days

ND: Not defined; HL: Half-life; OS: Overall survival; EFS: Event free survival; PFS: Progression free survival; SD:
Standard deviation

11.2.3.1.4. Other tumor markers

CEA half-life after colorectal cancer surgery correlated with risk of relapse %",

Despite extensive publications, none of predictive HLs reported so far have been used for
treatment adjustment in routine. Heterogeneity in methods used to assess HL and in
outcomes among studies might have contributed to reduce the reproducibility of reported
results. HL outcomes were very dependent on the time-points selected for HL calculation. In
most works, a few time-points different among studies were retrospectively used to calculate
one or two half-lives. Moreover the high unexplained inter- and intra-individual variability of
tumor marker values might have introduced additional inaccuracy in HL calculations. No
authors showed the predictive value of a HL was reproducible in independent cohorts of

patients.
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11.2.3.2.  Time to nadir

This is the length of time required to observe decline of tumor markers to the minimum
value during a period of observation (Figure 11). The calculation of this kinetic parameter

was based on longitudinal observations of tumor markers.
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Figure 11. Time to nadir defined as the length of time required to observe minimum value of
tumor marker.

This kinetic parameter has mainly been investigated for analysis of PSA in patients
with prostate cancer treated with radiation treatment. It sometimes correlated with
biochemical relapse free survival (cut-off at 1 year *®, 2 years *?, 1-3 years *°; no cut-off

t 56-57, 152

defined °* ®') or no . As well, PSA time to nadir was assessed in prostate cancer

patients treated with hormonotherapy '** and correlated with disease specific survival (cut-

154 ) 66)'

off of 6 months or with biochemical relapse free survival (cut-off of 24 months

Time to nadir was assessed in patients with ovarian cancer treated with induction

chemotherapy or adjuvant chemotherapy but had no real predictive value *> '*°.

None of these parameters are currently used in routine. This strategy presents the same
limitations as nadir-based approach. Its relevance is reduced by dependence on a nadir
time-point prone to inter- and intra-individual variability. Moreover it is necessarily influenced
by the period of observation of tumor marker values. Outside a clearly defined monitoring

time window, it is difficult to know if tumor marker nadir has been reached or not.
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[1.2.3.3.  Time to normalization (TTN)

This kinetic parameter is defined as the length of time required for normalization of tumor

marker titer (Figure 12).
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Figure 12. Definition of time to normalization (TTN).

Different methodologies were used to determine time to normalization. In some studies, it
resulted from observations of patients who normalized their tumor markers **'%’. In other

studies, it was calculated using the following formula '*;

TTN (weeks) = 3 * (log Co —log Cy) / (log Cy — log C+) (Formula 3)

where C, is the baseline tumor marker titer; Cy is normal upper bound of tumor marker;

C1 is tumor marker value after 1 cycle of chemotherapy.

TTN has mainly been assessed in patients with non-seminomatous germ cell tumors
(NSGCT) by Fizazi et al. In a retrospective study involving 654 NSGCT patients treated by
chemotherapy, hCG and AFP TTNs were used to determine 2 prognostic groups regarding
risks of progression. Indeed the patients with hCG TTN < 6 weeks and AFP TTN < 9 weeks
had better PFS than the other patients '*®. This classification has been used to adjust
treatment in the on-going GETUG 13 trial in which dose-dense chemotherapy is

administered in the case of unfavorable tumor marker decline profile. Similar results were
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reported in a TTN-based study involving 75 patients with relapsed NSGCTs treated with
salvage chemotherapy '*°.

CA 125 TTN correlated with survival of ovarian cancer patients treated with surgery and
adjuvant chemotherapy. The authors suggested a second look surgery was not required in
patients classified into the favorable group (TTN < 1 month) in terms of overall survival "*°.
Furthermore CA 125 TTNs were used to compare efficacies of 2 adjuvant chemotherapy

160 155

regimens or treatment route in ovarian cancers. As well, PSA TTN was used to

compare 2 radiation treatment modalities in patients with prostate cancer '’.

The TTN-based strategy is limited by dependence on 2 unique time-points prone to
unexplained inter- and intra-individual variability. Moreover it is not applicable to treatment of
most of metastatic cancers in which normalization of tumor marker is not necessarily

expected.

11.2.4. Area under the curve (AUC)

The area under the concentration-time curve (AUC) was investigated in only one study

187 Calculation of AUC was based on the sum of trapezoid areas (Figure 13).
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Figure 13. Calculation of tumor marker AUC between t1 and t6 using the sum of trapezoid
areas.

In Mano et al., the area under CA 125 concentration-time curve was assessed in ovarian

cancer patients treated with surgery followed by post-operative chemotherapy. Individual
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AUCs were estimated using trapezoid areas with at least 3 time-points (Figure 14). ROC
curve analysis was used to discriminate the best AUC cut-off in terms of tumor response and

survival. The best CA 125 AUC able to predict patient overall survival was 1000 IU/mL*days
161
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Figure 14. Trapezoid area-based approach used to calculate the AUC of CA 125 during post-
operative chemotherapy in patients with locally advanced ovarian cancer in Mano et al. study
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A better integration of the whole decline curve might be offered by this kinetic parameter
calculated with several time-points. It should be less influenced by inter- and intra-individual
variability of tumor marker values than above methods. However the number of trapezoids is
directly linked to the number of time-points used to calculate AUCs. As a result the accuracy

of this method is influenced by the selected time-points.

11.2.5. Tumor marker modeling studies

In occasional studies, modeling was used to characterize decline profile with or without
production and/or elimination of tumor marker. None of the results reported in these studies

are used in routine for treatment decision.

Hanlon used non-linear mixed effect modeling (Nlinmix macro under the SAS System.17)
to analyze decrease of PSA concentrations after radiation treatment in 153 prostate cancer
patients '*°. PSA decline was fit to mono-exponential or bi-exponential models. Estimation
was done using maximum likelihood. The authors concluded PSA was well described by a
mono-exponential decline curve including an additional parameter to integrate the slight PSA
increase related to repopulation of normal epithelial prostate cells

[PSA(t)= 4.65e'%+0.02*(time-20)*I(time<20)] (Formula 4)
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The indicator function, I(time<20), specifies that the “tail” be considered only for PSA levels
observed more than 20 months after treatment. They found that equation parameters were

influenced by Gleason score and baseline PSA value .

Vollmer built a first-order kinetic semi-mechanistic model using non-linear least square
algorithm to describe PSA decline in prostate cancer patients after radical prostatectomy and
to discriminate PSA produced by benign tissues from PSA released by cancer tissues '*°
(Figure 15). Both PSA production and elimination were considered in the model:

PSA(t)=a/B*(1-e ") + PSA *e™ (Formula 5)

where PSA, is baseline PSA; a relates to the release of PSA by prostate cells into the
prostate tissue, B relates to the excretion of PSA from the prostate to the serum
compartment, k is coefficient controlling the loss of PSA from the serum. Using this model,
Vollmer et al. estimated PSA productions by prostate normal and cancer tissues at 100

ng/mL.day and 1070 ng/mL.day respectively .

Prostata [ bsta V_} Elood k A

Figure 15.The 2 compartment model used by Vollmer et al. '*°.

In 1994, Cappelli et al. defined the basic principles of a mechanistic modeling study for
analysis of tumor marker kinetics after treatment, meant to go “beyond the cut-off’. They
presented different mathematical models potentially available to describe tumor marker
increase related to tumor growth (logistics models, Gomperz model) or tumor marker
decrease after radical treatment (non-linear regression models, half-lives) 2. However, they

did not apply these principles for the analysis of a tumor marker.

11.3. Limitations of methods used to analyze tumor marker decline in the literature

As shown above, many studies meant to analyze tumor marker decline following cancer
treatment were published over the last 30 years. Different approaches based on baseline
value; cut-off at a time t; half-life; time to normalization etc... were used to find predictive
factors of treatment efficacy. However very few of them have been validated on independent
cohorts of patients and consensually adopted for management of cancer ' % %_ |t might be
linked to the high heterogeneity in outcomes and the low reproducibility of reported results.
For instance, in gestational trophoblastic disease patients treated with methotrexate, 3
different hCG cut-offs measured during the 7™ week of treatment were predictive of

resistance: 56 pg/L equivalent to 520.24 mIU/mL for Van Trommel et al. %, 500 mIU/mL for
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Savage et al. ¥ and 737 mlU/mL for Kerkmeijer et al. . The lack of reproducibility of results
reported in the literature might be understood by:

- Intra-individual variability of biological marker titers. Despite the advantage of its
simplicity, the use of a single time-point for characterizing the complex kinetics of tumor
markers is a cause of inaccuracy. A single time-point outside normal decline curve might
lead to false conclusions of abnormal decrease. As a result dynamic analysis of tumor
marker kinetics integrating several time-points is warranted.

- Inconsistency in time-points selected to assess time-dependent parameters such as
HLs, TTNs or decline slopes. If the actual tumor-marker decline curve is not mono-
exponential, as it seems to be for PSA or CA 125, HL depend on the time-points selected for
analysis. No guidelines have been defined for the time-points that had to be selected to
assess half-lives. As a consequence, variable time-points were chosen and heterogeneous
results were reported.

- Inaccurate determination of equation parameters due to limited number of time-points in
non-linear regression models. A few time-points per patient are not enough to calculate with
accuracy more than 4 kinetic parameters (decrease rates along with intercepts) in the case
of pluri-exponential decreases.

- Lack of assessment of inter-individual variability.

- Lack of search for individual covariates able to explain parts of unexplained variability.

Population kinetic approach might enable to overcome most of these limitations. Indeed
this strategy offers a dynamic analysis of tumor marker decline curve independently on
selected time-points, even in sparse data conditions; allows to quantify inter & intra-individual
variability and enables determination of individual covariates able to reduce unexplained

variability.

36



lll. Population Kinetic Approach for Analysis
of Tumor Marker Declines
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I11.1.Principles of population pharmacokinetics

[11.1.1. Definition
Population pharmacokinetics describe:

-The typical relationships between physiology (both normal and disease
altered) and pharmacokinetics (PK)/pharmacodynamics (PD),
-The inter-individual variability in these relationships, and

-Their residual intra-individual variability.

Sheiner-LB
Drug Metab Rev. 1984; 15(1-2): 153-71

I11.1.2. General principles

Population kinetic approach is commonly used to analyze the pharmacokinetic (PK)
parameters of drugs administered to study subjects. The general principles have already

been described elsewhere '8%1°°,

On the basis of a few concentration time-points per patient exposed to a drug, this
approach enables (Figure 16):

- To determine the drug concentration kinetic profile of patient population,

- To quantify inter- and intra-individual variability,

- To assess the influence of patient covariates on unexplained inter- and intra-individual
variability,

- To predict drug concentration kinetic profile of every patient.
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Figure 16. Principles of population kinetic approach: assessment of population decline profile
using all available data, quantification of inter- and inter-individual variability, investigation of
influence of individual covariates on unexplained inter-individual variability and prediction of
individual decline profiles.

This approach presents several advantages:

- Sparse sampling strategy. Because all patient time-points are grouped to determine the
population kinetic profile, a few data per patient (2-3 concentrations/subject) are sufficient to
perform accurate PK analyses.

- Identification of covariates able to explain inter-individual variability. It is possible to test
the influences of individual covariates such as renal function, liver function, age, weight, etc
... on unexplained inter-individual variability of parameter estimates and thereby to increase
accuracy of individual predictions.

- Large selection of patients. In opposition with other strategies that require enrollment of
highly selected patients to reduce variability able to alter study outcomes, result accuracy is
improved by inclusion of patients with different characteristics. As a consequence, results are
more applicable to general population.

- Independence on selected time-points. The model relies on the mathematical equation
of decline curves. As a result it is possible to predict the tumor marker values in any time-

point of the curve.
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However the population PK strategy presents some limitations:

- Complexity of analyses. Implementation of population PK models requires skills to deal
with mathematical and pharmacological concepts along with computer programs.

- Time consuming analyses. This strategy requires time to format the database, design
the model, to implement models in computer program, to analyze the data along with the

results and to ensure external & internal validation of results.

We performed 4 studies to assess the feasibility and the relevance of population kinetic
approach for analyzing decline of different tumor markers in cancer patients treated with

surgery or chemotherapy.

I11.2.Studies and Articles

I11.2.1. PSA decline after adenomectomy in patients prostate benign hypertrophia:
You B, Perrin P, Freyer G, et al. Advantages of prostate-specific antigen (PSA)
clearance model over simple PSA half-life computation to describe PSA decrease after
prostate adenomectomy. Clin Biochemistry 2008;41:785-95 "°°.
Study details and outcomes are shown in the article presented in pages 63 to 73.

111.2.2. PSA decrease after radical prostatectomy in patients with prostate cancer:
You B, Girard P, Paparel P, et al. Prognostic value of modeled PSA clearance on
bio&hemical relapse free survival after radical prostatectomy. Prostate 2009;69:1325-
33'%7,

Study details and outcomes are shown in the article presented in pages 74 to 82.

111.2.3. hCG and AFP declines during chemotherapy in patients with non
seminomatous germ cell tumors treated with BEP regimen:

You B, Fronton L, Boyle H, et al. Predictive value of modeled AUC(AFP-hCG), a
dynamic kinetic parameter characterizing serum tumor marker decline in patients with
nonseminomatous germ cell tumor. Urology 2010;76:423-9 e2 '*®.

Study details and outcomes are shown in the article presented in pages 83 to 90.

I11.2.4. hCG decrease in patients with gestational trophoblastic disease treated with
methotrexate:

You B, Pollet-Villard M, Fronton L, et al. Predictive values of hCG clearance for risk of
methotrexate resistance in low-risk gestational trophoblastic neoplasias. Ann Oncol
2010;21:1643-50 '*°.

Study details and outcomes are shown in the article presented in pages 91 to 98.
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I11.3.Implementation of models with NONMEM software®

The versions V and VI of NONMEM software® (NON linear Mixed Effect Model,
University of San Francisco, California, USA) compiled with Digital Visual Fortran 5.0 were
used to analyze tumor marker concentration-time data with first order (FO) and first order
conditional event interaction (FOCEI) methods. The following parameters were estimated:

- Fixed effects parameters:

o Intercepts & decrease constants in multi-exponential models "6 168169,
o Clearance, central compartment volume (V1) & inter-compartmental transfer

rates (K12, K21) in clearance-based models "7,

- . Random effects:

o Inter-individual variability.
o Intra-individual residual variability arising from assay errors and model
misspecifications.

Extensive graphical analyses of predicted versus observed concentrations were
performed to test the value of each model. The search was also guided by looking at the
differences between the objective functions (OF) given by NONMEM. The NONMEM OF is
an approximation of twice the logarithm of the likelihood. When a model could be reduced to
a simpler one by fixing some parameters to a given value (e.g., 0), the difference between
the 2 NONMEM OF was approximately distributed according to a x* with n degrees of
freedom, n being equal to the number of additional fixed parameters in the reduced model. In
addition, the hypotheses of independence or dependence of parameter inter-individual
variability were investigated.

Subsequently, the main individual covariates such as patient age, weight, blood cell
counts, sodium, total protein, serum creatinine clearance etc... were tested to estimate their
impacts on kinetic parameters. When a covariate demonstrated significant relationships with
any kinetic parameters, it was introduced into the model describing the fixed effects by
forward inclusion. The covariate was kept in the model only if the decrease in the NONMEM
OF was at least greater than 7, corresponding to a nominal p value < 0.01.

For instance, the influence of the “age” covariate on CLpsp was tested with the following
equations "7

Clpsa =©1*( age)®? * exp(n1) (Formula 6)
Or
exp(n1) (Formula 7)

02 x

Clpsa =©1*( age/ agemed)
where:
- age is the patient age and age.q is the median age of all patients among the cohort;

- ©1 and ©2 are the fixed-effect parameters
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n1 is the random-effect parameter.
The latter equation gives an easy parameter interpretation because ©1 is the clearance
of a patient whose age equals the agen.q. Afterwards, a stepwise backward elimination
procedure was performed to keep in the model only the significant covariates, producing an

OF decrease of at least 11, corresponding to a p < 0.001.

I11.4.Qualifications of the models

In efforts to qualify model abilities to predict correctly tumor marker distribution values "
7 100 to 500 tumor marker decline profiles were simulated across studies using the final

parameters of the different models. They were subsequently compared with associated

166-169

observed data using visual predictive checks (VPC) regarding the whole curves with or

without statistical predictive checks (SPC) regarding the first portion and the last portion of

167-168 d 172

decline curve '® or the decrease slope , as previously describe
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[\VV. Discussion and Projects
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In four studies involving 3 different tumor markers, population kinetic approach-based
models could be implemented with success to assess decline of tumor markers after or
during treatment. In each study, methodology was adjusted to the specific characteristics of

the tumor marker analyzed.

The first study mainly investigated the feasibility of PSA decline assessment after

prostate adenomectomy '

. Two methodologies based on a similar approach were
compared to prepare the second study involving PSA decline after radical prostatectomy.
The clearance-based model was simpler due to the reduced number of model parameters.
However the multi-parameter approach gave the opportunity to assess PSA productions by
the different prostate zones along with the residual PSA release after surgery, which was
requested by urologists .

The second study was an extension of the latter study. Consistently with studies
previously reported '3 124 130, 136137 112, 116 5 pi_exponential decline profile best fit PSA
decrease after radical prostatectomy. In addition, PSA apparent clearance was the only
significant predictive factor of biochemical relapse. Given this parameter was determined
with serum PSA concentrations measured early, during the first month following surgery, we
assumed it could be used for treatment adjustment in patients with unfavorable PSA decline
profiles. However this hypothesis will have to be validated prospectively.

