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De ces nombreux travaux de modélisation et d’électrophysiologie se dégage une 

description du processus de décision perceptuelle comme une accumulation d’information 

vers un seuil de décision permettant d’esquisser les contours d’une cartographie cérébrale des 

opérations élémentaires constituant les décisions simples. Tirant partie de ce corpus, établi 

chez le primate non-humain, Heekeren et al ont étudié les régions cérébrales impliquées dans 

le processus de décision perceptuelle chez l’Homme grâce à une tâche de classification 

d’images statiques bruitées de maisons et de visages administrées à un groupe de sujets sains 

dont l’activité hémodynamique était enregistrée dans un scanner IRM96-98 (Fig. 15A). Après 

avoir visualisé le stimulus, un signal indiquait aux sujets le moment auquel ils devaient 

donner leur réponse, ne permettant ainsi pas l’analyse des RT. Cette réponse était donnée à 

l’aide d’un boitier à deux boutons placé dans leur main droite. Les performances des sujets 

augmentaient lorsque la proportion de bruit dans les images présentées diminuait (Fig. 15B). 

Plus spécifiquement, cette étude visait à identifier les régions cérébrales implémentant 

l’accumulation d’information sensorielle en contraignant l’analyse statistique de la réponse 

hémodynamique par les prédictions des modèles neuro-computationnels développés chez le 

singe : (1) l’activité BOLD devait varier en fonction du niveau de bruit dans l’image, puisque 

celle-ci conditionne la pente de la variable de décision au sein de l’accumulateur, (2) l’activité 

BOLD devait être corrélée à l’activité enregistrée dans les régions corticales inféro-

temporales répondant préférentiellement aux images de visages et à celle répondant 

préférentiellement aux images de maisons, reflétant ainsi les entrées de l’accumulateur. 

Identifiant les voxels en région inféro-temporales répondant préférentiellement à chaque type 

d’image afin d’en extraire l’activité différentielle des deux populations de voxels (Fig. 15C), 

Heekeren et al démontrèrent que la partie caudale du DLPFC (MNI xyz=[-22, 24, 36]) 

présentait une différence d’activité significative en fonction du niveau de difficulté et que 

l’activité dans cette région corrélait avec la valeur absolue de l’activité différentielle 

enregistrée dans le cortex inférieur temporal. Ces résultats suggèrent que la partie caudale du 

DLPFC est impliquée dans l’accumulation d’information sensorielle lors de la prise de 

décision perceptuelle chez l’Homme (Fig. 15D). 



Menant une expérience IRMf complémentaire dans laquelle les images bruitées étaient 

substituées par des nuages de points aléatoires dont le sujet indiquait la direction de 

mouvement par une saccade oculaire ou en appuyant sur un bouton réponse, Heekeren et al 

ont montré que la partie caudale du DLPFC fait partie d’un réseau dont l’activité BOLD varie 

significativement en fonction du niveau de difficulté de la décision perceptuelle, i.e. du niveau 

de cohérence du nuage de points, indépendamment de l’effecteur utilisé pour indiquer la 

réponse97.  

 

  

 

 

 

Fig. 15A

 

a b

c

d



Pris ensemble, ces résultats suggèrent que la partie 

caudale du DLPFC est impliquée dans l’accumulation d’information dont dépend l’inférence, 

indépendamment de la nature et du plan moteur associé à la réponse ou de son execution98. 

Par contraste, les régions pariétales impliquées dans l’accumulation d’information sensorielle 

sont spécifiques de l’effecteur, reflétant le plan moteur associé à la réponse et reliant ainsi 

choix et action.

Testant les performances de sujets sains avant et après stimulation magnétique 

transcrânienne à basse fréquence de la région caudale du DLPFC identifiée par Heekeren 

(neuroguidage, MNI xyz=[-22, 26, 36]) contre une stimulation placebo, Philiastides et al ont 

montré que la rTMS induisait transitoirement une diminution des performances associée à une 

augmentation des RT100. L’ajustement d’un modèle de diffusion à ces données révèle que ce 

pattern comportemental reflète une diminution de la vitesse d’accumulation de l’information 

sensorielle, ce qui traduit la dégradation du processus d’accumulation d’information par la 

rTMS à basse fréquence, et démontre le rôle causal de cette région cérébrale dans le processus 

d’accumulation d’information sous-tendant la décision perceptuelle. 
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D’un coté, la faible résolution temporelle de l’IRMf limite l’analyse de la dynamique du 

processus de décision perceptuelle101. De l’autre, le type d’étude électrophysiologique 

invasive menée chez le singe est particulièrement difficile à mettre en œuvre chez l’Homme et 

ne peut se concevoir qu’associée à la nécessité médicale de réaliser une telle implantation, 

donc sur un cerveau pathologique102. Par contraste, l’EEG de scalp fournit une mesure directe 

et non-invasive de l’activité neurale avec une excellente résolution temporelle. C’est 

pourquoi, l’EEG reste la méthode principale d’étude de la dynamique temporelle des 

processus cognitifs chez l’Homme, malgré une précision spatiale et un rapport signal sur bruit 

médiocres. 

Afin d’accommoder ces limitations, Philiastides et al ont développé une approche 

analytique originale du signal EEG reposant sur l’utilisation d’un classifieur linéaire 

comparant essai-par-essai l’activité de l’ensemble des électrodes aux réponses du sujet durant 

une tâche de classification d’images statiques dont le niveau de bruit était systématiquement 

manipulé103-105 : le sujet devait identifier une image affichée pendant un temps fixe comme 

représentant une voiture ou un visage et indiquer sa décision à l’aide d’un boîtier réponse le 

plus rapidement possible (Fig. 16A). Appliquant le classifieur à des fenêtres temporelles de 60 

ms couvrant de proche en proche l’ensemble du processus décisionnel, les auteurs ont 

identifié deux composantes EEG prédictives des performances psychophysiques des sujets : 

(1) La première composante, dite « précoce », corresponds à l’onde N170 sélective des visages 

classiquement observée dans ce type de paradigme et (2) la deuxième composante, dite 

« tardive », survenait 130 ms plus tard en moyenne et ressemble à P300
106,107. La figure 16B 

représente l’activité évoquée moyennée sur l’ensemble des essais (ERP) pour les électrodes 

FCz et PO8104,108. Alors que la composante précoce n’est que faiblement et inconstamment 

prédictive du comportement des sujets, la composante tardive permet une prédiction robuste 

de leur réponses103. La latence d’apparition de cette composante tardive reflète la difficulté de 

la décision, qui elle-même covarie avec RT et le niveau de bruit (Fig. 16C). Ces résultats 

suggèrent que la prise de décision perceptuelle chez l’homme se fait en deux temps. Il est 

tentant d’interpréter ces résultat à la lumière des données obtenues sur MT et LIP chez le 

singe : de ce point de vue, la composante précoce correspond à un niveau de traitement 

sensoriel et la composante tardive, prédictive du choix et dont la latence reflète la durée du 

processus décisionnel, représente le processus de prise de décision proprement dit103. 
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Decision Threshold Modulation in the Human Brain

Philippe Domenech and Jean-Claude Dreher
Cognitive Neuroscience Center, Reward and Decision-Making Group, Centre National pour la Recherche Scientifique, Unité Mixte de Recherche 5229,
69675 Bron, France and Université Lyon 1, 69003, Lyon, France

Perceptual decisions are made when sensory evidence accumulated over time reaches a decision threshold. Because decisions are also
guided by prior information, one important factor that is likely to shape how a decision is adaptively tuned to its context is the predict-
ability of forthcoming events. However, little is known about the mechanisms underlying this contextual regulation of the perceptual
decision-making process. Mathematical models of decision making predict two possible mechanisms supporting this regulation: an
adjustment of the distance to the decision threshold, which leads to a change in the amount of accumulated evidence required to make a
decision, or a gain control of the sensory evidence, leading to a change in the slope of the sensory evidence accumulation. Here, we show
that predictability of the forthcoming event reduces the distance to the threshold of the decision. Then, combining model-driven fMRI
and the framework of information theory, we show that the anterior cingulate cortex (ACC) adjusts the distance to the decision threshold
in proportion to the current amount of predictive information and that the dorsolateral cortex (DLPFC) codes the accumulation of
sensory evidence. Moreover, the information flow from the ACC to the DLPFC region that accumulates sensory evidence increases when
optimal adjustment of the distance to the threshold requires more complex computations, reflecting the increased weight of ACC’s
regulation signals in the decision process. Our results characterize the respective contributions of the ACC and the DLPFC to contextually
optimized decision making.

Introduction
Recent advances in neuroscience and mathematical psychology
have begun to unravel the neurobiological mechanisms underly-
ing decision making (Gold and Shadlen, 2007). Perceptual deci-
sion making, the ability to select a specific action based on our
perception, proceeds from the integration of sensory evidence to
a categorical choice between alternatives (Smith and Ratcliff,
2004; Lo and Wang, 2006; Bogacz, 2007a). In sequential sampling
models, this gradual gathering of sensory information favoring a
particular choice is defined as a drift of an abstract decision vari-
able toward a decision threshold. A choice is made when a deci-
sion variable is equal to its decision threshold (Carpenter and
Williams, 1995; Hanes and Schall, 1996; Usher and McClelland,
2001). These mathematical models of decision making received
renewed interest after the demonstration by monkey electro-
physiological studies that perceptual choices are made when the
ramping activity of neural populations in the dorsolateral pre-
frontal cortex (DLPFC) and the lateral intraparietal (LIP) area
reaches a given threshold (Hanes and Schall, 1996; Kim and
Shadlen, 1999; Huk and Shadlen, 2005; Hanks et al., 2006). The
ramping rate of this neural activity, which represents the accu-
mulation of sensory evidence, correlates with the decision vari-

able predicted by sequential sampling models. In humans, fMRI
studies confirmed the involvement of a similar DLPFC–intrapa-
rietal network in coding the decision variable (Heekeren et al.,
2004; Forstmann et al., 2008; Ivanoff et al., 2008; Tosoni et al.,
2008; van Veen et al., 2008).

One important factor that is likely to shape how a decision is
adaptively tuned to its context is the predictability of the forth-
coming event (Luce, 1991; Dayan and Abbott, 2001; Harrison et
al., 2006; Doya, 2008). However, it remains unclear how decision
making is modulated by this predictive information at both the
behavioral and the neural levels. Sequential sampling models pre-
dict two mechanisms that modulate the decision based on con-
textual information (Carpenter and Williams, 1995; Reddi et al.,
2003): (1) An adjustment of the distance to the decision thresh-
old, which leads to a change in the amount of evidence required
to make a decision, but no variation in the slope of the decision
variable. According to this mechanism, higher predictability of
forthcoming events would reduce the distance to the decision
threshold (Fig. 1a, top panels). (2) An adjustment of the gain of
sensory evidence, leading to a change in the slope of the decision
variable, but not in the distance to the threshold. According to
this hypothesis, higher predictability would increase the slope of
the decision variable (Fig. 1a, bottom panels).

Here, we manipulated the amount of contextual informa-
tion available to predict which stimulus is going to appear next
(Fig. 1b). This allowed us to distinguish between these two
hypotheses by characterizing the computational mechanisms
underlying the effect of predictability on decisions. Then, hav-
ing found that predictability modulates the distance to the
threshold of the decision and not the gain control of sensory
evidence, we identified the brain regions involved in this reg-
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ulation, as well as those coding the deci-
sion variable. Finally, we investigated
how changes in effective connectivity
between these distributed brain regions
lead to contextually optimized percep-
tual decisions.

Materials and Methods
Subjects. Fourteen healthy right-handed sub-
jects [8 males, mean age (�SD): 25.14 � 3.37
years, mean right-handedness score as esti-
mated by the Edinburgh scale (�SD): 0.86 �
0.1, mean level of higher education (�SD):
3.6 � 2.2 years] participated in the study (Old-
field, 1971). None of the participants showed
any past or current neurological or psychiatric
conditions, as assessed by a medical interview and
all had normal or corrected-to-normal visual
acuity. None of them was on medication at the
time of the study. The experiment was approved
by the local ethics committee. Subjects gave their
written informed consent and underwent stan-
dard medical exams before participation.

Perceptual decision-making paradigm. Par-
ticipants performed a GO/NO-GO task, in
which they had to press a response button for a
specific target shape (presented at the begin-
ning of each sequence) among three possible
shapes (Fig. 1b). Each participant performed
the perceptual decision task on 12 randomly
ordered unique sequences. All sequences con-
sisted of the successive presentation of blue
shapes (circle, square, or triangle) displayed at
the center of a screen. At the beginning of each
new sequence, the participant was shown one
of the three shapes on a yellow background.
This shape was the target for the current se-
quence. After 5 s of target display, the back-
ground turned black and the perceptual decision
task began. Participants were instructed to press a
response button held in their right hand each
time they identified the current target, as quickly
and as accurately as possible. Each sequence was
composed of 400 successive stimuli presented for
300 ms every 400 ms (Fig. 1b). A fixation cross
was presented for 10 s between two successive
sequences. Unbeknownst to participants, there
were two types of sequences (Fig. 1b): in first-
order sequences, the next shape was conditioned
on the last shape, whereas in second-order se-
quences, the next shape was conditioned on the
last two shapes. Figure 1c shows a set of transition
rules for a first-order sequence. Using the frame-
work of Shannon’s information theory, we com-
puted for each decision the surprise (Eq. 1),
which measures how unlikely an event is, and the predictive information on
the forthcoming stimulus (Eq. 2–3), which measures how much the knowl-
edge of the recent history (last shape or penultimate shape) reduces this
surprise. Statistical transition rules were held constant within a sequence and
varied between sequences. Moreover, both first- and second-order se-
quences were selected to fall into three categories based on their mutual
information (first-order sequences: Eq. 4; second-order sequences: Eq. 5):
zero (low), one-third (medium), and two-thirds (high) of the maximum
theoretical mutual information (with a tolerance margin of 5%, Eq. 6). This
procedure guaranteed a broad range of predictive information values during
the experiment.

To minimize potentially confounding effects classically observed dur-
ing sequential choices, statistical transition rules were constrained to

ensure a low repetition probability ( prepetition � 0.05) and to minimize
tandem repeats in sequences (Kornblum, 1969). Moreover, the pace of
perceptual decisions was chosen in accordance with the psychophysical
literature, which shows that the behavioral effect of surprise on response
time (RT) is minimized when repetition probability is low and the inter-
val between two perceptual decisions is short (Kornblum, 1969) and was
further adjusted to guarantee a high level of accuracy (�90%). Sequences
were selected to ensure average frequencies in the 0.05– 0.45 range for
each stimulus, thus controlling for oddball effect (Ranganath and Rainer,
2003) by ensuring that sequences did not contain rare events. All stimuli
occurred with the same probability over the whole experiment. Finally, for
each sequence, we selected the most sparsely distributed shape in the range
0.25–0.4 as the target. At the end of the scanning session, participants were
systematically asked about “their awareness of regularities” as in Harrison et
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the activity predicted by the decision model for neural populations accumulating sensory evidence. A decision is made when a

decision variable equates its threshold. Right panels illustrate how the reciprobit analysis of RT distributions reveals distinct

regulatory mechanisms of the decision process. Threshold modulation hypothesis: Reciprobit lines swivel toward lower RT when

predictability increases (top right panel), reflecting the lowering of the decision threshold (top left panel). Gain control hypothesis:
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variable toward the decision threshold (bottom left panel). b, Task design. Participants had to identify a target shape out of three

shapes by pressing a response button (red stars, ISI � 1.35 � 0.76 s SD). Unbeknownst to the subjects, the next shape could be

predicted on the basis of recent history. In first-order sequences, only the last trial had a predictive value on the next shape, whereas

in second-order sequences, both the last and the penultimate trials had a predictive value on the next shape. c, Example of a set of
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al. (2006). Only one subject reported he had noticed a pattern, once, during
the experiment but could not give a specific example.

Working hypothesis. Bayesian formulations of perceptual decision
making distinguish between the prior information (before observing the
stimulus) and the accumulation of evidence in term of likelihood (during
stimulus observation). In these formulations, the quantity accumulating
evidence starts at different levels, according to the prior information.
Evidence is then accumulated at a constant rate until the criterion is
reached. In the context of our design, before the stimulus arrives, the
predictive information (prior beliefs) will reset the level of activity and
therefore change the distance to the decision threshold. From this per-
spective, the predictive information is a prior and the information con-
veyed by the stimulus represents the evidence entailed by its likelihood.
Thus, our hypothesis was that both behavioral and fMRI data would be
better explained by an adjustment of the distance to the decision thresh-
old in proportion to the predictive information on the forthcoming stim-
ulus than by a modulation of the slope of the decision variable.

Note that in our paradigm, we kept the level of sensory information
constant (by using exactly the same three stimuli across the experiment).
This does not mean that what is being integrated in the current paradigm
is not sensory evidence. Indeed, perceptual decisions occur even when
visual categorization may appear “unambiguous” while monkeys make
saccades toward a target. For example, frontal eye field and lateral pre-
frontal cortex neurons exhibit a ramping activity that decrease after
reaching a threshold value (Kim and Shadlen, 1999), both when manip-
ulating the position (Hanes and Schall, 1996) or the color (Stanford et al.,
2010) of unambiguous targets.

Thus, although information about local stimulus-response predict-
ability is manipulated in the current study, it is not “integrated” over the
decision process (what is being integrated is still sensory evidence). This
approach mixing local stimulus-response predictability and perceptual
decision making distinguishes our study from the neuroimaging litera-
ture investigating which brain regions encode measures of information
theory, such as surprise and uncertainty (Huettel et al., 2005; Strange et
al., 2005) or their influences on EEG components or corticospinal excit-
ability (Bestmann et al., 2008; Mars et al., 2008).

Estimates of surprise and predictive information. In Shannon’s informa-
tion theory, the surprise of an event is defined by the current estimate of
its marginal log-probability (abbreviated as ut in Eq. 1). This measure has
been considered as an instantaneous measure of the level of saliency
(Harrison et al., 2006). For each new shape et, displayed at time step t, the
current estimate of the surprise (ut) is defined in the following way:

ut�et � i� � �log2�probt�et � i��. (1)

The predictive information of the upcoming event is an instantaneous
measure of the loss of uncertainty about its occurrence due to the knowl-
edge of the previous event(s) (also called “surprise reduction”). This last
measure quantifies the amount of information available at a given time to
predict the outcome of the ongoing perceptual decision and is poorly
correlated with the surprise (a high level of predictive information does
not necessarily mean that surprise is low). We computed both the pre-
dictive information conveyed by the last event (abbreviated as p1,t in Eq.
2) and by the last two events (abbreviated as p2,t in Eq. 3). For each new
shape et, displayed at the time step t, current estimates of the predictive
information ( p1,t and p2,t) are defined in the following way:

p1,t�et � i,et�1 � j� � log2�probt�et � i�et�1 � j�

probt�et � i� � (2)

p2,t�et � i, et�1 � j, et�2 � k� � log2�probt�et � i�et�1 � j,et�2 � k�

probt�et � i� �.

(3)

Supplemental Figure S1 (available at www.jneurosci.org as supplemental
material) illustrates the trial-to-trial fluctuations of the predictive infor-
mation conveyed by the last (Eq. 2) and by the last two (Eq. 3) shapes over
the course of two exemplary sequences.

The average predictive information over a whole sequence of events is
called the mutual information. By analogy with the predictive informa-
tion, we computed the mutual information conveyed by the last event
(abbreviated as Im1,t in Eq. 4) and by the last two events for each sequence
(abbreviated as Im2,t in Eq. 5). Mutual information is maximum when a
sequence is entirely determined (abbreviated as Immax in Eq. 6). It is
noteworthy that predictive information is an event-bound measure,
whereas mutual information pertains to the average predictability in a
sequence without relating to any specific event.

Im1,t � E
t,i

�p1,i� (4)

Im2,t � E
t,i

�p2,i� (5)

Immax � log2�k�, (6)

where k is the number of different shapes in a sequence.
Because participants learned the statistical structure of the sequence as

stimuli were presented, we used a simple Bayesian learning scheme (an
ideal Bayesian observer), in which all marginal and conditional proba-
bility estimates were updated after each new event. Our ideal Bayesian
observer was initialized with flat prior distributions and was reset at the
beginning of each new sequence to account for the lack of prior knowl-
edge on the upcoming sequence (Harrison et al., 2006). For each new
shape et, presented at time step t, current values of the marginal proba-
bility of the event i (Eq. 7) and of the joint probability of two successive
events i and j (Eq. 8) and of three consecutive events i, j, and k (Eq. 9) are
defined in the following way:

prob�et � i� �
ni

t � 1

�
i

ni
t � 1

(7)

prob�et � i, et�1 � j� �
ni, j

t � 1

�
i, j

ni, j
t � 1

(8)

prob�et � i, et�1 � j,et�2 � k� �
ni, j,k

t � 1

�
i, j,k

ni, j,k
t � 1

, (9)

where ni,j,k
t is the number of triplets i, j, k at time step t; and ni,j

t is the
number of duplets i, j at time step t.

We computed the surprise (Eq. 1) and the predictive information
(Eqs. 2, 3) at each time step using the estimates provided by Equations
7–9.

Multilinear model of response times. Behavioral analyses were per-
formed using the software packages R and Statistica (v7.1). We defined
the error rate as the number of missed targets divided by the total number
of targets over each sequence. Response times were calculated as the time
elapsed between the onset of a target and the subject’s response.

First, we searched for the best multilinear model of the observed RT
using a descending strategy. The error rate, the surprise, the predic-
tive information conveyed by the last shape and by the last two shapes
(abbreviated respectively as p1 and p2), as well as all the first-order
interactions between these explanatory variables were included in the
“full” model. Akaike information criterion was minimized after the
surprise and all first-order interactions were removed from the “full”
model (�surprise � �0.015, p � 0.126).

RT � �0 � �p1 � p1 � �p2 � p2 � �error rate � �1 � error rate� � �.

(10)

In the reduced behavioral model (Eq. 10), RTs are modeled as a
weighted sum of explanatory variables in which the standardized param-
eter estimates of the model, such as �p1 and �p2, are referred to as “be-
havioral” sensitivity because they represent the slope between response
times and the amount of predictive information conveyed by the last and
the penultimate shape. So, estimated �s correspond to the independent
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contribution of each explanatory variable to the prediction of RT. This
multilinear model is consistent with the relationship predicted by se-
quential sampling models of decision in which error rate and response
times depend on the amount of predictive information available, while
keeping the level of sensory information constant across trials. Note that,
by construction of our design, there was no predictive information con-
veyed beyond the penultimate event available to predict the forthcoming
event.

LATER model: how RT distributions are used to distinguish between the two
modulation mechanisms of the decision process. In the LATER (linear ap-
proach to threshold with ergodic rate) model (Carpenter and Williams,
1995; Reddi and Carpenter, 2000; Reddi et al., 2003), the onset of a
stimulus (e.g., a shape) is followed by the linear rise of a signal (decision
variable) from a starting point (red dashed line) to a decision threshold D
(Fig. 2a, blue line). A response is initiated when the decision signal reaches
the threshold. On different trials, the slope of the decision signal varies ran-
domly, but is distributed as a Gaussian probability density function with
mean slope s and with standard deviation sd (Hanes and Schall, 1996).
So, according to the LATER model, the distribution of RT reflects the
projection of the decision variable on the decision threshold and depends
on three parameters: the distance to the threshold (difference between
the starting point and the decision threshold), the mean slope, and its
standard deviation (as stated in Eq. 11 and Fig. 2).

Equation 11 simply expresses that, under the LATER model, the main
decision process yield 1/RT following a normal distribution, with mean
s/D and with standard deviation sd 2/D 2. In addition, fast guesses are
modeled as an additional normal distribution, whose mean is equal to
zero, and its own standard deviation.

1/RT3 N� s

D
,

SD2

D2 �. (11)

Since 1/RT of the main process is normally distributed (Eq. 11), it is
possible to compute z-scores that express the divergence of the observed
1/RT from the median 1/RT. Plotting z-scores of 1/RT’s cumulative dis-
tribution against RT plotted on a reciprocal time axis yields a straight
line, which is called a reciprobit plot (as illustrated in Fig. 2b). This
graphical representation is useful because the resulting line intersects
z-score � 0 at the median latency s/D, which depends on both the mean
slope (s) and the distance to the threshold (D), whereas it intersects RT �
	 at a point that does not vary with the distance to the decision threshold
(Fig. 2b). Importantly, the mathematical properties of the reciprobit
transformation provide us with a graphical representation that distin-
guishes between the two modulation mechanisms in the LATER model
(see Fig. 1a): (1) if the modulation mechanism is an increase of the slope
(sensory evidence gain control), then both intersects will vary in the same
proportion and the line will shift (Fig. 1a, lower right panel); and (2) if
the modulation mechanism is a decrease of the decision threshold, then
only the z-score � 0 intersect will vary, which will result in a swivel of the
reciprobit line around the RT � 	 intersect (Fig. 1a, upper right panel).

To summarize, the reciprobit transformation directly allows us to de-
rive the z-scores of 1/RTs cumulative distribution from the RT distribu-
tion. From these z-scores, it is then possible to estimate the parameters of
the LATER model (distance to the decision threshold, mean slope, and sd
of the slope) that best fit the data and to perform a Bayesian statistical test
to identify the mechanisms of regulation that best explain the changes
between conditions (decision threshold modulation or gain control of
the sensory evidence).

Psychophysics: LATER model and reciprobit plots. To assess the mecha-
nism underlying the effect of predictive information on decision, we
performed a standard reciprobit analysis (Carpenter and Williams, 1995;
Reddi et al., 2003).

First, we normalized each participant RT dataset to the population’s
average and standard deviation. Then, we pooled all the RT datasets
together and collapsed the behavioral data from first- and second-order
sequences using the optimal amount of predictive information. Next, we
discretized each participant RT dataset into equal bins and excluded
from further analysis those that did not contain enough data to allow for
reliable fits of the decision model. This constraint led us to exclude the
5% lowest predictive information values from further analyses. This is
because, in our experiment, the distribution of predictive information
had a long tail toward low values. By the end of these preprocessing steps,
we had sorted RT data into 6 bins with continuously increasing levels of
predictive information ([�0.43, �0.05, 0.25, 0.62, 1, 1.32] bits).

Then, we performed a reciprobit transformation on the resulting RT
distributions. This transformation is based on the LATER model and
makes testable predictions about how RT distributions should change
according to two different modulation mechanisms: distance to the de-
cision threshold or sensory evidence accumulation rate (Carpenter and
Williams, 1995; Gold and Shadlen, 2007) (Fig. 1a). Plotting the recipro-
bit lines, which are linearized cumulative RT distributions plotted on a
reciprocal time scale, highlights those changes.

In addition to this qualitative assessment of the mechanism regulating
the decision process, we used a Bayesian model selection strategy to
identify the regulation mechanism that most likely explained the changes
observed in RT distributions across levels of predictive information. To
do so, we fitted a LATER model using a standard simplex minimization
routine and a likelihood-based cost function under the hypotheses that
changes in RT distribution either resulted from changes in the sensory
evidence accumulation rate or resulted from changes in the distance to
the threshold. Model comparison was performed by fitting the LATER
model for each experimental condition in such a way that either the slope
or the distance to the decision threshold was fixed across condition,
depending on the hypothesis tested. Finally, we computed the log likeli-
hood ratio between the two hypotheses (LDT � LGain, difference between
the log likelihood of the distance to the threshold modulation, LDT, and
the log likelihood of the gain control mechanism, LGain) and used the
cutoff value of the Bayesian factor (LDT � LGain � 2.3) (Jeffrey, 1998) to
assess the significance level of our result. For example, a log likelihood
ratio equal to 4.6 indicates that a modulation of the distance to the
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tion sd. When the signal reaches the decision threshold, a motor response is initiated. In the

model, the amount of sensory evidence needed to reach a decision is represented by the differ-

ence between the starting point and the decision threshold, representing the distance to the

threshold D (Reddi and Carpenter, 2000). b, Relationship between RT distributions, reciprobit

plots, and LATER model parameters. The reciprobit plot represents the cumulative 1/RT distri-
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threshold is 100 times more likely than a gain control of the sensory
evidence (e 4.6 � 100).

To assess whether our finding that predictive information modulates
the decision threshold depended on some specific aspect of the LATER
model, we also fitted a Ratcliff’s drift-diffusion model (RDM) to our data
using the “D-mat” toolbox (Vandekerckhove and Tuerlinckx, 2008)
(http://ppw.kuleuven.be/okp/software/dmat/). However, because the
RDM has been specifically formulated for two-alternative choices, it was
not possible to use its standard formulation. Because our experiment is a
GO/NO-GO task, subjects only responded to one target, which implies
that there were no RT distributions for false-negative trials (no response
for a GO trial) and for true-negative trials (no response for a NO-GO
trial). Therefore, we adapted the D-mat toolbox to fit a GO/NO-GO
version of the RDM on our data: first, we modified the loss function to
only fit a “hit” RT distribution (Vandekerckhove and Tuerlinckx, 2008);
second, we fixed the relative position between the starting point and the
boundaries, which means that the changes in the distance from the start-
ing point to the boundary were a priori attributed to the boundary pa-
rameter. Overall, our version of the RDM (“single boundary” RDM)
retained from the version implemented in the D-mat toolbox the drift-
diffusion mechanism, the upper decision boundary, the explicit account
of nondecision time (and of its variability), and the variability in the
starting point. This version of the RDM was adequate because we only
estimated parameters relating to “hit” RT distributions. Note that if we
had investigated errors RT distributions and error rates, an implicit lower
boundary would also have been necessary (Gomez et al., 2007; Ratcliff
and McKoon, 2008).

With these modifications of the D-mat toolbox, it was possible to
reliably retrieve the distance to the decision threshold and the slope
parameters from synthetic RT datasets. Moreover, we assessed the ability
of the “single-boundary” RDM to correctly identify the modulation
mechanism underlying changes between conditions using only the hit
RT distribution and a Bayesian selection strategy [Bayesian information
criterion (BIC); smaller values mean a better model in terms of goodness
of fit and parsimony]. In the slope condition (a synthetic RT dataset
simulating a change in the slope of the accumulation of evidence), the
model in which the drift rate parameter was set free between conditions
had the best Bayesian information criterion (BIC drift rate � 41,162, BIC
boundary � 55,167). In the threshold condition (a synthetic RT dataset
simulating a change in the distance to the threshold), the model in which
the boundary parameter was set free between conditions had the best
Bayesian information criterion (BIC drift rate � 43,441, BIC bound-
ary � 43,075).

Finally, we performed a Bayesian selection analysis among drift-
diffusion models instantiating three alternative mechanisms (distance to
the decision threshold, nondecision time, average slope of diffusion pro-
cess) on our own RT dataset.

fMRI data acquisition. Subjects were scanned at the CERMEP - Imag-
erie du Vivant using a research dedicated 1.5 T MRI scanner (Siemens
Magnetom Sonata with an eight-channel head coil). We acquired 800
echo-planar T2*-weighted functional volumes (200 volumes/run, 4
runs) per experiment. Each volume comprised 28 slices acquired contin-
uously over 2.65 s (TE � 60 ms; interleaved acquisition; slice thickness 4
mm; 0.4 mm noncontiguous; parallel to the subject’s Sylvian fissure
plane; angle to AC–PC: 20 –30°; in-plane resolution: 3.44 
 3.44 mm 2;
matrix size: 64 
 64), allowing complete brain coverage. Additionally,
T1-weighted images were acquired at the end of each experiment (MP-
RAGE: TR � 1970 ms; TE � 3.93 ms; T1 � 1100 ms; resolution: 1 
 1 

1 mm 3; matrix size: 256 
 256). Head motions were minimized using
foam padding and headphones with earplugs were used to dampen the
scanner noise.

fMRI data preprocessing. Data preprocessing was performed using the
Statistical Parametric Mapping software (SPM2b, Wellcome Depart-
ment of Imaging Neuroscience, University College London, UK, www.
fil.ion.ucl.ac.uk/spm). The first three volumes of each run were removed
to allow for T1 equilibrium effects (197 volumes/run). Before statistical
analysis, we applied a slice-timing correction using the time center of the
volume as reference. Then, head motion correction was applied using
rigid-body realignment. We used realignment parameters during the

statistical analysis as covariates to model out potential nonlinear head
motion artifacts. Functional and morphological images were then nor-
malized into standard MNI space using SPM’s default templates. Finally,
functional volumes were resampled and smoothed with an 8 mm FWHM
Gaussian kernel. A 256 s temporal “high-pass filter” regressor set was
included in the design matrix to exclude low-frequency noise and
artifacts.

Finally, we explored the data for potential artifacts using tsdiffana,
mean and variance images (http://imaging.mrc-cbu.cam.ac.uk/imaging/
DataDiagnostics). An artifact is defined as the co-occurrence of a vari-
ance spike and a mean intensity drop uncorrelated with experimental
design. Only the last two volumes of one participant’s session met these
criteria and were modeled as confounds in the design matrix. Transla-
tional movements estimated during the realignment procedure were
small as compared to the voxel size (�1 mm).

General linear model 1: main fMRI data statistical analysis. Whole-
brain statistical parametric analyses were performed using a two-stage
random-effect approach. We estimated independently the model param-
eters from each subject’s dataset and then made population inferences
using the parameter intersubject variance. Regressors of interest were
constructed by convolving functions representing the events with the
canonical hemodynamic response function. Three event-related categor-
ical regressors (“stimulus regressor,” “decision-related regressor,” and
“motor regressor”) and three parametric regressors (surprise, predictive
information conveyed by the last shape, and predictive information con-
veyed by the last two shapes) were used to model the events occurring
during the sequences (Fig. 3).

(1) The first regressor modeled the visual stimulation as 0.3-s-long
boxcar functions time locked to the onset of visual stimuli (referred to as
the “stimulus regressor”).

(2) The ongoing processes during perceptual decision formation (re-
ferred to as the “decision-related regressor”) were modeled as boxcar
functions convolved with the response time duration, time locked to
each target onset. Because this condition pooled the decision-related
activity regardless of the context in which it took place, it modeled the
part of the decision-related activity not modulated by its context. Three
parametric regressors were added to the decision-related regressor to
account for the effect of surprise (Eq. 1) and predictive information (Eqs.
2, 3) on the decision process. These parametric regressors were hierar-
chically orthogonalized in the following order: surprise, predictive infor-
mation conveyed by the last shape only, and predictive information
conveyed by the last two shapes. This orthogonalization hierarchy natu-
rally emerged from the mathematical definitions of the parameters
(Büchel et al., 1998) and unambiguously separated the effect of the in-
formation conveyed by the last shape from the information conveyed by
the penultimate shape into two parametric regressors. To build these
regressors, we weighted each event of the decision-related regressor by
the current, and continuously updated, estimates of the parameters, so
that each event was characterized by its own set of parameter values.

(3) Finally, the last categorical regressor modeled the motor response
associated with the button press, and was modeled as a Dirac function
using the timing of the button press as onset. Thus, our model explicitly
separated the motor-related activity from the decision-related activity.

Statistical inferences were performed with a threshold of p � 0.05
(clusterwise) familywise error (FWE) corrected across the whole brain
( p � 0.001 voxelwise) (see supplemental Tables S1, S2, available at www.
jneurosci.org as supplemental material).

Correlation between “neural” and “behavioral” sensitivity to predictive
information. We reasoned that blood oxygenation level-dependent
(BOLD) activity in a brain region modulating the distance to the thresh-
old should be predictive of each participant’s RT variations (Figs. 4, 5).
Thus, we performed a correlation analysis between the sensitivity to pre-
dictive information estimated from brain activity and the sensitivity to
predictive information estimated from response times for both the infor-
mation conveyed by the last and the penultimate shape.

To measure the “behavioral” sensitivity to predictive information, we
fitted the multilinear model of RT previously identified to each individ-
ual RT set, thereby estimating its �s (Eq. 10). Here, the �s are measures of
the slope of the decrease in response time with increasing predictive
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information conveyed by the last and the
penultimate shape, regardless of the current
accuracy level. This analysis yielded a behavior-
based measure of the individual ability to use
the predictive information conveyed by the last
shape and the penultimate shape to modulate
the distance to the threshold. Then, to measure
the “neural” sensitivity to predictive informa-
tion, we extracted for each participant, and in
every brain region found to be sensitive to pre-
dictive information in the main fMRI analysis
[region of interest (ROI)-based approach us-
ing MarsBaR toolbox v0.38, p � 0.001 voxel-
wise; see below, ROI analyses], the � estimates
of the parametric regressors, which provided
us with measures of the slopes of the decrease
between event-related BOLD activity with in-
creasing predictive information conveyed by
the last shape and the penultimate shape.

Finally, we performed nonparametric correla-
tion analyses between individual “behavioral”
and “neural” sensitivity to identify the brain re-
gions in which the slope of the relationship be-
tween predictive information and BOLD activity
was predictive of the slope of the relationship be-
tween predictive information and RT (Spear-
man’s correlation) (see supplemental Table S1,
available at www.jneurosci.org as supplemental
material).

General linear model 2: controlling for poten-
tial confounding effects in the anterior cingulate
cortex. To assess the specificity of our fMRI
findings, we performed an additional statistical
parametric analysis, in which we added to the general linear model
(GLM) 1 (see Figs. 3, 6) three parametric regressors to the “decision-
related” regressor, orthogonalized in the following order: the first four
parametric regressors controlled for the effects of error likelihood, pre-
diction error, entropy, and surprise, whereas the following two paramet-
ric regressors modeled the modulation of BOLD signal by the predictive
information conveyed by the last shape and the predictive information
conveyed by the penultimate shape. This procedure ensured that any
potential confounding effect from the error likelihood, prediction error,
entropy, and surprise were removed from the estimation of the effects of
the predictive information parametric regressors.

The error likelihood parametric regressor was computed for each
sequence from participant error rates during target trials. The error
prediction parametric regressor (	t) was computed using a standard Res-
corla–Wagner algorithm (Dayan and Abbott, 2001), whose learning pa-
rameter (
) was adjusted to maximize the correlation between
participants RTs and Probt(et � i�et�1 � j), the reinforcement learning
estimate of the conditional probability of a shape (et) at the time step t
given the last shape (et�1) (Eqs. 12, 13). Finally, Bt is a binary function
equal to 1 when the expected event actually occurs (et � i) and to 0 if it
does not (et � i) (Eq. 13). The best fit of the Rescorla–Wagner algorithm
was obtained for a learning rate 
 � 0.08 (range explored 0.01– 0.15).

Probt�1�et�1 � i�et � j� � Probt�et � i�et�1 � j� � 
 � 	t

(12)

	t � Bt�1 � Probt�et � i�et�1 � j��. (13)

Then, the entropy parametric regressor was computed for each shape
from Equation 14. The entropy is classically viewed as an information-
theoretic equivalent to the concept of conflict (Berlyne, 1957).

Ht � E
t,i

�ut,i� (14)

General linear model 3: correlation between BOLD activity and LATER
model parameters. To assess the correlation between LATER model pa-

rameters and BOLD activity, we built and estimated a second variant of
GLM 1, in which we sorted the events previously included in the
“decision-related” regressor (Fig. 3) into four discrete levels of predictive
information ([�0.3, 0.18, 0.72, 1.22] bits), which divided the range of
predictive information into bins of equal size (see above, Psychophysics:
LATER model and reciprobit plots). Each bin included enough data to
reliably perform individual fits of the LATER model.

Then, using these four levels of predictive information, we built four
distinct categorical regressors, in which each event was modeled using a
Dirac function time locked on the onset of the target. These four cate-
gorical regressors replaced the “decision-related” regressor of GLM 1
(Fig. 3). GLM 1 and GLM 3 were otherwise identical.

This procedure allowed us to perform nonparametric correlation
analyses (Spearman’s correlation) between BOLD activities at the time of
decision averaged over the four levels of predictive information for each
participant and the corresponding averaged LATER model’s parameter
estimates (Figs. 5c, 7c) (see below, ROI analyses).

ROI analyses. We extracted ROI average of estimated �s for the three
parametric regressors included in GLM 1 and for the four categorical
regressors modeling the levels of predictive information in GLM 3. To
do so, ROIs were built from functional clusters from GLM 1 (p �
0.001, voxelwise) intersected with a 6-mm-radius sphere centered
on the cluster’s peak voxel using the MarsBaR toolbox (v0.38,
http://marsbar.sourceforge.net).

Conjunction analysis. We performed a conjunction analysis testing the
conjunction null (Nichols et al., 2005), using SPM2b to identify clusters
that exhibited significant negative parametric effects for predictive infor-
mation conveyed by the last and the penultimate shape at the onset of
decisions. However, because conjunction tests are not as sensitive as
single-contrast testing for the average effect over all contrasts and thus
underestimate the underlying effect (Friston et al., 2005), and because we
had a strong a priori hypothesis regarding the involvement of the DLPFC
in implementing the decision variable, here inferences were performed
with a level of significance of p � 10 �3 uncorrected (Fig. 7).

Structural equation modeling. First, to characterize functional subdivi-
sions between the anterior and posterior DLPFC, we built a morphologi-
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Figure 3. Regressors included in the statistical analysis of fMRI data. The main GLM included three categorical and three

parametric regressors (see Materials and Methods, General linear model 1: main fMRI data statistical analysis). The three categor-

ical regressors modeled the main steps of perceptual decision making: sensory processing, decision-related activity and motor

response. Three parametric regressors were derived from the decision-related regressors and hierarchically orthogonalized. These

parametric regressors modeled the modulation of BOLD activity at the time of decision by the surprise and the predictive informa-

tion conveyed by the last and the penultimate shape.
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cal ROI of the DLPFC (WFU PickAtlas atlas v2.4, http://fmri.wfubmc.edu,
dilatation parameter � 2 voxels, bilateral mask including BA9, BA10, and
BA46 from WFU PickAtlas built-in atlas, volume � 5994 voxels) and
computed statistical maps of the parametric effect of the predictive in-
formation conveyed by the last shape and the penultimate shape ( p �
0.001 voxelwise). From this analysis, we isolated four functional sub-
regions whose activity reflected the amount of predictive information
at the moment of the decision ( p � 0.05 clusterwise, SVC): left ante-
rior DLPFC, right anterior DLPFC, left posterior DLPFC, and right
posterior DLPFC.

