
HAL Id: tel-00846513
https://theses.hal.science/tel-00846513

Submitted on 19 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enforcing virtualized systems security
Hedi Benzina

To cite this version:
Hedi Benzina. Enforcing virtualized systems security. Other [cs.OH]. École normale supérieure de
Cachan - ENS Cachan, 2012. English. �NNT : 2012DENS0085�. �tel-00846513�

https://theses.hal.science/tel-00846513
https://hal.archives-ouvertes.fr

ENSC-2012n°424 THÈSE DE DOCTORATDE L'ÉCOLE NORMALE SUPÉRIEURE DE CACHANPrésentée parHédi BenzinaPour obtenir le grade deDOCTEUR DE L'ÉCOLE NORMALE SUPÉRIEURE DE CACHANDomaine :InformatiqueSujet de la thèse :Enfor
ing Virtualized Systems Se
urityThèse présentée et soutenue à Ca
han le 17 dé
embre 2012 devant le jury
omposé de :Frédéri
 Cuppens RapporteurJean-Yves Marion RapporteurFlorent Ja
quemard ExaminateurFrédéri
 Major
zyk ExaminateurRomain Feybesse Membre invitéJean Goubault-Larre
q Dire
teur de thèseProjet soutenu par l'attribution d'une allo
ation do
torale Région Ile de Fran
e - 0810181818Laboratoire Spé
i�
ation et Véri�
ationENS de Ca
han, UMR 8643 du CNRS61, avenue du Président Wilson94235 CACHAN Cedex, Fran
e

ii

Abstra
tVirtual ma
hine te
hnology is rapidly gaining a

eptan
e as a fundamental building blo
k inenterprise data
enters. It is most known for improving e�
ien
y and ease of management.However, the
entral issue of this te
hnology is se
urity. We propose in this thesis to enfor
e these
urity of virtualized systems and introdu
e new approa
hes that deal with di�erent se
urityaspe
ts related not only to the te
hnology itself but also to its deployment and maintenan
e.We �rst propose a new ar
hite
ture that o�ers real-time supervision of a
omplete virtualizedar
hite
ture. The idea is to implement de
entralized supervision on one single physi
al host.We study the advantages and the limits of this ar
hite
ture and show that it is unable to rea
ta

ording to some new stealthy atta
ks.As a remedy, we introdu
e a new pro
edure that permits to se
ure the sensitive resour
es ofa virtualized system and make sure that families of atta
ks
an not be run at all. We introdu
ea variant of the LTL language with new past operators and show how poli
ies written in thislanguage
an be easily translated to atta
k signatures that we use to dete
t atta
ks on the system.We also analyse the impa
t that an inse
ure network
ommuni
ation between virtual ma
hines
an have on the global se
urity of the virtualized system. We propose a multilevel se
urity poli
ymodel that
overs almost all the network operations that
an be performed by a virtual ma
hine.We also deal with some management operations and introdu
e the related
onstraints that mustbe satis�ed when an operation is performed.

iii

iv ABSTRACT

RésuméLa virtualisation est une te
hnologie dont la popularité ne
esse d'augmenter dans le monde del'entreprise, et
e pour l'e�
a
ité et la fa
ilité de gestion qu'elle apporte. Cependant, le problèmemajeur de
ette te
hnologie est la sé
urité. Dans
ette thèse, nous proposons de renfor
er lasé
urité des systèmes virtualisés et nous introduisons de nouvelles appro
hes pour répondre auxdi�érents besoins en sé
urité de
ette te
hnologie et aussi aux aspe
ts liés à à son fon
tionnementet son déploiement.Nous propososns une nouvelle ar
hite
ture de supervision qui permet de
ontr�ler la totalitéde la plateforme virtualisée en temps réel. L'idée est de simuler une supervision dé
entralisée(plusieurs postes) sur un seul poste physique. Nous étudions les avantages et les limites de
etteappro
he et nous montrons que
ette solution est in
apable de réagir é à un
ertain nombred'attaques nouvelles.Comme remède, nous introduisons une nouvelle pro
édure qui permet de sé
uriser les ressour
es
ritiques d'un système virtualisé pour s'assurer que des familles d'attaques ne peuvent être exé-
utées en ayant a

ès à
es ressour
es. Nous introduisons une variante de LTL ave
 de nouveauxopérateurs de passé et nous montrons
omment des politiques de sé
urité formulées à l'aide de
e langage peuvent être fa
ilement traduites en signatures d'attaques qui peuvent nous être trèsutiles pour la déte
tion des intrusions dans le système.Nous analysons aussi l'impa
t d'une
ommuni
ation réseau non sé
urisée entre ma
hinesvirtuelles sur la sé
urité globale du système virtualisé. Nous proposons un modèle d'une politiquede sé
urité multi-niveaux qui
ouvre la majorité des opérations liées au réseau et qui peuvent êtreexé
utées par une ma
hine virtuelle. Notre modéle traite aussi
ertaines opérations de gestionde l'infrastru
ture virtualisée et les
ontraintes de sé
urité qui doivent être satisfaites.

v

vi RÉSUMÉ

Remer
iementsJe remer
ie en premier lieu mon dire
teur de thèse Jean Goubault-Larre
q pour les pistes dere
her
he qu'il a su me
onseiller au
ours de
es trois années et pour ses
onseils avisés. Jetiens également à remer
ier Frédéri
 Cuppens et Jean-Yves Marion pour m'avoir fait l'honneurde relire ma thèse. Je tiens à remer
ier aussi Frédéri
 Major
zyk, Romain Feybesse et FlorentJa
quemard d'avoir a

épté de faire partie du jury de ma thèse.Un grand mer
i également à plusieurs personnes qui m'ont, d'une manière ou d'une autre,en
ouragé à entreprendre une thèse : Adel Bouhoula et Florent Ja
quemard pour m'avoir a

ordéleur
on�an
e et leur soutien pendant mon stage au LSV.Évidemment, mer
i au LSV pour la très bonne ambian
e qui y règne, et qui permet de réaliserune thèse dans d'ex
ellentes
onditions. Aussi un grand mer
i à Virginie, Catherine, Ahmad,Sandie et Philippe pour leur aide.En�n, mer
i à mes parents sans qui je ne serais pas là, et à ma femme pour son soutienquotidien.

vii

viii REMERCIEMENTS

Contents
Abstra
t iiiRésumé vRemer
iements vii1 Introdu
tion 11.1 Context of the thesis . 11.2 Contributions . 21.2.1 A De
entralized Supervision System for Se
uring Virtual Ma
hines 21.2.2 A Temporal Language for Se
uring Sensitive Resour
es 21.2.3 A Multi-level Se
urity Poli
y for Se
uring Communi
ation 21.3 Resear
h Publi
ations . 31.3.1 Conferen
es and Workshops . 31.3.2 Resear
h Tools . 31.4 Thesis Plan . 31.5 The REDPILL proje
t . 42 State of The Art 52.1 Introdu
tion . 52.2 Virtualization . 52.2.1 Popek and Goldberg Virtualization Requirements 62.2.2 Some Challenges . 72.2.3 Types of Virtualization . 82.3 Intrusion Dete
tion . 102.3.1 Misuse Dete
tion . 112.4 Se
urity Poli
ies . 122.4.1 Se
urity Properties . 122.5 Virtualization and Se
urity . 132.5.1 Overview . 132.5.2 Se
urity Bene�ts . 152.5.3 Se
urity Risks . 162.6 Some Existing Approa
hes . 172.6.1 XSM/FLASK for Xen . 172.6.2 sHype . 182.6.3 VAX VMM se
urity kernel . 192.6.4 Terra . 202.6.5 Other Contributions . 21ix

x CONTENTS3 Se
uring Virtual Ma
hines 233.1 Introdu
tion . 233.2 Related Work . 233.3 System Supervision In Virtual Environments . 253.3.1 Lo
al Supervision Approa
hes . 253.3.2 Disadvantages of Lo
al Supervision . 263.3.3 De
entralized Supervision Approa
hes . 263.4 Proposed Ar
hite
ture . 273.5 Remote Logging . 303.6 Dis
ussion . 303.7 Con
lusion . 314 Prote
ting Sensitive Resour
es 334.1 Introdu
tion . 334.2 Related Work . 334.2.1 Proof Carrying Code . 334.2.2 Model Carrying Code . 354.3 Threat Model . 364.3.1 Sensitive Resour
es . 364.3.2 Automati
 Updates and Se
urity Issues 374.3.3 A possible Atta
k S
enario . 384.4 Preliminaries . 394.5 A Line of Defense: LTL with Past and Or
hdis 414.5.1 The Proposed Language . 414.5.2 The Translation Algorithm . 434.6 Fa
ing a Mali
ious Driver . 464.6.1 Experiments . 504.7 Con
lusion and Further Work . 505 Se
uring Communi
ation In a Virtual Environment 515.1 Introdu
tion . 515.2 Multilevel Networking . 515.3 Virtual Networks . 525.4 Advantages and Se
urity Threats of Virtual Networks 535.5 Se
urity Poli
y Models . 555.5.1 Bell-LaPadula model . 555.5.2 Biba model . 565.5.3 DTE model . 575.5.4 Multilevel Se
urity . 575.6 The Proposed Se
urity Poli
y Model . 585.6.1 Modelling approa
h . 585.6.2 Model Representation . 595.7 Operations and their se
urity requirements . 615.7.1 Virtual ma
hines managment operations 625.7.2 Network operations . 635.7.3 Se
urity-related operations . 645.8 Con
lusion and Further Work . 656 Con
lusion and Perspe
tives 67