In the third study, the specific shape of AFP and hCG kinetics including an initial surge
during the first week of treatment avoided calculation of tumor marker apparent clearance.
Areas under the tumor marker concentration-time curves were selected as predictive kinetic
markers. Modeling of hCG decline curve was less accurate than AFP decrease curve. The
results of this study should be considered with caution due to the limited numbers of patients
& time-points, the significant number of missing data and the lack of multivariate analysis.
Moreover the AUCs of 2 tumor markers had to be combined to define predictive groups,
which contributed to increase uncertainty.

Given treatment of gestational trophoblastic disease has to be adjusted on hCG
concentration evolution only, determination of a hCG kinetic parameter able to inform on the
risk of treatment failure is warranted. The results the fourth study involving patients with
trophoblastic tumors treated with methotrexate suggested hCG clearance might offer an
early prediction of methotrexate resistance risk. Identification of patients with low resistance
risk might enable treatment reduction, as advocated by some authors. Confirmation of the

predictive value of modeled hCG clearance is warranted.

Did the population kinetic approach implemented improve assessment of tumor marker

declines following anti-cancer treatment?
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Several limitations able to reduce the relevance of population kinetic approach for
analysis of tumor marker kinetics were identified. Compared with the simple algorithms used
in studies reported in section Il (graphical measurements, linear or non-linear regression),
our modeling analyses were complex and time-consuming. This might contribute to reduce
the feasibility and spread of such analyses on a large scale.

Moreover, in opposition with traditional population PK studies in which drug dose
administered to organism is known, it was not possible to characterize tumor marker
released by cancer in blood. Ideally we would have identified the production rate (Kp), the
starting date of production and the steady state concentration so that we could discriminate
Kp and elimination rates as showed in Figure 17 in the case of prostate cancer. However it
was not possible to perform such an analysis due to unavailable data prior to the start of
treatment. As a consequence, we had to do assumptions regarding tumor marker production.
In prostate disease studies, PSA production was assimilated into an intravenous bolus
arbitrarily set at 1, with an unknown bioavailability F that was greater than 1. As a result, the
apparent volume of distribution and clearance corresponding to Clearance/F=Ke*V1 and
V1/F respectively were determined, where V1 and CL were the unknown actual volume of

distribution and clearance.

Prostate (A1)

Volume (Vp)
Peripheral K12 Central compartment
compartment |, (A2)
(A3)
Volume (V1)
K21

[

Figure 17. The optimal specification for PSA decrease model. Kp is the rate constant of PSA
release from prostate to serum; K12 and K21 are the PSA transfer rate constants between
the peripheral compartment and central compartment; and Ke is the elimination rate
constant. PSA concentration is assayed in the central compartment '®°.
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In the trophoblastic tumor study, we decided to implement multi-exponential equations.
Subsequently we calculated the individual apparent clearance (CL,cg)) which was equal to
the product of Ki and the volume of distribution (Vd) based on a previous estimation of Vd ">

In NSGCT study, the area under the time-concentration curve between day 0 and day 42
was assessed by the sum of a trapezoid area (between day 0 and day 7) and area under the
modeled tumor marker concentration-time curve (between day 7 and day 42). Indeed this
study was complicated by the initial surge of hCG and AFP following start of treatment found

174-175

in about 25% patients, consistently with previous reports , and led us to split tumor

marker kinetics in 2 parts. The same phenomenon was reported with CEA, CA 15-3 or CA
19-9 197 176178 |t might limit the exploration of these markers by population kinetic approach.
In addition, the accuracy of kinetic parameter assessment might have been reduced by
the non-centralized measurement of tumor marker concentrations. Indeed except in NSGCT
study, tumor marker concentrations were determined in different laboratories using variable
assay kits. Many authors highlighted the large variability in tumor marker titers provided by
different assays and thereby the risk of treatment making based on tumor marker values
measured using different methods "*"®3. Variability related to use of different immunoassays
might have contributed to increase inter- and intra-individual variability and to scatter kinetic
parameter results. This might explain failures in previous studies investigating the predictive
values of tumor marker kinetic parameters '*'®. However population kinetic approach able
to quantify inter- and intra-individual variability and to calculate kinetic parameters
dynamically, independently on selected time-points, is supposed to be less involved by this
issue. It might explain that the results regarding predictive values of modeled kinetic

parameters were encouraging against those previously published.

The relevance of population kinetic approach has still to be confirmed with retrospective
studies along with prospective analyses involving independent cohorts of patients. A
prospective confirmatory study has been planned with Department of Urology at Centre
Hospitalier Lyon-Sud. Four PSA were assayed on day 0, day 1, day 3, day 7 and day 30
after surgery in 101 patients treated with radical prostatectomy between October 2007 and
October 2008. Analysis of results is planned in October 2011.

International collaborations were developed to assess the reproducibility of hCG
modeling and of hCG clearance predictive value in trophoblastic tumors treated with
chemotherapy. The gynecology team at Charing Cross Hospital provided with a database
including hCG titers from 200 patients with low risk trophoblastic tumors treated with
methotrexate. An abstract with promising results was submitted to the 2011 Annual Meeting

of American Society of Clinical Oncology (Chicago, USA).
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Moreover, the US Gynecology Oncology Group has recently planned to analyze
decrease of hCG titers using population kinetic approach in patients enrolled in GOG 174
phase 3 trial, in which 2 chemotherapy regimens were compared. In addition, the prospective
assessment of hCG clearance using population kinetic approach will be included in the
protocol of the future UC 1005 phase 3 trial aiming at comparing 3 chemotherapy regimens

in low risk trophoblastic tumors (GOG Semi-Annual Meeting, Boston, July 2010).

A way of improving modeling of tumor marker titer evolution would rely on mechanistic
modeling approach. Using this strategy, tumor marker production related to the tumour size
and proliferation would be described by one set of equation while the kinetics and the effect
of chemotherapy on tumor proliferation and tumor marker production would be described by
another set of equations as proposed by Cappelli et al. '®2. The interaction between the two
systems would then be characterized as an inhibition of the marker production rate by the
treatment. In an effort to improve characterization of tumor marker production by cancers,
Sostelly et al. developed a mechanistic model describing PSA production rates by the
different prostate compartments after combining the 2 post-operative PSA kinetic databases
(Figure 18) . They showed this approach was feasible and relevant. However their
conclusions were limited due to the high number of missing PSA data before prostate

surgery.

Tumour
Zone

Peripheral

Zone Plazma Peripheral

Compartiment Compartiment

Transiticn Figure 1: PSA mode
Zone Ko Produsciion rate from tumour zone
Ko gy Produsciion rate from perpheral zone

* Fop 1z PrOduction rabe from fransition zane

Adenoma

Figure 18. Schema of model used to describe PSA productions by prostate compartments as
well as PSA elimination, in Sostelly et al. '®.

In addition, we are assessing the role of semi-mechanistic mathematical modeling for
analysis of CA 125 kinetics in patients enrolled in the international CALYPSO phase llI trial.
In this study coordinated by ARCAGY-GINECO-IGCG Intergroup, the efficacies of two

carboplatin-based regimens were compared. An abstract with promising results was
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submitted to the 2011 Annual Meeting of American Society of Clinical Oncology (Chicago,
USA).

In conclusion, tumor marker kinetics following cancer treatment, considered as a
reflection of treatment efficacy, has been studied by many authors using variable
methodologies. Very few of these kinetic parameters have been adopted in routine.
Mathematical modeling might help better characterize the accurate equation of tumor marker
decline curve. Moreover it might contribute to discriminate patients with favorable or

unfavorable decrease profiles, to predict risk of relapse and thereby to adjust treatment early.

« Savoir pour prévoir, afin de pouvoir »
« Knowledge to foresee in order to be able»

Auguste Comte, French philosopher (1798-1857)
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Abstract

Objectives: A population kinetic approach based on PSA clearance (CLps4) may be a more rational strategy to characterize prostate-specific
antigen (PSA) decrease profile after prostate surgery than the commenly used method (half-life from mono/bi-exponential models).
Methods: We used 182 post-adenomectomy PSA concentrations from 56 benign prostatic hyperplasia patients to build, with NONMEM

software, a multi-exponential and a CLpgs model for comparison.

Results: The best multi-exponential model was PSA(1)=4.96¢ *2**+3.10¢ "1 +0.746¢" """ with a stable median residual PSA at 0.64 ng/
mL. The best model parametrized with clearance was CLpsa =0.0229*% (AGE/69)* ™. Akaike information criteria and standard errors favored the
CLpsa model. Median peripheral zone and transitional zone productions were 0.034 ng/mL/cm’ and 0.136 ng/mL/g. A threshold at 2 ng/mL on day

90 allowed for a diagnostic of biochemical relapse diagnostic.

Conclusions: The population CLpga model was superior to the multi-exponential approach for investigating individual post-adenomectomy

PSA decreascs.

© 2008 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

Keywords: Prostate-specific antigen; Prostatic hyperplasia; Kinetics; Metabolite clearance rate; Prostatectomy; Biomarker

Introduction

Since the Stamey report in 1987 suggesting the usefulness
of prostate-specific antigen (PSA) as a biomarker of prostate
diseases [1], the value of PSA as a surrogate marker remains in
question [2,3]. Recently, many authors focused on the value of

* Corresponding author. Service d’oncologie médicale, Centre Hospitalier
Lyon Sud, Chemin du Grand Revoyet, 69495 PIERRE-BENITE, France. Fax:
+33 4 78 86 43 56.

E-mail address: benoit.you@chu-lyon.fr (B. You).

PSA kinetic parameters to characterize PSA dynamics, such as
PSA doubling time and PSA velocity for PSA increase [3—5], or
PSA half-life (HL) for PSA decrease [6—8]. However, questions
remain about the optimal method for investigating PSA kinetics,
in particular PSA decrease after surgery for benign prostatic
hyperplasia (BPH) or prostate cancer. Indeed, most reports
have involved graphical determination of PSA HL [6,9-12] or
even mono or bi-exponential models for the most sophisti-
cated studies [6.8—15]. Even if it is not mentioned, the concept
of the HL determination relies on the linearization of a mono-
exponential model. For instance, the commonly used mono-

0009-9120/8 - see front matter © 2008 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

doi: 10.1016/j.clinbiochem.2008.04.001
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exponential equationis PSA(H) = Ae "~ where HL equals LaZ/a.
These analyses are limited by the unknown influence of the
number and timepoints of PSA sampling on the calculated HL
(often 3 or 4 per patient) and the bias ansing from the sim-
plificaion of the bi-exponential model to the mono-ex ponential
model. In addition, these analyses take no account of the inter-
individual and intra-individual variability. These limitations
centainly alter the prognostic value of PSA kinetic parameters
investigated with such appraches.

For this reason, we propose a new method for characterizing
PSA decline after prostate surgery based on a population
kinetic model involving apparent PSA clearance (Clpg, ). The
population kinetic approach, commonly used in pharmacology,
compensates the paucity of individual kinetic information,
such as the sparseness of individual PSA samples, by the large
number of patients with kinetic measurements [16]. In ad-
dition, it extracts population kinetic information with models
that separate inter and intra-individual variability. This kind of
analysis may involve the PSA clearance calculation, which is
the rate of elimination of PSA from the whole body using the
same modeling approach as applied for drug pharmacokinetics
[17].

We present here the results of a comparison of the two
strategies (multi-exponential models versus PSA clearance-
based models) for post-operative PSA kinetic analysis in BPH
patients freated by adenomectomy according to Millin surgery
method [18] (which consists of the removal of the prostate
transitional zone where BPH is usually developed [ 19]). Using
post-adenomectomy PSA concentrations, we performed a pop-
ulation PSA kinetic study to compare the two strategies and
determine the best one. The latter was used to determine the PSA
kinetic parameters, including half-lives, CLpgs ., prostate zones
productions, and hiochemical relapses.

Methodology
Patients and treatments

For inclusion in this retrospective study, patients were selected
who had undergone a prostate BPH removal with adenomectomy
according to the Millin method [19]. Moreover, a pathology
examination confirmed the histological diagnosis, and a mim-
mum of two serum PSA assays per patiemt in post-operative
follow-up was required. Exclusion criteria involved any therapy
susceptible to changing the PSA decline in the post-operative
period, such as hormonotherapy, radiotherapy —brachytherapy, or
chemotherapy.

Serum PSA was assayed at various times according to the
individual physician's usual practice. For each patient, all
available serum PSA measurements were collected. Although
the majority of PSA concentration assays were centralized and
performed at the Lyon Sud Hospital radio-analysis laboratory
(53% of all PSA assays), the rest, assayed after the post-
operative |0th day, were determined at the laboratory asso-
ciated with the respective doctor’s office. The Lyon Sud
Hospital radio-analysis laboratory uses the equimolar IRMA
KIT® {Immunotech-Beckman Coulter, France) whose lower

limit of guantification is 0.1 ng'mL. Inter and intra-assays
variations are below 6% in the range [2.01] to 44.5 ng/mL ] with
a CVof 20% at 0.14 ng/mL.

For each patient, clinical, biochemical, radiological, and
pathological variables were noted: age, weighi, blood cell
count, sodium, total protein, senum creatinine (Scr), ultrasound
(U/S) pre-operative prostate volume, U/S post-operative re-
sidual prostate volume, prostate resected tissue weight, and
incidental prostate cancer.

Madeling

The two major objectives of this study were to compare two
different modeling strategies (model parameterized with multi-
ple exponentials versus model parameterizéd with Clpgy) to
determine the better one and to validate the selected model with
visual and statistical predictive checks. Secondary objectives
were to characterize PSA decrease kinetics after adenomectomy
(PSA half-life (HLpga), Clpgs, prostate zones productions)
using the better model and to look for a PSA/time threshold for
biochemical relapse prediction.

Madels parameterized with multi-exponentials

In this siuation, PSA decrease was analyzed using a 1-, 2-,
or 3-exponential decline model. Moreover, because the pe-
ripheral zone (PZ) is not removed by surgery, a residual PSA
production exponential was added. For instance, in the case of
a 2-exponential decrease model, the equation was:

PSA{t) = PSA; * exp ™™ 4 PSAL * exp *¥"F 4 PSAy * exp™™
where:

- [PSA, *exp T4 PSA,*exp ~®2 ! is the bi-exponential
PSA decline model, and
- [PSA:*exp " 7] is the observed residual PSA production.

Thus, PSA;, PSA, PSA;; K1, K2, and K3 are all positive
parameters, but both K1 and K2 represent the decline rates of
PSA while K3 is the residual production rate of PSA observed
after the end of the decrease.

Models parameterized with apparent PSA clearance (Clpsy)

Clearance is a pharmacokinetic concept and represents
the body volume from which a drug has been totally cleared
by time unit [17]. In the present case, PSA is an endogenous
molecule with production and release processes that are phys-
iologically identified but guantitatively unknown. Because
PSA dose and process inputs are unknown, it is assumed to
be simply represented by a bolus of an arbitrary amount of |
given at the time of prostate surgery. The population kinetic
approach is applied to fit PSA decline according to 1-, 2-, or
3-compartment models and to investigate CLpg s, which is an
apparent clearance (see Appendix for more details). To describe
observed residual PSA production arising from a persistent
peripheral zone, we assumed a constant rate production pa-
rameter (R).
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Table 1

Included patient characteristics

Contlin uous ©ovarnates Median I8t guarti ke 3rd quartile Range

Age (vears) (3.0 LER 740 50.0-%2.0
Patient's weight (kg) T80 Tin7 B 54.0- 17040
Serum creatmine | pmolL ) B7.5 EL.O 962 6.0 150
Creatmmne clearance (mL ‘min) ®.6 #7179 910 37.0-1312
Serum total protein (g/L) 62,0 35,0 66,7 31.0-1430
Hemoglobin (g/dL) 127 116 139 B2-153
White blood cell count {Giga/L) 7700 Ll U700 ATH0.0- 13170,0
Platelet count (Gigal ) 199.5 166.7 2507 101.0- 863
Prostate resected tssue weight (g) 740 4.0 1050 14.0- 2200
Pre-operative LS prostate volume em’) 1B5.0 83.0 13005 40.0- 2540
Post-operanve LV'S prosate mesidue {em®*) 1935 162 26.7 1LD-39.0

Incidental prostate cancer: Yes n =456 (7.14%), No n =32/356 (92.8%),

Computing process

In a first step, the NONMEM program® (NON linear Mixed
Effect Model, University of San Francisco, Califormia, USA)
version V compiled with Digital Visual Fortran 5.0 was used to
malyze concentration-time data with first order (FO) and first
order conditional event interaction (FOCEI) methods. This
program allows simultaneous estimation of fixed effecis
parameters (PSA |, PSA,, PSA; K1, K2, and K3 pammeters in
the first strategy or Clpsa, central compartment volume (V1),
inter-compartmental transfer rates (K12, K21), and R in the
second strategy) and random effects (inter-individual as well as
intra-individual residual variability arising from assay errors and
model misspecifications) [20]. An extensive graphical analysis
of predicted versus observed concentrations was performed to

test the value of each model. The search was also guided by
looking at the differences between the objective functions (OF)
given by NONMEM. The NONMEM OF is an approximation of
twice the logarithm of the likelihood When a model can be
reduced to a simpler one by fixing some parameters to a given
value (e.g., 0), the difference between the 2 NONMEM OF is
approximately distributed according to a ¥~ with # degrees of
treedom, n being equal to the number of fixed parameters. In
addition, the hypotheses of independence or dependence of
parameter inter-individual variability were investigated.

