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Introduction

There are several reasons to study the Z and W bosons at LHC. The understanding of weak vector boson
production tests the Standard Model predictions and is necessary to maximize the sensitivity to new
physics at hadron colliders. Moreover, the W and Z boson productions play an important role in the
calibration of the ATLAS (A Toroidal LHC ApparatuS) detector.

The focus of my thesis work is on the study of a new variable which addresses the same physics
issues as the Z transverse momentum ( p%). The relatively large cross section at LHC of the Z production
decaying into lepton pairs and its very low background enable a precise measurement of p% which gives
a very sensitive way of studying dynamical effects of the strong interaction, complementary to mea-
surements of the associated production of the bosons with jets. At large p% (greater than approximately
30 GeV), the radiation of a single parton with large transverse momentum dominates the cross section,
and fixed-order perturbative Quantum chromodynamics (pQCD) calculations yield reliable predictions.
So this measurement provides an ideal testing of pQCD. At lower pZ%, pQCD no longer gives accurate
results due to the emission of multiple soft gluons. This fact has been solved in two ways: by using
resummation to all orders up to next-to-next-to-leading logarithms (NNLL) in ¢, or by modeling with
parton showers. For such reasons, this measurement is important in tuning Monte Carlo generators.

Many studies showed that there is an optimized variable which is less sensitive to the experiment
resolution, and probes the same physics as p%. The precise measurement using this optimized variable
will allow to test a very small effect like the small-x broadening of the p# distribution which takes
into account the parton momentum fraction dependence in the resummation form factor. My thesis will
show the result for the differential cross section of the Z boson as a function of the new variable ¢, in
comparison with different theoretical predictions and with different Monte Carlo generators.

The thesis is organized in 6 chapters. Chapter 1 is devoted to a theoretical review. The predic-

tions from QCD calculations and from different Monte Carlo generators of the p% spectrum and the oy



spectrum of the Z boson are presented. The general structure of the LHC and the ATLAS detector is
introduced in Chapter 2. Their operation parameters at 7 TeV collisions are shown. Chapter 3 intro-
duces the event reconstruction in the ATLAS experiment. A technical study performed by the author is
presented here. Chapter 4 is dedicated to the event reconstruction of the Z boson decaying into a pair
of electron and positron. The treatments for the different effects such as the multiple interactions in
proton-proton collisions, the mis-modeling of the p% spectrum in data by the Monte Carlo generators
are discussed. Most of the work in this chapter concentrates on the QCD background estimation. The
differential cross section measurement of the Z boson as a function of ¢, is presented in Chapter 6. The
result of this measurement is precise at the per mil level. The unfolded ¢, spectrum in data is compared
with many predictions that will help for the future tuning of Monte Carlo generators. In order to express
the complementarity of the ¢, measurement with respect to the p% measurement, the p%Z measurement is

also done in my thesis and is presented in Chapter 5.



1l y a plusieurs raisons d’étudier les bosons Z et W au LHC. La compréhension de la production des
bosons vecteurs faibles teste les prédictions du Modéle Standard et elle est nécessaire pour maximiser
la sensibilité a la nouvelle physique. En outre, la production des bosons Z et W joue un réle important
dans ’étalonnage d’ATLAS (A Toroidal LHC ApparatusS).

Mon travail de these porte sur I’étude d’une nouvelle variable qui caractérise la méme physique que
la distribution en impulsion transverse du boson Z (p%). Le section efficace relativement importante de
production du Z se désintégrant en paire de leptons et son fond tres faible mene a une mesure précise de
p% ce qui permet de faire une étude trés sensible de la dynamique des interactions fortes, complémentaire
de la mesure de la production de bosons avec des jets. En général pour p% 2 30 GeV, le mécanisme
de production est dominé le rayonnement d’un parton unique avec grande impulsion transverse et les
calculs de QCD perturbatif a ordre fixé (pQCD) donnent des prédictions fiables. Cette mesure fournit
donc un test idéal de pQCD. Pour les petits p%, inférieurs a 30 GeV, QCD perturbatif a ordre fixé ne
s’applique pas en raison de 1’émission multiple de gluons mous. Ce probléeme a été résolu de deux
maniéres: d’une part en resommant a tous les ordres, I’émission de gluons mous a I’approximation
“next-to-next-to leading logarithms” (NNLL), d’autre part par la modélisation des “parton showers”
a laide de codes Monte Carlo qui seront fortement contraints par la mesure du spectre en impulsion
transverse du Z.

De nombreuses études ont montré qu’il existe une variable optimisée qui est moins sensible a la
résolution expérimentale que la variable p% mais qui sonde la méme physique qu’elle. La mesure précise
de la distribution en cette variable optimisée permettra de tester un effet tres faible comme celui de
élargissement a petit x de la distribution en p% qui prend en compte la dépendance en impulsion des
partons initiaux dans le facteur de forme de la resommation. Dans cette these, je présente la mesure
de la section efficace diférentielle du boson Z en fonction de cette nouvelle variable (]);; ainsi que la
comparaison a diférentes prédictions théoriques et différents générateurs Monte Carlo.

La these est organisée en 6 chapitres. Le chapitre 1 est consacré a I’examen théorique des différentes
prédictions des calculs QCD et des générateurs Monte Carlo: on y présente les prdictions pour le
spectre en p% et ¢, de cette différentes approches. La structure générale du LHC et du détecteur ATLAS
est introduite dans le chapitre 2 et les parametres de fonctionnement a 7 TeV sont également donnés.
Dans le chapitre 3 on s’intéresse a la reconstruction des évenements dans [’expérience ATLAS. Une

étude technique réalisée par I’auteur est présentée ici. Le chapitre 4 est consacré a la reconstruction



des évenements Z ou le boson se désintegre en une paire electron-positon. Le traitement de différents
effets tels que les interations multiples dans les collisions proton-proton ou la mauvaise modélisation du
spectre en p% donnée par les générateurs Monte Carlo sont discutés. La plupart des travaux dans ce
chapitre se concentre sur I’estimation du fond QCD. La mesure de la section efficace différentielle du
boson Z en fonction de (P;; est présentée dans le chapitre 6. Le résultat de cette mesure atteint la précision
du pour mille. Les données du spectre en ¢, sont comparées a de nombreuses prédictions ce qui aidera
a l'ajustement futur des générateurs Monte Carlo. Pour montrer la complémentarité des mesures en ¢y

et p%, je présente dans la chapitre 5 la mesure du spectre en p%.



Chapter 1

Theoretical review

The theoretical knowledge of the Z boson properties and its transverse momentum, p%, presented in
this chapter will be the guideline for the experimental measurements concerning p%. In this chapter, Sec-
tion 1.1 will introduce the Standard Model as a unified theory of electroweak and strong interactions. The
Z boson properties and its interactions with the other particles in the context of the Standard Model are
reviewed as well. Section 1.2 will be devoted to the presentation of p% predictions in different approx-
imations of Quantum Chromodynamics. Section 1.3 will introduce the optimization of new variables

which address the same physics issues as p%.

1.1 Standard Model

The Standard Model (SM) of particle physics describes the properties and interactions of the fundamental
particles. These are classified as bosons, which transmit the forces, or fermions, which form the matter.

The fundamental fermions are divided into two main groups: the quarks and the leptons. The quarks
interact among each other with the strong and electroweak force. The strong interaction makes them
non observable in nature as isolated particles, but combined to form hadrons, a phenomenon called
confinement. Hadrons may be mesons (¢g, where q represents a quark and g an anti-quark), or baryons
(qqq, or qqq). The charged leptons interact among each other with the electromagnetic and weak forces.
Finally, the neutral leptons, the neutrinos, interact only via the weak force.

There are twelve gauge bosons which correspond to the three forces in the SM: eight gluons mediate
the strong force, the massive W* and Z bosons mediate the weak force while the electromagnetic force

is mediated by the photon (y). In oder to explain the fundamental forces, the SM structure is described

5



by the gauge symmetry group SU(3) @ SU(2), @ U(1)y. SU(3) is the symmetry of the strong force.
The weak force is described by the group SU(2);, where L indicates that it only acts on chirally left-
handed particles. U(1)y is similar to the U (1) symmetry of Quantum electrodynamics (QED), but acts
on particles with the weak hypercharge Y.

The complete particle content of the Standard Model is listed in Table 1.1 where the fermions come in
three generations. The charged leptons and quarks in the second and third generations are more massive
than those in the first, and are unstable. Conventional matter is thus made entirely of fermions from the

first generation.

Fundamental particles Generation
1 2 3
e u T
Leptons(/, v)
Fermions (f)
u ¢t
Quarks(q)
d s b

Electroweak W.Z,y
Bosons (V)

Strong g

Table 1.1: Fundamental particles in the SM.

1.1.1 Electroweak theory
1.1.1.1 Gauge invariance and origin of gauge boson masses

The Lagrangian describing the electroweak interactions of fermions in the SM is required to be invariant

under the local gauge transformation (a unitary transformation in the SU(2), @ U(1)y space):

WL =5 exp [—i(gZ/YG’(xH—gI.O(x)H L, h

YR — €Xp [— i<g2/Y9l(x))} YR,
where 6’(x) and 6(x) are abitrary functions of space-time, g and g’ are coupling constants, Y is the
hypercharge and I are the Pauli matrices. The matrices [ satisfy the commutation relations [/, ;] = i€; jily,
making this a non-Abelian theory. The left-handed fermions are organized in SU(2);, doublets. The

right-handed fermions are singlets of SU(2).



The fermions are supposed to be massless and the Lagrangian for free fermions is written as

Lfree = W Y WL+ 1WRY Iy W, (1.2)

where ¥ = y'y. The Lagrangian in 1.2 is invariant under the gauge transformation 1.1 if the derivative

du is replaced by a covariant derivative introducing new degrees of freedom interpreted as boson fields:

/

’ (1.3)
Dy = Oy + i‘%YBu.
To satisfy the gauge invariance, the new fields (the gauge fields) W, and By, must transform as:
1.4)
B, — By +09,0'(x),
The electroweak Lagrangian including kinetic terms of the gauge fields now is:
- — 1 1
Lew = WY Dy + WY Dy g — ZWW.W“V - ZBuva, (1.5)
where

BI'L — a‘qu - avB‘u.

The B, field could represent the electromagnetic field but W, can not directly describe the weak
force, a short-range force which requires massive bosons, since the appearance of a mass term would
destroy the gauge invariance of the Lagrangian. This problem was solved by introducing the Higgs
mechanism. This mechanism spontaneously breaks the SU(2), ® U(1)y symmetry through the action of

an SU(2),, doublet of complex scalar fields:

1 [ 61 +id()
O(x)=— 1.7)
V2 3(x) +iga()

The Lagrangian of this field includes a potential term:

Lrtiges = Dipd D19 —V(9), (1.8)

where
V($)=—u>00+A(079)% (1.9)
7



If u> > 0and A > 0, the potential V(¢) has a minimum at | < 0|¢|0 > | = v/+/2 where v = 1/u2/A. This
ground state is highly degenerate, with an infinite number of solutions which differ by a phase. Choosing
a phase (¢ real for example) gives rise to three massless Goldstone bosons, which can be eliminated
through a suitable choice of gauge. A fourth massive scalar boson, the Higgs boson, H (x), arises from a

vacuum excitation. The field ¢ may now be written as

¢ (x) = 1 0 . (1.10)
V2 v+ H(x)

Inserting this expression into Equation 1.8 gives mass terms involving the W, and By, fields, through

a mechanism which respects the local gauge invariance of the Lagrangian:

2.2 2 12\,,2
v _ 1(g"+g°)v
Dt 219 > Wi Z(gf)z“z“ (1.11)

where the physical electroweak bosons (the mass and charge eigenstates) can be written as:

By oM
W Wi +iw,
V2
T
W*“:WI —iW,
V2 (1.12)

Z* =cos GWW;L — sin Oy BH
A* = sin Oy W' + cos Oy B*.

The angle By = tan~!(g’/g) is a parameter of the theory, and describes the mixing between the weak

bosons W3” and B*. The W and Z boson masses are given by

(1.13)

The masses of fermions can also be generated by the Higgs boson, if it couples to each of them with a

strength proportional to its mass.

1.1.1.2 The Z couplings

The couplings of the physical bosons can be obtained by combining Equation 1.12 with Equation 1.5.
The W couples only to left-handed fermions. Its coupling constant, g, is related to the Fermi constant for

low energy weak interactions (Gr) by

/g S (1.14)



The photon couples equally to left and right-handed fermions. The charged fermion-photon coupling

strength (e) is known from QED. In terms of electroweak parameters, this is given by

e = gsin Oy = g’ cos By .

(1.15)

The Z, like the photon, couples to both left and right-handed fermions, but with a different strength

to each:

gL =1, — Qsin’ By

gr = —Qsin® Oy,

(1.16)

where Q is the fermion charge and 5 is the third component of weak isospin. This is sometimes expressed

in terms of a vector coupling (cy) and an axial coupling (c4):

The Z couplings are summarised in Table 1.2.

cy =8L+8r

CA = 8L — &R-

Fermions (0] Iz gL &R
1 1
Ve, Vi, Vo 0 2 3 0
S 1 1, L,
e U ,T -1 | —= —— +sin” By sin“ Oy
2 2
2 1 1 2 2
u,c,t 3 2 5—§sin29W —gsinzew
1 1 1 1 1
d,s,b 3|3 —§+§sin29W §sinZeW

Table 1.2: The Z couplings in the electroweak theory [65].

(1.17)



1.1.1.3 The branching ratios

The interaction between matter and gauge fields in the electroweak theory are described by the vertices
shown in Figure 1.1. In the Standard Model, there are 3 generations of leptons and 3 generations of
quarks (see Table 1.1), and each quark flavor carries 3 colors. The W boson couples with the same
strength to all fermion pairs of an SU(2) doublet. However, because the top quark is heavier than the
W and Z bosons, these bosons do not decay to top quarks. Therefore neglecting fermion masses each
leptonic decay mode of the W boson will have a branching ratio 1/9. For Z boson, the branching fractions
are proportional to (¢ +c3) in which ¢y and c, are obtained from formulas in 1.17 and Table 1.2. The

predicted branching ratios of various W and Z decay modes are summarised in Table 1.3 [72].

f f
Z
1— —
(@) —iQy" ®) i i © g i

Figure 1.1: The gauge boson-fermion vertex factors in the electroweak theory. The factors with (y*) are

vector couplings (V) and the factors with (y* }/5 ) are axial-vector (A) couplings.

Decay mode Branching ratio (%)
W+ =ty (I=eu,1) 11.1
W+ — du(sc) 333
Z—=U00 (I=e,u,1) 3.4
Z— vy, (l=e,u,7) 6.8
Z—qq,(q=d,s,b) 15.2
Z —qq,(q = u,c) 11.8

Table 1.3: Expected branching ratios of W and Z bosons decays [72].

10



Table 1.3 shows that the charged lepton decay modes of the W and Z bosons have the smallest branch-
ing ratios. Nevertheless they are used as signatures of the production of weak bosons in experiments due
to low backgrounds coming from Quantum Chromodynamics processes.

1.1.2 The theory of strong interactions

The strong nuclear force is described in the Standard Model by the theory of Quantum Chromodynamics
(QCD) [72].

1.1.2.1 The Lagrangian of QCD

The basic symmetry group of QCD is SU(3). This symmetry remains unbroken in nature, meaning that
gluons are massless, like the photon. The symmetry group SU(3) has eight generators, referred to as
T, corresponding to the eight gluons of the theory. The three dimensions involve three charges, called
colour. Therefore, the elements of T, denoted T,, a = {1 — 8}, are represented as 3 x 3 matrices in the

colour space. As with the elements of I in SU(2), these elements do not commute:

[Tme] = ifavcTe, (1.18)

where f,,. denotes one element of a 8 x 8 x 8 array of structure constants. The quark fields vy, are SU(3)

triplets, which transform under a rotation in colour space:

v, — exp[—ig,T.0(x)]y,, (1.19)

where g is the strong coupling. The transformation in Equation 1.19 modifies the free-fermion La-
grangian. Invariance of the Lagrangian under the local SU(3) gauge transformation can be achieved by

the introduction of an eight-component vector boson field G. These fields transform as follows:
Gap = Gap + 9 Ba(x) + &5 fanc Op (%) Gy, (1.20)
with an appropriate covariant derivative:
Dy = Iy +igT.Gy. (1.21)
The QCD Lagrangian can then be written:

— _ 1
Zocp = zwqy”@“l//q—mqwqu/q—ZG,N.G“V, (1.22)
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where the first two terms are to be summed over all quark flavours, The gluon kinetic tensor G,y has the
form below:

Gu[.tv = a/.LGaV - a\/Ga/.l - gsfachqucv- (123)

Again, the non-Abelian nature of this interaction gives rise to self-coupling terms, meaning that gluons

will couple to gluons. This has some important consequences for the QCD phenomenology.

1.1.2.2 Running coupling constant

We consider as an example a dimensionless physical observable R which depends on a single energy
scale Q. In a renormalizable quantum field theory, when we calculate R as a perturbation series in the
coupling o = g2/4r, (defined in analogy with the fine structure constant of QED), the perturbation
series requires a renormalization procedure to remove ultraviolet divergences. This procedure requires
introducing a second mass scale, i, and R depends in general on the ratio Q?/u? and is therefore not
constant. It follows that the renormalized coupling ¢ depends on the choice made for the subtraction
point . However U is an arbitrary parameter and physical quantities such as R cannot depend on the
choice made for y and can only depend on the ratio Q?/u? and the renormalized coupling ¢ following
a Callan-Symanzik equation [97]. The solution of this equation shows that all of the scale dependence in
R enters through the running of the coupling constant o (Q?). The running of the coupling constant ¢t

is determined by the renormalization group equation:

= B(ay). (1.24)

In QCD, the B function has the perturbative expansion (at the first order):

B(a) = —ba?, (1.25)
where
33—2ny

b= — 1.26
12’ (1:26)

and ny = 6 is the number of quark flavours. These equations give the solution:

2
2 o (1)

(o7 = . 1.27
10 = o ()b In (@242 20

Because the renormalized coupling o (i?) depends on the choice of the renormalization scale u, the
equation 1.27 can be written in a simpler way by choosing i = Apcp with Agep ~ 200 MeV [97]:

127
(33 —2ny) 1n(Q2/A2QCD) '

12

o, (Q%) = (1.28)



The equation 1.28 shows two consequences of the running coupling constant:

Asymptotic freedom: a,(Q*) — 0 as Q* — oo which implies that at very high energy regimes or at
short distances, quarks and gluons appear like almost free particles. The prediction of this QCD property
was made in 1973 by D. Politzer, D. Gross and F. Wilczek and brought them the 2004 Nobel prize in
physics.

Confinement: 0;(Q%) — o0 as Q* — AZQCD, which implies that quarks are always confined inside

hadrons and they can never be found as free (unbounded) states.

1.2 The transverse momentum predictions of the Z boson at hadron col-

liders

Figure 1.2: The Z boson decaying to electron and positron at proton-proton collisions.

In high energy proton-proton collisions at the tree level, the Z boson is produced in the Drell-Yan
process [71] in which a quark and an antiquark annihilate into a weak boson which decays into a lepton
pair as in Figure 1.2. The hadronic cross section 6(AB — X)) of the process can be obtained by weighting

the subprocess cross section & for g7 — X with the parton distribution functions (pdfs) f, extracted from

13



deep inelastic scattering:

OaB = Z/dxadxbfa(xaaQz)fb(xanz)éab—m, (1.29)
ab

where in this case A, B = proton, ab = qq, gq, X = Z({*¢~) and Q? is the virtuality of the Z boson. &
describes the hard parton-parton cross section with a partonic center-of-mass energy squared § = x,x5S
(s is the center-of-mass energy squared of the collider, x,, x; are parton momentum fractions) and has the

complete form in the perturbative expansion as below:

Gub—x =[G + 0 (z) B1 + - Jap—x (1.30)

where g is the renormalization scale for the QCD running coupling constant o. At the lowest order
(Leading Order - LO), the subprocess cross section for on-shell Z boson production can be expressed as
below [59]:

. T N

69177 = §ﬁc;ng(c%q+cfw)5(s—M%), (1.31)

where Gr is the Fermi constant, and cy,, ca, is the vector and axial couplings (see 1.17 ) of the Z to
the quarks. This formula is valid in the narrow width production in which the decay width of the gauge
boson is neglected. The resulting cross section can then be multiplied by the branching ratio for any

particular hadronic or leptonic final state of interest.

1.2.1 The high pZ predictions

At the leading order of the cross section the colliding partons are assumed to be exactly collinear with
respect to the colliding beam particles, therefore the gauge bosons are produced with zero transverse mo-
mentum. At higher orders, the transverse momentum of Z generated is balanced by a recoiling hadronic
system mainly arising from initial state QCD radiation of quarks and gluons. The differential cross

section has the form [38]:
do

dp}
where 04, = v2GrM2 /7 and the u;(i = 1,2,...) are calculable expressions in perturbation theory. Ex-

= 0l Ot (1) + Uun Oy + U302 + ...), (1.32)

amples of processes that are in the 1st-order in ¢ are shown in Figures 1.3(a) 1.3(b). At the 2nd-order,
one may either produce an extra jet, such as in Figure 1.3(c), or consider the interference of the 1st-order
in a; process of Figure 1.3(a) with one-loop corrections such as Figure 1.3(d) [38].

The form of Equation 1.32 depends on the range of p%. In the high p% region (p% > Mz/2), the

contribution of higher o orders in 1.32 decreases quickly and a fixed order calculation is thus valid to
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(@) (b) © (d)

Figure 1.3: Examples of processes at the 1st-order (a,b) and 2nd-order (c,d) of o.

describe the p% distribution. At the 1st order in o, which is the next-to-leading order (NLO) of the cross

section, the differential cross section has the form (Q = My) [72]

do In(Q*/p7) | , 1 2
— o, (A +B— +C(p3)). (1.33)
dpt ( ¥ P} ! )

Currently, the highest available order of the total cross section predictions is the next-to-next-to-leading
order (NNLO) which corresponds to a NLO prediction for p%. The complete calculations to NNLO
perturbative corrections for W and Z boson production at high pr can be found in [37,79]. Results
from NLO and NNLO corrections for the total cross section showed that NLO corrections provide a
large increase to the cross section but do not reduce the scale dependence relative to leading order (LO).
NNLO corrections, although they are small, significantly reduce the scale dependence thus providing a
more stable theoretical prediction.

The predicted cross sections of different processes at NLO, including W and Z boson productions,
are shown in Figure 1.4 as a function of /s.

NLO and NNLO calculations are included in several programs as FEWZ [75,76,91], RESBOS [40,

], MCFM [58], DYNNLO [60]. In this analysis, we use FEWZ and RESBOS programs to produce
the theoretical predictions for the p% spectrum in this region, details will be discussed in Section 1.2.3.
These predictions will be compared with our measurement of the p% spectrum using the large amount of

data collected by the ATLAS detector in 2011.
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Figure 1.4: Cross sections for different processes in hadron colliders as a function of centre-of-mass en-
ergy. The centre-of-mass energy of the Tevatron and the current as well as the foreseen energy of the LHC
are presented with dotted lines. The break points in the curves correspond to the difference in the esti-

mated cross sections between proton-proton (LHC) and proton-antiproton (Tevatron) production [5]].
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1.2.2 The low p% predictions
1.2.2.1 The transverse momentum resummation

At low pr, the convergence of the perturbation series deteriorates due to multiple soft gluon emissions.

The dominant contributions to Equation 1.32 have the form (Q = M) [38]

do a 2 2 §
o (@) ()t (D)) o
dp7 Pr Pr Pr Pr

where the v;[i = 1,2,...] are calculable coefficients. This is known as the leading-logarithm approxi-
mation to do/dp%. At sufficiently low pr, oIn?(Q%/p%) will be large even when ¢ is small. By
placing an arbitrarily small cut on pr, one can still obtain an arbitrarily large cross section. Because of
this unphysical result, the cross section can not be calculated accurately in any fixed perturbative order of
perturbation theory. However the coefficients v; of Equation 1.34 are not independent and it is possible to
sum the series exactly even when o lnz(Q2 / p%) is large. The result of summing at the leading-logarithm
approximation can be performed in b-space which is the Fourier conjugate of pr-space [38]:

(o2
21

BT oxp [ _ 1(

2

3 2
do _4Am’a, 2/ a’b JAVIR B0 fulxa) fow),  (139)

dprdy ~ 3s (2m)?
where y is the Z rapidity, e is the electron charge, AW is a numerical coefficient calculable from pertur-
bation theory. This technique can be generalized to resum all terms of the perturbation series. It is called

resummation and was carried out by Collins, Soper and Sterman (CSS) [64], who express the result in

the form
do 4oy , [ d°b 4.
= P-PTW (b 1.36
dp3.dy 35 ¢ /(271:)28 (5), (1.36)
W(b) = e S(C® f,) (xa: G /D7) (C® fi) (x:C3 /1), (1.37)

where S(b) is the Sudakov form factor and has the form

)= [ fff:“fjf[ln(CizQz)Aws(qZ))+B<as<q2>>]. (138

The parameters C;, C;, and C3, are unphysical and arbitrary and can be chosen for convenient calcula-
tions, S(b) and C = C(x; &;(C3/b?)) can be calculated order-by-order in perturbative QCD. Up to now,
the highest available approximation of resummation is the next-to-next-to-leading logarithmic accuracy
(NNLL) which is included in several programs as [55], RESBOS [40), ]. In this analysis, we use the
RESBOS program to produce the theoretical predictions for the p% spectrum in the low p# region. More

details will be discussed in Section 1.2.3.
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1.2.2.2 The non-perturbative function

In Equation 1.36 the variable b is integrated from 0 to co. When b > 1 GeV ™!, the perturbative calculation
for W (D) is no longer reliable and complicated long distance physics comes in. Non-perturbative contri-
butions to W (b) can be approximated by some phenomenological model with measurable and universal
parameters for Drell-Yan like processes. Collins, Soper and Sterman [64] suggested the introduction of
the non-perturbative terms in the form of an additional factor Wyp(b) = e=5¥*(%), where Syp(b) is called
the “non-perturbative Sudakov function® and satisfies Syp — 0 as b — 0 and Syp — o as b — . So

W (D) can be expressed in the new form
W (b) = Wper (b<)Wip(b), (1.39)

with

b, = b (1.40)

V14 (b/bar)?

In numerical calculations, by, is typically set to be of order of 1 GeV~!. The variable b, never ex-
ceeds by, so that Wy, (bs) can be reliably calculated in perturbation theory for all values of b. In

reference [64] it was found that the non-perturbative function can be generally written as
Snp(b) = hy(xa,b) + hy (xp,b) + ha(b) In Q% (1.41)

The non-perturbative contribution is due to the long-distance effects that are incalculable at the present

time so the parameters /; and /i, must be extracted from the data with the constraint that
Syp(b=0)=0. (1.42)

In reference [85] it is suggested to consider three different functional forms for Syp(b): the Davies-

Webber-Stirling (DWS) form (Qp = 1/bmax)

2\,
{g1+gzln(2QO)]b, (1.43)
the Ladinsky-Yuan (LY) form
[gl +aln <—Q )] b2+ [g1g3 In(100x,35)]b; (1.44)
2Q0

and the Brock-Landry-Nadolsky-Yuan (BLNY) form

[gl +g21n (220) + 8183 1n(100xaxb)} b*. (1.45)
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1.2.2.3 The small-x broadening effect

The resummation presented here is possible due to the collinear factorization of hadronic cross sections,
valid when Q is not small compared to the total energy /s of the hadronic collision. The CSS approach
describes well the pr distribution of the Z boson at the Tevatron [86]. In the range of energies accessible
to the Large Hadron Collider (LHC) at the 7 TeV pp collisions, the typical fraction of the collision energy
going into the production of moderately heavy bosons decreases leading to new effects. Transverse
momentum distributions of W and Z bosons can be changed at small Born level parton momentum
fractions x (x ~ Q/+/s — 0) by increased contributions from gg and gg hard scattering, which tends to
produce electroweak bosons with larger transverse momenta as compared to the dominant process of
qq scattering. The logarithms In(1/x) in the matrix elements of order &> and beyond may be increased
by a larger QCD coupling strength ¢ at pr less than a few GeV. Consequently, the non-perturbative
contribution at b > 1 GeV~! may also depend on x. The magnitude of the x-dependent corrections to W

and Z boson production at the LHC energy is unknown and expected to be tested using data collected at

LHC.
Refs. [94,96] have compared predictions of py resummation of semi-inclusive deep inelastic scatter-
ing (SIDIS) to the data for the transverse energy flow in the Hera experiment [24,32]. The experimentally

observed pr distribution at x below 10~2 becomes wider as x decreases, so it is called the small-x broad-
ening effect. The phenomenological parametrization for the small pr cross section found in SIDIS was
employed to predict the x dependence of pr distributions at x < 1072 at hadron-hadron colliders by [50].

The proposed new form of the Drell-Yan resummed form factor at x < 1072 is given by
W (b) = Wgryy (b)efp(xa)bzfp(xb)sz (1.46)

where Wpyy (b) is the quantity in Equation 1.36 with the non-perturbative form of Equation 1.45 and
with the parametrization found in the global fit [86] to the Drell-Yan data at larger x. The exponential
e P (xa)b? =p(x,)b? parametrizes the small-x broadening. A smooth trial function p(x) was chosen as

p(x) = cof x12+x1(2)_xlo> (1.47)
where cg controls the magnitude of the broadening for a given x, and xp is a characteristic value of x
below which p(x) becomes non-negligible. The pr distribution of Z boson with the small-x broadening

effect at the LHC 7 TeV is shown in Figure 1.5.
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Figure 1.5: Transverse momentum distributions of Z bosons produced at the LHC operating at 7 TeV
collider. These curves are obtained using the RESBOS package in [102] and input grid files in [39]
for a general purpose case (black) and input grid files in [49] for the small-x broadening distributions
(different colors) with different numerical parametrizations of co and xy from small to large effects. The
events are selected by requiring |n°'| < 2.4, peTl > 20 GeV for both decay electrons, and 66 GeV < M, <

116 GeV.
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1.2.3 NNLL and (N)NLO QCD predictions of the p% spectrum of the Z boson

As already mentioned, the comparison of the p% measurement with different theoretical predictions
is a good test of pQCD calculations and helps for tuning MC models. In order to study the theoretical
predictions, I investigated the FEWZ [75,76,91] and RESBOS [40,103] programs. Here is a brief summary
of this work.