CONTENTS xiA The Xen Hypervisor 69A.1 Introdu
tion . 69A.2 Booting a Xen System . 69A.2.1 Booting Domain0 . 69A.2.2 Booting Guest Domains . 69A.2.3 Starting / Stopping Domains Automati
ally 70A.3 Network Con�guration . 71A.3.1 Xen virtual network topology . 71A.3.2 Xen networking s
ripts . 71B The SELinux Auditd System 73B.1 Audit rules . 73B.2 Pro
esses . 74B.3 Files . 74B.4 Reporting . 74

xii CONTENTS

List of Figures
2.1 A Virtualized System . 62.2 The Virtual Ma
hine Map (sour
e : [6℄) . 72.3 Mobile Virtualization . 92.4 Prote
tion Rings in x86-32 Systems . 132.5 Prote
tion Rings in Xen . 142.6 Adding a New Ring . 152.7 Temporal Course of VMware Vulnerabilities Sin
e 1999 162.8 sHype Ar
hite
ture . 192.9 The para pass-through ar
hite
ture (sour
e : [67℄) 223.1 De
entralized Supervision . 273.2 Proposed Ar
hite
ture . 283.3 The Implemented Remote Logging . 304.1 Proof Carrying Code [89℄ . 344.2 Model Carrying Code [103℄ . 354.3 An EFSA Model, after Sekar et al. [103℄ . 364.4 Atta
king System Updates . 384.5 Some Useful Idioms . 424.6 The generated EFSA . 454.7 The RuleGen tool . 464.8 The listen_atm atta
k . 484.9 The lock_lease_dos atta
k . 495.1 A Virtual Network . 535.2 Network Virtualization Te
hnologies . 545.3 A dedi
ated VM for I/O . 59

xiii

xiv LIST OF FIGURES

Chapter 1Introdu
tion1.1 Context of the thesisToday's IT intensive enterprise must always be on the lookout for the latest te
hnologies thatallow businesses to run with fewer resour
es while providing the infrastru
ture to meet today andfuture
ustomer needs. Virtualization is the
utting edge of enterprise information te
hnology. Inre
ent years the term virtualization has be
ome the industry's newest buzzword. Virtualizationte
hnology is possibly the single most important issue in IT and has started a top to bottomoverhaul of the
omputing industry. The growing awareness of the advantages provided byvirtualization te
hnology is brought about by e
onomi
 fa
tors of s
ar
e resour
es, governmentregulation, and more
ompetition.Virtualization te
hnology is being used by a growing number of organizations to redu
e power
onsumption and air
onditioning needs and trim the building spa
e and land requirementsthat have always been asso
iated with server farm growth. Virtualization also provides highavailability for
riti
al appli
ations with a streamlines appli
ation deployment and migrations.Furthermore it simpli�es IT operations and allow IT organizations to respond faster to
hangingbusiness demands.In a few words, this te
hnology is a
ombination of software and hardware engineering that
reates Virtual Ma
hines (VMs) by abstra
ting the
omputer hardware and allowing a singlema
hine to a
t as if it were many ma
hines.In surveys of senior-level IT managers, se
urity is
onsistently one of the top �ve
on
erns,along, spe
i�
ally, with se
urity related to the hot te
hnology of the moment. Most re
entlythose worries have in
luded so
ial-networking te
hnologies su
h as Twitter and Fa
ebook andother outlets through whi
h employees
ould turn loose
ompany
on�dential data. But these
urity of virtual servers and virtualized infrastru
tures also rank near the top of the list andrightly so, a

ording to analysts.In su
h te
hnologies, se
urity is very important. For instan
e, if an atta
ker su

eeds tobreak the a

ess
ontrol me
hanism and penetrates one sensitive virtual ma
hine su
h as theadministration one, then, all the rest of ma
hines (sometimes hundreds of ma
hines runningvirtual servers) are under his
ontrol. This is more dangerous than having an isolated ma
hinebeing atta
ked. Furthermore, on
e the system is
ompromised, all the sensitive data stored indedi
ated virtual ma
hines
an be
ompromised.We address in this thesis the se
urity of virtualized systems i.e. systems running under aVirtual Ma
hine Monitor (VMM). We dis
uss their se
urity issues, present defense me
hanismsand introdu
e new approa
hes for strongly se
uring both sensitive resour
es and
ommuni
ation.1

2 CHAPTER 1. INTRODUCTION1.2 ContributionsWe study in this thesis the se
urity of virtualized systems. We identify se
urity threats andpropose new approa
hes to se
ure su
h systems. First, we fo
us on the the design and im-plementation of a new intrusion dete
tion ar
hite
ture dedi
ated to the supervision of virtualma
hines running under the
ontrol of an hypervisor. This implementation prote
ts both thesystem resour
es su
h as VMs and the defense engine whi
h is in this
ase our intrusion dete
-tion system Or
hids [22, 91℄. Further, we show that this implementation needs to be improvedand
omplemented by formal methods that help system administrators design se
urity poli-
ies, express the se
urity properties that they want to see satis�ed and deploy them in orderto prote
t sensitive resour
es su
h as the administration VM. Finally we study the se
urity of
ommuni
ation in virtual environments and introdu
e a new se
urity poli
y model that �lls these
urity requirements of both network and virtual system management operations. We detailour
ontributions below.1.2.1 A De
entralized Supervision System for Se
uring Virtual Ma-
hinesIn
hapter 3 we fo
us on the se
urity of virtual ma
hines. We study the existing se
urity threatsand propose a new approa
h for prote
ting system VMs from outside. We do this by deployingan Intrusion Dete
tion System (IDS) out of the supervised VMs, and equipping all VMs by smallsensors reporting at real time all the system a
tions performed by the users/system. The IDS
an rea
t to atta
ks, stop them and even kill a whole VM or restart it from an early
he
kpoint.This ar
hite
ture was designed and implemented in
ollaboration with Bertin Te
hnologies andwas published in 2010 in the SETOP Workshop [5, 4℄. This approa
h is
ost-e�e
tive and
anbe adapted easily to di�erent platforms thanks to the modularity in the implementation.1.2.2 A Temporal Language for Se
uring Sensitive Resour
esIn
hapter 4, we study the se
urity of sensitive resour
es in virtual environments. We show thatatta
king the administration VM for example
an lead to the subversion of the whole system. Asa defense, we propose to let the administrator write se
urity poli
ies expressing safety propertiesin a simple language that we qualify as a variant of Linear Temporal Logi
 with past operators.LTL with past operators has been proved to be more su

in
t than pure-future temporal logi
[18℄. Expressing poli
ies in this language is quite intuitive. Then, we propose an algorithm thattranslates the aforementioned poli
ies into atta
k signatures that
an feed the atta
k base ofthe Or
hids IDS. This helps automating the generation of new atta
k rules and simpli�es themonitoring of growing se
urity threats. This
ontribution was published in [5, 3℄.1.2.3 A Multi-level Se
urity Poli
y for Se
uring Communi
ationThe
ontributions
ited above do not
over the network se
urity aspe
t, thus we introdu
e in
hapter 5 a Multi-level se
urity poli
y model in order to se
ure
ommuni
ation in virtual networksbuilt using virtual ma
hine monitors. Communi
ation is very important in su
h systems. Forinstan
e, the information �ows between the supervision VM and other VMs is guaranteed thanksto a virtual network that we build by hand. If an atta
ker su

eeds to
apture some �owing data,he will know more about the deployed se
urity me
hanism whi
h represents a real se
urity threat.Our poli
y model
overs di�erent aspe
ts of networking and also deals with operations relatedto the management of the virtual resour
es [2, 1℄.