In a second step, the main individual covariates collected
(patient age, weight blood cell counts, sodium, total protein,
serum, creatinine clearance calculated according to the Cockrofi-
Gault formula, U/S pre-operative prostate volume, U/S post-
operative residual prostate volume, prostate tissue resected

Multi-exponential model
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Table 2
Parameter values of the bi-exponential model

Pormme ter Median valie L5t guanile 3rd quartile 1 95% Y (%) SE (%)
PSA, 7.58 2.95 wER 15.56-9.60] 63.0% K2 0%
PSAL 3.25 plea 468 [2.72-3.78) 63.00% B7.0%
PSA, (L6d 0,46 1.1 |0.40-0,88) BR .60 1R2%
Kl 022 0,15 .50 [0,12-0.32) 97.0% 11L0%
K2 .16 .16 016 [0,16-0.16) ND 44 5%,
K3 0.0002 2.088*10°% 2.080% 107 [0z ex Y 0% 71.7%

ITY and SE are the coefficient of vanaton of muer-mdividual vanability and standard errors, respectively, ND: Not determined by the model.

weight, and incidental prostate cancer) were fested to estimate
their impact on PSA kinetic parameters. When a covariate
demonstrated significant relationships with any kinetic para-
meters, it was infroduced into the model describing the fixed
effects by forward inclusion. The covariate was kept in the model
only if the decrease in the NONMEM OF was at least greater than
7, comresponding to a pominal p value=0.01.

For instance, the influence of the “age™ covariate on Clpgy
was tested with the equation:

Clesa = O1° (age/age,.4)" *exp(nl)
where:

- age is the patient age and age,.  is the median age of all
patients among the cohort;

- £ and O12 are the fixed-effect parameters; and

- vl is the random-effect parameter.

This equation gives an gasy parameter interpretation because
01 1s the clearance of a patient whose age equals the age,.;
Afterwards, a stepwise backward elimination procedure was

performed to keep in the model only the significant covariates,
producing an OF decrease of at least 11, comesponding to a
<0001

Modeling strategy comparison

Once the best model had been defined for each strategy, the
models were compared to each other. To achieve this aim,
several criteria were assessed and compared:

= Akaike Information Criterion (AIC), which is calculated by
the following eguation: AIC=2*P-2 log (likelihood)
where P is the number of parameters.

» Coefficient of varation (CV) of standard errors of all

parameters.
Maodel validation
The best model should be validated in terms of its ability to

predict correctly PSA distribution values [21.22]. For this, we
simulated 500 PSA decline profiles using the final parameters

Table 3

Steps of the NONMEM analysis

Model type OF -AOF Statistical p = 0l for Clys, (SD) 2 for V1 (SD) o3 for R (SD) E (SD)

Bagic: model CLpgy =0]

FO diag. matrix 298 s 054 4E-R 02

FOXCE] Diag. matrix 221 5.BE-13 0.2 (43 e

FOCE] Block matrix n 0.43 (65:6%) D685 (K2, 7%)  (L6RO(BZ.4%) 0.019(13.78%)

Clemvariate festing

Creatinine clearance COL imL/min) Clpgs = O1%CCL 806™ 220 1
Serum creatinin (pmobL) Clps, = 01%Sa87.5™ 220 1
Patient weight (PW) (kg) CLpga <EN*(PW/ 791 221 0
Age (years) CLpey =61 * (Ageien) ™ ok -13
Adenoma weight WGT (2) Clpga =01 S(WGTT3) 2 1
Prosiate cancer PC (yesno) Clpgy= 01 + O2*PC 20 1
Pre-operative prostate volume (VOL) fem®) 21 0
Clpga =B+ B38y0L

Posi-operative LS residue (RES) (cm’ ) CLpg, =€ +OI2*RES 219 2
Serum protein (PROT) (g/L) Clpsa =01 +OZ*PROT 2001
Sodium NA (2L ) CL gy =01 +O2*NA in e
Fimal mde |

FOCET , eovariate, block matrix Clpcy =001 * (Agers9) > 208

GEE BRELREE

z

.39 (62.4%) 0.668 ($1.7%) (L6346 (RD.4%) (.02 {14.14%)

(bjective funcion (OF ) changes ( AOF) with model types and with some patient covanste inclusion, Inter-individual (1 o 43} and residual variabilites (£) are
presented for mam maedels, FO: first onder; FOCEL first order cond iional event interaction; SD: standard deviation, diag. matnx: diagonal matrix (mdependent of the

1k block matrix (correlations berween the 1)) and NS: not significant,
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Fig. 2. PSA values versus time for four typical patients. The plots are the observed PSA, and the line represents the mode lzed PS A values determined with the Clyg,, model.

estimated from the best model. Two methods of gualification
were used [23.24]:

- Visual predictive check: observed PSA values were com-
pared o a 95% confidence interval (C1) of PSA from the 500
simulated replicates.

- Swatistical predictive check: distributions of PSA computed
from the simulated datasets were compared to the corre-
sponding observed PSA values for the prediction of the first
PSA before day 5 and the last PSA after day 90.

P8A production by the different prostate zones

PSA peripheral zone production

If surgery was complete, only the prostate PZ was expected to
remain. Therefore, the modelized residual PSA after the end of
the decrease represented the PSA arising from PZ production.
Indeed, when time tends toward infinity, PSA is modelized by
PSAse’ ** in the case of the multi-exponential mode! or by R
with the CLpg s model. In addition, because prostate residual
volume (cm’) afier surgery, as determined by U/S, had been
noted for each patient, it was possible to characterize individual
PZ production with:

Individual PSA PZ production ng /mL /em®
= (individnal mndelized residual PSA)
+ (individual U/S prostate residue)
PS4 wransition zone production
Adenomectomy was expectad to have removed all prostate
transition zones (TZ). The PSA difference between initial PSA at

time () (just betore surgery) and PSA residual value represented
the PSA linked to the TZ. In addition, because prostate resected

tissue weight had been noted, the PSA TZ production was
calculated by:

Individual PSA TZ produetion (ng/mL/g)
= (indhividual PSA difference)
+ (individual resected tissue weight ).

Results
Patients and follow-up

A total of 196 serum PSA values from 59 BPH patents
treated between November 2000 and December 2006 with
Millin prostate adenomectomy [19] were studied. Among these
59 patients, data from 56 patients could be fully analyzed The
median follow-up was 643 days (21.43 months). A total of 182
PSA assays were investigated with a median of 3 PSA values
per patient. These PSA levels were assayed at various times,

Table 4

PSA decrease kinetic parameters caleulited by the Clpg,-based model

Parameter Median Ist Ard c 1% SE (%)

value quartile  quartile 95% = (%)

Clhlpga 019 0.013 0029 (@12~ 62.4%  2148%
0.026]

Vi 0. 105 0D.o70 LRIRES [L744- B1.T%  26.85%
0,136]

Residual  (0.668 0,507 1.23 (398 80 4% 1748%

PSA 0,938
K12 0,320 ND ND ND ND 101.0%
K2i LH7T3 ND ND ND ND 90,61%

IV and SE are the coefficient of vadation of uver-individual variahility and
standard errors. espectively, ND: not determined by the model.
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from Day 0 (sargery day ) up to Day 1584 (52.8 months after the
surgery) with a median of day ¥.

Patient characteristics are presenied in Table |. Patient
median age was 69 years, and 50% patients were between 64
and 74. The median prostate resected tissue weight, correspond-
ing to the median adenoma weight, was 74 g with a large inter-
individual variability; 25% of patients had an adenoma weight
below 54 g and 25% over 105 g. The median U/S msidual
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prostate volume available for 30 patients (53.6%) was 19.5 cm”.
Because this value is very close to the mean literature value
(20 em” ). we decided to assign a PZ volume of 19.5 ent to the
24 patients for whom we did not have these data. A histological
diagnosis of a small prostate cancer was found in four patients,
but they all had negative surgical margins.

Modeling

Mulri-exponential model

The best multi-exponential model describing PSA decline after
adenomectomy was bi-exponential. Because the FO algorithm
produced biased estimates and predictions, model parameters
were estimated using FOCEL Moreover, 1- and 3-exponential
models were inappropriate. The inter-individual variability and
residual error models were log-normal. No covanate significantly
influenced model parameters. The only covariate that showed a
trend to reducing inter-individual vanability was age. However,
this improvement disappeared when inter-individual correlations
between parameters were considered. Therefore, no covariate was
incloded in the final model, which was

PSA(1) = 4,962 120% g 10" 1% 4 0, T46e 0002

Fig. | shows weighted residuals and individual weighted re-
siduals of the model. The correlation coefficient of individual
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Fig. 4. Smiistical predictive check. Three charts (left column) present distribution histograms of median, first quaitile, and third quartile simulated data for the
first part of the PSA decline curve (first PSA before doy 5) and 3 charts (nght column) for the last part of the curve (residusl PSA after day 90). C1 95%
limits of the modelized PSA distribution are presented with doned lines while black lines represent the corresponding obhserved PSA (NSIM. awmber of

sunulaions).
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Table §

Peripheral zone and ransitional mome PEA production sccordmg o the PSA dechme profile

Studied patients Concerned PSA prostate zone Median PSA production Unit Ist quarnle Ind quarsle
All patients Perip heral zone 0.034 iy milem” 0025 0.0%6
Transitional zone 0136 ngy'ml/g 0081 1,360
Patients with “shnormal™ PSA decline Perip herul zone 0.141 ng/ml/cm’ [IN11H 204
Transittonal zone 0,111 ng/mlg 0,085 (.280
Panents with normal PSA decline Perp heral zone 0.032 ngfml_.fcm* 0024 0,052
Transitional zone 0146 ng/ml/g 0075 0134

predicted PSA values versus observed PSA was 093, Morgover
93.5% of weighted residuals were between —2 and +2. The
parameter values and the CVs of inter-individual vanability and
of standard errors are presented irlTnhIeE.BﬂcmWrKJ
is close to zero, the third exponential term gl is close to
one, and so PSA;=0.746 represents the residual constant PSA
concentration which appeared to be guite stable with time
once the PSA decline had been achieved. Moreover, the HLpsa
decrease was inferred from the model with the eguation
(HL=1n2/K}. The HL of the quick first phase was 3.15 days
and of the second phase was 4.33 days.

The model parameterizing PSA clearance

The best model describing CLpgs was a 2-compartment
model with a log-normal emor model for inter-individual es-
timation and mixed-error model for residual variability. The
FOCE! algorithm gave the best unbiased estimates. Only the
covariate age significantly influenced the Clpsa. Indeed, the
inclusion of this variable induced an OF decrease of 13 (cor-
responding to p <0.001). As shown in Table 3, this gain was kept
when considering inter-individual comelations between para-
meiers. Therefore, the final equation was

Clpgy =0.0220% AGE.;’{‘.Q}"‘-?“

and an increase of | vear in age induced an increase 0f CLpgs of
0.015 units. The inclusion of age allowed reducing the CLpga,
V1, and R inter-individual vanability by 3.2%. 1%, and 2%,
respectively, but the residual vaniability was not modified. Fig. |
presents the weighted residuals and individual weighted
residuals of the final Clesa-based model. The correlation
coefficient of individual predicted PSA values versus observed
PSA was 0.98. As shown in Fig. 2 for four typical patients,
individual Bayesian modelized PSA values were very close to
observed valwes. In addition, 94% weighted residuals were
between —2 and 2. As shown in Table 4, the median CLpg, and
apparent centml compantment volume as well as residual PSA
were 0.019 (95% CT= [0.012-0.026]), 0. 105 (95% C1=[0.74-
0.136]), and 0.668 ng/mL (95% C1=[0398-0.938]), respec-
tively. Moreover, the coefticients of variation of standard errors
were between | 7% and 27% for these parameters.

Comparison of the modeling strategies
Number of estimated parameters and Akaike criteria

In the multi-exponential model, atotal of six parameters were
investigated (PSA,, PSA,, PSA,, K1, K2, and K3), and the OF

was 249. Thus, AIC was 2*6+249=161. Because five
parameters were fitted in the CLpgs-based model (Clpga, V1,
K12, K21, and B) and OF was 208, the AIC was 2%*5+
208=228. The smaller AIC for the clearance-based model
compared to the nulti-exponential model suggested use of the
former strategy.

CVof standard ervors linked to model misspécifications

In the multi-exponential model, the CVs of standard errors
due to model inaccuracies were 282%., 879, 18.2%, 111%,
49.5%, and 71.7% for PSAs 1 to 3 and K1 to K3, respectively.
In the Clpga-based model, the CVs of standard errors were
21.48%, 26.85%, 17.48%, 101%, and 9%0.61% for Claga, V1,
R. K12, and K21, respectively.

Therefore, all comparison criteria, including AIC, standasd
errors, and goodness-of-fit-plots, showed the superiority of the
CLpg 4 model for description of the PSA decrease kinetic profile.

Mode! validation

A total of 500 simulations of a PSA decrease profile were
completed using the population parameters of the CLpgs model.
Fig. 3 presents the visual predictive check that compared the
85% 1 of sinulated PSA to observed PSA. A large majority of
observed PSA values were included in the 95% C1 simulated
PSA, suggesting the accuracy of the model. As explained in the
Methods, the statistical predictive check involved the prediction
of the first part (first PSA before day 5) and the last part of the
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PSA decline curve (residual PSA after day 90). Fig. 4 presents
histograms of median and first and third quartile simulated data
All lines corresponding to the corresponding observed data
were comprised in the 95% Cl of the simulated values. This
statistically significant predictive check confirms the accuracy
of the mode! for the prediction of the first and the last part of the
PSA decrease curve.

PS4 prostate zome production

The CLypgsy model was used to characterize prostate zone
production.

PSA peripheral zone production

Once PSA decline had been achieved, the residual PSA was
given by a model. This residual PSA (median: 0.668 ng/mL, CI
95%= [0.398—0938]) was assumed to be produced by the
prostate PZ. Thus, the median individual PZ production was
0.034 ngﬁnﬂcm! ( st quartile=10.025, 3rd quartile=0.096).

PS4 transitional zone production

The PSA change from initial value to residual value was
assumed tobe due to the TZ removal. This median PSA difference
was 9.55 ng/'mL (st quartile=6.76, 3rd quartile= 14.15). Thus,
the median PSA individual TZ production was 0.136 ng/ml/g
( Ist quartile=0.081, 3rd quartile =0.260).

Biochemical relapse concept

The modelized PSA decrease curves showed that PSA decline
was almost achieved on day 30 and that the day-90 PSA value
equaled the stable residual PSA value. Among the 56 studied
patients, 11 patients (19.64%) presented an abnomal PSA
decrease defined by a day-%0 observed PSA over 3 ng/'mL and/or
a PSA re-increase after day 90. Only two of them had a his-
tological diagnosis of prostate cancer. All but two patients pre-

senting an abnormal PSA decrease had a day-90 modelized PSA
over 2 ng/mL. On the other hand, if we exclude these 11 patients,
the remaining 45 patients had a modelized PSA <2 ng/mL on day
90, As shown in Table 5 and Fig 5, using Student’s ¢ tests,
the calculated PZ productions were statistically different in both
groups (0.141 vs 0032 ng/mL/em’, p=0.04) while the calculated
TZ productions were very close (0.111 vs 0. 146 ngmlLg, p=
0.20).

Discussion

For characterization of PSA kinetics after surgery, two
strategies have to be discussed and compared. The standard
strategy in reports until now involved the use of an amitary
determination of 3 to ¥ PSA per patient [6,7,10,14]. One or two
HLs, according the number of suspected phases in the decline
shape, are calculated for each patientusing semi-logarithmic paper
or a fomula such as [HL=Ln{2)*(T2 -T1)/(Ln(PSA;z)—Ln
(PSA, )] [1.25](Fig. 6). Thus, an HL can be determined for each
patient and a mean or a median calculated for the population.
Because this appmach presents the advantage of simplicity, any-
one can perform this kind of sudy. However, 1t is also the cause of
nany biases that lead to mistakes.

First of all, 3 or 8 points per patient, in the best studies, are not
enough to calculate with accuracy two kinetic parameters in the
case of a mono-exponential decrease (the decrease rate o and the
intercept PSA ) or four kinetic parameters for bi-exponential
models (decrease rates K 1 and K2 as well as intercepts PSA, and
PSA;) In addition, because the timing of PSA determnations
greatly influences the calculated HL and no one knows when PSA
should be sampled, different clinicians may choose different
timepoints, leading to different HL values (Fig. 6). Thus, the
caleulated kinetic parameter includes an unknown inaccuracy that
will be amplified by the number of patients for the mean pop-
ulation parameter determination. For this reason. no conclusion is
possible about the prognostic value of this kinetic parameter.

Poh, [#] Which PSA points shoutd be taken?
o 1o quarntify inter- and intra-indiidus)
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Fig. & Limits of the individual method based on mulli exponential decrease. According tothe imepoints of the PSA assavs used, the calculated HL g, difiers a great
deal. For exarnple. we note & large difference between the half-life HL, » based on point PSA and PSA; and the HL 3 4 based on PSA s and PSAL. Moeeover. inter and
mira+tdvidual varability are not quanified, leading o unknown inaccuracies, amplified at a populaton scale.
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The strategy we propose presents two advantages. First, the
population kinetic approach, which uses all available informa-
tion, compensates the paucity of individual kinetic information
with the large number of patients. This method uses models
calculating inter-and intra-individual variability that secondarily
allows for determination of the individual decline curve profile
as well as the individual covanates influencing the kinetic pa-
rameters. [t has demonstrated 1ts superionty over the individual
method in drug pharmacokinetic studies [26]. On the other hand,
adynamic process such as aclesrance-based model may be more
accurate because it may be less dependent on the timing of
assays and more informative because it integrates the entire
decline curve, rather than only a part, as described by an HL.