FEWZ includes the fixed order perturbative QCD calculations up to NNLO. RESBOS matches the
prediction of soft gluon resummation including a non-perturbative form factor [86] at low p% (see Section
1.2.2) with the fixed order pQCD calculation at &(c) at high p%, which is corrected to €'(0?) using a
K-factor.

FEWZ2.1 and RESB0OS041511 versions are compared. The RESBOS program uses the PDFs CT10.
The FEWZ program uses the new PDFs CT10NNLO [84, 93] issued in May 2012. The p% spectrum
for FEwZ and RESBOS is presented in Table 1.4. Only the PDF uncertainty is considered when dealing
with RESBOS predictions. This PDF uncertainty results from variations within the 90% C.L. CT10NNLO
(CT101n the case of RESBOS) eigenvectors [84,93]. The theoretical uncertainties on the FEWZ prediction
include the PDF uncertainty, the renormalization and factorization scale uncertainties. To determine the
scale uncertainty, the factorization (Ur) and renormalization (Ug) scales were varied between 1/2my
and 2my with the constraint 1/2 < ug/ur <2 (as recommended and explained in [82]) and the largest
deviation among the various scale choices is used as the final scale uncertainty.

The typical shape of the p% spectrum from the RESBOS prediction is shown in Figure 1.6. The
comparison between RESBOS and FEWZ predictions are shown in Figure 1.7. In the analysis of this
thesis, the RESBOS prediction with CT10 PDFs is used as a reference prediction.

The RESBOS calculation using CT10 PDFs is also compared to another RESBOS calculation using
CTEQ6.6 PDFs which is shown in Figure 1.8. We can observe that the prediction using CTEQG6.6 differs

by ~ 2% from the prediction using CT10. This difference stays within the CT10 error band.
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Figure 1.6: The p% spectrum from RESBOS predictions in logl0-x,y scale (a), with the typical peak
arround 3 — 5 GeV in logl0-x scale (b). The events are selected by requiring |n°| < 2.4, peTl > 20 GeV
for both decay electrons, and 66 GeV < M,, < 116 GeV.
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Figure 1.7: The ratio of the p% predictions provided by FEWZ and RESBOS. The theoretical uncertainties
on the FEWZ prediction and the PDF uncertainty on the RESBOS prediction are shown. The events are

selected by requiring |In¢'| < 2.4, peTl > 20 GeV for both decay electrons, and 66 GeV < M,, < 116 GeV.
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CTEQ6.6 or CT10 PDFs. The events are selected by requiring |n°| < 2.4, peTl > 20 GeV for both

decay electrons, and 66 GeV < M,, < 116 GeV.
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RESBOS FEwZz

p% Clyjpc; stat. | PDF unc. cly;i:% stat. | 4-sys. | —sys.
(GeV) (1/GeV) | (%) (%) (1/GeV) | (%) | (%) | (%)

0.0-25 0.0321 | 0.01 | 4.8 - - - -

2.5-5.0 0.0595 | 0.01 3.39 - - - -

50-8.0 0.0503 | 0.01 1.50 - - - -
8.0-11.4 0.0381 | 0.01 | 025 0.0432 | 029 | 8.56 | 6.82
11.4-149 0.0286 | 0.01 0.82 0.0286 | 0.28 | 7.54 | 5.69
149-185 0.0214 | 0.01 1.43 0.0199 | 028 | 8.27 | 6.70
18.5-22.0 0.0163 | 0.01 1.89 0.0147 | 0.30 | 8.00 | 6.51
22.0-255 0.0127 | 0.02 | 227 0.0112 | 031 | 7.95 | 6.63
25.5-29.0 0.0100 | 0.02 | 2.57 0.0089 | 0.34 | 9.94 | 895
29.0 - 32.6 0.0080 | 0.02 | 2.83 0.0070 | 0.36 | 7.76 | 6.55
32.6 - 36.4 0.0064 | 0.02 | 3.06 0.0056 | 037 | 8.49 | 7.48
36.4 - 40.4 0.0051 | 0.02| 3.28 0.0045 | 039 | 9.27 | 845
40.4 -44.9 0.0041 | 0.03 | 3.47 0.0036 | 0.38 | 7.67 | 6.75
44.9 - 50.2 0.0032 | 0.03| 3.61 0.0029 | 036 | 9.17 | 8.53
50.2 - 56.4 0.0024 | 0.03 | 3.77 0.0022 | 035 | 9.22 | 8.64
56.4-63.9 0.0018 | 0.03 | 3.88 0.0017 | 0.33 | 9.72 | 9.25
63.9-73.4 0.0012 | 0.04 | 4.16 0.0012 | 0.32 | 10.11 | 9.81
734-854 | 7.8-107*]005| 433 [76-107%|032| 812 | 7.89
85.4-105.0 | 4.3-107% | 0.04 5.03 42-107%10.29 | 9.00 | 8.90
105.0-132.0 | 2.1-107* | 0.05 4.34 20-1074 1035 | 9.21 | 9.22
132.0-173.0 | 84-107 | 0.04 | 465 |82-107° | 046 | 12.52 | 12.58
173.0-253.0 [ 22-107° | 0.03 | 510 |22-107° | 0.89 | 13.20 | 13.51
253.0-600.0 | 1.3-107% | 0.05 5.73 1.5-107% | 3.07 | 11.55 | 12.67

Table 1.4: Predictions from RESBOS (NNLL+NLO) and FEWZ (NNLO). The events are selected by

requiring [n¢| < 2.4, peTl > 20 GeV for both decay electrons, and 66 GeV < M,, < 116 GeV.
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1.2.4 The Monte Carlo event generators

At high energy hadron colliders, the structure of the hadrons, the hadronization and the hard scattering
process give rise to complex final states that may contain many particles produced by a variety of physics
processes. The event simulations using different Monte Carlo (MC) event generators based on the most
recent theoretical knowledge are crucial. The comparison between the data and the MC allows, on one
hand, to understand the measured data and the physics behind and on the other hand to tune the MC itself
for future physics analyses.

There are many MC event generator programs using different approximate calculations for the hard

scattering (LO or NLO) and different methods to deal with multiple soft gluon emissions at low p%.

1.2.4.1 The parton showering MC generators

While the resummation is the best choice for the transverse momentum predictions, the parton shower is
a common tool used in many current physics analyses since it is possible to simulate events as expected
in experiments. The merging of parton showers and fixed order calculations also allows to perform
approximately all range of the transverse momentum predictions.

In the parton showering model, in order to solve the problem of multiple soft and collinear gluon
emissions, a few partons produced in a hard interaction at a high energy scale can be related to partons
at an energy scale close to Agcp. At this lower energy scale, a universal non-perturbative model can
then be used to provide the transition from partons to the hadrons that are observed experimentally. This
is possible because the parton showering allows for the evolution, using the DGLAP QCD evolution
formalism [34, 70, 80, 89], of the parton fragmentation function. The solution of this DGLAP evolution
equation can be rewritten with the help of the Sudakov form factor, which indicates the probability of
evolving from a higher scale to a lower scale without the emission of a gluon greater than a given value.
For the case of parton showers from the initial state, the evolution proceeds backwards from the hard
scale of the process to the cutoff scale, with the Sudakov form factors being weighted by the parton
distribution functions at the relevant scales.

In the parton showering process, successive values of an evolution variable #, a momentum fraction
z and an azimuthal angle ¢ are generated, along with the flavours of the partons emitted during the
showering. The evolution variable ¢ can be the virtuality of the parent parton, E>(1 — cos 8), where E

is the energy of the parent parton and 6 is the opening angle between the two partons, or the square of
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the relative transverse momentum of the two partons in the splitting depending on MC generators. The
evolution variable must have angular ordering to simulate more precisely the higher order contributions
that are enhanced due to soft gluon emissions (colour coherence). Fixed order calculations explicitly
account for colour coherence, while parton showers that include colour flow information model it only
approximately.

The Sudakov exponential form factor of an initial state parton can be written as below [59]

tdt’ rd % p t
) = exp / / 29 poy F/z0)] (1.48)
i1

0 z 27r f(x,1)
where ¢ is the hard scale, 7y is the cutoff scale, P(z) is the splitting function for the branching under
consideration and f is the parton distribution function. The Sudakov form factor has a similar form for
the final state but without the pdf weighting. The introduction of the Sudakov form factor resums all
the effects of soft and collinear gluon emission, which leads to well-defined predictions even in these
regions.

At high pr, parton showers can not give an accurate event rate while matrix element calculations
provide a good description of processes where the partons are energetic and widely separated. In order
to obtain a reliable prediction in the full range of the transverse momentum, parton showers must be
merged with fixed order calculation. The merging should be done carefully to avoid double-counting
in kinematic regions where the two calculations overlap. There are some general techniques that allow
matrix element calculations and parton showers to be used in kinematic regions where they provide the
best description of the event properties. CKKW [61] is one of such techniques. The matrix element
description is used to describe parton branchings at large angle and/or energy, while the parton shower
description is used for the smaller angle, lower energy emissions. The phase space for parton emission is
thus divided into two regions, matrix element dominated and parton shower dominated. The example of

CKKW scheme for the case of W+ jets production at a hadron-hadron collider is shown in Figure 1.9.
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as(dy) ag(ds)

Figure 1.9: In the NLO formalism, the same scale, proportional to the hardness of the process, is used
for each QCD vertex. For the case of the W + 2 jet diagram shown above to the left, a scale related to
the mass of the W boson, or to the average transverse momentum of the produced jets, is typically used.
The figure to the right shows the results of a simulation using the CKKW formalism. Branchings occur
at the vertices with resolution parameters d;, where dy > dy > din; > d3 > dy > ds > dg. Branchings at
the vertices with dy,d, are produced with matrix element information while the branchings at vertices

ds,...,dg are produced by the parton shower [59].
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Parton showering MC generator programs. There are basically two kinds of event generators.
The first one is so called the LO event generator such as PYTHIA [98], HERWIG [66], ALPGEN [90],

SHERPA [77]. The second one is so called the NLO event generator such as MC@NLO [74], POWHEG [73].

e PYTHIA [98] is a general purpose event generator, which is commonly used in high energy physics
due to its easy handling. The hard scattering process is calculated in leading order approximation
and the higher order corrections are approximated with a parton shower approach, which has lim-

ited accuracy for predicting events with higher jet multiplicity.

e HERWIG [66] is different with respect to PYTHIA in the modeling of the parton shower and the

hadronization process.

e ALPGEN [90] is dedicated to the study of multiparton hard processes in hadronic collisions. The
code performs, at the leading order in QCD and EW interactions, the calculation of the exact
matrix elements for a large set of parton-level processes of interest in the study of the Tevatron and
LHC data. ALPGEN is thus useful for analyses including jets. The hard matrix element calculation

process is interfaced with HERWIG for hadronization simulation.

e SHERPA [77] accounts for multijet production through multi-parton tree-level matrix elements

merged with the parton shower.

e MC@NLO [74] includes full NLO calculations of rates for QCD processes during the hard scatter-
ing. MC@NLO is thus useful for precision measurement where LO calculations are not sufficient.
The output of the simulation is further handled by HERWIG event generator, which adds higher

order approximations of the parton shower and simulates the hadronization step.

e POWHEG [73] is a prescription for interfacing the NLO QCD calculation with parton shower gen-
erators. Unlike MC@NLO, POWHEG produces events with positive (constant) weight and fur-
thermore, does not depend on the subsequent shower Monte Carlo program. POWHEG can be

interfaced with any modern shower generator such as HERWIG and PYTHIA.

QED final state radiation interface. The QED corrections for the leading order subprocess includes
photon radiation off the final state lepton. The multiple photon emissions off the final state lepton can
be generated by the PHOTOS Monte Carlo program [78] which is often used in conjunction with other

generators.
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1.2.4.2 The predictions of the p% spectrum of the Z boson in Monte Carlo generators

The MC generator samples used to produce the predictions of the p% spectrum of the Z boson in this

analysis are listed in Table 1.5. The ratios between MC generator predictions and RESBOS prediction are

shown in Figure 1.10.

Comparing predictions from many MC generators allows to understand the effect of parton shower

models and the QCD calculations on different regions of p%. Using the same method (POWHEG) for

interfacing with the NLO QCD calculation, parton shower models PYTHIA and HERWIG introduce dif-

ferent shape of p%. Including multiple jets in the cross section calculation programs such as ALPGEN and

SHERPA increases the contribution at high p% and shows a different behaviour compared to other pro-

grams. The difference at low p% can be up to 40% between POWHEG+PYTHIA6 and POWHEG+HERWIG

programs and at p% > 253 GeV can be up to 70% between ALPGEN and MC@NLO programs. These

predictions will be studied by comparing with the measurement on data.

Generator Dataset PDF Z(fb~!) o xBR (nb)
SHERPA mcl1_7TeV.147770.Sherpa_CT10_Zee.evgen.EVNT.e1238 CT10 4.78 1.05
MC@NLO mcl1_-7TeV.106087.McAtNloZee_no_filter.evgen.EVNT.e 1096 CT10 5.25 0.95
POWHEG+PYTHIA6  mc11.7TeV.108303.PowHegZePythia.evgen. EVNT.e825 CT10 20.67 0.97
POWHEG+PYTHIAS  mc12_7TeV.147806.PowhegPythia8_AU2CT10_Zee.evgen.EVNT.e1312 CT10 5.24 0.95
POWHEG+HERWIG  mc11_7TeV.126006.PowHegZeJimmy.evgen. EVNT.€995 CTEQ6L1 20 1.00
ALPGEN mcl1.-7TeV.107650.AlpgenJimmyZeeNpO_pt20.evgen. EVNT.e835 CTEQ6L1 9.88 0.67
ALPGEN mcl1_7TeV.107651.AlpgenJimmyZeeNp1_pt20.evgen. EVNT.e835 CTEQ6L1 14.2 0.14
ALPGEN mcl1.-7TeV.107652.AlpgenJimmyZeeNp2_pt20.evgen. EVNT.e835 CTEQ6L1 60.68 0.04
ALPGEN mcl1.7TeV.107653.AlpgenJimmyZeeNp3_pt20.evgen. EVNT.e835 CTEQ6L1 70.15 0.01
ALPGEN mcl1_7TeV.107654.AlpgenJimmyZeeNp4 _pt20.evgen. EVNT.e835 CTEQ6L1 93.16 0.0028
ALPGEN mcl1.7TeV.107655.AlpgenJimmyZeeNp5_pt20.evgen. EVNT.e835 CTEQ6L1 99.09 0.00076

Table 1.5: MC generator prediction samples used in this analysis. Each ALPGEN sample corresponds

with a number of jets varying from 0 to 5.
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Figure 1.10: The ratio between different MC generator prections and RESBOS prediction of the p%

spectrum of the Z boson. The events are selected by requiring |n°'| < 2.4, peTl > 20 GeV for both decay

electrons, and 66 GeV < M,, < 116 GeV.
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1.3 Optimization of new variables to study the Z boson transverse mo-

mentum

1.3.1 Motivation of the optimization

Recoil

Figure 1.11: Graphical illustration in the plane transverse to the beam direction of the variables defined

in the text and used to analyze dilepton transverse momentum distribution at hadron colliders [415].

The ATLAS and CMS Collaborations have recently published the measurement of the transverse-
momentum distribution of Drell-Yan muon and electron pairs with an integrated luminosity of ~ 40
pb~! [16,62]. In Chapter 5 of my thesis, I will present the measurement of the di-electron transverse
momentum at LHC using the full ATLAS 2011 data sample corresponding to an integrated luminosity
of ~ 4.7 fb~!. The precision of this measurement is limited by the experimental resolution rather than
by the available event statistics. Additional analyzing variables with better experimental resolution have
been proposed and studied in the last few years [45, 54, 100]. The variable, ar, which corresponds to
the component of p% (= Qr) that is transverse to the dilepton thrust axis 1), f, has been proposed in
Ref. [100] as an alternative analyzing variable that allows to study the issues discussed above but is
less sensitive than pZ% to detector resolution effects. The ar distribution was subsequently calculated to
next-to-next-to-leading-log (NNLL) accuracy using resummation techniques [42]. The variable a; [100]
corresponds to the component of Q7 that is longitudianl to 7. For a graphical illustration of Qr, ar, ar,
and other variables defined below we refer to Fig. 1.11.

DThe thrust axis is defined as 7 = (p(T1 ) p;z >) /| p(T1 ) _ p(TZ) |, where p(T1 ) and p<T2 ) are the lepton momentum vectors in the

plane transverse to the beam direction.
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A recent paper [54] has discussed the idea of using the azimutal opening angle, A@, as an analysing
variable that is sensitive to the physics of pZ, and insensitive to lepton momentum uncertainties. Whilst
A¢ is primarily sensitive to the same component of p% as ar, the translation from ar to A¢ depends on
the scattering angle 8* of the leptons relative to the beam direction in the dilepton rest frame. Thus, A¢
is less directly related to p% than ar. The idea is to correct Ag on event-by-event basis for the scattering
angle 6* in order to improve the sensitivity to p%. For convenience, the acoplanarity angle is defined as

Qacop = T - A@. For p(T1 ) ~ p(T2 ) where p(Tl’z) are the two lepton momenta it can be shown that [45]:

ar /mz = tan(Pyeop/2) sin(6*) (1.49)

The angle 6* is commonly evaluated in the Collins-Soper frame [63] and requires the knowledge of
the lepton momenta and is thus sensitive to the effects of the lepton momentum resolution. An alternative
way to measure the scattering angle is based entirely on the measured track directions, It is expected to

give the best experimental resolution. This scattering angle is approximated by the angle 6, where [45]:

cos(6;) = tanh[(n~ —n")/2] (1.50)

where 1~ and " are the pseudo-rapiditities of the negatively and positively charged lepton, respectively.
The optimal variable to probe the transverse momentum domain of Z production was found to be ¢,

which is defined as [45]:

¢y = tan(Pacop/2) sin(6y) (1.51)

Since q);; depends exclusively on @, and 6,“7* which themselves depend exclusively on the directions
of the two leptons, ¢, is experimentally well measured compared to any quantity that relies on the
momenta of the leptons. As a concrete example of the utility and discriminating power of the ¢, variable
one can consider the issue of the small-x broadening which is neglected by conventional resummation
techniques but may become important at values of x relevant for LHC [50]. The reduced experimental
systematic uncertainties achievable with the ¢, variable in the low-py domain and the large statistics of
inclusive Z bosons collected in 2011 will allow ATLAS to further investigate this effect.

The ¢, variable has recently been measured by the DO Collaboration using 7.3 fb—! of pp collisions
at the Tevatron [22]. Predictions from RESBOS are unable to describe the detailed shape of the corrected

DO data even if the overall agreement is reasonably good. The effect of the small-x broadening is strongly
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disfavored in the DO data. Another prediction at the Tevatron of the ¢, spectrum at low ¢, was calculated
at NNLL accuracy in Ref. [44] and showed an agreement with the DO data within theoretical errors.
In next sections, the interest in the use of the ¢, variable will be discussed in detail. The predictions

from QCD calculations as well as from MC generators for the ¢, spectrum are also presented.

1.3.2 Dependence on the detector resolution

To ilustrate the interest in using the new variables, the experimental resolution of these new variables
and of pZ are compared. In particular, I compare the variation of the experimental resolution for each
variable as a function of that variable. The variables considered are p%, ar, ar/mg, ¢>;,‘. This comparison
can be done after having ensured that all distributions have approximately the same scale. Compared
to p%, all other variables are on average a factor v/2 smaller. A simple multiplication by Mz = 91.19
GeV [52] corrects the ar /mz and the angular variable (b,’; and conveniently ensures that all variables have

the same units (GeV). These factors are summarised in Table 1.6. This method was proposed and used

in [45].

Variable Scaling factor

PF 1
ar \@
ar/mz V2Mz

oy V2M;y

Table 1.6: Scaling factors for the different variables [45].

Figure 1.12 compares the mean and the RMS of the resolution, Ax, of various candidate variables, x,
as a function of generated level x7,,,, using Z — ee PYTHIA MC sample 2) The X7rueh Uses the "Dressed*
electron momenta. More details of the ”Dressed* electron can be found in Section 5.2. All variables are
scaled by the factors in Table 1.6. Figure 1.12 shows that ¢, has the best resolution in comparison with

other variables to study p%.

2 mc10_7TeV.1 06046.PythiaZee no_filter.merge. NTUP_SMWZ.e574 s933_s946_1r2302_r2300_p591.
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Figure 1.12: The mean (a) and the RMS (b) of the resolution of various candiate variables, x, as a
function of generated level X7,y
1.3.3 Sensitivity to physics

Figure 1.13 shows the correlation between the new variable ¢, and p%. This plot indicates that oy is

sensitive to the same physics as p%.
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Figure 1.13: The correlation between the new variable (]);; and p% in RESBOS prediction.
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1.3.4 NNLL and (N)NLO QCD predictions of the d); spectrum of the Z boson

The details of this work using FEWZ and RESBOS programs was introduced in Section 1.2.3. The shape

of the ¢, spectrum from RESBOS prediction is shown in Figure 1.14. The difference between the ¢y,

spectrum and the p% spectrum (in Figure 1.6) in the low p% region is one of the main interest of this

new variable. The ¢, measurement is mostly not affected by the MC shape dependence in the unfolding

procedure, details will be discussed in Section 5.6.5 and Section 6.2.5.

The comparison between RESBOS and FEWZ predictions of the ¢, spectrum is shown in Figure 1.15.

The ¢ spectrum from RESBOS and FEWZ predictions is listed in Table 1.7.
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Figure 1.14: The ¢, spectrum from RESBOS predictions in log10-x,y scale (b), in log10-x scale (b). The

events are selected by requiring |n°| < 2.4, peTl > 20 GeV for both decay electrons, and 66 GeV < M,, <

116 GeV.

The RESBOS calculation using CT10 PDFs is also compared to another RESBOS calculation using

CTEQG6.6 PDFs in Figure 1.16. We can observe that the prediction using CTEQG6.6 differs by ~ 1% from

the prediction using CT10. This difference stays within the CT10 error band.
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GeV for both decay electrons, and 66 GeV < M,, < 116 GeV.
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electrons, and 66 GeV < M,, < 116 GeV.
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RESBOS FEwz
o; é ;;% stat. (%) | PDF unc. (%) é jq;; stat. (%) | +sys. (%) | —sys. (%)
0.000 - 0.004 | 9.5728 | 0.02 2.75 - - - -
0.004 - 0.008 | 9.4909 | 0.02 2.74 - - - -
0.008-0.012 | 9.3055 | 0.02 2.70 - - - -
0.012-0.016 | 9.0730 | 0.02 2.62 - - - -
0.016-0.020 | 8.7885 | 0.02 2.50 - - - -
0.020-0.024 | 84611 | 0.02 2.36 - - - -
0.024-0.029 | 8.0454 | 0.02 2.18 - - - -
0.029-0.034 | 7.5490 | 0.02 1.96 - - - -
0.034-0.039 | 7.0461 | 0.02 171 - - - -
0.039-0.045 | 65072 | 0.02 1.42 - - - -
0.045-0.051 | 59524 | 0.02 111 - - - -
0.051-0.057 | 54481 | 0.02 0.82 - - - -
0.057 - 0.064 | 4.9605 | 0.02 0.53 6.5199 | 099 8.96 7.29
0.064-0.072 | 44711 | 0.02 0.26 53636 | 093 7.85 5.84
0.072-0.081 | 3.9995 | 0.02 0.20 46307 | 085 12.01 10.87
0.081-0.091 | 3.5570 | 0.02 0.42 3.9991 | 0.77 10.68 9.39
0.091-0.102 | 3.1418 | 0.02 0.67 3.3855 | 0.73 9.14 7.61
0.102-0.114 | 27620 | 0.02 0.90 28797 | 071 10.16 8.89
0.114-0.128 | 2.4033 | 0.02 1.14 24241 | 0.63 9.18 7.87
0.128-0.145 | 2.0496 | 0.02 139 19682 | 059 9.69 8.46
0.145-0.165 | 17118 | 0.02 1.65 16224 | 052 7.98 6.45
0.165-0.189 | 1.3986 | 0.02 1.91 12959 | 045 10.32 9.24
0.189-0219 | 1.1103 | 0.02 2.18 1.0038 | 039 9.78 8.74
0.219-0.258 | 0.8456 | 0.02 2.47 07619 | 035 8.69 7.61
0.258-0.312 | 0.6059 | 0.02 2.78 05355 | 030 9.13 8.14
0312-0391 | 03979 | 0.02 3.12 03506 | 025 7.52 6.46
0.391-0.524 | 02254 | 0.02 3.50 02017 | 020 7.76 6.96
0.524-0.695 | 0.1135 | 0.03 3.84 0.1041 | 022 7.47 6.89
0.695-0.918 | 0.0553 | 0.04 4.18 0.0525 | 025 10.35 10.06
0.918- 1.153 | 0.0282 | 0.05 4.46 0.0273 | 035 8.35 8.19
1.153-1.496 | 0.0147 | 0.5 438 0.0140 | 041 9.91 9.86
1496 - 1.947 | 0.0073 | 0.05 4.45 0.0070 | 0.54 7.48 7.47
1.947-2.522 | 0.0037 | 0.06 451 0.0034 | 083 13.75 13.77
2.522-3277 | 0.0019 | 0.08 4.50 0.0017 | 1.08 9.27 9.30

Table 1.7: Predictions from RESBOS (NNLL+NLO) and FEWZ (NNLO). The events are selected by
requiring |N¢| < 2.4, peTl > 20 GeV for both decay electrons, and 66 GeV < M,, < 116 GeV.
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1.3.5 The predictions of the ¢, spectrum of the Z boson in Monte Carlo generators

The comparison between different MC predictions (listed in Table 1.5) and RESBOS prediction of the

¢, spectrum of the Z boson is shown in Figure 1.17. As shown in this figure the ¢, variable is less

sensitive to the fragmentation of parton shower models. The difference between POWHEG+PYTHIAG

and POWHEG+HERWIG predictions at low ¢,

is ~ 20% which is 40% at low pZ in Figure 1.10.
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Figure 1.17: The ratio between different MC generator prections and RESBOS prediction of the ¢y

spectrum of the Z boson. The events are selected by requiring |n¢| < 2.4, peTl > 20 GeV for both decay

electrons, and 66 GeV < M,, < 116 GeV [69].
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Chapter 2

The ATLAS Detector at the LHC

The Large Hadron Collider (LHC) is a new particle collider located at CERN near Geneva in Switzerland
(see Figure 2.1). The accelerator is designed to collide two beams of protons at a centre-of-mass energy of
14 TeV. The centre-of-mass energy was 7 TeV during the 2010-2011 data taking and is 8 TeV at present.
The machine is installed at 50-175m underground in the former LEP tunnel which has a circumference
of about 27 km. After over 10 years of preparation and construction the LHC released the first beam on
10 September 2008 and made the first collision in November 2009. Among the six detectors of the LHC
(ALICE, ATLAS, CMS, TOTEM, LHCb, and LHCf), ATLAS (A Toroidal LHC ApparatuS) and CMS
(Compact Muon Solenoid) are the two largest and general purpose experiments located at two interaction
points of the LHC. This chapter will introduce briefly the LHC and the ATLAS delector as well as their

functions and current status.

2.1 The LHC

Before being accelerated by the LHC, the proton beams travel through other accelerators at CERN to
increase their energy in several stages [48]. Figure 2.2 illustrates the path traveled by the protons through
the accelerator complex at CERN. In the LHC, the particle beams are accelerated in an ultrahigh vacuum
(1071 Torr). To circulate in the tunnel they are bent by 1232 powerful superconducting dipole magnets
and focused by quadrupole magnets. To ensure their normal operation the superconducting magnets
with niobium-titanium coils (NbTi) must be kept at a temperature of 1.9K. In order to bend 7 TeV beams

around the LHC ring the dipole magnets should have a field of about 8.33 Tesla.
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Figure 2.1: The LHC general scheme
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Figure 2.2: The CERN accelerator complex
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The number of events per second produced in the LHC collisions is given by:
Nevenr = LOevyent, (2.1)

where O,y 15 the cross section for the process under study and L is the machine luminosity. The machine

luminosity depends only on the beam parameters and for a Gaussian beam distribution can be written as:

o sznbfrev Y

drne, B @2)

where N,, is the number of particles per bunch, n; the number of bunches per beam, f,., the revolution
frequency, ¥, the relativistic gamma factor, €, the normalized transverse beam emittance, B* the beta

function at the collision point and F the geometric luminosity reduction factor due to the crossing angle

F:l/,/1+(2ﬁz>2, 2.3)

where 6, is the full crossing angle at the IP, o, the RMS bunch length and ¢* the transverse RMS

at the interaction point (IP):

beam size at the IP. The above expression assumes equal beam parameters for both circulating beams.
The exploration of rare events in the LHC collisions requires both high beam energies and high beam
intensities.

A summary of some of the LHC design beam parameters together with the parameters reached during
the 2011 run used for the analysis performed in this thesis can be found in Table 2.1. The delivered and

recorded integrated luminosity in 2011 are displayed in Figure 2.3.

2.2 Coordinates for LHC

Two coordinate systems are used in the LHC. The Cartesian system has an origin at the nominal collision
point, the positive direction of the x-axis points to the center of the LHC ring, the positive direction of
the y-axis is upward and the z-axis along the beam line has a direction to form with the x- and y- axes
a right-handed Cartesian coordinate system. The polar coordinate system is defined by choosing the
polar angle 6 with respect to the z-axis, the azimuthal angle ¢ around this axis, and the radial coordinate
p=/xT+y2.

Since the boost of the parton centre-of-mass along the beam line is unknown, to characterize a particle

in hadron colliders the transverse momentum p7 is used. This is defined as the momentum projected in
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Beam parameter Nominal | October 2011
Proton energy [TeV] 7 3.5

B* [m] 0.55 1.0
Transverse normalized emittance €, [(tm rad] 3.75 2.5
RMS beam size o* [um] 16.7 24
Number of particles per bunch N, 1.15 x 101 1.5 x 10"
Number of bunches n;, 2808 1331
Bunch spacing [ns] 25 50
RMS bunch length [cm] 7.55 9
Peak luminosity [em 2571 103 3.6 x 103
Average peak pile-up 25 18

Table 2.1: Nominal design values of the LHC beam parameters together with the numbers reached during

2011 data-taking [ 13, 56].
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Figure 2.3: Integrated luminosity delivered by the LHC and recorded by the ATLAS detector in 2011.
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the plane orthogonal to the beam axis. A particle is also characterized by its rapidity. The rapidity of a

particle relative to the beam axis is defined as below:

1. E
y=—=In +Pz’
2 E-—p,

2.4)

where E = 4/ ; 2 +m? is the energy, 7 the momentum, m the mass of a particle and p, is the component
of the particle momentum along the z-axis. In the approximation that the mass of the particle is nearly

zero E ~ | 7|:

y%%ln%:—ln[tam(g)} =7, (2.5)

where 1) is the pseudo-rapidity, which has an one-to-one correspondence with the polar angle 6. So in
the massless limit the rapidity is equivalent to the pseudo-rapidity.