Then, we extracted ROI-averaged time series during first- and second-
order sequences for each participant from 6-mm-radius spheres centered
at the peak voxel of the four brain regions identified in the DLPFC (Fig. 8,
dashed white circles) and the anterior cingulate cortex (ACC) (Fig. 8,
plain white circle) (N � 5124 volumes for each brain region and condi-
tion, no missing values or deleted data). Structural equation modeling
was performed using the Mx software package (v1.65b). Figure 8 repre-
sents the path diagram as arrows to indicate directional or symmetric
connections between the functional regions included in the model.
We performed a maximum-likelihood-based estimation of the model
path coefficients on the correlation matrix derived from the two re-
sulting time series and statistical inferences on path coefficient vari-

ations between the first- and second-order
sequences using a nested model approach
(supplemental Table S3, available at www.
jneurosci.org as supplemental material) (no
convergence problems or inadmissible
solutions).

The overall model fit was assessed with stan-
dard goodness of fit indices, all indicated a
good quality of fit (normed fit indices � 0.91,
centrality index � 0.9, and relative noncentral-
ity indices � 0.91; index values above 0.9 indi-
cate a good quality of fit) (Mueller, 1996).

Functional connectivity analysis. To identify
brain regions that were functionally coupled
with the ACC, we assessed the correlation be-
tween BOLD activity in this “seed” region and
BOLD activity in each voxel of the brain. To do
so, we extracted the cluster-averaged time
course from the functional cluster we found in
the ACC (Fig. 5a) (ROI-based approach using
MarsBaR toolbox v0.38, p � 0.001 voxelwise;
see above, ROI analyses) and included this time
course as a regressor not convolved with a he-
modynamic response function in a GLM. This
GLM also included a 256 s low-pass filter and
head motion parameters as regressors of non-
interest. We then computed group-level SPM
using the standard SPM’s RFX approach.
Supplemental Figure S6 (available at www.
jneurosci.org as supplemental material) shows
the main result of this analysis with a threshold
of 5% voxelwise, FWE corrected across the
whole brain.

Results
Psychophysics: predictive information
reduces the distance to the threshold of
the decision
RT decreased linearly as predictive infor-
mation increased (Fig. 4a, left and middle
panels), showing that participants suc-
cessfully used the statistical structure of
sequences to predict the forthcoming
shape. Moreover, participants adjusted to
the actual structure of the sequences (first
or second order) to exploit all the predic-
tive information available. Indeed, RTs

were better correlated with the predictive information conveyed
by the last two shapes (last shape and penultimate shape, rp2) (Fig.
4a, red line) than with the predictive information conveyed by
the last shape only (rp1) (Fig. 4a, orange line) during second-
order sequences, but not during first-order sequences (Fig. 4a)
(Hotelling’s t, first-order sequences, rp1 � rp2; p � 0.98; second-
order sequences, rp1 � rp2; p � 10�6). We also assessed the con-
tribution of the source (last or penultimate shape) of predictive
information on decision response time by fitting a multilinear
model to all participants’ RTs (see Materials and Methods, Mul-
tilinear model of response times). Predictive information had the
same influence on RT whether it was conveyed by the last shape
(�p1 � �0.148 � 10�2, p � 10�5) or by the penultimate shape
(�p2 � �0.148 � 10�2, p � 10�5; �p1 � �p2, t � �3.97 � 10�4,
p � 0.49), showing that the efficiency of the modulation did not
depend on the source of the information. This decrease in RT
with increasing predictive information did not occur at the cost
of accuracy, as shown by a factorial analysis crossing the type of
sequence (first order or second order) and the predictive infor-

Figure 4. Higher predictive information reduces the distance to the decision threshold. a, RT decreased as predictive informa-

tion increased in first-order [left panel: rp1 � �0.295 (orange), rp2 � �0.273 (red), both p � 10 �6] and second-order

sequences [middle panel: rp1 ��0.235 (orange), rp2 ��0.292 (red), both p �10 �6]. During second-order sequences (middle

panel), RTs were better correlated with the predictive information conveyed by the last two shapes (red) than with the predictive

information conveyed by the last shape only (orange) but not during first-order sequences (left panel), indicating that all available

predictive information was used in the regulation of the decision process. Finally, there was no effect of surprise (right panel, green)

on RT (rsurprise � �0.02, p � 0.126). b, Reciprobit plot based on pooled RT from all participants showing a swivel toward lower

RT when predictive information increases, as hypothesized in Figure 1a (upper right panel). This aspect is confirmed by the log

likelihood ratio (LDT � LGain), in accordance with the hypothesis of the modulation of the distance to the threshold. c, Distance to

the decision threshold as a function of the level of predictive information available. Error bars represent 95% confidence intervals

of the distance to the threshold. The color code represents the same levels of predictive information in both panels (from �0.43 to

1.32 bits).
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mation averaged over each sequence (supplemental Fig. S2, avail-
able at www.jneurosci.org as supplemental material; Eqs. 4, 5).
Finally, there was no effect of surprise on RT in our experiment,
as expected from previous literature (Fig. 4a, right panel) (Korn-
blum, 1969).

Next, to identify which of the two predicted mechanisms—
modulation of the distance to the threshold or gain control of the
sensory evidence—mediated the effect of predictive information
on decision making, we fitted a LATER model to the RT distri-
bution of the subjects’ responses and compared the likelihood of
the two modulation mechanisms (Carpenter and Williams, 1995;

Reddi et al., 2003). The modulation of the distance to the thresh-
old by predictive information was significantly more likely than a
gain control of the sensory evidence [log likelihood ratio, defined
as the difference between the log likelihood of the distance to the
threshold modulation hypothesis (LDT) and the log likelihood of
the gain control hypothesis (LGain), LDT � LGain � 148.42, which
is “decisive” according to Bayesian inference theory] (Jeffrey,
1998). Moreover, individual model fits showed that all the par-
ticipants used predictive information to modulate their distance
to the decision threshold, except for two participants for whom
data did not allow to conclusively select a mechanism over the
other (supplemental Fig. S3, available at www.jneurosci.org as sup-
plemental material). Then, we performed a reciprobit analysis of the
population’s RT distribution (linearization of RT cumulative distri-
bution resulting in “reciprobit lines”) (see Materials and Methods,
Psychophysics: LATER model and reciprobit plots, and Fig. 4b). This
analysis provided us with a graphical representation of the mecha-
nism modulating decision RT based on the variations of the recip-
robit line for increasing amounts of predictive information: if the
distance to the threshold decreases, then the line swivels around an
intercept point toward lower RT (as in Fig. 1a, top right panel). By
contrast, if the slope of the decision variable increases, then the line
shifts toward lower RT (as in Fig. 1a, bottom right panel). The swivel
of the reciprobit line with increasing levels of predictive information
observed in Figure 4b further confirmed the reduction of the dis-
tance to the threshold by higher predictive information (supplemen-
tal Fig. S3, available at www.jneurosci.org as supplemental material).
Finally, we observed a strong negative correlation between the dis-
tance to the threshold and predictive information (r � �0.995, p �
10�6) (Fig. 4c).

These results did not depend on specific features of the LATER
model since fitting a drift-diffusion model to our dataset also led
to the conclusion that predictive information modulates the dis-
tance to the threshold (log likelihood ratio, LDT � LGain �
89.051). Furthermore, there was an excellent agreement between
the distance to the threshold estimated using the LATER and the
drift-diffusion models for all levels of predictive information (r �
0.99, p � 10�6).

Thus, our behavioral results demonstrate that the effect of
predictive information on decision RT is mediated by the mod-
ulation of the distance to the decision threshold, not by gain
control, and uses all the predictive information available to min-
imize decision RT.

Brain network responding to predictive information
In parallel with our behavioral results showing faster RTs with
increasing predictive information (Fig. 4a), we investigated the
relationship between decision-related brain activity and predic-
tive information (see Materials and Methods, General linear
model 1: main fMRI data statistical analysis; and Fig. 3). The
results revealed a negative correlation between predictive infor-
mation conveyed by the last shape and the BOLD activity in the
ACC, the inferior frontal gyri bilaterally, the right intraparietal
sulcus region (IPS), and the DLPFC bilaterally ( p � 0.05 cluster-
wise corrected for multiple comparisons across the whole brain)
(see Fig. 5a and supplemental Table S1, available at www.
jneurosci.org as supplemental material).

These patterns of decision-related activity were preserved
when adding prediction errors, error likelihood, entropy (which
is a proxy for conflict), and surprise as potential confounds in a
new analysis, supporting the specificity of the relationship be-
tween BOLD activity in all these brain regions and predictive
information (supplemental Table S2, available at www.jneurosci.

Figure 5. Event-related response in the ACC predicts individual ability to use predictive

information to modulate the distance to the threshold. a, Parametric response to the amount of

predictive information conveyed by the last shape (rendered with a threshold of p � 10 �3

uncorrected, activations surviving a threshold of 5% clusterwise corrected across the whole

brain are circled in red). The color scale represents the slope of the decrease in activity for an

increasing amount of predictive information conveyed by the last shape. Note that it does not

reflect deactivation. Also note that additional brain regions (not shown here) also survived the

statistical threshold used and are listed in supplemental Table S1 (available at www.jneurosci.

org as supplemental material). b, Scatter plots of correspondence between “neural” and “be-

havioral” sensitivities to predictive information in the ACC (n � 14). For each participant, the

two sensitivity measures link event-related responses in the ACC and modulation of RTs. (See

Materials and Methods, Correlation between “neural” and “behavioral” sensitivity to predictive

information.) Individual differences in “behavioral” sensitivity to predictive information con-

veyed by the last shape (left) and the penultimate shape (right) were predicted by individual

differences in “neural” sensitivity in the ACC. Higher “behavioral” sensitivity to predictive infor-

mation directly reflects the ability to modulate the distance to the threshold. c, Scatter plots of

correspondence between BOLD signal change in the ACC and the distance to the decision

threshold (left panel) or the gain of the sensory evidence (right panel). Each point represents the

BOLD signal change in the ACC plotted against the distance to the decision threshold estimated

using the LATER model averaged over the four levels of predictive information (�0.3, 0.18,

0.72, 1.22 bits) for each subject.
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org as supplemental material; and see Materials and Methods,
General linear model 2: controlling for potential confounding
effects in the anterior cingulate cortex). This additional analysis
excludes alternative interpretations of the ACC’s response in
terms of conflict monitoring, postdecisional prediction errors,
and error monitoring (Fig. 6; supplemental Fig. S4, available at
www.jneurosci.org as supplemental material) (Holroyd and
Coles, 2002; Botvinick et al., 2004; Brown and Braver, 2005).

The anterior cingulate cortex modulates the distance to the
threshold of the decision
Within the brain regions showing a parametric response to pre-
dictive information (supplemental Table S1, available at www.
jneurosci.org as supplemental material), we then assessed
whether individual differences in brain activity during decision
making predicted individual differences in the ability to exploit
predictive information to reduce response time (see Materials
and Methods, Functional connectivity analysis). From our be-
havioral analyses showing that the modulation of the distance to
the threshold results in a linear decrease of RT with increasing
predictive information (Fig. 4), we predicted that in the brain
regions modulating the distance to the threshold, individual dif-
ferences in “neural sensitivity,” defined as the slope of the de-
crease in event-related activity as predictive information
increased, should predict “behavioral sensitivity,” i.e., the slope

of the decrease in RT as predictive infor-
mation increased. The ACC was the only
brain region in which individual differ-
ences in event-related response (“neural”
sensitivity) predicted each individual’s
ability to use the information available to
modulate the distance to the threshold
(“behavioral” sensitivity) (Fig. 5b). More-
over, this link between ACC’s function
and modulation of the distance to the de-
cision threshold was further supported by
the positive correlation between ACC’s
BOLD activity and distance to the deci-
sion threshold (r � 0.625, p � 0.017) (Fig.
5c, left panel), but not between ACC’s
BOLD activity and the slope of the accu-
mulation of sensory evidence (r � 0.081,
p � 0.785) (Fig. 5c, right panel). Together,
these results demonstrate that the ACC is
involved in adjusting the distance to the
threshold in proportion to the current
amount of predictive information.

The dorsolateral prefrontal cortex
codes the decision variable
In a next step, we took advantage of basic
properties of sequential sampling models
to identify the brain regions computing
the decision variable. First, assuming a
coupling between neuronal firing rates
and BOLD activity, we predicted that the
BOLD response in the brain regions cod-
ing the decision variable should increase
with slower decision RT and decrease
when predictive information increases
(i.e., when the distance to the threshold
decreases). This hypothesis is based on the
observation that the duration of the

ramping neuronal activity coding the decision variable predicts
RT and that its height correlates with the distance to the threshold
(as illustrated in Fig. 1a, top left panel) (Hanes and Schall, 1996;
Huk and Shadlen, 2005). Second, paralleling our behavioral re-
sults on RTs, the influence of predictive information on the
BOLD response should not depend on the information source
(last or penultimate shape) and there should be no influence of
surprise on the BOLD response. Finally, BOLD response in brain
regions coding the decision variable should reflect the slope of
sensory evidence accumulation.

A conjunction analysis between brain regions showing
decision-related activity decreasing with higher predictive infor-
mation conveyed by both the last and the penultimate shapes
isolated the anterior part of the right DLPFC and the right IPS
( p � 0.001 uncorrected) (Fig. 7a). As expected, BOLD activity in
these brain regions was identically modulated by the predictive
information conveyed by the last and by the penultimate shape
(Fig. 7b) (paired t test, p1 � p2, orange and red bars; right IPS: p �
0.43; right DLPFC: p � 0.34), and there was no influence of
surprise on neural activity in these brain regions (Fig. 7b) (t test,
u � 0, green bars; rIPS: p � 0.29; rDLPFC: p � 0.8).

Among these two brain regions, we assessed the correlation
between BOLD response and the slope of sensory evidence accu-
mulation (see Materials and Methods, General linear model 3:
correlation between BOLD activity and LATER model parame-

Figure 6. Whole-brain analysis of parametric responses to entropy, surprise, error likelihood and prediction error. a, Statistical

maps are rendered with a very lenient uncorrected threshold of p � 0.01 to illustrate the absence of effect of these potential

confounds in the ACC. Left and right sagittal views are shown in the left and right columns. The cold color scale represents negative

correlations and the hot color scale represents positive correlations. b, ROI-average parametric response in the ACC to surprise ( U),

error likelihood (Error), prediction error (TD), and entropy (H). None of the four parametric regressors explained a significant

portion of the BOLD activity in the ACC (NS, not significant).
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ters). Indeed, although the strength of sensory evidence was kept
constant throughout the experiment, there were fluctuations of the
slope of sensory evidence accumulation between subjects, as can be
seen in supplemental Figure S3 (available at www.jneurosci.org as
supplemental material). These individual fluctuations of the slope of
sensory evidence accumulation correlated with BOLD activity in the
right DLPFC (r � 0.64, p � 0.016), but not in the right IPS (r � 0.09,
p � 0.75), thereby strongly supporting the involvement of the
DLPFC in coding the decision variable (Fig. 7c).

Effective connectivity between the anterior cingulate cortex
and the dorsolateral prefrontal cortex
Finally, having characterized the complementary computations
performed in the ACC (Figs. 4, 5), which modulates the distance
to the threshold, and the DLPFC region coding the decision vari-
able (Fig. 7), we investigated whether the effective connectivity
from the ACC to this DLPFC region increased when optimal
regulation of the distance to the threshold required more com-
plex computations. We formalized our hypothesis as a structural

equation model (path diagram represented with arrows connect-
ing the ACC to the DLPFC in Fig. 8), based on known anatomical
pathways between the ACC and the DLPFC (Beckmann et al.,
2009) and an ROI analysis of the parametric effect of predictive
information in the DLPFC (Fig. 8). When comparing first-order
to second-order sequences, a situation in which computation of
the optimal threshold adjustment increases in complexity, the
path coefficient from the ACC to the region of the DLPFC that
codes the decision variable (Fig. 8, right anterior DLPFC’s acti-
vation, x, y, z: 45, 45, 12) increased significantly, which was not
the case for path coefficients along the other paths originating
from the ACC (Fig. 8; supplemental Table S3, available at www.
jneurosci.org as supplemental material). Interestingly, this effect
was paralleled by an increase in the information flow from right
anterior to posterior DLPFC region (right posterior DLPFC acti-
vations, x, y, z: 39, 6, 27).

Discussion
The accuracy of a perceptual decision depends on the amount of
sensory evidence accumulated (Gold and Shadlen, 2007). How-
ever, gathering evidence takes time, which results in a tradeoff
between a decision’s speed and the accuracy achieved. Thus, op-
timal decision making should exploit all sources of information
available, taking advantage of both the sensory evidence extracted
from the environment and the knowledge of contingencies built
upon past experiences (Bogacz, 2007b; Gold and Shadlen, 2007).
Here, we showed that humans effectively use the predictability
of forthcoming events to modulate the distance to the thresh-
old of their decisions, substituting predictive information for
sensory information in the decision process to speed up action
selection without loss of accuracy (Fig. 4; supplemental Fig.
S2, available at www.jneurosci.org as supplemental material).
Remarkably, people both estimate and use predictive informa-

Figure 7. Brain regions coding the decision variable. a, Conjunction map showing the brain

regions activated during perceptual decision making in which BOLD activity is negatively mod-

ulated by the amount of predictive information conveyed by the last and the penultimate

shape. We rendered our map using an uncorrected threshold of p � 0.001 (level of significance

used for inference, red voxels) and a threshold of p � 0.005 to show the full extent of the

activations (yellow voxels). b, Average parametric response to surprise (u) and predictive infor-

mation ( p1 and p2) in these brain regions. The parametric response to the predictive informa-

tion conveyed by the last shape ( p1) and the penultimate shape ( p2) was not significantly

different (NS) in any of the regions identified ( p1 � p2, orange and red bars; rIPS: p � 0.43;

rDLPFC: p � 0.34). There was no parametric response to surprise (u � 0, green bars; rIPS: p �
0.29; rDLPFC: p � 0.8). c, Scatter plots of correspondence between BOLD signal change in the

ACC and accumulation’s slope average, for each of the brain regions shown in Figure 7a (circled

in red; see Materials and Methods, General linear model 3: correlation between BOLD activity

and LATER model parameters). Each point represents the BOLD signal change in the ACC and the

slope of sensory evidence accumulation estimated using the LATER model averaged over the

four levels of predictive information (�0.3, 0.18, 0.72, 1.22 bits) for each subject (see supple-

mental Fig. S3, available at www.jneurosci.org as supplemental material).
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Figure 8. Diagram of effective connectivity between ACC and DLPFC. DLPFC subregions in

which BOLD signal decreased as the predictive information conveyed by the last shape increased

are rendered in blue, DLPFC subregions in which BOLD signal decreased as the predictive infor-

mation conveyed by the penultimate shape increased are rendered in green and DLPFC subre-

gions in which both effects were present are rendered in red ( p � 0.005 uncorrected, for

display). Red cluster corresponds to the DLPFC subregion coding the decision variable shown in

Figure 7. The plain white circle represents the ACC, which is buried within the medial wall of the

frontal cortex. The structural equation model included oriented path (arrows) connecting the

ACC and the four functional subregions found in the DLPFC. Dashed circles white indicate the

location and the extent of the spheres used for time series extraction. A yellow arrow indicates

a significant increase of the path coefficient between first-order and second-order sequences,

whereas a black arrow indicates a significant decrease of the path coefficient (all p � 10 �2).

Finally, white arrows indicate path coefficient variations that are not significant. Variations of

effective connectivity from first-order sequences to second-order sequences are indicated as

relative variations next to each path (supplemental Table S3, available at www.jneurosci.org as

supplemental material, indicates absolute values and statistical significance).
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tion optimally, adjusting to environmental dynamics of vary-
ing complexity.

The key novel finding reported in this study is the coding in
the ACC of a signal reflecting the adjustments of the distance
to the threshold in proportion to the current amount of pre-
dictive information. This pivotal role of the ACC in the contex-
tual guidance of the decision process is supported by two lines of
evidence: (1) neural sensitivity to predictive information in the
ACC accurately predicts individual fluctuations in the ability to
use predictive information to modulate the distance to the
threshold of the decision (Fig. 5); and (2) effective connectivity
from the ACC to the DLPFC region accumulating sensory evi-
dence increases when optimal adjustment of the distance to the
threshold requires more complex computations, reflecting the
increased weight of ACC’s regulation signals in the decision pro-
cess (Fig. 8). Overall, our results strongly support the idea that
contextually optimized decisions arise from the integration of
complementary computations performed in a network of spe-
cialized brain regions. In this conceptual framework, the ACC’s
main function is the computation of regulation signals that opti-
mally adjust the distance to the threshold to the context.

The involvement of the DLPFC in the accumulation of sen-
sory evidence is supported by the fact that BOLD activity ob-
served in this brain region (1) increased with slower decision
response times, (2) was negatively modulated by the amount of
predictive information conveyed by the last and the penultimate
shape, (3) did not depend on the source of predictive information
(last or penultimate shape), and (4) is correlated with the slope of
the decision variable (Fig. 7). This finding extends previous re-
ports that the DLPFC accumulates sensory evidence related to the
correct choice (Kim and Shadlen, 1999; Heekeren et al., 2004;
Philiastides and Sajda, 2006; Philiastides and Heekeren, 2009).
Note that we implicitly referred to sensory evidence accumula-
tion as the computational mechanism by which a decision vari-
able is implemented, but we acknowledge that other mechanisms
have been proposed and are also possible (Ditterich, 2006; Cisek
et al., 2009). Finally, the DLPFC activity we observed cannot be
attributed to higher attention at the time of target appearance
because this would have predicted increased BOLD response with
higher predictive information (the latter being associated with
faster RTs in our task). By contrast, we observed a negative cor-
relation between predictive information and BOLD signal in this
brain region (Fig. 7).

Previous fMRI studies reported a relationship between choice
uncertainty and activity in the medial prefrontal cortex when
subjects learn through trials and errors the probability of making
a correct choice (Volz et al., 2003; Huettel et al., 2005; Volz et al.,
2005; Grinband et al., 2006; Huettel, 2006; Platt and Huettel,
2008). These findings parallel studies using fMRI in humans or
brain lesions in monkeys showing that one of ACC’s critical func-
tions is to build and update an extended action/reward history to
guide future decisions optimally (Hampton et al., 2006; Kennerley et
al., 2006; Behrens et al., 2007). Our results draw an important link
between these two fields of research by showing that the ACC is
involved in the regulation of the decision-making process using
predictive information (a measure of the reduction of uncer-
tainty estimated on the basis of the history of associations be-
tween successive events) and suggests that adjustment signals of
the distance to the threshold in the ACC may be a general com-
putational mechanism for the contextual guidance of decisions.
Interestingly, theoretical insights into representational learning
suggest that a learning signal is needed to support such a function
(Williams and Goldman-Rakic, 1998; Holroyd and Coles, 2002;

Friston, 2003; Dreher et al., 2006; D’Ardenne et al., 2008). The
midbrain activation we observed concomitant with the ACC ac-
tivation could serve such a functional role since prediction error
signal has previously been found in the midbrain (although this
cluster did not survive correction for multiple comparison, p �
0.001 uncorrected) (see Fig. 5a) (Dreher et al., 2006; Behrens et
al., 2007; D’Ardenne et al., 2008).

Previous accounts of the ACC’s function have stressed factors
other than the contextual regulation of the decision-making pro-
cess, such as the monitoring of errors and conflicts (Carter et al.,
1998; Botvinick et al., 2004; Ridderinkhof et al., 2004), the likeli-
hood of errors (Brown and Braver, 2005), and the role of postde-
cisional prediction-error signals (Holroyd and Coles, 2002).
However, none of these alternative functions could account for
the relationship observed here between ACC activity and predic-
tive information. Indeed, additional fMRI analyses of our data
showed that both the likelihood of error and the prediction error
failed to explain our BOLD activity in the ACC at the time of
decision formation (Fig. 6). Moreover, once controlled for the
level of predictive information, BOLD activity in the ACC did not
significantly differ between slow and fast responses, which rules
out interpretations of our ACC activity in terms of conflict mon-
itoring or spurious correlation with RT, which would have pre-
dicted that decisions with longer RTs are associated with greater
levels of conflict and with higher level of ACC activity (supple-
mental Fig. S5, available at www.jneurosci.org as supplemental
material). Moreover, in our experiment, the entropy, which has
been proposed as a direct measure of conflict (Berlyne, 1957) did
not account for a significant part of BOLD activity in the ACC
(supplemental Table S2, available at www.jneurosci.org as sup-
plemental material; Fig. 6).

It should be noted that ACC’s regulatory function of the dis-
tance to the threshold does not necessarily imply that this brain
region directly implements the threshold of the decision. In fact,
a number of theoretical accounts propose that the basal ganglia
implement a gating mechanism that signals, by a phasic increase
of activity in the direct pathway, the moment when the activity of
cortical neurons coding the decision variable crosses the decision
threshold (Lo and Wang, 2006; Bogacz, 2007a, 2009; Frank et al.,
2007). This phasic increase of activity would cancel the tonic
inhibition exerted by the basal ganglia’s output nuclei on motor
command centers (Redgrave et al., 1999). Despite a current lack
of direct evidence, this proposal emphasizes the potentially cen-
tral role of cingulostriatal projections in conveying contextual
regulation signals from the ACC to the main input structure of
the basal ganglia (Kunishio and Haber, 1994; Lo and Wang,
2006). Supporting this hypothesis, we observed a strong correla-
tion between BOLD activity in the ACC and in the striatum,
showing that these two brain regions are functionally coupled
when making simple decisions (supplemental Fig. S6, available at
www.jneurosci.org as supplemental material; Materials and
Methods, Functional connectivity analysis).

Moreover, a recent fMRI study comparing perceptual deci-
sions with cues emphasizing speed or accuracy reported a nega-
tive correlation between individual variations of a measure for
response caution (ratio between the starting point and the deci-
sion threshold) and BOLD activity at the time of the cue in both
the pre-SMA and the striatum (Forstmann et al., 2008). Thus, the
pre-SMA and the striatum may be involved in motor preparation
of fast action when explicitly cued for speed and may implement
the global slowing down observed when cueing for higher accu-
racy. Other recent fMRI studies also explicitly emphasized the
speed of the perceptual decision at the expense of its accuracy
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(Ivanoff et al., 2008; van Veen et al., 2008). By contrast, in our
study, the modulation of the decision process relied upon predic-
tive information (conveyed by recent history) on the forthcom-
ing stimulus, a quantity that participants implicitly tracked and
updated online. Our findings highlight the role of the ACC in
keeping track of past events to build an inner model of contin-
gencies and in adjusting the distance to the decision threshold
and address a more general contextwise modulation of the deci-
sion process, which did not result in a simple global inhibition or
facilitation of action preparation, but in a weighting of each possible
outcome of the decision based on its likeliness. Consistent with our
proposal, a recent fMRI study showed that individual differences in
perceptual decision criterion shifts induced by expected losses cor-
relates with BOLD activity in the ACC. Although the authors did not
analyze their data within the framework of sensory evidence accu-
mulation models, their findings indicate that asymmetric category
costs may affect perceptual decision making in a similar way to
changes in category expectations (Fleming et al., 2010).

In conclusion, combining psychophysics, model-driven fMRI
and the framework of information theory, we characterized the
influence of predictive information on two basic elements under-
lying the formation of human perceptual decision (distance to
the threshold and decision variable). Our results reveal how these
elements are coded in the human brain and shed a new light on
the respective functions played by the DLPFC and the ACC in
perceptual decision making. They also suggest new architectural
principles governing the organization of the human frontal lobe
and how the interactions between the DLPFC and the ACC are
required for optimal decision making.
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Figure S1: Illustration of the predictive information dynamic over the course of a whole 
experiment. The estimated mutual information was updated after each new shape and 
progressively rose from the beginning of each sequence to a maximum as the sequence 
structure was progressively disclosed (Upper panel, Eq. 4-5). Low, Medium and High level of 
Im refer to mutual information (Eq. 4-5). During second-order sequences, the mutual 
information of the last two shapes (red line, Eq. 3) was significantly higher than the mutual 
information of the last shape only (orange line, see Methods, Eq. 2) as seen in the bottom 
right panel. During first-order sequences, there was, on average, no extra predictive 
information conveyed by the penultimate shape, as reflected by the equality between mutual 
information (bottom left panel). Note the large trial-to-trial fluctuations of the predictive 
information (used as parametric regressors) during both sequence types. 



 

 
 

Figure S2. Relationship between increasing mutual information in first and second-
order sequences and RT (red circles) and error rates (green bars). RT decreased 
monotonically as the mutual information of sequences increased (F=404.1, p<10-7). However, 
this decrease in RT was not paralleled by increased error rates (Mutual information, F=4.23, 
p=0.016; No effect of sequence order, F=2.79, p=0.096; No interactions, F=2.99, p=0.053). 
RTs were on average 14.11 ms longer for second-order sequences compared to first-order 
sequences (F=79, p<10-7, no interaction, F=2.1, p=0.118). 

 
 
Figure S3: Reciprobit plots for each participant. Most of the individual reciprobit plots 
shows a clear swivel toward lower RT when predictive information increases, as hypothesized 
in Figure 1a (upper right panel). The values of each individual’s log likelihood ratio (LDT-
LGain) are displayed on each reciprobit plot, favoring the distance to the threshold hypothesis 
in all but 2 subjects (subjects 12 and 13). For these two subjects, evidence did not allow to 
conclusively choose one mechanism over the other. 

 
 



 

 
 
 

Figure S4: Whole-brain analysis of parametric responses to the amount of predictive 
information conveyed by the last shape when accounting for the error likelihood, the 
prediction error, the uncertainty and the surprise (threshold of p<0.001, see methods 
GLM2). (A) Statistical map is rendered on a glass brain. (B) The crosshair indicates the 
coordinate of ACC’s peak activity (x,y,z=9,18,42, Zmax=5.04). 

 

 
 
Figure S5: (A) Paired difference in RT between fast and slow responses as a function of 
the level of predictive information. Correct target trials were binned according to the level 
of predictive information ([-.43,-.05,.25,.62,1,1.32] bits) and to the response speed (fast and 
slow responses, according to each subject’s median RT). No effect of the level of predictive 
information was observed on the paired difference in RT between fast and slow responses 
(effect of predictive information on the paired difference in RT between slow and fast 
responses: F4,65=1.1242, p=0.3529). (B) Paired difference in ACC’s BOLD signal between 
slow and fast responses as a function of the level of predictive information. There was no 
difference in ACC BOLD activity between slow and fast responses for any of the 5 levels of 
predictive information (T-test, -0.38 bits: p= 0.1643, .06 bits: p=0.0731, .41 bits: p=0.1353, 
.92 bits: p=0.2040, 1.3 bits: p=0.8053). No effect of predictive information on the paired 
difference in ACC BOLD activity was observed between slow and fast responses (F4,65= 0.86, 
p=0.4937). Error bars in panels A and B represent 95% confidence intervals. 



 
 
 
 
 

 
 
Figure S6: Group-level map of functional connectivity using the ACC as seed region. 
Red pixels indicate brain regions showing a significant correlation with BOLD activity in the 
ACC (threshold of 5% FWE whole-brain corrected). 

Table S1: Whole brain analysis of parametric response to predictive information. 
 

Location 
 

MNI 
(x,y,z ;mm) 

 
Zmax 

 

Cluster 
extent 
(voxel) 

Significance 
(whole-brain  
cluster-wise  
corrected) 

Correlation 
coefficient 

(BOLD, sr1) 

Correlation 
coefficient 

(BOLD, sr2) 

Correlation 
coefficient 

(BOLD,Gain) 
Predictive information conveyed by the last shape : negative parametric effect 

Anterior Cingulate Cortex 9 18 42 5.55 233 ≤10-4 .635-0.0036 .697-0.006 .081-NS 
L IFG / Anterior Insula -48 18 -3 5.28 184 ≤10-4 .393-NS .112-NS .103-NS 
R IFG / Anterior Insula 42 24 -6 5.10 402 ≤10-4 .125-NS .424-NS .006-NS 
R Intra Parietal Sulcus 36 -48 45 4.87 120 ≤10-4 .204-NS .428-NS .195-NS 
R DLPFC 12 3 60 4.44 36 ≤10-4 .397-NS .477-NS .367-NS 
R Superior Temporal 
Gyrus 63 -42 21 4.05 95 ≤10-4 .226-NS .323-NS .336-NS 
L DLPFC -42 39 33 3.67 31 0.018 .182-NS .195-NS -.037-NS 

Predictive information conveyed by the last shape : positive parametric effect 
Posterior Cingulate Cortex -12 -54 24 3.74 86 ≤10-4 N/A N/A N/A 

 

Table S2: Whole brain analysis of parametric response to predictive information, 
including the error likelihood the prediction error and the entropy as nuisance 
regressors. 

Location 
 

MNI 
(x,y,z ;mm) Zmax 

Cluster extent 
(voxel) 

Significance 
(Whole-brain cluster-

wise corrected) 
Predictive information conveyed by the last shape : negative parametric effect 

R Anterior Cingulate Cortex 9 18 42 5.04 50 ≤10-3 
L Anterior Cingulate Cortex -6 12 51 4.51 44  2.10-3 
L IFG / Anterior Insula -48 15 0 4.02 50 10-3 
R Anterior Insula 42 24 -6 4.86 105 ≤10-4 
R IFG 60 15 6 4.22 42 3.10-3 
R Intra-Parietal Sulcus 54 -39 51 3.97 40 4.10-3 

Predictive information conveyed by the last shape : positive parametric effect 
Posterior Cingulate Cortex -12 -51  27 3.90 47 0.002 
Middle Temporal Cortex 57 -12 -27 3.79 33 0.012 
 



Table S3: Path coefficient variations between first and second order sequences from 
effective connectivity analysis. See figure 8 for the corresponding diagram of effective 
connectivity. 
 

Path Path coefficient 
(1st order) 

Path coefficient 
(2nd order) 

Significance 
(Chi-squared, 1 df) 

ACC > Right rostral DLPFC 0.3417 0.3962 p=0.003 
ACC > Right caudal DLPFC 0.2108 0.2052 p=0.779 

ACC > Left rostral DLPFC 0.2819 0.134 p=0.007 
ACC > Left caudal DLPFC 0.1253 0.167 p<0.001 

Inter-hemispheric rostral DLPFC 0.2375 0.2867 p<0.001 
Inter-hemispheric caudal DLPFC 0.07 0.0653 p=0.639 

Right rostral DLPFC > Right caudal DLPFC 0.3364 0.4875 p<0.001 
Left rostral DLPFC > Left caudal DLPFC 0.2618 0.2015 p<0.001 
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Introduction 

When ordering a dessert from a set menu, choosing between the apple pie and the 

strawberry tart will solely depend on the subjective value attributed to each sweet: there is no 

correct answer, only options that are more or less desirable according to one’s subjective 

preferences. Such decisions, made on the basis of options’ subjective values, are called 

economic choices (Padoa-Schioppa and Assad, 2006; Padoa-Schioppa and Assad, 2008; 

Kable and Glimcher, 2009). Proofs in utility theory demonstrate that any value-based decision 

algorithm underpinned by a single common scale of options’ desirability, called “common 

currency”, yield consistent economic choices (Samuelson, 1937). So, an important 

assumption in economy is that value-based decision-making entails two separable stages: the 

aggregation of all the options’ meaningful features into subjective values ordered on a 

common scale (valuation stage) and the selection of the option associated with the most 

valuable outcome (decision-making stage) (Kable and Glimcher, 2009; Rangel et al., 2008). 

In the past few years, there has been a surge of interest in the brain valuation system 

suggested by utility theory, which yielded converging evidence linking orbito-frontal cortex 

(OFC) to valuation (Kable and Glimcher, 2009; Sugrue et al., 2005; Rangel and Hare, 2010). 

Although, early human and monkey lesion studies had already established that normal value-

guided behaviors require OFC integrity (Kable and Glimcher, 2009; Wallis, 2007), recent 

monkeys electrophysiology recordings further demonstrated that lateral OFC (lOFC) neurons 

encode options’ subjective values on a common scale during economic choices (Padoa-

Schioppa and Assad, 2006; Freedman and Assad, 2011; Tremblay and Schultz, 1999; Deaner 

et al., 2005). Moreover, lOFC neurons adapt their firing rate to the range of values at stake, a 

mechanism that contextually optimizes the precision of value representations while preserving 

preference transitivity (Padoa-Schioppa and Assad, 2008; Padoa-Schioppa, 2009; Tobler et 



al., 2005). By contrast with striatal and dorso-lateral prefrontal (DLPFC) neurons, lOFC 

neurons value-related activity is independent of sensory-motor contingencies, suggesting that 

these neurons represent subjective values within an action-independent option-based common 

space, as hypothesized by utility theory (Kable and Glimcher, 2009; Freedman and Assad, 

2011; Padoa-Schioppa, 2010; Wunderlich et al., 2010; Wallis and Miller, 2003). On the other 

hand, human fMRI studies have emphasized the role of the ventro-medial prefrontal cortex 

(vmPFC), the medial portion of the OFC, in coding decision value signals during economic 

choices (Kable and Glimcher, 2009; Rangel and Hare, 2010). Decision value signals 

putatively arise at the onset of economic choices to be fed into a decision-making mechanism 

(Chib et al., 2009; Peters and Büchel, 2010; Hare et al., 2008). Hence, decision values must 

be distinguished from post-decisional values such as the expected value associated with a 

choice (chosen option value) or the subjective value experienced during goods consumption 

(Chib et al., 2009; Peters and Büchel, 2010; Hare et al., 2008) (outcome value). Decision 

value signals may be computed in the vmPFC as a difference between the expected values 

assigned to each option (Philiastides et al., 2010; Basten et al., 2010). Moreover, the vmPFC 

commonly encodes the subjective values of different types of goods (Chib et al., 2009), 

appetitive and aversive (Plassmann et al., 2010), as well as prospects of monetary gains and 

losses (Tom et al., 2007), within an action-independent option-based value space (Wunderlich 

et al., 2010; Hare et al., 2008; Plassmann et al., 2007; Kahnt et al., 2010b; Wunderlich et al., 

2009; Philiastides et al., 2010). 

Despite many apparent similarities, lOFC and vmPFC have very different anatomical 

connectivity (Price, 2007), suggesting distinct functions for these two portions of the OFC. 

However, lOFC and vmPFC unique contributions to economic choices remain unclear. In a 

recent study that examined monkeys performing value-based decisions before and after 

selective lOFC or vmPFC lesions, lOFC-lesioned monkeys behaved as if they had become 



unable to correctly learn option values, whereas vmPFC-lesioned monkeys became less 

efficient decision-makers, making sub-optimal choices more frequently (Noonan et al., 2010). 

Baring this one exception, previous studies on economic choices have focused on 

characterizing the brain valuation system. As a consequence, very little is known on how the 

distinct functional networks within the OFC interact with the brain decision-making systems 

to transform decision value signals into economic choices. 

To address this question, central to our understanding of Human’s everyday behavior, 

we designed an economic choice paradigm in which male heterosexual participants chose 

freely between two options, one of which was probabilistically rewarded by an erotic picture 

(erotic picture option) and the other one by a small amount of fruit juice (0.75 mL, drink 

option). When confronted with such an offer, participants compared each option’s expected 

subjective value to select the most valuable option of the pair and indicated their choices with 

a two-responses button box (Fig. 1A). Such economic choices bear many similarities with 

binary perceptual decisions. Indeed, perceptual decision-making paradigms typically involve 

forming categorical judgments upon noisy sensory information to select the correct option. To 

do so, participants compare the sensory evidence supporting each alternative, mirroring the 

situation faced during economic choices in the domain of perception. Sequential sampling 

models of decision-making, such as the drift diffusion models, accurately describe the 

relationship between choice probability and decision time in perceptual decisions under many 

experimental conditions (Gold and Shadlen, 2007). In drift-diffusion models, the difference in 

sensory evidence supporting each option drives an abstract decision variable from an 

intermediate starting point toward one of two boundaries. Each boundary represents the 

decision threshold for one alternative: a choice is made when the decision variable reaches 

one of the boundaries. When the difference in sensory evidence increases, the slope of the 

decision variable gets steeper, which results in lower decision times mean and variance. 



During perceptual decision-making, neural populations in monkey lateral intra-parietal and 

dorso-lateral prefrontal cortices exhibit a ramping activity that breaks down after reaching a 

decision threshold. At the single neuron level, the ramping rate of this neural activity, which 

represents the accumulation of sensory evidence, correlates with the decision variable 

predicted by drift-diffusion models (Gold and Shadlen, 2007). At the population level, 

because distinct cell assemblies accumulate the difference in evidence supporting concurrent 

options toward a decision threshold, the resulting activity correlates with the absolute value of 

the decision variable predicted by the drift-diffusion model (Wang, 2008). Multiple fMRI 

studies confirmed that a homologous parieto-prefrontal network accumulates sensory 

evidence to form perceptual decisions in the human brain (Gold and Shadlen, 2007; Heekeren 

et al., 2008). The ability of sequential sampling models to provide a unified account of 

perceptual decisions, from neural activity to choice behavior, recently started a debate about 

whether the sequential sampling decision process implemented in the human parieto-

prefrontal cortical network may be a general decision-making mechanism, whose function 

extends across cognitive domains (Kable and Glimcher, 2009; Rangel and Hare, 2010; 

Freedman and Assad, 2011; Gold and Shadlen, 2007). This view has found some support 

from decision field theory, a recent development of utility theory describing value-based 

decisions as a drift-diffusion decision process driven by the difference between option values 

that accounts for the relationship between choice probability and decision time during 

economic choices, as well as preference reversals between choice probability and selling price 

(Busemeyer et al., 2006; Milica Milosavljevic et al., 2010). 

Here, we tested the hypothesis that the vmPFC is a pre-decisional hub coding a 

decision value signal based on the difference between option’s expected subjective values and 

that the lOFC, by contrast, is primarily involved in tracking decisional subjective values 

across the course of each trial. We further hypothesized that economic choices are 



implemented in the human brain as a two-stage process in which the vmPFC decision value 

signal drives a sequential sampling decision process implemented in the parieto-prefrontal 

cortical network. 

 

Behavioral results 

In our experiment, participants chose between two options that probabilistically 

yielded different goods: an erotic picture or a drop of juice (Fig. 1). We observed that their 

choices depended on the probability of being rewarded associated with each option and on the 

relative value between erotic pictures and fruit juice, reflecting participant’s subjective 

preferences (Fig. 2A). 

To explore how participants made their choices, we first assessed their preference for 

juice over erotic pictures by performing a logistic regression analysis on each participant 

choice pattern (Methods, Eq. 1). Our logistic model expressed the probability of choosing the 

juice option as a function of the probability of reward for the juice option, for the picture 

option and the trial number, which accounted for a possible drift of the preference over the 

experiment. We computed the preference as the ratio between the model’s betas for the 

probabilities of reward associated with the juice and the erotic picture options (Padoa-

Schioppa and Assad, 2006). Hence, we measured preference as the relative value of a drop of 

juice (0.75 mL) against an erotic picture and reported preferences as equivalent offers 

expressing “how many” drops of juices were subjectively equivalent to an erotic picture (Fig. 