‘We had to compare the two strategies knowing that only a
population kinetic approach might allow the comparison because
only that method could determine the inter-individual variability
and standard errors. Both strategies were applicable for post-
adenomectomy PSA kinetic charactenization. The first approach,
hased on multi-exponential models. showed that the bi-ex-
ponential decrease model was the better of the two. In addition,
once the PSA decrease had been achieved, the PSA re-increase
coefficient (K3) was quite close to (), meaning that residual PSA
production linked to PZ production was stable over time. This
result is consistent with that of Marks etal., who investigated PSA
velocity up to 5 years after adenomectomy and found a post-
operative velocity of 0.01 ng/mL [27].

On the other hand, the second approach based on Clpg,
allowed investigation of the apparent clearance after adenomect-
omy. Note thatitwas impossible to give an exact estimation of the
PSA clearance because we did not know the amount of the bolus
of the assimilated PSA dmg (see Appendix for more details)
Thus, the CLpss value integrated both the PSA body elimination
and the prostate PSA production, which explained the increase of
CLpgs with patient age. The most accurate model, based on
CLpga, was the second srategy. Indeed, it was characterized by
smaller CVs of the standard errors and fewer model parameters,
and thus a smaller AIC. For this reason, we think that PSA kinetic
decrease analyses should now be investigaied with Clpg, mod-
els, as is commonly done for drug pharmacokinetics.

Surprisingly, PSA decrease kinetics after adenomectomy in
prostate adenoma patients has been poorly studied. Only three
groups have investigated PSA decline, reporting contradictory
results using mono-exponential models (HLpg, between (.55
and 10.34 days [6,7,28]). Because PSA decline has been ex-
tensively described according to bi-exponential models after
radical prostatectomy in prostate cancer patients [6,9-14], a
mono-exponential PSA decline curve after adenomectomy
would be very surprising.

The strategy we describe is not simply theoretical but may be
applied for useful and clinical parameter determinations. In the
case of prostate adenoma, it included the TZ PSA production,
which was close to data in the literature (between 0.096 and
0.31 ng/ml/g [27-32]). especially the largest study results on
190 patients whose PSA TZ production was (.122 ngmbL/g
[33]. The current study also involved the PSA PZ production
determination, which had been described only once in the
literature, by Recker et al., at 0.052 ng/mlL/g [32].

More interestingly, our approach allowed for determination
of long-term PSA kinetics so that we could hypothesize about a
PSA threshold for post-adenomectomy biochemical relapse. To
our knowledge, this concept has never been addressed in the
literature. Indeed, because the goal of surgery in BPH is to
address symptoms and does not involve patient survival, PSA
follow-up is rarely performed after surgery as a clinical routine,
However, | | patients in our cohort presented an abnormal PSA
decrease defined by a re-increasing PSA after dav 90 or/and high
residual PSA values after day 90. This kind of PSA kinetic
profile suggested that surgery was not optimal and left TZ cells
in the surgery field. A total of 82% of patients in the abnormal
PSA decrease group had a modelized day 90 PSA value over
2ng/mL. Conversely, all patients in the other group had achieved
their PSA decline at day 90 and presented a modelized day %0
PSA value under 2 ng/ml. Patients in the two groups had
significantly different PZ production. suggesting that an
additional PSA production increased PSA PZ residual value in
patients in the abnormal PSA decrease group. This additional
production may be the consequence of persistent transitional
cells in the prostate. Therefore, according to results with our
cohort, a threshold of 2 ng/mL on day 90 would be a good limit
to distinguish patients having had a complete surgery and those
experiencing a hiochemical relapse. Of course, this hypothesis
should be confimmed with prospective studies.

Our results have to be interpreted with caution. Indeed, it isa
non-randomized retrospective study on a small cohort. More-
over, despite the advantages of the population approach, we had
a limited number of PSA assays per patient, which increased the
mnter-individual variability, We did not assay free PSA decline
becanse this parameter was not collected in routine practice by
urologists. Another limitation is linked to PSA immunoassay
methods, which were certainly different between patients, es-
pecially for PSA assayed more than 10 days afier surgery.
However, the residual variability (Table 3) that includes the
intra-indi vidual variability is moderate ( 14.14% ). It suggests that
PSA concentration variations linked to the different methods of
assay may not have largely influenced our data and results. In the
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Fig. 7. The optimal specification for the PSA decrease model, Kp is the rate
constant of PSA release fiom prostate to serum; K12 and K21 are the PSA transfer
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contrary we should have observed a large intra-individual
residual variability. By taking advantage of the population model
approach, we could have taken it into account by considering
that each patient has his own residual variance. in other words
that the variance of residudl variability is prone to inter-in-
dividual variability. But this sophistication was not required. As
shown in Fig. |, weighted residuals were over 2 for a group of 9
PSA predictions in the CLpgs-based model. Because all these
points only involved patients having experienced a biochemical
relapse and concemed PSA sampled after day %0 for 8/9 points,
biochemical relapse prediction can be done with a threshold
fixed on day 90.

To conclude, the results of this study suggest that further
PSA decrease kinetic analysis after surgery should mtionally be
based on Clpg, because this approach is more accurate than
computing the HL decrease without a model, or even with the
multi-exponential models used previously. This strategy may
lead to improvement in PSA kinetic parameter characterization
for their diagnostic value as much as for their prognostic value.
The concept of biochemical relapse after adenomectomy should
be confirmed in further studies, but a PSA threshold of 2 ng'mL
on day 90 would be a rational value, according to our data.
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Appendix

To model the PSA decrease, it would have been ideal to build
a model as described in Fig. 7. The prostate compartment
releases PSA with a first-order rate constant Kp to the central
compartment. The latter is characterized by its volume V1 and
serum PSA concentrations Cpgs. Because PSA decline is gen-
erally fitted by a bi-compartmental model, an additional pe-
ripheral compartment is required to describe the PSA changes.
This compartment exchanges PSA with K12 and K21 transter
rate constants. The PSA is eliminated from the central com-
partment with a Ke first-order elimination rate. Thus, the central
compartment PSA concentmtion changes over time are de-
scribed by the equation:

dCps /dt—~(Kp* Al +K21*A3 — (Ke+K12J)A2)/V1
where:

- V1 is the central compartment volume;

- Al is the amount of PSA in the prostate;

- A2 is the amount of PSA in the central compartment; and
- A3 is the amount of PSA in the peripheral comparntment.

Yet, data are unavailable to identify the Kp rate value, the
beginning date of PSA release from prostate to serum, and the
PSA steady-state concentration. For these reasons, PSA produc-
tion can be assimilated into an intravenous bolus amitrarily set
at 1, with an unknown bioavailability Fthat is greater than 1.

In tlus case, the apparent volume of distribution and clearance
coresponding o CL/F=Ke V1 and VI/F can be determined,
where V1 and CL are the true unknown volume of distribution
and clearance.
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PURFOSES. Using population kinetic approach, we modeled PSA decline equations in
patients with prostate cancer after radical prostatectomy (RP). We looked for relationships
betweenearly PSA decrease profile, charactenzed by PSA clearance (CL g ) or half-life (HLpg s ),
and the 2-year biochemical relapse free survival (bRFS).

PATIENTS ANDMETHODS. We performed a retrospective study on 55 patients treated with
RP and with at least 2 PSA measurements in the post-operative month, A population kinetic
model was investigated with NONMEM™. The prognostic factors regarding bRFS were
assessed using univaniate and multivariate analyses.

RESULTS. The bestmodel describing the PSA post-operative decrease was bivompartmental
and fit patient data well. Median Clpss was (1034 (terales were (1,023 and {L.048). The significant
prognostic factors assoclated with a better bRFS with univariate analysis were lower Clpg,
terciles (2-year bBRFS = 100% vs. 85.1% ws. 66.7% if (Lpga <0.023, 0,023 < (L gy < 0.048 or
CLysa = (L0480, P =0.006) as well as initial PSA < 7ng/ml, p12 stage (vs. pT3), pNO (vs. pNT)
and low main Gleason score (3/5 vs. 4/5). Among these factors, Cl.pss was the only
independent prognostic factor with multivariate analysis regarding bRFS (HR =042,
95%C1 = [(.86-0.98], P = 0.0088).

CONCLUSION, CLgs s determined with 4 PSA concentrations in the first month following the
RP may predict the biochemical relapse rsk of prostate cancer patients, thus enabling early
identification of high-risk patients requiring adjuvant treatment. A prospective validation of

these results is required. Prostate 69; 1325-1333, 2009, @ 2008 Wiley-Liss, Inc.
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betweon day 5 and 30 after surgery (days); bRFS, biochemical relapse
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INTRODUCTION PATIENTS AND METHODS
Patients with localized prostate cancers are com- Patients

monly treated with radical prostatectomy (RP), which
leads to a decrease in concentration of prostate specific
antigen (PSA) to undetectable levels if surgery was
complete [1]. Among these patients, 20-30% will
experience a biochemical relapse, defined as a residual
PSA value over (0.2-04 ng/ml and re-increase after
surgery [2,3]. Of patients with a biochemical relapse,
30% will develop distant metastasis [4,5]. Although
adjuvant prostate field external beam radiotherapy can
reduce biochemical and locoregional relapse risk by
22% in patients with high risk prostate cancer [6], no
clear prognostic factors have been identified so far that
can distinguish patients requiring an adjuvant treat-
ment and those requiring a simple follow-up.

One common assumption is that the post-operative
PSA profile, as a result of persistence of residual
tumor, likely correlates with relapse risk. Yet, methods
commonly used to investigate the decline of PSA after
surgery (half-life (HL) determined from mono/bi-
exponential models) are prone to biases and inaccur-
acies [7]. In order to investigate individual PSA kinetic
after RP, we propose to use modeling and population
pharmacokinetic (PK) principles. They are commonly
used in PK studies investigating serum drug concen-
tration decline after administration [8]. Assimilating
tumor marker decrease toa drug administered with an
intravenous bolus, it is possible to model the individual
tumor marker decline equation and to characterize it
with a simple kinetic parameter such as the apparent
elimination clearance. We successfully applied this
method for PSA decline analysis in patients with
prostate adenoma after adenomectomy. This approach
allowed a dynamic investigation, independent om
selected time points, of the whole post-operative PSA
decline curve, and an estimation of inter/intra<indi-
vidual variability [7].

To further assess the relationship between PSA
clearance (CLpsa) and relapse risk, we performed a
retrospective exploratory study investigating post-
radical prostatectomy PSA decline in patients with
prostate cancer. The main objective was to assess the
feasibility of PSA decrease modeling after RI' using a
population kinetic approach parameterized in Clyps,.
Moreover this study aimed at performing a survival
analysis to determine if the post-operative PSA decline
profile, especially PSA half-life (HLpsa) and /or CLpsa,
could have a prognostic value on the 2-year biochem-
ical relapse free survival (BRFS).

The Prostate

We retrospectively reviewed data of all patients
treated with a RP for prostate cancer in the urology
department of Centre Hospitalier Lyon-5ud (France)
between February 2004 and March 2006. To be included
in this retrospective analysis, patients should have been
treated with a RP for a prostate adenocarcinoma, and
have had a minimum of 2 PSA assays in the post-
pperative first month period. The starting date of PSA
monitoring was considered to be the surgery day.
No time limit was fixed for patient PSA follow-up.
Patients were excluded if they received any adjuvant
treatment that could potentially modify PSA kinetics,
including hormone therapy, chemotherapy, brachy-
therapy, or external beam radiotherapy. Moreover if
such a treatment was begun in the follow-up of an
included patient, the PSA assays collected after start of
the above-mentioned treatments were not induded in
our analysis.

In addition to PSA assays, the following data were
collected: age, weight, serum creatinine, total protein,
sodium, blood cell count, prostate weight without
seminal vesicles, tumor volume, surgical margins,
PTNM stage, and Gleason score. PSA concentrations
were measured in Centre Hospitalier Lyon-5ud radio-
immuno-laboratory during the early post-operative
period (until 10 days after RF) and in the patient's
analysis laboratory afterwards. The Centre Hospitalier
Lyon-5ud radio-analysis laboratory uses the equimolar
PSA IRMA KIT®, which has a lower limit of quantifi-
cation of (.1ng /ml. Inter- and intra-assays variations
are below 6% in the range of 2.01 to 445 ng/ml, witha
coefficient of variation (CV) of 20% at (.14 ng /ml.

PSA Kinetic Analysis

Since the final aim of the study was to develop a
useful routine tool for physicians, HLpsa and Clpsa
models were built with PSA assayed between day 0
(D) and day 30 (D30) after surgery. Indeed, prediction
of the relapse risk in the month following surgery
would provide enough time to plan a post-operative
adjuvant treatment (hormonotherapy and /or external
beam radiotherapy).

Apparent PSA Clearance (Clesa)

Assimilating PSA decline to a drug given with an
intravenous bolus, we parameterized apparent PSA
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elimination in term of apparent clearance (CLpsa).
Notice that determination of true PSA clearance 1s not
feasible because we do not know the production
endogenous rate of PSA. Thus, the apparent CLpsy is
a parameter that mixes both the PSA body elimination
and the prostate PSA production [7].

The analysis was performed using nonlinear mixed-
effects modeling strategy as implemented in NON-
MEM (Version 6, University of California, San Fran-
cisco, California, Unix Operating System) to estimate
the population parameters (mean and inter-subject
variability), the residual variability and to identify
potential covariates to explain inter-subject variability
in the parameters [9]. A series of linear PK models were
evaluated including 1-, 2-, and 3-compartment models
for disposition with zero order absorption. Data
analysis was performed using the first order condi-
tional estimation method with interaction computa-
tonal method (FOCE INTERACTION). Inter-subject
variability in the PK parameters was modeled using
exponential random effects (i.e, PK parameters are
assumed to be log-normal distributed ). Comparison of
two nested models was based on the minimum value of
the objective function (OF), agreement between pre-
dicted and observed concentrations, the magnitude of
randomness of residual values as assessed by visual
inspection, and the predsion of the parameter estimates.

In a second step, the main individual covariates
collected (age, weight, serum eatinine, creatinine
clearance caloulated with Cockroft and Gault formula,
total protein, prostate weight, tumor volume, surgical
margins, pTNM staging, Gleason score, biochemical
relapse) were tested to estimate their impact on PSA
kinetic parameters, for reducing unexplained inter-
individual wvariability. Analysis of covariates was
guided by visual inspection for potential relationships
between inter-individual variability and the subject
factor. When a covariate demonstrated significant
relationships with any kinetic parameters, it was
introduced into the model describing the fixed effects
by forward indusion. The covariate was kept in the
model only if a significant decrease in the NONMEM
OF was obtained {(decrease > 7, P < 0.01). For instance,
influence of age covariate on Clpsy, was tested by
implementation: CLpsa = (@1 x (patient age/cohort
median age) °* x exp (n1) where:

- 8] and ©2 are the fixed effect parameters of Clpg,
and age covariates influencing Clps,,

=l is the random effect parameters expressing
inter-individual variability with 0 mean and w”
variance.

The modeling methodology has been described in
detail elsewhere [7].
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PSA Half-Lives (HLpsa)

No clear recommendations have been reported
regarding the time points to use for HLpss calculation
after RP. However most of authors calculated HLpss
using PSA values measured between D0 and D10 [10-
13]. In the largest study involving 77 patients, May et al.
determined two half-lives, between X and D5 and
between D5 and D10 [13]. Considering patient post-
operative PSA decline curves, which presented bi-
exponential inflexion around day five, we decided to
calculate three HLpsa per patient using the following
formula: [HL:l_ansbpeL where Ln is the natural
logarithm [13-15]. The first PSA half-life, HL 1 (0-30),
was calculated between DO and D30 and was connected
to the overall PSA decrease, while the second,
HLjg 4 (5-30), was determined between D5 and D30
and reflected the terminal HL. Finally we calculated
HLpsa(5-10) becauseits prognostic value was reported
by May et al [13]):

= HLpsap-am =Lnf2) = 30-0)/(Ln(PSA )~ Ln
(PSApan))

— HLpsaE—30 =Ln(2) x (30-5)/(Ln{ PSAps)—Ln
(PSA R

— HLpga@_im=Ln{2) = (10-5)/(Ln{PSA ) - Ln
(PSApa))

where PS.AD(" PS.A.]JEI PSAEB“' and PSAD@‘] are mod-
eled PSA on D0, D5, D10, and D30 after surgery.

CLpsa Model Internal Validation

The PSA kinetic model was validated by a predictive
check consisting of simulation of 500 PSA dedine
profiles using the final model parameters [16,17]. Two
methods of qualification were used in the validation:

- Visual predictive check: observed PSA values were
compared to 95% confidence interval (95%C1) of the
500 simulated replicates.