For a charged particle track, there are two more parameters, dy and zo: dj is the transverse distance to
the beam axis at the point of closest approach of the track, while z is the distance from the origin along

the z-axis at the point of closest approach.

2.3 The ATLAS detector

The ATLAS experiment is a general-purpose detector and it consists of many components designed to
detect different types of particles produced in the collisions. The ATLAS detector is a massive device
with a weight of 7000 tons, a length of 42 meters and a diameter of 25 meters. Therefore it is the largest
experiment at the LHC. The technical specification of ATLAS is published in detail in the Technical
Design Report (TDR) [3,4] and, after installation at collision point 1, in the ATLAS technical paper [15].
The ATLAS detector has three major parts (counted from the center outwards): the Inner Detector, the
Calorimetry and the Muon Spectrometer. Two magnet systems are designed to bend charged particles
in the Inner Detector and the Muon Spectrometer. Data from the ATLAS detector are selected through
the trigger system. An overall ATLAS layout is shown in Figure 2.4 and its main performance goals are
listed in table 2.2.

The Inner Detector tracks the charged particle trajectories precisely, the calorimeters measure the
energy of the particles and the muon spectrometer identifies the muons. If the strength of the magnetic
field is known, the particle momenta can be measured by the Inner Detector and the Muon Spectrometer.

Particles like neutrinos which do not interact with the detector can be inferred via an estimation of
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25m
|
° \ LAr hadronic end-cap and
forward calorimeters
___________________ Pixel detector \
-------- Toroid magnets LAr electromagnetic calorimeters
Muon chambers Solenoid magnet | Transition radiation fracker
Semiconductor fracker
Figure 2.4: The ATLAS detector layout [15].
Detector component Required resolution 1 coverage
Measurement Trigger
Inner Detector Oy, /pr =0.05%pr ® 1% +2.5
EM calorimetry or/E = 10%/VE ©0.7% +3.2 +2.5
Hadronic calorimetry
barrel and end-cap o /E =50%/VE ®3% +3.2 +3.2
forward or/E=100%/VE®10% | 3.1<|n| <49 |3.1<|n| <49
Muon spectrometer | 6,,/pr = 10% at pr = 1TeV +2.7 +2.4

Table 2.2: General performance goals of the ATLAS detector [15].
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missing transverse energy E7"*: E7" = |?’7'~”SS l, ?’}”” =YY, 7 » Where ?¥§ is the momentum of

a detected particle and N is the total number of detected particles.

2.3.1 Inner detector

The high bunch-crossing rate of 40 MHz imposes rigorous requirements on the ATLAS detectors. The
Inner Detector (ID), which is closest to the collision point and responsible for the tracking of charged par-
ticles in ATLAS, is designed to withstand such high rate of collisions and to provide pattern recognition,
primary and secondary vertex measurements as well as momentum measurement for charged particles
within || < 2.5. The ID consists of three sub-detectors: the Pixel detector, the Semiconductor Tracker
(SCT) and the Transition Radiation Tracker (TRT). The structure and components of the Inner Detector

can be seen in Figures 2.5 and 2.6.

rRm1082 mm

TRT

TRT

LR=554mm‘
[R=514mm |
R =443 mm

SCT
< R =371 mm

R =299 mm .
scT

Pixels

R =50.5 mm

R=0mm

R=122.5mm
Pixels ¢ R = 88.5 mm

Figure 2.5: The barrel region of the ID is traversed by a charged track of pr =10 GeVatn =0.3[/5].
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Figure 2.6: The end-cap region of the ID is traversed by two charged tracks of transverse momentum of

pr=10GeVatn =14and 2.2 []5].

The Pixel, SCT and TRT are immersed inside a 2 T solenoidal field in order to measure the charged
particle momentum. A more detailed overview of the design resolution and technical performance of the
Inner Detector can be found in [14, 15]. The main characteristics of the three ATLAS ID subdetectors

are summarized in Table 2.3

Subdetector Radius [cm] Element size Resolution Hits/track in the barrel Readout channels
Pixel 5-12 S50um x 400um  10um x 115um 3 80 x 10°
SCT 30-52 80um 17um x 580um 8 6 x 10°
TRT 56 - 107 4 mm 130um 30 3.5x10°

Table 2.3: Summary of the main characteristics of the three ATLAS ID subdetectors [ ].

The Pixel detector

The Pixel detector is a very high-granular and high-precision semiconductor based tracker. It is the
closest detector to the beam pipe and is used to reconstruct the primary vertex and the displaced vertices
such as those from B hadron decay in the environment of the very high particle multiplicity of the LHC
collisions. It contains three layers and three disks on each end-cap. The detecting material is made of
silicon with a thickness of 250 um. In total, the pixel detector has 1744 modules. Each module contains
16 readout chips and other electronic components. The smallest unit that can be read out is a pixel, (50
in each 400 pm); there are roughly 47000 pixels per module. The intrinsic barrel spatial resolution is 10

um and 115 pm in r¢ and z respectively.
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The Pixel detector is currently fully operational and performing close to design specifications. The hit
efficiency (the probability to register a hit given an incident particle) is above 98%. The noise occupancy

is at a low level of 10~ hits/pixel/bunch-crossing, well below the 10~ requirement [88].

The Semiconductor Tracker

The Semi-Conductor Tracker (SCT) is the middle component of the Inner Detector arranged in four
double layers of silicon strips. It is the most critical part of the Inner Detector for basic tracking in the
plane perpendicular to the beam. It consists of 4088 modules of silicon strip detectors. The intrinsic
accuracies per module in the barrel are 17 gm and 580 pm in ¢ and z [15]. The total number of readout
channels in the SCT is approximately 6.3 million.

The SCT is currently fully operational and meeting the design requirements. The noise occupancy
is in good agreement with simulation. The hit efficiency for the barrel layers is 99.8% above the design

goal of 99% [88].

The Transition Radiation Tracker

The Transition Radiation Tracker (TRT) is a gaseous drift (straw) tube detector. The main goals of the
TRT are to enhance the tracking capability of the ID and to provide particle identification, in particular
by identifying electrons from pions and other charged particles. The TRT uses 351 000 straw detectors,
which are about 150 cm long, located axially in the barrel and radially in the end-caps. It provides
R — ¢ information, but has no or little spatial resolution in the z-direction. A large number of position
measurements are acquired for each track: on average 36 in the barrel and over 40 in the end-caps. This
is due to the small diameter of the straw as well as to the fact that the sense wires are isolated within
separate gas volumes. An important functionality of the TRT is based on detection of transition radiation
photons which are created in the gas by traversing charged particles. This is made possible by using a
gas containing 70% xenon to detect the transition-radiation photons which are created in between the
straws. Electrons can thus be distinguished from pions through their transition radiation emissions. For
momenta above a few GeV, electrons have a much higher probability of depositing an energy greater
than a certain threshold in comparisons with pions with the equivalent momentum. The TRT, in addition
to the Pixel detector, uses the Time-over-Threshold technique to measure dE /dx to carry out particle

identification for heavily ionizing particles. The TRT hit reconstruction efficiency is about 94% for data
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and 95% for simulation [88].

In order to fully exploit the excellent spatial resolution of each subdetectors in the Inner Detector, an
alignment procedure has to be applied to accurately determine their position and orientation. Alignment
of the Inner Detector geometry is implemented using a track-based approach, where alignment and track
parameters are derived from the minimisation of a global chi-square, which consists of track-to-hit dis-
tances known as residuals. An example of the benefit from the updated alignment of the Inner Detector is
shown in Figure 2.7 with the better agreement between data and MC of the invariant mass distribution of
Z — uu decays. In this figure the mass is reconstructed using track parameters from the Inner Detector

track of the muons.
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Figure 2.7: Invariant mass distribution of Z — Ul decays, where the mass is reconstructed using track
parameters from the Inner Detector track of the muons, using about 702 pb-1 of data collected during
spring 201 1. Ideal alignment performance based on Monte Carlo is compared to observed performance
of data processed with spring 2011 alignment (full circles) and data processed with updated alignment

constants in summer 2011 (open circles) [99].

The tracking performance of the Inner Detector was assessed via the observation of well measured
particle decays, like KV, ¢, D mesons and &, , A baryons and Z boson. Clear signals of all these reso-
nances were obtained in data. Figure 2.8 shows two examples of such particles namely the reconstruction

of KV decaying into a pair of pions and the J/y decaying into a pair of muons. Those studies allowed the
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momentum scale to be determined at the per mill level for the low transverse momentum region, and for

higher momentum at the percent level (for momentum up to 100 GeV). In the low transverse momentum

region the resolution was found as expected to be dominated by multiple scattering.
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Figure 2.8: a) Reconstruction of KO invariant mass in the barrel region (both tracks are in |n| < 1.2).
The black circles are the data, while the histograms show the Monte Carlo simulation (normalized to the
data). The red line is the line-shape function fitted to data [9]. b) Di-muon invariant mass spectrum at

the J/y mass range [5].

2.3.2 Calorimeters

In the highly granular ATLAS calorimetry system, electrons, photons and hadrons (often forming a jet)
shower and deposit their energy, which can then be measured. Since electromagnetic and hadronic ob-
jects interact differently with matter, they need to be treated by two different systems: the electromagnetic
and the hadronic calorimeters. The electromagnetic (EM) calorimeter is used to identify and measure
the energy of electrons and photons, while the hadronic calorimeter is used for the identification and the
energy measurement of hadrons. The EM calorimeter, the end-cap and the forward components of the
hadronic calorimeters use a highly granular liquid argon technique (LAr). The barrel of the hadronic
calorimeter consists of a Tile Calorimeter. The overall pseudorapidity coverage is |n| < 4.9. An illus-

trative overview of the different components of the ATLAS calorimetry system is shown in Figure 2.9.
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Figure 2.9: The ATLAS calorimeter layout [15].

In order to have precise measurements of electrons, photons, jets and E'*S, calorimeters must contain
all final state particles (except muons). The calorimeter depth is therefore an important quality. Approx-
imately 9.7 interaction lengths (1) of active calorimeter in the barrel (10 A in the end-caps) ensures good
E!ss resolution, which is particularly important for beyond SM searches, such as searches for SUSY
particles. The total thickness, including 1.3 A from the outer support, is 11 A at 7 = 0 which is sufficient

to provide good resolution and punch-through reduction for high energy jets.

LAr electromagnetic calorimeter

The EM calorimeter [15] consists of a barrel (|| < 1.475) and two end-cap components (1.375 < || <
3.2), with a transition region at 1.37 < |n| < 1.52. The barrel is divided into two identical parts of length
3.2 m with a 4 mm gap separating them at z = 0. The calorimeter uses liquid argon as detector medium
with lead plates as absorbing medium. Liquid argon has been chosen for its intrinsic linear behaviour,
its stability of response over time and its intrinsic radiation-hardness . An accordion geometry has been
chosen for the absorbers since such a geometry naturally provides full azimuthal coverage without any
gap together with a fast signal extraction at the rear or at the front of the electrodes. In the barrel, the
accordion waves are axial and run in ¢ (see Figure 2.10(a)). In the end-caps, the waves are parallel to

the radial direction and run axially (see Figure 2.10(b)).
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(a) The Barrel (b) The End-Cap

Figure 2.10: The accordion shape in the Barrel and End-Cap of the EM calorimeter.
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Figure 2.11: The granularity in 1 and ¢ of the cells in three layers of the EM Barrel Calorimeter [15].
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Barrel End-cap
Pre-sample 0.025 x 0.1 In| < 1.52 0.025 x 0.1 1.5<n| < 1.8
Calorimeter
Ist layer 0.025/8 x0.1 |n|<1.40 0.050 x< 0.1 1.375 < |n| < 1.425
0.025x0.025 1.4<|n|<1.475 | 0.025x%0.1 1.425 < |n| < L5
0.025/8x0.1 15<|n|<1.8
0.025/6 x0.1 1.8<|n|<2.0
0.025/4x0.1 20<|n|<24
0.025 x 0.1 24<n| <25
0.1 x0.1 25< <32
2nd layer 0.025x0.025 |n|<1.40 0.050 x 0.025 1.375 < |n| < 1.425
0.075x0.025 14<|n|<1.475 | 0.025x0.025 1.425<|n|<2.5
0.1 x0.1 25< <32
3rd layer 0.050x0.025 |n|<1.35 0.050x0.025 1.5<|n| <25
TileCal
First two layers 0.1 x0.1 In| < 1.0 0.1 x0.1 08 <|n|< 1.7
Last layer 0.2x0.1 In| < 1.0 0.2x0.1 08 <|n|< 1.7
Hadronic end-cap
First two layers 0.1x0.1 1.5<|n] <25
Last layer 0.2x0.2 25<|n|<32

Table 2.4: Granularity of the EM and hadronic calorimeters for AN x A@ versus |n| [15].
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The calorimeter modules are divided longitudinally into three layers (strip, middle and back layers).
The typical granularity of a barrel module is shown in Figure 2.11. The strip layer is finely segmented
in 1 in order to measure the direction with higher precision. The middle layer contains most of the
energy in the shower and the back layer is designed to contain the electromagnetic shower. Due to the
large amount of material between the Inner Detector and the Calorimeters, a presampler is installed at
In| < 1.8 to determine the energy loss. The different setup in the different regions of the detector leads
to a uniform performance in terms of linearity and resolution as a function of ¢. The granularity of the
entire calorimeter system for different |17| is summarized in Table 2.4.

The LAr calorimeters are read out via a system of custom electronics. An overview of the ATLAS
LAr readout electronics is shown in Figure 2.12. The electronic readout is divided into a Front End (FE)
system of circuit boards mounted in custom crates directly on the detector cryostats, and a Back End
(BE) system of VME-based boards located off the detector, outside the detector hall. The FE system in-
cludes Front End Boards (FEBs), (which perform the readout and digitization of the calorimeter signals),
calibration boards (which inject precision calibration signals), layer sum boards (which produce analog
sums for the Level 1 (L1) trigger system), and control boards which receive and distribute the 40 MHz
LHC clock (in the designed performance) as well as other configuration and control signals. The BE
electronics are made up primarily of Read Out Driver (ROD) boards which receive the digitized signals
from the FEBs over 1.6 Gbps optical links. The RODs perform digital filtering, formatting, and moni-
toring of the calorimeter signals before transmitting the processed data to the ATLAS data acquisition
system (DAQ).

The ATLAS LAr calorimeters are finely segmented, with a total of 182,468 channels to be read out.
With each FEB handling up to 128 channels, a total of 1524 FEBs are required. The on-detector FE
electronics have been built to withstand the high levels of radiation which result from the collisions of
the intense LHC beams. They are fully operational and meet the design requirements.

An example of the ATLAS LAr readout electronic performance during 2011 collision is represented
by the noise level. Figure 2.13(a) shows the noise measurement for a run with the mean number of
inelastic collisions per crossing of < p >~ 14. The ratio between the data and the MC results is shown
in Figure 2.13(b).

The design resolution for the LAr EM calorimeter, obtained from test beam studies, is shown in

Table 2.2. The EM energy scale and resolution of the electromagnetic calorimeter can be determined by
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Figure 2.12: In this schematic drawing depicting the overall architecture of the ATLAS LAr readout
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Figure 2.14: Calibrated Z — e e invariant mass: all pairs [3]].
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reconstructing the invariant mass of di-photon or di-electron from 7y and Z decays respectively. Using
4.6 fb-1 of 2011 data, the Z boson decaying into a pair of electrons was used to determine the EM energy
scale and resolution [31]. Events with two opposite-sign reconstructed electrons with E7 > 25GeV,
In| < 2.47 (the transition region 1.37 < |n| < 1.52 excluded) and passing medium identification criteria
are selected. Over a million Z candidates are used within the di-electron mass window [80,100] GeV.
The method [17] constrains the observed di-electron invariant mass distribution to follow the Z lineshape
obtained from Monte Carlo where the resolution constant term was set to zero. The method has been
applied to 26 electromagnetic calorimeter pseudo-rapidity regions. The energy corrections applied to the
electrons are within 0.5% in the barrel region, and within 1% in the endcaps. The mass peak resolution
has been determined by fitting the distributions with a Breit-Wigner function convoluted with a Crystal
Ball function. A good agreement of the Z — ee reconstruction in the data and the MC after correcting
the electron energy is shown in Figure 2.14. The corrections of the electron energy scale and resolution
are required for any analysis using electron objects. More details on electron energy scale and resolution,

measured with Z boson decays in data, can be found in Chapter 3.

Hadronic calorimeters

The main goal of the hadronic calorimeters is to provide accurate energy measurements of jets and of
the missing transverse energy. They must therefore be sufficiently thick and have a large coverage in
|n| in order to contain the hadronic shower. The hadronic calorimeter system consists of a barrel Tile
Calorimeter (TileCal) and LAr hadronic end-cap and forward calorimeters for higher pseudorapidity
where the radiation is more intense. The hadronic end-caps (HECs) and the forward calorimeter system
(FCal) use the same LAr technology as the EM calorimeter and share the cryostat. The FCal extends
the pseudorapidity coverage up to 1| = 4.9. It consists of three layers: one for EM particle detection
using copper plates as the absorber and an additional two layers for hadronic particle detection using
tungsten plates as the absorber. The Tile Calorimeter, which is placed directly outside the EM and HEC
calorimeters, consists of one central barrel (|77]| < 1.0) and two extended barrels (0.8 < || < 1.7). The
TileCal is a sampling calorimeter with steel as the absorber and plastic scintillating tiles as the active
material. The tiles are placed in a periodic pattern, and every tile is connected via fiber optics to a

photomultiplier on each side. The granularity of the hadronic calorimeters are shown in Table 2.4.
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2.3.3 Muon spectrometer

The Muon Spectrometer (Figure 2.15) is a huge tracking system which defines the large dimensions of
the ATLAS detector. It identifies muons, the only known final state charged particles emerging from the
interaction point and traversing all other sub-dectectors. The Muon Spectrometer measures accurately
the momenta of muons using the magnetic deflection of muon tracks in a large superconducting air-
core toroid magnets, instrumented with separate trigger and high-precision tracking chambers. Over
the range |n| < 1.4, the magnetic bending is provided by the large barrel toroid. For 1.6 < |n| < 2.7,
the muon tracks are bent by two smaller end-cap magnets inserted into both ends of the barrel toroid.
Over the region 1.4 < |n| < 1.6, usually referred to as the transition region, magnetic deflection is
provided by a combination of barrel and end-cap fields. This magnet configuration provides a field
which is mostly orthogonal to the muon trajectories, while minimising the degradation of resolution due
to multiple scattering. In the barrel region, tracks are measured in chambers arranged in three cylindrical
layers around the beam axis; in the transition and end-cap regions, the chambers are installed in planes

perpendicular to the beam, also in three layers.

Thin-gap chambers (T&C)
| | Cathode strip chambers (CSC)

Barrel toroid

Resistive-plate
chambers (RPC)

End-cap toroid
Monitored drift tubes (MDT)

Figure 2.15: The muon spectrometer layout [15].
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2.3.4 The magnet system

The magnet system (Figure 2.16) is used to bend charged particles so that their momenta can be mea-
sured. It contains two parts: the inner solenoid and the outer toroidal. The inner solenoid produces a
2 Tesla magnetic field surrounding the Inner Detector. The outer toroidal magnetic field is produced
by eight very large air-core super-conducting barrel loops and two end-caps, all situated outside the
calorimeters and within the muon system. This magnetic field is 26 metres long and 20 metres in diam-

eter.

Figure 2.16: Geometry of magnet windings and tile calorimeter steel. The eight barrel toroid coils, with

the end-cap coils interleaved are visible. The solenoid winding lies inside the calorimeter volume [15].

2.3.5 Trigger system and data acquisition

An efficient trigger system is of fundamental importance for the LHC detectors due to two main reason:
first, each collision produces a huge background with almost particles of low energy, the physics (signals)
with higher energy need to be extracted; second, the hardware recording the data has intrinsic limitations
in bandwidth and is not able to store all the collision events.

In the ATLAS experiment, the trigger system filters the data recorded by selecting events of interest

from the different subdetectors. The trigger system has three distinct levels: L1, L2, and the event
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filter. Each trigger level refines the decisions made at the previous level and, where necessary, applies
additional selection criteria. The data acquisition system receives and buffers the event data from the
detector-specific readout electronics, at the L1 trigger accepted rate, over 1600 point-to-point readout
links. The first level uses a limited amount of the total detector information to make a decision in less
than 2.5 us, reducing the rate to about 75 kHz. The two higher levels access more detector information
for a final rate of up to 200 Hz with an event size of approximately 1.3 Mbyte [3]. An overview of the

Trigger-DAQ (TDAQ) system in ATLAS is shown in Figure 2.17, more details in [3, 15].
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Figure 2.17: Block diagram of the Trigger/DAQ system [3].

First level trigger

The Level 1 (L1) trigger makes the initial decision whether or not to pass on the data to the next trigger
level, for each of the individual collision events. The data that passes the L1 trigger is initially stored
in so-called pipeline memories. Because of the limited size of the memories together with the relatively
long time-of-flight until the muon spectrometers are reached, the decision has to be made in a very limited

time-scale 2.5 us. The L1 selection of events is therefore only based on reduced resolution information
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from the trigger systems in the muon spectrometer and the calorimeters. The L1 trigger searches for
objects like high transverse-momentum muons, electrons, photons, jets, and 7- leptons decaying into
hadrons, as well as large missing and total transverse energy. The location where one of these objects
is registered is then defined as a region of interest (Rol) for a potentially interesting event. The Rols
extend as a cone from the interaction point to the outer parts of the ATLAS detector. They include
information on the type of feature identified and the criteria passed such as a threshold. This information
is subsequently used by the high-level trigger.

In the case of electron analyses in 2011, a L1 electromagnetic trigger used a Er threshold of 30
GeV for e/y objects (electrons/photons). This trigger has a high rate so that the statistical uncertainty per

luminosity block is low.

Second level trigger

Events selected by L1 are read out from electronic systems at the front-end of the detector into readout
drivers (RODs) and further on into readout buffers (ROBs). The fragments of Read Out System (ROS),
including multiple ROBs, are then joined and the full event is built for a Level 2 (L2). The Level 2 trigger
scans the events from the ROBs, now reading the data with full-resolution using all subsystems within
the Rol. The aim of the L2 trigger is then to reduce the event rate from L1 by two orders of magnitude.
This can be obtained by applying restrictions on the information available within the Rols. The decision
time for this step of the trigger system is on average about 40 ms, which is a significantly longer time
scale than the one for the L1 trigger. The L2 trigger menus are designed to reduce the data rate to 3.5

kHz, which is made possible due to the buffering of events in a multiprocess system [3].

Event filter

The data accepted by the L2 trigger system is further passed on to the Event Builder (EB), which performs
a full reconstruction of the event and sends it to the final stage of the ATLAS trigger system, the Event
Filter (EF). The EF reduces the event rate to approximately 200 Hz with an event size of approximately
1.3 Mbyte [3]. The data passed by the EF is then to be used in the offline analysis. This level of the
trigger is commonly denoted as the high level trigger (HLT). The total rejection factor of the whole

ATLAS trigger system reaches a factor of about 5.10°.
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Event processing

The events recorded by the Event Filter need to be processed in order to reduce their memory size before
being used in an offline physics analysis. The data from the HLT is first stored as object based RAW
format, which undergoes event reconstruction by the offline software used in ATLAS known as Athena
[2]. A similar chain applies to the simulated data, where the events first pass through a GEANT4 [26]

simulation of the ATLAS detector before physics objects can be reconstructed.
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Chapter 3

The event reconstruction in the ATLAS

experiment

The analysis of this thesis uses electrons as final state particles, therefore this chapter reviews the ATLAS
electron reconstruction and identification algorithms and their performance. A study of the calibration
for the reconstruction of the Liquid Argon cell energy performed by the author will be described in
Section 3.1.2.

In the ATLAS detector, electrons first cross the ID producing tracks, then the EM calorimeter where
they deposit their energy. Therefore an electron is reconstructed requiring a track matched to an elec-
tromagnetic cluster. Sets of identification requirements need to be applied to select good electron can-
didates since jets can fake electrons. The multi-jet cross section is much higher (~ 10° times) than the
cross section of events with high transverse momentum electrons and a huge background from jets is
then expected. These identification cuts are optimized by comparing the gain in background rejection
and the loss in signal efficiency.

The electron selection efficiency, energy scale and energy resolution need to be taken into account in
the analysis. These quantities are measured with data driven methods and compared with MC predictions.
Corrections are derived and applied to the MC. The uncertainties on these corrections contribute to the
systematic uncertainties of the final measurement. The measurements of electron selection efficiency,
energy scale and resolution in the central region of the EM calorimeter corresponding to |n| < 2.47 are

briefly described in Section 3.5, 3.6.1, 3.6.2 [17].
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3.1 Energy reconstruction in Calorimeters

3.1.1 Cell energy reconstruction

After passing the ID, an electron emerging from the collision point meets the EM Calorimeters and
produces an electromagnetic shower. The ionisation of the liquid argon in the high-voltage potential
happens in the gap between two absorber plates and a triangular current pulse is produced (see Figure
3.1). In the Front End Boards, the raw signals are splitted in three overlapping linear gain scales in
order to match the detector capacitances and dynamic ranges of the calorimeter sections: 1 for low gain
(200 — 2000 GeV in physics), 9,9 for medium gain (20 — 200 GeV), 93 for high gain (0 — 20 GeV) in the
second layer of the barrel electromagnetic calorimeter. Each signal is then amplified, shaped, sampled,
stored on a capacitor and waiting for the trigger decision. For triggered events, a number of samples
Nsampie per channel is read out. The typical choice of five samples represents a compromise between the
noise reduction achieved using an optimal filtering coefficient method and the amount of data that must

be digitized and processed in real time.

@ -
o
o L
= 4P ATLAS
o L
<
0.8
0.6 -
0.4 |
0.2
0 -—o—c
e i R B, IRl b Wb, sl A
¢] 100 200 300 400 500 600
Time (ns)

Figure 3.1: Shapes of the LAr calorimeter current pulse in the detector and of the signal output from the

shaper chip. The dots indicate an ideal position of samples separated by 25 ns [273].

The ROD reconstructs the amplitude (A) of the signal pulse in ADC (Analog-to-Digital Converter)
counts, as well as the time offset of the deposition. Then the reconstructed pulse amplitude A is converted

to the deposited energy (£) in MeV using the formula below [23]:
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Nram, ps

1 .
E = FpA%MeV X FDAC%/J,A X oy X Z GjAJ. 3.1
Mg J=0,1)

The factor Fy s pmev relates the ionization current to the energy deposited in the calorimeter, the value
for each channel determined from test beam data using production calorimeter modules and a detailed
detector simulation has been validated using high-statistics samples of Z — ee decays in collisions.
The factor Fpsc—sua converts the Digital-to-Analog Converter (DAC) setting of the calibration board
to the injected current, and is determined from known parameters of the calibration boards and injection
resistors. The factor % quantifies the ratio of response to a calibration pulse and an ionization pulse
corresponding to the same input current. The factor G; is the electronic gain of the channel, which is
determined from electronic calibration runs. The sum over j starts from j = 0 in medium and low gain

only, while in high gain, j = 1 is the first term used. N,qps is the order of the polynomial function used in

the “ramp fits”. The ramp fits determining the electronic gains G; are explained in the following section.

3.1.2 Ramp fit study

To perform the electronic calibration, each cell of the LAr Electromagnetic Calorimeter is pulsed N
times (N = 100) with a set of given input currents. The signal produced by the calibration board is an
exponential pulse with a decay time chosen to match the physics signal triangular shape for the nominal
high voltage as shown in Figure 3.1. The amplitude of the signal is controlled by a 16 bit DAC, providing
a voltage between 0 and 1 V by a step of 15.26uV. It means the DAC value is chosen between 0 and
65535. The signal is passed through a pre-amplifier and a shaper, and is sampled by 12 bit ADC. The
ADC value is in the range ~ 0 — 4095 and has a pedestal of about 1000 ADC counts to accommodate the
undershoot of the shaper. This procedure is called “ramp runs”.

In normal operation each pulse (signal) is sampled Nygpies = 5 times by the electronic read out of the
calorimeter and each time the ADC value is read. One then computes the mean of these ADC values over
the N triggers for each sample. In this way one obtains an averaged calibration shape for each DAC value
and computes the peak of this average signal ADC)¢, using a weighted sum over the Nygpros Samples.
The ramps will be extracted from the curves expressing the ADC ). versus DAC by using a polynomial

function. This is the so called “ramp fits”:

DAC = Gy + G1ADCpeu, 3.2)
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where Gy and G are the ramp coefficients (electronic gains) which are indicated as G; in Formula 3.1.
Normally a linear function is used to do ramp fits and the electronic gains are determined as the slope
and the offset of the linear fit. An example of a ramp fit using a linear function for one channel is shown

in Figure 3.2.
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Figure 3.2: The ramp fit using a linear function for channel 65 in slot 11, feedthrough 0, side A of the
second layer of the barrel of the electromagnetic calorimeter (EMB). The blue points are the injected
DAC versus the output ADC (which is ADCpeq in Equation 3.2). The black line is the linear fit. The

slope and the offset of the fit are shown.

At the beginning of data taking in ~ 2009 — 2010, some errors occured during data recording where
one set of ADC values was lost (one of DAC values was not recorded). This has been then corrected but
at that time it led to the question of the stability of the ramp fit depending upon the number of points
used. The study presented here is to answer this question.