1.3. RESEARCH PUBLICATIONS 31.3 Resear
h Publi
ations1.3.1 Conferen
es and WorkshopsThe results obtained in this thesis have been partially published:1. H. Benzina. Towards Designing Se
ure Virtualized Systems. In Pro
eedings of The Se
ondInternational Conferen
e on Digital Information and Communi
ation Te
hnology and itsAppli
ations (DICTAP 2012), Bangkok, Thailand. IEEE Computer So
iety Press, 2012.2. H. Benzina. A Network Poli
y Model for Virtualized Systems. In Pro
eedings of The Sev-enteenth IEEE Symposium on Computers and Communi
ation (ISCC 2012). Cappado
ia,Turkey. IEEE Computer So
iety Press, 2012.3. H. Benzina. Logi
 in Virtualized Systems. In Pro
eedings of the First International Con-feren
e on Computer Appli
ations and Network Se
urity (ICCANS 2011), Malé, Maldives.IEEE Computer So
iety Press, 2011.4. H. Benzina. Se
uring Hypervisors through Temporal Logi
 and Se
urity Poli
ies. Work-shop on Formal methods for spe
ifying and verifying
riti
al systems 2011. Tunis, Tunisia.5. H. Benzina and J. Goubault-Larre
q. Some Ideas on Virtualized Systems Se
urity, andMonitors. In The third International Workshop on Autonomous and Spontaneous Se
urity(SETOP 2010), Athens, Gree
e. Springer LNCS 6514.1.3.2 Resear
h ToolsThe implementation of the tool that was built as part of our resear
h is available here :� H. Benzina. RuleGen, a tool for
ompiling se
urity poli
ies written in a variant of LTLwith past into automata representing atta
ks signatures (http://www.lsv.ens-
a
han.fr/~benzina/rulegen.php).1.4 Thesis PlanChapter 2 introdu
es
on
epts standard in the literature and dis
usses the main
ontributions inthe �eld of se
uring virtualized systems. In Chapter 3, we present our
ontribution in the �eldof intrusion dete
tion in virtual environments, it
onsists of a de
entralized supervision systemimplemented on top of the Xen hypervisor. This
hapter is rather small and we
hoose to startby presenting this implementation in order to show its advantages and also its limits against newatta
ks. Based on thees limits we introdu
e in
hapter 4 a new approa
h for se
uring sensitiveresour
es in virtual environments that aims to defend the system against stealthy atta
ks that
annot be dete
ted by the aforementioned implementation, and we introdu
e a new temporallanguage whi
h is a variant of LTL with past that helps system administrators write their ownse
urity poli
ies. Furthermore, we show how to translate the written se
urity poli
ies into atta
kssignatures that
an be used by the Or
hids IDS. In
hapter 5, we dis
uss the se
urity threats thatvirtualized systems
an fa
e while network primitives in a lo
al virtual network are invoked andpresent a Multilevel Se
urity Poli
y dedi
ated to the enfor
ement of
ommuni
ation se
urity.This poli
y
overs also all main VM-management operations. Chapter 6
on
ludes the thesiswith a summary of the results obtained and presents perspe
tives and possible future work.

4 CHAPTER 1. INTRODUCTION1.5 The REDPILL proje
tThis thesis has been done in the framework of the Digiteo REDPILL proje
t �Malware Dete
tionOn Virtualized Platforms�, grant 2009-41D, involving the
ompany Bertin Te
hnologies, and theLSV laboratory (É
ole Normale Supérieure de Ca
han).

Chapter 2State of The Art2.1 Introdu
tionIn this
hapter, we review several standard
on
epts, de�nitions and
ontributions in virtualiza-tion te
hnology, intrusion dete
tion and se
urity in general.2.2 VirtualizationVirtualization is not a new idea. In fa
t, it goes ba
k to the early days of
omputing. We
anmention the work of Popek and Goldberg in 1974 [6℄, whi
h analyzed the di�erent possible typesof virtualization solutions, their disadvantages and laid the groundwork for future developments.Virtualization permits to run an operating system inside a virtual ma
hine, whi
h allows runningmultiple operating systems in the same physi
al host and sharing
ostly resour
es. Histori
ally,virtualization has be
ome fashionable in 2006, when new software running Windows in Ma
 OSX appeared. Sin
e then, this te
hnology has been integrated into Windows 7, and was built inthe heart of
omputers: �rst at the pro
essor and then, re
ently, at the devi
e level. Nevertheless,this remains a rather mysterious te
hnology for the general publi
.A Virtual Ma
hine (VM) is the set of hardware (CPU, memory, hard disk, peripherals, et
..)emulated by the virtualization software and viewed by the guest operating systems. Spe
i�
ally,we are talking about HVM (Hardware Virtual Ma
hine). Popek and Goldberg de�ned a virtualma
hine as �an e�
ient, isolated dupli
ate of a real ma
hine�.A Virtual Ma
hine Monitor (VMM), or virtual ma
hine manager is the virtualization softwareitself. Two types of VMM exist, the �rst one
an be installed as an appli
ation on a host(Linux, Ma
 OS X, Windows, et
..). The se
ond,
ommonly
alled a hypervisor, is a
tually avery simple operating system (Linux or Windows)
ontaining the virtualization program. Thedi�eren
e is important in the
ase of
riti
al appli
ations: using the se
ond type of VMM avoidswasting resour
es with a host system. Virtual ma
hines
an be useful in many areas, often inthe professional �eld where many Appli
ations do not require the power of a server, but wherethe segmentation of servi
es however requires administrators to dedi
ate one to ea
h task. The�rst one is to take advantage of many OSes at the same time, more easily than in a multi-boot.It is thus possible to have Windows on a Ma
intosh or Windows, Ma
 OS X and Linux on onema
hine, et
... Beyond the gimmi
k, it's an advantage for all software developers who need totest their
ode under ea
h platform, as ea
h browser, et
 (see Figure 2.1)... Note that, for now,probably by the will of Apple, it is impossible to install the
lient version of Ma
 OS X on a5

6 CHAPTER 2. STATE OF THE ART
Hypervisor

Dom 0
...

Guest
OS

Hardware

Guest
OS

Guest
OS

Drivers

Network

Figure 2.1: A Virtualized SystemPC. The opposite is quite possible. Another advantage of using virtual ma
hines is the stabilityand the in
reased se
urity of the system : if a VM
rashes, the other VMs are not a�e
ted. Inaddition, ea
h VM is en
apsulated in a �le. It is therefore very easy to make a ba
kup of thesystem at a given time. This �le is also easily transferable from one
omputer to another. Aboon to system administrators and others who regularly
hange their PC.2.2.1 Popek and Goldberg Virtualization RequirementsThe Popek and Goldberg virtualization requirements [6℄ are a set of
onditions allowing a
om-puter system to implement the virtualization te
hnology
orre
tly. They de�ned the VirtualMa
hine Monitor (VMM) as a software having some essential
hara
teristi
s. Programs runningunder the VMM should �nd the same
onditions as if they were running under ordinary ma-
hines, the VMM has to provide an environment whi
h is identi
al with the original ma
hine.This should not a�e
t the speed of the system. They required also that the VMM has a
omplete
ontrol of system resour
es. Another
hara
teristi
 of a VMM is e�
ien
y. It demands that mostof the virtual pro
essor's instru
tions
an be exe
uted dire
tly by the real pro
essor, with nosoftware intervention by the VMM. This statement rules out traditional emulators and
ompletesoftware interpreters (simulators) from the virtual ma
hine umbrella.The third
hara
teristi
, [...resour
e
ontrol, labels as resour
es the usual items su
h as mem-ory, peripherals, and the like, although not ne
essarily pro
essor a
tivity. The VMM is said tohave
omplete
ontrol of these resour
es if (1) it is not possible for a program running under it inthe
reated environment to a

ess any resour
e not expli
itly allo
ated to it, and (2) it is possibleunder
ertain
ir
umstan
es for the VMM to regain
ontrol of resour
es already allo
ated...℄. [6℄.The Virtual Ma
hine Monitor is de�ned as a parti
ular pie
e of software
alled
ontrol program
omposed of several modules. These modules fall into three groups : the �rst one is a dispat
her
D, that
ontrols the
all of other modules. The se
ond one is an allo
ator A that de
ides whethera resour
e should be allo
ated or not. In the
ase of one single VM, the allo
ator has only toprovide the separation between this VM and the VMM. But when several VMs are running ontop of the VMM, the allo
ator has to handle the a

ess to shared resour
es. The allo
ator will beinvoked by the dispat
her when a VM tries to exe
ute some privileged instru
tion that attemptsto
hange the resour
es asso
iated to this VM. The third set of modules is
alled interpreters.An interpreter is asso
iated to ea
h privileged instru
tion.Another interesting part of this work is the spe
i�
ation of the virtual ma
hine properties.The authors have presented three properties of VMs. The �rst one is the e�
ien
y property.

2.2. VIRTUALIZATION 7

Figure 2.2: The Virtual Ma
hine Map (sour
e : [6℄)All unprivileged instru
tions are exe
uted by the hardware dire
tly, with no intervention of theVMM. The se
ond one is the resour
e
ontrol property whi
h ensures that every program shouldgo through the allo
ator in order to a

ess system resour
es. The last one is the equivalen
eproperty.The availability problem arises from this
on�guration. It o

urs when the allo
ator fails tosatisfy a parti
ular request for a resour
e. Then the program asking for this resour
e will beunable to run. Thus the virtual environment is said to be "smaller" than the real system. Theauthors de�ne the VMM as any
ontrol program that satis�es the three properties (e�
ien
y,resour
e
ontrol and equivalen
e). Then fun
tionally, the environment whi
h any program seeswhen running with a virtual ma
hine monitor present is
alled a virtual ma
hine. It is
omposedof the original real ma
hine and the virtual ma
hine monitor.Theorem. [...For any
onventional third generation
omputer, a virtual ma
hine monitormay be
onstru
ted if the set of sensitive instru
tions for that
omputer is a subset of the set ofprivileged instru
tions...℄[6℄.The theorem provides a
ondition su�
ient to guarantee virtualizability. However, thosefeatures whi
h have been assumed are standard ones, so the relationship between the sets ofsensitive and privileged instru
tions is the only new
onstraint. It is a very modest one, easy to
he
k. Further, it is also a simple matter for hardware designers to use as a design requirement.Virtual Ma
hine Map Figure 2.2 shows the mapping f : Cr → Cv between instru
tions inthe virtual environment. That is for any state Si ∈ Cr and any instru
tion sequen
e ei, thereexists an instru
tion sequen
e e′i su
h that f(ei(Si)) = e′i(f(Si)). Two related properties existin the de�nition of a VM map. The �rst one is the existen
e of instru
tion sequen
es e′i onthe Cv domain that
orrespond to the sequen
es ei on the Cr domain. The se
ond one is themathemati
al existen
e of a parti
ular mapping from the states of the real ma
hine to the virtualma
hine system.2.2.2 Some ChallengesA pro
essor is
apable of running a small number of basi
 instru
tions. This set,
alled ISA(Instru
tion Set Ar
hite
ture), is en
oded in the pro
essor and is not editable. It de�nes the
apabilities of a pro
essor, the hardware ar
hite
ture whi
h is then optimized to exe
ute theinstru
tions in the ISA as e�
iently as possible. The best known ISA in the PC world is the

