P. M. Adler, J. Rouquerol, F. Rouquerol, P. Llewellyn, R. Denoyel et al., Porous media mécanismes et lois cinétiques mécanismes et réactivité Chemical Properties and Reactivities of Ionic Crystalline Phases, 1 er ed Les mécanismes de la corrosion sèche, une approche cinétique, Caractérisation et analyse des poudres -Propriétés physiques des solides divisés », techniques de l'ingénieur. J2251. [4] M. Soustelle, Cinétique Hétérogène Thermal Decomposition of Ionic Solids10] M. Soustelle , An introduction to chemical kinetics. Wiley-ISTE, 2011. [11] M. Soustelle, Modélisation macroscopique des transformations physico-chimiques. Dunod, 1990. [12] R.Lalauze, A.Souchon, M.Soustelle, Oxydation of metals, p.105, 1976.

P. W. Saint-etienne, F. C. Jacobs, and . Tomkins, Expérimentation et modélisation des réactions de décomposition isothermeisobare des solides: application au sulfate de lithium monohydrate et au carbonate de calcium [15] B. Delmon, Introduction à la cinétique hétérogène, Technip. Paris, 1969. [16] P. Barret, Cinétique hétérogène, Gauthier Villars Chemistry of the solid state Gas-solid reactions, Academic press, Zircaloy-4 et ZrNbO, sous oxygène et sous vapeur d'eau. Comparaison des régimes cinétiquement limitant Thèse Reactions in the solid state », Comprehensive Chemical Kinetics Treatise on solid state chemistry21] M. Soustelle et M. Pijolat, « Experimental methods useful in the kinetic modelling of heterogeneous reactions », Solid State Ionics22] L. Favergeon « Etude de la germination en surface dans les transformations chimiques des solides-cas de la déshydratation du sulfate de lithium monohydraté, pp.33-40, 1955.

M. Pijolat, M. Soustelle, M. Pijolat, F. Valdivieso, M. M. Pijolat et al., used in the kinetic analysis of solid-state reactions Soustelle, « Experimental test to validate the rate equation " d?/dt = kf(?) " used in the kinetic analysis of solid state reactions Soustelle, « From the drawbacks of the Arrhenius-f(?) rate equation towards a more general formalism and new models for the kinetic analysis of solid?gas reactions, Experimental tests to validate the rate-limiting step assumption, pp.34-40, 1927.

G. Bertrand, M. Lallemant, and G. J. Watelle, Propos sur l'interpretation de l'energie d'activation experimentale, 30] K.L Mampel, pp.525-542, 1973.
DOI : 10.1007/BF01912392

W. A. Johnson, R. F. Mehl, . Trans, and . Aime, Application of the Arrhenius equation to solid state kinetics: can this be justified? « Is the science of thermal analysis kinetics based on solid foundations. A literature appraisal Galwey, « The significance of " compensation effects " appearing in data published in " computational aspects of kinetic analysis " : ICTAC project, 38] A. K. Galwey, « What is meant by the term 'variable activation energy' when applied in the kinetic analyses of solid state decompositions (crystolysis reactions) Studies on combustion of carbon particles in flames and fluidized beds », Symposium (international) on combustion, pp.416-511, 1939.

M. Ishida, C. Y. Wen41-]-r, E. Tien, H. Y. Turkdogan, J. Sohn et al., « A structural model for gas-solid reactions with a moving boundary?III: A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas Chemical Reaction Engineering, 2 e éd Petersen, « Reaction of porous solids « A structural model for gas?solid reactions with a moving boundary Tsotsis, « Statistical and continuum models of fluid-solid reactions in porous media « A structural model for gas solid reactions with a moving boundary?VI: The effect of grain size distribution on the conversion of porous solids « Reaction order in the grain model with grain size distribution » « A grain size distribution model for noncatalytic gas-solid reactions « A structural model for gas-solid reactions with a moving boundary-II: The effect of grain size, porosity and temperature on the reaction of porous pellets The grain model applied to porous solids with varying structural properties « Solution of models for gas-solid noncatalytic reactions by orthogonal collocation on finite elements with moving boundary « A study on deviation of noncatalytic gas?solid reaction models due to heat effects and changing of solid structure [55] H. Sohn, « The law of additive reaction times in fluid-solid reactions « The Law of Additive Reaction Times Applied to th Hydrogen Reduction of Porous Nickel-Oxide Pellets Ablitzer, « Using Sohn law of Additive Reaction Times for modeling a multiparticle reactor. The case of the moving bed furnace converting uranium trioxide into tetrafluoride A random pore model for fluid-solid reaction: I. Isothermal, kinetic control A rondom pore model for fluid-solid reactions: II. Diffusion and transport effects, Gaseous reduction of iron oxides: Part IV Metallurgical and Materials Transactions B53] O. Garza-Garza et M. P. Dudukovi? Sohn International Symposium58] F. Patisson, « Contribution à la modélisation des réactions et des réacteurs gaz-solide ».HDR, Nancy 2005. [59] M. Avrami, « Kinetics of phase change . II. Transformation-Time Relations for random distribution of nuclei Reaction of microporous solids: the Discrete Random Pore Model », Carbon64] S. V. Sotirchos , S. Zarkanitis, « A distributed pore size and length model for porous media reacting with diminishing porosity65] F. Patisson, M. Galant François, et D. Ablitzer, « A non-isothermal, non-equimolar transient kinetic model for gas-solid reactions », pp.311-317, 1901.