As a guideline to quantify the amplitude of the effect of lost DAC values on ramp fits, the calibration
system requires this effect is below ~ 0.1%. In order to study this effect, we redo the linear fit as
in Figure 3.2 each time without one of DAC values. The slope of the new fit is compared with the

original one with all DAC values. The variable Ag, = (G{*'-PAC — G{ ull-DACY G{””DAC

quantifies this
difference and is shown in Figure 3.3(a) for the same channel used in 3.2. The biggest effect is obtained
by the point at DACj, = 0 with Ag, ~ 0.07%. The same plot for all channels of side A of the barrel

of the electromagnetic calorimeter is shown in Figure 3.3(b). The effect is large for DAC;,;; = 0 and

DAC,5 = 500. The projected distributions of Ag, for these two DAC), values are shown in Figure 3.4.
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There are two peaks in these distributions: one with a small effect (|Ag,| < 0.1% in Figure 3.4(a) ,

|Ag,| < 0.05% in Figure 3.4(b)) and one with a larger effect.
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Figure 3.3: The variable Ag, as a function of the lost DAC value DACj,, (a) for one channel, (b) for all

channels of side A of the barrel electromagnetic calorimeter (EMBA) in high gain.
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Figure 3.4: The projected distributions of Ag, at DACj, = 0 (a) and at DACj,e = 500 (b).

We recall that all channels of the barrel electromagnetic calorimeter are grouped in slots as following:
the first layer corresponding to slots from 2 to 8; the second layer to slots from 11 to 14; the third layer
to slot 9 and slot 10. We found that the larger effect comes from channels in slots from 2 to 8 which
correspond to the first layer of EMB. The slot number of the channels with small and large effect at

DAC),s; = 0 is shown in Figure 3.5.
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Figure 3.5: The position named slot of the channels with smaller (a) and larger (b) effect for DAC;,s = 0.

We also found that for channels in slots from 2 to 8 only 6 of 16 injected DAC values are not saturated
and are used for ramp fits. That is the reason why the fit is more sensitive when the lost DAC value is the
first or the last points in DAC range. The number of DAC values used for ramp fits versus the channel

position is shown in Figure 3.6.
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Figure 3.6: The number of DAC values used for ramp fits DACIndex versus the channel position slot.
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The first conclusion of this study on EMB in high gain and medium gain is that the effect of the lost
DAC values is significant 0.2% when the lost value corresponds to the first or to the last point of the fits
especially if the fit is done for 6 (or less than 6) DAC values. This is the case for most channels of the
first layer of EMB. This study suggests to increase the number of DAC values for channels in this layer
to have more stable fits. This procedure is now applied by the electromagnetic calibration team.

The same study was done on EMB in low gain. The effect of the lost DAC values for channels in
three layers of EMB in low gain is shown in Figure 3.7. This effect is dominated when the lost DAC

value is the last one in the fit range and is at the level of 0.2% for the second layer, less than 0.15% for

the first and the third layers.
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Figure 3.7: The variable Ag, as a function of the lost DAC value (DAC,g) for all channels in the first

layer (a), the second layer (b), the third layer (c) of EMBA in low gain.
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Here we will discuss in detail the study for the effect on the second layer of EMB (EMB2) but the full
study was done for all three layers. We concentrate on the effect of the last DAC value. The projected
distribution of Ag, for the last DAC value is shown in Figure 3.8. This distribution shows that there are
two groups of channels: one with a small effect (slot 11, 12) and another with a large effect (slot 13,
14). These two groups of channels correspond to two different electrodes of EMB2. The position of
these channels and the two electrodes of EMB2 are shown in Figure 3.9. This is probably due to that

the saturation at the level of the preamplifier and shaper occurs for the last DAC value in the region with

In| > 0.8.
"21200 slot 11
W 1000 —slot12
— slot 13
800 — slot 14 l

600
400
200

-Q).G 0.5 -04 -03 -02 -01 O
e, [%]

Figure 3.8: The projected distributions of Ag, for the last DAC value for channels in different slots of

EMB?2 in low gain.

The larger spread in the last DAC value suggested also to check for these channels the quality of
the linear fit used. Figure 3.10 shows the residual of the fits for all channels in different slots of EMB2,
Residual = (ADC —ADCfj) /ADCax, where ADC is the ADC value recorded, ADCyi; = (DAC — Gy) /Gy
is the ADC value estimated from the fit and ADC,,,,, is the ADC value corresponding to the maximum
DAC value (65535 in low gain) [33]. A non-linearity of the linear fit for high DAC values in low gain
was observed. The largest deviation happens for the last DAC value of channels in slot 13 and slot 14.

The observed non-linearity suggested to check whether there was an effect coming from the calibra-
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Figure 3.9: The position of channels with smaller effect (a), larger effect (b). The subfigure (c) shows the

electrode design [15].
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Figure 3.10: The residual of the fits as a function of the DAC values for all channels in different slots of
EMB2, slot 11 (a), slot 12 (b), slot 13 (c), slot 14 (d).
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tion board in low gain for high DAC values. Special data with high DAC values was taken and no effect
was observed. The conclusion is that the non-linearity comes from the linear fit itself. Using a parabolic
function, the residual is improved from ~ 0.2% to ~ 0.1%. The comparison between the residual of a
linear fit and the one of a parabolic fit is shown in Figure 3.11 for all channels in slot 14. Moreover the
parabolic fit is more stable than the linear fit. The effect of the lost DAC value is smaller than 0.1% when

using a parabolic function while it was larger than 0.2% when using a linear function.
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Figure 3.11: The residual of the fits as a function of the DAC values in red for the linear fit and in black

for the parabolic fit.

Comparing the gain from the improvement at per mil level using a parabolic function with the con-

venience of a linear fit, a linear function is still chosen for the ramp fits in the EMB calibration.

3.1.3 Cluster energy reconstruction

The energies deposited in the cells of each individual layer of a cluster are summed. The cluster energy is
then determined to include four different contributions: (1) the estimated energy deposited in the material
in front of the EM calorimeter, (2) the measured energy deposited in the cluster, (3) the estimated energy
deposited outside the cluster (lateral leakage), and (4) the estimated energy deposited beyond the EM

calorimeter (longitudinal leakage). The four terms are parametrised as a function of the measured cluster
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energies in the presampler detector Eps (where it is present) and in the three EM calorimeter longitudinal
layers Eg ips, Emiddies Epack based on a detailed simulation of the energy deposition in both active and
inactive material [15]. A schematic view of an electromagnetic shower developing in the ATLAS LAr

EMB is shown in Figure 3.12.
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Figure 3.12: Schematic view of an electromagnetic shower developing in the ATLAS LAr EMB [30].

3.2 Track reconstruction in the Inner Detector

As mention in the introduction of this chapter, an electron is reconstructed as a track matched to a cluster
in the EM calorimeter. The electron track reconstruction will be reviewed in this section.

The track reconstruction in the Inner Detector is the combination of signals from the Pixels, SCT and
TRT using optimised tracking filter and fitting models as described in [15]. Vertices are then recontructed
at the final step. Figure 3.13 shows an example of multiple vertex reconstruction in a Higgs candidate
event with four final state electrons at 8 TeV proton-proton collisions.

The reconstruction of an electron track is more challenging than the reconstruction of other charged
particles, since in addition to ionisation energy loss and multiple Coulomb scattering, electrons suffer
from larger energy losses due to bremsstrahlung. Bremsstrahlung can occur when the electrons traverse
the Inner Detector. Although most of the limited radiation will be collected by the electromagnetic

calorimeter, the track direction can be seriously affected, resulting in a poorly reconstructed momentum
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Figure 3.13: Multiple vertex reconstruction in Higgs candiate event with four final state electrons at 8

TeV proton-proton collisions in data [12].

or even in a failure to reconstruct the track altogether. There are three available algorithms in the ATLAS
track reconstruction to fit electron tracks in such a way as to account for bremsstrahlung: the dynamic
noise adjustment (DNA), the Gaussian-sum filter (GSF) and CaloBrem [92].

The DNA method extrapolates track segments to the next silicon detector layer. If there is a sig-
nificant 2 contribution, compatible with a hard bremsstrahlung, the energy loss is estimated and an
additional noise term is included in the Kalman filter otherwise the standard Kalman filter is used.

The Gaussian-sum filter (GSF) is a non-linear generalisation of the Kalman filter, which takes into
account non-Gaussian noise by modelling it as a weighted sum of Gaussian components and therefore
acts as a weighted sum of Kalman filters operating in parallel. At each layer the track parameters are
convoluted with a probability density function describing the material effects (see Figure 3.14).

The CaloBrem algorithm serves to reduce the bias of the track fits caused by the increased track
curvature. In order to have a stable fit, the position of the cluster is included in the fit if all energy of
the original electron is located in the cluster and the track model is modified to include a single loss of

energy at a certain radius (see Figure 3.15).
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Figure 3.15: Tracking in the CaloBrem algorithm [92]
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The analysis of this thesis is the ¢, measurement which is based entirely on the measured track
directions of electrons. Therefore the bremsstrahlung recovery algorithms are important to improve the
precision of this measurement. GSF electrons will be used for this analysis. By allowing for changes in
the curvature of the track, the bremsstrahlung recovery algorithms follow the tracks better and correctly
associate hits in the track, leading to improvements in the reconstruction efficiencies. The GSF algorithm
has 2-3% greater efficiency than the default reconstruction algorithm [92]. The impovement on the

measured track direction of electrons using the GSF algorithm is shown in Figure 3.16.
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Figure 3.16: The distribution of the resolution of the track direction ¢ at the perigee (a) and of the
relative bias on the track inverse momentum multiplied by the charge q/p (b), for both GSF (open red)
and standard (solid black) truth-matched Monte-Carlo electrons from Z-boson decays. The bottom plots

show the ratio of the entries of the GSF and standard electrons per bin [7].

3.3 Electron reconstruction

There are two algorithms for electron reconstruction in the ATLAS experiment. The standard one is
used for the electron reconstruction in this analysis and will be explained in detail in this section. It is

seeded from the electromagnetic (EM) calorimeters, starts from clusters reconstructed in the calorimeters
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and then builds the identification variables based on information from the Inner Detector and the EM
calorimeters. A second algorithm is used for the soft electron reconstruction. It is seeded from the Inner
Detector tracks and is optimized for electrons with energies as low as a few GeV. It selects good-quality
tracks matching a relatively isolated deposition of energy in the EM calorimeters. The identification
variables are then calculated in the same way as for the standard algorithm.

In the standard electron reconstruction, seed clusters of longitudinal towers with a total transverse
energy above 2.5 GeV are searched for by a sliding-window algorithm. The window size is 3 X 5 in units
of 0.025 x 0.025 in N x ¢ space. In the tracking volume of || < 2.5, reconstructed tracks extrapolated
from their last measurement point to the middle layer of the calorimeter are matched to the seed clusters.
The distance between the track impact point and the cluster position is required to satisfy An < 0.05.
An electron is reconstructed if at least one track is matched to the seed cluster. In the case where several
tracks are matched to the same cluster, tracks with silicon hits are preferred, and the one with the smallest
distance to the seed cluster AR = \/m is chosen.

The electron cluster is then rebuilt using 3 x 7 (5 x 5) longitudinal towers of cells in the barrel
(endcaps). The four-momentum of central electrons is computed using information from both the final
cluster and the best track matched to the original seed cluster. The energy is given by the cluster energy.

The ¢ and 1 directions are taken from the corresponding track parameters at the vertex.

3.4 Electron identification

The electron identification in the central region with || < 2.47 relies on a cut-based selection using
calorimeter and tracking variables that provide good separation between isolated or non-isolated sig-
nal electrons, background electrons and jets faking electrons. Three reference sets of cuts have been
defined with increasing background rejection power. They are loose, medium and tight electron selec-
tions and have an expected jet rejection of about 500, 5000 and 50000, respectively, according to MC
simulation [14].

The loose electron selection performs a simple identification based only on limited information from
the calorimeters. Cuts are applied on the hadronic leakage and on shower-shape variables, derived only
from the middle layer of the EM calorimeter. This set of cuts provides excellent identification efficiency,
but low background rejection.

The medium electron selection adds cuts on variables computed using the EM calorimeter strip layer,
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track quality requirements and track-cluster matching.

The tight electron selection tightens the track-matching criteria and the cut on the energy-to-momentum
ratio, adds particle identification using the TRT, and discrimination against photon conversions via a b-
layer hit requirement and information about reconstructed conversion vertices.

All variables used in the loose, medium and tight selections are listed in Table 3.1. The cuts are
optimised in 10 bins of cluster 1 and 11 bins of cluster E7 from 5 GeV to above 80 GeV. In this analysis
which uses all data selected in 2011, the electron identification selection is named “medium++". It is
based on the standard medium selection. The “medium++" menu was created to provide a low energy
and high efficiency electron sample which met the trigger bandwith restrictions for high luminosity. It

offers efficiencies a around ~85% for Z electrons with a small dependence on the number of interactions.

3.5 Efficiency measurement

A measured electron spectrum needs to be corrected for the efficiencies of the electron selection in order
to derive cross sections of observed physics processes.

The correction factor for efficiency effects on the measured spectrum is obtained using MC simula-
tion. However, the electron selection efficiencies simulated in MC do not agree perfectly with the ones
measured in data using data driven methods. Therefore, small corrections need to be applied on MC in
the form of scale factors as explained in the following. The efficiency correction can be expressed as a

function of efficiency terms. For the case of a Z — ee process the correction factor has the form below:

CZ = gevent-greco-(ng)z~[1 - (1 - gtrig)Z]y (33)

where &,,.,; denotes the efficiency of event preselection cuts, such as primary vertex requirements and
event cleaning. &, accounts for the reconstruction efficiency to find an electromagnetic cluster and to
match it loosely to a reconstructed charged particle track in the fiducial region of the detector and also
for any kinematic and geometrical cuts on the reconstructed object itself. & denotes the efficiency of
the identification cuts relative to reconstructed electron objects. & stands for the the trigger efficiency
with respect to all reconstructed and identified electron candidates.

The tag and probe technique is chosen for the electron selection efficiency measurement in the AT-
LAS reconstruction. Then the MC predicted values of the above efficiencies in bins (of E7 and 1) are

corrected by the measured ratios of the data to MC efficiencies, called scale factor corrections.
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Type Description Name
Loose selection
Acceptance In| <2.47
Hadronic leakage | Ratio of E7 in the first layer of the hadronic calorimeter to E7 of Ryaat
the EM cluster (used over the range || < 0.8 and |n| > 1.37)
Ratio of Er in the hadronic calorimeter to E7 of Riaa
the EM cluster (used over the range |n| > 0.8 and |n| < 1.37)
Middle layer of Ratio of the energy in 3 x 7 cells over the energy in 7 x 7 cells Ry
EM calorimeter centred at the electron cluster position
Lateral width of the shower Wn2
Medium selection (includes loose)
Strip layer of Total shower width WOyt or
EM calorimeter Ratio of the energy difference between the largest and second largest E,uio
energy deposits in the cluster over the sum of these energies
Track quality Number of hits in the pixel detector (> 1) Npixel
Number of total hits in the pixel and SCT detectors (> 7) ns;
Transverse impact parameter (|do| < 5mm) do
Track - cluster An between the cluster position in the strip layer and An
matching the extrapolated track (JAn| < 0.01)
Tight selection (includes medium)
Track - cluster A¢ between the cluster position in the middle layer and A¢
matching the extrapolated track (JA¢| < 0.02)
Ratio of the cluster energy to the track momentum E/p
Tighter An requirement (JAn| < 0.005) An
Track quality Tighter transverse impact parameter requirement (|dy| < 1mm) do
TRT Total number of hits in the TRT NTRT
Ratio of the number of high-threshold hits to fur
the total number of hits in the TRT
Conversions Number of hits in the b-layer (> 1) ngr.

Veto electron candidates matched to reconstructed photon conversions

Table 3.1: Definition of variables used for loose, medium and tight electron identification cuts for the

central region of the detector with |n| < 2.47 [17].
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The tag and probe method aims to select a clean and unbiased sample of electrons, called probe
electrons, using tightened selection cuts, called tag requirements, primarily on other objects in the event.
In the Z — ee process, a well-identified electron is used as the tag. The efficiency of any selection cut
can then be measured by applying it to the sample of probe electrons:

N probes_passing _cut

Eoy = —LLODCSPASSIg Ul (3.4
ot Nprobes

This section is used to review the measurements of the electron trigger, reconstruction and identifi-
cation efficiencies which were done first in 2010 [36] and the update information for 2011 analysis is

included.

3.5.1 Electron trigger efficiency

The analysis in this thesis uses single electron triggers called e20_medium, e22_medium and e22vh_medi-
uml depending on the instantaneous luminosity delivered by the LHC as listed in Table 3.2. The EF
thresholds for these triggers are 20 GeV to 22 GeV. The letters “vh” were added to the names for the
triggers seeded by L1 items with 1-dependent thresholds and a hadronic leakage requirement. The
“medium1” selection is the re-optimised electron identification criteria of the “medium” selection when

2

luminosities > 3 x 1033cm~2s~! in order to avoid raising the EF threshold further [11].

Trigger selection Luminosity range (cm2s~!)

e20_medium up to 2 x 103
€22 _medium 2-23x10%
e22vh_medium1 from 2.3 x 1033

Table 3.2: Single electron triggers and corresponding luminosity ranges [11].

The efficiencies of these trigger selections were measured using the tag and probe method with
respect to electrons in Z — ee events reconstructed and identified by the offline reconstruction program,
details of this measurement can be found in [11].

Figure 3.17 shows the efficiencies of the e20_medium, e22_medium and e22vh_medium]1 triggers

measured in data relative to medium++ offline electrons. The efficiency of e20_medium is computed
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Figure 3.17: Efficiencies as functions of the offline medium++ electron 1 (a) and pr (b) for the
e20_medium, e22_medium and e22vh_mediuml triggers. The vertical bars represent statistical and total

systematic uncertainties [11].

relative to offline electrons with pr > 21 GeV and the efficiencies e22_medium and e22vh_medium]1 are
computed relative to offline electrons with py > 23 GeV.

Efficiencies measured on data are compared to efficiencies obtained from MC simulations of Z — ee
events and data/MC ratios (scale factors) are derived. These scale factors are used in physics analyses to
correct the MC to describe the data efficiency. The efficiencies and scale factors are summarised in [11].

These scale factors are applied to the MC samples used in my analysis.

3.5.2 Electron reconstruction efficiency

The electron reconstruction efficiencies are studied with respect to sliding-window clusters in the EM
calorimeter using Z — ee decays and the tag and probe method. The combined electron track recon-
struction and track cluster matching efficiency is measured. Details of this measurement can be found
in [36]. The electron reconstruction efficiency as a function of 1 and as a function E7 cjyser 1S shown
in Figure 3.18. Scale factor corrections are extracted from the ratio between electron identification effi-
ciencies in data and in MC (€pgq/€mc)- These scale factors are applied to the MC samples used in my

analysis.
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Figure 3.18: The reconstruction efficiency (including the requirements on the track quality) is shown as
a function of the pseudorapidity M for electrons with transverse energy between 30 and 50 GeV (a), as
a function of the electron transverse energy (b), for data (filled markers) and MC (open markers) from
2011 (red up triangles) and 2012 (blue down triangles). The total (statistical and systematic) uncertainty

is displayed [S]].

3.5.3 Electron identification efficiency

The tag and probe method is used to measure the electron identification efficiency. Details of this mea-
surement can be found in [36]. The tag electron was required to have E; > 20 GeV, to match the
corresponding trigger object, and to pass the “tight++” (based on “tight” selection in Table 3.1) electron
identification requirements. The probe electron was required to have E7 > 15 GeV and to be of opposite
charge to the tag electron. All tag-probe pairs passing the cuts were considered. The same procedure is
applied to the MC simulation, with in addition a reweighting of the MC to reproduce the pile-up observed
in data as well as the proper mixture of the various triggers.

Background substraction is needed to have the final efficiency results. There are multiple methods
used for this measurement. The reconstructed di-electron mass is a commonly used variable to estimate

the signal and background contributions in the selected sample of electron probes from Z — ee decays,

M = \/2E|E;(1 —cos 6),), (3.5)

where E| and E; are the energies of the two electrons measured by the calorimeter and 6, is the angle in
space between the electrons measured by the tracker. The signal region is chosen typically 80 < M,, <

100 GeV. The efficiencies of the “medium++" electron identification cut as a function of the number of
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reconstructed vertices is shown in Figure 3.19. The dominant systematic uncertainties on the efficiency
measurements come from the background estimation. Other sources of uncertainty were also checked

but lead to negligible contributions.
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Figure 3.19: Efficiencies are shown for different number of reconstructed primary vertices, going from 1

to 10 in bins of unit size and then wider bins 11-12, 13-14 and 15-20 [55].

The scale factor corrections are extracted from the ratio between electron identification efficiencies

in data and in MC (€paa/€mc)- These scale factors are applied to the MC samples used in my analysis.

3.6 Energy scale and energy resolution measurement

3.6.1 Energy scale

Details of this measurement can be found in [17]. The electromagnetic calorimeter energy scale was
derived from test-beam measurements with a total uncertainty of 3% in the region covering || < 2.47,
and 5% in the region covering 2.5 < |n| < 4.9 [28-30]. The knowledge of the electron energy scale
was refined using samples of Z — ee, J/y — ee and W — eV events from collision data. This section
presents a short description of the measurement of the electron energy scale using Z — ee samples.

The event selection is similar to the one used in the analysis of this thesis which is described later in

Section 4.2. The measured energy E™* is expressed as a function of the true energy, E":

Emeas — Etrue<1 + ai)y (36)
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and ¢; is a factor which takes into account possible miscalibration for a given region i. The o energy
scale correction factors are determined by a fit minimizing the negative unbinned log-likelihood ( [27])
using the Z lineshape obtained from PYTHIA MC simulation.

This procedure was applied to the 2011 (2010) dataset in 26 (58) 1 bins over the full calorimeter
coverage of || < 4.9 and is considered as the baseline calibration method. The resulting & values in 2010
are shown in Figures 3.20. They are within 2% in 2010 measurement and 0.5% in 2011 measurement
([31]) in the barrel region. The rapid variations with 1 occur at the transitions between the different EM
calorimeter systems. The variations within a given calorimeter system are due to several effects related
to electronic calibration, high-voltage corrections (in particular in the Endcaps), additional material in
front of the calorimeter, differences in the calorimeter and presampler energy scales, and differences in

lateral leakage between data and MC.
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Figure 3.20: The energy scale correction factor & as a function of the pseudorapidity of the electron
cluster derived from fits (left) to Z — ee data and (right) to J/W — ee data. The uncertainties of the
Z — ee measurement are statistical only. The J/y — ee measurement was made after the Z — ee
calibration had been applied. Its results are given with statistical (inner error bars) and total (outer error
bars) uncertainties. The boundaries of the different detector parts defined in Section 2 are indicated by

dotted lines [17].

The overall systematic uncertainties on the electron energy scale as function of Er are shown in
Figures 3.21 in two 7 regions using data in 2010. For central electrons with || < 2.47, the uncertainty

varies from 0.3% to 1.6%. The systematic uncertainties are smallest for E;y = 40 GeV (corresponding to
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the average electron E7 in the Z — ee sample), below 0.4%. Below E7 = 20 GeV, the uncertainty grows
linearly with decreasing E7. For forward electrons with 2.5 < || < 4.9, the uncertainties are larger and
vary between 2% and 3%. For data in 2011, there are several differences such as Calorimeter operating
conditions, pileup, signal and background ratio but their contributions are small and the total systematic

uncertainty is only slightly different in comparison with 2010.
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Figure 3.21: Total systematic uncertainty on the electron energy scale (a) for the region |n| < 0.6 and

(b)for 1.52 < |n| < 1.8 [17].

3.6.2 Energy resolution

Details of this measurement can be found in [17]. The electron energy resolution function is described

by the formula:
OF a @ b @
B Nz
E VE E 7

where a is the sampling term, b is the noise term which has a significant contribution only at low energy,

3.7

and c is the constant term. The energy resolution and the corresponding parameters can be extracted by
measuring the mass resolution for well known resonances like Z and J/y in data. The constant term is

determined as formula below:

R (CO CORE 68

where cyc is the constant term of about 0.5% in the MC simulation. The parameter c;,,, is an effective

constant term which includes both the calorimeter constant term and the effect of additional material, m

denotes the Z mass, and ¢ is the Gaussian component of the experimental resolution.
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The resolution parameters extraction is based on fits to the invariant mass distributions of Z — ee
decays using Breit-Wigner (BW) convoluted with a Crystal-Ball in the mass range 80-100 GeV for
central events and in the mass range 75-105 GeV for forward events. The BW width is fixed to the Z
width PDG value (2.49 GeV), and the resolution is the sigma of the Crystal Ball function. The invariant
mass distributions for Z candidates and corresponding mass peak resolutions are shown in Figures 3.22.
The effective constant term and its systematic uncertainties measured with 2011 data are close to the
2010 estimation [27].
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Figure 3.22: Calibrated Z — ee invariant mass: (a) all pairs with |n| < 1.37, (b) all pairs with 1.52 <

In| <247 [31].

3.7 Summary

The general reconstruction of electrons in the ATLAS experiment was introduced. The energy recon-
struction in the LAr Calorimeters was presented in detail. The ramp coefficients extracted from ramp fits
are used to compute the cell energy. The study on the stability of ramp fits showed that the number of
injected signal points (DAC) should be increased for the first layer of EMB to have more stable fits. The
non-linearity of ramp fits in low gain was found at the level of 0.5%. The conclusion from this study is
that the non-linearity comes from the fit itself which uses a linear function. The non-linearity is impoved
from 0.5% to 0.2% by using a parabolic function. The stability of ramp fits is improved from 0.2% to
0.1%.

The results of electron efficiency measurements were introduced. The good agreement between data
and MC was observed, only small scale factors were extracted to be applied on MC in order to describe

better data. The systematic uncertainties on our measurements due to this correction are very small, at
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the level of per mil, and will be studied in Chapter 5 and Chapter 6.

The results of electron energy scale and energy resolution measurements were summarised. The
knowledge of the electron energy scale and resolution has been improved from test-beam measurements
to the measurements using data collected in 2010 and 2011. The systematic uncertainties on the p%

measurements due to the energy scale and resolution corrections applied will be studied in Chapter 5.
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Chapter 4

The event reconstruction of the Z boson
decaying into a pair of electron and

positron

This chapter describes the selection of events with a Z boson decaying into a pair of electron and positron
(Z — ee) using the 2011 dataset recorded by the ATLAS detector in proton-proton collisions at the LHC
at /s =7 TeV. An example of Z — ee candidates in 7 TeV collision data is shown in Figure 4.1. The
selected candidates will be used for the differential cross section measurements of p% and ¢, described
in the next two chapters. The work from this chapter is reported partially in Ref. [69]. This chapter
is organized in several sections: Section 4.1 presents the data and the MC samples used and the global
corrections applied on MC samples to match the data. Section 4.2 presents the criteria to select Z — ee
candidates. Section 4.3 presents all corrections which are applied on data or MC in order to account
for remaining mis-calibrations of the electron energy in the data or mis-modeling of the data by the
MC. Section 4.4 presents the background estimation using MC predictions for the electroweak (EW)
background and data driven methods for the QCD multi-jet background. The final section 4.5 presents
selection results and control distributions for kinematic variables of electrons and Z boson candidates.
This analysis uses a data skimming and a data selection framework developed by J.B. Sauvan (Universite

de Paris-Sud 11) and J.E. Sauvan (Laboratoire d’ Annecy-le-Vieux de Physique des Particules).
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Figure 4.1: First candidate for an event with a Z boson decaying into a pair of electron and positron

seen in T TeV collision data in 2010 [12].

4.1 Data and Monte Carlo samples

The total integrated luminosity of 2011 ATLAS data recorded is 5.25 fb~! as shown in Figure 2.3 but the
sample used for this analysis is about 4.7 fb~!. This section explains the choice of the dataset for this
analysis, the signal MC samples used to correct for efficiency and acceptance effects on the differential
cross section measurements, the background MC samples used to estimate the EW background and the

global corrections applied on the MC samples.

4.1.1 Data quality requirement and integrated luminosity

The choice of the dataset was determined as a compromise between maximizing the available luminosity
while maintaining stable trigger and reconstruction conditions throughout the sample. All selected events
must pass certain requirements for the proper functioning of the detector, as described by a Good Runs
List (GRL). It requires stable beam conditions at /s = 7 TeV as well as good working conditions for
all parts of the detector and trigger used including solenoid, toroid, calorimeters, inner detector, L1

trigger hardware, and luminosity monitors. This sample corresponds to 4.7 fb~! with an uncertainty of
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3.4% [10] as measured using van der Meer scans.

4.1.2 Monte Carlo samples

Simulated ATLAS Monte Carlo samples are used to calculate acceptances and to model the properties
of our signal and backgrounds. The main signal event samples for Z production are generated using
POWHEG event generator where parton showers are provided by PYTHIA. For the POWHEG calculations
the CT10 NLO PDF set is used. In addition we use LO PYTHIA generator for signal as further cross check
where MRST LO* PDFs have been used. All generators are interfaced to PHOTOS to simulate the effect
of final state QED radiation. The passage of particles through the ATLAS detector is modelled using
GEANT4. The effect of multiple interactions per bunch crossing (“pileup”) is modelled by overlaying
simulated minimum bias events over the original hard-scattering event. Tables 4.1 summarises the MC
datasets. For the electroweak processes, i.e. W — ¢v, Z — 0l({ = e, 1, T), the samples are normalized
to the NNLO cross sections as provided by FEWZ program [75,91] with MSTW 2008 NNLO PDFs.
The uncertainties on these cross sections arise from the choice of PDFs (3%), from factorization and
renormalization scale dependence (4%). The total is about 5%, which we take as an uncertainty on
any event count predictions normalized using these cross sections. The #f cross section, calculated at
my = 172.5 GeV is 161 pb, taken from [87]. The uncertainty is 6% plus the PDF uncertainty quoted
above. The inclusive diboson samples are normalized to their respective NLO cross sections with 7%

uncertainty [57].