8 CHAPTER 2. STATE OF THE ARTx86, used from the beginning by Intel and taken over by AMD
hips. One
an also mentionthe PowerPC, ARM, MIPS, et
.. Widespread, even ubiquitous, the x86 is not provided free ofdefe
ts, but it was out of question to repla
e it by another te
hnology. To avoid this, Intel andAMD developed respe
tively the VT-x and AMD-V solutions. If the x86 is not well suited tovirtualization, it is be
ause of 17
riti
al non-privileged instru
tions. The instru
tions of thex86 ISA are not similar. Some of them
an
hange the
on�guration of CPU resour
es and are
alled
riti
al. To prote
t the stability of the ma
hine, these instru
tions
an not be exe
utedby all software. From the perspe
tive of the CPU, software belongs to four
ategories, or levelsof abstra
tion: the rings 0, 1, 2, 3. Ea
h ring de�nes a de
reasing level of privilege. The most
riti
al instru
tions
laim the highest privileges, of order 0. Unfortunately, on an x86 pro
essor,17 of these
riti
al instru
tions
an be exe
uted by the same software tier 1, 2, or 3. This
onstitutes a big problem for VMMs. An operating system is a
tually designed to run in ring0 and use
riti
al instru
tions to allo
ate CPU resour
es between di�erent appli
ations. But ina situation when it is a guest on a virtual ma
hine, the OS should not even be able to modifythe material, otherwise it would
rash the entire system. Only the hypervisor must have theserights. It is therefore
riti
al that all instru
tions are inter
epted. It's very easy for all privilegedinstru
tions. The OS is then exe
uted in ring 3, as appli
ations, and all requests for privilegedinstru
tions trigger an error that is handled by the VMM. This is mu
h more
ompli
ated for the17 hazardous and non-privileged instru
tions. These do not trigger automati
ally an error, theymust be dete
ted pie
emeal by the VMM and then reinterpreted. This enrolls a high overhead,make the hypervisor more
omplex.2.2.3 Types of VirtualizationWe distinguish two types of virtualization: full virtualization and hardware virtualization. Fullvirtualization is the primitive virtualization whi
h emulates the physi
al hardware and its behav-ior. This is the most
ostly approa
h but the easiest one to implement. Hardware virtualizationis an extension of the prin
iple of full virtualization. This extension is done by the use of spe
i�
pro
essor extensions for virtualization (AMD-V and Intel-VT). These extensions
an a

eleratethe virtualization by di�erent me
hanisms. Solutions using this te
hnology are VMWare [8℄, SunVirtualBox [9℄, Mi
rosoft Virtual PC [10℄, QEMU [11℄ and many others.The virtualization of operating systems is
alled paravirtualization. This term tends to be usedin many di�erent ways. Paravirtualization is the virtualization of operating systems whose kernelshas been modi�ed to
ommuni
ate with the virtualization layer instead of
ommuni
ating withthe physi
al hardware. To summarize, the operating system will be aware of being virtualizedand will be adapted for this purpose. The simple addition of spe
i�
 drivers does not ne
essarilyimply paravirtualization. Existing solutions in this area are the produ
ts of Citrix XenServer,Sun xVM, XenSour
e or Mi
rosoft Hyper-V. VMWare starts to get into this te
hnology safely.Hardware VirtualizationTo over
ome the problem
ited in the previous se
tion, Intel designed VT-x and AMD proposedAMD-V. These two te
hnologies are very similar. It
onsists of three
omponents, aiming to makethe virtualization of the CPU, the memory and devi
es easier. To fa
ilitate the virtualization ofthe CPU, Intel and AMD eliminated the need for monitoring and translating the instru
tions.To do this, new instru
tions were added. A new
ontrol stru
ture is also being introdu
ed,
alledVMCS (Virtual Ma
hine Control Stru
ture) at Intel. Among the new instru
tions, one of them(VM entry at Intel) toggles the pro
essor in another exe
ution mode, dedi
ated to the guestsystems. This mode also has four di�erent levels of privilege. With doing so, guest OS
an run

2.2. VIRTUALIZATION 9

Figure 2.3: Mobile Virtualizationin ring 3 of VM mode. If needed, the pro
essor
an swit
he from guest to normal mode. Thiss
ale is determined by some
onditions set by the VMM using the
ontrol bits stored in theVMCS.Desktop VirtualizationDesktop Virtualization is part of the great family of virtualization te
hnologies with. The �rstprin
iple of desktop virtualization is to display on one host, tens, hundreds or even thousands ofphysi
al hosts, a virtual image of the user station whi
h is a
tually really exe
uted on a remoteserver. Behind this great prin
iple, however there are several forms of desktop virtualization. Theoldest is Server-Based-Computing,
onsisting of virtualizing some appli
ations but not the entireoperating system. While the user sees (and uses) on his host the appli
ations running on a remoteserver, the Os is still running on the
lient side. A variant exists whi
h is appli
ation virtualizationby isolation. Also
alled isolation by appli
ative bubbles, this type of virtualization installs anappli
ation with remote streaming on the workstation. It is the least
ommon type but
an solvethe problems of in
ompatibility between appli
ations and OSes. Desktop Virtualization may alsobe related to the operating system streaming. In this
on�guration, the target system boots froma remote disk on the network and load only the appli
ations that the user wants, this
an be doneusing logi
al volumes installed on a remote server. Another form of Desktop Virtualization is theVDI ar
hite
ture (Virtual Desktop Initiative), also known as Hosted Virtual Desktop (HVD).It
onsists of a total virtualization of the host (appli
ations that operating system), allowing toover
ome the problem of in
ompatibility with the
lient host.Mobile VirtualizationThe mobile phone is now as important to businesses as desktop
omputers, and a
ts as a mobile
omputer in many
ases. Mobile Virtualization is a new te
hnology used mainly for Androidphones to separate personal appli
ations from professional ones in order to redu
e the risk of
ompromising data.

10 CHAPTER 2. STATE OF THE ARTThis te
hnology was �rst presented by VMWare [8℄ in 2009 by their VMWare Mobile Vir-tualization platform whi
h
reates a virtual ma
hine for mobile devi
es, allowing users to movetheir phone to di�erent handsets (see Figure 2.3. All the data will be stored in a portable �le :this solves the problem of loosing the data when the mobile phone is
ompromised.ParavirtualizationParavirtualization is another type of virtualization. Here, the guest operating system is aware ofrunning in a virtualized environment, whi
h of
ourse requires some modi�
ations of the software.In return, it be
omes
apable of intera
ting with the hypervisor and to ask it to transmit
allsdire
tly to the hardware of the host server. In theory, the virtual performan
e is then very
loseto the performan
e a
hieved with real hardware. The hypervisor is in dire
t
onta
t with thephysi
al hardware. It is the ex
lusive intermediary between the hardware and the operatingsystems. All operating systems are virtualized in the sense that they have a
ore adapted to thevirtualization layer. Some OSes
an have spe
i�
 rights to a

ess some ressour
es : this dependson what the administrator wants from his software.A hypervisor, also
alled virtual ma
hine manager (VMM), is a virtualization te
hnique thatallows to run many OSes on the same physi
al host. The physi
al resour
es are shared betweenthe di�erent OSes using hyper
alls. The most known hypervisor is Xen [12℄. A hyper
all is asoftware trap from a guest domain (or host) to the hypervisor, just as a sys
all is a software trapfrom an appli
ation to the kernel. The hyper
all is syn
hronous, but the return path from thehypervisor to the guest domain uses event
hannels. An event
hannel is a queue of asyn
hronousnoti�
ations, and notify of the same sorts of events that interrupts notify on native hardware.When a domain with pending events in its queue is s
heduled, the OS's event-
allba
k handleris
alled to take appropriate a
tion.2.3 Intrusion Dete
tionIntrusion Dete
tion aims to dete
t a
tions that attempt to
ompromise the integrity, the avail-ability or
on�dentiality of a resour
e. Early work in intrusion dete
tion began with Anderson[13℄ in 1980 and Denning [14℄ in 1987. Today there are more than 140 intrusion dete
tion sys-tems [15℄. Intrusion Dete
tions Systems (IDS) are designed to reveal, usually through alerts, anya
tivity that may be
onsidered intrusive by analyzing information from various areas within a
omputer or a network to identify possible se
urity brea
hes.Intrusion Dete
tion Systems are generally
lassi�ed into two broad
ategories depending onthe type of data to analyze [16℄: Host-based IDS (HIDS) and Network-based IDS (NIDS). HIDSare
hara
terized by the analysis of events or log messages generated by the system. NIDSanalyze the data that travels over the network. An IDS performs a passive s
an. The passiveanalysis is to be
ontrasted with the a
tive analysis, this is the
ase for example a �rewall thatblo
ks
ertain pa
kets. Intrusion dete
tion fun
tions in
lude:� Analyzing both user and system a
tivities� Che
king system and �le integrity� Re
ognising patterns of atta
ks (Pattern Mat
hing)� Alerting users when se
urity poli
ies are violated (sending emails, logging...)The di�erent modules making up an IDS a

ording to standards proposed by the IntrusionDete
tion Working Group [17℄. This ar
hite
ture
onsists of three modules
ommon to most