N. Lydie-rouchon-hoa, M. A. Van-quy, E. N. Tuan, ]. R. Van-hieu68, G. Nakamura et al., « Facile synthesis of p-type semiconducting cupric oxide nanowires and their gas-sensing properties Formation of oxide nanotubes via oxidation of Fe, Cu and Ni nanowires and their structural stability: Difference in formation and shrinkage behavior of interior pores, Thèse Saint-Etienne 2012 Physica E: Lowdimensional Systems and Nanostructures Synthesis of porous CuO nanowires and its application to hydrogen detection Synthesis and thermal conductivity of Cu 2 O nanofluids, pp.146-149, 2009.

M. Kole and T. K. St, Effect of aggregation on the viscosity of copper oxide???gear oil nanofluids, International Journal of Thermal Sciences, vol.50, issue.9, pp.1741-1747, 1932.
DOI : 10.1016/j.ijthermalsci.2011.03.027

. C. Martin-d-'heres, H. Wagner, P. Hammen, C. Ochin, G. M. Petot et al., Petot-Ervas, « Thermodynamic study of point defects in Cu2??O [77] R. Haugsrud, P. Kofstad, « On the oxygen pressure dependence of hight temperature oxidation of copper, Thermogravimetric Study of the Nonstoichiometry of Cuprite Cu2O Diffusion and point defects in Cu2O »79] J. Park et K. Natesan, « Oxidation of copper and electronic transport in copper oxides Nonstoichiometry and defect structures in copper oxides and ferrites » Milliken et J. F. Cordaro, « Influence of oxygen atmosphere on the crystal growth of copper(II) oxide »83] A. Wold , K. Dwight, Mater. Res. Soc. Symp, pp.197-135, 1938.

G. N. Kryukova, V. I. Zaikovskii, V. A. Sadykov, S. F. Tikhov, V. V. Popovskii et al., Study of the nature of extended defects of copper oxide, Shrinking of hollow Cu 2 O and NiO nanoparticles at high temperatures, pp.191-199, 1988.
DOI : 10.1016/0022-4596(88)90346-5

E. E. Martins, . V. Fortunato88-]-k, S. Rajani, E. Daniels, R. P. Mcglynn et al., « Low temperature growth technique for nanocrystalline cuprous oxide thin films using microwave plasma oxidation of copperTemperature Oxidation of single Crystals of copper » « Oxidation kinetics of thin copper films and wetting behaviour of copper and Organic Solderability Preservatives (OSP) with lead-free solder » « Oxidation kinetics of Nanosclae Copper Thin Films at Low Temperature Characterized bu Sheet Resistance and optical Transmittance « Evolution of nanostructure, phase transition and band gap tailoring in oxidized Cu thin films Cross-sectional characterization of cupric oxide nanowires grown by thermal oxidation of copper foils, Thermal Transformations in Nanosized Copper Layers95] A. Yabuki et S. Tanaka, « Oxidation behavior of copper nanoparticles at low temperature Influence of oxide grain morphology on formation of the CuO scale during oxidation of copper at Oxidation of metals and alloys [99] N. Cabrera, N. F. Mott, Rep. Pog. Phys, pp.3949-3954, 1941.

A. T. Fromhold-jr, Parabolic oxidation of metals in homogeneous electric fields, Journal of Physics and Chemistry of Solids, vol.33, issue.1, pp.95-1201972
DOI : 10.1016/S0022-3697(72)80058-1

P. T. Landsberg, On the Logarithmic Rate Law in Chemisorption and Oxidation, The Journal of Chemical Physics, vol.23, issue.6, pp.1079-1087, 1955.
DOI : 10.1063/1.1742193

P. Kofstad, High Temperature Oxidation of Metals, Journal of The Electrochemical Society, vol.114, issue.7, 1966.
DOI : 10.1149/1.2426698

R. B. Bird, W. E. Stewart, and E. N. Lightfooth, Transport phenomena, 1960.

C. N. Satterfield and T. K. Sherwood, The role of diffusion in catalysis, 1963.

C. Y. Ho, R. W. Powell, and P. E. Liley, Thermal Conductivity of the Elements, Journal of Physical and Chemical Reference Data, vol.1, issue.2, p.279, 1972.
DOI : 10.1063/1.3253100

D. Bernache-assollant, Chimie physique du frittage, 1993.