4.1.3 Global corrections for Monte Carlo samples
4.1.3.1 Pileup reweighting

The variations in pile-up conditions in 2011 are addressed by dividing the MC into four subsets with
different conditions in order to match the observed distribution on data. Residual differences in the
pileup between data and Monte Carlo simulation have been corrected by reweighting the Monte Carlo
events to reproduce the average number of interactions per bunch-crossing, < i >, observed in data. The
< p > distribution and the distribution of the number of primary vertices in data and MC after the pileup

reweighting are shown in Figure 4.2.
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Generator Dataset ID  Process Z(fb~!) o xBR(nb) note

Signal
PYTHIA 106046 Z—ee 10.1 0.99+£0.05 NNLO (wide zvtx)
POWHEG+PYTHIA 108303 Z—ee 50 1.024+0.05 NNLO (wide zvtx)
POWHEG+PYTHIA 108303 Z—ee 200 1.02£0.05 NNLO (narrow zvtx)
Backgrounds
PYTHIA 106043 W —ev 4.0 10.46+0.52 NNLO
PYTHIA 106052 Z—1t 1.0 0.994+0.05 NNLO
Mc@NLO 105200 tt 12.9 0.16+0.01 NLO
HERWIG 105985 wWwW 142.6 449 %1073 NLO
HERWIG 105986 77 198.3 6.0x1073  NLO
HERWIG 105987 WZ 174.9 18.5x1073 NLO

Table 4.1: MC samples used in this analysis.
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Figure 4.2: Distributions of < L > (a) and of the number of primary vertices (b) after the application
of the Extended Pileup reweighting tool. Data (black dots) are compared to the Z — ee POWHEG MC

simulation (hatched histograms) [69].
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4.1.3.2 Z boson p; and mass width reweighting

The measured p# distribution (Chapter 5) and the measured ¢, distribution (Chapter 6) have to be un-
folded due to the effect of detector resolution. The Z — ee POWHEG+PYTHIA MC sample will be
employed for the unfolding procedure. It has been found that the description of the p% spectrum pro-
vided by the Z — ee POWHEG+PYTHIA MC is not good especially in the low p% region. Therefore, a
reweighting needs to be applied on the pZ spectrum in this MC sample to better describe data before it is
employed. More details of this work for the p% measurement and the ¢, measurement will be discussed
in Section 5.5.4 and Section 6.1.2.

It has been also found that the lineshape of the Z resonance simulated in the Z — ee POWHEG+PYTHIA
MC is different with respect to the one generated in the RESBOS program. The ratio of the generated
M distributions from PYTHIA or POWHEG+PYTHIA to RESBOS prediction are shown in Figure 4.3. We
decided to reweight the shape of the Z resonance of POWHEG+PYTHIA to the RESBOS prediction. The

maximum correction of 2% at the Z peak has no visible effect on the predicted p% and ¢, spectra.
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Figure 4.3: Ratio of the generated My distributions from PYTHIA or POWHEG+PYTHIA fo RESBOS [69].

4.1.3.3 Reweighting of the z-vertex shape

The distribution of the z coordinate of the primary vertex has a quite large difference between data and
some MC simulations used in the analysis. For those MC events we reweighted the z vertex shape to
match data. The z vertex shape in MC simulation before and after reweighting is shown in Fig. 4.4 and

compared to the shape observed in data.
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Figure 4.4: Distributions of the z position of the reconstructed primary vertex for Z — ee candidates.
Data (black dots) are compared to the Z — ee POWHEG MC simulation (hatched histograms), before (a)

and after (b) applying the reweighting procedure [09].

4.2 Event selection

The selection criteria of Z — ee events are listed in Table 4.2. Events are selected using single electron
triggers. Different triggers are required depending on the data period as detailed in Table 4.3.

The four-momentum of electrons is computed using information from both the cluster and the track
matched to the cluster. The energy is given by the cluster energy. The ¢ and 1 directions are taken from
the corresponding track parameters at the vertex. Gaussian-sum filter (GSF - see Section 3.2) electrons
are used for this analysis. This allows to take into account the effect of bremsstrahlung in the electron
reconstruction. The full analysis chain is run in parallel using either standard or GSF electrons in order
to compare the two reconstructions. The ratio of selected events using both electron reconstructions
are presented in Figure 4.5, for kinematic variables of the reconstructed Z boson. We observe that the
difference in efficiency of the two electron reconstructions is of the order of 0.2 % and is reproduced by
the MC. The transverse momentum of the leading electron is required to be larger than 25 GeV in order
to avoid the effect from the trigger threshold cuts (20 or 22 GeV). Electrons reconstructed in the LAr

transition region are excluded based on the 1) variable reconstructed from the electron cluster (1).;).

93



Collision event selection

GRL: stable colliding beams [0]

At least 1 good vertex with Ngacks > 3

Trigger requirement (period dependent, see Table 4.3)

Good-electron selection

Phase space

Electron ID

LAr transition removal

pslt > 25 GeV and p¢? > 20 GeV

|ntrk| <24

Medium++

GSF Electron author 1 or 3

1.37 < [Nl < 1.52

Z — ee event selection

Charge

Invariant mass

2 highest pr electrons

Opposite sign

66 GeV < M,, < 116 GeV

Table 4.2: Event selection for the Z — ee channel.

Trigger Data period | Integrated luminosity [fb~!]
EF_e20_medium D-J 1.68
EF_e22_medium K 0.59

EF_e22vh_medium1 L-M 2.43

Table 4.3: Trigger used in the different data taking periods.
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4.3 Analysis level corrections

Various corrections are applied to correct for remaining mis-calibrations in data or mis-modeling of the
data by the MC. Reweighting corrections applied to the MC samples are detailed in Section 4.1.3. The
Z — ee reconstruction has to take into account all corrections for electrons including trigger efficiency
correction, reconstruction and identification efficiency correction, energy scale and resolution corrections
(see Sections 3.5, 3.6.1 and 3.6.2). While the energy scale correction is applied on data, all other

corrections are applied on MC. Details of these corrections can be found in [69].

4.4 Background estimation

Backgrounds for the Z — ee selection can be divided in two categories: electroweak background and

QCD multi-jet background (QCD background).

4.4.1 Electroweak background

Electroweak (EW) background contains real high transverse momentum electrons from electroweak bo-
son decays. Significant contributions are W — £v and Z — t7 processes, as well as ¢7 pairs where W
bosons decay into electron-neutrino pairs. In addition the di-bosons decays WW, WZ, ZZ are considered.
The contribution of these background processes to the final selection is estimated from MC samples (see

Table 4.1).

4.4.2 QCD background

QCD background arises mostly from mis-identification of jets as isolated electrons. The cross sections
are huge and suffer significant uncertainties therefore the estimation of this background requires to use

data-driven methods.

4.4.2.1 Template fit method

The idea is to select a sample of data events which models the QCD background so that its shape can
be extracted for any observable considered in this analysis. The QCD sample is then rescaled to the
size of the QCD background in the standard Z — ee selection and is used to model the distributions

of the real QCD background for all observables of interest. In this analysis the observables of interest
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are p% and ¢,. This method assumes that the shape of the observable in the QCD template sample
reproduces the shape of the one in the standard selection. The validity of this assumption will be tested
by comparing QCD samples selected in different ways. The normalization factor (and equivalently the
fraction of QCD background events in the standard selection) is estimated using a maximum likelihood
fit to the di-electron mass distribution in the inclusive standard selection with two template distributions:
the invariant mass distribution taken from MC predictions for Z — ee signal plus EW backgrounds and
the invariant mass distribution obtained from the QCD template sample. Since the signal MC does not
describe perfectly the mass distribution in the peak region and the contribution of QCD background is
very small, the range of the fit is extended with respect to the nominal mass range. The signal MC in
POWHEG or PYTHIA is merged with the Drell-Yan (DY) low mass sample to improve the stability of the
fit. The mass distributions of this sample at the generated level and at reconstructed level are shown in
Figure 4.6.

In order to select a QCD template sample, the standard event selection is modified to enhance the
QCD background. There are two QCD samples selected for the template fit. One is used to perform the
nominal fit and to study the global systematic uncertainties in the mass fit range, the other one is used to

study the systematic uncertainty of the QCD background estimation as a function of p% or Op-

e Loosened ID template. The trigger requirement is relaxed to the lowest un-prescaled di-photon
loose trigger EF_2g20_loose. Only electrons passing the loose ID cut and failing the medium one
are considered. At least two of these electrons passing other standard cuts (except charge and
invariant mass cuts) will contribute to the QCD sample. A small contamination of signal events
and events from EW processes is still present in this sample. The contamination is estimated by
applying the exact same QCD selection on the signal and EW MC samples and is subtracted to
obtain the real QCD sample. The contamination in this QCD sample is 1.7%. The template fit
using this QCD sample in the mass range [50 GeV, 200 GeV] has the best x2. It is chosen for
the nominal result which is 3256.42 +0.17% (stat) +6.6% (fit) events corresponding to 0.27% the

total number of Z — ee candidates selected in data. The fit is shown in Figure 4.7.

e Non-isolated template. In this selection, we use the same trigger requirement as in the signal
selection but only events with two electrons failing “medium++" or one of two electrons failing
“medium++" are considered. These events are required to pass other standard cuts as for the

signal (except charge and invariant mass cuts). The variable “Etcone40/Et” is used to study the

97



isolation of electrons in this sample, where “Etcone40” indicates the transverse energy in a cone
with a radius of 0.4 from the center of an electron cluster subtracting the transverse energy of this
electron cluster, “Et” is the transverse energy of this electron. The distributions of this variable for
the first and the second electrons are shown in Figure 4.8. The isolation of the first electron versus
the isolation of the second electron of QCD candidates in data and in the contamination from
Z — ee signal MC and EW background is shown in Figure 4.9(a). Before the isolation cut, there is
strong contamination from Z — ee signal MC and EW background in this QCD sample, the ratio
in the isolation window between the number of QCD candidates in data and in the contamination
is shown in Figure 4.9(b). In order to reduce the contamination in this QCD sample, we apply the
isolation cut to select only candidates in the non-isolated region. This cut is based on the relation
between the isolation of the first electron and the second electron as can be seen in Figure 4.9(b).
The contamination after this cut is 2% compatible with the first QCD sample 1.7%. The template

fit using this QCD sample is also performed in the mass range [50 GeV, 200 GeV].

The final QCD background using the template fit for the two QCD samples is shown in Figure 4.10.
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Figure 4.6: The mass distributions of the merged signal sample using POWHEG and DY samples in the

generation (a) and in the reconstruction (b) [69].

98



% ﬁ 0'4 :\ [ T T T ‘ T T T 1T T T T T T T T T T T T \:
o 10° ¢ A — Data s [ (b) 4
N = 71 Zee (DY+POWHEG) = 03F 4
» = C B
@ F 1
£ 10° T ozf 1
w = & ‘\ I ‘\ H ]
0.1F il
3 | - [-H
10 ol Wﬁ - Wﬁ,@% } I s
02f | :
" 03 x \ \ \ \ \ \ ]
1 L1 | L1 | L1 L1 | L1 | L1 | | |

60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200
M, [GeV] M, [GeV]

Figure 4.7: Data compared with the signal MC, EW background and fitted QCD background (a), the
difference between the fit function and data (b). The signal MC and EW background are normalized by

the parameter of the fit (0.99). Only statistic uncertainty is displayed [09].
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Figure 4.10: The final QCD background using the template fit for the two QCD samples [69].
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4.4.2.2 Systematic uncertainties

The systematic uncertainties on the QCD background estimation come from the template fit method and

from the fluctuations of the QCD template samples.

e The uncertainty from the template fit method. It is estimated using the default QCD template

and varying the choice of signal MC samples and the choice of fit ranges and bin widths.

The choice of signal MC shapes. The normalization of the MC template is constrained in the
Z peak region and the normalization of the QCD template is constrained in the side-bands. The
MC normalization may be sensitive to the signal MC samples if the predicted shapes in the region
of the Z peak are different. The QCD normalization also depends on the shape of the MC tem-
plate in the side-bands. These effects are studied by using two different signal MC templates:
DY+POWHEG (for the nominal result) and DY+PYTHIA. As seen in Section 4.1.3.2 the two
POWHEG and PYTHIA MC have two different mass shapes. For this study, the reweighting of
the generated M  distribution is not applied to POWHEG MC events, in order to maximise the

difference with PYTHIA.

The choice of fit ranges and bin widths. This effect is studied by performing the fit in different
mass ranges and with different bin widths. The mass range [50 GeV, 200 GeV] is chosen for the
nominal result where the QCD sample in high mass range is enough to constrain the fit and other
ranges [55 GeV, 200 GeV], [60 GeV, 200 GeV] and [66 GeV, 200 GeV] are used to study the
uncertainty. The bin width of 1 GeV is chosen for the nominal result while 2 and 4 GeV bins are

used to determine the uncertainty associated to the binning.

The fraction of QCD background obtained in the nominal fit and these variations is shown in
Table 4.4. Each systematic uncertainty is chosen as the largest variation from the nominal value.
The uncertainties in these two different categories are considered as uncorrelated. All systematic
uncertainties from the template fit method and the error of the nominal fit (6.6%) are added in the

quadratic sum. The total systematic uncertainty from the template fit method is 47%.
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Procedure QCD Fraction [%] | Fit Error [%]
DY+POWHEG 1 GeV bin [50,200] (nominal value) 0.27 6.60
DY+POWHEG 1 GeV bin [40, 200] 0.26 6.42
DY+POWHEG 1 GeV bin [55,200] 0.22 8.78
DY+POWHEG 1 GeV bin [60, 200] 0.17 11.66
DY+POWHEG 1 GeV bin  [66, 200] 0.15 17.24
DY+POWHEG 2 GeV bin [50, 200] 0.26 6.66
DY+POWHEG 4 GeV bin  [50, 200] 0.24 7.58
DY+PYTHIA 1 GeV bin [40, 200] 0.23 7.54
DY+PYTHIA 1 GeV bin [50,200] 0.22 6.69

Table 4.4: QCD background fractions obtained in each variation of the fitting procedure.

e The fluctuations of the QCD template samples. The use of two different QCD background
templates allows to access the systematic uncertainty on the shapes of QCD background as a
function of p% or as a function of ¢,. The ratio between the two results using these two QCD
background templates as a function of p# or as a function of ¢, is shown in Figure 4.11. The ratio

drops at very high ¢, values and we consider this as a source of systematic uncertainty.
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Figure 4.11: Ratio of two QCD background estimations as a function of p% (a) and as a function of (P,’]‘

(b). Only, the statistical uncertainty is shown.
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The systematic uncertainty in the p% or ¢, shape is added in quadrature with the one from the

template fit method. The total systematic uncertainty is ~ 50%. The difference between the QCD

background fractions estimated using two different shapes of the Z mass peak, as provided by non-

reweighted PYTHIA and POWHEG simulations is 18%, well below the total systematic uncertainty of

50%.

Finally, the total systematic uncertainty of the QCD background estimation in different pZ bins is

shown in Table 4.5 and in different ¢, bins is shown in Table 4.6. The choice of bin widths for the pZ

spectrum and the ¢, spectrum will be discussed later in Chapter 5 and Chapter 6.

Bin Range Sys. unc. (%) | QCD fraction (%)
1 0.0-25 47 0.08
2 25-50 48 0.11
3 5.0-8.0 48 0.18
4 80-114 47 0.25
5 11.4-14.9 47 0.31
6 14.9 - 18.5 47 0.37
7 18.5-22.0 47 0.41
8 22.0-25.5 47 0.43
9 25.5-29.0 47 0.44
10 29.0-32.6 47 0.44
11 32.6-364 47 0.43
12 36.4-40.4 48 0.40
13 40.4 - 44.9 47 0.40
14 449 -50.2 48 0.38
15 50.2-56.4 49 0.36
16 56.4-63.9 48 0.30
17 63.9-734 51 0.26
18 73.4-854 56 0.22
19 | 854-105.0 68 0.18
20 | 105.0-132.0 80 0.13
21 | 132.0-173.0 91 0.10
22 | 173.0-253.0 71 0.08
23 | 253.0-600.0 48 0.05

Table 4.5: The total systematic uncertainty of the QCD background estimation in different p% bins.
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Bin Range Sys. unc. (%) | QCD fraction (%)
1 | 0.000 - 0.004 47 0.18
2 | 0.004 - 0.008 47 0.18
3 | 0.008 -0.012 47 0.19
4 10.012-0.016 48 0.19
5 10.016-0.020 47 0.19
6 | 0.020-0.024 47 0.19
7 | 0.024 -0.029 47 0.20
8 | 0.029-0.034 48 0.21
9 10.034-0.039 47 0.22
10 | 0.039 - 0.045 47 0.23
11 | 0.045-0.051 47 0.24
12 | 0.051 - 0.057 48 0.24
13 | 0.057 - 0.064 47 0.25
14 | 0.064 - 0.072 48 0.26
15 | 0.072 - 0.081 47 0.28
16 | 0.081 - 0.091 47 0.29
17 | 0.091-0.102 47 0.30
18 | 0.102-0.114 47 0.31
19 | 0.114-0.128 47 0.32
20 | 0.128 - 0.145 47 0.33
21 | 0.145-0.165 47 0.33
22 | 0.165-0.189 47 0.35
23 | 0.189-0.219 47 0.35
24 | 0.219-0.258 47 0.36
25 | 0.258-0.312 48 0.36
26 | 0.312-0.391 48 0.35
27 | 0.391-0.524 48 0.33
28 | 0.524 - 0.695 49 0.29
29 | 0.695-0.918 53 0.27
30 | 0.918-1.153 58 0.25
31 | 1.153 - 1.496 59 0.25
32 | 1.496 - 1.947 56 0.26
33 | 1.947-2.522 66 0.28
34 | 2.522-3.277 62 0.35
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4.5 Selection results and control distributions

After applying all selection criteria, 1223711 Z — ee candidates are observed in data. The total number

of predicted events is 1235240. The total number of observed Z — ee candidates therefore agrees at

the level of 0.9% with the sum of predictions for the different contributing processes. The individual

contributions of different background processes are detailed in Table 4.7. The signal MC Z — ee is from

POWHEG. “Diboson” denotes the total result from WW, WZ, ZZ. The fraction of QCD background

events amongst the selected Z — ee candidates is 0.27%, whilst the fraction of background events arising

from all electroweak processes is 0.34%. Typical kinematic distributions of observed Z — ee candidates

are compared to the prediction of the MC simulation in Figures 4.12, 4.13, 4.14 and 4.15.

Sample Data Predictiontot. || Z—ee | QCD | W —ev | Z— 11 | tf | Diboson
# candidates || 1223711 1235240 1227771 | 3256 222 643 1429 1919
Stat. Error +1106 +573 +570 +6 +16 +54 £26 +7

Table 4.7: Number of Z — ee candidates after all selections in different samples. The total statistical

error on the predicted number of Z candidates is indicated.
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Figure 4.12: Control distributions of kinematic variables of the two electrons of the Z candidate. Data
(black dots) are compared to the Z — ee POWHEG MC simulation (hatched histograms). Only statistical
errors, of both data and MC samples, are taken into account for the display of error bars in data/MC

ratio plots. No errors are displayed for MC histograms [69].
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Figure 4.13: Control distributions of kinematic variables of the two electrons of the Z candidates. Data
(black dots) are compared to the Z — ee POWHEG MC simulation (hatched histograms). Only statistical

errors, of both data and MC samples, are shown [69].
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Figure 4.14: Control distributions of kinematic variables of the Z candidates. Data (black dots) are
compared to the Z — ee POWHEG MC simulation (hatched histograms). For these control distributions,
the POWHEG MC simulation is reweighted as a function of ¢ to the measured differential cross section.
Statistical errors of the data are represented by error bars on black dots. The total systematic errors are

represented by the orange bands [69].
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Figure 4.15: Control distributions of p% and ¢ of the Z candidates. Data (black dots) are compared to
the stack of the signal and the EW background estimated from MC samples and the QCD background

estimated using the data driven method. Only statistical errors of data are shown [69].

4.6 Summary

This chapter describes the event selection employed for the p% and ¢, measurements. All corrections
due to remaining mis-calibrations in data or mis-modeling of the data by the MC were applied. Most of
this chapter is dedicated to the QCD background estimation. Two independent data driven samples are
used to extract the QCD background using a template fit method. Finally, the total number of observed
Z — ee candidates in data agrees at the level of 0.9% with the sum of predictions for the different
contributing processes. The agreement between data and MC in the p% and ¢, distributions is needed
for the differential cross section measurements of Z — ee as a function of p% or as a function of ¢, in

Chapter 5 and Chapter 6.
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Chapter 5

The differential cross section of Z — ee as

a funtion of p%

This chapter will describe the general steps towards the differential cross section measurements of Z — ee
as a funtion of pZ or as a function of ¢y A short introduction of the unfolding procedure is presented in
Section 5.1. Two unfolding methods are employed in this thesis work : Iterative bayesian unfolding for
the p% measurement and bin-by-bin unfolding for the ¢, measurement. The measured distribution of P4
or ¢, are unfolded to different truth levels which are defined in Section 5.2. The fiducial volume of the
measurements are defined in Section 5.3. The extrapolation procedure of the fiducial measurements to
the full phase space measurements is presented in Section 5.4.

The core of thesis work is the ¢, measurement. However the advantage of the ¢, measurement can
be checked by comparing the quantified systematic uncertainties of the ¢, measurement with the ones of
the p% measurement. Therefore the goal of this chapter is to estimate the main systematic uncertainties of
the p% measurement which are presented in Section 5.6. In addition the result of the p% measurement is

compared with theoretical predictions and with other p%Z measurements as will be shown in Section 5.7.

5.1 Unfolding methods

In experiments, the distribution of the measured observable is smeared and distorted from that of the
corresponding true physical quantity due to detector effects, such as a limited acceptance, an imperfect

efficiency, and a finite resolution. Mathematically, given a true variable x (to be determined in an experi-
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ment) distributed according to its probability density function (p.d.f.) f(x), can not be measured perfectly
due to both experimental and statistical uncertainties. As a result, instead of measuring x one typically
measures a related variable y distributed according to a different p.d.f g(y). The relation between f(x)

and g(y) is given by the integral equation,

80) = [ Al S, 5.1)

called a Fredholm integral equation of the first kind. In practice often a known (measured or simulated)
background contribution b(y) has to be added to the right-hand side of equation 5.1. In this section with
the purpose of presenting the methodology, this contribution is ignored. The resolution function A(y,x)
represents the effect of the detector. For a given value x = xo the function A(y, x) describes the response
of the detector in the variable y for that fixed value xo. Determining the distribution f(x) from the
measured distribution g(y) is called the inverse problem of unfolding. Unfolding of course requires the
knowledge of the resolution function A(y,x), i.e. all the effects of the limited acceptance, the imperfect
efficiency, and the finite resolution.

In addition to the imperfections of the detector, there may be further effects between x and y, which
are outside of the experimental control, even with an ideal detector. One example are radiative effects,
which in experiments are often corrected afterwards (radiative corrections), but behave similarly as de-
tector effects. If the true kinematical quantity is defined at the parton level, further effects from the
fragmentation process of partons to the (observable) hadrons influence the measured quantity y.

For the numerical solution of equation 5.1, the distributions can be presented by histograms and the
resolution function can be presented by a matrix in order to have a finite set of parameters. Equation 5.1
then becomes

y = Ax. 5.2)

The vector y represents a histogram with n bins of the measured quantity while the vector X represents a
histogram with m bins of the true quantity to be measured. The transformation from x to y is performed
by A (now is called the response matrix) with a dimension of n x m . The elements of the response matrix
a;j can be considered as the probability for a true value x; to be measured as a value y;.

In high energy physics experiments the problem is even more difficult than in other fields. Often the
statistics of the measurement is not high and every y-bin content (which is distributed due to the Poisson

distribution around the expected value) has a large statistical fluctuation. Furthermore the resolution
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function A(x,y) (or the response matrix A) is not known analytically, but it is represented by a data set

from Monte Carlo simulation of the process, based on some assumed distribution fjsc(x),

ancly) = [ A0 fuc(x)dx, (53)

and is also statistically limited. Standard methods for the solution of integral equations or linear equations
can not be used in this case.

A simple method like the so-called bin-by-bin correction may be meaningful if the measurement y is
very close to the true value x. Advanced unfolding methods, for instance an iterative bayesian unfolding,
take into account bin-by-bin migrations and reduce the dependence on the truth shape x in a Monte Carlo

generator employed for the unfolding.

5.1.1 Bin-by-bin unfolding

The final goal is the measurement of the normalised differential cross section (1/0)(do/d%), where
Z is p% or ¢, in this analysis, o is measured within the fiducial phase space, defined in Section 5.3.
The measured % spectrum of the di-electron system can be corrected for detector and QED final state
radiation (FSR) effects using an unfolding technique based on bin-by-bin correction factors. The un-
folding procedure allows to go from the measured spectrum back to the underlying “true” spectrum (see

Section 5.2). Using the bin-by-bin correction procedure the normalised fiducial cross section in the i-th

< 1 > < Aoc; ) . C <N(§ata _le)g) (5.4)
) 1 \A jia - € Az (N, — N ) '

data

Z bin is given by:

where o is the inclusive cross section, Ag; is the cross section for a given # bin i, A%; is its width, Néata

is the number of observed candidates in bin i, N{;g is the number of expected background events in bin i,

Njaa 18 the total number of candidate events and Ny’ is the total number of expected background events.

data
There is no dependence on the luminosity, since both ¢ and Ao; are proportional to it. The correction
factors C' are calculated per each bin from Monte Carlo. The factors C' and of C are computed in the

fiducial phase space at corresponding truth levels in 5.2 according to the following expressions:

i tot
C,’ o NMC,rec.,cuts o NMC.,rec,cuts (5 5)
o Ni o Niot :
MC,gen,fid MC,gen,fid
where NI{/IC rec.cuts 18 the number of reconstructed MC events in bin i after having applied all cuts,

Nli/IC, een fid 18 the number of generated MC events in bin 7 after having applied the fiducial cuts, Nt rec cuss
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is the total number of reconstructed MC events after having applied all cuts and Nyj gen,fid is the total
i
number of generated MC events after having applied the fiducial cuts. Ci = = Vel is called the normalised

norm —

correction factors in each bin of Z.

5.1.2 Iterative Bayesian unfolding

Iterative Bayesian unfolding allows to take into account the migration effect and correlations between
adjacent bins which are neglected by the bin-by-bin correction technique.

The iterative unfolding technique proposed by D’ Agostini [67, 68] and implemented in the RooUn-
fold package [25] relies on the construction of the unfolding matrix by means of Bayes’ theorem. Starting
with a prior assumption for the probability distribution p = (py, ..., py) for an event to originate from a

given bin i of the true distribution, one infers the transition probability
p(tiloj) = p(true value in bin ijobserved value in bin j)

by doing a probability inversion via Bayes’ theorem:

pliiloj) = 7Np(0j’ti)pi - (5.6)

,le(0j|fi)1?i
=

The values of p(oj|t;) can be inferred from Monte Carlo and constitute the so-called smearing
matrix (or response matrix) representing the detector response. Taking into account the efficiency
€ = (&,...,€y), the number of events [I; in a given bin of the true distribution can now be estimated

by the relation
1 m
fi=— ) pltlojn;, (5.7)
i j=1

where n; is the number of events observed in bin j. Since the shape of the true distribution is in general

1 1

unknown, one often starts with a flat spectrum p = (5, ...,

) as a prior, thus introducing a bias. This

bias can be overcome by iterating the procedure, using the solution of the previous step as the new

prior p = +—(l1,..., y). This algorithm is typically found to converge after several iterations. The
Yl

i=1

estimation of uncertainties for the method described here is performed by full marginalisation. That
means that the posterior distribution of bin contents after unfolding is obtained by integrating over the
distributions associated with the measured bin contents and the unfolding matrices obtained from Monte
Carlo. The integration is performed with Markov Chain Monte Carlo (MCMC), details can be found

in [67]. All correlations are naturally taken into account in this approach.
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The unfolded differential cross sections at different truth levels as discussed in Section 5.2 can be
obtained using the iterative Bayesian unfolding method with corresponding response matrices inferred

from MC at each level.

5.2 Definition of the truth levels

The unfolding procedure allows to go from the measured spectrum back to the underlying “true” spec-
trum, where the true spectrum can be defined at different reference points referring to the amount of QED
radiative corrections considered at the generator level. Here, as in the published ATLAS paper on the
measurement of the p% with 2010 data [16], the default reference point is the “Born” level corresponding
to the &% spectrum prior to QED FSR from the decay electrons. Nevertheless, as in previous ATLAS
analyses, additional points of reference (“Bare” and “Dressed”) have been considered. With respect to
the “Born” level reference point, they have the advantage to be closer to the lepton measurements. The

reference points considered in this analysis are:

e Born: the true & spectrum uses the electron momenta prior to QED FSR. This reference point is

also referred to as “propagator Z”.
e Bare: the true & spectrum uses the electron momenta after QED FSR.

e Dressed: the true # spectrum uses the electron momenta after QED FSR and includes the mo-
menta of all photons which are radiated off the electron in a cone of AR < 0.1 around the “bare”
lepton direction. This reference point is supposed to be the closest to the measurement of Z — ee.
Given that the major part of the QED FSR photons is collinear and thus close to the electromag-
netic cluster of the bare electron and that the ATLAS cluster reconstruction recombines the bare
electron with ’close’ photons, the amount of remaining QED FSR corrections is reduced if dressed

electrons are used.

Details of the discussion on QED FSR will be presented in Section 5.6.3 and 6.2.3.

5.3 Definition of the fiducial phase space

The measurement is performed in the fiducial phase space defined by the acceptance cuts p%l > 20 GeV

and |n¢| < 2.4 on both electrons and by the di-electron mass cut 66 < M,, < 116 GeV. The use of a

114



fiducial cross section has the advantage of reducing the dependence on the theory and/or on models.
Events in which one of the two electrons passes the crack region between the barrel and the end-cap
calorimeter (1.37 < |n°/| < 1.52) are discarded. Hence the measurement is corrected for this small

acceptance hole.

5.4 Extrapolation procedure to the full phase space measurement

After corrections for detector and QED FSR effects using the bin-by-bin unfolding or the iterative
Bayesian unfolding, the fiducial % spectrum is extrapolated to the full phase space (see Section 5.7.3
and 6.3.3) to allow further comparisons with theoretical calculations which can not describe final state
lepton cuts and to facilitate the comparison with the results of other experiments. The extrapolation to

the full phase space is done by introducing acceptance factors per each bin i defined as:

tot

i
NMQgen,reﬁﬁd NMC,gemreﬁﬁd

Al = and A =

Nl Ntot (58)
MC,gen,ref MC,gen,ref

where “ref” can be 'Born’, ’Dressed’ or *Bare’. The full phase space corresponds to all signal events
within the region 66 < M,, < 116 GeV.