2.3. INTRUSION DETECTION 11IDS. The A
tivity of the information system provides a sour
e of data to some Sensors. Thesesensors then have the role to extra
t and pro
ess
ertain information in order to transmit shapeevents to an Analyzer. The analysis module then uses these events to dete
t a possible intrusionand generates alerts a

ordingly. These alerts are �nally sent to an alert Manager. The latteris responsible for pro
essing alerts from the various analyzers and report any suspi
ious a
tivityon the system to the administrator. Finally, note that an intrusion dete
tion system may
onsistof several sensors dealing with di�erent data sour
es, multiple analyzers using di�erent methodsof analysing and multiple Managers.The performan
e of an intrusion dete
tion system, in
luding its method of analysis, dependsof two important
on
epts that allow to evaluate the performan
e [19℄ :False Negatives. Ideally, any intrusion must result in a warning. An intrusion that is notdete
ted, that is to say, did not generate alert, then
onstitutes a false negative. In other terms,false negative is the failure of an IDS to dete
t an a
tual atta
k. The reliability of an analyserdepends on the rate of false negatives. This rate must be the lowest possible.False Posistives. Any alert must
orrespond to an e�e
tive intrusion. When the IDS gener-ates an alert that does not make sense, this alert is quali�ed false positive. The relevan
e (or
redibility) of an analyzer is related to its rate of false positive whi
h represents the per
entageof false alarms.2.3.1 Misuse Dete
tionMisuse dete
tion dete
ts a known atta
k via the de�nition of a s
enario. This approa
h uses aknowledge base,
alled atta
k signature base and a method of pattern mat
hing to re
ognize thede�ned signatures. A misuse IDS is then
omposed of: a set of sensors produ
ing a stream ofevents, a base for atta
k signatures and an algorithm for pattern mat
hing.Atta
k SignaturesEa
h signature
an be seen as a
hara
teristi
 sequen
e of events of an atta
k di�erenting it fromnormal behavior. The
onstru
tion of this base requires an a

urate knowledge of the atta
ksand their parameters.Atta
k S
enarioAn atta
k s
enario
an be represented by an automaton and also by �nite state ma
hines. Anautomaton represents the sequen
e of a
tions needed to a
hieve the atta
k [20℄. This approa
hallows one to express
omplex s
enarios of atta
ks
ontaining di�erent ways to rea
h the samestate. The automaton
an also be expressed using spe
i�
 language as in [22℄ or [21℄. Severalapproa
hes [23, 24, 25℄ use a �nite state automaton. The automaton
an also be represented asa variant of a
olored Petri net as in IDIOT [26℄ or in the form of state transition diagrams asin the NETSTAT tool [27℄. The states of this automaton represent the re
ent history symbols(system
alls) that were observed, a transition from one state to another
hara
terizes the set oftra
es to be produ
ed after this state.Pattern Mat
hingThe Pattern Mat
hing uses algorithms to re
ognize a signature in a re
ord
orresponding to asequen
e of events. This
onventional approa
h is problemati
 when multiple s
enarios give rise

12 CHAPTER 2. STATE OF THE ARTto the same signature. To over
ome this problem, some approa
hes use algorithms re
ognitionbased on geneti
 algorithms [28℄, bayesian networks [29℄ or some approa
hes doing the analysisof system
on�gurations [30℄. Other approa
hes use a multi-events
orrelation system, in
ludingpre-
onditions, post-
ontentions and
onditons [31, 33℄ to
larify the de�nition of s
enarios. Thisapproa
h gives a high performan
e in terms of analysis, but is generally the sour
e of a high rateof false positives. Indeed, one limitation of this approa
h is that it is di�
ult to write a signature
overing several variants of the same atta
k without generating false positives.2.4 Se
urity Poli
iesThe de�nition and implementation of a se
urity poli
y is the heart of systems se
urity. A se
uritypoli
y de�nes a set of se
urity properties, ea
h property representing a set of
onditions that thesystem must respe
t to remain in a state
onsidered as safe. An in
orre
t de�nition or the partialappli
ation of a poli
y
an lead the system to a non-safe state, allowing the theft of informationor resour
es, the modi�
ation of information or the destru
tion of the system. In this se
tionwe give a general de�nition of some se
urity properties and me
hanisms used to implement ase
urity poli
y. The se
urity of
omputer systems is generally limited to ensuring the rights ofa

ess to data and system resour
es by implementing authenti
ation me
hanisms and
ontrols toensure that the users of these resour
es have only the rights that they were granted. The se
urityme
hanisms in pla
e may still
ause dis
omfort to at the user level while the instru
tions andrules are be
oming in
reasingly
ompli
ated. Thus, information se
urity must be studied in su
ha way that it does not prevent users from the ne
essary uses of the system. This is why it isne
essary to de�ne initially a se
urity poli
y, that
an be implemented a

ording to the followingfour steps:� Identify needs in terms of se
urity, IT risks weighing on the
ompany and their possible
onsequen
es� Develop rules and pro
edures in order to prote
t the system� Monitor and dete
t vulnerabilities of information systems and keep abreast of vulnerabili-ties on used appli
ations and hardware� De�ne the a
tions to take and who to
onta
t in
ase of dete
tion of a threat (the admin-istrator of the system in most
ases)If we
onsider the system as a �nite state ma
hine with a set of transitions (operations) that
hange the system state, then a se
urity poli
y
an be seen as a way that partitions these statesinto authorized and unauthorized states. Given this simple de�nition, we
an de�ne a se
uresystem as a system that begins in an authorized state and will never enter an unauthorized state.2.4.1 Se
urity PropertiesSystems se
urity is based on three fundamental properties:
on�dentiality, integrity and avail-ability. The interpretation of these three areas varies depending on the
ontext in whi
h they areused. This representation is related to user needs, servi
es and laws in for
e. The de�nition andappli
ation of these properties are part of the evaluation
riterias of se
urity. Con�dentiality isbased on the prevention of unauthorized a

ess to information. The need of this property hasemerged after the integration of
riti
al information systems, su
h as government organizationsor industries, in sensitive areas.

2.5. VIRTUALIZATION AND SECURITY 13

Figure 2.4: Prote
tion Rings in x86-32 SystemsThe integrity property refers to the state of data whi
h, when pro
essed, saved or transmitted,remains unaltered. In the
ase of a resour
e, the integrity means that the resour
e works
orre
tly.The property of data integrity is to prevent unauthorized modi�
ation of information. Ensuringthe �delity of information with respe
t to their
ontainer is known as data integrity. The warrantyinformation related to the
reation or owners shall be known as the integrity of the original, more
ommonly
alled authenti
ity.Availability refers to the ability to use a desired information or resour
e. This property shouldbe a

ompanied with the reliability of the system, be
ause having a system that is no longeravailable is a system. As part of the se
urity, availability of property refers if an individual maydeliberately deny a

ess to
ertain information or resour
es of a system.2.5 Virtualization and Se
urity2.5.1 OverviewIn x86-32 systems, there are four rings of prote
tion from 0 to 3 (see Figure 2.4). In almost alloperating systems without virtualization, only the rings 0 and 3 are used (ex
ept in the GNUHurd system [7℄. The most privileged one is ring 0 whi
h
ontains the OS kernel. The leastprivileged one is ring 3 whi
h
ontains the appli
ations and the dynami
 data. The other tworings are not used. The diagram below shows the distribution of appli
ation
omponents in amodern operating system. In paravirtualization, the OS does not have a dire
t a

ess to thehardware. Only the hypervisor
an a

ess it dire
tly. For se
urity reasons, it will be ne
essaryto totally separate the operating system and the hypervisor. In this
ase, ring 1 will be used.Thus the hypervisor will be pla
ed in ring 0 and the OS will take ring 1. Appli
ations remain inring 3. Now that we have explained the utility of the prote
tion rings. We have to understandhow these rings are implemented in real? And where do they appear in nature? The prote
tionrings are implemented in the memory. A RAM area is assigned to a parti
ular ring by the OS.A program running in a memory area assigned to the ring 3
an not
hange a memory areaassigned to the ring 0. When AMD and Intel redesigned the x86 ar
hite
ture to move to the64-bit ar
hite
ture, they de
ided to remove the rings 1 and 2 be
ause they were not used (see