— Statistical predictive check: distributions of a PSA
statistics computed from the simulated dataset
were compared to the corresponding PSA observed
statistics. These statistics mvolved prediction of two
parts of PSA dedine curve, including the initial
portion defined as first PSA before day 5, as well as
the curve slope (calculated with: slope = first
PSA—last PSA /change in time). Distribution histo-
grams of the lower gquartiles, medians, and upper
quartiles of simulated values were drawn with their
95%C1. The model was considered able to properly
predict decline curve if all corresponding observed
values were included in the 95%C] of simulated
values.
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Statistical Survival Analysis

Biochemical and clinical follow-up were imple-
mented according to surgeon habit. The bRFS was
calculated as the ime elapsed between the surgery day
(DD) and the day of the first event, such as the patient
death or the dinical/ biochemical relapse. Biochemical
relapse was defined as a post-operative PSA larger than
04 ng/ml [3].

Since half the biochemical relapses are observed in
the first 2 years after surgery, and as these relapses are
associated with the highest risk of distant metastasis
[13], our survival analysis included the 2-year bRFS.
The following potential prognostic factors were inves-
tigated by univariate analysis using a log-rank test:
patient age, Gleason scores, pTNM stage, prostate
weight, tumor volume, initial PSA, HLpsag—a
HLF‘SA{E—H’I}!- HLPﬁA[E—I"P and CLPS\A iI'I.fEl'l"Ed f*mm t}'ﬂ
maodel.

As log-rank test requires categorical data, all con-
tinuous covariates weresplitinto two groups according
to the median, except for Cle<s, which was split into
terdles to take into account the continuity of the
prognostic value of the variablein the survival analysis.

To test the independence of prognostic factors, those
found with univariate analysis (P < 0.05) were ncluded
in a multivariate analysis using a Cox model according
to a backward elimination procedure. The results of
Cox model were confirmed using a bootstrap. Hence,
covariate hazard ratios were calculated in 1000
repeated random resampling of the original dataset.
All tests were performed using the S-PLUS® program
with a two-sided 0.05 x risk.

Optimal Sampling Strategy

If a PSA kinetic parameter had a prognostic valie on
the 2-year bRFS5, a prospective study should confirm its
predictive value. To achieve such an aim, we deter-
mined the sampling times required to reach the best
estimation of the concerned parameter.

We used the WinPopt™ program that sought the
sampling protocol (number of samples and sample
times), which maximized the accuracy of the popula-
tion model parameters estimation [18]. The optimal
number of samples was first determined by assessing
various protocols, induding testing bebween 1 and
5 samples over the post-operative first month. We also
examined the maximum criteria given by the Exchange
Algorithm program and the minimum CV for estima-
tion of the fixed parameters, random parameters
and residual variability. Once the optimal number of
samples was determined, the program identified the
optimal sampling times with the simulated annealing
method.

The Prostate

RESULTS
Patients and Follow-up

Data of 55 patients treated with RP between
February 2004 and March 2006 and with a minimum
of 2 PSA values between D0 and D30 were available.
A total of 162 PSA concentrations were measured
at various times between DO and D673 (more than
224 months after the surgery) with a median of 3 PSA
measurements per patient. The median follow-up was
780 days. The characteristics of the included patients
are presented in Table L

Modeling

The best model describing PSA decrease after RP
was a bi-compartmental one. The FOCEI method was
used to estimate inter-individual variabilities for Clpe s
and V1 with lognormal distribution and residual
distribution with mixed models, respectively.

All covariates susceptible toinfluence the PSA profile
were tested. None of them significantly decreased
unexplained inter-individual variability except for
biochemical relapse (yes/no) which deaeased un-
explained inter-individual variability of Clpss by
10%. Yet it was not kept in the model since one of the
study aims was to test the value of CLpsa as a predictor
ofrelapse.

The CV of inter-individual varabilities of CLpg, and
V1 were 106.3 and 77.0 %, respectively, whereas the CV
of the residual variability was estimated at 3.5 %.
Addition of a block matrix for the random effect
parameters reduced unexplained inter-individual var-
iability of CLpsa and V1 by 3 and 5% respectively.
Modeled median Clpsa was (L03 and Clpsa terciles
were (1.023 and 0.048. Figure | presents the final model
results including weighted residuals versus observed
PSA values. It also shows individual predicted versus
observed PSA values for all patients as well as for three
typical patients, including one who experienced a
biochemical relapse 6 months after surgery (patient 18).
Table Il presents the results of post hoc fixed param-
eters with inter-individual variability, standard errors,
and residual variability.

Half-Lives Calculation

We used PSA on day 0, day 5, day 10, and day 30
derived from the model to EB[G.IlEtE HLp_qu',_]n'
HLpsas_am, and HLpsas_yn for all patients. Results
are shown in Table [L

Internal Model Validation

A total of 500 PSA decline profiles were simulated
using the population parameters of the CLpg, model.
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TABLE |. Patient Characteristics

Covariabe Median Q5% Q75% Range
Age (years) 61.7 57.4 b6 40.8-736
Patient Weighl ﬂig] 82.0 710 Q0.0 57.0-112.0
Serum creatimine {(pmaol/ L) 9340 83.0 1010 A2.0-136.0
Creatinine clearance (ml/min) 836 6Y.8 939 . 9-187
Prostate weight (g) 340 28.0 486 16.8-84.0
Tumaor volume (cc) 23 ] X1 0.1-2010
Gleason score 7.0 7.0 B B.=v0
Number of patients Percentage

Binchemical relapse

Yes 8 14.5%

No 47 B5.4%
Positive surgical margins

Yes 24 43%

No 31 57%
Involved lymph nodes

Yes (N1) 8 14.5%

No (NO) 47 B5.4%
Pathology tumor stage

pT2 31 56.3%

pT3 24 43.6%
Gleason score

3+3 9 16.3%

3+4 20 36.3%

443 1 20.0%

444 12.7%

4+5 8 14.5%

(25% = first quarhle, Q75% = fourth quartile

Figure 2 presents the visual predictive check, which
compared 95%Clbounds of simulated PSA to observed
PSA. A large majority (96 %) of the observed PSA were
included in the 95%C1 simulated PSA, supporting the
accuracy of the model.

Regarding the statistical predicive check, all
observed PSA values were comprised in the 95%C1
bounds of simulated values. This statistical predictive
check confirmed the ability of the model to predict
the first portion of the PSA decline curve as well as
its decrease slope.

Survival Analysis

All patients were included in the 2-year bRFS
analysis, and all were alive as of February 2009, date
of the last update. Eight patients (14.5%) experienced a
biochemical relapse aftera median me 0f 11.2 months.
All of these relapses were observed m the 2 years
following the surgical procedure. An additional treat-
ment with external beam radiotherapy and / or hormo-
notherapy was prescribed at biochemical relapse
diagnosis in 63% of the cases. Table LIl presents the
resulls of univariate analysis using the log-rank test.
The significant factors included pT stage, nodal

The Prostote

invasion, global Gleason score, major Gleason score,
modeled initial PSA, and Clpe, terciles (2-year
bRFS =100% vs. 85.1% vs 667% if Clpes > 0.048,
0023 <CLpss <0048, or Clees < 0.023 respectively,
P =0.006). Figure 3 presents the 2-year bRFS Kaplan-
Meier curves according to Clps, terdles. Note that
HLsazm, HLpsas-3m, or HLpsas—a), commonly
parameterized in the literature, did not present any
prognostic value in our analysis.

The covariates found to be statistically significant by
univariate analysis (Clysa, pT stage, nodal invasion,
and major Gleason score) were induded in a Cox
multivariate model. Since CLx, and initial PSA were
correlated, only CLpsy, was kept in the multivariate
model.

Among all the potential prognostic factors; only the
CLpss covariate presented a significant independent
prognostic value. This Coxmodel prognostic value was
continuous and a 0.001 unit Clpssy mcrease was
associated with a 9% decrease in the relative risk
of biochemical relapse (hazard ratio=091, 95%Cl =
[0.86-0.98], P=0.0088). The bootstrap analysis con-
firmed the independent and statistically significant
prognostic value of Clysy with an observed HR =
09258, 95%C1 = [0-825-0.9980].
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Optimal Sampling Strategy

The 1-, 2-, or 3-sample strategies estimated Clpsa
with a larger CV than did the 4 sample protocol. A
5-sample strategy did not improve Clps, prediction,
as the WinPopt program proposed two identical ime
points. Thus, we chose the 4-sample protocol to
characterize patient post-operative PSA  decrease.
Using the simulating annealing method, we entered the
following initial sample times: DO (before surgery), D5,
D10, and D15 for a 50 patient cohort. The program
suggested 4 optimal PSA sample times collected on DX,
D2, D7, and D27,

DISCUSSION

Analysis of post-operative PSA kinetic parameters,
due to the potential for residual prostate cancer cells
after surgery, is not novel. Despite the advantage of its
simplicity, the approach based on PSA half-life and
commonly reported so far contains biases and inaccur-
acies. Authors used various individual PSA tGme-
points to calculate 1 or 2 individual HLpsa with the
following formula [HL =Ln(2) = {(T2-T1)/(Ln(P5A;) -
Ln(PSA))] and then determined a mean or a median
for population. This strategy was limited by the lack of
guantification of inter/intra-individual variability and

TABLE ll. Model Parameter Estimationsand CVof Inter-Individual Variabilities and Standard Error Due to Model Inaccuracies

Population Median 95%C] of post  Inter-individual Standard Residual
Parameter post hoc values  post hoe values  hoc values = variability error  variability
- 0.030 0034 [0.026-0.043] 106.3% 30.5% 3.5%
Appdrent central 129 0.142 [0.114-100.170] T70% 24.4%

compartment volume

Inigal PSA estimation (ng/ml) ND 706 [2a1-12.01] ND ND ND
HLpg a0 a0; (days) ND 390 [2.70-5.10] ND ND ND
HLpsam-_an) (days) ND 4.43 [3.21-565] ND ND ND
HLj= ai5-10) (days) ND 429 [344-512] ND ND ND

ND=Not Determined, Q25% = first quartile, Q75 % = fourth quartile;

The Prostote
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Fig- 2. Visual predictive check. PSA and log (PSA) versus time.
As shown, 96% observed PSA values are included in the bounds of
95%Cl of the simulated data ser.

the dependence of calculated HL on selected time-
points. Thus, the calculated kinetic parameter included
an unknown inaccuracy that was amplified by the
number of patients for the mean population parameter

determination, as shown by the large vanability of
reported results. Indeed, the latter have varied widely
in the seven main studies investigating PSA half-lives
according to bi-ex ential models, with values of
HL{x) ranging between 145 and 45.36 hoursand HL([H
between 5280 and 18288hours [1,10-13,19-23]. In
addition, several authors reported the prognostic
values of PSA kinetic parameters, but these results
were even more heterogeneous. Some found relation
ships between HLpc, or nadir and relapse risk after
RP [13,20,24-27], while others rejected the prognostic
value of the post-operative PSA kinetics [1328].
Consequently these PSA kinetic parameters are cur-
rently not used in routine.

In this study, we emploved modern tools such as
mathematic and computational modeling, already
implemented with success in clinical pharmacology,
to reconsider tumor biomarker kinetics along with
their prognostic value. We previously showed that
modeling of the individual post-operative PSA dedine
profile after prostate adenomectomy using a popula-
tion kinetic approach was superior to the common

TABLE . Univariate Analysis on the 2-¥ear bRFS.

Covariate Status n 2-year bBRFS(%) P-value
Age (years) <617 28 809 51
>0l7 27 B7 .6
Tumor velume (cc) <23 27 95.7 0050
=23 28 730
Prostate weight (g) <M5g 3 B4l 62
>M5g 25 831
Disease stage pT=2 31 95.0 0.005
pT'=3 24 706
Surgical marging Ri) 3 935 0053
R1 24 700
Nodal invasion N=0 47 B7.8 0.023
N=1 8 67.2
Major Gleason score (1-5) Gl=3 29 950 0.009
Gl=4 26 725
Global Gleason score (2-10) Gl<s? 40 90.3 0.01
Gl>8 15 66.7
HL psao-anldays) <390 27 B2.1 0349
=390 28 el
HL g5 a(days) <443 w E2.1 039
=443 28 865
HLpsa(5-10) (days) <429 27 7849 058
>4329 28 H8.6
[ =0.048 19 100 0.006
D0.023-0.048 18 B5.1
<0.023 18 B6.7
i <0.023 18 66.7 0.007
>0.023 37 92.7
Initial PSA (ng/ml) <7D 27 100 0.002
>7D 28 67.6

Significant prognostic factors are in bold

The Prostate
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half-life strategy. Indeed, our approach allowed the
calculation of a simple parameter (modeled clearance)
that characterizes the whole biomarker decline curve,
in contrast to the static half-life parameter that only
represents a part of the curve [7].

We demonstrated the ability to model the individual
PSA decline curve using this new approach. Interest-
ingly, in contrast to HLpss, Clygs was the only
independent prognostic factor on the 2-year bRFS and
was stronger than the other common prognostic
factors. A group with a high risk of relapse charac-
terized by a low Clpe, was identified (33% risk of
2-year biochemical relapse if CLpss < 0.023), and these
patients may benefit from adjuvant treatments such
as radiotherapy and/or hormonotherapy. The lower
observed Cly<, in patients with biochemical relapse
might reflect a persistent PSA production due o
residual prostate tissue after surgery and thus explain
the higher relapse risk.

If CLysa prognostic value would be prospectively
confirmed, it could easily be calculated by every
clinician in the first month of post-operative period
thereby allowing adequate time for planning adjuvant
treatments. Indeed PSA concentrations obtained at
appropriate times during this period could be entered
in a model-based software which would immediately
determine patient’s Clpss,.

These results should be analvzed with caution, as
this was a non-randomized study on a small number of
patients that included few relapses. A large proportion
of included patients had advanced prostate cancer
(43% positive margin rate, 15% positive lymph nodes)
with high risk of biochemical recurrence. Thus our
results may not apply for patients with lower risk
prostate cancer treated with RP such as pT1 tumors.
Although all relapses were observed in the first 2 years,
recurrences may be observed later in follow-up and
alter our results. Moreover, it was not possible to

The Prostate

investigate well-known prognostic factors, such as the
patient’s performance status or seminal vesicle inva-
sion. Determination of the PSA concentrations after
the 10th post-operative day were not centralized but
performed in different analysis laboratories, using
different immunoassay kits. However, the residual
variability that includes the intra-individual variability
is objectively small (3.5%), suggesting that PSA
concentration variations linked to the different assay
methods may not have largely influenced our data and
results.

On the basis of these results, it is impossible to
definitively assert the influence of Clps, on bRFS. A
prospective validation of these results is required.
However, this is the second study that suggests this
new approach offers a promising method to analyze
a biomarker dedine profile after/during treatment. A
prospective study using the optimal sampling strategy
is warranted to confirm the relevance of Clyss in the
treatment of localized prostate cancer after surgery.
Moreover, retrospective studies are currently being per-
formed to assess the value-modeled dearance of other
tumor biomarkers (hCG, CA-125, AFP, and others).
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Predictive Value of Modeled AUC ;5 ,cc; @
Dynamic Kinetic Parameter Characterizing
Serum Tumor Marker Decline in Patients
With Nonseminomatous Germ Cell Tumor

Benoit You, Ludivine Fronton, Helen Boyle, Jean-Pierre Droz, Pascal Girard,
Brigitte Tranchand, Benjamin Ribba, Michel Tod, Syilvie Chabaud, Henri Coquelin,
and Aude Fléchon

The early decline profile of alpha-fetoprotein (AFP) and human chorionic gonadotropin (hCG)
in patients with nonseminomatous germ cell tumors (NSGCT) treated with chemotherapy may
be related to the risk of relapse. We assessed the predictive values of areas under the curve of
hCG (AUC, ;) and AFP (AUC, 1) of modeled concentration—time equarions en progression-

Single-center retmospective analysis of hCG and AFP time-points from 65 parients with 1IGOCCG
intermediate-poor risk NSGCT treated with 4 cycles of bleomycin-etoposide-cisplatin (BEP), To
determine AUC, o and AUC, 5 for D0-D42, AUCs for D0-D7 were calculated using the
trapezoid rule and AUCSs for D7-1042 were calculated using the mathematic integrals of equations
modeled with NONMEM. Combining AUC, ;. and AUC, ., enabled us to define 2 predictive
groups: namely, patients with favorable and unfavorable AUC, ¢ o5, Survival analyses and
ROC curves assessed the predictive values of AUC . qp.50n groups regarding progression-free
survival (FFS) and compared them with those of half-life (HL) and time-to-normalization

Mono-exponential models best fit the patterns of marker decreases. Patients with a favorable
AUC, 1 hess had a sigaificantly betrer PFS (100% vs 71.5%, P = .014). ROC curves confirmed
the encouraging predictive accuracy of AUC 4¢p oo against HL or TTN regarding progression
risk (ROC AUCs = 79.6 ve 71.9 and 70.7 respectively). Because of the large number of patients
with missing data, multivariate analysis could not be performed.