2A and S1): 6 participants out of 14 had a preference greater than 1, revealing their 

preference for erotic pictures (mean preference: 0.95+/-0.3 SD). Furthermore, an AIC-based 

selection of individual logistic models ruled out a drift of preference across the experiment in 

11 participants out of 14. For the three remaining participants, this drift was an order of 

magnitude below the effect of reward probabilities (% reward probability effect: 6.8%, 



23.1%, 11.8%) and thus could be neglected. Preference’s stability over the experiment was 

further supported by the lack of difference between pre and post-experiment desirability 

ratings for fruit juice (paired T test, p=0.208). 

 Then, for each participant, we computed a decision value per offer by subtracting the 

expected subjective value of the juice option to the expected subjective value of the picture 

option (Eq. 3). This procedure allowed us to place each offer on a common "currency” scale. 

Figure 2A shows three individuals choice patterns illustrating the range of sigmoid 

relationships observed between decision value and choice probability in our sample. Indeed, 

some subjects were poor decision-makers as they frequently chose the option with the lower 

expected subjective value even when decision value grew larger (Fig. 2A, left panel), 

whereas others almost always picked up the option with the highest expected subjective value 

(Fig. 2A, right panel). By homology with perceptual decision-making (Grinband et al., 2006; 

Freedman and Assad, 2011), we quantified participants’ value-based decision-making 

efficiency as the full width at middle height of the choice uncertainty curve (Bell shaped 

green curve, Fig. 2A, Eq. 6). Consistent with previous reports (Grinband et al., 2006; 

Busemeyer and Townsend, 1993), RTs linearly increased with choice uncertainty (Fig. 2B), 

indicating that participants slowed down when decision value tended toward subjective 

equivalence. Overall, our behavioral results emphasize the complex relationship between 

decision value, choice probability and RT. These interdependencies are likely to reflect the 

elementary computations underpinning economic choices. 

Thus, to investigate the computational mechanisms underlying economic choices, we 

fitted mEZ2 drift-diffusion models to each participant behavioral data set (see Methods). 

Indeed, drift-diffusion models have successfully provided a neurobiologically plausible 

account of the tradeoff between response probability and decision duration in many decision-

making settings (Gold and Shadlen, 2007; Ratcliff and McKoon, 2008). By homology, we 



hypothesized that value-based decision-making could be described as a two-steps process: A 

decision value is computed by comparing each option’s expected subjective values (valuation 

stage), which drives, in turn, a drift-diffusion decision process implementing the probabilistic 

selection of one of the options (Freedman and Assad, 2011; Busemeyer and Townsend, 1993; 

Kable and Glimcher, 2009; Heekeren et al., 2008; Rangel and Hare, 2010; Milica 

Milosavljevic et al., 2010) (decision-making stage). Figure 3A illustrates the drift-diffusion 

model that best fit our participants’ behavior: a decision variable is initialized half-ways 

between an upper and a lower boundary, corresponding respectively to the decision threshold 

for choosing the fruit juice and the erotic picture option. After a pre-decisional processing 

latency (Non-decision time, noted “Tnd” in Fig. 3A), the decision value neural signal 

progressively drives the decision variable toward one of the boundaries. The subject commits 

to a choice once the decision variable crosses one of the decision thresholds. Finally, a gain 

parameter amplifying the influence of the decision value on the drift-diffusion process 

accounted for individual variations in the decisional weight conveyed by each value unit (Fig. 

3A). 

 As can be seen from figure 3 (panels E-G), the mEZ2 drift-diffusion model provided 

excellent fits for choice probability (r=0.926) and mean RTs (r=0.883) and despite small 

numbers of observations per condition, it accounted for RT standard deviation with good 

accuracy (r=0.562). Moreover, there was a good agreement between preferences estimated 

using the logistic regression approach and the mEZ2 drift-diffusion model (r=0.9326) (Fig. 

3B). More complex models including additional modulation mechanisms, such as adjusting 

the distance between boundaries or the non-decisional time for choice uncertainty, or 

initializing the decision variable with an offset proportional to decision value, did not 

outperform the simpler model (ΔAICDT-simple=2.1431, ΔAICTnd-simple=1.9751, ΔAICSP-simple 

=1.9263). Overall, our results support the idea that the brain implements value-based 



decision-making as a drift-diffusion process driven by the offer’s decision value and show 

how the decision process’ slowing down nearby the subjective equivalence point results from 

the decision variable’s projection onto the accumulator boundaries (Fig. 2B and 3A). 

 Economic decision efficiency in the mEZ2 model depends on both the drift-diffusion 

process’s gain and the decision threshold, which posits an exponential relationship between 

decision efficiency and these two parameters (Wagenmakers et al., 2007, 2008). Here, we 

show that inter-individual variations in decision efficiency were almost entirely explained by 

our model’s gain parameter, which captures individual decisional weights per value unit (rlog-

Gain,Efficiency=-0.9773, p<10-6, Fig. 3C), not by the distance to the decision threshold (rlog 

DT,Efficiency=0.429, p=0.125). So, our result provides, for the first time, a computationally 

tractable explanation to decision-making efficiency in value-based decisions. 

 

fMRI results 

 Having found behavioral evidence supporting our hypothesis that value-based 

decision-making is a two-steps process in which the current offer’s decision value is fed into a 

drift diffusion process, we then investigated how the human brain may implement each of 

these steps (valuation and decision) and whether they involved common or distinct brain 

networks (Freedman and Assad, 2011; Kable and Glimcher, 2009; Heekeren et al., 2008; 

Rangel and Hare, 2010). 

We first focused on the brain regions coding subjective values. Indeed, despite the 

wealth of experimental data linking OFC to valuation and dopaminergic reinforcement 

learning, the respective contribution of the lOFC and the vmPFC, two anatomically distinct 

parts of the OFC (Price, 2007), to valuation and value-based decision-making remains unclear 

(Grabenhorst and Rolls, 2011; Wallis, 2007; Murray et al., 2007; Kringelbach, 2005). To 

account for our a priori that the OFC was involved in representing subjective values, we 



performed the following analysis within a morphological ROI of the OFC (see Methods). 

First, we found that BOLD activity at decision onset correlated significantly with decision 

value in two OFC regions: the lOFC and the vmPFC (5% FWE corrected clusterwise, Fig 

4A). Then, we performed post-hoc analyses estimating separately the effects of the drink and 

picture option’s expected values and showed that, in these two OFC regions, BOLD activity 

at decision onset increased when the probability of being rewarded associated with the erotic 

picture option increased and decreased when the probability of being rewarded associated 

with the drink option increased (yellow bar graphs, Fig 4B). However, only the lOFC 

encoded the value of the chosen option when committing to choice, as there was a positive 

correlation between BOLD activity in the lOFC, but not in the vmPFC (Fig. 4B, red bar 

graphs in Fig. 4B). These findings extend to human cognition previous observations that 

monkey lOFC neurons code the subjective values of options on a common currency scale 

during economic choices (Padoa-Schioppa and Assad, 2006; Padoa-Schioppa and Assad, 

2008; Tremblay and Schultz, 1999). 

 To further characterize the respective contributions of lOFC and vmPFC to value-

based decision-making, we investigated the relationship between regional BOLD activity at 

decision onset and mEZ2 drift-diffusion model parameters. On one hand, we found a positive 

correlation between BOLD activity and the gain of the decision variable in the vmPFC (Fig. 

4C, r=0.666, p=0.009), but not in the lOFC (Fig. 4C, r=0.031, p=0.914). Because the gain 

parameter captures the decisional weight per value unit, it is a crucial feature of the decision 

value signal that is integrated over time in the drift-diffusion process (Fig. 3A). As a 

consequence, our results demonstrate that the vmPFC codes a difference-based decision value 

signal scaled to drive a drift-diffusion decision process and generalize to economic decision-

making previous observations that the vmPFC computes the difference in probabilistic 

evidence supporting each option during binary value-based decisions (Kahnt et al., 2010b; 



Philiastides et al., 2010). On the other hand, there was a significant correlation between the 

decision value’s parametric effect and the value range in the lOFC (Fig. 4D, r=0.722, 

p=0.003), but not in the vmPFC (Fig. 4D, r=0.094, p=0.749), such that the slope of the 

regression line between BOLD activity in the lOFC and decision value tended to be steeper 

when value range tended to be narrower. This result is consistent with previous observations 

of neural activity adaptation to value range in monkeys lOFC, an important property of brain 

regions involved in representing values that maintains computational efficiency over widely 

varying value ranges (Tremblay and Schultz, 1999; Wallis and Kennerley, 2010; Padoa-

Schioppa, 2009). Taken together, our results support the idea that lateral and medial parts of 

the OFC have distinct functions, which reflect their distinct cortico-cortical connection 

patterns (Price, 2007). Putting our results in the light of recent literature (Chib et al., 2009; 

Rangel and Hare, 2010; Hare et al., 2010; Kang et al., 2011; Wunderlich et al., 2010; 

Plassmann et al., 2007, 2010), we propose that the vmPFC may function as a pre-decisional 

hub that aggregates and scales subjective values into a neural decision value signal fit to drive 

a drift-diffusion decision process. By contrast, the lOFC appears to be primarily involved in 

coding and tracking subjective values. Our proposal shed a new light on a recent monkey 

lesion studies showing that selective lesions in the lOFC disrupted option value learning, 

whereas selective lesions in the vmPFC disrupted value-based decision-making: the vmPFC-

lesioned monkeys made sub-optimal choices more frequently, the hallmark of less efficient 

decision-making (Noonan et al., 2010). 

 Alternatively, our results may be interpreted as supporting the implementation of a 

drift-diffusion process by the vmPFC as opposed to our hypothesis of a two-steps process in 

which distinct brain regions implement the valuation and the drift-diffusion decision-making 

process (Padoa-Schioppa, 2010; Noonan et al., 2010; Grabenhorst and Rolls, 2011). Despite 

an abundant literature on perceptual decision-making linking action selection based on a drift-



diffusion process with the parietal and the dorso-lateral prefrontal cortices (Heekeren et al., 

2008; Heekeren et al., 2004, 2006; Domenech and Dreher, 2010), it is possible that different 

brain regions implement decision-making in different cognitive domains. However, reviewing 

this literature indicates that a critical feature of the brain regions implementing sequential 

sampling decision-making process is that their BOLD activity correlates positively with RTs 

and negatively with the absolute drift-diffusion process decision variable’s slope (Gold and 

Shadlen, 2007; Hanes and Schall, 1996) (Figure 5B). Figure 4B (blue bar graph) shows that 

there was no correlation between BOLD activity and RTs in the vmPFC or the lOFC, thereby 

excluding a direct implementation of a drift diffusion decision process in these brain regions. 

This result further supports our proposal that the vmPFC stands upstream of the actual 

decision-making stage (Kable and Glimcher, 2009; Rangel and Hare, 2010; Philiastides et al., 

2010). 

 To further explore the functional dissociation between lOFC and vmPFC, we reasoned 

that if one of these two OFC regions, presumably the vmPFC, drove a drift-diffusion 

decision-making process, then the brain regions implementing it would be revealed by the 

increased information flow coming from the OFC during decision formation. To test this 

hypothesis, we performed a PPI analysis to assess changes in both OFC regions effective 

connectivity when participants engaged in economic decision formation (see Methods). We 

found that effective connectivity increased during decision formation between the vmPFC and 

a right lateralized network including the inferior parietal lobule, the dorso-lateral prefrontal 

cortex (rDLPFC), two brain regions whose involvement in the implementation of a drift-

diffusion processes during perceptual decisions has received strong experimental supports 

(Heekeren et al., 2008; Heekeren et al., 2004, 2006; Domenech and Dreher, 2010), and the 

anterior insula (5% FWE corrected clusterwise, Fig. 5A, Table S1). Moreover, effective 

connectivity decreased during decision formation between the vmPFC and a set of brain 



regions including the right inferior temporal gyrus and the resting-state network, defined as 

the posterior cingulate gyri, the anterior medial frontal cortex (BA10) and the angular gyri. 

The resting state network has been involved in top-down biases on sensory processing, 

filtering irrelevant stimuli, reorienting attention and broadcasting predictive codes toward 

sensory cortices in conjunction with perceptual decision-making (Corbetta et al., 2008; 

Summerfield and Egner, 2009) (5% FWE corrected clusterwise, Fig. 5A, Table S1). It is 

noteworthy that the parieto-dorsolateral prefrontal cortex and the rest-state network are known 

to be spontaneously anti-correlated, a feature thought to be functionally important (Corbetta et 

al., 2008). Here, we report an increased level of anti-correlation between the vmPFC and the 

rest-state brain network during economic decision formation. By contrast, there was no 

increase in the effective connectivity with lOFC during decision formation, which suggests 

either that it does not participate directly to value-based decision–making or that its role is 

mediated by the vmPFC (Fig. S4, Table S1). 

Having characterized a network of brain regions whose effective connectivity with the 

vmPFC increases during economic decision formation, we then assessed whether BOLD 

activity within this network may contain the neural signature of a drift-diffusion process 

integrating vmPFC’s decision value signal. Assuming a coupling between neuronal firing 

rates and hemodynamic response, BOLD activity in the brain regions coding the decision 

variable should decrease when the modulus of the decision value increases because, unlike 

drift-diffusion models formulation (Fig. 3A), competing cortical assemblies implement the 

integration of the net evidence supporting each option, which results in a positive ramping 

activity at the population level (Gold and Shadlen, 2007; Lo and Wang, 2006; Churchland et 

al., 2008) (Fig. 5B). Moreover, residual BOLD activity in the brain regions coding the 

decision variable should also correlate positively with decision time. Figure 5B illustrates 

how steeper accumulation slopes, yielding shorter RTs on average, result in lower BOLD 



activity at decision onset after convolution with the canonical hemodynamic response 

function. We found that BOLD activity in the right DLPFC correlated negatively with the 

modulus of the decision value (p=0.03 FWE SVC clusterwise, Fig. 5C). Moreover, post-hoc 

analyses indicated that residual BOLD activity in the right DLPFC was positively correlated 

with RTs (T-test, p= 0.02, Fig. 5D). Taken together, these results support our view that 

economic decisions are implemented in the human brain as a two steps process in which the 

vmPFC builds a decision value signal by computing the difference between options’ expected 

subjective values and drives a drift diffusion process, implemented in the right DLPFC, that 

integrates this difference signal over time to select the option with the higher subjective value. 

These results shed a new light on how applying rTMS to the right DLPFC alters human 

economic choices by tempering with sequential sampling decision-making process it 

implements, thus paralleling in the economic domain manipulations of perceptual choices by 

microstimulation of monkey parietal cortex (Hanks et al., 2006; Camus et al., 2009). 

Finally, having demonstrated that the vmPFC acts as a pre-decisional hub driving the 

sequential sampling decision-making process, we investigated the neurobiological correlates 

of optimal economic choices. Building upon our findings that mEZ2’s gain parameter 

accurately predicted participant’s economic efficiency as decision-makers (Fig. 3C) and that 

average BOLD activity at decision onset in the vmPFC correlated with mEZ2’s gain 

parameter (Fig. 4C), we searched the brain for regions in which effective connectivity with 

the vmPFC during decision formation depended on whether the forthcoming choice was 

optimal. We reasoned that the emergence of optimal choices may depend on the decision-

making process’ drive by the vmPFC and/or on the contribution of vmPFC’s inputs to 

decision value computation. Whereas effective connectivity between the vmPFC and the right 

DLPFC accounts for the first, effective connectivity between the vmPFC and its input brain 

regions should accounts for the latter. Contrasting optimal and suboptimal choices, we found 



that the effective connectivity with the vmPFC increased in the right internal globus pallidus, 

an output structure of the basal ganglia system, and in a large associative visual cortical 

network that included the fusiform gyri, the inferior occipital and temporal cortices and the 

parahippocampus, when choices were optimal (Fig. 6). We did not find any connectivity 

changes with the vmPFC in the OFC, the amygdala or the DLPFC even at a very liberal 

threshold of 0.01. There was no brain region associated with a decrease in effective 

connectivity with the vmPFC. These results rule out the hypothesis that optimal choices are 

associated with an increased connectivity between the vmPFC and the right DLPFC and 

emphasize the contribution of vmPFC inputs to the computation of a decision value signal 

that accurately describes the proposed offer. Because of previous experimental evidence 

showing that visual associative cortices code for option reward likelihoods during value-based 

decisions, a source of probabilistic evidence used by the vmPFC to compute a difference-

based decision value signal (Philiastides et al., 2010), we interpreted these results as 

supporting our hypothesis that optimal choices were associated with a higher contribution of 

external vmPFC inputs in the computation of the decision value signal. Interestingly, the 

parahippocampal gyri and the vmPFC are anatomically closely interconnected, suggesting 

that it may serve as a relay for economic decision-related information between associative 

visual cortices and the vmPFC (Price, 2007). Finally, our results provide further evidence 

excluding the hypothesis that the lOFC may directly contribute to value-based decision-

making, even through the vmPFC. As a control, we tested for changes in effective 

connectivity during choices formation between the lOFC and the rest of the brain when 

comparing optimal and suboptimal choices and found no significant changes. Overall, our 

results support the view that the lOFC tracks values at the different steps of economic 

decision, without directly contributing to value-based decision-making. 



Discussion 

Our findings demonstrate that economic choices are implemented in the human brain 

as a two-step process, spatially dissociating the computation of a difference based decision 

value signal (valuation stage) and the probabilistic selection of one of the options by a 

sequential sampling decision process (decision-making stage). This neuro-computational 

approach to economic choices allowed us to characterize a new medio-lateral functional 

dissociation within the human OFC. More specifically, we showed that during economic 

choices, the medial portion of the OFC (vmPFC) operates as a pre-decisional hub in which 

external probabilistic evidence and inner subjective preferences are aggregated into a common 

decision value signal (Fig. 4 and 6). Crucially, this signal correlates with the difference 

between option’s expected subjective values and is scaled to the decisional weight per unit of 

subjective value (Eq. 3 and Fig. 4), which are the two key features of the drift-diffusion 

decision process’ input, as illustrated in figure 3A. Moreover, this decision value signal coded 

in the vmPFC drives a sequential sampling decision process implemented in the DLPFC, as 

demonstrated by the increase in effective connectivity during economic choices between the 

vmPFC and the right DLPFC, and the correlation between trial-by-trial BOLD activity in the 

right DLPFC and the slope of the sequential sampling model (Fig. 5). Taken together, our 

results demonstrate the pivotal role of the vmPFC in computing the input to the sequential 

sampling decision-making process during economic choice formation. 

This new insight into vmPFC’s function unifies previously scattered observations of 

ventro-medial prefrontal activations during decision-making paradigms within a general 

neuro-computational framework. For example, the human vmPFC is the only brain region in 

which multivariate pattern analysis of BOLD activity predicts the value associated with 

complex sensory cues on which perceptual decisions probabilistically yielding reward 

feedbacks are performed (Kahnt et al., 2010a). Moreover, the vmPFC uses the probabilistic 



evidence of reward coded in visual associative cortices to compute a difference-based signal 

that may guide the decision, which echoes with our own finding that effective connectivity 

between associative visual cortices and vmPFC increases when choices are optimal (Fig. 6) 

(Philiastides et al., 2010). Finally, a recent fMRI study examining cost-benefit-based 

decisions, based on the premises that the amygdala should be the decision input for costs and 

the striatum the input for gains, found that the effective connectivity between the difference in 

BOLD activity of the two brain region and the vmPFC correlated with the average slope of a 

power diffusion model suggesting again that the vmPFC may compute a difference-based 

signal (Basten et al., 2010). Consistent with our model, in all these paradigms the vmPFC 

computed a difference-based signal reflecting the values on which the ongoing decision was 

based. 

By contrast, we found no evidence involving the lateral portion of the OFC in 

economic decision-making (Fig. 4 and S4). Although BOLD activity in the lOFC correlated 

with decision value, its activity did not reflect the decisional weight of subjective values, 

demonstrating that lOFC activity was not suited to drive the decision process. Moreover, 

whole brain lOFC’s effective connectivity did not increase during decision formation nor 

varied between optimal and suboptimal choices, which further supported our conclusion that 

participants did not rely on lOFC’s value-related activity to make their choices. Instead, lOFC 

functional features suggested a role in tracking the subjective values at stakes before and after 

decisions (Fig. 4). Indeed, parametric response to decision value in the lOFC adapted to the 

range of values at stake, a slow adaptation mechanism that optimizes the precision of value 

coding, and the lOFC coded for the value of the chosen option, a post-decisional value signal 

arising when participants committed to a choice. Interestingly, selective lesions of the lOFC 

have been shown to impair the learning of option values when choices are based on values. 

Indeed, choice behavior of lOFC lesioned monkeys suggested that they were unable to 



correctly pair up option values estimates with the outcome of choices, leading to erroneous 

updates and cancelling Thorndike’s “law of effect” (Noonan et al., 2010). In our task, as well 

as in previous studies on economic choices (Padoa-Schioppa and Assad, 2006; Padoa-

Schioppa and Assad, 2008), participants did not have to learn by trial and errors the 

contingencies between options and outcomes because visual cues explicitly provided all the 

information relevant to the choice. However, option values had to be updated after each 

choice to account for the repeated consumption of goods, which was susceptible to 

progressively shift preferences, as illustrated by the minor drifts observed in three of our 

participants. Thus, we propose that the lOFC tracks the subjective values at stake during the 

successive phases of an economic choice to appropriately update the value of the chosen 

option. 

The ability of sequential sampling models to provide a unified account of perceptual 

decisions, which is supported by many studies linking a parieto-prefrontal network with the 

accumulation of sensory evidence toward a decision threshold to form perceptual decisions 

(Gold and Shadlen, 2007; Heekeren et al., 2008), have recently fueled a theoretical debate 

about whether sequential sampling decision process may be a general decision-making 

mechanism in the human brain, whose function extends across cognitive domains (Kable and 

Glimcher, 2009; Rangel and Hare, 2010; Freedman and Assad, 2011; Gold and Shadlen, 

2007). Our results strongly support this view, as we demonstrate here that the role of the 

DLPFC in implementing sequential sampling decision process extends to the domain 

economic choices. Moreover, sequential sampling models accurately account for behavior 

during memory retrieval tasks, suggesting that the DLPFC might be similarly engaged in 

decision-making based on memories (Ratcliff and McKoon, 2008; Gold and Shadlen, 2007). 

Thus, we propose that the DLPFC implements sequential sampling process as a general 

mechanism for making decisions, whether based on sensory evidence or subjective values. 



When performing perceptual decisions on random motion dot clouds, specialized 

neural populations in associative visual cortices encode moment-to-moment level of sensory 

evidence for each direction of motion and directly project to the LIP/DLPFC network where 

sensory evidence are progressively accumulated until it reaches a decision threshold (Gold 

and Shadlen, 2007). In contrast with perceptual decisions, economic choices involve an 

additional brain region between before the DLPFC’s sequential sampling decision process. 

The vmPFC aggregates all relevant sources of information into a unique difference-based 

value signal, which in turn drives a sequential sampling decision-making process during 

economic choice formation. This difference of functional architectures raises the question of 

why the vmPFC has evolved into a pre-decisional hub computing subjective values whereas it 

has no equivalent for perceptual decision-making? To compute the subjective value attributed 

to a fruit, one has to combine many sources of information such as fruit size, color, texture, 

fragrance, but also past experiences, memories, hunger, emotions and cognitions (Hare et al., 

2009; Coricelli et al., 2005; Philiastides et al., 2010). Clearly, a crucial difference between 

perceptual decisions and economic choices pertains to the complexity of the information on 

which decisions are made. Thus, a first hypothesis is that a pre-decisional hub dedicated to the 

computation of subjective values is needed because of the complexity of the computations 

needed to aggregate all these sources of information into a single neural common currency 

measuring the worth of prospects. Another interesting feature of the vmPFC is that it is 

involved in coding subjective values even in the absence of actual decisions, during imaginary 

economic choices or subjective ratings of pictures (Lebreton et al., 2009; Kang et al., 2011). 

In this later example, vmPFC BOLD activity during subjective ratings correlated with 

subject’s revealed preferences estimated using a binary choice task performed outside the 

scanner, supporting the hypothesis that the vmPFC performs the same computations in both 

tasks (Lebreton et al., 2009). Furthermore, combined expected values during multi-attribute 



subjective ratings are predicted by multivariate pattern of BOLD activity in the vmPFC, thus 

confirming the ability of the vmPFC to aggregate very different kind of information into a 

value based signal even outside the context of value-based decision (Kahnt et al., 2010a). 

Interestingly, this ability to perform the same function inside and outside the context of 

decision-making seems to generalize to the lOFC since neurons in monkey lOFC code the 

subjective values associated with visual cues during simple conditioning tasks, in the absence 

of any decision (Tremblay and Schultz, 1999) and contrasting BOLD activity at feedback for 

rewarded and unrewarded choices (Fig. S4) revealed the very same pattern than our previous 

studies on prediction error signals in operant conditioning tasks using the same erotic pictures 

and fruit juice delivery device (Sescousse et al., 2010) (ELISE), suggesting that similar 

process are engaged whether a feedback results from a choice or not. 

 

Conclusion 

Our findings bridge economics and neuro-computational views on value-based 

decision-making within a unified theoretical framework characterizing the computations 

preformed in keys prefrontal brain regions. Here, in accordance with economic view on value-

based choices, in particular decision field theory, we show that decision are implemented as a 

two-steps process in which the DLPFC implements the selection of the appropriate option 

using a sequential sampling decision process and the vmPFC the computation of a decision 

value signal that drive the DLPFC. Our results highlight the need to further fractionate the 

concept of “valuation” into its core cognitive components by further exploring 

electrophysiological activity in the vmPFC and the lOFC during economic choices, in order to 

further validate our model and demonstrate the power of model-driven fMRI in challenging 

complex cognitive questions. 



Materials and Methods 

 

Participants 

Eighteen right-handed healthy volunteers (mean age: 21.5+/-3 years SD, mean 

handedness score: 0.812+/-0.2 SD) with no history of neurological or psychiatric conditions 

were screened for inclusion through a medical interview and standardized questionnaires 

assessing major depressive disorder (Beck Depression Inventory 21, mean score: 2.9+/-3.58 

SD), erotic picture induced arousal (Sexual Assessment Inventory, global score: 93.3+/-13.2 

SD, subtotal on erotic picture related items [3,14,20,23]: 11.56+/-2.67 SD on 20), as well as 

the absence of sexual dysfunctions and heterosexual orientation (Brief Sexual Function 

Questionnaire, 79.33+/-21.87 SD). All subjects gave written informed consent to be part of 

the experiment, which was approved by the local ethics committee (CPP, Centre Léon 

Berard). 

Out of the initial pool of 18 subjects, we excluded one subject who scored above BDI 

criterion for a major depressive episode and another one who had a previously undiagnosed 

cerebral anatomical abnormality. We further excluded two subjects from subsequent analyses: 

One subject always chose the option rewarded by erotic pictures preventing the estimation of 

his preference and the other one exhibited an inconsistent choice pattern that included 

transitivity violations, casting doubts on this subject’s comprehension of experimental 

instructions. 

 

Value-based decision-making paradigm 

Participants were asked to choose between two options (offer), one of which was 

probabilistically rewarded by an erotic picture (erotic picture option) and the other one by a 

small amount of fruit juice (0.75 ml, drink option). At the beginning of each new choice trial 



(decision onset), two cues were displayed around a central fixation cross (Fig. 1A). Each cue 

indicated the probability of obtaining the reward as a pie chart and its type as a pictogram. 

Erotic picture and drink options were randomly displayed on the left or right side of the 

fixation cross. 31 different offers were built by systematically varying the reward probabilities 

(p=[0.25, 0.5, 0.75, 1]) associated with the two options. Each offer was repeated 16 times 

during the course of the experiment. Moreover, 8 additional offers consisting of one option 

never rewarded against another one probabilistically rewarded (p=[0.5, 1]) were also built, but 

repeated only 8 times (Fig. 1B). Following the decision onset, the participants were given 3 

seconds to indicate their choice (left or right option) using a two-responses button box 

(commitment to decision). Immediately after the subject’s choice, the chosen option was 

highlighted (350 ms) and a small arrow circling around the chosen cue symbolized a real-time 

drawing from the reward distribution indicated by the cue (jittered 3530-4830 ms). Then, 

upon “picture” choices, a picture of a slightly dressed or nude woman (rewarded trial) or a 

neutral scrambled image (unrewarded trial) was displayed on the screen for 2.5 seconds. Upon 

“drink” choices, a picture showing a glass filled with juice was displayed on the screen for 2.5 

seconds while 0.75 mL of fruit juice was simultaneously delivered to the subject's mouth 

through a polythene tube mounted on an automated syringe pump (rewarded trials) or a 

neutral scrambled image (and no fruit juice) was displayed without any fluid delivery 

(unrewarded trials). To promote a high level of motivation throughout the experimental 

session, participants were asked to avoid sexual intercourses for 24h and drinking for 12h 

prior to the scanning session. Moreover, they were told that drinking would not be allowed for 

a few hours after the scanning session. 

The experiment was split into 4 runs of 70 choice trials. On average, each choice trial 

lasted 14 s and was followed by a 4-6 s inter-trial interval (Fig. 1A). Conditions order was 

randomized and counterbalanced across sessions and sessions order was counterbalanced 



across subjects. Immediately before and after the fMRI session, participants were presented 

with motivational questionnaires to quote, using rating scales numbered from 1 to 5, their 

desire for various drinks (including the apple juice used in our experiment). Theses 

questionnaires allowed us to assess their motivation for drink and its stability over the 

experimental session. 

 

Stimuli 

Three kinds of stimuli were used in our experiment (Fig. 1A): (1) “Erotic pictures” 

showed slightly dressed or nude women and were selected to induce moderate to high sexual 

arousal but no negative emotion such as disgust (Redouté et al., 2000). Each picture was 

presented only once during the experimental session to preclude habituation effects. (2) The 

“fruit juice” reward consisted of 0.75 mL of apple juice directly delivered to the participant 

mouth. The amount of fruit juice delivered for each rewarded trial was experimentally set 

during pretests to minimize satiety effects potentially arising from repeated deliveries of the 

reward. (3) Neutral pictures were scrambled versions of the erotic pictures used in the 

experiment. This procedure allowed us to remove all spatial information while preserving the 

original chromaticity and luminance. 

 

Measuring preferences 

In our experiment, participants chose between two options that probabilistically 

yielded different goods. Behaviorally, their choices depended on the probability of being 

rewarded, as well as on the relative value between goods. To measure preferences for fruit 

juice over erotic pictures (Rdrink/picture), we fitted to each participant’s choice pattern a logistic 

model that predicted the probability of choosing the “drink” option as a function of the 

probabilities of being rewarded and of a time variable (trial number) (Eq. 1). This time 



variable accounted for potential drifts in participants’ preferences that may arise from 

repeated deliveries of goods, thereby modeling out this potential confound from the 

estimation of the subjective values. Because our method measures subjective values on a 

common value scale, which is defined up to a scaling factor, we computed the preference as 

the ratio of the estimated subjective value for fruit juice and erotic pictures (Betas in Eq. 2). 

Then, using this measure of preference (Rdrink/picture), we also computed the decision value for 

each offer, defined as the difference between the expected subjective values associated with 

each option (Chib et al., 2009) (Eq. 3). The expected value associated with each option was 

computed as the product between the subjective value of the prospect (1 for erotic pictures, R 

for juice) and the probability of being rewarded. We computed the value range as the 

difference between the maximum and the minimum subjective values available during the 

course of the experiment (Eq. 4). 

When presented with an offer whose decision value was null, participants were 

equally likely to choose both options because they were perceived as being subjectively 

equivalent. For clarity, we report preferences as “equivalent offers” matching the number of 

0.75 mL juice drops to the subjective value of an erotic picture (1 picture = Rdrink/picture juice 

drop, Fig. 2A). 

 
Logit P(Choice = Drink)( ) = βcst + βtime * trial number + βfruit juice *Pdrinkoption + βerotic picture *Ppictureoption +ε  (Eq. 1) 

 

Rdrink
picture

=
βfruit juice
βerotic picture

           (Eq. 2) 

 

DV = Rdrink
picture

*Pdrink option − Ppicture option         (Eq. 3) 

 

ValueRange = Rdrink / picture +1        (Eq. 4) 
 



 Our method to measure preference was highly consistent (R2=0.98) with alternative 

approaches such as plotting choice probabilities against objective quantities and identifying 

the offer to which each participant was indifferent (Padoa-Schioppa and Assad, 2006; Padoa-

Schioppa and Assad, 2008). 

 To illustrate each participant’s choice pattern, we plotted the probability of choosing 

the “drink” option against the decision value for each offer and fitted a three parameters 

Weibull function weighted to equal 0.5 when decision value is null (subjective equivalence 

point) (Eq. 5). We then computed the choice uncertainty associated with each offer as 

proposed by Grinband et al.(Grinband et al., 2006) (Eq. 6), which reflects the uncertainty on 

choice outcome when the expected subjective value is known for each option a priori. 

Finally, we measured the efficiency of each participant as a decision-maker by computing the 

choice uncertainty function’s full width at half maximum (FWHM). This measure decreases 

as the ability of an agent to choose optimally – that is, to always pick the option with the 

highest expected subjective value – increases (Fig. 2A, right panel). 

 

PChoice=Drink (DV ;α,β,γ ) =1− exp −
DV + γ
α

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
β⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  with: 

γ ≥ −min(DV )

PChoice=Drink (0;α,β,γ) = 0.5
(Eq. 5) 

 

CU(DV ;α,β,γ ) =
0.5 − PChoice=Drink (DV ;α,β,γ ) − 0.5

0.5
     (Eq. 6) 

 
EZ2 Drift diffusion model: Adaptations to value-based decisions 

 We used modified EZ2 drift diffusion models (mEZ2) to fit the mean RTs, RT 

variances and choice probabilities for each participant and investigate the computational 

mechanisms underlying value-based decision-making. EZ2 drift diffusion models are well 

suited to small data sets as they predicts the first two moments of each choice’s RT 

distribution and choice probability rather than full RT distributions (Wagenmakers et al., 



2007, 2008; Wagenmakers and Brown, 2007; van Ravenzwaaij and Oberauer, 2009; Grasman 

et al., 2009; Ratcliff and Tuerlinckx, 2002; Ratcliff, 2008). Nevertheless, EZ2 models retain 

most features of the Ratcliff’s drift diffusion model, as they are a simplified variant in which 

inter-trial parameters variability (slope, non-decision time and starting point) is neglected 

(Wagenmakers et al., 2007, 2008). By contrast, more simplistic fitting procedures such as 

power rate “diffusion models” are unable to account for RT variances, do not allow for 

mechanistic hypothesis testing, as only the slope of the accumulation can vary and as bias and 

performance estimates are, to the best of our knowledge, currently unavailable (Padoa-

Schioppa and Assad, 2006; Palmer et al., 2005). Hence, building upon a robust EZ2 drift 

diffusion model (Wagenmakers et al., 2007, 2008), we developed and validated a variant able 

to account for value-based decision-making from data sets small enough to be recorded during 

a typical fMRI session. 

 To do so, we reparametrized an EZ2 model according to several mechanistic 

hypotheses on the relationship between slope, decision threshold, non-decision time, starting 

point and decision value. Figure 3A illustrates our main model, in which the slope is equal to 

the decision value weighted by a “gain” parameter and the starting point is set at mid distance 

from the accumulator boundaries. The decision threshold and the non-decision time are 

unchanged compared to the original formulation of the model. Hence, our main model has 

four parameters: preference, gain, decision threshold and non-decision time. We set the 

accumulator internal noise (scale parameter) to 1 for all participants, as determined by an 

exploratory analysis of the parameter space. Moreover, we built three additional models on 

top of our main model to investigate whether complementary mechanisms may participate to 

the decision-making process: (1) the decision value biases the starting point, (2) the absolute 

value of the decision value modulates the decision threshold, (3) the decision value modulates 

non-decision time. 



 EZ models have been shown to be sensitive to contaminant RTs (Ratcliff, 2008) and 

filtering strategies assuming RT distribution mixtures have been proposed as a remedy 

(Wagenmakers et al., 2008). However, this approach is not suited to the size of our data sets 

because contaminant proportion estimates are biased when sample size is less than 50. We 

addressed this issue by fitting our mEZ2 model on logRT distributions and by filtering 

contaminant RTs (highpass: 300 ms, low-pass: +4 DS). We fitted our mEZ2 model to mean 

RTs, RT variances and choice probabilities with a bounded NM simplex algorithm optimizing 

the sum across offers of the squared differences weighted by standard deviations. To obtain a 

worst case estimate of the proportion of contaminant in our data set, we modeled pooled Z-

scored RTs for all offers and participants as a mixture of Ex-Gaussian and uniform 

distributions using previously validated methodology (Wagenmakers et al., 2008) (Proportion 

of contaminant RT=0.72%, n=3901). Figure S2 provides the results of parameter retrieval 

Monte Carlo validation studies (n=2000 synthetic experiments) estimating error bias and 95% 

confidence interval for each parameter under different levels of contaminant RTs 

(Wagenmakers et al., 2007, 2008) and shows that our mEZ2 model provide unbiased and 

precise parameter estimates when synthetic data sets mimicking our experiment are provided 

as input. 

 

MRI Data Acquisition 

Participants were scanned at the CERMEP - imagerie du vivant using a research 

dedicated 1.5T MRI scanner (Siemens Magnetom Sonata with an eight-channel head coil). 

We acquired 1016 echo-planar T2*-weighted functional volumes over 4 runs, each run lasting 

about 15 minutes (404 volumes/run). Each volume comprised 26 axial slices acquired 

continuously over 2.5 s (TE=60 ms; ascending interleaved acquisition; slice thickness 4 mm; 

0.4 mm noncontiguous; axial AC–PC; in-plane resolution: 3.44*3.44 mm2; matrix size: 



64*64 in a 220x220 mm field of view), allowing complete brain coverage. Additionally, T1-

weighted anatomical images were acquired at the end of each experimental session (MP- 

RAGE: TR=1970ms; TE=3.93ms; T1=1100ms; resolution: 1*1*1 mm3; matrix size: 

256*256). Head motions were minimized using foam padding and headphones with earplugs 

were used to dampen the scanner noise. The participants were instructed to keep the fruit juice 

in their mouth as long as the associated picture showing a fruit juice glass was displayed and 

to wait for the inter-trial interval to swallow in order to reduce movement artifacts. 

 

fMRI Data analysis 

 Preprocessing. Data were processed and analyzed using SPM5 software (Wellcome 

Department Of Imaging Neuroscience, University College London, UK, www. 

fil.ion.ucl.ac.uk/spm). The first eight volumes of each run were removed to allow for T1 

equilibrium effects (400 volumes/run). Image preprocessing consisted of slice timing 

interpolation, motion correction (six-parameters, rigid body transformation). We used 

realignment parameters during the statistical analysis as covariates to model out potential 

nonlinear head motion artifacts. Functional and morphological images were then normalized 

into standard MNI space using EPI Montreal Neurological Institute template. Then, functional 

volumes were resampled and spatially smoothed with an isotropic 8 mm FWHM Gaussian 

kernel. A 128 s temporal “high-pass filter” regressor set was included in the design matrix to 

exclude low-frequency noise and artifacts. 

Finally, we explored the data for potential artifacts using tsdiffana, mean and variance 

images (http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics). An artifact is defined as 

the co-occurrence of a variance spike and a mean intensity drop uncorrelated with 

experimental design. We did not exclude any volume using these criteria. Translational 



movements estimated during the realignment procedure were small as compared to voxel size 

(>1 mm). 

 

Main General Linear Model. Whole-brain statistical parametric analyses were 

performed using a two-stage random-effect approach. We estimated independently the model 

parameters from each subject’s dataset and then made population inferences using the 

parameter inter-subject variance. Regressors were constructed by convolving functions 

representing the events with the canonical hemodynamic response function. Five event-related 

categorical regressors were used to model choice trials (“Decision onset”, “Commitment to 

choice”, “Wait”, “Picture reward” and “Drink reward”, Fig. 1C). In accordance with drift 

diffusion model account of decision-making, ongoing processes during value-based decision 

formation were modeled as Dirac functions time locked to each decision onset (Decision 

onset) to which we added two parametric regressors: response time and decision value (Eq. 

3). On the other hand, processes associated with decision threshold crossing or motor 

responses were modeled as a Dirac function time locked to the response button press 

(Commitment to choice) to which we added two parametric regressors: a “left-right” regressor 

that was equal to 1 when the option selected was displayed on right of the fixation cross and 

to 0 otherwise and a “chosen value” regressor, equal to the expected subjective value of the 

chosen option. Feedbacks on choices were included in the model as two categorical regressors 

(Drink feedback and Picture feedback) modeled as 2.5s long boxcar functions time locket on 

the onset of feedbacks. Rewarded and Unrewarded trials were modeled as a parametric 

regressor equal to 0 when a scrambled picture was delivered and to 1 otherwise. Finally, 

processes unrelated to decision were modeled as boxcars time locked on the decision onset 

whose duration equal the time between the decision onset and the feedback onset (Wait). 

While designing our model, we controlled for multi-colinearity by computing the variance 



inflation factor for each parametric regressor within each categorical regressor and by 

rejecting combinations of parametric regressors that yielded a VIF superior to 4 for at least 

one of the regressor(O’brien, 2007). Parametric regressors were then estimated on the basis of 

the variance they uniquely explained. Statistical inferences were performed with a threshold 

of 5% FWE corrected cluterwise using WFU pick-atlas built-in morphological of the OFC 

and small volume correction (voxelwise threshold: 10-3 uncorrected). 

Psycho-physiological interaction analysis. To identify brain regions whose effective 

connectivity with lOFC and vmPFC changed significantly during decision formation, we 

performed a psycho-physiological interaction analysis. First, we extracted individual ROI-

averaged BOLD activity time series from vmPFC and lOFC functional regions using Marsbar 

toolbox (v0.42, threshold p<10-3 voxelwise, Fig. 4A). Then, we estimated a PPI-GLM 

including five regressors: (1) a psychological regressor, modeling decision formation as RT-

long boxcars time-locked with decision onsets and convolved with the canonical HRF. (2-3) 

BOLD activity time-courses in the two seed regions and (4-5) interactions between time-

courses from each seed region and the psychological regressor. Finally, the PPI-GLM also 

included realignment parameters as non-interest covariates to model out potential nonlinear 

head motion artifacts. Statistical inferences were performed with a threshold of 5% 

(cluterwise) FWE corrected across the whole brain (voxelwise threshold: 10-3 uncorrected). 