14 CHAPTER 2. STATE OF THE ART

Figure 2.5: Prote
tion Rings in XenFigure 2.5). This does not
reate a parti
ular problem be
ause these rings were not used inoperating systems. Virtualization has
ome relatively soon after and had the habit of using anadditional ring in order to partition the hypervisor, the operating system and the appli
ations.Virtualization solutions has therefore been left with only two rings rather then three. To solvethis problem, the Xen proje
t
omes with the idea that ring 3 will be shared by the OS and theappli
ations. The hypervisor will run in a separate ring (ring 0).Then, AMD and Intel qui
kly realized the importan
e that virtualization is taking. So, theyde
ided to in
lude the virtualization instru
tions in their pro
essors to make the opearationsrelated to this te
hnique easier. These extensions have enabled hardware virtualization. At thesame time, a ring �-1� was added to make the paravirtualization avoid sharing the ring 3 betweenthe OS and appli
ations, Figure 2.6 explains this new ar
ite
ture. The partitioning of virtualma
hines is of
ourse a basi

hara
teristi
 of a virtualization platform. In fa
t, the hypervisordoes not have the total
ontrol of virtual ma
hines (VMs). It
an simply turn them o�, start orpause them. The partitioning is managed by restri
ting the a

ess to the memory. Hypervisorshave been spe
i�
ally designed to prevent memory over�ows. The only way to exploit theseover�ows is hyper
alls in Xen for example. Sor far, this kind of vulnerability was not dete
ted.Also in the
ase of full virtualization and hardware virtualization, virtual ma
hines do not evenhave a spe
i�
 interfa
e with the hypervisor making this type of vulnerability impra
ti
able.The real se
urity risks in virtualization platforms are, mainly, at the management interfa
e. Themanagement interfa
es are not spe
i�
 to virtualization but their use in this parti
ular
ase isgeneralized. A

ess to management interfa
es must be se
ured by traditional network se
urityme
hanisms su
h as authenti
ation methods. On
e an interfa
e is
ompromised, the data and thea

ess to virtual ma
hines remain safe. The interfa
es do not generally have a

ess to parti
ulardata, they only have a global view of the system in order to be able to
on�gure the storagemedia. The a

ess to a VM is prote
ted by
onventional prote
tion me
hanisms su
h as loginand password.

2.5. VIRTUALIZATION AND SECURITY 15

Figure 2.6: Adding a New Ring2.5.2 Se
urity Bene�tsIf the primary reason for the popularity of virtualization is server
onsolidation and the optimiza-tion of resour
es, se
urity o�
ers, also, may �nd some bene�ts of adopting this te
hnology. Thekey bene�t of virtualization is
ertainly isolation. Every VM is running in a separate sandboxwhi
h redu
es the risk of information leakage and unauthorized a

ess. Ea
h VM has its ownmemory resour
es, I/O and pro
essors. The sandboxing isolates VMs from ea
h other and fromother virtualized servers. This helps keeping the data safe and ensures their integrity, and allowsalso hosting di�erent types of servers, dedi
ate them for a spe
e�
 appli
ation and optimize thesystem layer for this latter.Isolation
an be
onsidered as the most important se
urity-relevant property of hypervisors.If properly used, it guarantees that a mali
ious
ode in one VM does not a�e
t the remainingVMs. Besides, resour
e usage of a VM
an not a�e
t the performan
e of other VMs. Isolation
an also be used to separate appli
ations : one
an pla
e vulnerable appli
ations in a dedi
atedVM without
aring about the se
urity of the rest of VMs. If this VM is a�e
ted, the rest of theplatform remains safe. Another se
urity-related feature of hypervisors is their small
odebase,
ompared to a modern OS, it is mu
h more easier to ensure that hypervisor's
ode does not
ontain any bugs or �aws. This
an be very useful for building TCBs (Trusted Computing Base)[34℄. Moreover, in traditional OSes, the se
urity me
hanisms (IDS, anti-virus, �rewall...)
anbe
ir
umvented as soon as the OS is
ompromised. But in virtual environments, these se
urityme
hanisms
an be moved out of the VM (in a dedi
ated VM) whi
h makes them more resistantto atta
ks [35℄.Companies usually demand to have several types of partitions: one for the produ
tion servi
e,another one for testing, one for validation, and another for development. As sandboxing is total,a problem with one of the VMs will not have an e�e
t on an other one. If a VM is
ompromised,one
an kill it and restart it later from the last
he
kpoint. The se
urity o�
er
an also dedi
atea virtual server for testing new updates before their installation. In terms of pat
h management,the
ompany Blue Lane [36℄ has even developed a virtual pat
h system. The pat
hes are not

16 CHAPTER 2. STATE OF THE ART

Figure 2.7: Temporal Course of VMware Vulnerabilities Sin
e 1999dire
tly applied on the physi
al server, but tested on the VM before its installation. This
ompanyhas also re
ently developed a new software solution running on a VMWare virtual ma
hine tose
ure servers lo
ated in other VMs. Virtual ma
hines
an also be used as virtual honeypotsallowing the
olle
tion of information
oming from ha
kers. This is
alled
rash-and-burn. Thiste
hnique o�ers the ability to keep an eye on mali
ious behaviors, test some
odes and restoreto a previous state of the system in
ase the VM
rashes. Virtualization
an also provide agreater se
urity when sur�ng Internet. A Windows user with the VMware Player
an start aninstan
e of Linux equiped with the Firefox navigator and surf without being exposed to ewploitsand vulnerabilities related to Windows or Internet Explorer navigator. Another advantage ofvirtualization is also the ability to have a remote a

ess to a spe
i�
 network without deployinga VPN (Virtual Private Network).In the next se
tion we will see that virtualization does not represent a perfe
t mean forse
uring systems and appli
ations : many risks
an be arised by using this te
hnology.2.5.3 Se
urity RisksWith the growth of virtualization te
hnologies, the se
urity alerts related to this te
hnology arein
reasing. Figure 2.7 shows the in
reasing number of vulnerabilities appearing in the VMWareVMM sin
e 1999. Virtualization introdu
es new software layers that represent new areas that areexposed to atta
ks and whi
h are quite
ompli
ated to manage. The dire
t a

ess to hardwareby these layers
an also
ause a lot of damage.Three parts of the virtual ar
hite
ture must be supervised as they provide a new playgroundfor ha
kers. The hypervisor is
ertainly the most exposed one, be
ause it makes the link betweenthe hardware and VMs. The se
ond sensitive part is the administrative platform, as it givesprivileged a

ess to all the virtual instan
es of the infrastru
ture, this platform is
alled Dom0 in the
ase of the Xen hypervisor or Management Virtual Ma
hine in the
ase of VMWare.Finally, the dedi
ated
hips to the virtual infrastru
ture (as Intel VT or AMD SVM) is also agreat danger. They use a set of spe
i�
 instru
tions that fa
ilitate the implementation of multipleoperating systems on one ma
hine. These platforms
an be exploited to get unauthorized a

essto system resour
es, through a rootkit for example. These atta
ks are parti
ularly di�
ult todete
t be
ause they use lower software layers. Blue Pill [37℄, is one of these atta
ks, it was madepubli
 in 2006. In this atta
k the whole ma
hine is virtualized by running a small hypervisorunder it. The system
an loose the referen
es of the devi
es, the hardware interrupts and even thesystem time : every thing is inter
epted and pro
essed by the hypervisor. This gives the atta
ker

2.6. SOME EXISTING APPROACHES 17the opportunity to do his work without being dete
ted sin
e any dete
tion system
an be turnedo� by the hypervisor! Another type of atta
ks appeared in 2007 against the Xen hypervisor. Auser in domU
an exe
ute
ommands on dom0 while using the pygrub tool. Pygrub dedi
atesa bootloader to domU as in physi
al hosts. This vulnerability is very dangerous sin
e dom0 isa very priviliged domain and have a dire
t a

ess to hardware. Some other vulnerabilities wasalso found in Xen, one of them allows a domU to break its isolation and
an
ause a lo
al DoS(denial of Servi
e). VMWare is mu
h more exposed to atta
ks then Xen. Many vulnerabilitieswas dis
overed in this hypervisor. This is the result of the big number of asso
iated produ
ts(virtual
enter, vSphere, workstation...). Almost all these vulnerabilities are about privilegees
alation. The most
riti
al ones
an be exploited by an unauthenti
ated atta
ker from theInternet and
an
ause a
omplete
ompromise of data integrity and servi
e availability.Another threat in virtual environments is
overt
hannels. It is a way to exploit a
hannel thatwas not dedi
ated for
ommuni
ation in order to
ommuni
ate information [38℄. In most
ases,
overt
hannels exist when two entities have a

ess to a shared variable, the �rst one by readingfrom this variable and the se
ond one by writing to this same variable. There is two kinds of
overt
hannels : storage
hannels and timing
hannels. The �rst one modi�es a stored obje
twhile the se
ond type uses timed events in order to send information. One
an redu
e the numberof
overt
hannels in the system. Mandatory A

ess Control (MAC) [39℄ is very e�
ient against
overt
hannels. It is the
ase when se
urity
lasses will be assigned to users in order to limitthe a

ess of
ertain resour
es to some spe
i�
 se
urity
lasses. In virtual environments, therisk arising from
overt
hannels is that users
an use these
hannels to ex
hange informationwith ea
h other wihtout using network
onne
tions [40℄. Furthermore, Denial of Servi
e atta
ks(DoS)
an be more devastating when exe
uted in a virtual environment then in any another onesin
e subverting the hypervisor would lead to a
omplete subversion of the whole ar
hite
tureand would give the atta
ker an unlimited
ontrol of all the VMs and their data. This is thereason why the hypervisor must be as se
ure as possible [42, 43℄. To summarize, virtualizationprodu
ts are
learly not free from vulnerabilities [44, 45℄. The impa
t of a vulnerability on avirtualized platform will be more devastating
ompared to a
onventional ar
hite
ture. Many
ountermeasures
an be taken to prevent these vulnerabilities from being exploited and to redu
ethe atta
ks surfa
e. On the other hand, the frequne
y of these vulnerablities is relatively lowwhi
h gives time to se
urity o�
ers to design strong defen
e methods. In the next se
tion, wewill present some existing se
urity solutions for these risks and dis
uss their e�
ien
y againstsome se
urity threats.2.6 Some Existing Approa
hesMu
h work have been done around se
uring virtualized systems. In this se
tion, we will presentsome of the most important
ontributions in this �eld and
on
lude with a dis
ussion of thepros. and
ons. of every
ited work. This se
tion will not only in
lude the presentation ofsome interesting papers but also a summary of some big proje
ts around se
uring virtualizedplatforms.2.6.1 XSM/FLASK for XenThe Xen Se
urity Modules (XSM) framework is a dire
t appli
ation of the Flask ar
hite
ture[46, 47, 48℄ to the Xen hypervisor. This proje
t was started by NSA (National Se
urity Agen
y)(Flask is an OS se
urity ar
hite
ture that provides �exible support for se
urity poli
ies, the Flaskar
hite
ture is now implemented in SELinux).