Therefore the normalised total cross section in the i-th ¢, bin is given by:

I Aci\ (AN [1 Ac;
@) (52).-(3)(0),.G3)., 5

=7 is called the normalised acceptance correction factors in each bin of Z.

Ai

norm

5.5 The unfolding of the p% spectrum

From this section, we will discuss about the p% measurement. The unfolding procedure of the p% mea-

surement is presented here while the evaluation of systematic uncertainties will be shown in Section 5.6.

5.5.1 Purity and binning optimization

The p% spectrum is measured in bins which have the size larger than the detector resolution at low p% and
are adapted to the limited statistics at very high p%. The resolution of the p% measurement at Born level

is shown in Figure 5.1. The highest p% reconstructed using 2011 ATLAS data is about 800 GeV but only
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few events with p% larger than 600 GeV are observed. The chosen p% range for this analysis is p% < 600
GeV.

An optimization procedure has been employed to select the bin widths of the p% spectrum. The
binning optimization starts from the first bin with the size of 2.5 GeV which gives a purity (i.e. the
fraction of simulated events reconstructed in a particular p% bin which have generator-level p% in the
same bin) greater than 65%. In addition to this purity requirement the statistical uncertainty is required
to be smaller than 1% up to p% = 105 GeV for each p% bin. The bin widths then have been smoothly
increased up to 600 GeV. The optimization of the p% bin widths has been performed with these two
requirements via an iterative scan of the p% spectrum using both data and signal MC events. The number
of selected bins turns out to be 23 with the bin boundaries: 0, 2.5, 5, 8, 11.4, 14.9, 18.5, 22, 25.5, 29,
32.6,36.4,40.4,44.9,50.2, 56.4, 63.9, 73.4, 85.4, 105, 132, 173, 253, 600.

The purity of the p% reconstruction at the Born level is shown in Figure 5.2(a), the statistic uncertainty
is calculated taking into account the bin-to-bin migrations [83]. Figure 5.2(b) shows the purity of p%

measurement in 2010 (19 bins) [35].

3 B L T T T 7 T Mean 0.03045 + 0.0008716
E 50000 ;_ RMS 1.869 + 0.0006163
40000 —
30000 =
20000/ -
10000 =
U 0
[GeV]

Figure 5.1: The resolution of p% reconstruction using GSF electron from MC Z — ee POWHEG sample.
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Figure 5.2: The purity of p% reconstruction using GSF electron from MC Z — ee POWHEG sample in

this measurement (a), and in 2010 p% measurement (b).

5.5.2 Bin-by-bin correction factors

C . Which correct the measured pZ spectrum for detector and

Figure 5.3 shows the correction factors
QED FSR effects and allow to get the underlying true spectrum defined at the “Born”, “Dressed” and

“Bare” levels. The values are shown in Tables 6.1.

; -+ Born i
o =
- —+ Dressed =
— Bare =
i #F—3
- o e .
= =8="A‘:Z;o-o e =
f == A‘A&D%' A i f
- M 3
E\ L1111l L1 1111l ‘ L1 1111l ‘ | | | \E
1 10 10?
Z
pT,Reco [GeV]

Figure 5.3: Normalised correction factor as function of p% obtained with MC Z — ee POWHEG sample.

Statistical uncertainties calculated taking into account the bin-to-bin migrations [83 ] are shown.
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5.5.3 Iterative Bayesian unfolding and response matrix

The response matrix for the iterative Bayesian unfolding is obtained from the correlation histogram pop-
ulated by the simulated events passing the event selections following p% bins in Monte Carlo. Figure 5.4

shows the response matrix obtained from MC Z — ee POWHEG sample. While the binning of the pZ%

3
;‘103 T T TTTT T T TTTT 1
0 -
O
3 B
& - _
N F
a —0.7
102? =
= J,-0.6
1 —o.5
' —o.4
10

Figure 5.4: The response matrix obtained from from MC Z — ee POWHEG sample.

measurement is considered in the limit of 600 GeV as discussed in Section 5.5.1, the response matrix
is performed up to 1000 GeV in order to check the migration from outside to the range of the p% mea-
surement. The last bin 600 — 1000 GeV of the response matrix is diagonal. The migration from the bin
600 — 1000 GeV of the pZ distribution to the bins below 600 GeV is negligible. So the p% measurement

is conserved in the range 0 — 600 GeV.

5.5.4 The choice of unfolding methods and the unfolded results

In this analysis, Z — ee POWHEG+PYTHIA is used as the reference MC (see Table 4.1). A disagreement
between data and MC is observed in the low p# region as in Figure 5.5. Therefore, a reweighting
procedure is applied on the pZ spectrum of Z — ee POWHEG+PYTHIA sample to improve the description

of data. Two pZ truth spectra are used. One spectrum is provided by the RESBOS prediction and the
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Bin Range Born Dressed Bare
Chorm  stat.(%) | Cuorm  stat.(%) | Cuorm  stat.(%)
1 0.0-2.5 0.882  0.179 | 0902 0.198 | 0949  0.155
2 25-50 0929 0.117 | 0944 0.130 | 0.981  0.100
3 5.0-8.0 0.998  0.103 1.004  0.115 1.017  0.087
4 80-114 1.042  0.109 | 1.037 0.122 | 1.022  0.091
5 11.4-149 1.056  0.127 | 1.040  0.143 1.006  0.107
6 14.9 - 18.5 1.048  0.147 | 1.031 0.166 | 0987  0.125
7 18.5-22.0 1.035 0.174 | 1.018 0.196 | 0982  0.148
8 22.0-255 1.027  0.199 | 1.017 0.224 | 0993  0.169
9 25.5-29.0 1.015  0.225 | 1.009  0.253 | 0.992  0.191
10 29.0 - 32.6 1.004  0.249 | 0999 0.279 | 0993 0.211
11 32.6-36.4 | 0997 0270 | 0.997 0302 | 0997 0.227
12 364-404 | 0993 0291 | 0995 0326 | 1.002 0.245
13 40.4-449 | 0983 0304 | 0986 0341 | 0995 0.254
14 449-502 | 0979 0309 | 0984 0348 | 1.001  0.255
15 50.2-56.4 | 0971 0323 | 0976 0365 | 0.995 0.264
16 564-639 | 0967 0335 | 0976 0380 | 1.000 0.270
17 63.9-73.4 | 0977 0348 | 0985  0.397 1.015  0.275
18 734-854 | 0977 0378 | 0988 0432 | 1.023 0.296
19 | 854-1050 | 1.010 0376 | 1.021 0435 | 1.061 0.283
20 | 105.0-132.0 | 1.047  0.451 1.057  0.526 | 1.096 0.334
21 | 132.0-173.0 | 1.094 0.554 | 1.105 0.653 | 1.146  0.399
22 | 173.0-253.0 | 1.116  0.762 | 1.122  0.908 1.173  0.530
23 | 253.0-600.0 | 1.193  1.364 | 1.200 1.641 1.273  0.878

Table 5.1: The normalized correction factors for the “Born”, “Dressed” and “Bare” levels using MC

Z — ee POWHEG sample. Only statistical uncertainties are shown.
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Figure 5.5: Control distribution in the p% region (0 — 80 GeV) without any p% shape reweighting, the

signal MC Z — ee from POWHEG. Only statistical errors are shown.

other is the unfolded data spectrum obtained by employing the iterative Bayesian unfolding method with
the response matrix from the default MC. The ratio of the reconstructed p% distribution in data to the
one in Z — ee POWHEG+PYTHIA MC reweighted to different shapes mentioned above is presented in
Figure 5.6. This figure shows that the MC sample reweighted to data has a better description of data.
This MC sample will be used to obtain the central value of the final unfolded result.

In order to compare the iterative Bayesian unfolding and the bin-by-bin unfolding methods, the p%
distribution in data is unfolded using both methods with the signal MC reweighted to the different shapes
mentioned above. The unfolded data distributions are then compared, for the iterative Bayesian unfolding
in Figure 5.7(a), for the bin-by-bin unfolding in Figure 5.7(b). It can be seen that the dependence on the
shapes of the signal MC sample in the unfolding procedure of the pZ measurement is smaller by using
the iterative Bayesian unfolding than by using the bin-by-bin unfolding. Therefore the iterative Bayesian

unfolding is chosen for this measurement.
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and by the bin-by-bin unfolding (b).
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5.6 Evaluation of systematic uncertainties

To estimate the systematic uncertainties, the general idea is to compute the central unfolded spectrum
using the correction factors C.q; OF the unfolding matrix obtained from a high statistic Monte Carlo
sample after applying all corrections and then subsequently varying all parameters in question to con-
struct new correction factors Cyygemaric Or unfolding matrices. The new correction factors or unfolding
matrices are then used to repeat the unfolding procedure and the relative deviation of the normalised

differential cross sections is computed:

D _ [/ Gna X d0%a/dprlysiemaic ~ [1/ 0t X dO%ia/dPT |cemea (5.10)
[1/0tia X dGtia/dpr]ceniral '

In the case of energy scale, energy resolution, electron efficiency and background systematic uncertain-
ties, the relative deviation (up and down) is propagated by varying up and down one o of each systematic

uncertainty in the computation of the normalised differential cross section:

d
pup(down) _ {1/Gﬁd X dcﬁd/de]S}If)s(te(:rﬁltli)c o [I/Gﬁd X dcﬁd/de]central (5.11)
[1/0%a X dGtia/dpr]cenral ’
The central systematic uncertainty value is then estimated as below:
1
D =sign- [[D"P| + D], (5.12)

where sign = 1 if D' > 0 and sign = —1 if D"? < 0.
All systematic uncertainties are considered as uncorrelated and added in quadrature, which gives the

total systematic uncertainty of the measurement.

5.6.1 Pileup reweighting

As discussed in Section 4.1.3, MC samples are required to apply the pileup reweighting procedure in
order to reproduce the average number of interactions per bunch-crossing, < u >, observed in data.
Figures 5.8(a) and (b) show the good agreement between data and MC for < u > distributions but not for
the number of good vertices in the high region. In order to estimate the systematic uncertainty from the
pileup reweighting, on top of all selection we apply the reweighting using the number of good vertices.
The ratio between data and the signal Z — ee MC in the number of good vertices is used as the additional
weight for the signal Z — ee MC. Figures 5.8(c, d) show the good agreement between data and MC for

the number of good vertices while the < u > distribution is varied due to the correlation between the
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two variables. The ratio between the response matrix including the vertex reweighting and the standard
one is shown in Figure 5.9(a). The difference in the differential cross section with and without applying
the vertex reweighting is considered as the systematic uncertainty due to the pileup reweighting which is

shown in Figure 5.9(b).

5.6.2 Primary vertex position along z-axis

The impact of the reweighting of the z vertex shape of the signal MC (see section 4.1.3) on the cor-
rection factors C' and on final cross sections has been estimated. Cross sections are calculated with
and without applying this reweighting and the difference bewteen the two is taken as a systematic error.
The ratio between the response matrix without the z vertex reweighting and the standard one is shown in

Figure 5.10(a). The evolution of this uncertainty as a function of pZ bins is represented in Figure 5.10(b).

5.6.3 QED final state radiation

QED final state radiation (FSR) can change the true level (or generated) fiducial cross section of Z — ee
by about -5% [35]. However, the difference of the normalised true p% spectrum before and after final
state QED radiation can be up to 8% [35]. Therefore an accurate simulation of the QED FSR including
its kinematic dependencies is essential.

There are several programs implementing the QED FSR simulation. We will discuss here two pro-
grams: one is the Monte Carlo package PHOTOS [46,47,78] and one employs the YFS [101] formalism.
PHOTOS works as an afterburner and can be interfaced to four-vectors produced by any host generator.
This program is based on the collinear approximation for the radiation of photos together with correc-
tions to reproduce the correct result in the soft limit [46,47]. Recently, it has been improved to include
the full next-to-leading order QED corrections for Z and W decays [78].

Despite the success of PHOTOS it is based on the collinear approximation for photon radiation. The
production of radiation in these decays is normally simulated in the rest frame of the decaying particle.
The kinematics of many of the decays, particularly of the unstable hadrons, is such that the energy of the
decay products is not significantly larger than their mass, in which case we do not expect the collinear
limit to be a good approximation. Hence, there is always a soft enhancement for the emission of QED
radiation. This emission can be simulated basing on the YFS [101] formalism for the resummation of

soft logarithms. This formalism has the major advantage that the exact higher order corrections can
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Figure 5.8: Distributions of < W > and of the number of good vertices before the vertex reweighting (a,

b) and after the vertex reweighting (c, d).
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be systematically included, indeed the majority of the most accurate simulations including higher order
QED corrections are based on this aprroach.

In order to understand the effect of the different QED FSR simulation programs on the p% measure-
ment, we compared the QED FSR correction on the p% measurement simulated in Z — ee POWHEG+
PYTHIA MC generator interfaced to the PHOTOS program and the one simulated in Z — ee SHERPA
employing the YFS formalism. To reduce the effect of the statistic fluctuation on the result, high statistic
MC samples are used for this study: 20 million events simulated in Z — ee POWHEG+PYTHIA and 30
million events simulated in Z — ee SHERPA.

Since the measured pZ spectrum is unfolded to different truth levels: “Born”, “Dressed”, “Bare”, the
QED FSR correction on the p% measurement can be extracted by making the ratio between the p% truth
distribution at the “Dressed” or “Bare” levels and the one at the “Born” level (named “Dressed—Born”,
“Bare—Born”). The ratio between the QED FSR correction found in Z — ee POWHEG+PYTHIA and the
one found in Z — ee SHERPA yields the effect of the QED FSR correction on the p% measurement which
is shown in Figure 5.11. The p% truth distribution at the “Born” level in Z — ee POWHEG+PYTHIA is

reweighted to the one in Z — ee SHERPA to avoid the effect of the MC shape dependence on the QED

FSR study.
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Figure 5.11: The difference of the QED FSR correction in Z — ee POWHEG+PYTHIA and the one in
Z — ee SHERPA as a function of p%: from the “Dressed” level to the “Born” level (a) and from the

“Bare” level to the “Born” level (b).

A conservative systematic uncertainty of 8psg = 0.3% is assigned to account for induced uncertain-
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ties due to the p% dependent modelling of QED FSR. This conclusion holds for p% distributions at the

“Born”, “Dressed” and “Bare” levels.

5.6.4 PDFs

The PDF uncertainty on the measurement can be estimated using the method explained in [95]. X is any
one of the physical quantities of interest that depends on the PDFs. It is considered as a function of the
parameters that define the PDFs at the initial scale X (@), where d forms a vector with an N-dimensional
PDF parameter space. In the Hessian formalism for the uncertainty analysis, this parton parameter space
is spanned by a set of orthonormal eigenvectors obtained by a self-consistent iterative procedure. The
uncertainty of the quantity X (&) is characterized by 2N sets of published eigenvector PDF sets along

with the central fit, 2 PDF sets for each of the N eigenvectors, along the (%) directions, it is defined as

— |VX| = Z( n(+) — xnl >)2. (5.13)

Two MC samples are used for this study: Z — ee POWHEG+PYTHIA and Z — ee PYTHIA. The PDF
set used in Z — ee POWHEG+PYTHIA is CT10 (52 eigenvector PDF sets). The PDF set used in Z — ee
PYTHIA is MRSTLO* which does not have any eigenvector PDF sets. In order to estimate the PDF uncer-
tainty on the measurement using this sample, it is recommended to reweight to the PDF set MSTWO8LO
which has 40 eigenvector PDF sets. Each response matrix filled with the addition weight from the PDF
reweighting is used to unfold the p# distribution. The PDF uncertainty on the normalized cross section

in the I’h Z 7 bin is estimated as:

N 1_Ag_ ”(+)_ Aci_ n(=)\ 2
A( : (Aq::) >PDF - % n; (GA((pn)l)(rlew Ao; <)0A(¢n)l>rew

o A(Py)i

Q

Ql—

, (5.14)

is the normalized differential cross section in the i’ p% bin reweighted from

0
MRSTLO* to the eigenvector PDF set n of MSTWOSLO and ( > A(Adf”) ) is the normalized correction
n’t /) rew
factor reweighted from MRSTLO¥* to the central PDF set of MSTWOS8LO. The resulting PDF uncertainty
as a function of pZ cross section bins is shown in Figure 5.12. Similar results are observed by using

Z — ee POWHEG+PYTHIA.
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Figure 5.12: The PDF uncertainties (Sppr) as a function of p% cross section bins using Z — ee PYTHIA

MC sample. Uncertainties are given in per cent

5.6.5 Unfolding

As discussed in Section 5.5.4, the unfolding procedure is affected by the p% spectrum in the signal
MC Z — ee POWHEG+PYTHIA. The iterative Bayesian method was chosen for the pZ measurement in
order to reduce the systematic uncertainty due to this effect. The bias introduced by deviations from the
MC shape dependence has to be taken into account. Since the central values of the pZ distribution are
obtained using MC reweighted to data, the maximum deviation of the p% distribution using the default
MC and the p# distribution using MC reweighted to RESBOS from the central values will be quoted for

the systematic uncertainty from the MC shape dependence which is shown in Figure 5.13
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Figure 5.13: The systematic uncertainty (8ynfoia) due to the MC shape dependence in the unfolding

procedure as a function of p%. Uncertainties are given in per cent.

An another source of uncertainty in the unfolding process is the bias of the algorithm. This bias
is tested using only the signal MC sample where the truth pZ spectrum is well known. The signal
MC sample is divided into two samples: a sample for buiding the response matrix and a sample for
evaluating the bias. The reconstructed MC distribution of the second sample is then unfolded using a
response matrix built from the first sample. The result is then compared with the truth distribution in
the second sample and the difference in per cent is shown in Figure 5.14(a). As can be seen in this
figure, the difference is mostly in the high p% region due to the statistic fluctuation in the recontructed p#
distribution. This fluctuation is not considered as a systematic uncertainty. We also tested the bias due
to a number of iterations in the iterative unfolding procedure. The above reconstructed p% spectrum is
still used. The unfolded spectrum obtained after two or ten iterations is compared with the one obtained
after one iteration. This difference is shown in Figure 5.14(b). It is not significant and is well covered by
statistical errors. Therefore, we do not quote any systematic uncertainty due to the bias of the unfolding
algorithm.

Finally, only MC shape dependence uncertainties are used to yield the total unfolding uncertainty.
The effect of different PDF sets discussed in Section 5.6.4 is to change the p% shape of the MC used
to unfold data, this difference is completely covered by the uncertainty from the MC shape dependence
in the unfolding procedure, so we do not quote a separate uncertainty for PDFs. The total unfolding

uncertainty can be found in Table 5.2.
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Figure 5.14: The difference between the unfolded p% spectrum reconstructed in the second MC sample
using the response matrix from the first MC sample and the truth spectrum in the second MC sample(a).
The difference between the unfolded p% spectrum with two or ten iterations and the one with one iteration

in the iterative unfolding procedure(b). Statistical errors are shown.

5.6.6 Monte Carlo statistics

The response matrix obtained from MC is used to unfold the pZ distribution in data. The limit of MC
statistics can effect the unfolded results via the response matrix. The effect of MC statistics of the
response matrix is studied by producing many copies of the response matrix randomly. The content of
each bin of the response matrix is produced using the Gauss distribution with the mean is set by the
nominal value and the sigma is set by the statistical error. Then the reconstructed p# distribution in data
is unfolded using these response matrices. This process is repeated for 1000 trials. 1000 final cross
sections are ploted for each p% bin. A Gauss function is used to fit these distributions. The fits for the
first and the last p% bins are shown in Figure 5.15. The mean of the fit in each bin shows the normalised
cross section. The difference between this differential normalised cross section and the one using the
default response matrix is considered as the systematic uncertainty due to the limit of MC statistics. This

systematic uncertainty is shown in Figure 5.16.
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5.6.7 Energy scale and energy resolution

The uncertainty associated to our knowledge of the electron energy scale in data is estimated. Correlated
variations of +10 of the electron energy scale are applied on an event by event basis and propagated
through the full analysis chain up to the normalised cross section using MC Z — ee events, as the gen-
erated luminosity of MC signal signal events is larger than the one available in data. The uncertainty
associated to the description of the electron energy resolution by the MC is calculated in a similar way.
The electron energy resolution in Z — ee MC events is varied and the effect is propagated to the nor-
malised cross section. The resulting uncertainties on the normalised cross section are represented as a
function of pZ% in Figures 5.17(a) and (b) for the electron energy scale and the electron energy resolution,

respectively.

5.6.8 Electron reconstruction and identification efficiency

The systematic uncertainties on the electron reconstruction and identification efficiencies are calculated.
Correlated variations of =10 of the reconstruction and identification efficiencies for each electron of Z
candidates are applied on an event by event basis and propagated through the full analysis chain up to
the normalised cross section using MC Z — ee events. The resulting uncertainty on the normalised cross

section is represented as a function of pZ in Figure 5.17(c).

5.6.9 Electron trigger efficiency

The systematic uncertainty on the efficiency of single electron triggers used is calculated. Correlated
variations of =10 of the trigger efficiency are applied on an event by event basis and propagated through
the full analysis chain up to the normalised cross section using MC Z — ee events. The resulting un-
certainty on the normalised cross section is represented as a function of p% in Figure 5.17(d). This

uncertainty is very small < 0.008%.

5.6.10 Backgrounds

An uncertainty on the amount of QCD background events as defined in Table 4.5 is used. In each cross
section bin, this uncertainty is combined with the statistical uncertainty on the estimated number of QCD

events in the bin. This results in an uncertainty on the normalised cross section of ~ 0.05%, which is
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considered as correlated between bins. The evolution of this uncertainty as a function p% cross section
bins is represented in Figure 5.17(e).

Similarly, an uncertainty of 10% on the contribution of electroweak background processes as a func-
tion of p% is assumed. In each cross section bin, this uncertainty is combined with the statistical uncer-
tainty on the estimated number of electroweak events in the bin, which may not be negligible in some
cases due to the low MC statistics available for some of the processes. The evolution of this uncertainty

as a function of pZ cross section bins is represented in Figure 5.17(f).
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Figure 5.17: Evolution of absolute systematic uncertainties from different error sources as a function
of p%: (a) O uncertainty due to the electron energy scale correction, (b) 8g,es uncertainty due to the
electron energy resolution smearing, (c) Ojp uncertainty due to the electron reconstruction and identi-
fication efficiency correction, (d) 81, uncertainty due to the electron trigger efficiency correction, (e)
Oopcp uncertainty on the contribution of QCD background, (f) Ogw uncertainty on the contribution of

electroweak backgrounds. All uncertainties are given in per cent.
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5.7 Results

5.7.1 The fiducial differential cross section as a function of pZ%

. .1 . S
The normalised cross section P as a function of p% and compared to the RESBOS prediction is

o dpf
presented in Figure 5.18(a), the ratio to the RESBOS prediction is shown in Figure 5.18(b). Numerical
results are also provided in Table 5.2. Cross sections at “Born”, “Dressed” and “Bare” levels are also

provided in Table 5.3.
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Figure 5.18: The normalised cross section P as a function of p% compared to the RESBOS predic-
Pr

tion (a) and the ratio to the RESBOS prediction (b).
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P% bin /o do/dp% Seys | Son 8 Orrig | Oocp | OEw | Sunfota | Opiteup | Ovix
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0.0-25 0.0323 2.62 | 2.62 0.58 0.00 0.10 0.03 -2.49 0.00 0.08
25-50 0.0600 0.78 | 0.80 0.43 0.00 0.13 0.03 0.51 0.00 0.04
5.0-8.0 0.0515 0.85 | 0.86 0.24 0.00 0.19 0.03 0.73 0.00 -0.01
8.0-114 0.0380 0.57 | 0.60 0.09 -0.00 | 0.25 0.03 0.36 -0.01 -0.05
11.4-149 0.0278 0.46 | 0.50 -0.01 0.00 0.31 0.02 0.02 -0.00 -0.03
14.9-18.5 0.0207 0.51 | 0.56 -0.14 -0.00 | 0.37 0.01 0.05 -0.01 0.05
18.5-22.0 0.0158 0.62 | 0.67 -0.21 -0.00 | 041 0.01 -0.26 -0.00 -0.01
22.0-255 0.0122 0.61 | 0.69 -0.27 0.00 0.44 0.00 0.11 -0.01 -0.03
25.5-29.0 0.0097 0.67 | 0.76 -0.28 0.00 0.44 -0.01 -0.29 -0.01 -0.06
29.0 - 32.6 0.0078 0.71 | 0.80 -0.41 -0.00 | 0.44 -0.03 0.19 -0.01 -0.05
32.6-36.4 0.0063 0.63 | 0.76 -0.33 -0.00 | 043 -0.04 0.06 0.01 -0.02
36.4 -40.4 0.0052 0.87 | 0.98 -0.45 -0.00 | 041 -0.05 -0.53 0.01 -0.06
40.4 - 44.9 0.0041 097 | 1.09 -0.46 -0.00 | 041 -0.06 0.68 0.01 -0.03
449 -50.2 0.0033 0.79 | 0.96 -0.54 -0.00 | 0.39 -0.08 -0.27 0.02 -0.03
50.2 - 56.4 0.0025 094 | 1.10 -0.77 -0.00 0.37 -0.11 0.11 0.02 0.16
56.4 -63.9 0.0019 0.85 | 1.06 -0.69 -0.00 0.31 -0.13 0.08 0.02 -0.09
63.9-734 0.0013 1.09 | 1.30 -0.92 -0.00 0.26 -0.17 0.34 0.01 0.12
73.4-85.4 8.5-1074 097 | 1.23 -0.84 -0.00 0.22 -0.21 0.11 -0.00 0.08
85.4-105.0 47-107* 1.16 | 1.44 -1.06 -0.01 0.19 -0.25 0.13 0.01 -0.09
105.0 - 132.0 22-107% 1.24 | 1.62 -1.14 -0.01 0.14 -0.27 -0.16 0.03 -0.16
132.0-173.0 8.4-107° 1.49 | 2.04 -1.39 0.00 0.10 -0.23 0.11 0.00 0.34
173.0 - 253.0 221073 1.40 | 2.39 -1.28 0.02 0.08 -0.17 -0.34 0.03 -0.23
253.0 - 600.0 1.4-107° 295 | 4.68 -2.53 0.01 0.10 -0.17 0.67 0.06 -1.25




Born Dressed Bare
p% bin 1/odo/dp% | Suu | Ows || 1/odo/dp% | Sga | Sys || 1/odo/dp% | Suya | Ssys
(GeV] [Gev—] (%] | [%] [Gev—] (%] | [%] [Gev—'] [%] | [%]
0.0-2.5 0.0323 0.22 | 2.62 0.0315 0.23 | 2.62 0.0295 0.23 | 2.62
25-5.0 0.0600 0.16 | 0.78 0.0590 0.17 | 0.78 0.0567 0.17 | 0.78
5.0-8.0 0.0515 0.16 | 0.85 0.0514 0.16 | 0.85 0.0512 0.16 | 0.85
8.0-11.4 0.0380 0.17 | 0.57 0.0384 0.18 | 0.57 0.0393 0.17 | 0.57
11.4-149 0.0278 0.20 | 0.46 0.0283 021 | 0.46 0.0294 0.19 | 0.46
149-185 0.0207 0.24 | 051 0.0210 0.24 | 0.51 0.0220 022 | 051
18.5-22.0 0.0158 0.27 | 0.62 0.0160 0.28 | 0.62 0.0166 0.26 | 0.62
22.0-25.5 0.0122 031 | 0.61 0.0123 032 | 0.61 0.0126 0.30 | 0.61
25.5-29.0 0.0097 0.35 | 0.67 0.0098 0.35 | 0.67 0.0099 033 | 0.67
29.0-32.6 0.0078 038 | 0.71 0.0078 039 | 0.71 0.0079 037 | 0.71
32.6 - 36.4 0.0063 0.42 | 0.63 0.0063 0.43 | 0.63 0.0063 0.41 | 0.63
36.4 - 40.4 0.0052 0.46 | 0.87 0.0052 0.47 | 0.87 0.0051 0.45 | 0.87
40.4 - 449 0.0041 0.49 | 0.97 0.0041 0.50 | 0.97 0.0040 0.49 | 0.97
449 -50.2 0.0033 0.53 | 0.79 0.0033 0.55 | 0.79 0.0032 0.53 | 0.79
50.2 - 56.4 0.0025 0.58 | 0.94 0.0025 0.59 | 0.94 0.0025 0.57 | 0.94
56.4 - 63.9 0.0019 0.62 | 0.85 0.0019 0.64 | 0.85 0.0018 0.62 | 0.85
63.9 - 73.4 0.0013 0.70 | 1.09 0.0013 0.71 | 1.09 0.0012 0.69 | 1.09
73.4 - 85.4 85-107* | 0.76 | 0.97 84-107% | 0.78 | 0.97 8.2-107* | 0.76 | 0.97
85.4 - 105.0 47-107* | 0.84 | 1.16 46-107* | 0.86 | 1.16 45-107* | 0.84 | 1.16
105.0 - 132.0 22-107% | 1.04 | 1.24 22-107* | 1.06 | 1.24 2.1-107% | 1.04 | 1.24
132.0- 173.0 84-107 | 1.39 | 1.49 83-107 | 1.41 | 1.49 8.1-107 | 1.39 | 1.49
173.0 - 253.0 22-107 | 1.93 | 1.40 22-107 | 1.96 | 1.40 2.1-107> | 1.95 | 1.40
253.0 - 600.0 14107 | 3.64 | 2.95 14-107% | 3.69 | 2.95 13-107% | 372 | 2.95
Table 5.3: Comparison of the normalised cross sections ;;;Z corrected to the “Born”, “Dressed” and
T

“Bare” levels. POWHEG Z — ee MC events are used to unfold the p% spectrum in data. All uncertainties

are given in per cent.
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5.7.2 Comparisons with theoretical predictions and other p% measurements

The fiducial normalised cross section is compared with theoretical predictions from RESBOS and FEWZ
introduced in section 1.2.3 in Figure 5.19. The measured cross section agrees with RESBOS within
4% for the low p% region and 8% for the high p% region. For the larger pZ values, the agreement of

NNLO FEwz with our measurement is within 10%. This was difficult to see in [ 1 6] due to the statistical

fluctuation.
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Figure 5.19: Ratio of the final normalised cross section P to RESBOS prediction as a function of
Pr
p% and also compared to theoretical predictions from FEWZ.