We ran two variants of this model that contrasted optimal and non-optimal choices and 

included only one seed region per analysis. Optimal choices were defined as choices in which 

the subjective value of the chosen option was greater than the value of the unchosen option 

(Fig. 6). 

Region-of-interest analyses. To further characterize the role of the brain regions, we 

identified in the OFC and the DLPFC (Fig. 4A and 5A), we extracted ROI-averaged 

regression line slope estimates (parametric regressors) or ROI-averaged percent signal 



changes (categorical regressors) using a leave-one-out cross-validation approach, that 

prevented circularity biases in the post-hoc ROI-based inferences we performed (Kriegeskorte 

et al., 2009, 2010). To do so, we built individual ROIs by computing a statistical map for each 

participant and for each contrast from the whole subject group minus the participant 

him/herself (threshold p<10-3 voxelwise), hence explicitly splitting the subject’s ROI-

averaged parameter estimate from the data used for voxels selection. 

ROI analyses were performed on three alternative versions of the main GLM (see Main 

General Linear Model). In a first variant of the main GLM (GLM1), we aimed to estimate 

average BOLD response amplitude during the decision-making process to assess its 

relationship to mEZ2 parameter estimates. To do so, we built and estimated a new GLM that 

retained the categorical regressors for decision onset, wait, picture and drink feedback, from 

the main GLM without parametric regressors. In a second variant (GLM2), we aimed to 

assess separately the relationship between BOLD activity and the expected value associated 

with the drink option, on one hand, and BOLD activity and the expected value associated with 

the picture option, on the other hand. So, we built and estimated a second model based on the 

main GLM, in which we substituted the expected value associated with the drink and with the 

picture options to the decision variable parametric regressor. GLM2 was otherwise identical 

to the main GLM. In a third variant (GML3), we aimed to identify candidate brain regions 

implementing our decision model’s decision variable. Based on previous electrophysiological 

literature (Gold and Shadlen, 2007; Kim and Shadlen, 1999; Hanes and Schall, 1996), we 

hypothesized that event-related BOLD activity in such brain region would negatively 

correlate with the absolute value of the decision value as illustrated in figure 5B. Thus, we 

built and estimated a third variant of the main GLM, in which we substituted the absolute 

value of the decision value multiplied by each individual’s gain parameter estimate to the 



decision value parametric regressor in the main GLM. GLM3 was otherwise identical to the 

main GLM. 
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Figure 1: Experimental paradigm. (A) Participants were asked to choose between two 
options, one of which was probabilistically rewarded by an erotic picture and the other one by 
a fixed amount of fruit juice delivered to the subject mouth by a computer-driven pump. Here, 
the participant could choose between 75% chances of drinking 0.75 mL juice or 50% chances 
of viewing an erotic picture by pressing one of two responses button according to the position 
of the chosen option relative to the central fixation cross. After a random delay, the participant 
received the chosen goods according to his choice and the probability of reward associated 
(“rewarded” choice trials). A scrambled picture was displayed when the choice did not yield 
the expected good (“not rewarded” choice trials). (B) Thirty-nine different offers were built 
by systematically varying the reward probabilities (p=[0.25, 0.5, 0.75, 1]) associated with the 
drink and the picture options. (C) The main GLM included five event-related categorical 
regressors to model choice trials: Decision onset, Commitment to choice, Wait, Picture 
reward and Drink reward. In accordance with drift diffusion model accounts of decision-
making, ongoing processes during value-based decision formation were modeled as Dirac 
functions time locked to each decision onset (Decision onset) and the processes associated 
with decision threshold crossing or motor responses were modeled as a Dirac function time 
locked to the response button press. Parametric regressors associated with each categorical 
regressor modeled events all the variables events and quantities relating to the decision 
process. 
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Figure 2: Behavioral results. (A) Probability of choosing the drink option (Blue sigmoid 
curve) and choice uncertainty (Bell shaped green curve) as a function of the decision value. 
Here, we show choice data from three participants. Plain blue circles represent measured 
probabilities of choosing the drink option given the decision value of the offer. Figure S1 
provides choice patterns for all the participants in our experiment. Dashed lines intersect at 
the point of subjective equivalence where decision value is null, choice probability at chance 
level and choice uncertainty is maximal. Preferences are reported (Insert: 1P=x*D) as 
equivalent offers expressing “how much” drops of juices (x*D) were subjectively equivalent 
to one erotic picture (1P). (B) Normalized response times as a function of choice uncertainty. 
Error bars represent standard errors. 
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Figure 3: mEZ2 drift-diffusion model and behavioral fits. (A) The decision variable is initialized 
half-ways between an upper (DT) and a lower boundary (0), corresponding respectively to the 
decision threshold for choosing the fruit juice (red) and the erotic picture option (blue). After a fixed 
pre-decisional processing latency (Non-decision time, Tnd), the decision value neural signal 
progressively drives the decision variable, which represents the accumulation of the decision value 
weighted by a gain parameter, toward one of the boundaries. The decision value is the difference 
between the expected subjective value of the drink and the picture option, the decision value (noted 
DV(R), as it is a function of the preference, R). The gain parameter models the decisional weight 
conveyed by each value unit on each participant behavioral choices. A choice is made when the 
decision variable crosses one of the boundaries. (B) Revealed preference estimated using logistic 
regressions plotted against the preference estimated using the mEZ2 model. Each data point represents 
a participant. (C) Economic decision efficiency as a function of the logarithm of the gain parameter. 
Here, the decision efficiency is defined as the FWHM of the choice uncertainty curve for each 
participant because the wider the curve peak, the less optimal the choices are made by the participant 
(green bell shaped curve in Fig. 2A). Each data point represents a participant. (D-F) Probability of 
choosing the drink option (D), the mean RT (E) and the standard deviation of the RT (F) measured 
plotted against the mEZ2 model predictions. Each participant data set was fit separately, however we 
pooled here the data from all the participants for display. Thus, each plain black circle in panel D 
represents the probability of choosing the drink option for one of the thirty-nine offers made to one 
participant. In panel E-F, plain red circles represent the offers followed by a drink choice, whereas 
plain blue circles represent the offers followed by a picture choice. Data points tend to be aligned on 
the identity lines (dashed lines in panel D-F), as the model predictions are more accurate. 
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Figure 4: Mediolateral functional specialization in the OFC. (A) Parametric response to subjective 
values in the OFC (threshold of p<10-3 voxelwise for display). OFC clusters showing a significant 
parametric response to the offer’s decision value at decision onset are rendered in green (left column) 
and those showing a parametric response to the expected value of the chosen option at the time of 
commitment to choice are rendered in red (right column). (B) Bar graphs reporting the slope of the 
regression line between BOLD activity and the picture and juice expected value (yellow bars), the 
expected value of the chosen option (red bars) and response time (blue bars), in the lOFC (left graph) 
and the vmPFC (right graph). Error bars indicate 95% confidence intervals. In the lOFC, there was a 
significant parametric effect of the picture (T-test, p=0.0043), of the drink (T-test, p=0.0014) and of 
the chosen option (T-test, p=0.0013) expected values. In the vmPFC, there was a significant 
parametric effect of the picture (T-test, p=0.0124), of the drink (T-test, p=0.0384) and of the chosen 
option (T-test, p=0.252) expected values. By contrast, there was no parametric effect of RTs in both 
the vmPFC (T-test, p=0.5043) and the lOFC (T-test, p=0.3835). (C) Scatterplots of correspondence 
between mean BOLD activity at decision onset and the gain parameter estimated using the mEZ2 
drift-diffusion model in the lOFC (left graph) and the vmPFC (right graph). (D) Scatterplots of 
correspondence between the slope of the regression line between BOLD activity at decision onset and 
the decision value (parametric effect of DV) and the value range (the difference between the maximal 
and the minimal subjective value in the experiment) in the lOFC (left graph) and the vmPFC (right 
graph). Please note that the significances of the linear relationship between parametric effect of 
decision value and value range observed were only marginally affected when removing the two most 
extremes subjects (value range > 2.5). 
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Figure 5: Brain region implementing a drift-diffusion decision process. (A) Psycho-
physiological interaction whole-brain analysis between vmPFC and other brain areas during 
economic choices formation (PPI). Positive PPIs are rendered using a hot scale and negative 
PPIs are rendered using a cold scale (threshold for display, p<10-3 voxelwise). (B) mEZ2 
drift-diffusion model predictions on BOLD activity of brain region implementing this 
process: convolving predicted neural activity with the hemodynamic response function 
predicted lower BOLD activity for steeper accumulations of the decision value (green) and 
higher BOLD activity for longer RT (red). (C) Brain regions whose BOLD activity correlates 
negatively with the absolute value of the drift-diffusion process accumulation slope (MNI, 
xyz: 38, 42,42, 10-3 voxelwise, p=0.03 FWE cluster corrected) among the brain regions 
exhibiting a positive PPI with the vmPFC during decision formation. (D) Bar graphs reporting 
the slope of the regression line between BOLD activity and the absolute value of the drift-
diffusion process accumulation slope (yellow bars, T-test, p=0.0029) and response times (blue 
bars, T-test, p= 0.02). Error bars represent 95% confidence intervals. 
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Figure 6: vmPFC input brain regions associated with optimal economic choices. We 
performed a psycho-physiological whole-brain analysis of vmPFC effective connectivity 
during economic choice formation by contrasting optimal and suboptimal choices. Positive 
PPIs are rendered using a hot scale and negative PPIs are rendered using a cold scale 
(threshold for display, p<10-3 voxelwise). 
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Figure S1: Behavioral results: choice patterns and RT. Probability of choosing the drink 
option (Blue sigmoid curve) and choice uncertainty (Bell shaped green curve) as a function of 
the decision value. Plain blue circles represent measured probabilities of choosing the drink 
option given the decision value of the offer. Dashed lines intersect at the point of subjective 
equivalence where decision value is null, choice probability at chance level and choice 
uncertainty is maximal. Preferences are reported (Insert: 1P=x*D) as equivalent offers 
expressing “how much” drops of juices (x*D) were subjectively equivalent to one erotic 
picture (1P). 
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Figure S2: Parameter retrieval Monte Carlo validation study of the mEZ2 drift-
diffusion model. We simulated 2000 experiments and fitted mEZ2 models to each synthetic 
data set. Here, we report estimations of the mean error on each parameter of the mEZ2 model 
(plain colored circles, % of the actual parameter value) and 95% confidence intervals (error 
bars) under three level of uniformly distributed contaminant RTs (see Methods). Level of 
contaminant RTs in our experiment was below 1%, thus mEZ2 model provided unbiased and 
accurate estimations of all the parameters. 
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Figure S3: OFC regions responding to picture and juice decision outcomes (threshold of 
p<10-3 voxelwise for display). Left column, OFC clusters significantly responding at the time 
of picture reward are rendered in red (Rewarded > Not rewarded). Right column, OFC 
clusters significantly responding at the time of drink reward are rendered in blue (Not 
rewarded > rewarded). Interestingly, signed OFC BOLD responses at the outcome were 
consistent with the coding of the decision variable in the OFC during economic decisions. 
OFC foci at the outcome correspond to meta-analytic coordinates for visual and drink reward 
consumption. 
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Figure S4: Psycho-physiological interaction whole-brain analysis between lOFC and 
other brain areas during economic choices formation (PPI). Negative PPIs are rendered 
using a cold scale (threshold for display, p<10-3 voxelwise). There was no brain regions 
showed positive PPI with lOFC during decision formation. 
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Abstract

Explaining or predicting the behaviour of our conspecifics requires the ability to infer the intentions that motivate it. Such
inferences are assumed to rely on two types of information: (1) the sensory information conveyed by movement kinematics
and (2) the observer’s prior expectations – acquired from past experience or derived from prior knowledge. However, the
respective contribution of these two sources of information is still controversial. This controversy stems in part from the fact
that ‘‘intention’’ is an umbrella term that may embrace various sub-types each being assigned different scopes and targets.
We hypothesized that variations in the scope and target of intentions may account for variations in the contribution of
visual kinematics and prior knowledge to the intention inference process. To test this hypothesis, we conducted four
behavioural experiments in which participants were instructed to identify different types of intention: basic intentions (i.e.
simple goal of a motor act), superordinate intentions (i.e. general goal of a sequence of motor acts), or social intentions (i.e.
intentions accomplished in a context of reciprocal interaction). For each of the above-mentioned intentions, we varied (1)
the amount of visual information available from the action scene and (2) participant’s prior expectations concerning the
intention that was more likely to be accomplished. First, we showed that intentional judgments depend on a consistent
interaction between visual information and participant’s prior expectations. Moreover, we demonstrated that this
interaction varied according to the type of intention to be inferred, with participant’s priors rather than perceptual evidence
exerting a greater effect on the inference of social and superordinate intentions. The results are discussed by appealing to
the specific properties of each type of intention considered and further interpreted in the light of a hierarchical model of
action representation.
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Introduction

Intentional inference: perceptual information and
top-down prior knowledge
Explaining or predicting the behaviour of our conspecifics

requires the ability to properly appreciate the causes that motivate

it. As these causes are hidden – intentions, like beliefs or desires,

are unobservable states –, it has long been a matter of speculation

how one may infer them from patterns of visible behaviour alone.

Indeed, visual information conveyed by the movement kinematics

is often noisy, ambiguous or incomplete. As a result, visual

information generally under-constraints the space of candidate

causes (i.e. the many competing intentions) that are logically

consistent with what is observed [1–3]. One way to solve this

problem is to assume that this space of possible intentions is further

constrained by the observer’s prior expectations. These expecta-

tions are derived from prior knowledge that may originate from

the past experience of the viewer (through expertise: [4,5]; or

learning of statistical regularities: [6]), from her intuitive theories

[7,8], or reputational knowledge [9,10], as well as from contextual

information surrounding the action scene [5,11]. This prior

knowledge has been demonstrated to be crucial to account for the

robustness of our everyday inferences [12]. Indeed, it makes

possible inductive inference about the agent’s intentions, even in

cases of noisy signals or incomplete data [13–15].

However, although most authors agree that prior knowledge

and perceptual information both contribute to the process of

inferring intentions, the precise contribution of each type of

information remains controversial [16–23]. The controversy stems

in part from the fact that ‘‘intention’’ is an umbrella term used in

the empirical and philosophical literature to refer to representa-

tions of actions that can differ in both their content and format, as

well as in their temporal properties and in the role they play in the

guidance of actions [24–29]. Intentions can therefore be

distinguished into several sub-types according to one or several

of these factors. In the present study, we propose a typology of

intentions and hypothesize that this typology might be a key

element in understanding how perceptual information and prior

knowledge contribute to the process by which intentions are

inferred.
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Varieties of intentions
The intentional typology we present below is primarily motivated

by the necessity to take into account two dimensions of variation in

the content of intentions that may make an important difference to

the processes involved in their inference. The first dimension of

variation concerns the scope of the intention; i.e., the more-or-less

complex nature of its goal. Here we can draw a distinction between

basic intentions and superordinate intentions. Basic intentions are directed at

simple motor goals (i.e. goals that can be realized by basic actions

such as lifting an arm, pressing a button, or reaching for an object).

These intentions are sensorimotor representations where the goal is

represented directly in terms of the motor commands needed to

achieve it. The relation between basic intention and motor act is

thus one-to-one when that act is successfully completed [17]. In

contrast, superordinate intentions are intentions directed at somewhat

more complex or general goals, the achievement of which typically

involves the completion of a number of subgoals or substeps.

Depending on the complexity of the general goal, these subgoals

may themselves be decomposed into further subgoals, ultimately

reaching the level of basic actions. The achievement of a

superordinate intention will thus require the execution of a

combination of basic actions each guided by a corresponding basic

intention. Different combinations of motor acts can be used to

accomplish the same general goal and, conversely, a same motor act

(or even series of motor acts) can be part of combinations aimed at

different general goals.

The second dimension of variation we were interested in

concerns the target of the intentions. Neither basic nor superordi-

nate intentions are necessarily directed at inanimate objects. They

may also target a third party or be achieved in a context of social

interaction [11,30–33]. The content of intentions is thus also

modulated by the relational structure in which an action takes place.

We call intentions directed at an object, non-social intentions, and
intentions directed at a third party, social intentions.

By combining these two dimensions, we obtain the following

typology: i) non-social basic intention, ii) non-social superordinate
intention, iii) social basic intention, and iv) social superordinate

intention. Owing to their different scopes and targets, basic and

superordinate, social and non-social, intentions are naturally

assigned different functional roles, different types of content and

different temporal scales. The present study aims at investigating

whether these functional differences are reflected in the respective

contribution of perceptual information and prior expectations to

intentional judgments.

Overview of the present study
We conducted four experiments in which participants were

requested to identify one intention underlying an action scene. Each

experiment involved one type of intention with a specific scope

(basic vs. superordinate) and a specific target (social vs. non-social).
Interactions between prior expectations and visual information were

examined within a Bayesian probabilistic framework. This

conceptual framework is particularly well-suited to account for

how accurate predictions on hidden world states are made in

situations where available sensory information does not sufficiently

constrain the number of potential solutions [13,15,34]. Before the

onset of an action sequence, each of the agent’s possible intentions

was first assigned a certain ‘level of belief’, termed a priori probability
(the probability that intention X is the real cause of the observed

behaviour estimated from past experiences). Then the observer

progressively gathers sensory information (visual input) as the action

sequence is disclosed and both sources of information (sensory and a
priori) are combined and used to infer the intention underlying the

observed behaviour. Thus, the process by which intentions are

inferred is considered as reflecting a trade-off between the sensory

information and the prior probability of each candidate intention

[14]. Finally, the chosen intention is that which maximizes the

posterior probability value, i.e. the probability that intention X is true

given what is observed.

In the present study, these two terms – a priori probability and

sensory information – were manipulated using a two-step procedure.

Prior expectations the participants had about the agent’s possible

intentions were manipulated by increasing the a priori probability that
one intention (termed likely intention) was achieved, to the detriment of

other intentions (unlikely intentions) with the same scope and target.

Sensory information available from an action scene was then

manipulated in a second step by modulating the degree of

completeness (i.e. the duration) of the action sequences, resulting

in actions scenes with varying amounts of visual information.

We first predicted that judgements about intentions would follow

the general principles of Bayesian inference. Specifically, we

expected that the amount of visual information would interact with

participants’ prior expectations such that the lower the reliability of

the external visual input, the more participants’ responses would

depend upon their own internal expectations. That is, they should

respond more frequently in the direction of the likely intention. And

vice versa, the higher the amount of visual information, the less the

participants should rely on their prior expectations.

Second, we predicted that the shape of the interaction between

these two sources of information would be a function of the type of
intention, depending on both its scope and target. Along the

dimension of the scope, we hypothesised that participants’

judgement about basic intentions should primarily rely on sensory

information available from the action scene. This prediction is

motivated by the pragmatic content of the basic intention: ‘‘grasping

a glass of water’’ directly denotes the corresponding intention of

‘‘grasping that glass’’. In this case, perceiving the action itself – i.e.

processing the associated visual kinematics – is enough to

successfully determine the nature of the underlying intention [35].

On the other hand, we expected performance in judging

superordinate intentions to be significantly influenced by partici-

pants’ prior expectations. As already mentioned, the same sequence

of motor acts can be part of combinations aimed at different general

goals or superordinate intentions. In this specific case, sensory

information carried by movement kinematics is not sufficient to

infer the corresponding intention, as it under-constraints the set of

candidate intentions congruent with this movement [1,2,17,36]. We

consequently predicted that this perceptual uncertainty should

encourage participants to ‘mistrust’ what they observe and, hence,

to rely more on their prior expectations.

Along the dimension of target, finally, we expected participants’

reliance on their prior expectations to increase when basic and

superordinate intentions are directed at another agent. The

structure of social interaction meets indeed particular, often

irrepressible, expectations, such as those provided by reputational

knowledge [9,10,37]. Indeed, knowledge about individual’s

reputation has been robustly demonstrated to have a strong

impact on predicting how the observed agent will behave [12]. In

line with other recent suggestions, we thus hypothesised that the

weight of these a priori expectations would increase when the

observed action fits into a context of social interaction.

Materials and Methods

Non-social experiments
In the first experiment, participants were instructed to infer the

basic intention (to lift, to rotate, or to transport) of an actor

manipulating meaningless objects (fig. 1, A). In the second

Prior Knowledge in Action Understanding

PLoS ONE | www.plosone.org 2 February 2011 | Volume 6 | Issue 2 | e17133



experiment, participants were instructed to infer the superordinate

intention (i.e. the general goal) underlying a sequence of motor acts

(fig. 1, B).

Social experiments
The third (fig. 1, C) and fourth experiments (fig. 1, D) presented

two actors engaged in a social game in which they could either

cooperate or defect by coordinating their action (joint-action

condition) or by refusing to join their action to the achievement of

a shared goal (defective condition). Participants were instructed to

infer the nature of the second player’s social intention (i.e.

cooperative or defective intention). In both these experiments, the

bias was assigned according to the way the second player

responded to the strategy adopted by the opponent in the previous

round. Participants were therefore biased towards the reputation

of the second player rather than towards one particular type of

social intention. Finally, as in the two previous non-social

experiments, both basic intentions (single motor acts) and superordinate

intentions (sequences of motor acts leading to the construction of a

shape) were considered in the last two experiments.

Ethics Statement
All participants gave written informed consent for the study

which was approved by the local Ethical Committee (Comité de

Protection des Personnes SUD-EST IV, no. B80631-60).

Experiment 1: non-social basic intention
Participants. 30 healthy subjects (15 males, 15 females,

mean age = 35.13, S.D. = 9.33 and laterality score mean= 0.88,

S.D. = 0.31; [38]) participated in this experiment. They all

reported normal or corrected-to-normal visual acuity.

Participants received 10 euros for taking part in the study.

Stimuli. Visual stimuli were incomplete movies representing

an actor’s hand performing a simple manipulation of a

meaningless object. The duration of the video sequences was

varied on 4 distinct levels, ranging from 1480 ms to 1880 ms after

movement onset. Each movie was characterized by one basic

intention (to transport, to rotate, or to lift an object) and

participants were instructed to infer the basic intention in each

video. There were three white rectangular objects of similar size

(3 cm66 cm) and orientation, positioned at equal distance

(16.8 cm) from the starting position of the actor’s hand (figure 1,

A). All the movies were performed by a single actor and only

featured her naked arm. Each action was performed as often with

one object as with the others.

Movies were equalized for temporal homogeneity (see Sup-
porting Text S1, part 1, and Figure S1). Furthermore, all the

movies were unique, i.e., they were presented only once to prevent

any influence of memorized kinematic parameters on participants’

performance in the experiment.
Procedure. Participants were comfortably sat at a distance of

60 cm from a 190 computer monitor. Each trial started with the

observation of an incomplete movie, and then a response screen

appeared for 2500 ms representing the first letter of each possible

intention (T for ‘transport’, L for ‘lift’, or R for ‘rotate’).

Participants were requested to respond by pressing, as quickly

and accurately as possible, one of the three keyboard presses

corresponding to the three possible intentions. Once a response

was given, the next trial started.

Figure 1. Examples of stimuli for each of the four experiments. BASIC NON-SOCIAL intention experiment (A); SUPERORDINATE NON-SOCIAL intention
experiment (B); BASIC SOCIAL intention experiment (C); SUPERORDINATE SOCIAL intention experiment (D). The black cross indicates the starting position of the
hand.
doi:10.1371/journal.pone.0017133.g001
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The design was composed of two experimental sessions. A first

baseline session was characterized by a flat (unbiased) prior

probability distribution with all basic intentions having the same

probability. In a second bias session, participants were biased

towards one intention (likely intention, 55%) to the detriment of

the others (unlikely intentions, 22% each). The bias was randomly

assigned so that each basic intention was equally biased across

participants.

In both sessions, trials were organized into OVERT blocks in

which movies consisted of a constant and very high amount of

visual information (1880 ms), alternating with COVERT blocks in

which movies consisted of varying and lower amounts of visual

information presented in a random order (LOW= 1480 ms, MOD-

ERATE = 1560 ms, and HIGH= 1640) (see Supporting Text S1,
part 2, for the selection of these amounts of visual informa-

tion[58,59]; Figure S2). Each experimental sequence (one overt

block followed by one covert block) was repeated 9 times over each

session (see figure 2, A) and each participant performed the trials

in a different random order.

The reason for block interleaving was that it enabled us to

maintain the bias constant across the bias session. Indeed, by

regularly inserting overt blocks of movies with different probabil-

ities, we ensured that participants were continuously biased

towards one intention over the whole session. Furthermore, even

though the baseline session did not include any bias assignment,

and therefore was not concerned with bias maintenance, it

contained the same trial organization (block interleaving) to allow

a direct comparison of the performance between the two sessions.

Prior to running the experiment, participants undertook a

training session to get familiar with the task. The training consisted

of 3 baseline experimental sequences (non-biased probability

distribution) with interleaved blocks. The 72 movies (3624)

presented during the training session were distinct from those

used in the experiment.

Design and statistical analyses. One group of statistical

analyses was performed for each session independently (base-

line and bias sessions), on the two dependant variables

(participants’ hits and reaction times for correct responses). In

the overt blocks of the baseline session, one two-tailed t-test was

conducted on participants’ reaction times (RTs) between the

future ‘likely’ intention (the one towards which participants were

subsequently biased in the bias session) and the future ‘unlikely’

intentions. The same test was conducted in the bias session

between likely and unlikely intentions. In the covert blocks, a

263 repeated-measures ANOVA was performed for each session

on both RTs and hits. The first two-level factor was the bias

(future ‘likely’ vs. future ‘unlikely’ intentions OR likely vs.

unlikely intention) and the second three-level factor was the

amount of visual information (LOW, MODERATE and HIGH). Post-

hoc Fisher tests were then performed to identify differences

between conditions.

Another group of analyses was conducted in order to assess the

magnitude of the bias effect on participants’ performance. To do

so, we looked at whether increasing the probability of one

intention concomitantly affected the selection of intentions with

lower probability. Two-tailed t-tests on RTs and hits for unlikely

intentions were thus performed between the baseline and the bias

sessions. We predicted that selecting an unlikely intention should

be more demanding in the bias session – as it concomitantly

requires inhibiting a competing biased intention – than in the

baseline session, where all intentions had the same probability of

occurring. In the following, the resulting ‘‘cost’’ (i.e. increased RTs

and decreased hits for unlikely intentions) was considered as an

indirect measure of the bias effect.

For all analyses, a p,.05 was taken as the criterion for

significance and an eta squared (ǵ) was used as a measure of effect

size. These analyses were performed using the statistical software

Statistica 7 (www.statsoft.com).

Experiment 2: non-social superordinate intention
Participants. 30 new participants (15 males, 15 females,

mean age= 36.59, S.D. = 8.12 and laterality score mean =0.79,

S.D. = 0.19) took part in this experiment. They all reported

normal or corrected-to-normal visual acuity and received 10 euros

for taking part in the study.

Stimuli. As with the non-social basic experiment, test

material consisted of incomplete movie clips showing an actor’s

hand manipulating meaningless objects. However, contrary to

experiment 1, movies in the superordinate experiment represented

a sequence of three successive manipulations (to transport, rotate, or

lift the object) leading to the construction of a meaningless shape.

Each sequence was therefore characterized by an underlying

superordinate intention, represented by one final shape (s1, s2 or

s3). The objects used in the first experiment were also used in this

second experiment (figure 1, B). The first action was performed on

one of the three objects, the second action on one of the two

objects left, and the third action on the remaining object. After

each action, the hand came back to the starting position. The

incompleteness of the video sequences was controlled so that the

duration of the last action was varied on 3 distinct levels (1480 ms,

1560 ms or 1640 ms after this action starts). All the movies were

made with the same actor as in experiment 1. Finally, temporal

homogeneity of the movies was controlled and each trial was

unique.

Procedure. The organization of the trials was the same as in

the non-social basic experiment (see figure 2, B, ‘Superordinate

exp.’). However, the task was further constrained. First, to ensure

that participants paid attention to the overall sequence of actions,

they were asked to identify what the last (not-yet completed) action

of this sequence was, by pressing as quickly and accurately as

possible, one of the three corresponding keyboard presses (T, L, or

R). This response depended upon having inferred the

superordinate intention of this sequence (i.e. the final shape

being achieved by a set of three successive actions). Second, to

ensure that participants were biased towards the superordinate

intention itself and not towards the last final action only,

commutative sequences were used so that each shape could be

constructed from distinct sequences of actions sets. Sequences

shown in the covert blocks were thus distinct from those used in

the overt blocks (e.g. the shape s1 could be obtained from the

sequence ‘lift-lift-rotate’ in an overt block, but from the sequence

‘lift-rotate-lift’ in a covert block). Finally, the intention could not be

inferred solely from the motor acts composing the sequence.

Indeed, although the probability of each shape being constructed

was manipulated in the bias session (i.e. one particular shape had a

higher probability), the probabilities of the individual actions (lift,

rotate, or transport) were held equal at each step of that sequence.

Finally a training session was conducted with movies distinct from

those used in the experimental sessions.

Experiment 3: social basic intention
Participants. 30 novel subjects (15 males, 15 females, mean

age = 32.9, S.D. = 10, and laterality score mean = 0.80,

S.D. = 0.11) participated in this experiment. They all reported

normal or corrected-to-normal visual acuity and received 10 euros

for taking part in the study.

Stimuli. Visual stimuli consisted of incomplete movies

showing two players’ hands (opposite each other) manipulating

Prior Knowledge in Action Understanding
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Figure 2. Experimental designs. Examples of a typical experimental sequence (one OVERT block followed by one COVERT block) used in both the
baseline and the bias sessions. OVERT blocks (O): 18 movies with a very high and constant amount of visual information (1880 ms). COVERT blocks (C):
9 movies with three amounts of visual information (1480, 1560, and 1640 ms). In the 4 experiments, the probability of all intentions was held equal
across the block, except in OVERT blocks of the bias session, where one particular intention had a greater probability to be accomplished than the
other ones. In the BASIC exp., subjects had to identify a single action (labels: L: ‘‘lift’’ action; R: ‘‘rotate’’ action; T: ‘‘transport’’ action). In the
SUPERORDINATE exp., subjects had to identify the final action (red letter) of a sequence leading to shape 1, 2, or 3 (s1: shape 1). In the
SUPERORD. SOCIAL exp., subjects had to identify the action of the second player (red letter) leading to configuration 1, 2, 3, or 4 (c1: configuration
1). In both BASIC and SUPERORD. SOCIAL exp., the action or the configuration achieved by each player indicated either a cooperative or a
defective strategy (CO: cooperate; DF: defect). In each experiment, a probabilistic bias was assigned to one particular action (basic), shape
(superordinate) or strategy (social). The red interrogation mark indicates the action (basic: single action; superordinate: last action of the sequence)
for which the amount of visual information varied.
doi:10.1371/journal.pone.0017133.g002
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meaningless objects. Two objects (printed with a blue or a red line)

were placed on the sides of a grid that was situated in the centre of

the scene (figure 1, C). The objects were of similar size

(5.8 cm65.8 cm) and located at equal distance from the starting

position of each player’s hand (figure 1, C). The two actors played

one after the other by moving the object towards the middle of the

grid (termed ‘bank’) or by rotating it so that it remained at its own

place. Movies were partitioned so that the last action (i.e. the

action performed by the second player) was incomplete (1480 ms,

1560 ms, or 1640 ms after the last action starts).Here, each motor

act directly denoted the social intention of the player: each player

could either cooperate with the other one, by moving the object

towards the central bank (transport), or defect, by leaving the

object at its own place (rotate). Consequently, there were four

possible combinations of intentions, or strategies: either both

players cooperated (transport/transport) or defected (rotate/

rotate), or the first player defected and the second cooperated

(rotate/transport), or the first player cooperated and the second

defected (transport/rotate). Finally, temporal homogeneity of the

movies was controlled and each trial was unique.

Procedure. For each trial, participants were instructed to

observe the incomplete movie and infer what the last action (i.e.

the one performed by the second player) was. This response

required the participant to have inferred the second player’s

intention (to defect or to cooperate) which itself depended upon

the first player’s strategy. Participants were asked to give their

answer by pressing, as quickly and accurately as possible, one of

the two keyboard keys corresponding to the two possible last

actions (T for ‘transport’, or R for ‘rotate’) susceptible to achieve

the second player’s intention. Once a response was given, the next

trial started.

In the baseline session, all combinations of strategies were

counterbalanced over the blocks (i.e. whatever the first player did

the second player was just as likely to defect or to cooperate). In

the bias session, on the other hand, the probability that the second

player did whatever the opponent did in the previous round was

increased, thus biasing participants to perceive the second actor as

a ‘‘tit-for-tat’’ player (i.e. as being more inclined to cooperate if the

first player had previously cooperated, and to defect if the first

player had previously defected). The rationale for biasing the

second player’s reputation in such a way was twofold. First, tit-for-

tat (TFT) reputation implies that individuals respond to their

opponent’s actions in a mirrored (i.e. correlated) fashion.

Therefore, successfully predicting intentions of a TFT-like player

necessarily involves taking into account what the first player has

done, and by consequence, ensured that participants paid

attention to the whole sequence of actions (both actor 19s play

and actor 29s play). Second, contrary to other common types of

reputation such as ‘‘always defect’’, or ‘‘always cooperate’’, TFT

may equally imply cooperative as well as defective strategies. The

probability that the second actor behaves as a tit-for-tat player

could thus be increased without otherwise increasing the

probability of one intention (e.g. cooperate) to the detriment of

the other one (e.g. defect). Holding equal the probability of both

these strategies was here crucial to nullify their potential kinematic

differences on participants’ performance (see [39]) and also to

avoid stereotyped responses (e.g. always responding ‘cooperate’ or

‘defect’). Finally, a tit-for-tat strategy is known to be a more

intuitive and successful strategy than alternative ones, such as

‘‘always cooperating’’, ‘‘always defecting’’ or ‘‘acting randomly’’

[40–42]. We thus chose to experimentally strengthen this already

existing a priori bias by increasing the probability that the second

player’s action mirrors her opponent’s one while holding equal

both the probability of each single act (to rotate or to transport)

and the overall probability of each intention (to defect or to

cooperate) (figure 2, C, ‘Social Basic exp.’). Thus, in the baseline

session, the second player was as likely to play tit-for-tat as she was

to play the other types of strategy. In the bias session, however, the

probability that the second actor played tit-for-tat was increased so

that she was more likely to cooperate (rather than defect) if the first

player had previously cooperated, and to defect (rather than

cooperate) if the first player had previously cooperated. Finally a

training session was conducted with movies distinct from those

used in the experimental sessions.

Experiment 4: social superordinate intention
Participants. 30 novel participants (15 males, 15 females,

mean age = 34.27, S.D. = 9.42, and laterality score mean =0.83,

S.D. = 0.26) participated in this last experiment. They all reported

normal or corrected-to-normal visual acuity and received 10 euros

for taking part in the study.

Stimuli. As in the social basic experiment, the stimuli of this

last experiment represented two players’ hands manipulating

objects. However, in the present experiment, the actors played in

turn with the goal of vertically aligning three objects (see figure 1,

D). The goal of the first player was to align the objects according to

the color (red), irrespective of the orientation, while the goal of the

second player was to align the objects according to the orientation,

irrespective of the color. A third configuration could be obtained

by the alignment of the objects according to both the orientation

and the color. As in the social basic experiment, the two social

intentions were of a defective or a cooperative nature. However, in

the present experiment, the social intention was denoted by the

sequence of the players’ motor acts (i.e. the final configuration),

rather than by the single action performed by each player. Indeed,

a defective or a cooperative strategy could be equally achieved by

rotating or transporting the object. Each player could adopt a

defective strategy by manipulating the object in such a way that it

prevented the creation of one configuration, or adopt a

cooperative strategy in order to achieve another configuration.

The four possible final configurations were therefore: either both

players defected (configuration 3) or cooperated (configuration 4),

or the first player defected and the second cooperated

(configuration 1), or the first player cooperated and the second

defected (configuration 2). As for previous experiments, only the

last action (i.e. the action performed by the second player) was

made incomplete (1480 ms, 1560 ms or 1640 ms). Finally,

temporal homogeneity of the movies was controlled and each

trial was unique.

Procedure. Participants were instructed to infer the social

superordinate intention of the second player by indicating which

action allowed the accomplishment of that intention. A correct

response therefore required having correctly inferred the second

player’s intention (to defect or to cooperate) which itself depended

upon the first player’s strategy. Participants were asked to give

their answer by pressing, as quickly and accurately as possible, one

of the two keyboard keys corresponding to the two possible actions

(T for ‘transport’ or R for ‘rotate’) congruent with the second

player’s social intention. The organization of trials in the social

superordinate experiment was the same as for the social basic

experiment (see figure 2, D). Tit-for-tat reputation (i.e. the second

player did whatever the opponent did in the previous round) was

chosen to be biased across participants. Likewise, commutative

sequences were also used so that each pattern could be obtained

from distinct sequences of actions ensuring that the different

strategies could not be predicted from motor acts solely.

Furthermore, both the overall probability of each strategy

(cooperative or defective) and each action (to rotate or to
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transport) were held equal across the blocks. Finally a training

session was conducted with movies distinct from those used in the

experimental sessions.

‘Bias effect’: between-experiment comparisons
Finally, some analyses were conducted to directly assess whether

the contribution of prior knowledge to the inference of an

intention depended upon the target (basic vs. superordinate) and

the scope (non-social vs. social) of the intention. Student tests were

first conducted on the overall performance in the bias session

between the basic experiments and the superordinate ones, and

between the non-social experiments and the social ones. Second,

the bias effects for each dimension (scope and target) were

compared with each other. A score reflecting the effect of each

type of intention (basic, superordinate, social, non-social intention)

was calculated by subtracting, in each experiment, participants’ hit

rate for the likely intention from the hit rate for the unlikely

intentions. The resulting scores were then entered in a 2 (basic vs.

superordinate) 62 (social vs. non-social) 63 (amounts of

information) factorial ANOVA.

Results

Experiment 1: non-social basic intention
For each session, two-tailed t-tests were performed between the

two unlikely intentions on both RTs and hits. As no significant

differences appeared (all p..05), performances for these two

unlikely intentions were pooled for subsequent analyses.

Overt blocks. As expected, participants performed the task

well when the amount of visual information was very high

(percentage of mean correct responses = 98%, S.D. = 2.4, and

96.8%, S.D. = 3.4 in the baseline and the bias sessions,

respectively). Furthermore, in the baseline session, there were no

significant differences among hits and RTs between the (future)

‘likely intention’ (i.e. the one towards which participants will be

biased in the subsequent bias session) and the ‘unlikely intention’,

indicating that prior to biasing participants, there was no a priori
bias towards one intention rather than another (two-tailed t-tests,

all p.0.2, see figure 3, ‘Basic exp.’, baseline session).

The only significant difference was found in the bias session,

with faster RTs for the likely intention vs. unlikely intentions (two-

tailed t-tests, all p,.001). Subsequent analyses of RTs across time

were carried out by independently comparing RTs for likely basic

intention and RTs for unlikely basic intentions across the different

blocks. The bias was found to have a cumulative effect over time,

with RTs for the likely intention progressively decreasing up to

block 8 (minimal RT=337 ms) and then remaining constant

until the end of the session (blocks 1–3 vs. blocks 4–6: t = 3.09,

p,.005; blocks 4–6 vs. blocks 7–9: t = 2.08, p,.05) (see figure 3,

‘Basic exp.’).

Covert Blocks. The 3 (amounts of information)62 (likely vs.

unlikely intentions) repeated-measures ANOVA revealed

significant effects on both participants’ RTs and hits. In the

baseline session, a significant effect of the amount of visual

information was obtained (RTs: F(2,116) = 167.13, p,.001,

ǵ=0.74, and hits: F(2,116) = 277.44, p,.001, ǵ=0.82). As

expected, RTs were found to decrease and hits to improve as

the amount of visual information increased. There were, however,

no significant effects of the intention presented (future ‘likely’ or

future ‘unlikely’ intention) nor of the interaction between the

intention and the amount of visual information (both p.0.05),

showing that improved performance for higher amounts of

information was independent of the presented intention (Im1,

Im2, or Im3) (see table 1 and figure 4, ‘Baseline session’).

In the bias session, in addition to the effect of amount of visual

information (RTs: F(2,116) = 98.8, p,.001, ǵ=0.62; hits:

(F(2,116) = 190.92, p,.001, ǵ=0.76), an effect of the bias (RTs:

F(1,58) = 18.51, p,.001, ǵ=0.24; hits: (F(1,58) = 19.81, p,.001,

ǵ=0.25) as well as of the interaction (RTs: F(2,116) = 13.98,

p,.001, ǵ=0.19; hits: F(2,116) = 5.44, p= .005, ǵ=0.08) were

also observed. Post-hoc tests indicated that participants were

more accurate and faster in recognizing the likely intention in

low information condition only (LSD Fisher tests, RTs: LOW =

p,.001; MODERATE = p,.005 and HIGH = ns; Hits: LOW =

p,.001; MODERATE = ns. and HIGH = ns.) (see table 1 and figure 4,

‘Bias session’).

Effect of the bias on the unlikely intention. We were also

interested in evaluating the influence of the bias on the selection of

the unlikely intentions. Comparing the performance for the

unlikely intention between the two sessions revealed no

significant differences for any amount of visual information (two-

tailed t-tests, RTs and hits: all p.0.05). This result indicates that

switching from the baseline to the bias session (i.e. increasing the

probability of one intention to the detriment of others) did not

significantly affect the inference of basic intentions with lower

probabilities.

Preliminary discussion. As expected, basic intentions were

better inferred as the actions were presented with a high amount of

visual information. Performances were also influenced by the

probability distribution of the intentions, with a significant increase

in participants’ hits and decrease in RTs for the likely (i.e. biased)

intention. Finally, the bias significantly interacted with the amount

of visual information: participants responded more often towards

the likely intention when action scenes were presented with a low

amount of visual information. When the amount of visual

information was sufficient, prior expectations then exerted less

influence on intention inference.

Experiment 2: non-social superordinate intention
Statistical analyses were similar to those conducted in the first

experiment. Responses for the two unlikely superordinate

intentions were pooled for subsequent analyses as there were no

significant differences among both hits and RTs between these

responses (for each session, two-tailed t-tests, p.0.15).

Overt blocks. As for experiment 1, participants performed

the task well when the amount of visual information was very high

(1880 ms), in both the baseline (mean correct responses

percentage: 98.6%, S.D. = 2.3) and the bias sessions (percentage

of mean correct responses: 98.1%, S.D. = 3.1). Furthermore, in the

baseline session participants were equally rapid at inferring the last

action of the sequence, whatever the superordinate intention being

accomplished (two-tailed t-tests, all p..35).