18 CHAPTER 2. STATE OF THE ARTXSM is a generalized se
urity framework for Xen, it
reates general se
urity interfa
es andallows
ustom se
urity fun
tionality in modules. This makes the hypervisor able to supportmany se
urity poli
y models at the same time. XSM
omes also with the idea of de
omposingthe domain 0 i.e minimizing the importan
e of this domain by redu
ing its privileges and sepa-rating the hardware priviliges from domain ones. In addition, XSM gives the ability to partitionresour
e allo
ation and
ontrol between domains. Some other modules in XSM implement mediaen
ryption, IP-�ltering/routing and measurement and attestation fun
tionalities. Besides, allthe modules
an be registered and linked in at boot, they may also register a se
urity hyper
alland a poli
y magi
 number to identify and load a poli
y from boot.2.6.2 sHypesHype is an implementation of the XSM modules. This proje
t [98℄ is one of the most famous
ontributions in the �eld of se
ure hypervisors. It was developed by IBM resear
h for the Xenhypervisor. This proje
t
onsists of a se
urity ar
hite
ture that
ontrols the sharing of resour
esamong VMs a

ording to formal se
urity poli
ies. The primary goal of sHype is to
ontrol ofinformation �ows between VMs. The ar
hite
ture was designed to a
hieve medium assuran
e(Common Criteria EAL4 [50℄) for hypervisor implementations. sHype supports a set of se
urityfun
tions: se
ure servi
es, resour
e monitoring, a

ess
ontrol between VMs, isolation of virtualresour
es, and TPM-based attestation. The mandatory a

ess
ontrol enfor
es a formal se
uritypoli
y on information �ow between VMs. sHype leverages existing isolation between virtualresour
es and extends it with MAC features. TPM-based attestation [51℄ provides the ability togenerate and report runtime integrity measurements on the hypervisor and VMs. This enablesremote systems to infer the integrity properties of the running system.Besides, sHype uses a referen
e monitor that enfor
es, mandatory a

ess
ontrol poli
ies oninter-VM operations. A referen
e monitor is designed to ensure mediation of all se
urity-sensitiveoperations, whi
h enables a poli
y to authorize all su
h operations [53℄. However, the referen
emonitor usually does not de
ide whether a subje
t
an a

ess an obje
t. It only enfor
es thede
ision, whi
h is often made elsewhere in the system.The ar
hite
ture of sHype
onsists of: (1) the poli
y manager maintaining the se
urity poli
y;(2) the a

ess
ontrol module (ACM) delivering authorization de
isions a

ording to the poli
y;and (3) and mediation hooks
ontrolling a

ess of VMs to shared virtual resour
es based onde
isions returned by the ACM. The poli
y manager intera
ts with the ACM in order to establisha se
urity poli
y or to help the ACM re-evaluate a

ess
ontrol de
isions. The A

ess ControlModule (ACM) stores all se
urity poli
y information lo
ally in the hypervisor, and supports poli
ymanagement through a privileged hypervisor
all interfa
e. This interfa
e is a

ess-
ontrolled by aspe
ialized hook and will only be a

essible by poli
y-management-privileged domains. Mediationhooks are spe
ialized a

ess enfor
ement fun
tions that guards a

ess to a virtual resour
e byVMs. They enfor
e information �ow
onstraints between VMs a

ording to the se
urity poli
y.These hooks determine a

ess de
isions with the ACM, enfor
e a

ess
ontrol de
isions and
andetermine VMs labels, a

ess operation type et
, these information are useful for the a

ess
ontrol. With these hooks, sHype minimizes the intera
tion with the
ore hypervisor.Dis
ussionThe main goal of sHype was to
ontrol all expli
it information �ows between VMs. So far, sHypehas ful�lled this obje
tive and has shown its e�
ien
y in this area. In addition, it has shownpromising results in ensuring the integrity of the system and preventing information leakage. Onthe other hand all these results was obtained with the Xen hypervisor, as sHype was originally

2.6. SOME EXISTING APPROACHES 19

Figure 2.8: sHype Ar
hite
turedeveloped under Xen. This makes it unable to se
ure other hypervisors and be
omes softwareand OS-dependant. For instan
e, VMWare and KVM [54℄ are gaining su

ess, and it will be apity that su
h a software does not support these virtual ma
hine monitors. Besides, sHype
annot be run under Windows or MAC OS X whi
h makes it loose a huge umber of users. Anotherdisadvantage of sHype is its deployment and its administration : this software is not adapted tosimple users and needs some training before starting using it. In order to bypass these problems,we present in this thesis some portable solutions that are OS and VMM-undependant, and alsovery simple approa
hes that
an be deployed easily by simple users. The last thing to say aboutsHype is its weakness against DoS atta
ks sin
e there is no alerting me
hanism that
an dete
tthat a VM is not responding : this
an be done also by our approa
h.2.6.3 VAX VMM se
urity kernelThis proje
t [55℄ was one of the �rst attempts to design a se
ure hypervisor. VAX aims to developa se
urity kernel whi
h was
arried out on the virtual address extension (VAX) ar
hite
turedesigned by Digital Equipment Corporation during the 1970s. This is why the VMM se
uritykernel of Karger et al. is often also
alled the VAX se
urity kernel. VAX supports DAC andMAC for all VMs. It enfor
es the Bell-La Padula and Biba models for integrity. Furthermore,the se
urity kernel was
arefully designed in order to prevent
overt-
hannels. Self-Virtualizationis also supported by VAX : it is the ability of a virtual ma
hine monitor to run in one of its ownVMs and
reate se
ond-level VMs whi
h is very useful for developing and debugging the VMMitself.In VAX, the user has to authenti
ate herself to the VAX VMM before a

essing any VM. Forthis purpose the VAX hypervisor o�ers a trusted pro
ess running in the kernel
alled the Server.This pro
ess only exe
utes veri�ed ma
hine
ode and does not a

ept any user-written
ode. Ifa user wants to intera
t with the VAX hypervisor, a trusted path between a server pro
ess andthe user is established. The server provides
ommands that allow the user to
onne
t to a VM

20 CHAPTER 2. STATE OF THE ARTdepending on his a

ess rights. In
ase the user has the ne
essary rights to
onne
t to a VManother trusted path is established between the user and the VM, allowing him to intera
t withthe OS running in the VM. VAX has shown a good performan
e whi
h is extremely important,be
ause getting good performan
e is very hard. It requires detailed analysis of what portions ofthe kernel are performan
e-
riti
al and a willingness to redesign those portions for performan
eand possibly re-
ode them in assembly language or to provide mi
ro
ode performan
e assistan
e.Dis
ussionIt is true that the VAX hypervisor is an old proje
t, but this does not make it unimportant :in fa
t this proje
t was a perfe
t example for the proje
ts started later. It has
lari�ed manyimportant things about the se
urity of hypervisors and has stressed some relevant points thathave to be treated
arefully to design a se
ure hypervisor. Besides, VAX represents a goodimplementation for se
urity poli
y models su
h as Bell-La Padula and Biba.2.6.4 TerraTerra [56℄ is a virtualization-based ar
hite
ture for trusted
omputing. This proje
t introdu
esthe Trusted Virtual Ma
hine Monitor (TVMM), that partitions a tamper-resistant hardwareplatform into multiple, isolated virtual ma
hines (VM), providing the appearan
e of multipleboxes on a single, general-purpose platform. VMs are
lassi�ed into open-box VMs and
losed-boxVMs. Open-box VMs are not di�erent from ordinary VMs running ont top of Xen for example : nospe
ial se
urity me
hanisms are implemented for this kind of VMs. Closed-box VMs implementthe semanti
s of a
losed-box platform. Their
ontent
annot be manipulated or inspe
ted by theadministrator of the system. Only the
reator of this VM
an a

ess it. This is a
hieved throughthe use of three main se
urity me
hanisms : (1) Attestation whi
h allows an appli
ation runningin a
losed-box VM to identify itself to a remote party, this
an be done through
ryptographi
me
hanisms. Then, a
hain of trust is established starting from this appli
ation and ending atthis remote party. (2) Root se
ure: even the platform administrator
annot break the isolationof a
losed-box VM. (3) Trusted Path: this is essential for building se
ure appli
ations. In theTVMM, users
an easily identify VMs that they are
ommuni
ating with, and ea
h VM is ableto ensure that it is intera
ting with a human user. This ensures the priva
y of
ommuni
ationsbetween VMs and users and prevents snooping by mali
ious appli
ations.Dis
ussionThe main goal of Terra was to make the
ommuni
ation between users and VMs as se
ureas possible. The notion of open/
losed box VMs prevents some families of atta
ks againsthypervisors. The remote attestation ensures a se
ure
hannel of
ommuni
ation between thedi�erent parties. On the other hand, the deployment of Terra is still di�
ult for simple usersand needs to be more intuitive. In addition, terra does not provide a

ess
ontrol me
hanismssu
h as MAC whi
h seems to be a serious weakness of this ar
hite
ture. Therefore the designersof Terra de
ided to make it as �exible as possible by minimizing the
ontrol of information �owswhi
h weakens the overall se
urity of this software. We over
ome some of these problems in ourwork by providing very easy-to-deploy software and strong formal se
urity poli
ies that preventsfamilies of atta
ks from being exe
uted.