QOBJECTIVE
free survival (PFS),
METHODS
(TTN).
RESULTS
CONCLUSION

AUC 4 rp o0 18 a dynamic parameter characterizing tumor marker decline in patients with NSGCT
during BEDP treatment. Its value as a promising predictive factor should be validared.  UROLOGY 76
413429, 2010. © 2010 Elsevier Inc.
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rative Group (1GCCCG) prognostic classification, is well
established.! However the relevance of kinetic analysis of
serum tumor marker decrease in NSGCT patients treated
with chemotherapy is less clear.” Most works that have
assessed the predictive value of NSGCT marker kinetics
have relied on hCG and/or AFP half-life (HL) caleula-
tions. The leading HL-based model, described by Murphy
et al,’ is based on HL,; andfor HL , ;. calculated be-
tween day 7 (D7; day 1 was the first day of chemother-
apy) and [42-56 (completion of the second eycle of
rreatment ), It was used by the Memorial Sloan-Kettering
Cancer Center (MSKCC) in 2 dose densification clinical
trials.”” Recently, Fizazi et al reported the independent
predictive value of marker time to normalization (TTN),
a kinetic parameter very similar o HL, on progression-
free survival (PES).” Yet these studies may be limited by
the methodology used to characterize serum tumor
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Table 1. Patient characteristics and available data*

Patient Characteristics According to IGCCCG Risk Grouping

Intermediate (n = 38) Poor (n = 2T}
% of % of
Covariates No. of Patients Patients No. of Patients Patients
Primary site
Testis + retroperitoneum 38 100 16 59.2
Mediastinum 0 a 11 a40.7
Visceral metastases other than lung 0 a 10 210
metastases
Lung metastasis 16 42.1 i5 555
LDH (ULN)
<15 a] 23.6 T 25.9
1.510 28 Ta.T 17 &2.3
=10 4] 0 a3 113
Missing” - | 28
AFP between day 7 and day O (AFP,.)
(I mL)
Available® 32 26
Abnormal 23 84.2 18 96.3
Median of sbnormal AFP,, 3659 719 1995.7 69.2
Range [12.1-6625.3] [42.166,777]
hCG between day 7 and day O (hCG,.) 3 26
(/L) available®
Abnormal 72 815 16 96.3
Median of asbnormal hCG 1002.5 70.9 137508 615
Range [20-24,296] [16.1-753.758]
Total number of available hCG time-
paints per patient
Median i3 12
Range [4-23] [2-30]
Total number of available AFP time-points
per patient
Median 14 12.5
Range [4-23] [68-2G]
Number of available hCG time-points per B [2-8] 5211}
patient between day 7 and day 42
Mumber of available AFP time-points per 5 [28] 51211}

patient between day 7 and day 42

Abbrevigtions: IGCCCG, International Genm Cell Cancer Collaborative Group; LDH, lactate dehydrogenase; ULN, upper limit of narmal; AFP,

alphafetoprotein: hCG. human chorionic gonadotropin.

* When hCG and AFP concentrations were unavailable in the week before the start of chemotherapy (19% and 4% patients in
intermediaterisk and poor-risk groups, respectively), serum tumor marker levels measured more than 1 week before beginning the BEP

regimen were used 10 classify patient into |CCCCG groups.

* Patient was classified into the intermediate risk group by his physician on the basis of LDH measured in the physician’s private office

|aboratorny.

T When not available, hCG and AFP measured more than 1 week before chemotherapy were used to classify patients into the IGCCCG

Eroup.

marker decreases, as suggested by the large heterogeneity
in the reported kinetic parameter results and their pre-
dictive values *®!!

We propose a population kinetic approach, relying on
modeling and pharmacokinetic principles, to assess individ-
ual serum tumor marker decreases dynamically in NSGCT
patients treated with chemotherapy. In previous works
invalving prostate-specific antiven (PSA) in patients
with prostate tumors treated with surgery' ™" and hCG
in patients with trophoblastic tumors treated with meth-
otrexate, ! we showed that this method was superior to
other traditional approaches. It combines all patient
time-points to model a population decline profile, guan-
tifies inter- and intraindividual variability, and then de-
termines the individual decline curve equations. Using

424

this method, it might possible w calculate individual
areas under the curve (AUCs) for hCG and AFP
(AUC, ; and AUC , ., respectively) for each patient.
We postulated that AUCs, which are independent of
selected marker time-points, would predict more accu-
rately the disease progression risk.

We performed a retrospective analysis of hCG andfor
AFP declines in patients with intermediate or poor risk
NSGCT who were treated with the standard 4 cycles of
bleomycin-etoposide-cisplatin (BEP), to assess the feasi-
bility of characterizing individual serum tumor marker
decrease profiles using AUC, o and AUC, . In addi-
tion, we performed survival and receiver operating char-
acteristic (ROC) curve analyses to assess the predictive
values of AUC ., and AUC, ., regarding 2-year PFS.

UROLOGY 76 (1), 1010
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Figure 1. Kaplan-Meier Curve of probability of progres-
sionfree survival (PFS) according to patient AUC, o
grouping (Favorable (Fav) vs Unfavorable (Unfav)).

PATIENTS AND METHODS

Patients

We reviewed data of all patients treated with 4 cycles of BEF for
IGCCCG intermediate- or poor-risk group NSGCT at the
Centre Léon Bérard of Lyon (France) after January 1997, To be
enralled in our retrospective study, patients were required o
have been treated for NSGCT with 4 cycles of BEP and to have
had a mnimum of 2 abnormal vters of either tumor markers
(hCG =5 IWmL andlor AFP >3 TU/L) between DO (fiest day
of cycle 1) and T2 {hrst day of cyele 3). No time limit was
fixed for the patient serum tumor marker follow-up. Concen-
trations of hCG and AFP were centrally determined. Imaging
assessments with computed tomography (CT) scans were per-
formed after 2 and 4 cycles of chemotherapy. Because there are
no recommendations regarding the optimal sampling strategy of
NSGCT tumor markers, times of sampling of AFP and hCG
were chosen at the treating physicians’ discretion. Measure-
ments were usually made every week.

Serum Tumor Marker Kinetic Analysis

Kinetic models were built using marker concentrations assayed
between the week before chemotherapy (assumed to be baseline
serum tumor marker concentration on DQ) and D42, Indeed,
determining progression risk during the first 2 courses of che-
motherapy would provide enough time to adapt treatment in
patierits with a high risk of failure.

Because 15%-41% paticnts treated with chemotherapy
present a transient surpe during first week of mearment,'>'® we
considered patient marker kinetic profiles mn 1 separate parts:
(1) marker kinetics during the first week were analyzed as a
straight line from DO o 137, and (2} the exponential decreases
between D7 and 142 were modeled.

Modeling of Marker Decline
Curves Between D7 and D42

Population mixed-effects modeling was applied to it hiCG and
AFP decline curves between D7 and 42 according o 1- or
2.compartment models. Thus, 2 t models were built,
I for hOG decrease and | for AFP decrease (See Appendix
online}. The analvsis was performed using NONMEM to esti-
mate the population parameters (mean and intersubject vari-
ability) and the residual variability using the hrst-order condi-
tional estimation method with interaction (FOCE interacrion ).

UROLOGY 76 (2), 2018

Furthermore, it was used to identify potential covariates to
explain meersubject vanability i the parameters:'” mediastinal
site of primary disease (yes/no), lung metastasis (yes/no), vis-
ceral metastasis other than lung metastases (ves/no), mitial
LDH wvalue, IGCCCG prognostic group (intermediate/poar),
and duration bevween first and second chemotherapy cycles.
The modeling methodology has been explained in detail else-
where."* When a covariate demonstrated a significant relation-
ship with any kinetic parameter, it was introduced into the
model descrihing the fixed effects by forward inclusion,

Caleculation of AUCs for hCG

and/or AFP (AUC 4 and AUC, c¢)

The total AUC between DO and D47 was the sum of the 2
subparts of the curve, as described helow.

1. AUC between DO and D7 was calculated using the trapezoid
rule (area = 0.5 ¥ base ¥ {H + h)}, where that hase is equal
ta 7 days, h is the observed serum tumor marker value on DO,
and H 15 the observed marker value an 7,

1. AUC berween D7 and D41 (AUC...) was derived by
calculating the mathematic integral of the patient-modeled
concentration-time curve equation. For example, o Clt) =
Ae " + Bsee ag 1), then AUC, ,, = (Afa) * A
e THeBx4 + (Ale) xAe TT-BxT

Model Internal Validation

We simulated 500 decline profiles for hCG and AFP using the
final parameters estimated from the corresponding best models,
To qualify these models, visunl and predictive checks were used
to compare the titers as well as the distribution of observed
hCG and AFTP to those of the corresponding simulated data-
set'® (See Appendix online).

Other Kinetic Parameters

Times to Normalization. TTN , o and TTN;, - as well as patient
prognostic groups (TTN 4epaeo: favomble vs unfavorable) were
calculated for every patient™® (See Appendix online).

Decrease in Half-Lives. Both HL ;. and HL,,; between D7
and 42 were calculated with the decline exponentials derived
from the models. As well, patients were classihed into 2 prog-
nostic groups (satisfactory or unsatisfactory HL 4 .0) accord-
ing to HL , . and HLy ., results® (See Appendix online}.

Statistical Analysis

The primary endpoint of the study was PES, calculated as the
time elapsed from DO to the fist event, such as the patient
death, clinical relapse, or date of last follow-up for patients whao
were alive and who did not experience relapse. Log-ranks tests
were used to assess the prognestic value of potential factors
reparding PFS, comprising items included in the 1GCCCG
prognosis score, duration between first and second chemaother-
apy eycles, transient serum tumor marker surge after stant of
chemotherapy, and marker kinetic parameters (TTN, rppoo
HL e i and ALH:AFE‘-I:.:G)' Because log-rank test requires
categorical data, the continuous covariates, such as AUC, .
and AUC, ., were split into 2 groups and 3 groups according
to the median and the tertiles, rﬁpe&';tively. Patients with a
higher serum tumor marker AUCs were expecred to have worse
outcomes. If a clear continuous predictive value was identified for
AUC, . tentiles, the predictive value of AUC,, ;7. was hinary and
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Table 2. Analysiz of kinetic parameters for alphafetoprotein (AFP) and human cherionic gonadotropin (hCG)

Parameter Median MNo. of Patients First Quartile Fourth Quartile
AUC, . (U d/L) 12396.3 38 4216.0 70424.2
AUC, o 5 4688.0 45 9g94.0 22720.0
AIC s s 7551.4 48 1086.2 20805.4
AUC . (IU d/mL) 117294 40 £34.3 41960.8
AUC i r 4840.6 42 449 2 20785.7
AUE rr-an 31931 A7 2849 213120
TN o 4.70 a7 3.28 5.22
TTN e (weeks] 6.64 41 4,61 12.26
H s 0 5.02 47 4 52 5.62
HL oo a0 (days) 0 45 271 2.85

Abbreviations: AUC, area under the curve; TTN, time to normalization; HL, halfife.

discriminated by median. Hence, I predictive groups were built for
combining AUC, .. and AUC, ., (AUC, ;1) favorable
AUC, g o for patients with AUC, ;. = median valse and
with AUC, . = upper tertile value; and unfavorable AUC 0
for patients with AUC , 3. > median valse and/cr with AUC, ., >
upper tertile value,

When patients had normal AFP or normal hOG, the AUC
value of the non-normal parameter determined the predictive
group. OF note, among 47 patients for whom both AFP and hCG
were available, 20 patients (42.5%) had normal riters for | marker,
whereas concentrations the other marker were elevated,

To test the independence of potential predictive facrors
considered together, we initially planned o perform a muli-
variate analysis with the predictive factars found to be signib-
cant by univariate analysis (" < ,1). However, because of the
retrospective study design, data for several covariates were miss-
ing, and only a small number of patients were assessable in the
Cox model (n = 34 patients without any missing data for all
covariates, including 5 progression events), Because the results
would not have been interpretable, we decided not to perform
this analysis.

All tests were performed using the S-PLUS propram with a
two-sided (.05 alpha risk. To assess accuracies of AUC , pp o
(unfavorable vs favorable risk group), HLy, o _opp (unsatisfac-
tory vs satistactory), and TTNy . app tunfavorable vs favar-
ahle) for predicting progression risk, we calculated ROC curves
using TANAGRA,

RESULTS

Patients and Follow-up

A total of 456AFP and 259 hCG values from 65 patients
who were treated with 4 cycles of BED between February
1997 and June 2008 were analyzed. Medians of 12 hCG
and 12 AFP values per patient were available at various
times, from 143 days before the start of treatment
(1.143) to 1875 days after the start of chemotherapy
(D1875). For serum tumor marker modeling, medians of
5 hCG and 5 AFP values per patient were available
between D7 and D42, The median follow.up was 939
days (equivalent to 2.6 years). Patient characteristics are
presented in Tahle 1.

Modeling AFP and hCG

Decreases Between D7 and D42
Mono-compartmental models with block matrix best de-
scribed AFP and hCO decreases between D7 and D42

426

For both markers, bi-compartmental models did not al-
low significant reduction of unexplained interindividual
variability of the kinetic parameter estimates. No indi-
vidual covariates were significant for influencing either
marker decline profile, The final popularion models were:
as follows: Capp.ra(t) = 381 X £ — 0,14 *t + 3.27 and
Chors 7t = 1230 X € — 0.25 * t + 122, where
Carp7420t) is the population-predicted AFP value at time t
(days) between D7 and 142 (IUfmL) and Cios 7.400t) s
the population-predicted hCG value at time t (days)
between D7 and D42 (IUJL).

Results of population parameter estimates, inteérindi-
vidual variability, standard ercors, and residual variability
are presented in Table 4 in the Appendix. Fipure | shows
time-plots of predicted hCG/AFP versus observed hCG/
AFP for 4 typical patients, including 2 patients who
experienced clinical relapse.

Calculating AUCAFP and
AUChCG Between DO and D42
Results for all kinetic parameters are shown in Table 1.

Internal Model Validation

Figure 2 in the Appendix shows the visual comparison of
the 95% Cls of simulated marker titers to the observed
ones. Regarding the statistical predictive checks, all ob-
served hCG and AFP values fell within the 95% confi-
dence interval bounds of the simulated values, confirm-
ing the model's ability to predict the first portion of the
NSGCT marker decline curve as well as its slope decrease
{data not shown).

Survival Analysis

All patients were included in the 2-vear PFS analysis.
Nine patientz {13.58%) experienced disease progression
after a median of 146 days (range, 84-1351 days) and 6
parients (9.2%) had died as of February 2009, No patients
experienced progression during the first 2 cycles of che-
motherapy.

Tahle ¥ presents the results of univariate analysis using
the log-rank test. Neither AUC, ., nor AUC, ., were
sienificantly predictive of progression when considered
alone. However, the combination factor AUC, & (o5
ifavorable vs unfavorable risk) was significantly predic-
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Table 3. Results of univariate analysis with log-rank test

Covariate
Primary site
Mediastinum vs
Testis + retroperitoneum
Lung metastasis
Monlung metastases

LOH {(*ULN)

Initial AFP values (ng/mL}

Initial hCG values (1U/L)

IGCCCG prognosis

Time interval between first and second BEP cycles
(days)

hCG surge in the first week

AFP surge in the first week

AUC, - tertiles
Median 12,207 (IU d/L)

AUC , - tertiles
Median 11.729.4 (IU d/mL)

AUC - tertiles
Median 11.729.4 {IU d/mL)
AUC s oo Prognostic groups

AUC, - = 18/178.4 and AUC,. = 11,729.4
AUC, e = 18,178 4 and/or AUC, > 11,7284
TTN e (weeks)
TTN e (weeks)
TTMaprnee Prognostic groups
HLpcg (days)
HL s (days)

HLapp nee Prognostic groups

No. of 2y
Status Patients PES (%) P Value
D007
Yes 11 485
Na 54 80.2
Yes a1 78.2 52
No 34 875
Yes 10 T78 aq2
Na 55 846
=15 16 100 31
1.510 45 86.0
=10 3 16D
<1000 23 813 24
1000-10 000 i8 81.2
=10,000 2 50.0
<5000 32 80.8 AT
5000-50,000 2 100
=50,000 6 62.5
Intermediate 38 94.3 006
Poar 27 67.0
=21 50 852 79
=21 15 TEEB
YES & ) 160 66
No 30 811
yEs 13 T5.0 .30
No 29 888
=8,669.7 14 823 A7
6,669.7-18.178.4 11 a0.9
>18178.4 13 67.7
=32,265.5 i3 100 .34
2.265.5-26,791.7 i3 839
=28,791.7 14 T4.3
=11,729.4 20 95.0 A5
=>11.729.4 20 T6.9
014
Favorable 19 100
Linfavorable e | 15
=3 28 Bo.1 A5
=3 10 871.5
=G 25 92.0 44
=6 17 T22
Favorahle 29 89.3 A3
Unfavorable 23 69.1
=3 43 85.2 .05
=3 2 50O
=7 43 80.8 29
=T 4 75.0
Satisfactory N 84.9 D7
Unsatisfactory a 66.7

Abbreviations: LDH, Iactate dehydrogenass; ULNM. upper limi of normal; AFP, slphafetoprotein; hOG, human choricnic gonadotroping
IGCCCG. Intermnational Germ Cell Cancer Collaborative Group; BEP, bleomycin-stoposide-cisplatin: AUC. area under the curve; TTM. time

to normalization; HL, halfHife.

tive in univariate analysis. The 2 vear PFS was 100% for
patients in the favorable risk proup against 71.5% for
those in the unfavorable risk group (P = 014; Fig. 1).
With a sensitivity of 100%, specificity of 45.2%, neg-
ative predictive value (NPV) of 100%, and ROC AUC
of 79.6, the predictive value of AUC 500 (unfavor-
able vs favorable risk ) for identifving patients at high risk
for progression looked encouraging against the other pre-
dicrive factors previously described. Indeed, HL spp i
ROC AUC {satisfactory vs unsatisfactory) was 71.9 {sen-
sitivity 88.9%, specificity 44.0%, NPV 95.6%) and

UROLOGY 76 (2), 2010

TTHN apphos ROC AUC (favorable vs unfavorable) was
70.2 (sensitivity 40.0%, specihcity 87.53%, NPV 90.3%)
(Fig. 3 in the online Appendix).