In the bias session, however, although there were no significant

differences among hits between likely and unlikely intentions, RTs

for the likely intention were found to significantly decrease (two-

tailed t-tests, likely vs. unlikely intentions, all p,.001). This

decrease increased over time as revealed by a cumulative effect of

the bias across blocks. Indeed, RTs decreased up to block 7

(minimal RT=424 ms) and then remained constant until the

end of the session (blocks 1–3 vs. blocks 4–6: t = 4.04, p,.001;

blocks 4–6 vs. blocks 7–9: t = 0.83, p..05) (see figure 3,

‘Superordinate exp.’).

Covert blocks. In both the baseline and the bias sessions, the

amount of visual information significantly affected participants’

hits and latencies with decreased RTs (baseline: F(2,116) = 423,68,

p,.001, ǵ=0.87; bias session: (F(2,116) = 523.9, p,.001; ǵ=0.9)

and a greater number of hits as the amount of visual information

increased (baseline: F(2,116) = 249.18, p,.001, ǵ=0.81; bias
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session: (F(2,116) = 199.03, p,.001; ǵ=0.77) (see table 2 and

figure 5).

In the bias session, a significant effect of the bias was also

observed with faster RTs and increased hits for actions congruent

with the likely superordinate intention (RTs: F(1,58) = 47.04,

p,.001, ǵ=0.44; and hits: F(1,58) = 62.09, p,.001, ǵ=0.51).

Finally, the bias was found to significantly interact with the

amount of visual information in such a way that the number of hits

was significantly higher and RTs faster for the likely intention as

the amount of visual information decreased (RTs: F(2,116) = 15.3,

Figure 3. OVERT blocks: mean reaction times of the likely and the unlikely intentions across time. Baseline and bias sessions: (1-3): the
first three overt blocks of the session; (4-6) the intermediate three blocks; and (7-9) the three last blocks of the session.
doi:10.1371/journal.pone.0017133.g003

Table 1. NON-SOCIAL BASIC intention experiment (COVERT blocks).

Experiment Hits (%) RTs (ms)

Session Intention LOW MODERATE HIGH LOW MODERATE HIGH

BASIC

Baseline Unlikely 42.5611.6 63.3614.7 94.767 11536303 8946205 5796193

Likely 44.4620.6 66611.9 93.8610.2 10926288 8666247 6016143

Bias Unlikely 38.3614.7 62.2615.4 91.368 11906380 9756294 6286206

Likely 57.2617.3 69.4615.8 95.567.4 8176270 6596223 5526159

Mean reaction times (6 SD) for likely and unlikely intentions for each amount of visual information (LOW, MODERATE, HIGH).
doi:10.1371/journal.pone.0017133.t001
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p,.001, ǵ=0.2; and hits: F(2,116) = 9.28, p,.001; ǵ=0.13).

Post-hoc tests further indicated that participants were more

accurate and faster in recognizing the likely intention in both

low and moderate amount of visual information conditions (LSD

Fisher: LOW, p,.001; MODERATE, p= .005, HIGH, p,.05 for RTs;

and LOW, p,.001; MODERATE, p,.001; HIGH = ns. for hits) (see

table 2 and figure 5, ‘Bias session’).

Effect of the bias on the unlikely intention. The number

of correct responses for unlikely intentions significantly decreased

in the bias session, compared to the baseline session, for both low

and moderate amounts of visual information (two-tailed t-tests: all

t(30).2.33, all p,0.02). Likewise, RTs significantly decreased in

the moderate amount of visual information condition (two-tailed t-

tests: t(30) =22.09, p = 0.04).

Preliminary discussion. Two results make the present

experiment diverge from the previous one. First, the bias effect

was greater in the second experiment, as it was observed in

condition of low amount of visual information as well as in

condition of moderate amount of information. Second, a ‘switch

effect’ was also observed in both these conditions, with an

increasing number of correct responses and decreasing latencies

for the likely intention, accompanied by decreased hits and

increased RTs for the unlikely intentions. This effect reflects the

cost associated with the selection of an unlikely superordinate

intention. Indeed, the increasing difficulty in disengaging from

prior expectations to select a less privileged representation (i.e.

unlikely intentions) reveals the greater extent to which participants

rely on the bias for making their response.

Experiment 3: social basic intention
Statistical analyses were similar to those conducted in the

previous experiments. Two-tailed t-tests revealed no significant

differences among both participants’ RTs and hits between the

TFT intentions (coop/coop vs. def/def: two-tailed t-tests, all

p..2) and between the alternative ones (coop/def vs. def/coop,

two-tailed t-tests, all p..15). Performances for def/def were

therefore pooled with those of coop/coop (i.e. TFT or likely

intentions) and performances for def/coop were pooled with

those of coop/def (i.e. alternative or unlikely intentions) for the

subsequent analyses.

Overt blocks. Participants performed the task well in both

the baseline and the bias sessions (percentage mean correct

responses: 98%, and S.D. = 2.5 and S.D. = 2.8). In the baseline

session, RT analyses revealed a significant effect of the type of

reputation, with participants being faster at inferring an action that

was embedded within a tit-for-tat strategy than within an

Figure 4. NON-SOCIAL BASIC intention experiment (COVERT blocks). Mean percentage of correct responses (6 SD) for likely (red) and unlikely
(blue) intentions for each amount of visual information (LOW, MODERATE, HIGH).
doi:10.1371/journal.pone.0017133.g004

Table 2. NON-SOCIAL SUPERORDINATE intention experiment (COVERT blocks).

Experiment Hits (%) RTs (ms)

Session Intention LOW MODERATE HIGH LOW MODERATE HIGH

SUPERORDINATE

Baseline Unlikely 50615 68.7612.1 9766.3 16056314 12416218 7456153

Likely 48.3615.9 70615.2 96.668.6 16766304 12116244 7836128

Bias Unlikely 40.8615.7 61.6612.2 93.3611.7 16896307 13576262 8096161

Likely 65614 77.5612 98.765 12216209 10146183 6006138

Mean reaction times (6 SD) for likely and unlikely intentions for each amount of visual information (LOW, MODERATE, HIGH).
doi:10.1371/journal.pone.0017133.t002
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alternative strategy (e.g. always defect or always cooperate) (two-

tailed t-tests, all p,.05). Crucially, this result confirmed the

existence of an inherent preference towards TFT reputation. This

effect was maintained after the bias assignment as revealed by

faster RTs for the likely intention (i.e. the TFT intention) in the

bias session (two-tailed t-tests, likely vs. unlikely intentions, all

p,.001). However, RTs for likely intentions did not significantly

decrease with time (blocks 1–3 vs. blocks 4–6: t = 0.35, p..05;

blocks 4–6 vs. blocks 7–9: t =20.68, p..05) (see figure 3, ‘Social

Basic exp.’).

Covert blocks. Baseline session. ANOVAs performed on both

hits and RTs showed a significant main effect of the amount of

visual information with decreased RTs (F(2,116) = 80.44, p,.001;

ǵ= .58) and a greater number of hits (F(2,116) = 209.02, p,.001,

ǵ= .78) as the amount of visual information increased. In

addition, the main effect of the type of reputation – previously

observed in the overt blocks – was also significant in the covert

blocks among RTs only (F (1, 58) = 4.7, p,.05, ǵ= .07). The

second player’s action was more rapidly inferred when it was

embedded within a TFT intention than within an ‘‘always

defecting’’ or an ‘‘always cooperating’’ intention. The type of

reputation did not, however, interact with the amount of visual

information (see table 3 and figure 6, ‘Baseline session’’).

Bias session. There were significant main effects of the amount of

visual information and of the bias on both the RTs (main effect of

amount of visual information: F(2,116) = 114.49, p,.001, ǵ= .66;

main effect of the bias, F(1,58) = 25.29, p,.001, ǵ= .3) and the

hits (main effect of amount of visual information:

F(2,116) = 170.34, p,.001, ǵ= .74; main effect of the bias,

F(1,58) = 34.75, p,.001, ǵ= .37), as well as a significant effect

of the interaction between these two factors (RTs: F(2,116) = 9.23,

p,.001, ǵ= .13; hits: F(2,116) = 8.28, p,.001, ǵ= .12). Partici-

pants’ performance (slower RTs and higher hits) for actions

congruent with a biased (i.e. likely) social intention improved as the

amount of visual information decreased. Furthermore, the bias

significantly affected participants’ hits for all amounts of

information (LSD Fisher: LOW, p,.001; MODERATE, p = .005;

HIGH, p = ns for RTs; LOW, p,.001; MODERATE, p = .05; HIGH,

p = .05 for hits) (see table 3 and figure 6, ‘Bias session’).

Effect of the bias on the unlikely intention. When

comparing performance for unlikely intentions between the

baseline and the bias sessions, we found significant differences

between these sessions for a high amount of visual information

only, with participants’ RTs for unlikely intentions significantly

decreasing in this condition (two-tailed t-tests: t(30) = 2.26,

p = 0.03).

Figure 5. NON-SOCIAL SUPERORDINATE intention experiment (COVERT blocks). Mean percentage of correct responses (6 SD) for likely (red) and
unlikely (blue) intentions for each amount of visual information (LOW, MODERATE, HIGH).
doi:10.1371/journal.pone.0017133.g005

Table 3. SOCIAL BASIC intention experiment (COVERT blocks).

Experiment Hits (%) RTs (ms)

Session Intention LOW MODERATE HIGH LOW MODERATE HIGH

SOCIAL BASIC

Baseline Unlikely 45.8613.4 66.6611.7 90.869.3 11596263 9906220 8886210

Likely 52.2612.5 68612.3 92.267.5 10536232 8996213 7506169

Bias Unlikely 41.6617.3 66.3614.4 86.6611.6 12176297 10416282 7886229

Likely 64.9613.7 75.2610.6 95.566.4 8466220 7486216 6076158

Mean reaction times (6 SD) for likely and unlikely intentions for each amount of visual information (LOW, MODERATE, HIGH).
doi:10.1371/journal.pone.0017133.t003
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Preliminary discussion. Two results make the present

experiment diverge from the two previous ones. First, in the

baseline session, where no bias was assigned, participants were

faster at predicting an action associated with a tit-for-tat (TFT)

intention. Interestingly, this early preference for TFT strategies

differed from several aspects of the probabilistic bias that was

imposed on participants in the second session. Not only did this

preference not interact with the amount of visual information but

its effect on performance remained constant over time. Second,

the effect of the probabilistic bias was significant for any amount of

visual information showing that prior expectations contributed to

the inference even in conditions in which the visual information

was highly reliable. By increasing the probability that the second

player does whatever the opponent did in the previous round, we

forced participants to perceive the second player as a ‘tit-for-tat’

player, rather than an altruist (always cooperate), an egoistic

(always defect), or a ‘random’ player, hence generating

progressively reinforced expectations that might prevail on

relevant perceptual cues – as it is the case in conditions of high

amount of visual information.

Experiment 4: social superordinate intention
Statistical analyses were similar to those conducted in the first

three experiments. Two-tailed t-tests revealed no significant

differences among both participants’ RTs and hits between the

two likely combinations (coop/coop vs. def/def: two-tailed t-tests,
all p..2) and between the two unlikely combinations (coop/def vs.
def/coop, two-tailed t-tests, all p..15). Performances for def/def

were therefore pooled with those of coop/coop (TFT or likely

intentions) and performances for def/coop were pooled with those

of coop/def (unlikely intentions).

Overt blocks. Participants performed the task well in both the

baseline (percentage mean correct responses: 97.5%, S.D.= 2.8)

and the bias sessions (percentage mean correct responses: 98.4%,

S.D.= 2.6). In the baseline session, RT analyses revealed a

significant effect of the type of reputation (two-tailed t-tests, all
p,.05), with participants being faster at inferring an action that was

embedded within a tit-for-tat strategy than within an alternative

strategy (i.e. always defect or always coop). RTs for the likely

intention also significantly decreased in the bias session (two-tailed t-

tests, likely vs. unlikely intentions, all p,.001) and this decrease was

found to increase over time up to block 6 (minimal RT=369 ms),

(blocks 1–3 vs. blocks 4–6: t =22.11, p,.05; blocks 4–6 vs. blocks 7–

9: t =20.44, p..05) (see figure 3, ‘Social superord. exp.’’).

Covert blocks. Baseline session. As the amount of visual

information increased, decreased RTs (F(2,116) = 93.23, p,.001,

ǵ= .61) and increased hits (F(2,116) = 281.6, p,.001, ǵ= .82)

were observed for actions accomplishing the likely social intention.

In addition, as in the overt blocks, actions were better and more

rapidly inferred when they were embedded within a tit-for-tat

strategy than within an alternative strategy (RTs: F(1,58,) = 4.16,

p,.05, ǵ= .06, and hits: F(1,58) = 7.96, p,.01, ǵ= .12). The

effect of reputation did not, however, interact with the amount of

visual information showing that the type of strategy affected

participants’ performance independently of the amount of visual

information (see table 4 and figure 7, ‘Baseline session’).

Bias session. There were significant main effects of the amount of

visual information and of the bias on both the RTs (main effect of

amount of visual information: F(2,116) = 163.11, p,.001, ǵ= .73;

main effect of the bias F(1,58) = 52.03, p,.001, ǵ= .47) and

the hits (main effect of amount of visual information:

F(2,116) = 198.77, p,.001, ǵ= .77; main effect of the bias

F(1,58) = 92.16, p,.001, ǵ= .61), as well as a significant effect

of the interaction between these two factors (RTs:

F(2,116) = 27.74, p,.001, ǵ= .32, and hits: F(2,116) = 4.41,

p = .01, ǵ= .07). Participants’ performance (slower RTs and

higher percentage of hits) for likely social intentions improved to

a large extent as the amount of visual information decreased,

although the bias effect was observed for all amounts of visual

information as revealed by the Post-hoc (LSD Fisher: LOW,

p,.001; MODERATE, p,.001; HIGH, p= .01 for RTs and LOW,

p,.001; MODERATE, p,.001; HIGH, p,.001 for hits) (see table 4

and figure 7, ‘Bias session’).

Effect of the bias on the unlikely intention. We found that

reaction times for unlikely intentions significantly increased in the

bias session, compared to the baseline session, for all amounts of

visual information (two-tailed t-tests: all t(30),22.07, all p,0.05).

The number of correct responses for unlikely intentions also

significantly decreased in the bias session, for both low and high

amounts of visual information (two-tailed t-tests: all t(30).2.33, all

Figure 6. SOCIAL BASIC intention experiment (COVERT blocks). Mean percentage of correct responses (6 SD) for likely (red) and unlikely (blue)
intentions for each amount of visual information (LOW, MODERATE, HIGH).
doi:10.1371/journal.pone.0017133.g006
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p,0.02). This effect did not reach significance in the moderate

amount of visual information condition (two-tailed t-test:

t(30) = 1.8, p = 0.07).

Preliminary discussion. As for the social basic experiment,

the bias effect was of major importance. First, in the baseline

session, analyses of latencies and accuracy data revealed that, prior

to the bias assignment, participants exhibited an early preference

for social intentions congruent with a tit-for-tat reputation.

Second, in the bias session, the bias significantly impacted on

performances for all amounts of visual information revealing an

increase in the difficulty with which the observer could disengage

from his prior expectations, even in the case where these

expectations interfered with the visual cues (e.g. in condition of

high amount of visual information). Consistent with this

interpretation is the observation that participants’ hits for the

unlikely intentions were found to significantly decrease in the bias

session – as the selection of these unlikely intentions required

inhibiting the activation of the likely intention representation.

‘Bias effect’: between-experiment comparisons
Contrasting the overall performance between experiments

revealed no significant differences, showing that overall partici-

pants performed at comparable levels across the four experiments.

Comparing the bias effect between experiments revealed signifi-

cant effects of both the scope and the target of the intention. The

bias effect was indeed significantly increased for the superordinate

intention compared with the basic intention (F(1,116) = 8.36,

p,.005, ǵ= .81) and for the social intention compared with the

non-social intention (F(1,116) = 5.06, p= .02, ǵ= .61). Further-

more, these differences were observed for different amounts of

information according to the dimension itself. Indeed, along the

scope dimension, the bias had a significantly greater effect when

inferring a superordinate intention than a basic one in the

conditions with a moderate amount of visual information (post-hoc

Fisher test, p = .014). Along the target dimension, on the other

hand, the only significant difference was observed for a high

amount of visual information with a greater bias effect for inferring

social intentions than non-social ones (post-hoc Fisher test,

p = .0035) (see figure 8).

Preliminary discussion. Comparing the bias effect across

the four experiments, two main results emerged. First, con-

sistent with the previous results, we found that the bias

differentially affected performance according to the scope and

the target of the intention. The bias effect was indeed

significantly more important in superordinate conditions than

in basic ones and in social conditions than in non-social ones.

Second, this effect varied according to the amount of visual

information available to the participants. It was significantly

Figure 7. SOCIAL SUPERORDINATE intention experiment (COVERT blocks). Mean percentage of correct responses (6 SD) for likely (red) and
unlikely (blue) intentions for each amount of visual information (LOW, MODERATE, HIGH).
doi:10.1371/journal.pone.0017133.g007

Table 4. SOCIAL SUPERORDINATE intention experiment (COVERT blocks).

Experiment Hits (%) RTs (ms)

Session Intention LOW MODERATE HIGH LOW MODERATE HIGH

SOCIAL SUPERORD.

Baseline Unlikely 44.1614.5 62.4611.5 86.169.1 12826288 10496237 8776198

Likely 53612.7 68.3612.2 90.567.8 11026277 9576217 8166175

Bias Unlikely 36.1615.2 56.3614.6 80.2611.8 14886328 11976271 9616230

Likely 64.1612.2 76.1611.7 97.265.9 9236219 7856192 7046151

Mean reaction times (6 SD) for likely and unlikely intentions for each amount of visual information (LOW, MODERATE, HIGH).
doi:10.1371/journal.pone.0017133.t004
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more important for superordinate intentions than for basic

intentions in condition of moderate amount of visual

information and greater for social intentions compared to non-

social intentions in condition of high amount of visual

information.

Discussion

The present study aimed at investigating how two distinct

sources of information – perceptual (bottom-up) evidence and prior
(top-down) expectations – interact to enable one to make an

intentional inference. To do so, we manipulated the participants’

prior expectations about the probability of the underlying

intention while varying the amount of visual information in the

action scene. Our second purpose was to determine whether the

contribution of these two sources of information would vary

depending on the scope (basic vs. superordinate intention) and the

target of the intention (social vs. non-social intention) that had to

be inferred. To test this second hypothesis, we therefore

manipulated the type of intention underlying the observed action

using four distinct tasks (basic non-social, superordinate non-social,

basic social, and superordinate social tasks).

Two main results emerged. First, we observed that the

intentional judgment indeed rests on an interplay between the

participants’ prior expectations (their probability of being true

varied across the blocks) and the reliability of the sensory

information available from the action scene. When this reliability

decreased, the bias effect (i.e. the contribution of prior

expectations) on performance increased, with participants

responding more towards intentions they estimated as being the

most likely cause of the observed behaviour. Second, this

interaction was found to vary according to the type of intention,
defined here by its scope (basic vs. superordinate) or its target

(social vs. non-social). Indeed, directly comparing performance

between intentions of different scopes but identical targets, and

between intentions with the same scope but distinct targets,

revealed an increase in the bias effect for both superordinate and

social intentions. While this effect was only observed when the

amount of visual information was low in the basic task, it was

found to be significant for both low and moderate amounts of

information in the superordinate task, and for any amount of

visual information in the social conditions.

Taken together, these results indicate that the degree to which

the participants’ prior knowledge contributes is sensitive to the

type of intention that is focused on. As the intention being

considered becomes more abstract (from basic to superordinate,

and from non-social to social intentions), the inference problem

becomes less constrained (i.e. the number of intentions congruent

with visuomotor inputs increases): in this condition, participants’

prior expectations exerted an increasing influence on their

responses, to the detriment of the sensory information available

from the action scene.

Interaction between perceptual and prior information
In the 4 experiments in the present study, the degree to which

prior expectations contributed strongly depended on the reliability

of the visual information conveyed by the video scenes. In low

amount of visual information conditions, whatever the type of

intention, participants tended to give priority to likely intentions at

the expense of unlikely intentions; that is, they relied mostly on the

intention they estimated to be the most likely cause of what was

observed. This tendency towards favouring prior knowledge over

perceptual information may further be accounted for by

considering intentional inference as an inverse problem [1–3,14].

Inverse problems characterise situations in which the same sensory

input can have different causes. This type of problem is commonly

encountered in ambiguous perceptual tasks – such as those using

bi-stable or degraded stimuli – the resolution of which requires

appealing to prior knowledge or making further assumptions about

the nature of the observed phenomenon [43]. The significant

contribution of prior expectations in conditions of high visual

ambiguity precisely suggests that when sensory information was

not sufficient to unambiguously infer one intention, participants

compensated by massively appealing to their prior knowledge (i.e.

about the space of the agent’s possible intentions). This strategy

resulted in preferentially selecting actions achieving the intention

with the highest probability to occur.

Figure 8. Mean score (± SD) of the bias effect expressed as a percentage of correct responses. Left panel: comparison between
intentions with same target but different scopes (BASIC vs. SUPERORD.). Right panel: comparison between intentions with same scope but different
targets (SOCIAL vs. NON-SOCIAL).
doi:10.1371/journal.pone.0017133.g008
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Overall, this result reinforces the idea that in situations of sparse

or incomplete data a successful inference depends on an adaptive

integration between bottom-up information (from the observation

of behaviour) and top-down prior knowledge about goals or

intentions [13]. This integration is consistent with a mechanism

complementing the available perceptual information when it does

not sufficiently constrain the number of potential solutions,

namely, the many competing intentions congruent with what is

observed. In line with this assumption, some authors have

suggested that inferring another person’s intention necessarily

requires sensorimotor information to be complemented with

information about mental states and attitudes [23]. It has been

demonstrated that prior expectations are already used frequently

by children, even at a very early age. This tendency combines with

a tendency to interpret actions as being directed towards a goal

(‘teleological obsession’, [3]). When the visual information is not

sufficient for interpreting the action as a goal directed one [44], or

when the action is incomplete [45], children posit states of the

world occasionally counterfactual to the perceptual evidence (such

as the presence of occluded physical objects). The results of the

present study are consistent with the existence of such a

mechanism of data completion/correction operating through the

default use of prior expectations. Crucially, however, we further

show that reliance on this mechanism also depends on the type of

the intention to be inferred, according to its scope (basic vs.

superordinate) or its target (non-social vs. social).

Basic vs. superordinate intentions
Both non-social basic and superordinate experiments required

recognising one motor act, with the superordinate condition also

requiring the final goal of the sequence (i.e. the shape being

constructed) to be taken into account. Yet, across both

experiments, prior expectations were found to differentially

contribute to the participants’ responses. In the basic non-social

experiment, a bias response towards the likely intention was only

observed in the condition where the amount of visual information

was low. When participants were exposed to a moderate amount

of visual information, these expectations no longer exerted an

influence on performance, which then substantially depended

upon the processing of the visual information alone. On the other

hand, a heightened contribution of these expectations is observed

in the superordinate experiments since they significantly influ-

enced participants’ performance in conditions of both low and

moderate amounts of visual information.

The increase in response bias in the superordinate experiment

cannot be explained by differences in complexity between both

tasks since participants performed at comparable levels across

basic and superordinate experiments showing that the differences

between both experiments in terms of contribution of prior

information are accounted for by the type of intention being

considered. This result may be explained by differences in the

relationship between these two types of intentions and action.

While basic intention stands to action in a one-to-one relation

(basic intentions like ‘transport’, ‘rotate’, or ‘lift’ an object are

indeed directly accessible to the viewer from mere observation of

the motor acts), superordinate intention stands to action in a

many-to-one relation since the very same intention can be

achieved by several distinct (commutative) sequences of actions.

In the present study, this commutative property resulted in an

ability of participants to infer the underlying intention solely on the

basis of visual information arising from the first two actions.

However, the present results also suggest that, despite the

unpredictability of the sequence, participants still initiated a

response, before observing the last action, by appealing massively

to their prior expectations. Participants’ dependence on priors in

this condition could precisely account for the fact that simulating the
motor acts composing the sequence (through motor mirroring,

[46–47]) was of little help to infer the final superordinate intention.

Those motor acts were indeed interchangeable within the

sequence itself, and, as a consequence, they did predict neither

the subsequent action nor the intention eventually achieved.

This early use of prior expectations might be accounted for by

the existence of a system that pre-processes the current action

chain depending on the sequences previously encountered.

Observing the beginning of an action, or a sequence of actions,

would automatically activate a representation of the likely

intention that would be progressively suppressed or reinforced as

the amount of visual information increases. Such a pre-processing

would be particularly salient in superordinate conditions, where

the beginning of the act chain proved to be of little importance for

inferring the final intention it achieved. As such, it would explain

why selecting an unlikely intention in bias sessions induced a

significant cost on participants’ performance. In these sessions,

selecting an unlikely intention would indeed imply disengaging

from the early activation of a likely intention. Finally, such pre-

processing may account for why prior expectations are favoured

over visual information in conditions of moderate perceptual

uncertainty, as it would account for the role that priors continue to

play when the amount of perceptual information increases. In

superordinate conditions, the current sequence of actions would

pre-activate the representation of the likely intention (i.e. the

intention with the highest probability) to such an extent that a

greater amount of visual information would be required to

counteract it.

Non-social vs. social intentions
Social experiments were characterized by participants’ respons-

es over-relying on prior expectations as revealed by responses

massively shifting towards likely intentions (i.e. ‘tit-for-tat’’

intention: cooperation if previous cooperation, defection if

previous defection) whatever the amount of visual information

available from the action scene. This increased reliance on prior

knowledge cannot be accounted for by differences in terms of

complexity between non-social and social experiments, namely a

greater memory load due to the requirement of tracking two

successive intentions – the first and the second player’s ones.

Indeed, participants performed equally well, in terms of correct

responses and reaction times, in both the social and non-social

experiments. Additionally, the effect of facilitation associated with

TFT strategy in the basic social experiment cannot be explained

by a visual priming effect of the first player’s action on the second

player’s one, which could have occurred when the latter

performed the same action as the former. Indeed, TFT strategy

was also found to be favoured in the superordinate social

experiment; yet in this study TFT strategy did not necessarily

imply that the action of the first player should be reproduced by

the second player.

The dependence of the participants on their prior knowledge

appears to reflect some expectations driven by the social context of

the task. It is well-known that even basic movements, like the

relative movements of geometrical figures, automatically induce

participants to perceive the figures as socially interacting [48–50],

and elicit strong expectations about the intentional causes of their

movements (e.g. striking, kissing, etc.). Situations identified as

involving social interactions are generally prone to trigger specific

expectations concerning the way agents are likely to behave in

such situations [12]. These expectations may be derived from

perceiving the other as an interaction partner rather than a
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competitor in a joint-action task [51], and from knowledge of

diverse origins, such as that provided by group stereotypes [52],

social-specific naive theories [53], or an individual’s reputation

acquired from experience of reciprocal social interactions [10]. In

the present experiment, increased dependence on prior knowledge

for inferring social intentions, regardless of their scope, seems

precisely to fall within this type of expectation. Indeed, during the

whole task, increasing the frequency of the second player adopting

a TFT strategy amounted to progressively assigning a specific

reputation to that player. A bias in the response towards a ‘‘tit-for-

tat’’ mode of reciprocation reveals that participants did integrate

this reputational knowledge and made their response accordingly.

The pervasive effect of these specific expectations is also well

illustrated in the baseline condition by the early preference of

participants for the TFT reciprocation. Even before being biased

in this direction, participants tended to infer more rapidly that the

second player was more inclined to mirror the first player’s

strategy. This early preference was probabilistically reinforced in

the bias session and, as a consequence, exerted a greater influence

on the participants’ performance since it persisted even when the

reliability of the visual information was high. Indeed, while in the

basic non-social experiment the very same motor act presented

alone was inferred from a much lower amount of visual

information, in the social experiment a bias response towards

the likely social intention was still observed for a higher amount of

visual information. This shows that the influence of these

expectations in the bias session was such that the participants

had difficulty disengaging from their a priori expectations, resulting
in predicting a play congruent with prior expectations but

counterfactual to perceptual evidence. Similarly, these difficulties

could account for the cost in performance associated with the

selection of intentions that did not meet these expectations. In the

bias session, participants were indeed significantly less accurate

and were slower to select an unlikely intention (i.e. always defect,

always cooperate) when this selection required concomitantly

inhibiting the competing tit-for-tat intention.

Simulation vs. reasoning accounts of action
understanding
The two main results of the present study (interaction between

prior expectations and perceptual information and the modulation

of this interaction as a function of the type of intention) may help

reconcile the two major accounts of action understanding

developed over the last decade. On the simulation account, we

understand our conspecifics’ intention by literally simulating their

action via the activation of our own motor planning system. The

result of this process of internal replication is the selection, in the

observer’s own repertoire, of the intention that would have caused

the very same action. This type of explanation stresses the role of

sensory information, derived from the kinematics of the move-

ment, in action understanding [35]– irrespective of whether the

action is complete (the goal achieved is fully visible) or only

partially performed (the goal is hidden but can be predicted from

the unfolding action) [see 46]. In contrast, the ‘‘theory theory’’

account postulates that action understanding is based on

specialized inferential processes and mostly emphasizes the

contribution of the context-related prior knowledge. This

knowledge can either be derived from our intuitive theories of

human behaviour, or from the subject’s past experiences and rules

she has drawn from them [8,54,55].

A wealth of empirical data and theoretical works nowadays

converges on the idea that these two major classes of mechanisms

play a complementary role in intention inference [10,22,23,56].

The results of the present study comfort these observations. By

suggesting that intentional judgment relies on a relative balance of

bottom-up sensory and top-down prior information, they plead in

favour of a hybrid model of action understanding. In such a model,

the observer would mobilize either low-level simulation or high-

order inferential mechanisms depending on whether the current

sensory evidence is, or is not, reliable enough to elicit simulation

from observation.

Recently, Kilner and colleagues proposed a theoretical

framework that attempts to further account for how these two

classes of mechanisms may interact to enable one’s understanding

of other people’s intentions [1]. This framework relies on the

hierarchical architecture of action representations ranging from

the intention level to the kinematics level (see also [57]). In this

architecture, the selection of one type of action representation

would result from the resolution of the inverse problem at each

level of the hierarchy. Basically, each level uses a model to

generate a prediction of the representations in the level below.

This prediction is then compared with the representation at the

subordinate level and prediction errors arising from that

comparison are returned to the higher level to adjust its

representation. This adjustment is generalised to the different

levels of the hierarchy (intention, motor command and kinemat-

ics). The most likely cause of the observed action is then inferred

by minimising the prediction error at all the levels of this hierarchy

[1,2]. Given visual kinematics, goal expectations are first

generated, from these goal representations motor commands are

then predicted and given these motor commands, kinematics are

in turn predicted. In this framework, top-down influences are

therefore dynamically generated since the estimates produced at

the higher levels become prior expectations for the lower levels.

Our results can be consistently interpreted in the light of the

Kilner’s hierarchical model. A basic intention can be directly

predicted from the observation of the current motor act, provided

the related visual information is sufficient to enable comparison

with expected kinematics at higher levels. In this case, participants’

performance is strongly dependent on minimising the prediction

error that arises from this comparison. However, this comparison

also closely depends on the reliability of the current movement

kinematics; when the amount of visual information is too low, this

comparison cannot be made, and, as a result, subordinate levels

cannot adjust their representation to higher estimates of the

hierarchy. We observed that, when this comparison could not be

carried out, participants consistently appealed to their prior

knowledge. In a hierarchical model of action representations, such

an over-reliance on priors could be made possible by the existence

of a short circuitry of recursive loops between subordinate and

higher levels of the cortical hierarchy. These recursive loops would

be mobilized when data is sparse to shortcut the automatic

comparison process between observed and expected kinematics

movement. Importantly, the engagement of this mechanism

proved to be dependent on the amount of visual information

available from the action scene, but independent from the scope

and target of the intention, since it was observed to operate at the

lowest levels of visual information in each of the four experimental

conditions.

Noteworthily, the engagement of these recursive loops is also

sensitive to variations in the relationship between the observed

action and its goal. Superordinate conditions indeed involved a

greater recourse to participants’ prior expectations even when the

visual information significantly increased to a moderate (non-

social) or even a high level (social). This greater dependence on

prior expectations can be explained by the fact that, in

superordinate conditions, many competing intentions are congru-

ent with the visual information conveyed by the current motor act.
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Thus, whereas minimising the prediction error between expected

and current kinematics may be sufficient to predict the agent’s

single act (e.g. to rotate), it may not be to infer unambiguously

which of the multiple superordinate intentions (e.g. final shapes) it

contributes to accomplish. As a consequence, we found the weight

of the decision to be mostly carried by participants’ prior

expectations, suggesting, in this situation of accrued perceptual

uncertainty, an early shortcut of the comparison process between

levels of the action representation hierarchy. Crucially, this

shortcut was independent of the amount of information, since it

occurred even when the visual information was high enough for

the participant to be normally confident about what she is seeing.

This observation suggests that recursive loops of this kind could be

mostly recruited in contexts where relying on one’s prior

expectations is a better guarantee for accurate inference, even if

such expectations can occasionally go against perceptual evidence.

Conclusion
Our results shed light on how sensory information, derived from

the kinematics of the observed action, interacts with prior

expectations to enable one’s understanding of other people’s

intentions. We first showed that the contribution of participants’

prior knowledge was sensitive to the availability of the sensory

information from the action scene. A greater contribution of this

knowledge was observed in conditions of sparse visual information,

suggesting the engagement of a mechanism of data completion

operating through the default use of prior expectations.

Second, we found that the priors’ contribution also depended

on the type of intention that was inferred. An increased reliance on

priors was indeed observed in conditions where the agent’s

intention could not be predicted by the sole visible, current motor

act, but further required estimating the superordinate goal this act

contributed to achieve. In this case, participants’ expectations –

being progressively acquired from observation – were found to

most frequently supersede the visual information conveyed by the

current motor kinematics. Thus, the more participants responded

towards the biased (e.g. expected) intentions, the more the visual

information tended to play a confirmatory, rather than a

predictive role. Such a shift in the contribution of visual evidence

is likely to account for why participants, in this condition, mostly

over-relied on their priors to make their decision, even though it

ran counter to the perceptual evidence.

Crucially, an over-reliance on priors was also massively

observed in social conditions. We suggested that the early

influence of social-specific expectations (e.g. expectations on how

agents are the most likely to behave in a context of reciprocal

interaction) may account for this important shift in the response

toward participants’ priors. Contexts of social interaction are

indeed prone to elicit modular, high-level expectations, which may

contribute to giving priority to some intentional causes (e.g.

cooperation if previous cooperation, defection if previous defec-

tion) at the expense of other competing causes. These a priori
expectations, being acquired from experience (probabilistic bias)

or derived from domain-specific knowledge (TFT reciprocation),

were found to favour some action representations so that less

sensory evidence was needed for the participants to be confident

about their decision, i.e. about which kind of intention was most

likely the cause of the observed action.

Supporting Information

Text S1 Pre-tests: intra- and inter-sequence comparisons;

selection of LOW, MODERATE and HIGH amounts of information.

(DOC)

Figure S1 Distribution of participant’s reaction times
(blue dots) across the 12 movie segments. Reaction times

for the different actions were pooled across subjects. Red squares:

mean reaction times across participants for each of the 12 duration

ranges.

(TIF)

Figure S2 BASIC experiment: psychometric curve fit to
the cumulative distribution of participant’s correct
responses (red dots). Responses for the different actions were

pooled across. The blue dot refers to the inflexion point of the

sigmoid curve. In each experiment, the inflexion point occurs at

the following duration: A. BASIC: 1576 ms. B. SUPERORD.:

1558 ms. C. SOCIAL BASIC: 1546 ms. D. SOCIAL SUPERORD.

1550 ms.

(TIF)
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46. Umiltà MA, Kohler E, Gallese V, Fogassi L, Fagiga L, et al. (2001) I know what

you are doing. A neurophsyiological study. Neuron 31: 155–65.

47. Gallese V (2007) Before and below ‘theory of mind’: embodied simulation and

the neural correlates of social cognition. Philosophical Transactions of the Royal

Society 362: 659–669.

48. Heider F, Simmel M (1944) An experimental study of apparent behaviour.

American Journal of Psychology 57: 243–259.
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Impaired Hierarchical Control Within the Lateral
Prefrontal Cortex in Schizophrenia
Guillaume Barbalat, Valerian Chambon, Philippe J.D. Domenech, Chrystèle Ody, Etienne Koechlin,
Nicolas Franck, and Chlöé Farrer

Background: In schizophrenia, disturbances of cognitive control have been associated with impaired functional specialization within the lateral
prefrontal cortex (LPFC), but little is known about the functional interactions between specialized LPFC subregions. Here, we addressed this
question with a recent model that describes the LPFC functioning as a cascade of control processes along a rostrocaudal axis, whereby anterior
frontal regions influence the processing in posterior frontal regions to guide action selection on the basis of the temporal structure of information.

Methods: We assessed effective connectivity within the rostrocaudal axis of the LPFC by means of functional magnetic resonance imaging
in 15 schizophrenic patients and 14 matched healthy control subjects with structural equation modeling and psychophysiological
interactions.

Results: In healthy subjects, activity in the left caudal LPFC regions was under the influence of left rostral LPFC regions when controlling
information conveyed by past events. By contrast, schizophrenic patients failed to demonstrate significant effective connectivity from
rostral to caudal LPFC regions in both hemispheres.

Conclusions: The hierarchical control along the rostrocaudal axis of the LPFC is impaired in schizophrenia. This provides the first evidence
of a top-down functional disconnection within the LPFC in this disorder. This disruption of top-down connectivity from rostral to caudal LPFC
regions observed in patients might affect their ability to select the appropriate sets of stimulus-response associations in the caudal LPFC on
the basis of information conveyed by past events. This impaired hierarchical control within the LPFC could result from poorly encoded
contextual information due to abnormal computations in the caudal LPFC.

Key Words: Effective connectivity, functional magnetic resonance
imaging, hierarchical control, lateral prefrontal cortex, rostrocaudal
axis, schizophrenia

I n schizophrenia, disturbances of cognitive control, the ability to
coordinate thoughts and actions in relation to internal goals,
have been robustly associated with impaired functional special-

ization within the lateral prefrontal cortex (LPFC) (1– 6). Recent
models suggest that cognitive control is constructed as a set of
hierarchical modules that involve selecting and maintaining goals
at multiple levels of abstraction, from general task goals at higher
levels (such as watching a movie in the cinema) to concrete motor
responses at the lowest levels (such as taking transport to go to the
cinema, buying a ticket at the box office, or sitting comfortably in
front of the screen) (7). Such a behavioral hierarchy has been shown
to be subserved by a hierarchical organization along the rostrocau-
dal axis of the LPFC, where more anterior regions are associated
with progressively more abstract action control, whereas more pos-
terior regions process more concrete information about action (i.e.,
action that is closer to the actual motor output) (8). Furthermore,
there seems to be a dominance relationship whereby more anterior
regions that process abstract, superordinate, domain-general rules,
modulate domain-specific, subordinate, posterior regions (9).

We previously investigated the overall organization of cognitive con-
trol within the LPFC in schizophrenia with an influential model (10) that
describes the architecture of cognitive control as a cascade of executive
modulesrangingfrompremotortomoreanteriorLPFCregions(3,11).This
model includes a sensory control level involved in selecting the motor
responses that are the most appropriate to stimuli that occur and sub-
servedbythelateralpremotorregions(typically,BrodmannArea[BA]6).A
contextualcontrol level istheninvolvedinselectingpremotorrepresenta-
tions (i.e., stimulus-response associations) according to contextual signals
thataccompanytheoccurrenceofstimuli.Thiscontrol issubservedbythe
caudalpartoftheLPFC(typically,BAs9/44/45).Finally,theepisodiccontrol
level is involvedinselectingcaudalLPFCrepresentations(task-setsorcon-
sistent sets of stimulus-response associations evoked in the same imme-
diate, perceptual context) according to the temporal episode in which
stimuli occur. This control is subserved by the rostral part of the LPFC
(typically, BAs 46/10).

We demonstrated that, although the lower-order, less abstract,
sensory level of cognitive control was spared in schizophrenia, con-
textual control was significantly impaired (11), which was related to
hypoactivation in the caudal LPFC regions (3). With regard to epi-
sodic control, we found mixed but consistent findings. When no
contextual signals were involved in the task, there was no behav-
ioral disturbance of episodic control in schizophrenia (11). By con-
trast, adding contextual signals in the task reduced this level of
cognitive control. In other words, this impaired episodic control
process refers in fact to a dysfunctional interaction between the
“episodic” and the “contextual” modules (3,11).

At the neural level, this disturbed episodic control process in
schizophrenic patients was not reflected by any hypoactivation
in the rostral LPFC. By contrast, we found a hyperactivation in
this region, which we interpreted as a consequence of the added
effort that patients might expend to retrieve the poorly inte-
grated contextual information (2,3,12,13). However, the neural
substrates underlying this dysfunctional control of episodic sig-
nals remain unknown.
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According to the functional disconnection hypothesis proposed
by Friston (14), such a dysfunctional interaction between two cog-
nitive processes should result from dysfunctional interaction in the
dynamics of the brain regions subserving these processes rather
than dysfunctional specialization within a specific region. The fram-
ing of the cascade model further predicts that this impairment in
episodic control would depend on the way rostral LPFC exerts its
influence on the caudal LPFC regions (9). However, until now, stud-
ies that have investigated the interaction between specialized neu-
ral systems related to executive dysfunctions in schizophrenia have
demonstrated altered LPFC connectivity with other cortical struc-
tures such as the inferior parietal lobule (5), the hippocampus (15),
or the anterior cingulate cortex (16) but have not directly studied
the functional integration of the different cognitive control mod-
ules within the LPFC itself.

The goal of this follow-up study was to test whether the per-
turbed control of temporal episodic signals in patients reflects a
dysfunction in the top-down selection of caudal LPFC representa-
tions by rostral LPFC. For this purpose, we based our analysis on
data collected in our previously published study (3) and measured
effective connectivity between LPFC regions involved in control-
ling episodic and contextual signals in both groups with structural
equation modeling (SEM) and psychophysiological interactions (PPIs).

Methods and Materials

Subjects
This analysis initially involved 15 schizophrenic patients (n � 15)

and 15 matched healthy control subjects, 1 of whom was excluded
because of excessive motion in the scanner (n � 14) (3). For more
details about the description of the participants, please refer to
Supplement 1 (see also Table 1).