The effect of PDFs used in the RESBOS calculation is shown in Figure 5.20. The ratio of data or
RESBOS calculation using CT10 PDF set to RESBOS calculation using CTEQ6.6 PDF set are presented.
We observe that the agreement of data with CT10 predictions is better than with CTEQ6.6 in the low pZ
region < 40 GeV.

In Figure 5.21, the final fiducial normalised cross section is also compared with predictions from
different MC generators used so far by ATLAS. These predictions are presented in Section 1.2.4.2. The

best descriptions of data are provided by the SHERPA, ALPGEN MC generators. The implementation
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of multi-parton tree level matrix elements can help these two MC generators follow the shape of data
in the high pZ region. The new tuning of POWHEG+PYTHIAS8 gives better agreement with data than

POWHEG+PYTHIAG6. The descriptions provided by MC@NLO or PYTHIA+HERWIG are the worst.
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Figure 5.21: Comparison of the final normalised cross section 2 divided by the RESBOS prediction
Pr
as a function of p% with predictions from different MC generators as used by ATLAS (“Born” level).

In addition, this measurement using the high statistical data sample in 2011, 4.7 fb~! of the total
integrated luminosity is compared with the one measured in ATLAS using the early data in 2010, 35 —40
pb~! of the total integrated luminosity . The high statistical sample allows to reduce the bin widths and
increase the precision of the measurement. The detailed shape of p% can be studied. The range of the
measurement is extended from 350 GeV to 600 GeV. As can be seen in Figure 5.22, the p% measurement
published by ATLAS using 35 —40 pb~! shows a good agreement with the result of this analysis obtained
with 4.7 fb~!.
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Figure 5.22: Comparison of the fiducial normalised cross section measurements e in electron chan-

with the RESBOS CTI0 prediction as a function of p%.

141



5.7.3 Acceptance correction to the full phase space measurement

As discussed in Section 5.1.1 the fiducial differential cross section as a function of p% of the Z boson can

i
norm:

be extrapolated to the full phase space by applying the normalised acceptance correction factors A
Factors determined at the “Born”, “Dressed” and “Bare” levels are shown in Figure 5.23. As already
observed in [16], the dominant uncertainty on these extrapolation factors results from the differences be-
tween the MC generators. The A/, extrapolation factors determined at the “Born” level using different
MC generators have therefore been compared. This comparison is presented in Figure 5.24. Differences

are observed up to 8% , which will be used to define the systematic uncertainty on the determination of

these A’,,,, factors. The values of Al . correction factors are provided in Table 5.4.
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Figure 5.23: The normalised acceptance correction factors Al

as function of p% obtained with
POWHEG+PYTHIA. The correction factors correct to the “Born” level (a), to the “Dressed” level (b)

and to the “Bare” level (c). Only statistical uncertainties are shown.
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Bin i vt Aorm Born) | 1= Apressea/Asorn | 1= Aare/Aorn || Smodel

[GeV] (%] (%] (%]
1 0.0-25 0.913 £ 0.0498 -0.20 0.26 39
2 25-50 0.934 £+ 0.0332 -0.11 0.29 3.7
3 5.0-8.0 0.966 £+ 0.0300 0.00 0.26 3.7
4 80-11.4 0.991 £ 0.0322 0.16 0.25 20
5 11.4-149 | 1.011 +£0.0374 0.12 -0.02 0.7
6 14.9 - 18.5 1.021 £ 0.0432 0.09 -0.41 1.7
7 18.5-22.0 1.030 £ 0.0504 0.02 -0.55 23
8 22.0-25.5 1.038 £ 0.0572 0.05 -0.36 2.9
9 25.5-29.0 1.046 £ 0.0641 0.09 -0.23 2.7
10 29.0 - 32.6 1.053 £ 0.0705 -0.09 -0.23 2.6
11 32.6-36.4 1.064 £ 0.0760 0.14 0.00 33
12 36.4-40.4 1.075 £ 0.0820 0.17 0.43 3.7
13 40.4 - 44.9 1.087 £ 0.0860 0.12 0.29 4.6
14 449 -50.2 1.105 + 0.0885 0.23 0.66 4.7
15 50.2-56.4 | 1.122 4+0.0930 0.23 0.82 3.8
16 56.4-63.9 1.140 £ 0.0978 0.32 0.92 3.7
17 63.9-73.4 1.154 £ 0.1038 0.31 1.11 4.1
18 73.4-854 1.155 £0.1156 0.39 1.06 3.9
19 85.4-105.0 | 1.144 £ 0.1241 0.39 0.86 4.1
20 105.0-132.0 | 1.186 = 0.1539 0.04 -0.21 3.5
21 132.0-173.0 | 1.295 £ 0.1894 0.02 -0.61 34
22 | 173.0-253.0 | 1.448 £+ 0.2461 -0.18 -0.93 5.8
23 | 253.0-600.0 | 1.646 £ 0.4041 -0.33 -0.90 6.3

Table 5.4: The normalised acceptance correction factors Al at the “Born”, “Dressed” and “Bare”

levels. Statistical uncertainties on A, at the “Born” level are shown, as well as the model uncertainty

obtained by comparing different MC generators.
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5.8 Summary

The differential cross section of Z — ee as a function of p% was studied. This measurement is improved
mostly in the statistic uncertainty using 4.7 fb~! in comparison with the same measurement in 2010 using
35—40 pb~! [16]. The main systematic uncertainties were estimated. The total systematic uncertainty
is ~ 1% except the first bin with 2.6% and the last bin with 3%. Corresponding numbers in the 2010
measurement for the combined results of the electron and muon channels are ~ 2%, 4.7% (the first bin),
5.4% (the last bin). Among all sources of systematic uncertainties of the p% measurement in this analysis,
the dominant contributions come from the electron energy scale correction at high p% with the maximum
is 2.5% and from the unfolding procedure at low p% with the maximum is 2.5%.

The precision of the p% measurement at LHC is limited by experimental systematic uncertainties
rather than the available event statistics. Even most of statistics of this measurement is in the low p%
region, the bin widths of the p% spectrum limited by the experimental resolution do not allow to access
in detail the p% shape in this region which is important to understand the physics due to the soft and
collinear gluon emission. New ideas are therefore needed in order to exploit fully the data for studying
the physics of pZ. As mentioned in Section 1.3, a new variable ¢, has number of advantages for this

study. Details of the measurement using this optimized variable will be studied in Chapter 6.
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Chapter 6

The differential cross section of Z — ee as

a function of ¢,

As mentioned in Section 1.3, ¢, is less sensitive to the effects of experimental resolution while it can ad-
dress the same physics issues as p%. This chapter will present the difference cross section measurement
as a function of the ¢, of the Z boson. This work is reported in [69]. The unfolding procedure of the
¢, spectrum is presented in Section 6.1. The evaluation of systematic uncertainties is explained in Sec-
tion 6.2. The result of the ¢, measurement will be compared with theoretical predictions in Section 6.3.

Section 6.5 is dedicated to comparisons between the p% and ¢, measurements.

6.1 The unfolding of the ¢, spectrum

6.1.1 Purity and binning optimization

The ¢, bin widths have been optimized requiring a purity greater than 80% in each ¢, bin. In addition
to this purity requirement the statistical uncertainty is required to be smaller than 0.5% up to ¢, = 0.5
for each ¢, bin. The bin widths for ¢, > 0.5 have been smoothly increased up to ¢ ., ~ 3, this cor-
responds to pZ ~ 300 GeV. The optimization of the ¢, bin widths has been performed with these two
requirements via an iterative scan of the ¢; spectrum using both data and signal MC events following a
similar procedure employed for p%. The number of selected bins turns out to be 34 and the final selected
¢, range is [0 —3.277]. The purity of the ¢, reconstruction at the Born level using standard electrons

and GSF electrons is shown in Figure 6.1. The greater purity achievable with the GSF electrons is the
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motivation for their use in the Z — ee analysis.
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Figure 6.1: Purity as a function of the ¢, measurement. Purity factors obtained for GSF and standard

electron reconstruction chains are compared [09].

6.1.2 Bin-by-bin correction factors

As discussed in Section 5.5.4, the p% spectrum provided by the POWHEG+PYTHIA MC can not describe
the p% spectrum reconstructed in data. The same difference is observed in Op-

The unfolded p% spectrum using the default POWHEG+PYTHIA MC and the unfolded one using the
POWHEG+PYTHIA MC reweighted to RESBOS are different up to ~ 5% in the low p% region by using
the bin-by-bin unfolding. This difference is ~ 3% by using the iterative Bayesian unfolding. This led
to the choice the iterative Bayesian unfolding method for the p% measurement. In the ¢, measurement
the impact of the MC shape on the unfolding is very small. Even using bin-by-bin correction factors
to unfold the ¢, spectrum, the difference observed by using the default POWHEG+PYTHIA MC and by
using the POWHEG+PYTHIA MC reweighted to RESBOS is less than 0.2% [69]. Therefore, the bin-by-
bin unfolding method is employed for this measurement.

Figure 6.2 shows the normalized bin-by-bin correction factors, C' used to unfold the measured

norm?

¢, spectrum at the “Born”, “Dressed” and “Bare” levels. The values are shown in Tables 6.1.
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Bin i Range Cliorm,Born fwrm,Dressed Cliorm,Bare
0 0.000 —0.004 | 0.987 4 0.002 | 0.996 & 0.002 | 0.995 & 0.002
1 0.004 —0.008 | 0.983 4 0.002 | 0.993 £ 0.002 | 0.992 + 0.002
2 0.008 —0.012 | 0.986 + 0.002 | 0.994 + 0.002 | 0.991 + 0.002
3 0.012-0.016 | 0.986 4+ 0.002 | 0.995 £ 0.002 | 0.993 4+ 0.002
4 0.016 —0.020 | 0.985 4 0.002 | 0.993 & 0.002 | 0.991 & 0.002
5 0.020 - 0.024 | 0.985 4 0.002 | 0.992 + 0.002 | 0.991 + 0.002
6 0.024 -0.029 | 0.990 £ 0.002 | 0.996 + 0.002 | 0.994 + 0.002
7 0.029 - 0.034 | 0.986 £ 0.002 | 0.993 4+ 0.002 | 0.992 + 0.002
8 0.034 -0.039 | 0.990 & 0.002 | 0.994 £ 0.002 | 0.993 & 0.002
9 0.039 - 0.045 | 0.987 & 0.002 | 0.990 £ 0.002 | 0.990 + 0.002
10 | 0.045-0.051 | 0.993 +0.002 | 0.994 4+ 0.002 | 0.994 + 0.002
11 0.051-0.057 | 0.993 £0.002 | 0.992 4+ 0.002 | 0.992 + 0.002
12 0.057 - 0.064 | 0.996 4+ 0.002 | 0.995 £ 0.002 | 0.994 4+ 0.002
13 | 0.064 -0.072 | 0.995 4+ 0.002 | 0.994 4 0.002 | 0.994 + 0.002
14 | 0.072-0.081 | 1.000 #+0.002 | 0.996 + 0.002 | 0.996 + 0.002
15 | 0.081-0.091 | 0.998 +0.002 | 0.995 +0.002 | 0.996 + 0.002
16 0.091 - 0.102 | 0.998 4+ 0.002 | 0.994 + 0.002 | 0.995 4+ 0.002
17 | 0.102-0.114 | 1.001 4+ 0.002 | 0.995 4 0.002 | 0.995 4 0.002
18 | 0.114-0.128 | 1.004 +0.002 | 0.998 4+ 0.002 | 0.999 + 0.002
19 0.128 = 0.145 | 1.004 4+ 0.002 | 0.997 £+ 0.002 | 0.997 4+ 0.002
20 0.145-0.165 | 1.004 4+ 0.002 | 0.998 £+ 0.002 | 0.997 4+ 0.002
21 | 0.165-0.189 | 1.010 4+=0.002 | 1.003 4= 0.002 | 1.004 & 0.002
22 | 0.189-0.219 | 1.010 +0.002 | 1.003 4 0.002 | 1.003 & 0.002
23 0.219-0.258 | 1.013 +0.002 | 1.005 £+ 0.002 | 1.007 4+ 0.002
24 0.258 - 0.312 | 1.011 £0.002 | 1.006 4 0.002 | 1.008 + 0.002
25 | 0.312-0.391 | 1.018 =0.002 | 1.013 +=0.002 | 1.015 4 0.002
26 | 0.391-0.524 | 1.024 +0.002 | 1.021 +0.002 | 1.023 & 0.002
27 | 0.524-0.695 | 1.033 +0.002 | 1.030 +0.002 | 1.032 £ 0.002
28 0.695-0.918 | 1.044 +0.003 | 1.043 £0.003 | 1.045 4 0.003
29 | 0918 —1.153 | 1.063 4= 0.004 | 1.059 4= 0.004 | 1.061 =& 0.004
30 | 1.153-1.496 | 1.080 4+ 0.005 | 1.076 4 0.004 | 1.080 =+ 0.004
31 1.496 —1.947 | 1.081 £+ 0.006 | 1.079 £ 0.006 | 1.081 + 0.006
32 1.947 -2.522 | 1.082 £ 0.008 | 1.083 £ 0.007 | 1.088 & 0.007
33 2.522 -3.277 | 1.080 4+ 0.009 | 1.076 £ 0.009 | 1.083 4 0.009

Table 6.1: The normalized correction factors for the “Born”, “Dressed” and “Bare” levels in the Z — ee

channel. Only statistical uncertainties are shown (POWHEG+PYTHIA ).
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6.2 Evaluation of systematic uncertainties

The method to propagate the systematic uncertainties is explained in Section 5.6.

6.2.1 Pileup reweighting

The method to propagate the pileup reweighting uncertainty is explained in 5.6.1. The difference in the
differential cross section with and without applying the additional vertex reweighting is considered as

the systematic uncertainty due to the pileup reweighting which is shown in Figure 6.3.
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Figure 6.3: The systematic uncertainty due to the pileup reweighting (dpieup) as a function of q),’; Un-

certainties are given in per cent [69].

6.2.2 Primary vertex position along z-axis

The impact of the reweighting of the z vertex shape of the signal MC (see section 4.1.3.3) on the correc-
tion factors C' and on final cross sections has been estimated and found to be small. Cross sections are
calculated with and without applying this reweighting and the difference between the two is taken as a
systematic error. The evolution of this uncertainty as a function of ¢, bins is represented in Figure 6.4.
As seen from the bin-by-bin fluctuation of this uncertainty, the precision of its determination is limited

by the available statistics for the MC signal sample. This uncertainty is thus certainly smaller than the
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statistical precision of the MC statistics of ~ 0.2%. As the shape of the z-vertex distribution in the MC
is reweighted to the one measured in data, the impact of a possible mis-description of it in the MC sim-
ulation is expected to be much smaller than the effect shown in 6.4. This uncertainty can therefore be

safely neglected.
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Figure 6.4: Evolution of the systematic uncertainty (8y;,) associated to the reweight of the z vertex shape

as a function of ¢,. Uncertainties are given in per cent [09].

6.2.3 QED final state radiation

The same study as in Section 5.6.3 is done for the ¢, measurement. The effect of the QED FSR correction
on the ¢, measurement is shown in Figure 6.5. A conservative systematic uncertainty of Orsr = 0.3%
is assigned to account for uncertainties due to the ¢, dependent modelling of electroweak radiative

corrections. This conclusion holds for ¢, distributions at the “Born”, “Dressed” and “Bare” levels.

6.2.4 PDFs

Details of the PDF uncertainty is explained in 5.6.4. The small difference between the p% measurement
and the ¢, measurement is the unfolding method used to propagate the systematic uncertainties. Here,

the PDF uncertainty propagation uses directly the bin-by-bin correction factors. The PDF uncertainty on
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Figure 6.5: The difference of the QED FSR correction in Z — ee POWHEG+PYTHIA and the one in
Z — ee SHERPA as a function of ¢y: from the “Dressed” level to the “Born” level (a) and from the

“Bare” level to the “Born” level (b).

the normalized cross section in the i'" ¢, bin is estimated as:

A(l Ac; )PDF_1 N (/norm) (/norm) ")

- : 6.1
o A(97)i 2 ;1 (1/ m) o
n(+)

where (Ci . )rew is the normalized correction factor in the i ¢, bin reweighted from MRSTLO* to

)0
norm/jrew

the eigenvector PDF set n of MSTWOSLO and (C: is the normalized correction factor reweighted
from MRSTLO¥* to the central PDF set of MSTWOSLO. The resulting PDF uncertainty as a function of

¢, cross section bins is shown in Figure 6.6. The uncertainty is increasing with ¢ up to ~ 0.1%.

6.2.5 Unfolding

The effect of the MC shape dependence has been studied carefully for the ¢; measurement [69]. The re-
constructed ¢, spectrum in POWHEG reweighted to RESBOS (i.e. the POWHEG ¢, spectrum is reweighted
to the one provided by RESBOS) is unfolded using the Cz factors computed with POWHEG reweighted
to data. This distribution is compared with the true ¢, spectrum of POWHEG reweighted to RESBOS.
We observe deviations smaller than 0.1% in the full ¢, range. Deviations of similar size are observed

when the reconstructed ¢, spectrum provided by POWHEG reweighted to data is unfolded using the Cz
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Figure 6.6: The PDF uncertainty (8ppr) for the PYTHIA MC sample as a function of ¢y cross section

bins. Uncertainties are given in per cent [69]

factors calculated with POWHEG reweighted to RESBOS. The MC samples used for these tests are statis-
tically correlated, the deviations observed are very small and due to different ¢, shapes in our MC. The
statistical fluctuations due to the available MC statistics are taken into account as a separate systematic
uncertainty. It is worth to say that if we used the default POWHEG MC to unfold data, the variations we
would observe would be anyway below 0.2%. In Figure 6.15 we show that data and POWHEG differ up
to 10% in some bins and this means that the unfolded ¢, spectrum is only slightly dependent on the ¢,
shape provided by MC generators. In Figure 6.7 we plot the difference in per cent in each ¢, bin between
the C correction factors calculated using POWHEG reweighted to RESBOS and the Cz correction factors
calculated using POWHEG reweighted to data. We quote these variations as systematic uncertainties.
The bin-by-bin unfolding is chosen for the ¢; measurement which has the high purity presented in
Section 6.1.1. However, a small migration is still possible. It is well known that correlations between
adjacent bins are neglected by the bin-by-bin correction technique. In order to understand the effect of the
unfolding method on the systematic uncertainty found as in Figure 6.7, an iterative Bayesian unfolding
technique has been employed. The results obtained by using these two unfolding technique are in good
agreement. The effect of different PDF sets discussed in Section 6.2.4 is to change the ¢, shape of the

MC used to unfold data, therefore we do not quote a separate uncertainty for PDFs.
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Figure 6.7: Difference in per cent in each ¢y bin between Cz bin-by-bin correction factors calculated
using POWHEG signal MC reweighted to the ¢, spectrum produced by RESBOS predictions or measured

using present data is quoted as the systematic uncertainty due to the unfolding procedure (dyyfo1a) [09].

6.2.6 Monte Carlo statistics

Due to the limited statistics of the POWHEG signal MC sample, a sizable statistical uncertainty is present
for the determination of the C' correction factors. This leads to a systematic uncertainty on the cross
section measurement which is uncorrelated between data points. Its evolution as a function of ¢, is
shown in Figure 6.11(a). This uncertainty is of the order of 0.2%, increasing up to 0.8% for larger ¢,

values.

6.2.7 Tracking

The tracking systematic uncertainty is studied carefully in the ¢, measurement [69]. Specific to the
measurement of ¢y is the use of 17 and ¢ of the lepton track, measured at the interaction point. Therefore,
a substantial part of the experimental systematic error is expected to come from the tracking. The ¢,
variable is a function of the azimuthal opening angle in [0,7], referred thereafter as A¢ and of An, the
difference in 1 between the two leptons. This variable is directly sensitive to physics and therefore can

not be compared to a simulated distribution to assess systematics.
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The measurement of ¢ of electrons is dominantly affected by bremsstrahlung. Therefore, an angle
6 = 7 - A¢ ') was defined as shown in Figure 6.8(a): a sign is given depending on the relative position
on the second track with respect to the reference one. The reference track can be either the positron track
(Bpys ) or the track associated to the highest energy cluster (0, ). A distribution of 6p,s is shown in
Figure 6.8(b). If bremsstrahlung was fully recovered by the tracking algorithm, the mean of 8p,; would

be 0, while the width of the distribution is not significant as it also reflects the physics.

3 105 E‘» L L L ‘ L L L t
E = A E
[= — I 1
W = A a
Reference track - $ _
10* E =
108 =
Second track E / \ 3
, K% —+- Data \"-\,s&
10 Mean 0.0019 + 0.0005 E
‘ L1 1| ‘ L1 1| ‘ L1 1| ‘ L1 1| ‘ L1 1| ‘ L1 1| ‘:
-3 -2 -1 3
ePos
(a) (b)

Figure 6.8: a) Definition of “signed” 0 in the transverse plane. The reference track can be either the
positron track or the track with the highest pt . b) Example of a distribution of “signed” 0 of the positron

(Bpys ) in the case of the GSF tracking [69].

The tracking systematic uncertainty can come from angular bias, angular resolution, the difference

between data and MC in the ¢,; of electrons as in Figure 4.12(f) and charge misidentification.

6.2.7.1 Angular bias

The distribution of the 6 between electron and positron in Z — ee events is studied as a function of the
¢ and n of the positron. The mean value of this distribution in each bin of ¢ and 7 of the positron is
determined using an iterative Lorentzian fit of the central part of the distribution. The evolutions of the

mean values of the 6 as a function of ¢ and 1) of the positron are studied.

1)@ has the same definition as Qacop mentioned in Section 1.3.1 but with the addition of a sign.
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Values for data and MC are compared and the difference between data and MC values as a function
of ¢ is presented in Figure 6.9(a). Differences between Data and MC values are within 1.5 mrad, given
the statistical accuracy. A maximal bias of +-1.5 mrad on the A¢ angle between the two Z decay leptons
will therefore be used as a systematic uncertainty. The resulting uncertainty on the measured ¢, cross
section is presented in figure 6.9(b). It can be seen that bin-by-bin fluctuations of the uncertainty are
about of the same order of magnitude as the statistical uncertainty on the calculated values. This means
that given the available signal MC statistics it is difficult to precisely estimate the bin-by-bin correlations
of this uncertainty. Therefore this uncertainty is treated as uncorrelated between ¢, bins and to use mean
value of 0.1% in all ¢, bins.

Concerning a possible bias on 17 measurements of the leptons, the effect of a bias of 2 mrad on the
measured @, cross section has been tested and it is negligible. No systematic uncertainty arising from a

possible bias on 1 angles will therefore be considered.
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Figure 6.9: Evolution of the mean value of signed acoplanarity distribution as a function of ¢ of the
positron, the difference between data and MC is presented (a). Evolution as a function of ¢y of the
systematic uncertainty (8y) associated to a possible bias of 1.5 mrad on ¢ (b). Uncertainties are given

in per cent [69].

6.2.7.2 Angular resolution

The effect of a possible mis-description of the detector resolution on the measurements of ¢ and 1 angles
has also been studied. The resolution in the MC on both angles was enlarged by 20% and the impact on

the measured normalised cross section as a function of ¢, was calculated. We observe that a change of
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the resolution on 1 has no impact on the measured cross section. A change of the resolution on ¢ has a
larger impact on the measured cross section, of maximally 0.2% as presented in figures 6.10. This will

therefore be also considered as a systematic uncertainty on the final measurement.
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Figure 6.10: Evolution as a function of ¢y of the systematic uncertainty ( Opres) associated to a possible

misdescription by 20% in the MC of the resolution on ¢ angle. Uncertainties are given in per cent [69].

6.2.7.3 Data/MC differences in ¢,; distributions

In control distributions for the Z — ee decay channel, a small trend of £1.5% is observed in the ratio
between data and MC prediction for the distribution of the ¢ angle of the sub-leading electron, as seen in
Figure 4.12(f). The impact of such a mis-description of an angular variable was studied by reweighting
the MC to the data as a function of the ¢,;» angle of the sub-leading electron and propagating this to the

The difference in per cent between nominal C',,,, factors

determination of the correction factors C; horm

norm:*

and those obtained after a reweighting of the signal MC is of the order of 0.02% and the impact on the

final cross section measurement is therefore negligible.

6.2.7.4 Charge misidentification

The electron charge mis-identification has been measured in data and in MC in the 2011 data within

the egamma group (see references in [69]). Charge mis-identification for electrons arise from a wrong
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track associated to the electron cluster. The rate of charge mis-identification measured in data and in MC
simulations is the same in the central region, while increasing to maximally 3% at larger 7, values [69].
Possible effects of this small mis-description by the MC of the charge mis-identification rate observed in

data have been tested. The resulting uncertainty on the measured normalised cross section is negligible.

6.2.8 Energy scale and energy resolution

The systematic uncertainties due to the electron energy scale and resolution corrections on the ¢, mea-
surement are estimated in the same procedure as in Section 5.6.7. The resulting uncertainties on the
normalised cross section are represented as a function of (}),’; in Figures 6.11(b) and (c) for the electron
energy scale and the electron energy resolution, respectively. The uncertainties are below 0.1% and only

slightly dependent on ¢;,.

6.2.9 Electron reconstruction and identification efficiency

The systematic uncertainties due to the electron reconstruction and identification efficiency correction on
the ¢, measurement are estimated in the same procedure as in Section 5.6.8. The resulting uncertainty

on the normalised cross section is represented as a function of ¢, in Figure 6.11(d).

6.2.10 Electron trigger efficiency

The systematic uncertainties due to the electron trigger efficiency correction on the ¢, measurement are
estimated in the same procedure as in Section 5.6.9. The resulting uncertainty on the normalised cross

section is negligible, maximally 0.004%.

6.2.11 Backgrounds

An uncertainty on the amount of QCD background events as defined in Table 4.6 is used. In each cross
section bin, this uncertainty is combined with the statistical uncertainty on the estimated number of QCD
events in the bin. This results in an uncertainty on the normalised cross section of ~ 0.05%, which is
considered as correlated between bins. The evolution of this uncertainty as a function ¢, cross section
bins is represented in Figure 6.11(e).

Similarly, an uncertainty of 10% on the contribution of electroweak background processes as a func-

tion of ¢, is assumed. In each cross section bin, this uncertainty is combined with the statistical uncer-
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tainty on the estimated number of electroweak events in the bin, which may not be negligible in some
cases due to the low MC statistics available for some of the processes. This results in an uncertainty on
the normalised cross section of up to 0.35% at higher ¢, values, which is considered as correlated. The

evolution of this uncertainty as a function of ¢, cross section bins is represented in Figure 6.11(f).
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Figure 6.11: Evolution of absolute systematic uncertainties from different error sources as a function of
(p;; : (a) Sycstar uncertainty due fo the limit of MC statistics, (b) O uncertainty due to the electron energy
scale correction, (c) Ogyes uncertainty due to the electron energy resolution smearing, (d) 8;p uncertainty
due to the electron reconstruction and identification efficiency correction, (e) Socp uncertainty on the
contribution of QCD background, (f) Ogw uncertainty on the contribution of electroweak backgrounds.