COMMENT

Analysis of NSGCT serum tumor marker kinetics during
chemotherapy as a reflection of tumor cell chemosensi-
tivity is not novel. The common HL and TTN ap-
proaches may present several limitations: (a) simplifica-
tion of complex hOG and AFP decline kinetics
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(including initial surges in 25% of patierits) by calculat-
ing the median decline slopes between 1 time-points
prone to high intra- and interindividual variabiliey>%'!
(b} high interstudy variability in the rime-points used to
assess NSGCT marker kinetics (D0 and D21 in Fizazi et
al,® D7 o D42-56 in Murphy et al,’ D7 and D56 in
Mazumdar et al,” D7 to another time-point before D90 in
Toner et al'®); (c) no assessment of inter- and intraindi-
vidual variability. The consequent heterogeneity of HL-
based results, alorig with their predictive values,” ™! may
be of concern when these kinetic parameters are used to
adapt treatment. The predictive value of hCG TTN
initially reported in 2004 was not confirmed in an inde-
pendent cohort of NSGCT.' In addition, a8 Scandina-
vian trial reported disappointing results of treatment in-
tensification in poor 1GCCCG risk patients presenting
with long marker HL.*®

The approach that we used, relying on mathematic
and computational modeling, allowed the dynamic char-
acterization of the individual marker decline profile, in-
dependently on selected time-points. Combining both
hCG and AFP AUCs enabled us to determine 2 potenrial
predictive groups. All patients within the AUC 450 500
favorable risk group (defined by low AUC. and low
AUC,) were progression-free at 1 years, whereas pa-
tients classified into the unfavorable AUC 4 ppgyo group
had a 28.5% risk of relapse at 2 years. Unfortunately, the
large number of missing dara for the different covariates,
owing to the retrospective study desien, did not allow us
to test the independence of each in a multivariate Cox
model. Indeed, a minimum of 4 time-points were required
to model the whole marker decrease between IO and
D42: baseline value, D7 value, and 2 values between D7
and 42, If either of the first 2 time-points was missing,
we could not assess the whole AUC, but we srill could
model the decline profile from D7 to D42, These require-
ments were not met for many patients because of the
absence of recommended NSGCT marker sampling strat-
epy, may explain the high number of missing data and
heterogeneity in table cohort sizes. Another study that
includes a larger number of patients is needed to confirm
this hypothesis. If the predictive value of AUC 4 400
were confirmed, this model could be used to identify
patients who might benehit from early treatment adapta-
tion. These results may have potential practical and
clinical applications. Indeed, hCG and AFP concentra-
tions obtained at appropriate times (D3, D7, D21, and
D42) could be entered into a model-based software ap-
plication that would immediately determine the patient's
AUC 4 pe o predictive group. ROC curve analyses in-
dicated that AUC. oo groupings (nonfavorable vs
favorable risk) might be predictive of outcome with both
high sensitivity and a high NPV,

Because this was a nonrandomized study of a selected
sroup of patients with IGCCCG intermediate-poor risk
NSGCT and abnormal titers of at least | serum tumor
marker and in which only 9 progression events occurred,
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the results should be interpreted with caution. The re-
sules: might not be applicable o other populations of
patients with NSGCT. In particular, the high propertion
of patients (17%) with mediastinum disease might be
linked to the reference center nature of Centre Léon
Bérard for treatment of NSGCT and to the study inclu-
sion critéria. Although orchiectomy, performed before
chemotherapy, might have also contributed in tumor
marker decline before the start of chemotherapy, its ef-
fect was not directly measured in our assessment. We
considered starting of hCG/AFP decline analysis on DO
of chemotherapy was the only way to standardize patients
so that their tumor marker decreases could be compared.
Furthermore, the rcesidual variability was nonnegli-
gible, sugeesting that an important part of interindividual
variability remained unexplained by our models. We did
not assess the impact of AUC , . o, 00 tumior response
rates because the PFS seemed clinically more relevant
with respect to the data available in the literature.”*

CONCLUSIONS

Olur results suggest that population kinetic modeling may
be a promising method for amalyzing hCG and AFP
decline profiles during the treatment of patients with
intermediate- and poor-risk NSGCT., This modeling ap-
proach needs to be validated in a larger trial.
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Appendix (on-line only)

MobeLing oF MARKER DECLINE CURVES
BETWEEN D7 aND D42

Mono-exponential models were implemented with the fol-
lowing equation:

Clt) ={A xe Kty Bl* e leg. 1)

Biexponential models were implemented using the following
equation:

Cl)=(A Xe™ " +Bxe L &y {eq. 2)

where C, {t) is the jth measurement of marker in patient | at time
LE, e for the proportional residual variability of patient i

at jth measurement, for which the mean i zero and the variance
is " Parametors A, B, K, a,. B, B, and C were assumed to vary
randomly among patients according to a log-normal diseribution.

VALIDATION OF THE MODELS
Two methods of qualification were used,'®

VisuaL PREDICTIVE CHECK

Uhbserved hCG and A values were compared with the 95%
confidence intervals (Cl) of corresponding markers from the
SO0 simulared replicares.

StaTisticar PrepicTivE CHECK
Distriburions of hCG and AFP computed from rthe simulated

dataser were compared with the ing observed statistics.
These statistics involved predicrion of the 2 parts of marker decline
curves:

L. The initial portion, defined as the firss hCG or AFP before
day 5.

2. The curve slope (calculated as slope = first marker value —
last marker value [ change in time), Distribution histograms
of the lower quartiles, medians, and wpper guartiles of sim-
ulated values were drawn with their 95% Cls. The madel
was considered predictive of the decline curve if all corre-
sponding observed values were within the 95% Cls of sim-
ulated values.

1. Orther kinetic parameters

a. Times to normalization {TTN). Fizazi et al described
the method of calculating TTN:

TN = 3* (loplAFP,) - loglAFP.)
{lop{ AFE,) — log (AFF,, 1), where AFP, is the AFP
value in the week before the first day of the first
cycle of chemotherapy, AFF, is the upper limit of
normal range of AFP, and AFP,, is the AFP value
measured berween D18 and DIB. Thus, we calcu-
lated the TTN s and TTN . for every patient
and determined their combined predictive group as
described by Fl";m et al. (TTN, 11 4t favorable vs
unfavorahle).”

k. Halflives (HL). In MSKCC studies, Murphy et al.
reported the propnostic value of AFP and hCG HL
calculated between D7 and D427 We caleulated both
HL . and HL; . berween D7 and D42 using the
decline exponentials derived from the models. For
instarice, if AFP were bt by the equation C, (1) =
AFFl e — K* t + AFP, then HL i = Lok 2NK; we
could calculate HL . g and HLy o for évery patient,
Two potential predictive groups were determined
(HL i)t a satisfactory group, with patients
with HL oo = 7 diys and HL, . = 3 days; and an
unsatisfactory group, with patients with HL ;. = 7
daiys andfor HLj . > 3 days.’

Table 4. Results of modeling of alphafetopratein (AFP) and human chorionic gonadotropin (hCG) decline curves between

day 7 and day 42

Modeled Population Interindividual Standard Residual

Model Parameter Post Hoc Value Variability (CV %) Error (CV %) Variability (CV %)
AFP, 381.00 261 39.0 212
AFP,.. 3.27 30 280

K1 (AFP) 0.14 24 4.8

hCG, 1230.00 254 40.8 425
hCGies 1.22 278 49.1

K1 (RCG) 0.25 4 3.0

Apbreviations: CV, coefficient of variation; K1 (AFP), exponential decrease constant in AFP between day 7 and day 42; K1 (AFP),

exponential decrease constant in hOG between day 7 and day 42.

429.el1
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Predictive values of hCG clearance for risk
of methotrexate resistance in low-risk
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Background: Early identification of patients at high rigk for chemoresistance amaong those treated with mathotrexats
(NITX) for low=risk gestational trophoblastic neoplasia (GTN) is nesded. We modzled human chorionic gonadotropin
(hCG) dedline during MTX therapy using a kinelic population approach o calkeulats individual hCG dearance (Cliyen)
and assessed the pradictive value of Cl,., for MTX resistance

Patients and methods: A otal of 154 patients with low-rsk GTN treated with B-day MIX regimen wers
retrospectively studied. NONMEM™ was used to model hOG decrease equations between day 0 and day 40 of
chemotherapy. Recsiver operating charactensfic curve analysis defined the best Cli.q thrashold, Univariate/
mulivariate surdival analyses determined the predictive value of CL -, and comparad it with published pradictive
factors.

Results: A moncexponential equation best modeled hCG decrease: hCGI) = 3900 e ™™ * | Median Clycg Wwas
0.57 Vday (guarties: 0.37-0.74). Only choriocarcinoma pathology [yes versus no: hazard ratio (HA) = 6.01; 85%
confidence interval (Cl) 2.2-16.6; P < 0.001] and unfavorable CL,, . quartile (£0.37 versus >0.37 lday: HR = 6.75;
95% Cl 27168 P < 0.001) wers significant indepandent predictive factors of MTX resistance risk.

Conclusion: In the second kirgest cohoit of low-risk GTN patients reparted to date, chonocarcinoma pathology and
Clecq <0.37 Vday were major independent predictive factors for MTX resistance risk.

Key words: kinstics, methotrexate, predictive value of tests, biological serum tumor markers, survival analysis,
trophoblastic neoplasms
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introduction

In 2002, the International Federation of Gynecology and
Obstetrics (FIGO) committee classified gestational
trophoblastic neoplasias (GTN) as high-risk and low-risk

(MTX) regimen modified by Bagdhawe o al. and Chalouhi et al
[3, 4]. In cases of MTX resistance or intolerance, patients ame
switched to adinomycin D (ACT-D) or o etoposide,
methotrexate, actinomycin, cvclophosphamide, and vincristine
regimen (EMA-CO) regimens, including ACT-D, etoposide,

tumors according to the risk of relapse. Classification into one
of these two groups is determined by a combination of eight
prognostic factors graded from 0o 4 1, 2], In France, low-risk
tumors, characterized by a FIGO score <6, are commonly
treated with monotherapy, usually the 8-day methotrexate

*Corregpondance . Dr B. You, Medica Oneology Depatmant, Drug Deveiopneant
Pagram, Princess Magarst Hosodal, 810 Unyansity Avenua, Tomnto, Ontano,
Canada M5E 208 Tet: +1-476 531-855T7; Fax: +1-4768 048 4807,

E-mai: banotyouiiRposta net, banot yooibctu yon fr, banod youlutnon.ca

methotrexate, and folinic acid (5], Although wumor
dhemoresistance is often defined as an increase or Sagnation of
human chorionic gonadotropin (hCG) leveds over a 2- 1o 3-week
period, there are no clear guidelines concerning the optimal
method for analyzing hCG Kinetics [5]. ldentification of
predictive factors that could provide early information about the
risk of MTX resistance would be useful [5].

Recently, authors have proposed hCG titer thresholds as
potential predictive factors of chemoresistance. Using hCG

£ The Authes 2010, Publkshed by Oxiord University Press an bahaf of the Eusopaan Sociaty for Medical Oneodogy.
Al rights raservad. For parmessions, please emall ournals permessionsifioxdfond o nals.ong



decline corridors and receiver operating characteristic (ROC)
analyses, hCG cut-offs messured during the seventh week of

MTX therapy were proposed: 56 pg/l equivalent 1o 52024 miLU/
ml in Van Trommel et al. |6}, 737 mlU/ml in Kerkmeijer et al,
[7]; and 500 miU/ml in Savage et al, [8] studies. These
studies might have been limited by the methodology used to
characterize hCG decreases, especially by their dependence on
i single time point prone to high inter/intraindividual
variability. It may explain the heterogeneity in the reported
cut-offs.

Herein, we propose a population kinetic approach, relying
on modeling and pharmacokinetic principles [9], o assess
ndividual hCG decrease profiles dynamically. Application of
this method has been described for kinetic assessment of other
tumor markers [10-12], Briefly, combining all patient time
points allows to model a population decline profile; to quantify
mter- and intraindividual vanability, and to determine the
mndividual decline curve equations. The apparent tumor marker
clearance (CL), a kinetic parameter, related to marker residual
production and elimination, and independent of selected time
points, can then be determined

We postulate that hCG dearance (Clyg;) would predict
accurately the MTX resistance risk in patients with low-risk
GTN, The objective of the present study was to assess the
feasibility of characterizing MTX resistance using hCG kinetics.

patients and methods

patients
All patient data were derived from the French national registry of the
Centre de Référence des Maladies Trophoblastigues based ia Lyon [2]. All
patierits had been treated in Prench centers for chemomaive low-risk GTN
according o 2000 FIGO classification | 13] between lanuary 2600 am
February 2008, Exclusion criteria included treatment with two or less
courses of MTX, patfients whose treatment was changed without resisince
criteria fined by the Centre de Reférence des Maladies Trophoblastiques
or whose treatment differed from the conventional MTX regimen, patents
with inadeguate WG follow -up, and historical disgnosis of a placental
site trephoblastic tumor,

All patients were treated with the 8-day MTX regimen defined by
Bagshawe ¢t ol |3]: mtramuscular MTX (1 mg/kg) on days 1, 3, 5 and
T along with oral folinic acid (10 mg) on days 2, 4, 6 and & every 2 weeks,
hOG levels were determined once each week. Treatment was stopped if hOG
values normalized (25 mlUZml) or switched 1o 2 second treatment (EMA-
CO, ACT-I, or a platinum-hased regimen) in the case of tumor MTX
resistance vr biochemical relapse, I the reatment was altered, further hOG
gters were not included in the anulysis, Chorocarcinoma diagnoses were
confirmed by a pathologist, whereas noa-choriocarcinoma diagnoses were
defined biologically and not lnstologically according to 2000 FIGO hUG
eriteria | 1],

analysis of hCG kinetics
A population pharmacokinetic model was developed usang a dataset
consisting of plasma concentrations of ol hCG fllowing MTX
sdnunistration, The analysis was carried out using data collected between
day 0 iday of chemothermpy strt) and day 40. Indeed, predicting the
resistance risk afier three courses of chemotherapy would provide enough
e o quickly adapt treatment n patients at high risk of resismnce.

The analysis was carried out using a nonlinear mized-efiects modeling
steategy, implemented in NONMEM version &, o estimate the population

2| Youetal
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parameters | mean and intersulject variability) as well as the residual
variahility. Moreover, it was used to idemify potential covariates that could
explain intersubject variability of parameters [14]. Linear phamuacokinetic
muodels were evaluated, meluding one- and two-exponential models for
disposition and elimination of hCG. Because the rate of endogenous hCG
production was unknown, no attempt was made to cracterize it before
time 0, Monoexponenial models were implemented with the following
eguatiom:

hCG(1) = (WCGO; x ¢ &) (1 +2ly) + a2y,
whereas biexponential models were implemented with
hCG;{t) = (hCGL, % ¢ %™ +hCG2; % el (14 elg) +225,

where hCGy; (1) is the jth measurement determined in patient
at time 1, and £1;; and £2, are the proportional and additive
residual variability of patient 1 at the jth measurement, which
has a mean of zero and variance of o, Parameters hCGO,, K,
hCG1,, hCG2;, %, and fi; were assumed to vary randomly
between patients according to a normal log distribution. Once
individual parameters hCGO; and K; or hCGLx hOG2; 2, and
Ji; are estimated, it is possible to determine the individual
apparent clearance {Clyce). In the monoexponential model,
this is equal to the product of K, and the volume of distribution
{Vd), where Vd is estimated to be 3.4 |, as described previowsly
[15]. Data analysis was carried out using the first-order
conditional estimation method with an interaction
comiputational method algorithm (FOCE INTERACTION),
Comparison of two nested models was based on differences
between the minimum value of the objective function. The
following individual covariates were tested to estimate their
impact on hCG kinetic parameters for reducing unexplained
interindividual varability; items included in the FIGO score as
well as tumor pathology (choriocarcinoma versus non-
choriocarcinoma ), number of children, hysterectomy (yes
versus nol, interval between first and second MTX cycle, and
hCG surge after MTX start (yes versus no), The modeling
miethodology has been described in detail elsewhere [11].

internal validation of the model: visual predictive check
The predictive performance of the final model was evaluared by visual
predicive check (VPC) |16, 17). We simulated 100 decline profiles-for hCG
using the final parametess estimated from the best model, The predictive
ability of the population pharmacokinetic model was assessed using
graphical comparison of the 9% confidence tntervals (Cls) of predictions
built from simuluted data with an overay of the observed data,

assessment of predictive value of Clqq

A normal hCG value was considered =5 miUfml, MTX resistance is defined
by the Centee de Réference des Maladies Trop hoblastigues as an increase
or a platean in two consecutive hOG values vver a 2-week interval, This
definition was chosen to minimize the effects of weekly hCG concentration
Huctuations and w establish a similar ime interval between two MTX
cycles,

One of the aims of the study was to define a Clyog threshold that could
discrimimate patients at high risk of MTX resistance from those at lower
nsk. We used ROC curves to test the diagoostic sccuracies of different cut-
offs, To oplimize statistical power, the thresholds tested were derived from
the median and quartiles of CLyog. Once the best cut-off was identified, we
assessed the diagnostic accuracy of the Clyqg [Yless than or equal w' (€)
threshold versus ‘more than' i} threshold | against other kinetc
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parameters reported m literature (seventh-week hOG value £520.24
versug 520,24 mIUml 8], or <737.0' versiis >7370 mIU/ml |7]) for
predicting MTX resistance risk, Because patien! distributions were similar
when seventh-week hCG cut-off was fived at 500 or 520 miUfml, we did
not study the predictive value of threshold reported by Savage et al (9),

Mareover, we assessed the predictive valie of CLyeg on MTX resistance-
free survival (MRFS) using univariste/multivariate survival analyses, MRPS
was caloulated as the hntdq]:uﬁdhtmn the first MTX course on day
0 and the At event, susch as MTX biochemical resistance duy or death due
o ARy Caise.