Experimental Paradigm
The experiment included eight scanning sessions, each consist-

ing of eight separate blocks presented in a counterbalanced order.
Each block comprised a series of 12 successive stimuli (colored
letters; duration: 500 msec; onset asynchrony: 3500 msec) preceded
by an instruction cue lasting 4200 msec (Figure 1). Each instruction

informed the subjects to make speeded responses to stimuli by
pressing left or right hand-held response buttons or to withhold a
response to a no-go stimulus. Instructions were prelearned by the
subjects before running the experiment to avoid possible biases
due to learning effects during the test session.

In each scanning session, the eight blocks formed four distinct
experimental conditions crossing the demands of contextual and
episodic control varied by manipulating the context (Icon) and the
episode (Iepi) factors, respectively. These variations were quantified
according to the computational model from Koechlin et al. (10), on
the basis of Shannon’s information theory (17).

The color of the letter was the contextual signal within each
block. According to the contextual signal, subjects had to perform
one of three tasks: 1) ignore the letters; 2) a vowel/consonant dis-
crimination task (T1: if the letter is a vowel, press the right response
button; if the letter is a consonant, press left); or 3) a lower/upper-
case discrimination task (T2: if the letter is uppercase, press right; if
the letter is lowercase, press left). Where contextual control was
low, the task remained the same across the entire block (T1 or T2,
single-task-set blocks, Icon � 0 bit; block no. 1,2,5,6 in Figure 1). In
high contextual control blocks, the task changed from trial to trial
(T1 and T2, dual task-set blocks, Icon � 1 bit; blocks no. 3,4,7,8 in
Figure 1).

The episodic signal was by definition the instruction cue preced-
ing each block. Episodic signals conveyed information about the
contingencies linking contextual signals (i.e., the color of the letter)
and task-sets (i.e., T1 or T2) that occurred in the proceeding se-
quence of letters and were chosen to parametrically vary the
amount of episodic information across blocks. Therefore, the epi-
sode factor was the covariate of interest that contrasted episodes
according to the episodic information Iepi conveyed by instruction
cues that were required for subsequently selecting appropriate
task-sets with respect to contextual signals (Iepi � 0 to 1 and 2 bits).
For example, in Block No. 1, the instruction cue indicated that, if the
letter is white, no response should be given, whereas if the letter is
green, the subjects should perform task T1 (Figure 1). Then, with
information theory, we computed different values for the episodic
control demand, such that the more frequent the crosstemporal

Table 1. Clinical and Demographic Characteristics

Characteristic Patients (n � 15) Comparison Subjects (n � 14) p

Male Gender, n (%) 8 (53) 8 (57) .68
Age, yrs 35 (10.5) 36 (10.6) .79
Education, yrs 11 (1.3) 11 (1.9) .82
Handedness .86 (.09) .84 (.11) .50
Duration of Illness, yrs 10 (9) — —
SANS Score 43 (19) — —
SAPS Score 23 (21) — —
Reality Distortion Scorea 8 (10) — —
Poverty Scoreb 34 (18) — —
Disorganization Scorec 23 (13) — —
Chlorpromazine-Equivalentd, mg/day 247 (190) — —

Values are mean � SD, unless otherwise indicated.
SANS, Scale for the Assessment for Negative Symptoms (50). SAPS, Scale for the Assessment of Positive Symptoms

(51).
aSum of the scores for hallucinations and delusions from the SAPS.
bSum of the scores for poverty of speech, flat affect, anhedonia/asociality, and amotivation from the SANS.
cSum of the scores for formal thought disorder and bizarre behavior from the SAPS and the score for attention from

the SANS.
dDepot doses of and daily-oral atypical antipsychotics at the time of the examination (risperidone in 6 patients,

olanzapine in 3 patients, amilsupride in 3 patients, and aripiprazole in 2 patients) were converted to average daily
chlorpromazine-equivalent doses. None of the patients received a concurrent typical antipsychotic, anticholinergic
agent, sedative treatment, mood stabilizer, antidepressant, or other psychotropic agent.
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contingencies between contextual signals and task-sets, the lower
the amount of episodic information—thus the lower the demand of
episodic control. More specifically, the episodic control demand
depended on the proportion f of episodes involving congruent
associations between contextual signals and task-sets over the
whole experiment. When this proportion was maximal (f � 1, such
as in blocks no. 1,2,3,4 where green always denoted “T1,” red always
denoted “T2,” and white was always “no-go”), the demand of epi-
sodic control was low (Iepi � 0 bit). By contrast, the decrease of this
frequency (f � 1, such as in blocks no. 5,6,7,8 where blue, purple,
and yellow could all denote “T1,” “T2,” or “no-go”) led to an increase
in the episodic control demand (Iepi � 0 bit). Because the same
crosstemporal contingencies were involved in blocks no.7 and no.
8, these two blocks had a lower episodic control demand (Iepi � 1
bit) than that in blocks no. 5 or no. 6, which contained different
crosstemporal contingencies (Iepi � 2 bits).

In each block, the proportion of letters to be ignored was 33%. In
dual task-set blocks, the ratio of trials associated with task-set T1
versus task-set T2 was equal to 1. Finally, in each block, the ratio of
left versus right responses was equal to 1, and the ratio of congru-
ent versus incongruent letters (same vs. different responses for T1

and T2) was equal to 1. Accordingly, sensorimotor control was
constant across the experiment.

The methods for the behavioral analyses, magnetic resonance
imaging (MRI) procedures and preprocessing, delimitation of the
regions of interest, and regions of interest analyses are reported in
Supplement 1.

Effective Connectivity Analyses
We investigated, on the basis of anatomical and functional con-

nections in the frontal lobes described previously (10,18), the exis-
tence of a top-down control system from rostral to caudal LPFC
regions (identified by the exploratory analyses in each of the two
groups, see Supplement 1).

Structural Equation Modeling
The structural equation model included top-down paths from

rostral to caudal regions as well as additional reciprocal paths link-
ing the same regions located in the left and right hemispheres to
account for callosal interhemispheric connections. The functional
model was therefore reformulated as a model of structural linear
equations with path coefficients quantifying effective connectivity
as partial temporal correlations between related regional activa-
tions.

We sought to test the prediction of the cascade model that path
coefficients from rostral to caudal LPFC regions significantly in-
crease with the demand of episodic control rather than contextual
control (10). Subject-specific time series of functional MRI signals
were obtained at activation peaks, averaged over subjects, and
standardized in each condition (mean and variance were equated
across conditions). The resulting time series were then used for
structural model estimation and statistical inference on the basis of
maximum-likelihood statistics. We assessed significant variations of
path coefficients within each group with a nested model approach
(19) (see also Supplement 1). Variations of path coefficients related
to the episode and context factors were estimated from variations
in interregional correlation matrices observed between all episodes
with Iepi � 0 versus Iepi � 0 and Icon � 0 versus Icon � 1, respectively.

PPIs
To account for between-subject variability and to make a statistical

inference about group differences in effective connectivity within the
LPFC, we computed pair-wise PPI between LPFC regions (20).

Here, we specifically sought to test whether substantial varia-
tions from rostral to caudal LPFC activity resulted from underlying
neuronal interactions with the episodic factor in both hemispheres
(i.e., from the condition where the episodic control demand was
low—Iepi� 0 bit—to the condition where the episodic control de-
mand was high—Iepi� 2 bits—with Icon � 0 bit). For each of the
regions identified by the exploratory voxel-wise contrasts, individ-
ual time-series were extracted at the peak voxel and standardized in
each condition. Then, treating intersubject variability as a random
factor, we tested whether the slopes (
) of the regression of caudal
LPFC activity against rostral LPFC activity significantly increased as a
function of the episodic factor within each group and between
groups (from 
low, the slope when Iepi � 0, to 
high, the slope when
Iepi � 2 bits) (see Supplement 1 for more details). Note that these PPI
analyses are orthogonal with the ones issued from our previous
report (3).

Results

Patients made significantly more errors than control subjects
with regard to both the context and the episode factors (Figure 2).
Because this poor performance in patients might confound

Figure 1. Experimental design. (A) Rounded boxes represent behavioral
episodes (numbered from no. 1 to no. 8) with related stimuli (letters) and
instructions. Episodes formed four distinct experimental conditions cross-
ing the episodic factor with the context factor. According to the color of the
letter (contextual signal), subjects either ignored the letter or performed a
vowel/consonant (T1) or lower/uppercase (T2) discrimination task on the
letters. Block no. 1: contextual signals were either green or white. White
signals indicated that subjects should ignore the letter. Green signals indi-
cated that subjects should perform task T1 (single task-set episode). Block
no. 2: contextual signals were either red or white. White signals indicated
that subjects should ignore the letter. Red signals indicated that subjects
should perform task T2 (single task-set episode). Blocks no. 3 and no. 4:
contextual signals were green, red, or white. Subjects responded to letters
as described for blocks no. 1 and no. 2 (dual task-set episode). Blocks no. 5:
contextual signals were yellow, blue, or purple. Blue signals instructed sub-
jects to ignore the letters. Yellow and purple signals instructed subjects to
perform task T1 (single task-set episode). Block no. 6: contextual signals
were yellow, blue, or purple. Yellow signals instructed subjects to ignore the
letters. Blue and purple signals instructed subjects to perform task T2 (single
task-set episode). Blocks no. 7 and no. 8: contextual signals were yellow,
blue, or purple. Purple signals instructed subjects to ignore the letters. Blue
and yellow signals instructed subjects to perform tasks T1 and T2, respec-
tively (dual task-set episode). Dashed lines connect episodes involving con-
gruent associations between contextual signals and task-sets. (B) Typical
episode.
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changes in functional brain activation, we matched groups for ac-
curacy by removing from the analyses blocks in which performance
was unsatisfactory (i.e., accuracy � .65) (see Tan et al. [4] for the use
of a similar threshold) (see also Supplement 1 for more details).
After applying this criterion, there were no behavioral differences
between the two groups with regard to both the episode and the
context factors [F (1,81) � .21, p � .05].

In each of the two groups, we first identified rostral and caudal
LPFC as the LPFC regions involved in controlling episodic and con-
textual signals, respectively (Table 2). Caudal LPFC regions demon-
strated a group 
 context interaction [F (1,81) � 3.76, p � .05], with
patients showing no modulation of activation related to the con-
textual factor in these regions (Figure S1 in Supplement 1). By

contrast, caudal LPFC regions demonstrated neither a main effect
of group nor an interaction between group and episode [F (1,81) �
1.15, p � .05]. Finally, we found a group effect in rostral LPFC regions
[F (1,81) � 6.97, p � .05], with patients activating this region more
than control subjects.

Structural Equation Modeling Analyses
The cascade model predicts that contextual control involves no

top-down control from anterior to more posterior LPFC regions
(10,18). Indeed, when the demand of contextual control increased,
no path coefficients were found to significantly increase from ros-
tral to caudal LPFC regions with the context factor in both groups
[all �2(1) � 3.36, p � .05; Figure 3].

By contrast, the model predicts that path coefficients from ros-
tral to caudal LPFC regions will significantly increase with the de-
mand of episodic control (10,18). Indeed, when the demand of
episodic control increased, a significant increase of path coeffi-
cients was found in healthy subjects from rostral to caudal left LPFC
regions [�2(1) � 4.44, p � .05; in the right hemisphere: �2(1) � .23,
p � .05; Figure 3]. This left lateralization might result from the
exclusive use of verbal material (letter stimuli), which is preferen-
tially processed in the left hemisphere (21). In patients, however, no
path coefficients significantly increased with the episodic factor
from rostral to caudal LPFC regions in either hemisphere [�2(1) �
1.96, p � .05; Figure 3].

PPI Analyses
In control subjects, the significant variations of path coefficients

from rostral to caudal LPFC regions reported in the SEM analysis
corresponded to a significant PPI between activity in rostral and
caudal LPFC regions related to the episodic factor (Figure 4). In
other words, the strength of the regression between activity in
caudal and rostral LPFC regions depended on the episodic factor
(from Iepi � 0 to Iepi � 2 bits). Indeed, we found a significant increase
in the regression slopes (
) of left caudal LPFC activity against left
rostral LPFC activity as a function of the episodic factor [F (1,459) �
8.9, p � .005; 
low � �.04; 
high � .43; Figure 4A]. In patients,

Figure 2. Behavioral results. Error rates (%, mean � SE across participants)
across experimental conditions. Open circles and squares indicate single
task-set episodes in control subjects and schizophrenic patients, respec-
tively. Solid circles and squares indicate dual task-sets episodes in control
subjects and schizophrenic patients, respectively.

Table 2. Within-Group Localization of the LPFC Regions Displaying Episode and Context Effects Used for the Effective Connectivity Analyses

Group, Effect, and Lateral Frontal
Cortex Region

Estimated
BA

Coordinatesa

Analysis
tb Volumec

FDR
px y z

Healthy Subjects
Context effectd

Left middle frontal gyrus, caudal PFC BA 9 �42 39 36 6.27 37,084 .038
Right middle frontal gyrus, caudal PFC BA 9 42 33 39 5.21 8277 .038

Episode effect (excluding context effect)
Left superior frontal gyrus, rostral PFC BA 10 �27 54 �3 4.23 185 .037
Right middle frontal gyrus, rostral PFC BA 10 33 63 9 3.49 139 .037

Schizophrenia Patients
Context effectd

Left middle frontal gyrus, caudal PFC BA 9 �33 42 12 4.92 2867 .087
Right middle frontal gyrus, caudal PFC BA 9 33 36 27 4.41 786 .087

Episode effect (excluding context effect)
Right middle frontal gyrus, rostral cortex BA 10 27 51 0 4.77 8046 .026
Left middle frontal gyrus, rostral cortex BA 46 �36 48 9 4.02 1295 .026

LPFC, lateral prefrontal cortex; BA, Brodmann’s Area; FDR, false discovery rate; PFC, prefrontal cortex.
aCoordinates from the stereotaxic atlas of Talairach and Tournoux (52).
bRegional peak activation representing blood oxygen-level dependent signal change that reached a threshold of p � .05 (corrected for the false discovery

rate) in a random-effect analysis.
cValues are mm3.
dThese peaks are nonsignificant but are reported because we do not want to give the impression that the activations are absent in schizophrenia patients

regarding the context effect.
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however, we found a significant decrease in the regression slopes
of left caudal LPFC activity against left rostral LPFC activity as a
function of the episodic factor [F (1,492) � 8.9, p � .01; 
low � .60;

high � .42; Figure 4B]. We observed no significant PPI between
rostral and caudal LPFC regions related to the episodic factor in the
right hemisphere in either group (F � 1.8, p � .05; Figures 4C and
4D). Finally, we observed no significant PPI between rostral and
caudal LPFC regions related to the contextual factor in both hemi-
spheres, in either group (F � 3.0, p � .05), which confirmed the
results of our SEM analysis.

We observed stronger effective connectivity from rostral to cau-
dal LPFC regions related to the episodic factor in control subjects
than in patients in the left hemisphere [left hemisphere: interaction
among rostral LPFC activity, the episodic factor and the group
factor: F (1,951) � 16.6, p � .001; right hemisphere: no interaction,
F (1,951) � .8, p � .05]. The 
 value was significantly greater in the
low-episodic control condition in patients than in control subjects
[interaction between rostral LPFC activity and the group factor:

F (1,462) � 14, p � .001]. In contrast, the 
 values were nonsignifi-
cantly different between the two groups in the high-episodic con-
trol condition [rostral LPFC activity 
 Group interaction: F (1,462) �
.01, p � .05].

Finally, one could argue that the reduced rostrocaudal connec-
tivity in patients could result from a bias in the analyses, because we
excluded blocks in which accuracy was � .65 to prevent a perfor-
mance bias. This manipulation could indeed have reduced the
power of the analysis of the schizophrenia dataset relative to the
control subjects. However, when rerunning the analysis with the
whole dataset in both groups, we still found significantly less mod-
ulation of the caudal LPFC by the rostral LPFC in patients relative to
control subjects with regard to the episodic factor in the left hemi-
sphere [left hemisphere: interaction among rostral LPFC activity,
the episodic factor, and the group factor, F (1,951) � 10, p � .005;
right hemisphere: no interaction, F (1,951) � .04, p � .05].

Discussion

Our analyses support the idea that, in healthy subjects, the LPFC
is hierarchically organized from rostral to caudal LPFC regions,
where anterior regions integrate temporally dispersed information
for selecting the appropriate action at each time from posterior
LPFC regions (8 –10,18,22). By contrast, we found impaired hierar-
chical control along the rostrocaudal axis of the LPFC in individuals
with schizophrenia.

It is worth noting that our sample of patients was treated with
atypical antipsychotics, which could potentially perturb the effec-
tive connectivity through the frontal cortex in schizophrenic pa-
tients. However, impaired effective connectivity within the frontal
lobes has been observed in drug-naive as well as in medicated
patients, making this potential confound a less likely explanation of
our findings (23,24). Another potential limitation of our findings
pertains to the difficulty of the task itself. Because the task was
relatively complicated, it is likely that the patients who participated
in the study performed much better than other patients with lower
levels of education or more florid positive or negative symptoms
would. That being said, we are quite confident that our results are
reproducible, provided that they involve clinically stable patients
with a minimum level of education, as in the current experiment.
Indeed, a previous study from our group found the same pattern of
behavioral results (i.e., contextual and episodic control impair-
ments in patients) with a different sample of subjects (11). More-
over, although our functional MRI findings are novel, they support
other studies showing hypoactivation in the caudal LPFC in schizo-
phrenia (1,2,4,5,13,25–27) and are consistent with our initial hy-
potheses.

According to the cascade model, rostral LPFC regions are in-
volved in selecting caudal LPFC representations to monitor the
appropriate selection of task-sets evoked in the same context, a
process referred to as episodic control (10). More specifically, the
episodic control demand depends on the proportion f of episodes
involving congruent associations between contextual signals and
task-sets. When this proportion is maximal (f � 1, such as in blocks
no. 1, 2, 3, and 4 in our task), the demands on episodic control are
low, which is paralleled by a decrease in top-down connectivity
from rostral to caudal LPFC regions. By contrast, the decrease in this
frequency (f � 1, such as in blocks no. 5, 6, 7, and 8) leads to an
increase in episodic control demands and in rostrocaudal connec-
tivity within the LPFC. In the current study, we demonstrated that
this modulation of top-down LPFC connectivity by the demands of
episodic control was impaired in schizophrenia. Crucially, this
might have affected the ability of patients to select the appropriate

Figure 3. Diagram of path coefficients between lateral prefrontal regions
involved in episodic and contextual control subjects for healthy subjects
and schizophrenic patients. The structural equation model included the
paths (lines, arrows indicate oriented structural paths) connecting prefron-
tal regions described in the text (circles, neurological convention, approxi-
mate locations). Variations of path coefficients in healthy subjects (upper
panels) and in schizophrenic patients (lower panels) are shown. (Left) Path
coefficients in episodes associated with Iepi � 0 (left number) and Iepi � 0
(right number). (Right) Path coefficients in single-task-set (left number) and
dual-task-sets (right number) episodes. Path coefficients that significantly
increased with the episodic factor are shown in red. No path coefficients
were found to significantly increase with the context factor. The red dashed
arrow in the left lower panel indicates a path coefficient that significantly
decreased with the episode factor in patients [�2(1) � 15.78, p � .001].
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sets of stimulus-response associations in the caudal LPFC on the
basis of the information conveyed by past events.

Previous findings from our group demonstrated that this im-
paired episodic control process was specifically observed when
patients had to control information conveyed by episodic and con-
textual (vs. sensory) signals (11). This result suggests that episodic
control disturbances could arise from inappropriate contextual
control, which is itself related to abnormal activation of the caudal
LPFC (3). Other findings from the schizophrenia literature have also
proposed that a context processing impairment could be at the
core of the cognitive control disturbances in schizophrenic pa-
tients, related to specific disturbances in the dorso-caudal LPFC
(1,2,26 –30). In other terms, the disruption of top-down connectivity
from rostral to caudal LPFC regions in patients could primarily be
the consequence of poorly encoded contextual information, which
might be due to abnormal computations in the caudal LPFC. In turn,
hyperactivation in rostral LPFC regions might serve as a compensa-
tory function to maintain a minimum level of performance during
episodic control (i.e., to retrieve the poorly integrated contextual
information) (12,13).

At a more distal level, our results suggest that this impaired
effective connectivity within the LPFC in patients is related to ab-
normally high levels of connectivity between rostral and caudal
LPFC regions in the low-episodic control condition (the regression

coefficient between rostral and caudal LPFC activities was signifi-
cantly greater in patients than in control subjects in the low-epi-
sodic control condition, whereas the groups did not significantly
differ in the high-episodic control condition). It is interesting to note
that such an increase in connectivity in low-level conditions, to-
gether with a relative decrease in higher-level conditions of cogni-
tive control, is conceptually analogous to findings from previous
studies that also investigated cognitive control in schizophrenia,
with computational models of context processing (31). Specifically,
it was suggested that increased noise in the subcortical dopamine
system at rest (32,33) leads to abnormal “gating” of context infor-
mation into prefrontal cortex (34 –35). Although these findings deal
with distinct types of information (contextual vs. episodic signals),
one cannot exclude that these two phenomena both rely on the
same neurobiological mechanism responsible for “gating” different
classes of information into specialized subregions within the pre-
frontal cortex.

Other hypotheses closely related to the concept of episodic
control have been proposed to better characterize the impaired
processes involved in episodic task performances in schizophrenia.
One hypothesis highlights the importance of cognitive control and
related LPFC functioning in episodic memory disturbances in
schizophrenia (25,36). The cascade model claims that episodic con-
trol monitors the flexible and temporary reinstantiation of episodic

Figure 4. Psychophysiological interaction (PPI) between rostral and caudal lateral prefrontal cortex (LPFC) in healthy subjects and schizophrenic patients.
Measurements when the demand of episodic control is low (Iepi � 0 bit), green crosses; measurements when the demand of episodic control is high (Iepi � 2
bits), red crosses. Condition-specific regression slopes, 
low (i.e., when Iepi � 0 bit) and 
high (i.e., when Iepi � 2 bits). All subjects are plotted together. The
difference between regression slopes constitutes the PPIs. (A and B) Mean-corrected blood oxygen-level dependent (BOLD) activity (in arbitrary units) in left
caudal LPFC is displayed as a function of the mean-corrected BOLD activity in left rostral LPFC. (C and D) Mean-corrected BOLD activity in the right caudal LPFC
is displayed as a function of mean-corrected BOLD activity in right rostral LPFC.
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information (e.g., past events, rules, or task instructions) to modu-
late action selection across a behavioral episode (9). As such, epi-
sodic control can be understood as the process that supervises the
retrieval of information from episodic memory (37–39). Consis-
tently, other studies have found that rostral LPFC activations were
observed in episodic memory paradigms in retrieval phases, when
subjects selected actions on the basis of the occurrence of previous
events (40 – 43). Therefore, our finding of an impaired episodic con-
trol process related to a perturbed rostrocaudal hierarchy within
the LPFC could represent a potential cause for the episodic memory
retrieval disturbances in schizophrenia—a hypothesis that should
be further investigated in the future.

Another well-known concept intimately related to episodic con-
trol, as defined by the cascade model, is the so-called “episodic
buffer,” a new component included in the former working memory
model (44). Indeed, the cascade model generalizes the classical
theory of executive control on the basis of a central executive
system controlling multiple slave systems, inspired from the work-
ing memory framework (45). In those two models, each stage main-
tains active representations that are controlled by higher stages
and that exert control on representations at lower stages. Recently,
the episodic buffer has been defined as a new temporary system,
thought to be biologically implemented by the frontal areas (44).
Crucially, the episodic buffer is important for integrating represen-
tations of information bound in a multimodal code being entered
into or retrieved from long-term episodic memory (44). Executive
processes engaged in the episodic domain (i.e., episodic control)
could thus be conceptualized as mechanisms that monitor the
binding between different temporal features of information into a
temporary, unitary, and coherent representation of events (i.e.,
within the episodic buffer). Our findings therefore suggest a core
impairment in control processes devoted to building a new, consis-
tent, multi-featured representation of temporally dispersed con-
textual signals, which might account for the perturbations of the
episodic buffer observed by others in schizophrenia (46,47).

This impaired functional connectivity between rostral and cau-
dal LPFC regions supports the functional disconnection hypothesis
in schizophrenia initially proposed by Friston (14). We also provide,
to the best of our knowledge, the first evidence of a top-down
disconnection within the LPFC in this disorder. Because the an-
atomical connectivity within the LPFC was not found to be dis-
rupted in schizophrenia (48,49), we suggest that our result re-
flects something more dynamic in the way those areas function
as a whole to produce cognitive control (e.g., via impaired syn-
aptic transmission) (14).

Finally, in addition to its clinical implications with regard to the
pathophysiology of cognitive disturbances of schizophrenic pa-
tients, we believe that this result has more general theoretical im-
plications. Indeed, there has recently been a growing interest in the
study of the hierarchical organization of cognitive control within
the rostrocaudal axis of the frontal lobes, either in healthy subjects
(18) or in patients with frontal lobe damage (22). The present study
provides additional support confirming that this hierarchy might
be a fruitful framework in which to investigate frontal lobe architec-
ture and its pathology.
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Decision Threshold Modulation in the Human Brain

Philippe Domenech and Jean-Claude Dreher
Cognitive Neuroscience Center, Reward and Decision-Making Group, Centre National pour la Recherche Scientifique, Unité Mixte de Recherche 5229,
69675 Bron, France and Université Lyon 1, 69003, Lyon, France

Perceptual decisions are made when sensory evidence accumulated over time reaches a decision threshold. Because decisions are also
guided by prior information, one important factor that is likely to shape how a decision is adaptively tuned to its context is the predict-
ability of forthcoming events. However, little is known about the mechanisms underlying this contextual regulation of the perceptual
decision-making process. Mathematical models of decision making predict two possible mechanisms supporting this regulation: an
adjustment of the distance to the decision threshold, which leads to a change in the amount of accumulated evidence required to make a
decision, or a gain control of the sensory evidence, leading to a change in the slope of the sensory evidence accumulation. Here, we show
that predictability of the forthcoming event reduces the distance to the threshold of the decision. Then, combining model-driven fMRI
and the framework of information theory, we show that the anterior cingulate cortex (ACC) adjusts the distance to the decision threshold
in proportion to the current amount of predictive information and that the dorsolateral cortex (DLPFC) codes the accumulation of
sensory evidence. Moreover, the information flow from the ACC to the DLPFC region that accumulates sensory evidence increases when
optimal adjustment of the distance to the threshold requires more complex computations, reflecting the increased weight of ACC’s
regulation signals in the decision process. Our results characterize the respective contributions of the ACC and the DLPFC to contextually
optimized decision making.

Introduction
Recent advances in neuroscience and mathematical psychology
have begun to unravel the neurobiological mechanisms underly-
ing decision making (Gold and Shadlen, 2007). Perceptual deci-
sion making, the ability to select a specific action based on our
perception, proceeds from the integration of sensory evidence to
a categorical choice between alternatives (Smith and Ratcliff,
2004; Lo and Wang, 2006; Bogacz, 2007a). In sequential sampling
models, this gradual gathering of sensory information favoring a
particular choice is defined as a drift of an abstract decision vari-
able toward a decision threshold. A choice is made when a deci-
sion variable is equal to its decision threshold (Carpenter and
Williams, 1995; Hanes and Schall, 1996; Usher and McClelland,
2001). These mathematical models of decision making received
renewed interest after the demonstration by monkey electro-
physiological studies that perceptual choices are made when the
ramping activity of neural populations in the dorsolateral pre-
frontal cortex (DLPFC) and the lateral intraparietal (LIP) area
reaches a given threshold (Hanes and Schall, 1996; Kim and
Shadlen, 1999; Huk and Shadlen, 2005; Hanks et al., 2006). The
ramping rate of this neural activity, which represents the accu-
mulation of sensory evidence, correlates with the decision vari-

able predicted by sequential sampling models. In humans, fMRI
studies confirmed the involvement of a similar DLPFC–intrapa-
rietal network in coding the decision variable (Heekeren et al.,
2004; Forstmann et al., 2008; Ivanoff et al., 2008; Tosoni et al.,
2008; van Veen et al., 2008).

One important factor that is likely to shape how a decision is
adaptively tuned to its context is the predictability of the forth-
coming event (Luce, 1991; Dayan and Abbott, 2001; Harrison et
al., 2006; Doya, 2008). However, it remains unclear how decision
making is modulated by this predictive information at both the
behavioral and the neural levels. Sequential sampling models pre-
dict two mechanisms that modulate the decision based on con-
textual information (Carpenter and Williams, 1995; Reddi et al.,
2003): (1) An adjustment of the distance to the decision thresh-
old, which leads to a change in the amount of evidence required
to make a decision, but no variation in the slope of the decision
variable. According to this mechanism, higher predictability of
forthcoming events would reduce the distance to the decision
threshold (Fig. 1a, top panels). (2) An adjustment of the gain of
sensory evidence, leading to a change in the slope of the decision
variable, but not in the distance to the threshold. According to
this hypothesis, higher predictability would increase the slope of
the decision variable (Fig. 1a, bottom panels).

Here, we manipulated the amount of contextual informa-
tion available to predict which stimulus is going to appear next
(Fig. 1b). This allowed us to distinguish between these two
hypotheses by characterizing the computational mechanisms
underlying the effect of predictability on decisions. Then, hav-
ing found that predictability modulates the distance to the
threshold of the decision and not the gain control of sensory
evidence, we identified the brain regions involved in this reg-
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ulation, as well as those coding the deci-
sion variable. Finally, we investigated
how changes in effective connectivity
between these distributed brain regions
lead to contextually optimized percep-
tual decisions.

Materials and Methods
Subjects. Fourteen healthy right-handed sub-
jects [8 males, mean age (�SD): 25.14 � 3.37
years, mean right-handedness score as esti-
mated by the Edinburgh scale (�SD): 0.86 �
0.1, mean level of higher education (�SD):
3.6 � 2.2 years] participated in the study (Old-
field, 1971). None of the participants showed
any past or current neurological or psychiatric
conditions, as assessed by a medical interview and
all had normal or corrected-to-normal visual
acuity. None of them was on medication at the
time of the study. The experiment was approved
by the local ethics committee. Subjects gave their
written informed consent and underwent stan-
dard medical exams before participation.

Perceptual decision-making paradigm. Par-
ticipants performed a GO/NO-GO task, in
which they had to press a response button for a
specific target shape (presented at the begin-
ning of each sequence) among three possible
shapes (Fig. 1b). Each participant performed
the perceptual decision task on 12 randomly
ordered unique sequences. All sequences con-
sisted of the successive presentation of blue
shapes (circle, square, or triangle) displayed at
the center of a screen. At the beginning of each
new sequence, the participant was shown one
of the three shapes on a yellow background.
This shape was the target for the current se-
quence. After 5 s of target display, the back-
ground turned black and the perceptual decision
task began. Participants were instructed to press a
response button held in their right hand each
time they identified the current target, as quickly
and as accurately as possible. Each sequence was
composed of 400 successive stimuli presented for
300 ms every 400 ms (Fig. 1b). A fixation cross
was presented for 10 s between two successive
sequences. Unbeknownst to participants, there
were two types of sequences (Fig. 1b): in first-
order sequences, the next shape was conditioned
on the last shape, whereas in second-order se-
quences, the next shape was conditioned on the
last two shapes. Figure 1c shows a set of transition
rules for a first-order sequence. Using the frame-
work of Shannon’s information theory, we com-
puted for each decision the surprise (Eq. 1),
which measures how unlikely an event is, and the predictive information on
the forthcoming stimulus (Eq. 2–3), which measures how much the knowl-
edge of the recent history (last shape or penultimate shape) reduces this
surprise. Statistical transition rules were held constant within a sequence and
varied between sequences. Moreover, both first- and second-order se-
quences were selected to fall into three categories based on their mutual
information (first-order sequences: Eq. 4; second-order sequences: Eq. 5):
zero (low), one-third (medium), and two-thirds (high) of the maximum
theoretical mutual information (with a tolerance margin of 5%, Eq. 6). This
procedure guaranteed a broad range of predictive information values during
the experiment.

To minimize potentially confounding effects classically observed dur-
ing sequential choices, statistical transition rules were constrained to

ensure a low repetition probability ( prepetition � 0.05) and to minimize
tandem repeats in sequences (Kornblum, 1969). Moreover, the pace of
perceptual decisions was chosen in accordance with the psychophysical
literature, which shows that the behavioral effect of surprise on response
time (RT) is minimized when repetition probability is low and the inter-
val between two perceptual decisions is short (Kornblum, 1969) and was
further adjusted to guarantee a high level of accuracy (�90%). Sequences
were selected to ensure average frequencies in the 0.05– 0.45 range for
each stimulus, thus controlling for oddball effect (Ranganath and Rainer,
2003) by ensuring that sequences did not contain rare events. All stimuli
occurred with the same probability over the whole experiment. Finally, for
each sequence, we selected the most sparsely distributed shape in the range
0.25–0.4 as the target. At the end of the scanning session, participants were
systematically asked about “their awareness of regularities” as in Harrison et
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al. (2006). Only one subject reported he had noticed a pattern, once, during
the experiment but could not give a specific example.

Working hypothesis. Bayesian formulations of perceptual decision
making distinguish between the prior information (before observing the
stimulus) and the accumulation of evidence in term of likelihood (during
stimulus observation). In these formulations, the quantity accumulating
evidence starts at different levels, according to the prior information.
Evidence is then accumulated at a constant rate until the criterion is
reached. In the context of our design, before the stimulus arrives, the
predictive information (prior beliefs) will reset the level of activity and
therefore change the distance to the decision threshold. From this per-
spective, the predictive information is a prior and the information con-
veyed by the stimulus represents the evidence entailed by its likelihood.
Thus, our hypothesis was that both behavioral and fMRI data would be
better explained by an adjustment of the distance to the decision thresh-
old in proportion to the predictive information on the forthcoming stim-
ulus than by a modulation of the slope of the decision variable.

Note that in our paradigm, we kept the level of sensory information
constant (by using exactly the same three stimuli across the experiment).
This does not mean that what is being integrated in the current paradigm
is not sensory evidence. Indeed, perceptual decisions occur even when
visual categorization may appear “unambiguous” while monkeys make
saccades toward a target. For example, frontal eye field and lateral pre-
frontal cortex neurons exhibit a ramping activity that decrease after
reaching a threshold value (Kim and Shadlen, 1999), both when manip-
ulating the position (Hanes and Schall, 1996) or the color (Stanford et al.,
2010) of unambiguous targets.

Thus, although information about local stimulus-response predict-
ability is manipulated in the current study, it is not “integrated” over the
decision process (what is being integrated is still sensory evidence). This
approach mixing local stimulus-response predictability and perceptual
decision making distinguishes our study from the neuroimaging litera-
ture investigating which brain regions encode measures of information
theory, such as surprise and uncertainty (Huettel et al., 2005; Strange et
al., 2005) or their influences on EEG components or corticospinal excit-
ability (Bestmann et al., 2008; Mars et al., 2008).

Estimates of surprise and predictive information. In Shannon’s informa-
tion theory, the surprise of an event is defined by the current estimate of
its marginal log-probability (abbreviated as ut in Eq. 1). This measure has
been considered as an instantaneous measure of the level of saliency
(Harrison et al., 2006). For each new shape et, displayed at time step t, the
current estimate of the surprise (ut) is defined in the following way:

ut�et � i� � �log2�probt�et � i��. (1)

The predictive information of the upcoming event is an instantaneous
measure of the loss of uncertainty about its occurrence due to the knowl-
edge of the previous event(s) (also called “surprise reduction”). This last
measure quantifies the amount of information available at a given time to
predict the outcome of the ongoing perceptual decision and is poorly
correlated with the surprise (a high level of predictive information does
not necessarily mean that surprise is low). We computed both the pre-
dictive information conveyed by the last event (abbreviated as p1,t in Eq.
2) and by the last two events (abbreviated as p2,t in Eq. 3). For each new
shape et, displayed at the time step t, current estimates of the predictive
information ( p1,t and p2,t) are defined in the following way:

p1,t�et � i,et�1 � j� � log2�probt�et � i�et�1 � j�

probt�et � i� � (2)

p2,t�et � i, et�1 � j, et�2 � k� � log2�probt�et � i�et�1 � j,et�2 � k�

probt�et � i� �.

(3)

Supplemental Figure S1 (available at www.jneurosci.org as supplemental
material) illustrates the trial-to-trial fluctuations of the predictive infor-
mation conveyed by the last (Eq. 2) and by the last two (Eq. 3) shapes over
the course of two exemplary sequences.

The average predictive information over a whole sequence of events is
called the mutual information. By analogy with the predictive informa-
tion, we computed the mutual information conveyed by the last event
(abbreviated as Im1,t in Eq. 4) and by the last two events for each sequence
(abbreviated as Im2,t in Eq. 5). Mutual information is maximum when a
sequence is entirely determined (abbreviated as Immax in Eq. 6). It is
noteworthy that predictive information is an event-bound measure,
whereas mutual information pertains to the average predictability in a
sequence without relating to any specific event.

Im1,t � E
t,i

�p1,i� (4)

Im2,t � E
t,i

�p2,i� (5)

Immax � log2�k�, (6)

where k is the number of different shapes in a sequence.
Because participants learned the statistical structure of the sequence as

stimuli were presented, we used a simple Bayesian learning scheme (an
ideal Bayesian observer), in which all marginal and conditional proba-
bility estimates were updated after each new event. Our ideal Bayesian
observer was initialized with flat prior distributions and was reset at the
beginning of each new sequence to account for the lack of prior knowl-
edge on the upcoming sequence (Harrison et al., 2006). For each new
shape et, presented at time step t, current values of the marginal proba-
bility of the event i (Eq. 7) and of the joint probability of two successive
events i and j (Eq. 8) and of three consecutive events i, j, and k (Eq. 9) are
defined in the following way:

prob�et � i� �
ni

t � 1

�
i

ni
t � 1

(7)

prob�et � i, et�1 � j� �
ni, j

t � 1

�
i, j

ni, j
t � 1

(8)

prob�et � i, et�1 � j,et�2 � k� �
ni, j,k

t � 1

�
i, j,k

ni, j,k
t � 1

, (9)

where ni,j,k
t is the number of triplets i, j, k at time step t; and ni,j

t is the
number of duplets i, j at time step t.

We computed the surprise (Eq. 1) and the predictive information
(Eqs. 2, 3) at each time step using the estimates provided by Equations
7–9.

Multilinear model of response times. Behavioral analyses were per-
formed using the software packages R and Statistica (v7.1). We defined
the error rate as the number of missed targets divided by the total number
of targets over each sequence. Response times were calculated as the time
elapsed between the onset of a target and the subject’s response.

First, we searched for the best multilinear model of the observed RT
using a descending strategy. The error rate, the surprise, the predic-
tive information conveyed by the last shape and by the last two shapes
(abbreviated respectively as p1 and p2), as well as all the first-order
interactions between these explanatory variables were included in the
“full” model. Akaike information criterion was minimized after the
surprise and all first-order interactions were removed from the “full”
model (�surprise � �0.015, p � 0.126).

RT � �0 � �p1 � p1 � �p2 � p2 � �error rate � �1 � error rate� � �.

(10)

In the reduced behavioral model (Eq. 10), RTs are modeled as a
weighted sum of explanatory variables in which the standardized param-
eter estimates of the model, such as �p1 and �p2, are referred to as “be-
havioral” sensitivity because they represent the slope between response
times and the amount of predictive information conveyed by the last and
the penultimate shape. So, estimated �s correspond to the independent
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contribution of each explanatory variable to the prediction of RT. This
multilinear model is consistent with the relationship predicted by se-
quential sampling models of decision in which error rate and response
times depend on the amount of predictive information available, while
keeping the level of sensory information constant across trials. Note that,
by construction of our design, there was no predictive information con-
veyed beyond the penultimate event available to predict the forthcoming
event.

LATER model: how RT distributions are used to distinguish between the two
modulation mechanisms of the decision process. In the LATER (linear ap-
proach to threshold with ergodic rate) model (Carpenter and Williams,
1995; Reddi and Carpenter, 2000; Reddi et al., 2003), the onset of a
stimulus (e.g., a shape) is followed by the linear rise of a signal (decision
variable) from a starting point (red dashed line) to a decision threshold D
(Fig. 2a, blue line). A response is initiated when the decision signal reaches
the threshold. On different trials, the slope of the decision signal varies ran-
domly, but is distributed as a Gaussian probability density function with
mean slope s and with standard deviation sd (Hanes and Schall, 1996).
So, according to the LATER model, the distribution of RT reflects the
projection of the decision variable on the decision threshold and depends
on three parameters: the distance to the threshold (difference between
the starting point and the decision threshold), the mean slope, and its
standard deviation (as stated in Eq. 11 and Fig. 2).

Equation 11 simply expresses that, under the LATER model, the main
decision process yield 1/RT following a normal distribution, with mean
s/D and with standard deviation sd 2/D 2. In addition, fast guesses are
modeled as an additional normal distribution, whose mean is equal to
zero, and its own standard deviation.

1/RT3 N� s

D
,

SD2

D2 �. (11)

Since 1/RT of the main process is normally distributed (Eq. 11), it is
possible to compute z-scores that express the divergence of the observed
1/RT from the median 1/RT. Plotting z-scores of 1/RT’s cumulative dis-
tribution against RT plotted on a reciprocal time axis yields a straight
line, which is called a reciprobit plot (as illustrated in Fig. 2b). This
graphical representation is useful because the resulting line intersects
z-score � 0 at the median latency s/D, which depends on both the mean
slope (s) and the distance to the threshold (D), whereas it intersects RT �
	 at a point that does not vary with the distance to the decision threshold
(Fig. 2b). Importantly, the mathematical properties of the reciprobit
transformation provide us with a graphical representation that distin-
guishes between the two modulation mechanisms in the LATER model
(see Fig. 1a): (1) if the modulation mechanism is an increase of the slope
(sensory evidence gain control), then both intersects will vary in the same
proportion and the line will shift (Fig. 1a, lower right panel); and (2) if
the modulation mechanism is a decrease of the decision threshold, then
only the z-score � 0 intersect will vary, which will result in a swivel of the
reciprobit line around the RT � 	 intersect (Fig. 1a, upper right panel).

To summarize, the reciprobit transformation directly allows us to de-
rive the z-scores of 1/RTs cumulative distribution from the RT distribu-
tion. From these z-scores, it is then possible to estimate the parameters of
the LATER model (distance to the decision threshold, mean slope, and sd
of the slope) that best fit the data and to perform a Bayesian statistical test
to identify the mechanisms of regulation that best explain the changes
between conditions (decision threshold modulation or gain control of
the sensory evidence).