All uncertainties are given in per cent [69].
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6.3 Results

6.3.1 The fiducial differential cross section as a function of ¢,

_ . 1ldo . Lo
The normalised cross section EdTb* as a function of ¢, and compared to the RESBOS prediction is
n
presented in Figure 6.12(a), the ratio to the RESBOS prediction is shown in Figure 6.12(b). Numerical
results are also provided in Table 6.2. Cross sections at the “Born”, “Dressed” and “Bare” levels are also

provided in Table 6.3. The typical systematic uncertainty of this measurement is well below 0.5% in

most of the ¢, range.
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Figure 6.12: The normalised cross section 5 w as a function of ¢, compared to the RESBOS prediction
n

(a) and the ratio to the RESBOS prediction (b) [69].
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¢y bin 1/odo/dy | Ouar | Osys | o Omcsiar | OFsr | O O Otres | O | Orrig | Opres | Oocp | Oew | Sunfola | Spiteup
(%] | [%] | [%] (%] [%] (%] (%] (%] (%] (%] (%] [%] (%] (%] [%]

0.000 — 0.004 9.771 046 | 0.46 | 0.65 0.19 0.30 0.10 0.03 -0.01 0.02 0.00 0.27 0.04 0.00 -0.02 -0.01
0.004 —0.008 9.682 047 | 0.45 0.65 0.20 0.30 0.10 0.02 0.00 0.02 0.00 0.11 0.04 0.01 -0.21 -0.02
0.008 - 0.012 9.424 047 | 041 0.63 0.20 0.30 0.10 0.03 -0.01 0.02 0.00 0.15 0.04 0.01 0.06 -0.01
0.012-0.016 9.141 0.48 | 049 | 0.69 0.20 0.30 0.10 0.03 0.01 0.02 0.00 0.26 0.04 0.01 -0.17 -0.01
0.016 — 0.020 8.824 0.49 | 0.39 | 0.62 0.21 0.30 0.10 0.04 -0.01 0.02 0.00 0.01 0.04 0.00 0.08 -0.02
0.020 - 0.024 8.482 0.50 | 0.39 | 0.63 0.21 0.30 0.10 0.03 -0.01 0.02 0.00 0.09 0.04 0.01 -0.03 -0.02
0.024 - 0.029 7.974 0.46 | 0.40 | 0.61 0.19 0.30 0.10 0.03 0.01 0.02 0.00 0.14 0.03 0.01 0.05 -0.01
0.029 - 0.034 7.567 047 | 0.37 | 0.60 0.19 0.30 0.10 0.03 0.00 0.01 0.00 0.03 0.03 0.02 0.00 -0.03
0.034 -0.039 7.021 049 | 042 | 0.64 0.19 0.30 0.10 0.02 0.00 0.01 0.00 0.18 0.03 0.02 -0.06 -0.02
0.039 - 0.045 6.553 0.46 | 0.37 | 0.59 0.18 0.30 0.10 0.02 0.01 0.01 0.00 0.05 0.02 0.01 0.01 -0.02
0.045 -0.051 5.926 0.48 | 0.37 | 0.61 0.19 0.30 0.10 0.01 0.01 0.01 0.00 -0.03 0.02 0.01 0.02 -0.02
0.051 -0.057 5.518 0.50 | 0.38 | 0.63 0.19 0.30 0.10 0.01 0.00 0.01 0.00 0.05 0.01 0.01 -0.07 -0.03
0.057 - 0.064 5.038 048 | 0.38 | 0.61 0.18 0.30 0.10 0.01 0.01 0.01 0.00 0.06 0.01 0.02 -0.06 -0.03
0.064 - 0.072 4.555 048 | 0.39 | 0.62 0.18 0.30 0.10 0.01 -0.01 0.01 0.00 -0.08 0.00 0.01 -0.12 -0.02
0.072 - 0.081 4.011 0.48 | 0.37 | 0.60 0.18 0.30 0.10 -0.01 0.01 0.00 0.00 -0.04 0.00 0.00 -0.03 -0.03
0.081 —0.091 3.584 0.48 | 0.37 | 0.61 0.18 0.30 0.10 -0.01 0.01 0.00 0.00 -0.08 -0.01 0.01 0.03 -0.03
0.091 - 0.102 3.149 0.49 | 0.39 | 0.63 0.18 0.30 0.10 0.00 0.00 0.00 0.00 -0.10 -0.01 0.00 -0.09 -0.03
0.102-0.114 2.726 0.50 | 040 | 0.64 0.18 0.30 0.10 0.02 0.02 -0.01 0.00 -0.14 -0.02 -0.01 0.03 -0.02
0.114-0.128 2.336 0.50 | 0.42 | 0.66 0.18 0.30 0.10 0.00 0.00 -0.01 0.00 -0.20 -0.03 0.00 0.06 -0.03
0.128 - 0.145 1.996 049 | 0.39 | 0.63 0.18 0.30 0.10 -0.03 0.01 -0.01 0.00 -0.12 -0.03 0.00 0.03 -0.02
0.145-0.165 1.687 0.49 | 042 | 0.65 0.18 0.30 0.10 -0.02 | -0.01 -0.01 0.00 -0.19 -0.03 -0.01 -0.02 -0.04
0.165-0.189 1.355 0.50 | 040 | 0.64 0.18 0.30 0.10 -0.03 0.01 -0.02 0.00 -0.13 -0.04 | -0.01 0.05 -0.02
0.189 -0.219 1.079 0.50 | 0.38 | 0.63 0.18 0.30 0.10 -0.02 | -0.01 -0.02 0.00 -0.10 -0.04 | -0.01 -0.02 -0.03
0.219-0.258 8.274 - 107! 0.50 | 0.39 | 0.63 0.18 0.30 0.10 -0.03 0.01 -0.03 0.00 -0.11 -0.04 | -0.02 -0.02 -0.01
0.258 - 0.312 5.968 - 10! 0.50 | 0.39 | 0.64 0.18 0.30 0.10 -0.04 0.00 -0.03 0.00 -0.12 -0.05 -0.03 -0.01 -0.04
0.312-0.391 3.973- 107! 0.51 0.38 | 0.63 0.18 0.30 0.10 -0.04 0.00 -0.03 0.00 0.02 -0.04 | -0.05 -0.04 -0.02
0.391 - 0.524 2.275-107! 0.52 | 0.39 | 0.65 0.18 0.30 0.10 -0.05 -0.02 | -0.04 0.00 -0.05 -0.03 -0.09 -0.06 0.00
0.524 - 0.695 1.176 - 107! 0.64 | 042 | 0.76 0.22 0.30 0.10 -0.03 0.01 -0.03 0.00 -0.07 -0.01 -0.14 -0.06 -0.01
0.695-0.918 5.790 - 1072 0.79 | 048 | 0.92 0.27 0.30 0.10 -0.07 -0.02 | -0.01 0.00 -0.02 -0.01 -0.21 -0.06 0.00
0918 -1.153 2.94.1072 1.07 | 0.56 1.21 0.37 0.30 0.10 -0.04 0.02 -0.01 0.00 -0.01 -0.02 -0.27 -0.02 -0.04
1.153 -1.496 1.54 - 1072 1.22 | 0.60 1.36 0.43 0.30 0.10 -0.03 -0.03 0.01 0.00 0.00 -0.02 -0.27 -0.07 0.03
1.496 — 1.947 7.25-1073 1.55 | 0.73 1.71 0.54 0.30 0.10 -0.07 0.00 0.01 0.00 0.03 -0.03 -0.35 0.02 -0.05
1.947 - 2.522 3.52.1073 1.97 | 0.84 | 2.14 0.69 0.30 0.10 -0.07 -0.03 | -0.01 0.00 -0.13 -0.05 -0.30 -0.06 -0.02
2.522 -3.277 1.73 - 1073 2.46 1.00 | 2.65 0.86 0.30 0.10 -0.11 -0.04 | -0.02 0.00 0.20 -0.10 | -0.32 -0.01 -0.01




(p,fl bin 1/odo/ dq),f, Ostar | Osys 1/odo/d ¢;1‘ Ostar | Osys l/odo/d (p,fl Ostar | Osys
(Born) %] | [%] (Dressed) [%] | [%] (Bare) [%] | [%]

0.000 — 0.004 9.771 0.46 | 0.46 9.687 0.46 | 0.46 9.699 0.46 | 0.46
0.004 — 0.008 9.682 0.47 | 0.40 9.585 0.47 | 0.39 9.589 0.47 | 0.39
0.008 —0.012 9.424 0.47 | 0.41 9.355 0.47 | 0.40 9.376 0.47 | 0.40
0.012-0.016 9.141 0.48 | 0.46 9.057 0.48 | 0.46 9.071 0.48 | 0.46
0.016 — 0.020 8.824 0.49 | 0.38 8.757 0.49 | 0.38 8.774 0.49 | 0.37
0.020 - 0.024 8.482 0.50 | 0.39 8.426 0.50 | 0.39 8.435 0.50 | 0.39
0.024 - 0.029 7.975 0.46 | 0.40 7.931 0.46 | 0.39 7.943 0.46 | 0.39
0.029 - 0.034 7.568 0.47 | 0.37 7517 047 | 0.37 7.525 0.47 | 037
0.034 - 0.039 7.021 0.49 | 0.42 6.998 0.49 | 0.41 7.005 0.49 | 041
0.039 - 0.045 6.553 0.46 | 0.37 6.534 0.46 | 0.36 6.533 0.46 | 0.36
0.045 - 0.051 5.926 0.48 | 0.37 5.921 0.48 | 0.36 5.923 0.48 | 0.36
0.051 - 0.057 5.519 0.50 | 0.37 5.522 0.50 | 0.37 5.523 0.50 | 0.37
0.057 - 0.064 5.038 0.48 | 0.37 5.041 0.48 | 0.37 5.044 0.48 | 0.37
0.064 - 0.072 4.555 0.48 | 0.37 4.561 0.48 | 0.37 4.561 0.48 | 0.37
0.072 - 0.081 4011 0.48 | 0.37 4.030 0.48 | 0.36 4.029 0.48 | 0.36
0.081 - 0.091 3.584 0.48 | 0.37 3.595 0.48 | 0.37 3.593 0.48 | 0.37
0.091 - 0.102 3.149 0.49 | 0.38 3.161 0.49 | 0.37 3.159 0.49 | 0.37
0.102-0.114 2.726 0.50 | 0.40 2742 0.50 | 0.39 2741 0.50 | 0.39
0.114-0.128 2.336 0.50 | 0.42 2351 0.50 | 0.42 2.349 0.50 | 0.41
0.128 - 0.145 1.996 0.49 | 0.39 2.011 0.49 | 0.38 2.009 0.49 | 0.38
0.145-0.165 1.687 0.49 | 0.41 1.697 0.49 | 0.41 1.698 0.49 | 0.41
0.165 - 0.189 1.355 0.50 | 0.39 1.364 0.50 | 0.39 1.363 0.50 | 0.39
0.189 -0.219 1.079 0.50 | 0.38 1.087 0.50 | 0.38 1.087 0.50 | 0.38
0.219-0.258 || 8.274-107" | 050 | 0.38 || 8.336-10"! | 0.50 | 0.38 || 8.320-10"! | 0.50 | 0.38
0.258-0.312 || 5.968-10~" | 050 | 0.39 || 5.998-10"! | 0.50 | 0.39 || 5.988-10"! | 0.50 | 0.39
0.312-0.391 || 3.973-10' | 0.51 | 0.37 || 3.991-10"! | 0.51 | 0.37 || 3.985-10"! | 0.51 | 0.37
0.391-0.524 || 2275-107! | 052 | 039 || 2.282-10"! | 052 | 0.38 || 2.278-10~1 | 0.52 | 0.38
0.524-0.695 || 1.176 10" | 0.64 | 0.42 || 1.179-10"! | 0.64 | 0.41 || 1.177-10"! | 0.64 | 0.41
0.695-0.918 || 5.790-107% | 0.79 | 047 || 5.796-107% | 0.79 | 047 || 5.787-107% | 0.79 | 0.47
0.918-1.153 || 2.94-1072 | 1.07 | 056 || 2.95-10"2 | 1.07 | 055 || 2.95-1072 | 1.07 | 0.55
1.153-1.496 || 1.54-1072 | 122 | 0.60 || 1.55-1072 | 1.22 | 059 || 1.54-1072 | 1.22 | 0.59
1.496-1.947 || 7.25-1073 | 1.55 | 0.72 || 7.26-1073 | 1.55 | 0.71 725-1073 | 1.55 | 0.71
1.947-2522 || 352-1073 | 1.97 | 0.84 || 3.51-1073 | 1.97 | 0.82 || 3.50-1073 | 1.97 | 0.82
2.522-3.277 1.73 1073 | 2.46 | 1.01 1.73-1073 | 2.46 | 0.98 1.72 1073 | 2.46 | 0.98

. . . 1 do
Table 6.3: Comparison of the normalised cross sections S dor corrected to the “Born”, “Dressed”
n

and “Bare” levels. POWHEG Z — ee MC events are used to calculate the C' correction factors. All

uncertainties are given in per cent.
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6.3.2 Comparisons with theoretical predictions

The final normalised cross section is compared with theoretical predictions from RESBOS, FEWZ in-
troduced in section 1.3.4 in Figure 6.13(a) and with the new theoretical prediction at NNLL+NNLO (a
matching of a resummation algorithm with a fixed order &'(?) computed with the program MCFM [58])
from Ref. [41] as in Figure 6.13(b). The measured cross section agrees with RESBOS within 2% for low
¢, values below 0.1. For the larger ¢, values, the agreement of NNLO FEWZ and the new prediction
from Ref. [41] with our measurement is poorer than of RESBOS. The new prediction from Ref. [41]
quantifies the full theoretical uncertainty which is dominated by the resummation uncertainty at low ¢,
and by the renormalization and factorization scale uncertainty at high ¢,,.

The effect of PDFs used in the RESBOS calculation is shown in Figure 6.14. The ratio of data to
RESBOS calculation using either CTEQ6.6 or CT10 PDFs are presented. We observe that the agreement
of data with CT10 prediction is better than with CTEQ6.6 prediction in most of the ¢, range.

In Figure 6.15, the final normalised cross section is also compared with predictions from different
MC generators used so far by ATLAS. These predictions are presented in Section 1.3.5. The agreement
between the measured cross section and the prediction of each MC generator is quantified by calculating
for each the global 2 between prediction and data. Only the statistical uncertaintes of the MC generation
samples have been used to compute the xz /ngof. The obtained values are listed in Table 6.4, where ngof

is the number of points. The best description of data is provided by the SHERPA MC generator. The

Generator X% /naot
RESBOS 6
ALPGEN 9
SHERPA 5
Mc@NLO 65
POWHEG+HERWIG 66
POWHEG+PYTHIAS 8
POWHEG+PYTHIAG 47

Table 6.4: The global xz /ngot between each MC prediction and data [69].

POWHEG generator interfaced to PYTHIAS is also able to describe the data. The effect of changing
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the parton shower algorithms interfaced to POWHEG was investigated by using PYTHIA6 and HERWIG
interfaced to the same POWHEG NLO calculation. These two variations give a worse description of data
than PYTHIAS, and deviations from data of ~ 10% are observed. The description provided by MC @NLO
interfaced to HERWIG does not properly describe the data for ¢, > 0.1, and a deviation from data of the
order of 7% are observed for ¢, <0.1.

The precision of this new measurement is by far better than the current uncertainties of theoretical

predictions. It will therefore be valuable to constrain them further.
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Figure 6.15: Comparison of the normalised cross section Eﬁw divided by the RESBOS prediction
n

as a function of ¢ with predictions from different MC generators as used by ATLAS (at the “Born”

level) [69].
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6.3.3 Acceptance correction to the full phase space measurement

As discussed in Section 5.1.1 the fiducial differential cross section as a function of ¢, of the Z boson can

i
norm:

be extrapolated to the full phase space by applying the normalised acceptance correction factors A
Factors determined at the “Born”, “Dressed” and “Bare” levels are shown in Figure 6.16. As already
observed in [16], the dominant uncertainty on these extrapolation factors results from the differences be-

tween the MC generators. The A’

norm €Xtrapolation factors determined at the “Born” level using different

MC generators have therefore been compared. This comparison is presented in Figure 6.17. Differences
of up to 10% are observed, which will be used to define the systematic uncertainty on the determination

of these Al,,,, factors. The values of A’ correction factors are provided in Table 6.5.
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Figure 6.16: The normalised acceptance correction factors Al

as function of ¢, obtained with
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and to the “Bare” level (c). Only statistical uncertainties are shown [69].
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Bin (o Ajorm Born) | 1 —Apyessed /ABorn | 1 —ABare/ABorn || Omodel
%] %) %]
0 0.000-0.004 | 0.944 +0.0013 -0.24 -0.27 3.8
1 0.004 - 0.008 | 0.942 £+ 0.0013 -0.15 -0.15 3.0
2 0.008 - 0.012 | 0.943 +0.0013 -0.20 -0.33 3.7
3 0.012-0.016 | 0.945 +0.0013 -0.13 -0.14 23
4 0.016 —0.020 | 0.948 +0.0013 -0.12 -0.21 2.5
5 0.020-0.024 | 0.950 £ 0.0014 -0.19 -0.20 2.3
6 0.024 - 0.029 | 0.954 +£0.0012 -0.10 -0.15 1.8
7 0.029 - 0.034 | 0.961 £+ 0.0013 0.04 0.04 24
8 0.034 -0.039 | 0.964 £+ 0.0013 -0.10 -0.16 22
9 0.039-0.045 | 0.972 £ 0.0012 0.06 0.10 2.2
10 | 0.045-0.051 | 0.976 £+ 0.0013 -0.04 -0.05 2.8
11 0.051 -0.057 | 0.986 £ 0.0013 -0.01 -0.01 2.1
12 | 0.057-0.064 | 0.991 £+ 0.0013 -0.03 -0.07 1.8
13 | 0.064 -0.072 | 0.996 £ 0.0013 0.03 0.02 2.1
14 | 0.072-0.081 | 1.006 £ 0.0013 0.04 0.05 1.8
15 | 0.081-0.091 | 1.014 £ 0.0013 0.21 0.22 1.0
16 | 0.091-0.102 | 1.019 £ 0.0013 0.18 0.15 1.1
17 | 0.102-0.114 | 1.028 +0.0014 0.04 0.04 1.3
18 | 0.114-0.128 | 1.034 £ 0.0014 0.19 0.23 1.3
19 | 0.128 -0.145 | 1.042 £ 0.0014 0.08 0.13 1.7
20 | 0.145-0.165 | 1.049 +0.0014 0.17 0.14 2.0
21 | 0.165-0.189 | 1.057 +0.0014 0.21 0.28 2.7
22 | 0.189-0.219 | 1.063 +£0.0014 0.18 0.12 2.3
23 | 0.219-0.258 | 1.067 = 0.0014 0.10 0.20 2.8
24 | 0.258 -0.312 | 1.078 £ 0.0014 0.25 0.30 3.0
25 | 0.312-0.391 | 1.085 £ 0.0015 0.18 0.21 34
26 | 0.391-0.524 | 1.092 £ 0.0015 0.22 0.22 3.6
27 | 0.524-0.695 | 1.091 £ 0.0019 0.07 0.06 4.3
28 | 0.695-0.918 | 1.080 £ 0.0024 0.18 0.14 4.0
29 | 0918 -1.153 | 1.061 &+ 0.0032 0.05 0.14 52
30 | 1.153-1.496 | 1.026 £ 0.0037 -0.18 -0.16 10.7
31 1.496 — 1.947 | 0.965 £ 0.0045 0.26 0.33 10.4
32 1.947 —2.522 | 0.901 £ 0.0055 0.38 0.52 17.1
33 2.522-3.277 | 0.839 £ 0.0065 -0.03 0.47 16.4
Table 6.5: The normalised acceptance correction factors Al at the “Born”, “Dressed” and “Bare”

levels. Statistical uncertainties on Al at the “Born” level are shown, as well as the model uncertainty

norm

obtained by comparing different MC generators.
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6.4 p% and ¢}, correlation

In order to compare the results of the ¢, and p% measurements, a scaling factor need to be applied on
the ¢, range. The relation between p% and ¢, was discussed in Section 1.3. The optimization of the ¢,
variable was started from the p% and going through several variables: ar, ar/my. For Z — ee events
having equivalant transverse momenta of two leptons (p(T] ) ~ p(T2 )), it can be shown that ar ~ p#%. The
¢, variable is appoximated from the ar /myz variable. Therefore a scaling factor of Mz with Mz =91.19
GeV [52] will rise ¢, to the same scale as p%. This scaling factor can be also extracted using RESBOS
program by plotting a ratio between p% and ¢, in each event of a high statistic generator sample. The
ratio in each ¢, bin is shown in Figure 6.18(a) and the ratio for all sample is shown in Figure 6.18(b).
A factor of My is yielded from this study. The correlation between p% and ¢, scaled by a factor of Mz
is shown in Figure 6.19. A diagonal of this correlation shows that M7 is a good approximation for the

scaling factor of ¢,.

170



N
[=]
o

; F X: E [ T T T T T T T T ‘ T T T
® 1800 1 ® 40l RESBOS CT10
o, s ] g B In*!<2.4, p>20 GeV 1
o= 160 E i 66 GeV <M, < 116 GeV
I ] 8  — 1
- 1401 E - : ]
1201 3 L : ]
E 1 6— . —
100 — - C R ]
" HeE E
60 £ RESBOS CT10 H B 1
401 In°l<2.4, p¥>20 GeV 3 2 : .
20 (a) 66Gev<M,<116GeV - L (b) J ]
o:l\\\\‘ | \\\\H‘ | \\\\H‘ | l: 07‘ " " " I | | ‘ | | | | ‘ | | | | !
102 10" 1 . 0 50 100 150 200

®Q pZ/ @ [GeV]

Figure 6.18: Ratio between p% and ¢y in each event: following ¢y bins (a) and for all sample (D).

-
<
-
o

? 5
) 1 @
N b= b, ;

o 10"
1072

10
10
RESBOS CT10 10
In*<2.4, p3'>20 GeV
66 GeV <M, < 116 GeV- I8 10
. M,=01.1876GeV
1 Ll L iiiiii210-6
1 10 . 10

@ X M, [GeV]

Figure 6.19: Correlation between p% and ¢y scaled by a factor of Mz. The back line shows a diagonal

of this correlation.

171



6.5 Discussion

The differential cross section of Z — ee as a function of ¢, was studied in this chapter. In this section,
the comparison between the ¢, and the p% measurements will be presented. The ¢, range is multiplied
by a scale factor of My as studied in Section 6.4 in order to perform the same scale with p%.
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Figure 6.20: The differential cross section as a function of p% or as a function of ¢, measured in data
are divided by corresponding RESBOS predictions. The ¢y range is multiplied by a scale factor of Mz

as studied in Section 6.4 in order to perform the same scale with p%.

Figure 6.20 shows together the p% and the ¢, measurements compared to the RESBOS predictions.
At p% < 10 GeV, both measurements agree with the predictions within 3%. While the p% measurement
is divided in three bins due to the limit of the p% resolution, the ¢, measurement can result the shape
with more than ten bins. In the range 10 GeV < p% < 50 GeV, the two measurements have the same
level of the agreement with RESBOS predictions which is 5%. In the range 50 GeV < p% < 200 GeV,
the measured ¢, distribution matches the prediction within 5% while it is 10% for the measured P4
distribution.

The maximum of the total systematic uncertainty of the ¢, measurement is 1.0% comparing with

3.0% of the p% measurement. At low pZ, the ¢, measurement is even more precise with the total
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systematic uncertainty < 0.5%. The evalutation of the total systematic uncertainty as a function of
oy (p%) is shown in Figure 6.21. Since the two measurements do not have the same number of bins
and bin widths. The distribution of the systematic uncertainty distribution is fitted by using an adapted
function. The resulting fits are then used to compute the ratio of the total systematic uncertainties of the
two measurements. The systematic uncertainty distribution of the p% is fitted by using an exponential
function plus a parabolic function. The one of the ¢, measurement is fitted by using an exponential
function. In most of the p% range the systematic uncertainty of the ¢, measurement is two times smaller
than the one of the pZ measurement. At very low pZ% the difference increases up to more than six times.

These comparisons prove the advantage of the new variable ¢, with respect to the p% variable.
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Figure 6.21: The total systematic uncertainty as a function of the (P;;, the total systematic uncertainty as

a function of the p% and their ratio.

Both measurements were compared with the same predictions and they lead to the same conclu-

sions. The effect of PDF sets used in the RESBOS calculation was presented by comparing the mea-
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sured cross section with RESBOS predictions using different PDF sets. Both measurements showed a
better agreement with CT10 predictions comparing to CTEQG6.6 predictions as shown in Figure 5.20
and Figure 6.14(a). In addition, the ¢, measurement was compared with the new theoretical predic-
tion at NNLL+NLO from Ref. [41] which has the full theoretical uncertainty estimation as shown in
Figure 6.14(b). This prediction gives an idea about the level of the theoretical uncertainty in different
regions of pZ.

The two measurements were also compared with the predictions from different MC generators as
shown in Figure 5.21 and Figure 6.15. The same situations were observed in both measurements. The
best description of data was provided by the SHERPA MC generator. The descriptions provided by
Mc@NLO and POWHEG+HERWIG are the worst.

The last bin in the p% measurement 253 — 600 GeV is not performed in the ¢, measurement. It
was expected that the correlation between two variables reduces in this region. From p% >~50 GeV,
it is visible that the p% shape is slightly going up in comparison with the theoretical prediction while
the ¢, shape is slightly going down. Figure 6.22 shows the different trends of these two variables in
the extrapolation to the full phase space measurement. However, the ¢, measurement would need to be

extended to the higher region to understand the trend of the ¢, spectrum.
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Figure 6.22: Al acceptance correction factors for the fiducial differential cross section as a function

of p% (a) and as a function of (]){7k (b) determined using different MC generators.

From the experimental point of view the ¢, measurement still has a better resolution than the pZ

measurement in the high p% region that was shown in Figure 1.12. The ¢, shapes in MC predictions
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in the high pZ region is following the ¢, shape measured in data. The systematic uncertainty of the ¢,
measurement is much smaller than the one of the p% measurement. Therefore the ¢, measurement is a

good choice to constrain the theoretical predictions.
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Conclusion

The first measurement of the ¢, spectrum of Z bosons at /s =7 TeV of pp collisions has been studied
in this thesis, which is an alternative way to probe the transverse momentum of Z bosons. The full data
sample recorded by the ATLAS detector during 2011 run of the LHC was used, which corresponds with
4.7 fb~! integrated luminosity. The results of this measurement were reported in Ref. [ 18] supported by

the internal note in Ref. [69].
The transverse momentum spectrum of Z bosons produced via the Drell-Yan mechanism has been ex-
tensively studied by the Tevatron collaborations [19-21] and, recently, also by the LHC experiments [10,
]. However, the precision of direct measurements of the Z/y* spectrum at low p% at the LHC and
the Tevatron is limited by the experimental resolution rather than by the available event statistics. This
limitation affects the choice of bin widths and the ultimate precision of the p% spectrum. In recent
years, additional observables with better experimental resolution and smaller sensitivity to experimen-
tal systematic uncertainties have been investigated [43, 45, 54, ]. The optimal experimental ob-
servable to probe the low-p% domain of Z/y* production was found to be ¢, which is defined [45]
as: ¢; = tan(@,.,,/2) - sin(07 ), where ¢ocop = T — A, A¢ is the azimuthal opening angle between
the two leptons, and the angle 6, is a measure of the scattering angle of the leptons with respect to
the proton beam direction in the rest frame of the dilepton system. The angle 8, is defined [45] by
cos(8;) = tanh[(n~ — Nn")/2] where n~ and N are the pseudorapidities of the negatively and posi-
tively charged lepton, respectively. Therefore, ¢, depends exclusively on the directions of the two lepton
tracks, which are better measured than their momenta. It is correlated to the quantity p%/my, where
mye is the invariant mass of the lepton pair, and therefore probes the same physics as the transverse
momentum p7. [41]. Values of ¢;, ranging from 0 to 1 probe the p7 distribution mainly up to ~ 100 GeV.
In this thesis, the differential cross section of Z — ee as a function of ¢, has been measured and

compared to fixed-order perturbative QCD calculations with/without a resummation for the low ¢, re-
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gion. Calculations using RESBOS provide the best descriptions of the data. However, they are unable
to reproduce the detailed shape of the measured cross section to better than 4%. The differential cross
section was also compared to predictions from different Monte Carlo generators interfaced to a parton
shower algorithm. The best descriptions of the measured ¢, spectrum are provided by SHERPA and
POWHEG+PYTHIA8 Monte Carlo event generators. The precise measurement of the differential cross
section as a function of ¢, provides valuable information for the tuning of MC generators. The typi-
cal experimental precision of this measurement (~ 0.5%) is ten times better than the typical theoretical
precision and therefore is valuable to constrain the theoretical predictions further.

The p% measurement has been also studied to quantify the systematic uncertainty of this measure-
ment using the high statistic data sample. This allows to compare two measurements which both address
the physics issues of the Z transverse momentum. In most of the ¢, range, the systematic uncertainty of
the p% measurement is two times larger than the one of the ¢, measurement. This comparison confirms
the interest for the ¢, variable.

The measurements presented in this thesis has many implications for future studies. Tuning MC
generators using the result of the precise measurement of the ¢, spectrum will minimize the uncertainty
on the tuned parameters. A double differential cross section measurement as a function of p% and ¢,
is interesting to understand the correlation between p% and ¢, variables. The precise measurement of
the p% spectrum using the new variable ¢, can be applied to P More precise measurement of p! are
important to obtain precise measurements of the W mass. In addition, a precise understanding of the p%

spectrum is important to understand kinematic properties of Higgs boson production.
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La premiere mesure du spectre en ¢, du boson Z a 7 TeV a été réalisée dans ceite these. Ceite
variable permet de sonder la dynamique de production des Z de facon fine. L’échantillon complet des
données enregistrées par ATLAS en 2011 a été utilisé ce qui correspond a 4.7 fb~" de luminosité intégrée.
Les résultats de cette mesure sont publiés dans la Ref. [ 8] fondé sur la note interne Ref. [69].

Le spectre en impulsion transverse du boson Z a été largement étudié par les collaborations du
Tevatron [ 19-21] et, plus récemment, par les collaborations du LHC [16,62]. Cependant la précision des
mesures directes du spectre en p% de Z/v* afaible impulsion transverse au LHC et au Tevatron est limitée
par la résolution expérimentale plutot que par la statistique. Cette limitation affecte le choix de la largeur
des bins et la précision ultime du spectre en p%. Ces dernieres années, des observables supplémentaires
qui ont une meilleure résolution expérimentale et qui sont moins sensibles aux incertitudes systématiques
ont été étudiées [43,45,54, 100]. L’observable optimale pour sonder le domaine a petits p% du spectre de
Z|y* est ¢y défini [45] par @3 =tan (@ e, /2) -sin(03), 0it Pacop = T — A avec AP I'angle d’ouverture
azimutale entre les deux leptons, et ou I’angle 0y est une mesure de I’angle de diffusion des leptons par
rapport a la direction du faisceau de protons dans le repere au repos du systeme dilepton. L’angle 9;;
est défini [45] par cos(0y) = tanh[(N~ —n7")/2] o ™ et N sont respectivement la pseudorapidité du
lepton de charge négative et de charge positive. Par conséquent 8, dépend exclusivement de la direction
des deux leptons qui est mieux mesurée que leur impulsion. Cette variable est corrélée a la quantité
P& /my, oit my est la masse invariante de la paire de leptons et donc elle sonde la physique de la méme
facon que p% [#1]. Les valeurs de ¢y allant de 0 a I correspondent a des valeurs de p% jusqu’a ~ 100
GeV.

Dans cette these la section efficace différentielle de Z — ee en fonction ¢y a été mesurée et comparée
aux calculs perturbatifs a ordre fixé, avec/sans resommation pour la région des petits ¢,. Le code
RESBOS fournit la meilleure description des données, cependant il est incapable de reproduire, a mieux
de 4%, la forme détaillée de la section efficace mesurée. La section efficace différentielle a également
été comparée aux prédictions de différents générateurs Monte Carlo interfacés avec un algorithme de
parton shower. Les meilleures descriptions du spectre en (}5,’; mesuré sont données par les générateurs
SHERPA et POWHEG+PYTHIAB. La mesure précise de la section efficace différentielle en ¢y, fournit des
informations précieuses pour l’ajustement des codes Monte Carlo. La précision expérimentale typique
de cette mesure (~ 0.5%) est dix fois meilleure que la précision des calculs théoriques et elle est donc

aussi précieuse pour contraindre la théorie.
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La mesure du spectre en p% a également été faite pour quantifier l'incertitude systématique de
cette mesure en utilisant la grande statistique de ’échantillon de données. Cela permet de comparer
deux mesures qui traitent de I'impulsion transverse du boson Z. Dans la plupart du domaine en ¢,
Uincertitude systématique de la mesure de p% est deux fois plus grande que celle de la mesure de ¢y.
Cette comparaison confirme ’intérét de la variable (j);;.

Les résultats présentés dans cette these ont beaucoup d’implications pour les études futures. Ajustant
les générateurs Monte Carlo en utilisant les résultats de la mesure précise du spectre en ¢, minimisera
Uincertitude sur leurs paramétres. Une mesure de la section efficace doublement différentielle en p% et
¢y est intéressante pour mieux comprendre la corrélation entre ces deux variables. La mesure précise
du spectre en p% utilisant la variable ¢, peut étre appliquée au spectre en p‘%’ et on sait que des mesures
plus fines du p‘}/ sont importante pour une détermination précise de la masse du boson W. De plus, une

compréhension précise du spectre en p% est importante pour comprendre les propriétés cinématiques de

la production du boson de Higgs.
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