The following potential predictive factors were investigated using survival
lisg-rank tests

+ Parameters includad in the FIGO score except for the previous
chemotherapy iem because all patients were chemuonaive,

+ Uther potential predictive covartates: hystereciomy ( yesino), tumior
pathuology (choriocarcinoma or non-choriocrcinoma ), number of MTY
courses, number of wenne evacuations, number of children, uterus
imwvasion depth, transient hCG surge after start of MTX (yes/no ), interval
between first and second MTN courses | €14 versus >14 days),
pretreatment h(OG scored according to the Chan et al. threshold reported
as @ predictive Factor of failure after one single MTX dose (5000
versus »5000 milUiml) | 18], and hCG level in the seventh week, scored
according to the Van Trommel et al threshold {£520.24 versus >520.24
mfUfml, eguivalent to €56 versis 556 pgl) (6] and according to
Ketkmaeijer et al. cut-off (£737.0 vermsus >737.0 miU/ml) [7]. Seventh-
week hCG values were available for 125 patients, We also assessed
the predictive value of Clyog threshold defined with the ROC curve
aralysis (€ versus. = lower guartile), Because the log-rank test requires
categorical data, continuous covariates were split into two groups
according to the median except for Clyog, which was split according to
the lower guartiles for the ROC curve analysis.

To determine independent predictive facters, variables found w be

statistically significant in univariasie analysis (P < 0,05) were included in

multivariste analysis using Cox models with backward elimination. Median
follow-up was caleulated using a reverse Kaplan-Maer esimate [19]. All

tests: were carried out with 5-PLUS™ and SPSS5™ wsing a two-sided (0,05

alpha sk The ROC curves were generated using TANAGRA™ software,

results

patients and follow-up

Data for 154 patients with Jow-risk GTN were analyzed; 5574
hCG concentration determinations were recorded between
Octobrer 1999 and March 2008, Modeling analysis was carried
out using 845 hCG concentrations determined between day

0 (day of chemotherapy start) and day 40, with a mean of 5.5
observations per patient. Because the data included
concentrations below the Emit of quantification (BLOQ), the
first concentration in a series of BLOQ observations was
replaced by LOQ/2 and later observations were censored |20,
21]. Patient characteristics are summarized in Table 1.

modeling

The best model describing the hCG decrease between day 0 and
day 40 was a onc-compartment model All covariates likely

to influence the hCG decline profile were evaluated Only the
pretreatment hCG value, scored according to FIGO criteria
{shCGO), significantly decreased the unexplained

imerindividual variability of the modeled hCGO. However,
shCGO could not be inserted imto the model as a covariate
because it was equivalent to hCGO grouped by classes. Thus, the
final population model was

hCG“} = 3900 x !—ll.lﬂtf1

where h(G () was the population-predicted CG value (miU/
ml) at time ¢ (days) for data collected between day 0 and day 40,
Figure 1 shows the plots leading to the final model sdection.
The results for modeled parameters, interindividual
variahility, 95% Cls, and residual variability are shown in Table
2. Figure 2 shows the VPC: 96.7% of observed hCG levels
fell within the 90% prediction interval, supporting the accuracy
of the model.

predictive value of Clucs

After a median follow-up of 12.7 months (95% Cl 11.5-13.4),
133 patients (86% | were not MTX resistant and 21 (14%)
had become resistant to MTX. All resistances developed within
the first year of initiating treatment (median time to
resistance = 83 days; range 48-195 days). These patients all
received second-line treatment: EMA-CO, n= 13 (62%); ACT-D,
n =6 (29%); bleomwein, etoposide, cigplatin regimen, 1 = 1 (3%,
or had a hysterectomy, n=1 (5% ). One patient died 91 days after
start of chemotherapy.

ROC curve analysis

Several different thresholds, using Clyg; median and quartiles,
were evaluated for diagnostic accuracy of MTX resistance by
ROC curve amalysis. The best area under the ROC curve (AUC)
was observed when the lower CLy; quartile was used (£0.37
versus >0.37 Vdayk AUC = 74,5, sensitivity = 66.7%, specificity
= 81.2%, positive predictive value (PPV) = 35.9%, and negative
predictive value (NPV) = 93.9%.

Because none of the three other tests reported in literature
offered a better diagnostic accuracy for detecting resistance risk,
we decided to use the cut-off described previously in univariate
and multivariate analyses. The seventh-week hCG cut-off of
Van Trommel et al. {£520.24 versus >520.24 miU/mi) had an
AUC of 74.5 (sensitivity 44.4%, specificity 91.7%, NPV 89.9%,
PPV 50.0%), whereas the seventh-week hCG cut-off of
Kerkmeijer et al. (£737.0 versus >737.0 miUfml) had an AUC
of 72.5 (sensitivity 38.9%, specificity 92.8%, NPV 89.1%, PPV
50.0%; supplemental Figure S1, available at Annals of Oncolagy
online).

survival analyses

Table 3 shows the predictive factors significant n univanate
survival analysis using the log-rank test. Six factors predictive of
hCG resistance risk were identified: unfavorable Clycy, less
than or equal to lower quartile (0.37 Vday), choriocarcinoma
tumor pathology, term orabortion pregnancy history, hCG surge
after start of chemotherapy, seventh-week hCG >520.2 mILU/ml,
and seventh-week hCG »737.0 mIU/ml. These covariates

were included in a multivariate survival Cox model As shown
in Table 3, four factors were inili.l]]]r sign.iﬁcml; backward
elimination identified two of these as independent significant
predictive factors: (i) chorlocarcinema versus non-
choriocarcinoma pathology [hazrd ratio (HR) = 6.01; 95% C1

dot: 10, 1083/annonc/mdgd33 | 3
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Table 1. Patient characteristics

MTX mmor responise Sensitive 133 B6.4
Resistant 1 136
Age (years; median = 31; =4 30 1RE
25% quartile = 28; 75% quartile = 34) <40 124 BL.2
Pregnancy history Hydatidiform mole 147 954
Term 4 15
Abortion 3 2
Interval berween end of <q 127 825
previous pregrancy and 44 20 129
sturt of chemaotherapy (months) 7-12 7 45
; =12 o o
Baseline h2G (shOG0 in <io* 46 299
miU/ml median = 7461.5) Wh-ie® 43 279
10*-10° 54 350
»10* 1 74
Sites of metastases (144 patients Lung CT scan: 48, X-ray: & CTseam: 333, X-ray: 6.2
evaluated by CT) ‘Spleen, kidney g o
GI ract 1 0.6
Liver andior brain [V !
Largest umor (cm) < 106 A8
i5 4 1
>5 14 9.1
No. of melistases 0 137 88,9
-4 14 9
-4 ¥ 12
=8 1 LX]
score (median = 2) ] 15 a7
1 40 259
2 41 72
3 % 2
4 1m0 6.5
§ 9 5.8
L] 10 6.5
Hysterectomy Yes 12 737
Mo 142, 923
Tumor pathology Non-choriocarcinoma 144 93.5
Chomocarcnoma 1o &5
Mo of children | median = 1) £l 165 68.2
=2 49 318
Urerus invasion depth 5% myometrium 12 20.8
=50 myometrium 47 30.5
‘Serusa 3 19
Unknown 7L 46.7
No. of MTX courses (median = 6) <6 98 3.3
=6 B 36.3
Mew of ulerus evacuations (median = 2) 1 59 383
2 78 LT
3 B g5
Unknown £ 5.8
hOG surge after MTX start Yes 10 6.5
‘No 144 0S5
interval bepween 15t and 2nd MTX course <15 days 135 876
»14 days 19 123
Tustal 154 100

MTX, methotrexate; hUG, human chorionic gonadotroping CT, computed tomography; GI, gaswolntestinal; FIGO, International Federation for Gynecology
and Obstetrics,

4| You et al
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Figure 1. Goodness-of-it plotst (A) log (observed hOG concentrations ) versus log (imdividual predicted hCG concentrations); ( B) weighted residual versus
log (individual predicied hOG concentrations); (C and D) observed hUG, predicted hOG (Pred. hCG), and individual predicted WOG concentrations { Ind.
Pred hOG) concentrations for two representative patients; and (D) patient [D 2 expressed MTX resistanice 62 days after st of reatment, hCG, human

chorionic gonadutropin,
Table 2. Tinal model parameter estmates

MOF 11 017,039
Vartation from base model -214.456

Parameters Pq!dlim mean 95% O] IV (%)
OGO (TUA) (81) 2269.28-5530.72 273.50
K (day 1) (85) um 0.135-0.163 5292
v il (863 34 == =
Eprop (CV%) 67,08 64.9559,17 1]
Eadd (IU/1) L16 0,37-1,95 —

MOF, minimum objective function: CI, confidence intérval [TV (%),
mtermdividual variability expressed as a percentage; K, elimmation shCGUO,
concentration of human chorionic gonadotropin at time & V, volume of
distribution; Eprop (CV%), % of proportional residual varishilivy;

Eadd (IWV]), addirive component of residual variability,

2.17-16.6; P = 0.0005] and (i} Clycg (unfavorable versus
favorable: HR = 5.75; 95% C1 2.71-16.8; P = 0.00004), Figure 3
shows the Kaplan-Meier curves of MRFS according to tumor
pathology and Cly,q, lower quartile threshold.

conclusions

Although there B consensus regarding the use of monotherapy
(MTX or ACT-D) for treating low-risk GTN, many aspects of
treatment for this patient subgroup remain unclear [5]. Early
identifying patients at high risk for MTX resistance would
enable rational individualization of treatment protocols (22,
Recently, several studies have identified potential predictive
factors of chemoresistance in poor-risk GTN |68, 23, 24).

3 =
1 L
M
H
§;_
g1 | ; o
o 1% :;-m 30 40

Figure 2. Results of the visual predictive check: 96,7% of observed human
chorionic gonadotropin ( hCG)H values are within the 9% predicion
interval,

However, the cut-offs reported in these trials might be linated
by their imimate dependences on static and single hCG
measurements, prone Lo high unconsidered inter/
intramdividual variability. It could explain the heterogeneity in
the reported thresholds. Moreover, none of the latter studies
incorporated survival analysis or regression models o test the
predictive values of cut-offs with respect to other prognestic
covariates, which i the standard method for validating such
factors,

In the present study, we identified two independent
predictive factors, Because 50% of patients with
a choriocarcinoma were resistant to MTX, this pathology
appeared 1o be a strong negative predictive factor. We also

doi: 10. 1083 /annone/mdg33 | s
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Table 3. Resuls of univariate | log-rank test) and multivariate survival analyses { Cox model) for 1-year metholrexale resistance-free survival

Age | years) <4 124 B35 0.87 — — -
=4 L] Bb.3
Pregruncy history Hydatidiform mole 147 B7.1 0.2 5.06 1.23-20.79 0.024
Aburtion 3 66,7
Term + 50.0
Interval between end of prévious <4 127 86.8 0.30 = —_ =
pregaancy and start of e b1} 842
chemotherapy (months) 712 7 714
»>12 [} ND
Initial BCG (mil Lmk median = 7461.5) <10’ 46 BE.2 0as — — —
w10 43 90.2
w'-10® 54 771
>0* 1 i)
Lung metastasis | 144 patients Yes 48 85.0 082 — — —
evaluated by CT) No a5 86.7
Largest mmer (cm) <3 106 839 (L s 2
35 a4 BaZ2
=5 14 91.7
Nu, of metastases 1] 137 B4.1 0.62 — — —
-4 14 100
58 2 ND
=8 1 i
FIGO score (median = 2) o 15 933 080 — — —
1 40 LR
z 42 R5.0
3 28 82.1
4 10 787
5 L ; B89
i L] BR.9
Hysterectomy ¥es 12 75.0 0.26 — — —
Ny 142 Bb.B 0.26
Tumor pathology Cheriocarcinoma 1w 500 6.57 2.00-21.51 0.0018
{unknown, n = 4} Non-choriocarcinoma 140 87.9 0.00025
Nip. of children ( median = 1) L | 185 LR 038 — — —
22 44 a3
Noof MTX courses (median = &) <6 ug 839 [ i p— = =
=y 56 B0
No. of uterus evacuations 1 5% B73 77 — —" =
(median = 2; unknown, n =9) g 78 B5.2
F 8 104}
hCG surge after MTX stant Yes 0 600 0.01 L&l 0.40-8.00 .44
No 144 87.5
Pretreatment hCG value (miU/ml) <5 (13 BB.B 032 — — —
=500 Bh 832
hCG value in the Tth week =520.2 26 668 00056 471 1.52-14.56 0,007
{mlUml) <320,2 94 89.6
hCG value in the 7th week >737.0 14 50.0 00008 136 Gi0-126 011
(ml Wml =737.0 1 BE.E
Interval between lst and 2nd MTX <14 dlrs 135 846 0.30 — — —_
course >4 days 1% 938
Ol (Uday; median = 0.57; =057 a8 64.5 <0.00001 6,05 1.88-19.42 0.0025
quartiles = 0.37, 0.74 0,37 116 18

Significant predictive factors are written in bold.

“Term and abortion covariates were grouped together for Cox model analysis,

CL confidence interval; Clygg, hOG dearance; CT, computed tomography; FIGO, International Federation of Gynecology and Obstetrics; hCG, human
chofionic gonadotropin; MRFS, methotrexate resistance-free survival: MTX, methotrexate; ND, not determined.
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Figure 3. Kaplan-Meier curve of probability of methotrexate resistance-tree survival according (MRTS) 1o (A) CLaog (537 versus =37 l'day ) and (B} tumor
pathalegy {chonocare inoma versss non-chormocarcinoma ), Clyeg, buman choronic gonadotropin cearance.

identified a group of patients with a high risk of resistance
characterized by a low Clyog (35.5% risk of biochemical
resistance at 1 year if CLyge =037 lday). As asserted by the
Cox model, this predictive value was independent of tumor
pathology and was stranger than the other expected prognostic
factors, such as FIGO score components or the cut-offs
reported previously. ROC curve analyses confirmed the
predictive value of CLy . for resistance risk with respect to
other published factors. The high specificity and NPV indicate
that this marker may be used to idemtify the patients with
favorable hCG decline, thereby unlikely to present further MTX
resistance. The risk of resistance ( false-negative rate] in patients
with high Clyc, was only 6%. For routine practice, the
patient’s risk group could be calculated by every clinician easily.
Indeed, hCG concentrations obtained at appropriate times { day
0, day 15, day 30, and day 40 after start of MTX) could be
entered into a model-based software program that would
immediately determine patient’s group. If the predictive value
of Clyess were confirmed, it might give the opportunity to
reduce MTX exposure in patients with satisfactory hCG
declines. Some investigators have advocated for one single dose
of MTX in all low-risk GTN patients, but the risk of fallure has
been concerning | 18, 25, 26/, Farly MTX discontinuation might
rather be considered in patients with MTX-sensitive tumors
and thereby more likely to be cured. Stop of treatment might
thus be considered after three chemotherapy cycles in patients
with high CLyogy whereas MTX continuation until hCG
normalization or change of chemotherapy regimen could be
discussed in patients with low Cligi. OF course, this
assumption was not directly raised in the present study and will
have to be assessed in other studies.

These results reported herem should be interpreted with
caution becanse this study included small numbers of patients
and MTX resistance events, although it is the second largest
study on this particular subgroup to date. The results we
present relate to our cohort but might not be applicable to
another group of patients. The data used in the analyss were
not derived from a specifically designed study with highly
selected patients and favorable conditions likely to aid in
predictive factor identification but conformed to ‘real-life’
patient data (treatment in various French hospitals, hCG
concentrations determined in different laboratories using

various immunoassay kits). Despite these limitations that were
likely to increase inter- and intraindividual variabiity and to
scatter modeled Clyg g values, our results were highly
statistically significant. CLycg values were caleulated on the
assumption that body hCG distribution was equal to the bload
volume distribution, as ndicated by Norman et al. [ 15, Three
elements could explain the "traditional” prognostic factors, such
48 FIGO items, FIGO score |25, 27], or metastasis status |18},
that were not found significant in the multivariate analysis. The
limited number of patients might have contributed to the
reduced statistical power of analysis. Moreover, these factors
were reported in studies carried out before the definition of
low-risk GTN by FIGO in 2000, thereby including patients with
various disease stages. Finally, these factors have not been
confronted with hCG kinetic parameters in umivanate/
multivariate analyses within articles published so far.

This study confirms that it is possible to model individual hCG
decline curves using a kinatic population approach in low-risk
GTN patients. Using univariate and multivariate survival analvses,
our results showed that patients with choriocarcinoma and
treated with MTX have a high risk of MTX resistance. Using this
modeled Cly, ., approach. it might be possible to identify
a subgroup of patients likely to develop MTX resistance who
might benefit from early treatment alterations. Other retrospective
studies invalying higher numbers of patients, potentially followed
by prospective trials, are warranted to confirm the relevance of
Clpcg in manmaging patients with low-risk GI'N,
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