Psychophysics: LATER model and reciprobit plots. To assess the mecha-
nism underlying the effect of predictive information on decision, we
performed a standard reciprobit analysis (Carpenter and Williams, 1995;
Reddi et al., 2003).

First, we normalized each participant RT dataset to the population’s
average and standard deviation. Then, we pooled all the RT datasets
together and collapsed the behavioral data from first- and second-order
sequences using the optimal amount of predictive information. Next, we
discretized each participant RT dataset into equal bins and excluded
from further analysis those that did not contain enough data to allow for
reliable fits of the decision model. This constraint led us to exclude the
5% lowest predictive information values from further analyses. This is
because, in our experiment, the distribution of predictive information
had a long tail toward low values. By the end of these preprocessing steps,
we had sorted RT data into 6 bins with continuously increasing levels of
predictive information ([�0.43, �0.05, 0.25, 0.62, 1, 1.32] bits).

Then, we performed a reciprobit transformation on the resulting RT
distributions. This transformation is based on the LATER model and
makes testable predictions about how RT distributions should change
according to two different modulation mechanisms: distance to the de-
cision threshold or sensory evidence accumulation rate (Carpenter and
Williams, 1995; Gold and Shadlen, 2007) (Fig. 1a). Plotting the recipro-
bit lines, which are linearized cumulative RT distributions plotted on a
reciprocal time scale, highlights those changes.

In addition to this qualitative assessment of the mechanism regulating
the decision process, we used a Bayesian model selection strategy to
identify the regulation mechanism that most likely explained the changes
observed in RT distributions across levels of predictive information. To
do so, we fitted a LATER model using a standard simplex minimization
routine and a likelihood-based cost function under the hypotheses that
changes in RT distribution either resulted from changes in the sensory
evidence accumulation rate or resulted from changes in the distance to
the threshold. Model comparison was performed by fitting the LATER
model for each experimental condition in such a way that either the slope
or the distance to the decision threshold was fixed across condition,
depending on the hypothesis tested. Finally, we computed the log likeli-
hood ratio between the two hypotheses (LDT � LGain, difference between
the log likelihood of the distance to the threshold modulation, LDT, and
the log likelihood of the gain control mechanism, LGain) and used the
cutoff value of the Bayesian factor (LDT � LGain � 2.3) (Jeffrey, 1998) to
assess the significance level of our result. For example, a log likelihood
ratio equal to 4.6 indicates that a modulation of the distance to the
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threshold is 100 times more likely than a gain control of the sensory
evidence (e 4.6 � 100).

To assess whether our finding that predictive information modulates
the decision threshold depended on some specific aspect of the LATER
model, we also fitted a Ratcliff’s drift-diffusion model (RDM) to our data
using the “D-mat” toolbox (Vandekerckhove and Tuerlinckx, 2008)
(http://ppw.kuleuven.be/okp/software/dmat/). However, because the
RDM has been specifically formulated for two-alternative choices, it was
not possible to use its standard formulation. Because our experiment is a
GO/NO-GO task, subjects only responded to one target, which implies
that there were no RT distributions for false-negative trials (no response
for a GO trial) and for true-negative trials (no response for a NO-GO
trial). Therefore, we adapted the D-mat toolbox to fit a GO/NO-GO
version of the RDM on our data: first, we modified the loss function to
only fit a “hit” RT distribution (Vandekerckhove and Tuerlinckx, 2008);
second, we fixed the relative position between the starting point and the
boundaries, which means that the changes in the distance from the start-
ing point to the boundary were a priori attributed to the boundary pa-
rameter. Overall, our version of the RDM (“single boundary” RDM)
retained from the version implemented in the D-mat toolbox the drift-
diffusion mechanism, the upper decision boundary, the explicit account
of nondecision time (and of its variability), and the variability in the
starting point. This version of the RDM was adequate because we only
estimated parameters relating to “hit” RT distributions. Note that if we
had investigated errors RT distributions and error rates, an implicit lower
boundary would also have been necessary (Gomez et al., 2007; Ratcliff
and McKoon, 2008).

With these modifications of the D-mat toolbox, it was possible to
reliably retrieve the distance to the decision threshold and the slope
parameters from synthetic RT datasets. Moreover, we assessed the ability
of the “single-boundary” RDM to correctly identify the modulation
mechanism underlying changes between conditions using only the hit
RT distribution and a Bayesian selection strategy [Bayesian information
criterion (BIC); smaller values mean a better model in terms of goodness
of fit and parsimony]. In the slope condition (a synthetic RT dataset
simulating a change in the slope of the accumulation of evidence), the
model in which the drift rate parameter was set free between conditions
had the best Bayesian information criterion (BIC drift rate � 41,162, BIC
boundary � 55,167). In the threshold condition (a synthetic RT dataset
simulating a change in the distance to the threshold), the model in which
the boundary parameter was set free between conditions had the best
Bayesian information criterion (BIC drift rate � 43,441, BIC bound-
ary � 43,075).

Finally, we performed a Bayesian selection analysis among drift-
diffusion models instantiating three alternative mechanisms (distance to
the decision threshold, nondecision time, average slope of diffusion pro-
cess) on our own RT dataset.

fMRI data acquisition. Subjects were scanned at the CERMEP - Imag-
erie du Vivant using a research dedicated 1.5 T MRI scanner (Siemens
Magnetom Sonata with an eight-channel head coil). We acquired 800
echo-planar T2*-weighted functional volumes (200 volumes/run, 4
runs) per experiment. Each volume comprised 28 slices acquired contin-
uously over 2.65 s (TE � 60 ms; interleaved acquisition; slice thickness 4
mm; 0.4 mm noncontiguous; parallel to the subject’s Sylvian fissure
plane; angle to AC–PC: 20 –30°; in-plane resolution: 3.44 
 3.44 mm 2;
matrix size: 64 
 64), allowing complete brain coverage. Additionally,
T1-weighted images were acquired at the end of each experiment (MP-
RAGE: TR � 1970 ms; TE � 3.93 ms; T1 � 1100 ms; resolution: 1 
 1 

1 mm 3; matrix size: 256 
 256). Head motions were minimized using
foam padding and headphones with earplugs were used to dampen the
scanner noise.

fMRI data preprocessing. Data preprocessing was performed using the
Statistical Parametric Mapping software (SPM2b, Wellcome Depart-
ment of Imaging Neuroscience, University College London, UK, www.
fil.ion.ucl.ac.uk/spm). The first three volumes of each run were removed
to allow for T1 equilibrium effects (197 volumes/run). Before statistical
analysis, we applied a slice-timing correction using the time center of the
volume as reference. Then, head motion correction was applied using
rigid-body realignment. We used realignment parameters during the

statistical analysis as covariates to model out potential nonlinear head
motion artifacts. Functional and morphological images were then nor-
malized into standard MNI space using SPM’s default templates. Finally,
functional volumes were resampled and smoothed with an 8 mm FWHM
Gaussian kernel. A 256 s temporal “high-pass filter” regressor set was
included in the design matrix to exclude low-frequency noise and
artifacts.

Finally, we explored the data for potential artifacts using tsdiffana,
mean and variance images (http://imaging.mrc-cbu.cam.ac.uk/imaging/
DataDiagnostics). An artifact is defined as the co-occurrence of a vari-
ance spike and a mean intensity drop uncorrelated with experimental
design. Only the last two volumes of one participant’s session met these
criteria and were modeled as confounds in the design matrix. Transla-
tional movements estimated during the realignment procedure were
small as compared to the voxel size (�1 mm).

General linear model 1: main fMRI data statistical analysis. Whole-
brain statistical parametric analyses were performed using a two-stage
random-effect approach. We estimated independently the model param-
eters from each subject’s dataset and then made population inferences
using the parameter intersubject variance. Regressors of interest were
constructed by convolving functions representing the events with the
canonical hemodynamic response function. Three event-related categor-
ical regressors (“stimulus regressor,” “decision-related regressor,” and
“motor regressor”) and three parametric regressors (surprise, predictive
information conveyed by the last shape, and predictive information con-
veyed by the last two shapes) were used to model the events occurring
during the sequences (Fig. 3).

(1) The first regressor modeled the visual stimulation as 0.3-s-long
boxcar functions time locked to the onset of visual stimuli (referred to as
the “stimulus regressor”).

(2) The ongoing processes during perceptual decision formation (re-
ferred to as the “decision-related regressor”) were modeled as boxcar
functions convolved with the response time duration, time locked to
each target onset. Because this condition pooled the decision-related
activity regardless of the context in which it took place, it modeled the
part of the decision-related activity not modulated by its context. Three
parametric regressors were added to the decision-related regressor to
account for the effect of surprise (Eq. 1) and predictive information (Eqs.
2, 3) on the decision process. These parametric regressors were hierar-
chically orthogonalized in the following order: surprise, predictive infor-
mation conveyed by the last shape only, and predictive information
conveyed by the last two shapes. This orthogonalization hierarchy natu-
rally emerged from the mathematical definitions of the parameters
(Büchel et al., 1998) and unambiguously separated the effect of the in-
formation conveyed by the last shape from the information conveyed by
the penultimate shape into two parametric regressors. To build these
regressors, we weighted each event of the decision-related regressor by
the current, and continuously updated, estimates of the parameters, so
that each event was characterized by its own set of parameter values.

(3) Finally, the last categorical regressor modeled the motor response
associated with the button press, and was modeled as a Dirac function
using the timing of the button press as onset. Thus, our model explicitly
separated the motor-related activity from the decision-related activity.

Statistical inferences were performed with a threshold of p � 0.05
(clusterwise) familywise error (FWE) corrected across the whole brain
( p � 0.001 voxelwise) (see supplemental Tables S1, S2, available at www.
jneurosci.org as supplemental material).

Correlation between “neural” and “behavioral” sensitivity to predictive
information. We reasoned that blood oxygenation level-dependent
(BOLD) activity in a brain region modulating the distance to the thresh-
old should be predictive of each participant’s RT variations (Figs. 4, 5).
Thus, we performed a correlation analysis between the sensitivity to pre-
dictive information estimated from brain activity and the sensitivity to
predictive information estimated from response times for both the infor-
mation conveyed by the last and the penultimate shape.

To measure the “behavioral” sensitivity to predictive information, we
fitted the multilinear model of RT previously identified to each individ-
ual RT set, thereby estimating its �s (Eq. 10). Here, the �s are measures of
the slope of the decrease in response time with increasing predictive
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information conveyed by the last and the
penultimate shape, regardless of the current
accuracy level. This analysis yielded a behavior-
based measure of the individual ability to use
the predictive information conveyed by the last
shape and the penultimate shape to modulate
the distance to the threshold. Then, to measure
the “neural” sensitivity to predictive informa-
tion, we extracted for each participant, and in
every brain region found to be sensitive to pre-
dictive information in the main fMRI analysis
[region of interest (ROI)-based approach us-
ing MarsBaR toolbox v0.38, p � 0.001 voxel-
wise; see below, ROI analyses], the � estimates
of the parametric regressors, which provided
us with measures of the slopes of the decrease
between event-related BOLD activity with in-
creasing predictive information conveyed by
the last shape and the penultimate shape.

Finally, we performed nonparametric correla-
tion analyses between individual “behavioral”
and “neural” sensitivity to identify the brain re-
gions in which the slope of the relationship be-
tween predictive information and BOLD activity
was predictive of the slope of the relationship be-
tween predictive information and RT (Spear-
man’s correlation) (see supplemental Table S1,
available at www.jneurosci.org as supplemental
material).

General linear model 2: controlling for poten-
tial confounding effects in the anterior cingulate
cortex. To assess the specificity of our fMRI
findings, we performed an additional statistical
parametric analysis, in which we added to the general linear model
(GLM) 1 (see Figs. 3, 6) three parametric regressors to the “decision-
related” regressor, orthogonalized in the following order: the first four
parametric regressors controlled for the effects of error likelihood, pre-
diction error, entropy, and surprise, whereas the following two paramet-
ric regressors modeled the modulation of BOLD signal by the predictive
information conveyed by the last shape and the predictive information
conveyed by the penultimate shape. This procedure ensured that any
potential confounding effect from the error likelihood, prediction error,
entropy, and surprise were removed from the estimation of the effects of
the predictive information parametric regressors.

The error likelihood parametric regressor was computed for each
sequence from participant error rates during target trials. The error
prediction parametric regressor (	t) was computed using a standard Res-
corla–Wagner algorithm (Dayan and Abbott, 2001), whose learning pa-
rameter (
) was adjusted to maximize the correlation between
participants RTs and Probt(et � i�et�1 � j), the reinforcement learning
estimate of the conditional probability of a shape (et) at the time step t
given the last shape (et�1) (Eqs. 12, 13). Finally, Bt is a binary function
equal to 1 when the expected event actually occurs (et � i) and to 0 if it
does not (et � i) (Eq. 13). The best fit of the Rescorla–Wagner algorithm
was obtained for a learning rate 
 � 0.08 (range explored 0.01– 0.15).

Probt�1�et�1 � i�et � j� � Probt�et � i�et�1 � j� � 
 � 	t

(12)

	t � Bt�1 � Probt�et � i�et�1 � j��. (13)

Then, the entropy parametric regressor was computed for each shape
from Equation 14. The entropy is classically viewed as an information-
theoretic equivalent to the concept of conflict (Berlyne, 1957).

Ht � E
t,i

�ut,i� (14)

General linear model 3: correlation between BOLD activity and LATER
model parameters. To assess the correlation between LATER model pa-

rameters and BOLD activity, we built and estimated a second variant of
GLM 1, in which we sorted the events previously included in the
“decision-related” regressor (Fig. 3) into four discrete levels of predictive
information ([�0.3, 0.18, 0.72, 1.22] bits), which divided the range of
predictive information into bins of equal size (see above, Psychophysics:
LATER model and reciprobit plots). Each bin included enough data to
reliably perform individual fits of the LATER model.

Then, using these four levels of predictive information, we built four
distinct categorical regressors, in which each event was modeled using a
Dirac function time locked on the onset of the target. These four cate-
gorical regressors replaced the “decision-related” regressor of GLM 1
(Fig. 3). GLM 1 and GLM 3 were otherwise identical.

This procedure allowed us to perform nonparametric correlation
analyses (Spearman’s correlation) between BOLD activities at the time of
decision averaged over the four levels of predictive information for each
participant and the corresponding averaged LATER model’s parameter
estimates (Figs. 5c, 7c) (see below, ROI analyses).

ROI analyses. We extracted ROI average of estimated �s for the three
parametric regressors included in GLM 1 and for the four categorical
regressors modeling the levels of predictive information in GLM 3. To
do so, ROIs were built from functional clusters from GLM 1 (p �
0.001, voxelwise) intersected with a 6-mm-radius sphere centered
on the cluster’s peak voxel using the MarsBaR toolbox (v0.38,
http://marsbar.sourceforge.net).

Conjunction analysis. We performed a conjunction analysis testing the
conjunction null (Nichols et al., 2005), using SPM2b to identify clusters
that exhibited significant negative parametric effects for predictive infor-
mation conveyed by the last and the penultimate shape at the onset of
decisions. However, because conjunction tests are not as sensitive as
single-contrast testing for the average effect over all contrasts and thus
underestimate the underlying effect (Friston et al., 2005), and because we
had a strong a priori hypothesis regarding the involvement of the DLPFC
in implementing the decision variable, here inferences were performed
with a level of significance of p � 10 �3 uncorrected (Fig. 7).

Structural equation modeling. First, to characterize functional subdivi-
sions between the anterior and posterior DLPFC, we built a morphologi-
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Figure 3. Regressors included in the statistical analysis of fMRI data. The main GLM included three categorical and three

parametric regressors (see Materials and Methods, General linear model 1: main fMRI data statistical analysis). The three categor-

ical regressors modeled the main steps of perceptual decision making: sensory processing, decision-related activity and motor

response. Three parametric regressors were derived from the decision-related regressors and hierarchically orthogonalized. These

parametric regressors modeled the modulation of BOLD activity at the time of decision by the surprise and the predictive informa-

tion conveyed by the last and the penultimate shape.
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cal ROI of the DLPFC (WFU PickAtlas atlas v2.4, http://fmri.wfubmc.edu,
dilatation parameter � 2 voxels, bilateral mask including BA9, BA10, and
BA46 from WFU PickAtlas built-in atlas, volume � 5994 voxels) and
computed statistical maps of the parametric effect of the predictive in-
formation conveyed by the last shape and the penultimate shape ( p �
0.001 voxelwise). From this analysis, we isolated four functional sub-
regions whose activity reflected the amount of predictive information
at the moment of the decision ( p � 0.05 clusterwise, SVC): left ante-
rior DLPFC, right anterior DLPFC, left posterior DLPFC, and right
posterior DLPFC.

Then, we extracted ROI-averaged time series during first- and second-
order sequences for each participant from 6-mm-radius spheres centered
at the peak voxel of the four brain regions identified in the DLPFC (Fig. 8,
dashed white circles) and the anterior cingulate cortex (ACC) (Fig. 8,
plain white circle) (N � 5124 volumes for each brain region and condi-
tion, no missing values or deleted data). Structural equation modeling
was performed using the Mx software package (v1.65b). Figure 8 repre-
sents the path diagram as arrows to indicate directional or symmetric
connections between the functional regions included in the model.
We performed a maximum-likelihood-based estimation of the model
path coefficients on the correlation matrix derived from the two re-
sulting time series and statistical inferences on path coefficient vari-

ations between the first- and second-order
sequences using a nested model approach
(supplemental Table S3, available at www.
jneurosci.org as supplemental material) (no
convergence problems or inadmissible
solutions).

The overall model fit was assessed with stan-
dard goodness of fit indices, all indicated a
good quality of fit (normed fit indices � 0.91,
centrality index � 0.9, and relative noncentral-
ity indices � 0.91; index values above 0.9 indi-
cate a good quality of fit) (Mueller, 1996).

Functional connectivity analysis. To identify
brain regions that were functionally coupled
with the ACC, we assessed the correlation be-
tween BOLD activity in this “seed” region and
BOLD activity in each voxel of the brain. To do
so, we extracted the cluster-averaged time
course from the functional cluster we found in
the ACC (Fig. 5a) (ROI-based approach using
MarsBaR toolbox v0.38, p � 0.001 voxelwise;
see above, ROI analyses) and included this time
course as a regressor not convolved with a he-
modynamic response function in a GLM. This
GLM also included a 256 s low-pass filter and
head motion parameters as regressors of non-
interest. We then computed group-level SPM
using the standard SPM’s RFX approach.
Supplemental Figure S6 (available at www.
jneurosci.org as supplemental material) shows
the main result of this analysis with a threshold
of 5% voxelwise, FWE corrected across the
whole brain.

Results
Psychophysics: predictive information
reduces the distance to the threshold of
the decision
RT decreased linearly as predictive infor-
mation increased (Fig. 4a, left and middle
panels), showing that participants suc-
cessfully used the statistical structure of
sequences to predict the forthcoming
shape. Moreover, participants adjusted to
the actual structure of the sequences (first
or second order) to exploit all the predic-
tive information available. Indeed, RTs

were better correlated with the predictive information conveyed
by the last two shapes (last shape and penultimate shape, rp2) (Fig.
4a, red line) than with the predictive information conveyed by
the last shape only (rp1) (Fig. 4a, orange line) during second-
order sequences, but not during first-order sequences (Fig. 4a)
(Hotelling’s t, first-order sequences, rp1 � rp2; p � 0.98; second-
order sequences, rp1 � rp2; p � 10�6). We also assessed the con-
tribution of the source (last or penultimate shape) of predictive
information on decision response time by fitting a multilinear
model to all participants’ RTs (see Materials and Methods, Mul-
tilinear model of response times). Predictive information had the
same influence on RT whether it was conveyed by the last shape
(�p1 � �0.148 � 10�2, p � 10�5) or by the penultimate shape
(�p2 � �0.148 � 10�2, p � 10�5; �p1 � �p2, t � �3.97 � 10�4,
p � 0.49), showing that the efficiency of the modulation did not
depend on the source of the information. This decrease in RT
with increasing predictive information did not occur at the cost
of accuracy, as shown by a factorial analysis crossing the type of
sequence (first order or second order) and the predictive infor-

Figure 4. Higher predictive information reduces the distance to the decision threshold. a, RT decreased as predictive informa-

tion increased in first-order [left panel: rp1 � �0.295 (orange), rp2 � �0.273 (red), both p � 10 �6] and second-order

sequences [middle panel: rp1 ��0.235 (orange), rp2 ��0.292 (red), both p �10 �6]. During second-order sequences (middle

panel), RTs were better correlated with the predictive information conveyed by the last two shapes (red) than with the predictive

information conveyed by the last shape only (orange) but not during first-order sequences (left panel), indicating that all available

predictive information was used in the regulation of the decision process. Finally, there was no effect of surprise (right panel, green)

on RT (rsurprise � �0.02, p � 0.126). b, Reciprobit plot based on pooled RT from all participants showing a swivel toward lower

RT when predictive information increases, as hypothesized in Figure 1a (upper right panel). This aspect is confirmed by the log

likelihood ratio (LDT � LGain), in accordance with the hypothesis of the modulation of the distance to the threshold. c, Distance to

the decision threshold as a function of the level of predictive information available. Error bars represent 95% confidence intervals

of the distance to the threshold. The color code represents the same levels of predictive information in both panels (from �0.43 to

1.32 bits).
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mation averaged over each sequence (supplemental Fig. S2, avail-
able at www.jneurosci.org as supplemental material; Eqs. 4, 5).
Finally, there was no effect of surprise on RT in our experiment,
as expected from previous literature (Fig. 4a, right panel) (Korn-
blum, 1969).

Next, to identify which of the two predicted mechanisms—
modulation of the distance to the threshold or gain control of the
sensory evidence—mediated the effect of predictive information
on decision making, we fitted a LATER model to the RT distri-
bution of the subjects’ responses and compared the likelihood of
the two modulation mechanisms (Carpenter and Williams, 1995;

Reddi et al., 2003). The modulation of the distance to the thresh-
old by predictive information was significantly more likely than a
gain control of the sensory evidence [log likelihood ratio, defined
as the difference between the log likelihood of the distance to the
threshold modulation hypothesis (LDT) and the log likelihood of
the gain control hypothesis (LGain), LDT � LGain � 148.42, which
is “decisive” according to Bayesian inference theory] (Jeffrey,
1998). Moreover, individual model fits showed that all the par-
ticipants used predictive information to modulate their distance
to the decision threshold, except for two participants for whom
data did not allow to conclusively select a mechanism over the
other (supplemental Fig. S3, available at www.jneurosci.org as sup-
plemental material). Then, we performed a reciprobit analysis of the
population’s RT distribution (linearization of RT cumulative distri-
bution resulting in “reciprobit lines”) (see Materials and Methods,
Psychophysics: LATER model and reciprobit plots, and Fig. 4b). This
analysis provided us with a graphical representation of the mecha-
nism modulating decision RT based on the variations of the recip-
robit line for increasing amounts of predictive information: if the
distance to the threshold decreases, then the line swivels around an
intercept point toward lower RT (as in Fig. 1a, top right panel). By
contrast, if the slope of the decision variable increases, then the line
shifts toward lower RT (as in Fig. 1a, bottom right panel). The swivel
of the reciprobit line with increasing levels of predictive information
observed in Figure 4b further confirmed the reduction of the dis-
tance to the threshold by higher predictive information (supplemen-
tal Fig. S3, available at www.jneurosci.org as supplemental material).
Finally, we observed a strong negative correlation between the dis-
tance to the threshold and predictive information (r � �0.995, p �
10�6) (Fig. 4c).

These results did not depend on specific features of the LATER
model since fitting a drift-diffusion model to our dataset also led
to the conclusion that predictive information modulates the dis-
tance to the threshold (log likelihood ratio, LDT � LGain �
89.051). Furthermore, there was an excellent agreement between
the distance to the threshold estimated using the LATER and the
drift-diffusion models for all levels of predictive information (r �
0.99, p � 10�6).

Thus, our behavioral results demonstrate that the effect of
predictive information on decision RT is mediated by the mod-
ulation of the distance to the decision threshold, not by gain
control, and uses all the predictive information available to min-
imize decision RT.

Brain network responding to predictive information
In parallel with our behavioral results showing faster RTs with
increasing predictive information (Fig. 4a), we investigated the
relationship between decision-related brain activity and predic-
tive information (see Materials and Methods, General linear
model 1: main fMRI data statistical analysis; and Fig. 3). The
results revealed a negative correlation between predictive infor-
mation conveyed by the last shape and the BOLD activity in the
ACC, the inferior frontal gyri bilaterally, the right intraparietal
sulcus region (IPS), and the DLPFC bilaterally ( p � 0.05 cluster-
wise corrected for multiple comparisons across the whole brain)
(see Fig. 5a and supplemental Table S1, available at www.
jneurosci.org as supplemental material).

These patterns of decision-related activity were preserved
when adding prediction errors, error likelihood, entropy (which
is a proxy for conflict), and surprise as potential confounds in a
new analysis, supporting the specificity of the relationship be-
tween BOLD activity in all these brain regions and predictive
information (supplemental Table S2, available at www.jneurosci.

Figure 5. Event-related response in the ACC predicts individual ability to use predictive

information to modulate the distance to the threshold. a, Parametric response to the amount of

predictive information conveyed by the last shape (rendered with a threshold of p � 10 �3

uncorrected, activations surviving a threshold of 5% clusterwise corrected across the whole

brain are circled in red). The color scale represents the slope of the decrease in activity for an

increasing amount of predictive information conveyed by the last shape. Note that it does not

reflect deactivation. Also note that additional brain regions (not shown here) also survived the

statistical threshold used and are listed in supplemental Table S1 (available at www.jneurosci.

org as supplemental material). b, Scatter plots of correspondence between “neural” and “be-

havioral” sensitivities to predictive information in the ACC (n � 14). For each participant, the

two sensitivity measures link event-related responses in the ACC and modulation of RTs. (See

Materials and Methods, Correlation between “neural” and “behavioral” sensitivity to predictive

information.) Individual differences in “behavioral” sensitivity to predictive information con-

veyed by the last shape (left) and the penultimate shape (right) were predicted by individual

differences in “neural” sensitivity in the ACC. Higher “behavioral” sensitivity to predictive infor-

mation directly reflects the ability to modulate the distance to the threshold. c, Scatter plots of

correspondence between BOLD signal change in the ACC and the distance to the decision

threshold (left panel) or the gain of the sensory evidence (right panel). Each point represents the

BOLD signal change in the ACC plotted against the distance to the decision threshold estimated

using the LATER model averaged over the four levels of predictive information (�0.3, 0.18,

0.72, 1.22 bits) for each subject.
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org as supplemental material; and see Materials and Methods,
General linear model 2: controlling for potential confounding
effects in the anterior cingulate cortex). This additional analysis
excludes alternative interpretations of the ACC’s response in
terms of conflict monitoring, postdecisional prediction errors,
and error monitoring (Fig. 6; supplemental Fig. S4, available at
www.jneurosci.org as supplemental material) (Holroyd and
Coles, 2002; Botvinick et al., 2004; Brown and Braver, 2005).

The anterior cingulate cortex modulates the distance to the
threshold of the decision
Within the brain regions showing a parametric response to pre-
dictive information (supplemental Table S1, available at www.
jneurosci.org as supplemental material), we then assessed
whether individual differences in brain activity during decision
making predicted individual differences in the ability to exploit
predictive information to reduce response time (see Materials
and Methods, Functional connectivity analysis). From our be-
havioral analyses showing that the modulation of the distance to
the threshold results in a linear decrease of RT with increasing
predictive information (Fig. 4), we predicted that in the brain
regions modulating the distance to the threshold, individual dif-
ferences in “neural sensitivity,” defined as the slope of the de-
crease in event-related activity as predictive information
increased, should predict “behavioral sensitivity,” i.e., the slope

of the decrease in RT as predictive infor-
mation increased. The ACC was the only
brain region in which individual differ-
ences in event-related response (“neural”
sensitivity) predicted each individual’s
ability to use the information available to
modulate the distance to the threshold
(“behavioral” sensitivity) (Fig. 5b). More-
over, this link between ACC’s function
and modulation of the distance to the de-
cision threshold was further supported by
the positive correlation between ACC’s
BOLD activity and distance to the deci-
sion threshold (r � 0.625, p � 0.017) (Fig.
5c, left panel), but not between ACC’s
BOLD activity and the slope of the accu-
mulation of sensory evidence (r � 0.081,
p � 0.785) (Fig. 5c, right panel). Together,
these results demonstrate that the ACC is
involved in adjusting the distance to the
threshold in proportion to the current
amount of predictive information.

The dorsolateral prefrontal cortex
codes the decision variable
In a next step, we took advantage of basic
properties of sequential sampling models
to identify the brain regions computing
the decision variable. First, assuming a
coupling between neuronal firing rates
and BOLD activity, we predicted that the
BOLD response in the brain regions cod-
ing the decision variable should increase
with slower decision RT and decrease
when predictive information increases
(i.e., when the distance to the threshold
decreases). This hypothesis is based on the
observation that the duration of the

ramping neuronal activity coding the decision variable predicts
RT and that its height correlates with the distance to the threshold
(as illustrated in Fig. 1a, top left panel) (Hanes and Schall, 1996;
Huk and Shadlen, 2005). Second, paralleling our behavioral re-
sults on RTs, the influence of predictive information on the
BOLD response should not depend on the information source
(last or penultimate shape) and there should be no influence of
surprise on the BOLD response. Finally, BOLD response in brain
regions coding the decision variable should reflect the slope of
sensory evidence accumulation.

A conjunction analysis between brain regions showing
decision-related activity decreasing with higher predictive infor-
mation conveyed by both the last and the penultimate shapes
isolated the anterior part of the right DLPFC and the right IPS
( p � 0.001 uncorrected) (Fig. 7a). As expected, BOLD activity in
these brain regions was identically modulated by the predictive
information conveyed by the last and by the penultimate shape
(Fig. 7b) (paired t test, p1 � p2, orange and red bars; right IPS: p �
0.43; right DLPFC: p � 0.34), and there was no influence of
surprise on neural activity in these brain regions (Fig. 7b) (t test,
u � 0, green bars; rIPS: p � 0.29; rDLPFC: p � 0.8).

Among these two brain regions, we assessed the correlation
between BOLD response and the slope of sensory evidence accu-
mulation (see Materials and Methods, General linear model 3:
correlation between BOLD activity and LATER model parame-

Figure 6. Whole-brain analysis of parametric responses to entropy, surprise, error likelihood and prediction error. a, Statistical

maps are rendered with a very lenient uncorrected threshold of p � 0.01 to illustrate the absence of effect of these potential

confounds in the ACC. Left and right sagittal views are shown in the left and right columns. The cold color scale represents negative

correlations and the hot color scale represents positive correlations. b, ROI-average parametric response in the ACC to surprise ( U),

error likelihood (Error), prediction error (TD), and entropy (H). None of the four parametric regressors explained a significant

portion of the BOLD activity in the ACC (NS, not significant).
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ters). Indeed, although the strength of sensory evidence was kept
constant throughout the experiment, there were fluctuations of the
slope of sensory evidence accumulation between subjects, as can be
seen in supplemental Figure S3 (available at www.jneurosci.org as
supplemental material). These individual fluctuations of the slope of
sensory evidence accumulation correlated with BOLD activity in the
right DLPFC (r � 0.64, p � 0.016), but not in the right IPS (r � 0.09,
p � 0.75), thereby strongly supporting the involvement of the
DLPFC in coding the decision variable (Fig. 7c).

Effective connectivity between the anterior cingulate cortex
and the dorsolateral prefrontal cortex
Finally, having characterized the complementary computations
performed in the ACC (Figs. 4, 5), which modulates the distance
to the threshold, and the DLPFC region coding the decision vari-
able (Fig. 7), we investigated whether the effective connectivity
from the ACC to this DLPFC region increased when optimal
regulation of the distance to the threshold required more com-
plex computations. We formalized our hypothesis as a structural

equation model (path diagram represented with arrows connect-
ing the ACC to the DLPFC in Fig. 8), based on known anatomical
pathways between the ACC and the DLPFC (Beckmann et al.,
2009) and an ROI analysis of the parametric effect of predictive
information in the DLPFC (Fig. 8). When comparing first-order
to second-order sequences, a situation in which computation of
the optimal threshold adjustment increases in complexity, the
path coefficient from the ACC to the region of the DLPFC that
codes the decision variable (Fig. 8, right anterior DLPFC’s acti-
vation, x, y, z: 45, 45, 12) increased significantly, which was not
the case for path coefficients along the other paths originating
from the ACC (Fig. 8; supplemental Table S3, available at www.
jneurosci.org as supplemental material). Interestingly, this effect
was paralleled by an increase in the information flow from right
anterior to posterior DLPFC region (right posterior DLPFC acti-
vations, x, y, z: 39, 6, 27).

Discussion
The accuracy of a perceptual decision depends on the amount of
sensory evidence accumulated (Gold and Shadlen, 2007). How-
ever, gathering evidence takes time, which results in a tradeoff
between a decision’s speed and the accuracy achieved. Thus, op-
timal decision making should exploit all sources of information
available, taking advantage of both the sensory evidence extracted
from the environment and the knowledge of contingencies built
upon past experiences (Bogacz, 2007b; Gold and Shadlen, 2007).
Here, we showed that humans effectively use the predictability
of forthcoming events to modulate the distance to the thresh-
old of their decisions, substituting predictive information for
sensory information in the decision process to speed up action
selection without loss of accuracy (Fig. 4; supplemental Fig.
S2, available at www.jneurosci.org as supplemental material).
Remarkably, people both estimate and use predictive informa-

Figure 7. Brain regions coding the decision variable. a, Conjunction map showing the brain

regions activated during perceptual decision making in which BOLD activity is negatively mod-

ulated by the amount of predictive information conveyed by the last and the penultimate

shape. We rendered our map using an uncorrected threshold of p � 0.001 (level of significance

used for inference, red voxels) and a threshold of p � 0.005 to show the full extent of the

activations (yellow voxels). b, Average parametric response to surprise (u) and predictive infor-

mation ( p1 and p2) in these brain regions. The parametric response to the predictive informa-

tion conveyed by the last shape ( p1) and the penultimate shape ( p2) was not significantly

different (NS) in any of the regions identified ( p1 � p2, orange and red bars; rIPS: p � 0.43;

rDLPFC: p � 0.34). There was no parametric response to surprise (u � 0, green bars; rIPS: p �
0.29; rDLPFC: p � 0.8). c, Scatter plots of correspondence between BOLD signal change in the

ACC and accumulation’s slope average, for each of the brain regions shown in Figure 7a (circled

in red; see Materials and Methods, General linear model 3: correlation between BOLD activity

and LATER model parameters). Each point represents the BOLD signal change in the ACC and the

slope of sensory evidence accumulation estimated using the LATER model averaged over the

four levels of predictive information (�0.3, 0.18, 0.72, 1.22 bits) for each subject (see supple-

mental Fig. S3, available at www.jneurosci.org as supplemental material).
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Figure 8. Diagram of effective connectivity between ACC and DLPFC. DLPFC subregions in

which BOLD signal decreased as the predictive information conveyed by the last shape increased

are rendered in blue, DLPFC subregions in which BOLD signal decreased as the predictive infor-

mation conveyed by the penultimate shape increased are rendered in green and DLPFC subre-

gions in which both effects were present are rendered in red ( p � 0.005 uncorrected, for

display). Red cluster corresponds to the DLPFC subregion coding the decision variable shown in

Figure 7. The plain white circle represents the ACC, which is buried within the medial wall of the

frontal cortex. The structural equation model included oriented path (arrows) connecting the

ACC and the four functional subregions found in the DLPFC. Dashed circles white indicate the

location and the extent of the spheres used for time series extraction. A yellow arrow indicates

a significant increase of the path coefficient between first-order and second-order sequences,

whereas a black arrow indicates a significant decrease of the path coefficient (all p � 10 �2).

Finally, white arrows indicate path coefficient variations that are not significant. Variations of

effective connectivity from first-order sequences to second-order sequences are indicated as

relative variations next to each path (supplemental Table S3, available at www.jneurosci.org as

supplemental material, indicates absolute values and statistical significance).
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tion optimally, adjusting to environmental dynamics of vary-
ing complexity.

The key novel finding reported in this study is the coding in
the ACC of a signal reflecting the adjustments of the distance
to the threshold in proportion to the current amount of pre-
dictive information. This pivotal role of the ACC in the contex-
tual guidance of the decision process is supported by two lines of
evidence: (1) neural sensitivity to predictive information in the
ACC accurately predicts individual fluctuations in the ability to
use predictive information to modulate the distance to the
threshold of the decision (Fig. 5); and (2) effective connectivity
from the ACC to the DLPFC region accumulating sensory evi-
dence increases when optimal adjustment of the distance to the
threshold requires more complex computations, reflecting the
increased weight of ACC’s regulation signals in the decision pro-
cess (Fig. 8). Overall, our results strongly support the idea that
contextually optimized decisions arise from the integration of
complementary computations performed in a network of spe-
cialized brain regions. In this conceptual framework, the ACC’s
main function is the computation of regulation signals that opti-
mally adjust the distance to the threshold to the context.

The involvement of the DLPFC in the accumulation of sen-
sory evidence is supported by the fact that BOLD activity ob-
served in this brain region (1) increased with slower decision
response times, (2) was negatively modulated by the amount of
predictive information conveyed by the last and the penultimate
shape, (3) did not depend on the source of predictive information
(last or penultimate shape), and (4) is correlated with the slope of
the decision variable (Fig. 7). This finding extends previous re-
ports that the DLPFC accumulates sensory evidence related to the
correct choice (Kim and Shadlen, 1999; Heekeren et al., 2004;
Philiastides and Sajda, 2006; Philiastides and Heekeren, 2009).
Note that we implicitly referred to sensory evidence accumula-
tion as the computational mechanism by which a decision vari-
able is implemented, but we acknowledge that other mechanisms
have been proposed and are also possible (Ditterich, 2006; Cisek
et al., 2009). Finally, the DLPFC activity we observed cannot be
attributed to higher attention at the time of target appearance
because this would have predicted increased BOLD response with
higher predictive information (the latter being associated with
faster RTs in our task). By contrast, we observed a negative cor-
relation between predictive information and BOLD signal in this
brain region (Fig. 7).

Previous fMRI studies reported a relationship between choice
uncertainty and activity in the medial prefrontal cortex when
subjects learn through trials and errors the probability of making
a correct choice (Volz et al., 2003; Huettel et al., 2005; Volz et al.,
2005; Grinband et al., 2006; Huettel, 2006; Platt and Huettel,
2008). These findings parallel studies using fMRI in humans or
brain lesions in monkeys showing that one of ACC’s critical func-
tions is to build and update an extended action/reward history to
guide future decisions optimally (Hampton et al., 2006; Kennerley et
al., 2006; Behrens et al., 2007). Our results draw an important link
between these two fields of research by showing that the ACC is
involved in the regulation of the decision-making process using
predictive information (a measure of the reduction of uncer-
tainty estimated on the basis of the history of associations be-
tween successive events) and suggests that adjustment signals of
the distance to the threshold in the ACC may be a general com-
putational mechanism for the contextual guidance of decisions.
Interestingly, theoretical insights into representational learning
suggest that a learning signal is needed to support such a function
(Williams and Goldman-Rakic, 1998; Holroyd and Coles, 2002;

Friston, 2003; Dreher et al., 2006; D’Ardenne et al., 2008). The
midbrain activation we observed concomitant with the ACC ac-
tivation could serve such a functional role since prediction error
signal has previously been found in the midbrain (although this
cluster did not survive correction for multiple comparison, p �
0.001 uncorrected) (see Fig. 5a) (Dreher et al., 2006; Behrens et
al., 2007; D’Ardenne et al., 2008).

Previous accounts of the ACC’s function have stressed factors
other than the contextual regulation of the decision-making pro-
cess, such as the monitoring of errors and conflicts (Carter et al.,
1998; Botvinick et al., 2004; Ridderinkhof et al., 2004), the likeli-
hood of errors (Brown and Braver, 2005), and the role of postde-
cisional prediction-error signals (Holroyd and Coles, 2002).
However, none of these alternative functions could account for
the relationship observed here between ACC activity and predic-
tive information. Indeed, additional fMRI analyses of our data
showed that both the likelihood of error and the prediction error
failed to explain our BOLD activity in the ACC at the time of
decision formation (Fig. 6). Moreover, once controlled for the
level of predictive information, BOLD activity in the ACC did not
significantly differ between slow and fast responses, which rules
out interpretations of our ACC activity in terms of conflict mon-
itoring or spurious correlation with RT, which would have pre-
dicted that decisions with longer RTs are associated with greater
levels of conflict and with higher level of ACC activity (supple-
mental Fig. S5, available at www.jneurosci.org as supplemental
material). Moreover, in our experiment, the entropy, which has
been proposed as a direct measure of conflict (Berlyne, 1957) did
not account for a significant part of BOLD activity in the ACC
(supplemental Table S2, available at www.jneurosci.org as sup-
plemental material; Fig. 6).

It should be noted that ACC’s regulatory function of the dis-
tance to the threshold does not necessarily imply that this brain
region directly implements the threshold of the decision. In fact,
a number of theoretical accounts propose that the basal ganglia
implement a gating mechanism that signals, by a phasic increase
of activity in the direct pathway, the moment when the activity of
cortical neurons coding the decision variable crosses the decision
threshold (Lo and Wang, 2006; Bogacz, 2007a, 2009; Frank et al.,
2007). This phasic increase of activity would cancel the tonic
inhibition exerted by the basal ganglia’s output nuclei on motor
command centers (Redgrave et al., 1999). Despite a current lack
of direct evidence, this proposal emphasizes the potentially cen-
tral role of cingulostriatal projections in conveying contextual
regulation signals from the ACC to the main input structure of
the basal ganglia (Kunishio and Haber, 1994; Lo and Wang,
2006). Supporting this hypothesis, we observed a strong correla-
tion between BOLD activity in the ACC and in the striatum,
showing that these two brain regions are functionally coupled
when making simple decisions (supplemental Fig. S6, available at
www.jneurosci.org as supplemental material; Materials and
Methods, Functional connectivity analysis).

Moreover, a recent fMRI study comparing perceptual deci-
sions with cues emphasizing speed or accuracy reported a nega-
tive correlation between individual variations of a measure for
response caution (ratio between the starting point and the deci-
sion threshold) and BOLD activity at the time of the cue in both
the pre-SMA and the striatum (Forstmann et al., 2008). Thus, the
pre-SMA and the striatum may be involved in motor preparation
of fast action when explicitly cued for speed and may implement
the global slowing down observed when cueing for higher accu-
racy. Other recent fMRI studies also explicitly emphasized the
speed of the perceptual decision at the expense of its accuracy
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(Ivanoff et al., 2008; van Veen et al., 2008). By contrast, in our
study, the modulation of the decision process relied upon predic-
tive information (conveyed by recent history) on the forthcom-
ing stimulus, a quantity that participants implicitly tracked and
updated online. Our findings highlight the role of the ACC in
keeping track of past events to build an inner model of contin-
gencies and in adjusting the distance to the decision threshold
and address a more general contextwise modulation of the deci-
sion process, which did not result in a simple global inhibition or
facilitation of action preparation, but in a weighting of each possible
outcome of the decision based on its likeliness. Consistent with our
proposal, a recent fMRI study showed that individual differences in
perceptual decision criterion shifts induced by expected losses cor-
relates with BOLD activity in the ACC. Although the authors did not
analyze their data within the framework of sensory evidence accu-
mulation models, their findings indicate that asymmetric category
costs may affect perceptual decision making in a similar way to
changes in category expectations (Fleming et al., 2010).

In conclusion, combining psychophysics, model-driven fMRI
and the framework of information theory, we characterized the
influence of predictive information on two basic elements under-
lying the formation of human perceptual decision (distance to
the threshold and decision variable). Our results reveal how these
elements are coded in the human brain and shed a new light on
the respective functions played by the DLPFC and the ACC in
perceptual decision making. They also suggest new architectural
principles governing the organization of the human frontal lobe
and how the interactions between the DLPFC and the ACC are
required for optimal decision making.
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Figure S2. Relationship between increasing mutual information in first and second-
order sequences and RT (red circles) and error rates (green bars). RT decreased 
monotonically as the mutual information of sequences increased (F=404.1, p<10-7). However, 
this decrease in RT was not paralleled by increased error rates (Mutual information, F=4.23, 
p=0.016; No effect of sequence order, F=2.79, p=0.096; No interactions, F=2.99, p=0.053). 
RTs were on average 14.11 ms longer for second-order sequences compared to first-order 
sequences (F=79, p<10-7, no interaction, F=2.1, p=0.118). 

 
 
Figure S3: Reciprobit plots for each participant. Most of the individual reciprobit plots 
shows a clear swivel toward lower RT when predictive information increases, as hypothesized 
in Figure 1a (upper right panel). The values of each individual’s log likelihood ratio (LDT-
LGain) are displayed on each reciprobit plot, favoring the distance to the threshold hypothesis 
in all but 2 subjects (subjects 12 and 13). For these two subjects, evidence did not allow to 
conclusively choose one mechanism over the other. 

 
 



 

 
 
 

Figure S4: Whole-brain analysis of parametric responses to the amount of predictive 
information conveyed by the last shape when accounting for the error likelihood, the 
prediction error, the uncertainty and the surprise (threshold of p<0.001, see methods 
GLM2). (A) Statistical map is rendered on a glass brain. (B) The crosshair indicates the 
coordinate of ACC’s peak activity (x,y,z=9,18,42, Zmax=5.04). 

 

 
 
Figure S5: (A) Paired difference in RT between fast and slow responses as a function of 
the level of predictive information. Correct target trials were binned according to the level 
of predictive information ([-.43,-.05,.25,.62,1,1.32] bits) and to the response speed (fast and 
slow responses, according to each subject’s median RT). No effect of the level of predictive 
information was observed on the paired difference in RT between fast and slow responses 
(effect of predictive information on the paired difference in RT between slow and fast 
responses: F4,65=1.1242, p=0.3529). (B) Paired difference in ACC’s BOLD signal between 
slow and fast responses as a function of the level of predictive information. There was no 
difference in ACC BOLD activity between slow and fast responses for any of the 5 levels of 
predictive information (T-test, -0.38 bits: p= 0.1643, .06 bits: p=0.0731, .41 bits: p=0.1353, 
.92 bits: p=0.2040, 1.3 bits: p=0.8053). No effect of predictive information on the paired 
difference in ACC BOLD activity was observed between slow and fast responses (F4,65= 0.86, 
p=0.4937). Error bars in panels A and B represent 95% confidence intervals. 



 
 
 
 
 

 
 
Figure S6: Group-level map of functional connectivity using the ACC as seed region. 
Red pixels indicate brain regions showing a significant correlation with BOLD activity in the 
ACC (threshold of 5% FWE whole-brain corrected). 

Table S1: Whole brain analysis of parametric response to predictive information. 
 

Location 
 

MNI 
(x,y,z ;mm) 

 
Zmax 

 

Cluster 
extent 
(voxel) 

Significance 
(whole-brain  
cluster-wise  
corrected) 

Correlation 
coefficient 

(BOLD, sr1) 

Correlation 
coefficient 

(BOLD, sr2) 

Correlation 
coefficient 

(BOLD,Gain) 
Predictive information conveyed by the last shape : negative parametric effect 

Anterior Cingulate Cortex 9 18 42 5.55 233 10-4 .635-0.0036 .697-0.006 .081-NS 
L IFG / Anterior Insula -48 18 -3 5.28 184 10-4 .393-NS .112-NS .103-NS 
R IFG / Anterior Insula 42 24 -6 5.10 402 10-4 .125-NS .424-NS .006-NS 
R Intra Parietal Sulcus 36 -48 45 4.87 120 10-4 .204-NS .428-NS .195-NS 
R DLPFC 12 3 60 4.44 36 10-4 .397-NS .477-NS .367-NS 
R Superior Temporal 
Gyrus 63 -42 21 4.05 95 10-4 .226-NS .323-NS .336-NS 
L DLPFC -42 39 33 3.67 31 0.018 .182-NS .195-NS -.037-NS 

Predictive information conveyed by the last shape : positive parametric effect 
Posterior Cingulate Cortex -12 -54 24 3.74 86 10-4 N/A N/A N/A 

 

Table S2: Whole brain analysis of parametric response to predictive information, 
including the error likelihood the prediction error and the entropy as nuisance 
regressors. 

Location 
 

MNI 
(x,y,z ;mm) Zmax 

Cluster extent 
(voxel) 

Significance 
(Whole-brain cluster-

wise corrected) 
Predictive information conveyed by the last shape : negative parametric effect 

R Anterior Cingulate Cortex 9 18 42 5.04 50 10-3 
L Anterior Cingulate Cortex -6 12 51 4.51 44  2.10-3 
L IFG / Anterior Insula -48 15 0 4.02 50 10-3 
R Anterior Insula 42 24 -6 4.86 105 10-4 
R IFG 60 15 6 4.22 42 3.10-3 
R Intra-Parietal Sulcus 54 -39 51 3.97 40 4.10-3 

Predictive information conveyed by the last shape : positive parametric effect 
Posterior Cingulate Cortex -12 -51  27 3.90 47 0.002 
Middle Temporal Cortex 57 -12 -27 3.79 33 0.012 
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Figure 1: Experimental paradigm. (A) Participants were asked to choose between two 
options, one of which was probabilistically rewarded by an erotic picture and the other one by 
a fixed amount of fruit juice delivered to the subject mouth by a computer-driven pump. Here, 
the participant could choose between 75% chances of drinking 0.75 mL juice or 50% chances 
of viewing an erotic picture by pressing one of two responses button according to the position 
of the chosen option relative to the central fixation cross. After a random delay, the participant 
received the chosen goods according to his choice and the probability of reward associated 
(“rewarded” choice trials). A scrambled picture was displayed when the choice did not yield 
the expected good (“not rewarded” choice trials). (B) Thirty-nine different offers were built 
by systematically varying the reward probabilities (p=[0.25, 0.5, 0.75, 1]) associated with the 
drink and the picture options. (C) The main GLM included five event-related categorical 
regressors to model choice trials: Decision onset, Commitment to choice, Wait, Picture 
reward and Drink reward. In accordance with drift diffusion model accounts of decision-
making, ongoing processes during value-based decision formation were modeled as Dirac 
functions time locked to each decision onset (Decision onset) and the processes associated 
with decision threshold crossing or motor responses were modeled as a Dirac function time 
locked to the response button press. Parametric regressors associated with each categorical 
regressor modeled events all the variables events and quantities relating to the decision 
process. 
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Figure 4: Mediolateral functional specialization in the OFC. (A) Parametric response to subjective 
values in the OFC (threshold of p<10-3 voxelwise for display). OFC clusters showing a significant 
parametric response to the offer’s decision value at decision onset are rendered in green (left column) 
and those showing a parametric response to the expected value of the chosen option at the time of 
commitment to choice are rendered in red (right column). (B) Bar graphs reporting the slope of the 
regression line between BOLD activity and the picture and juice expected value (yellow bars), the 
expected value of the chosen option (red bars) and response time (blue bars), in the lOFC (left graph) 
and the vmPFC (right graph). Error bars indicate 95% confidence intervals. In the lOFC, there was a 
significant parametric effect of the picture (T-test, p=0.0043), of the drink (T-test, p=0.0014) and of 
the chosen option (T-test, p=0.0013) expected values. In the vmPFC, there was a significant 
parametric effect of the picture (T-test, p=0.0124), of the drink (T-test, p=0.0384) and of the chosen 
option (T-test, p=0.252) expected values. By contrast, there was no parametric effect of RTs in both 
the vmPFC (T-test, p=0.5043) and the lOFC (T-test, p=0.3835). (C) Scatterplots of correspondence 
between mean BOLD activity at decision onset and the gain parameter estimated using the mEZ2 
drift-diffusion model in the lOFC (left graph) and the vmPFC (right graph). (D) Scatterplots of 
correspondence between the slope of the regression line between BOLD activity at decision onset and 
the decision value (parametric effect of DV) and the value range (the difference between the maximal 
and the minimal subjective value in the experiment) in the lOFC (left graph) and the vmPFC (right 
graph). Please note that the significances of the linear relationship between parametric effect of 
decision value and value range observed were only marginally affected when removing the two most 
extremes subjects (value range > 2.5). 
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Figure 5: Brain region implementing a drift-diffusion decision process. (A) Psycho-
physiological interaction whole-brain analysis between vmPFC and other brain areas during 
economic choices formation (PPI). Positive PPIs are rendered using a hot scale and negative 
PPIs are rendered using a cold scale (threshold for display, p<10-3 voxelwise). (B) mEZ2 
drift-diffusion model predictions on BOLD activity of brain region implementing this 
process: convolving predicted neural activity with the hemodynamic response function 
predicted lower BOLD activity for steeper accumulations of the decision value (green) and 
higher BOLD activity for longer RT (red). (C) Brain regions whose BOLD activity correlates 
negatively with the absolute value of the drift-diffusion process accumulation slope (MNI, 
xyz: 38, 42,42, 10-3 voxelwise, p=0.03 FWE cluster corrected) among the brain regions 
exhibiting a positive PPI with the vmPFC during decision formation. (D) Bar graphs reporting 
the slope of the regression line between BOLD activity and the absolute value of the drift-
diffusion process accumulation slope (yellow bars, T-test, p=0.0029) and response times (blue 
bars, T-test, p= 0.02). Error bars represent 95% confidence intervals. 
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Figure 6: vmPFC input brain regions associated with optimal economic choices. We 
performed a psycho-physiological whole-brain analysis of vmPFC effective connectivity 
during economic choice formation by contrasting optimal and suboptimal choices. Positive 
PPIs are rendered using a hot scale and negative PPIs are rendered using a cold scale 
(threshold for display, p<10-3 voxelwise). 
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Impaired Hierarchical Control Within the Lateral
Prefrontal Cortex in Schizophrenia
Guillaume Barbalat, Valerian Chambon, Philippe J.D. Domenech, Chrystèle Ody, Etienne Koechlin,
Nicolas Franck, and Chlöé Farrer

Background: In schizophrenia, disturbances of cognitive control have been associated with impaired functional specialization within the lateral
prefrontal cortex (LPFC), but little is known about the functional interactions between specialized LPFC subregions. Here, we addressed this
question with a recent model that describes the LPFC functioning as a cascade of control processes along a rostrocaudal axis, whereby anterior
frontal regions influence the processing in posterior frontal regions to guide action selection on the basis of the temporal structure of information.

Methods: We assessed effective connectivity within the rostrocaudal axis of the LPFC by means of functional magnetic resonance imaging
in 15 schizophrenic patients and 14 matched healthy control subjects with structural equation modeling and psychophysiological
interactions.

Results: In healthy subjects, activity in the left caudal LPFC regions was under the influence of left rostral LPFC regions when controlling
information conveyed by past events. By contrast, schizophrenic patients failed to demonstrate significant effective connectivity from
rostral to caudal LPFC regions in both hemispheres.

Conclusions: The hierarchical control along the rostrocaudal axis of the LPFC is impaired in schizophrenia. This provides the first evidence
of a top-down functional disconnection within the LPFC in this disorder. This disruption of top-down connectivity from rostral to caudal LPFC
regions observed in patients might affect their ability to select the appropriate sets of stimulus-response associations in the caudal LPFC on
the basis of information conveyed by past events. This impaired hierarchical control within the LPFC could result from poorly encoded
contextual information due to abnormal computations in the caudal LPFC.

Key Words: Effective connectivity, functional magnetic resonance
imaging, hierarchical control, lateral prefrontal cortex, rostrocaudal
axis, schizophrenia

I n schizophrenia, disturbances of cognitive control, the ability to
coordinate thoughts and actions in relation to internal goals,
have been robustly associated with impaired functional special-

ization within the lateral prefrontal cortex (LPFC) (1– 6). Recent
models suggest that cognitive control is constructed as a set of
hierarchical modules that involve selecting and maintaining goals
at multiple levels of abstraction, from general task goals at higher
levels (such as watching a movie in the cinema) to concrete motor
responses at the lowest levels (such as taking transport to go to the
cinema, buying a ticket at the box office, or sitting comfortably in
front of the screen) (7). Such a behavioral hierarchy has been shown
to be subserved by a hierarchical organization along the rostrocau-
dal axis of the LPFC, where more anterior regions are associated
with progressively more abstract action control, whereas more pos-
terior regions process more concrete information about action (i.e.,
action that is closer to the actual motor output) (8). Furthermore,
there seems to be a dominance relationship whereby more anterior
regions that process abstract, superordinate, domain-general rules,
modulate domain-specific, subordinate, posterior regions (9).

We previously investigated the overall organization of cognitive con-
trol within the LPFC in schizophrenia with an influential model (10) that
describes the architecture of cognitive control as a cascade of executive
modulesrangingfrompremotortomoreanteriorLPFCregions(3,11).This
model includes a sensory control level involved in selecting the motor
responses that are the most appropriate to stimuli that occur and sub-
servedbythelateralpremotorregions(typically,BrodmannArea[BA]6).A
contextualcontrol level istheninvolvedinselectingpremotorrepresenta-
tions (i.e., stimulus-response associations) according to contextual signals
thataccompanytheoccurrenceofstimuli.Thiscontrol issubservedbythe
caudalpartoftheLPFC(typically,BAs9/44/45).Finally,theepisodiccontrol
level is involvedinselectingcaudalLPFCrepresentations(task-setsorcon-
sistent sets of stimulus-response associations evoked in the same imme-
diate, perceptual context) according to the temporal episode in which
stimuli occur. This control is subserved by the rostral part of the LPFC
(typically, BAs 46/10).

We demonstrated that, although the lower-order, less abstract,
sensory level of cognitive control was spared in schizophrenia, con-
textual control was significantly impaired (11), which was related to
hypoactivation in the caudal LPFC regions (3). With regard to epi-
sodic control, we found mixed but consistent findings. When no
contextual signals were involved in the task, there was no behav-
ioral disturbance of episodic control in schizophrenia (11). By con-
trast, adding contextual signals in the task reduced this level of
cognitive control. In other words, this impaired episodic control
process refers in fact to a dysfunctional interaction between the
“episodic” and the “contextual” modules (3,11).

At the neural level, this disturbed episodic control process in
schizophrenic patients was not reflected by any hypoactivation
in the rostral LPFC. By contrast, we found a hyperactivation in
this region, which we interpreted as a consequence of the added
effort that patients might expend to retrieve the poorly inte-
grated contextual information (2,3,12,13). However, the neural
substrates underlying this dysfunctional control of episodic sig-
nals remain unknown.
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According to the functional disconnection hypothesis proposed
by Friston (14), such a dysfunctional interaction between two cog-
nitive processes should result from dysfunctional interaction in the
dynamics of the brain regions subserving these processes rather
than dysfunctional specialization within a specific region. The fram-
ing of the cascade model further predicts that this impairment in
episodic control would depend on the way rostral LPFC exerts its
influence on the caudal LPFC regions (9). However, until now, stud-
ies that have investigated the interaction between specialized neu-
ral systems related to executive dysfunctions in schizophrenia have
demonstrated altered LPFC connectivity with other cortical struc-
tures such as the inferior parietal lobule (5), the hippocampus (15),
or the anterior cingulate cortex (16) but have not directly studied
the functional integration of the different cognitive control mod-
ules within the LPFC itself.

The goal of this follow-up study was to test whether the per-
turbed control of temporal episodic signals in patients reflects a
dysfunction in the top-down selection of caudal LPFC representa-
tions by rostral LPFC. For this purpose, we based our analysis on
data collected in our previously published study (3) and measured
effective connectivity between LPFC regions involved in control-
ling episodic and contextual signals in both groups with structural
equation modeling (SEM) and psychophysiological interactions (PPIs).

Methods and Materials

Subjects
This analysis initially involved 15 schizophrenic patients (n � 15)

and 15 matched healthy control subjects, 1 of whom was excluded
because of excessive motion in the scanner (n � 14) (3). For more
details about the description of the participants, please refer to
Supplement 1 (see also Table 1).

Experimental Paradigm
The experiment included eight scanning sessions, each consist-

ing of eight separate blocks presented in a counterbalanced order.
Each block comprised a series of 12 successive stimuli (colored
letters; duration: 500 msec; onset asynchrony: 3500 msec) preceded
by an instruction cue lasting 4200 msec (Figure 1). Each instruction

informed the subjects to make speeded responses to stimuli by
pressing left or right hand-held response buttons or to withhold a
response to a no-go stimulus. Instructions were prelearned by the
subjects before running the experiment to avoid possible biases
due to learning effects during the test session.

In each scanning session, the eight blocks formed four distinct
experimental conditions crossing the demands of contextual and
episodic control varied by manipulating the context (Icon) and the
episode (Iepi) factors, respectively. These variations were quantified
according to the computational model from Koechlin et al. (10), on
the basis of Shannon’s information theory (17).

The color of the letter was the contextual signal within each
block. According to the contextual signal, subjects had to perform
one of three tasks: 1) ignore the letters; 2) a vowel/consonant dis-
crimination task (T1: if the letter is a vowel, press the right response
button; if the letter is a consonant, press left); or 3) a lower/upper-
case discrimination task (T2: if the letter is uppercase, press right; if
the letter is lowercase, press left). Where contextual control was
low, the task remained the same across the entire block (T1 or T2,
single-task-set blocks, Icon � 0 bit; block no. 1,2,5,6 in Figure 1). In
high contextual control blocks, the task changed from trial to trial
(T1 and T2, dual task-set blocks, Icon � 1 bit; blocks no. 3,4,7,8 in
Figure 1).

The episodic signal was by definition the instruction cue preced-
ing each block. Episodic signals conveyed information about the
contingencies linking contextual signals (i.e., the color of the letter)
and task-sets (i.e., T1 or T2) that occurred in the proceeding se-
quence of letters and were chosen to parametrically vary the
amount of episodic information across blocks. Therefore, the epi-
sode factor was the covariate of interest that contrasted episodes
according to the episodic information Iepi conveyed by instruction
cues that were required for subsequently selecting appropriate
task-sets with respect to contextual signals (Iepi � 0 to 1 and 2 bits).
For example, in Block No. 1, the instruction cue indicated that, if the
letter is white, no response should be given, whereas if the letter is
green, the subjects should perform task T1 (Figure 1). Then, with
information theory, we computed different values for the episodic
control demand, such that the more frequent the crosstemporal

Table 1. Clinical and Demographic Characteristics

Characteristic Patients (n � 15) Comparison Subjects (n � 14) p

Male Gender, n (%) 8 (53) 8 (57) .68
Age, yrs 35 (10.5) 36 (10.6) .79
Education, yrs 11 (1.3) 11 (1.9) .82
Handedness .86 (.09) .84 (.11) .50
Duration of Illness, yrs 10 (9) — —
SANS Score 43 (19) — —
SAPS Score 23 (21) — —
Reality Distortion Scorea 8 (10) — —
Poverty Scoreb 34 (18) — —
Disorganization Scorec 23 (13) — —
Chlorpromazine-Equivalentd, mg/day 247 (190) — —

Values are mean � SD, unless otherwise indicated.
SANS, Scale for the Assessment for Negative Symptoms (50). SAPS, Scale for the Assessment of Positive Symptoms

(51).
aSum of the scores for hallucinations and delusions from the SAPS.
bSum of the scores for poverty of speech, flat affect, anhedonia/asociality, and amotivation from the SANS.
cSum of the scores for formal thought disorder and bizarre behavior from the SAPS and the score for attention from

the SANS.
dDepot doses of and daily-oral atypical antipsychotics at the time of the examination (risperidone in 6 patients,

olanzapine in 3 patients, amilsupride in 3 patients, and aripiprazole in 2 patients) were converted to average daily
chlorpromazine-equivalent doses. None of the patients received a concurrent typical antipsychotic, anticholinergic
agent, sedative treatment, mood stabilizer, antidepressant, or other psychotropic agent.
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contingencies between contextual signals and task-sets, the lower
the amount of episodic information—thus the lower the demand of
episodic control. More specifically, the episodic control demand
depended on the proportion f of episodes involving congruent
associations between contextual signals and task-sets over the
whole experiment. When this proportion was maximal (f � 1, such
as in blocks no. 1,2,3,4 where green always denoted “T1,” red always
denoted “T2,” and white was always “no-go”), the demand of epi-
sodic control was low (Iepi � 0 bit). By contrast, the decrease of this
frequency (f � 1, such as in blocks no. 5,6,7,8 where blue, purple,
and yellow could all denote “T1,” “T2,” or “no-go”) led to an increase
in the episodic control demand (Iepi � 0 bit). Because the same
crosstemporal contingencies were involved in blocks no.7 and no.
8, these two blocks had a lower episodic control demand (Iepi � 1
bit) than that in blocks no. 5 or no. 6, which contained different
crosstemporal contingencies (Iepi � 2 bits).

In each block, the proportion of letters to be ignored was 33%. In
dual task-set blocks, the ratio of trials associated with task-set T1
versus task-set T2 was equal to 1. Finally, in each block, the ratio of
left versus right responses was equal to 1, and the ratio of congru-
ent versus incongruent letters (same vs. different responses for T1

and T2) was equal to 1. Accordingly, sensorimotor control was
constant across the experiment.

The methods for the behavioral analyses, magnetic resonance
imaging (MRI) procedures and preprocessing, delimitation of the
regions of interest, and regions of interest analyses are reported in
Supplement 1.

Effective Connectivity Analyses
We investigated, on the basis of anatomical and functional con-

nections in the frontal lobes described previously (10,18), the exis-
tence of a top-down control system from rostral to caudal LPFC
regions (identified by the exploratory analyses in each of the two
groups, see Supplement 1).

Structural Equation Modeling
The structural equation model included top-down paths from

rostral to caudal regions as well as additional reciprocal paths link-
ing the same regions located in the left and right hemispheres to
account for callosal interhemispheric connections. The functional
model was therefore reformulated as a model of structural linear
equations with path coefficients quantifying effective connectivity
as partial temporal correlations between related regional activa-
tions.

We sought to test the prediction of the cascade model that path
coefficients from rostral to caudal LPFC regions significantly in-
crease with the demand of episodic control rather than contextual
control (10). Subject-specific time series of functional MRI signals
were obtained at activation peaks, averaged over subjects, and
standardized in each condition (mean and variance were equated
across conditions). The resulting time series were then used for
structural model estimation and statistical inference on the basis of
maximum-likelihood statistics. We assessed significant variations of
path coefficients within each group with a nested model approach
(19) (see also Supplement 1). Variations of path coefficients related
to the episode and context factors were estimated from variations
in interregional correlation matrices observed between all episodes
with Iepi � 0 versus Iepi � 0 and Icon � 0 versus Icon � 1, respectively.

PPIs
To account for between-subject variability and to make a statistical

inference about group differences in effective connectivity within the
LPFC, we computed pair-wise PPI between LPFC regions (20).

Here, we specifically sought to test whether substantial varia-
tions from rostral to caudal LPFC activity resulted from underlying
neuronal interactions with the episodic factor in both hemispheres
(i.e., from the condition where the episodic control demand was
low—Iepi� 0 bit—to the condition where the episodic control de-
mand was high—Iepi� 2 bits—with Icon � 0 bit). For each of the
regions identified by the exploratory voxel-wise contrasts, individ-
ual time-series were extracted at the peak voxel and standardized in
each condition. Then, treating intersubject variability as a random
factor, we tested whether the slopes (
) of the regression of caudal
LPFC activity against rostral LPFC activity significantly increased as a
function of the episodic factor within each group and between
groups (from 
low, the slope when Iepi � 0, to 
high, the slope when
Iepi � 2 bits) (see Supplement 1 for more details). Note that these PPI
analyses are orthogonal with the ones issued from our previous
report (3).

Results

Patients made significantly more errors than control subjects
with regard to both the context and the episode factors (Figure 2).
Because this poor performance in patients might confound

Figure 1. Experimental design. (A) Rounded boxes represent behavioral
episodes (numbered from no. 1 to no. 8) with related stimuli (letters) and
instructions. Episodes formed four distinct experimental conditions cross-
ing the episodic factor with the context factor. According to the color of the
letter (contextual signal), subjects either ignored the letter or performed a
vowel/consonant (T1) or lower/uppercase (T2) discrimination task on the
letters. Block no. 1: contextual signals were either green or white. White
signals indicated that subjects should ignore the letter. Green signals indi-
cated that subjects should perform task T1 (single task-set episode). Block
no. 2: contextual signals were either red or white. White signals indicated
that subjects should ignore the letter. Red signals indicated that subjects
should perform task T2 (single task-set episode). Blocks no. 3 and no. 4:
contextual signals were green, red, or white. Subjects responded to letters
as described for blocks no. 1 and no. 2 (dual task-set episode). Blocks no. 5:
contextual signals were yellow, blue, or purple. Blue signals instructed sub-
jects to ignore the letters. Yellow and purple signals instructed subjects to
perform task T1 (single task-set episode). Block no. 6: contextual signals
were yellow, blue, or purple. Yellow signals instructed subjects to ignore the
letters. Blue and purple signals instructed subjects to perform task T2 (single
task-set episode). Blocks no. 7 and no. 8: contextual signals were yellow,
blue, or purple. Purple signals instructed subjects to ignore the letters. Blue
and yellow signals instructed subjects to perform tasks T1 and T2, respec-
tively (dual task-set episode). Dashed lines connect episodes involving con-
gruent associations between contextual signals and task-sets. (B) Typical
episode.
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changes in functional brain activation, we matched groups for ac-
curacy by removing from the analyses blocks in which performance
was unsatisfactory (i.e., accuracy � .65) (see Tan et al. [4] for the use
of a similar threshold) (see also Supplement 1 for more details).
After applying this criterion, there were no behavioral differences
between the two groups with regard to both the episode and the
context factors [F (1,81) � .21, p � .05].

In each of the two groups, we first identified rostral and caudal
LPFC as the LPFC regions involved in controlling episodic and con-
textual signals, respectively (Table 2). Caudal LPFC regions demon-
strated a group 
 context interaction [F (1,81) � 3.76, p � .05], with
patients showing no modulation of activation related to the con-
textual factor in these regions (Figure S1 in Supplement 1). By

contrast, caudal LPFC regions demonstrated neither a main effect
of group nor an interaction between group and episode [F (1,81) �
1.15, p � .05]. Finally, we found a group effect in rostral LPFC regions
[F (1,81) � 6.97, p � .05], with patients activating this region more
than control subjects.

Structural Equation Modeling Analyses
The cascade model predicts that contextual control involves no

top-down control from anterior to more posterior LPFC regions
(10,18). Indeed, when the demand of contextual control increased,
no path coefficients were found to significantly increase from ros-
tral to caudal LPFC regions with the context factor in both groups
[all �2(1) � 3.36, p � .05; Figure 3].

By contrast, the model predicts that path coefficients from ros-
tral to caudal LPFC regions will significantly increase with the de-
mand of episodic control (10,18). Indeed, when the demand of
episodic control increased, a significant increase of path coeffi-
cients was found in healthy subjects from rostral to caudal left LPFC
regions [�2(1) � 4.44, p � .05; in the right hemisphere: �2(1) � .23,
p � .05; Figure 3]. This left lateralization might result from the
exclusive use of verbal material (letter stimuli), which is preferen-
tially processed in the left hemisphere (21). In patients, however, no
path coefficients significantly increased with the episodic factor
from rostral to caudal LPFC regions in either hemisphere [�2(1) �
1.96, p � .05; Figure 3].

PPI Analyses
In control subjects, the significant variations of path coefficients

from rostral to caudal LPFC regions reported in the SEM analysis
corresponded to a significant PPI between activity in rostral and
caudal LPFC regions related to the episodic factor (Figure 4). In
other words, the strength of the regression between activity in
caudal and rostral LPFC regions depended on the episodic factor
(from Iepi � 0 to Iepi � 2 bits). Indeed, we found a significant increase
in the regression slopes (
) of left caudal LPFC activity against left
rostral LPFC activity as a function of the episodic factor [F (1,459) �
8.9, p � .005; 
low � �.04; 
high � .43; Figure 4A]. In patients,

Figure 2. Behavioral results. Error rates (%, mean � SE across participants)
across experimental conditions. Open circles and squares indicate single
task-set episodes in control subjects and schizophrenic patients, respec-
tively. Solid circles and squares indicate dual task-sets episodes in control
subjects and schizophrenic patients, respectively.

Table 2. Within-Group Localization of the LPFC Regions Displaying Episode and Context Effects Used for the Effective Connectivity Analyses

Group, Effect, and Lateral Frontal
Cortex Region

Estimated
BA

Coordinatesa

Analysis
tb Volumec

FDR
px y z

Healthy Subjects
Context effectd

Left middle frontal gyrus, caudal PFC BA 9 �42 39 36 6.27 37,084 .038
Right middle frontal gyrus, caudal PFC BA 9 42 33 39 5.21 8277 .038

Episode effect (excluding context effect)
Left superior frontal gyrus, rostral PFC BA 10 �27 54 �3 4.23 185 .037
Right middle frontal gyrus, rostral PFC BA 10 33 63 9 3.49 139 .037

Schizophrenia Patients
Context effectd

Left middle frontal gyrus, caudal PFC BA 9 �33 42 12 4.92 2867 .087
Right middle frontal gyrus, caudal PFC BA 9 33 36 27 4.41 786 .087

Episode effect (excluding context effect)
Right middle frontal gyrus, rostral cortex BA 10 27 51 0 4.77 8046 .026
Left middle frontal gyrus, rostral cortex BA 46 �36 48 9 4.02 1295 .026

LPFC, lateral prefrontal cortex; BA, Brodmann’s Area; FDR, false discovery rate; PFC, prefrontal cortex.
aCoordinates from the stereotaxic atlas of Talairach and Tournoux (52).
bRegional peak activation representing blood oxygen-level dependent signal change that reached a threshold of p � .05 (corrected for the false discovery

rate) in a random-effect analysis.
cValues are mm3.
dThese peaks are nonsignificant but are reported because we do not want to give the impression that the activations are absent in schizophrenia patients

regarding the context effect.
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however, we found a significant decrease in the regression slopes
of left caudal LPFC activity against left rostral LPFC activity as a
function of the episodic factor [F (1,492) � 8.9, p � .01; 
low � .60;

high � .42; Figure 4B]. We observed no significant PPI between
rostral and caudal LPFC regions related to the episodic factor in the
right hemisphere in either group (F � 1.8, p � .05; Figures 4C and
4D). Finally, we observed no significant PPI between rostral and
caudal LPFC regions related to the contextual factor in both hemi-
spheres, in either group (F � 3.0, p � .05), which confirmed the
results of our SEM analysis.

We observed stronger effective connectivity from rostral to cau-
dal LPFC regions related to the episodic factor in control subjects
than in patients in the left hemisphere [left hemisphere: interaction
among rostral LPFC activity, the episodic factor and the group
factor: F (1,951) � 16.6, p � .001; right hemisphere: no interaction,
F (1,951) � .8, p � .05]. The 
 value was significantly greater in the
low-episodic control condition in patients than in control subjects
[interaction between rostral LPFC activity and the group factor:

F (1,462) � 14, p � .001]. In contrast, the 
 values were nonsignifi-
cantly different between the two groups in the high-episodic con-
trol condition [rostral LPFC activity 
 Group interaction: F (1,462) �
.01, p � .05].

Finally, one could argue that the reduced rostrocaudal connec-
tivity in patients could result from a bias in the analyses, because we
excluded blocks in which accuracy was � .65 to prevent a perfor-
mance bias. This manipulation could indeed have reduced the
power of the analysis of the schizophrenia dataset relative to the
control subjects. However, when rerunning the analysis with the
whole dataset in both groups, we still found significantly less mod-
ulation of the caudal LPFC by the rostral LPFC in patients relative to
control subjects with regard to the episodic factor in the left hemi-
sphere [left hemisphere: interaction among rostral LPFC activity,
the episodic factor, and the group factor, F (1,951) � 10, p � .005;
right hemisphere: no interaction, F (1,951) � .04, p � .05].

Discussion

Our analyses support the idea that, in healthy subjects, the LPFC
is hierarchically organized from rostral to caudal LPFC regions,
where anterior regions integrate temporally dispersed information
for selecting the appropriate action at each time from posterior
LPFC regions (8 –10,18,22). By contrast, we found impaired hierar-
chical control along the rostrocaudal axis of the LPFC in individuals
with schizophrenia.

It is worth noting that our sample of patients was treated with
atypical antipsychotics, which could potentially perturb the effec-
tive connectivity through the frontal cortex in schizophrenic pa-
tients. However, impaired effective connectivity within the frontal
lobes has been observed in drug-naive as well as in medicated
patients, making this potential confound a less likely explanation of
our findings (23,24). Another potential limitation of our findings
pertains to the difficulty of the task itself. Because the task was
relatively complicated, it is likely that the patients who participated
in the study performed much better than other patients with lower
levels of education or more florid positive or negative symptoms
would. That being said, we are quite confident that our results are
reproducible, provided that they involve clinically stable patients
with a minimum level of education, as in the current experiment.
Indeed, a previous study from our group found the same pattern of
behavioral results (i.e., contextual and episodic control impair-
ments in patients) with a different sample of subjects (11). More-
over, although our functional MRI findings are novel, they support
other studies showing hypoactivation in the caudal LPFC in schizo-
phrenia (1,2,4,5,13,25–27) and are consistent with our initial hy-
potheses.

According to the cascade model, rostral LPFC regions are in-
volved in selecting caudal LPFC representations to monitor the
appropriate selection of task-sets evoked in the same context, a
process referred to as episodic control (10). More specifically, the
episodic control demand depends on the proportion f of episodes
involving congruent associations between contextual signals and
task-sets. When this proportion is maximal (f � 1, such as in blocks
no. 1, 2, 3, and 4 in our task), the demands on episodic control are
low, which is paralleled by a decrease in top-down connectivity
from rostral to caudal LPFC regions. By contrast, the decrease in this
frequency (f � 1, such as in blocks no. 5, 6, 7, and 8) leads to an
increase in episodic control demands and in rostrocaudal connec-
tivity within the LPFC. In the current study, we demonstrated that
this modulation of top-down LPFC connectivity by the demands of
episodic control was impaired in schizophrenia. Crucially, this
might have affected the ability of patients to select the appropriate

Figure 3. Diagram of path coefficients between lateral prefrontal regions
involved in episodic and contextual control subjects for healthy subjects
and schizophrenic patients. The structural equation model included the
paths (lines, arrows indicate oriented structural paths) connecting prefron-
tal regions described in the text (circles, neurological convention, approxi-
mate locations). Variations of path coefficients in healthy subjects (upper
panels) and in schizophrenic patients (lower panels) are shown. (Left) Path
coefficients in episodes associated with Iepi � 0 (left number) and Iepi � 0
(right number). (Right) Path coefficients in single-task-set (left number) and
dual-task-sets (right number) episodes. Path coefficients that significantly
increased with the episodic factor are shown in red. No path coefficients
were found to significantly increase with the context factor. The red dashed
arrow in the left lower panel indicates a path coefficient that significantly
decreased with the episode factor in patients [�2(1) � 15.78, p � .001].
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sets of stimulus-response associations in the caudal LPFC on the
basis of the information conveyed by past events.

Previous findings from our group demonstrated that this im-
paired episodic control process was specifically observed when
patients had to control information conveyed by episodic and con-
textual (vs. sensory) signals (11). This result suggests that episodic
control disturbances could arise from inappropriate contextual
control, which is itself related to abnormal activation of the caudal
LPFC (3). Other findings from the schizophrenia literature have also
proposed that a context processing impairment could be at the
core of the cognitive control disturbances in schizophrenic pa-
tients, related to specific disturbances in the dorso-caudal LPFC
(1,2,26 –30). In other terms, the disruption of top-down connectivity
from rostral to caudal LPFC regions in patients could primarily be
the consequence of poorly encoded contextual information, which
might be due to abnormal computations in the caudal LPFC. In turn,
hyperactivation in rostral LPFC regions might serve as a compensa-
tory function to maintain a minimum level of performance during
episodic control (i.e., to retrieve the poorly integrated contextual
information) (12,13).

At a more distal level, our results suggest that this impaired
effective connectivity within the LPFC in patients is related to ab-
normally high levels of connectivity between rostral and caudal
LPFC regions in the low-episodic control condition (the regression

coefficient between rostral and caudal LPFC activities was signifi-
cantly greater in patients than in control subjects in the low-epi-
sodic control condition, whereas the groups did not significantly
differ in the high-episodic control condition). It is interesting to note
that such an increase in connectivity in low-level conditions, to-
gether with a relative decrease in higher-level conditions of cogni-
tive control, is conceptually analogous to findings from previous
studies that also investigated cognitive control in schizophrenia,
with computational models of context processing (31). Specifically,
it was suggested that increased noise in the subcortical dopamine
system at rest (32,33) leads to abnormal “gating” of context infor-
mation into prefrontal cortex (34 –35). Although these findings deal
with distinct types of information (contextual vs. episodic signals),
one cannot exclude that these two phenomena both rely on the
same neurobiological mechanism responsible for “gating” different
classes of information into specialized subregions within the pre-
frontal cortex.

Other hypotheses closely related to the concept of episodic
control have been proposed to better characterize the impaired
processes involved in episodic task performances in schizophrenia.
One hypothesis highlights the importance of cognitive control and
related LPFC functioning in episodic memory disturbances in
schizophrenia (25,36). The cascade model claims that episodic con-
trol monitors the flexible and temporary reinstantiation of episodic

Figure 4. Psychophysiological interaction (PPI) between rostral and caudal lateral prefrontal cortex (LPFC) in healthy subjects and schizophrenic patients.
Measurements when the demand of episodic control is low (Iepi � 0 bit), green crosses; measurements when the demand of episodic control is high (Iepi � 2
bits), red crosses. Condition-specific regression slopes, 
low (i.e., when Iepi � 0 bit) and 
high (i.e., when Iepi � 2 bits). All subjects are plotted together. The
difference between regression slopes constitutes the PPIs. (A and B) Mean-corrected blood oxygen-level dependent (BOLD) activity (in arbitrary units) in left
caudal LPFC is displayed as a function of the mean-corrected BOLD activity in left rostral LPFC. (C and D) Mean-corrected BOLD activity in the right caudal LPFC
is displayed as a function of mean-corrected BOLD activity in right rostral LPFC.
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information (e.g., past events, rules, or task instructions) to modu-
late action selection across a behavioral episode (9). As such, epi-
sodic control can be understood as the process that supervises the
retrieval of information from episodic memory (37–39). Consis-
tently, other studies have found that rostral LPFC activations were
observed in episodic memory paradigms in retrieval phases, when
subjects selected actions on the basis of the occurrence of previous
events (40 – 43). Therefore, our finding of an impaired episodic con-
trol process related to a perturbed rostrocaudal hierarchy within
the LPFC could represent a potential cause for the episodic memory
retrieval disturbances in schizophrenia—a hypothesis that should
be further investigated in the future.

Another well-known concept intimately related to episodic con-
trol, as defined by the cascade model, is the so-called “episodic
buffer,” a new component included in the former working memory
model (44). Indeed, the cascade model generalizes the classical
theory of executive control on the basis of a central executive
system controlling multiple slave systems, inspired from the work-
ing memory framework (45). In those two models, each stage main-
tains active representations that are controlled by higher stages
and that exert control on representations at lower stages. Recently,
the episodic buffer has been defined as a new temporary system,
thought to be biologically implemented by the frontal areas (44).
Crucially, the episodic buffer is important for integrating represen-
tations of information bound in a multimodal code being entered
into or retrieved from long-term episodic memory (44). Executive
processes engaged in the episodic domain (i.e., episodic control)
could thus be conceptualized as mechanisms that monitor the
binding between different temporal features of information into a
temporary, unitary, and coherent representation of events (i.e.,
within the episodic buffer). Our findings therefore suggest a core
impairment in control processes devoted to building a new, consis-
tent, multi-featured representation of temporally dispersed con-
textual signals, which might account for the perturbations of the
episodic buffer observed by others in schizophrenia (46,47).

This impaired functional connectivity between rostral and cau-
dal LPFC regions supports the functional disconnection hypothesis
in schizophrenia initially proposed by Friston (14). We also provide,
to the best of our knowledge, the first evidence of a top-down
disconnection within the LPFC in this disorder. Because the an-
atomical connectivity within the LPFC was not found to be dis-
rupted in schizophrenia (48,49), we suggest that our result re-
flects something more dynamic in the way those areas function
as a whole to produce cognitive control (e.g., via impaired syn-
aptic transmission) (14).

Finally, in addition to its clinical implications with regard to the
pathophysiology of cognitive disturbances of schizophrenic pa-
tients, we believe that this result has more general theoretical im-
plications. Indeed, there has recently been a growing interest in the
study of the hierarchical organization of cognitive control within
the rostrocaudal axis of the frontal lobes, either in healthy subjects
(18) or in patients with frontal lobe damage (22). The present study
provides additional support confirming that this hierarchy might
be a fruitful framework in which to investigate frontal lobe architec-
ture and its pathology.
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