2.6. SOME EXISTING APPROACHES 212.6.5 Other ContributionsIn [57℄, Bleikert et al. studied the automated information �ow analysis of heterogeneous virtual-ized infrastru
tures. They proposed an analysis system that performs a stati
 information �owanalysis based on graph traversal. The system uni�es diverse virtualization environments in agraph representation and
omputes the transitive
losure of information �ow and isolation rulesover the graph and diagnoses isolation brea
hes from that automati
ally. The analysis is basedon expli
itly spe
i�ed trust rules. The implemented tool is independant from the vendor and
an unify di�erent systems su
 as : Xen, KVM, VMWare and PowerVM. The stati
 analysis
overs all the resour
es : hardware, hypervisor, storage and network resour
es. This te
hniqueis appli
able to the isolation analysis of
omplex
on�gurations of large virtualized data
entersthat in
lude heterogeneous server hardware, di�erent VMMs, and many virtual (and physi
al)networking and storage resour
es. This approa
h is interesting for stati
 analysis. However itdoes not enfor
e any kind of se
urity poli
y and is only useful in the
ase of large-s
ale infras-tru
tures with a diversity of underlying platforms. The
ore hypervisor does not take advantagefrom this te
hnique sin
e it fo
uses only on �ow analysis. Another point is that the analysis isrestri
ted to a binary de
ision, whether information �ows or not, and does not support tra�
types.NetTop [90℄ provides infrastru
ture for
ontrolling information �ows and resour
e sharingbetween VMs. While the granularity level in these systems is a VM, we fo
us in our work at thegranularity of a pro
ess.In [52℄, Kurniadi et al. use virtual ma
hine monitors for implementing honeypots. This isa di�erent use of virtualized systems, but shows that hypervisors
an also be useful for experi-mentation, testing and diagnosis. The authors implement a VMM-based intrusion dete
tion andmonitoring system for
olle
ting information about atta
ks on honeypots. Their �rst step was toimplement a sensor me
hanism that monitors honeypots for intrusions by dynami
ally rewritingthe binary of a running kernel image. Then, they
ompared the performan
e impa
t on threeimplementations built on UML (User Mode Linux) and Xen. The third step was to apply thisme
hanism to honeypots that are
onne
ted to Internet. Finally, they analysed and
lassi�ed thedete
ted atta
ks. Whereas this approa
h is very useful for diagnosis, the implemented sensorswork only on spe
i�
 platforms and do not report the dete
ted atta
ks to an IDS for example todo the forensi
 whi
h is very important for this kind of approa
hes. In this thesis we propose asensor-based approa
h for intrusion dete
tion but our goal is to se
ure the virtualized platformand not to implement honeypots, the advantage of our implementation is that all the events andalerts
an be saved on the dis
, then the se
urity o�
er
an a

ess the reported events and studytheir impa
t on the system.ReHype [32℄ is a system implemented on top of the Xen hypervisor that allows the re
overyfrom hypervisor failures. This system is able to preserve the state of running VMs while bootinga new instan
e of the hypervisor. Besides, it
an prote
t the re
overed hypervisor, resolvein
onsisten
ies between di�erent parts of hypervisor state as well as between the hypervisor andVMs and between the hypervisor and the hardware. The authors identi�ed the spe
i�
 sour
esof state
orruptions and in
onsisten
ies, determined whi
h of those are most likely to preventsu

essful re
overy, and devised me
hanisms to over
ome these problems. Re
overy is veryimportant in virtualized systems and ReHype represents a very e�
ient tool that implementsthis feature.Another interesting
ontribution is the BitVisor [67℄ hypervisor. BitVisor implements a newar
hite
ture
alled parapass-through (see Figure 2.9). This latter allows most of the I/O a

essfrom guest VMs to pass-through the hypervisor and enfor
es storage en
ryption of ATA devi
es.

22 CHAPTER 2. STATE OF THE ART

Figure 2.9: The para pass-through ar
hite
ture (sour
e : [67℄)If all the a

ess is pass-through, the hypervisor is almost useless. Di�erent from fully pass-through a

ess, para pass-through hypervisors inter
ept a part of a

ess to (1) prote
t hypervisorsfrom the guest OS, and (2) enfor
e se
urity fun
tionalities. The a

ess to be inter
epted in
ludesmemory a

ess and I/O a

ess. Inter
epting memory a

ess is ne
essary to prote
t memoryregions of the hypervisor and handle memory-mapped I/Os (MMIOs). Inter
epting I/O a

ess isne
essary to prote
t the hypervisor and enfor
e se
urity fun
tionalities upon the I/Os for spe
i�
devi
es.

Chapter 3Se
uring Virtual Ma
hines3.1 Introdu
tionVirtual Ma
hine te
hnology is going mainstream. Motivated by
ost savings, server
onsolidationand disaster re
overy. IT organizations are
hanging the way they deploy appli
ations anddesktops. But industry pundits agree that full-on deployment of virtual ma
hines has beenimpeded by a
riti
al weakness: se
urity. Traditional se
urity ar
hite
tures and produ
ts areinadequate for this new topology due to its spe
i�
 ar
hite
ture and se
urity requirements. Manyaspe
ts of virtual platforms have to be taken into
onsideration when designing dedi
ated se
uritysolutions. It is more
hallenging to prote
t a virtualized system with 10 virtual ma
hines thantrying to se
ure only one isolated physi
al ma
hine.We introdu
e in this
hapter a new idea for se
uring virtualized platforms. It is based onthe notion of de
entralized supervision in physi
al networks and adapts it to virtualized systems.Our obje
tif is to se
ure all running VMs and prote
t them against internal and external atta
ks,redu
e the
ost of this supervison me
hanism and
entralize event logging. Our approa
h is
ost-e�e
tive, e�
ient against families of atta
ks and have the advanatge of isolating the defensesystem (whi
h is an IDS in this
ase) and prote
ting it against mali
ious users. We design andimplement our approa
h on top of the the Xen hypervisor [12℄ using the Or
hids IDS [91℄ andthe SELinux auditd daemon. This approa
h has many advantages and is quite e�
ient againstmany se
urity threats but has also some limits that we dis
uss at the end of this
hapter andpresent more in-depth dis
ussion in the next
hapter.3.2 Related WorkMu
h work has been done on enhan
ing the se
urity of
omputer systems. Most implemented,host-based IDS run a program for se
urity on the same operating system (OS) as prote
tedprograms and potential malware. This may be simply ne
essary, as with Janus [86℄, Systra
e[93℄, Sekar et al.'s �nite-state automaton learning system [99℄, or Piga-IDS [79℄, where the IDSmust inter
ept and
he
k ea
h system
all before exe
ution. Call this an inter
eption ar
hite
ture:ea
h system
all is �rst
he
ked for
onforman
e against a se
urity poli
y by the IDS; if the
allis validated, then it is exe
uted, otherwise the IDS for
es the
all to return immediately with anerror
ode, without exe
uting the
all.A virtualized system su
h as Xen [119℄, VirtualBox [115℄, VMWare [116℄, or QEmu [95℄ allowsone to emulate one or several so-
alled guest operating systems (OS) in one or several virtual23

24 CHAPTER 3. SECURING VIRTUAL MACHINESma
hines (VM). The di�erent VMs exe
ute as though they were physi
ally distin
t ma
hines, and
an
ommuni
ate through ordinary network
onne
tions (possibly emulated in software). Thevarious VMs run under the
ontrol of a so-
alled virtual ma
hine monitor (VMM) or hypervisor ,whi
h one
an think of as being a thin, highly-privileged layer between the hardware and theVMs. See Figure 2.1, whi
h is perhaps more typi
al of Xen than of the other
ited hypervisors.The solid arrows are meant to represent the �ow of
ontrol during system
alls. When a guestOS makes a system
all, its hardware layer is emulated through
alls to the hypervisor. Thehypervisor then
alls the a
tual hardware drivers (or emulations thereof) implemented in aspe
i�
, high privilege VM
alled domain zero. Domain zero is the only VM to have a

ess tothe a
tual hardware, but is also responsible for administering the other VMs, in parti
ular killingVMs,
reating new VMs, or
hanging the emulated hardware interfa
e presented to the VMs.In re
ent years, virtualization has been seen by several as an opportunity for enfor
ing betterse
urity. The fa
t that two distin
t VMs indeed run in separate sandboxes was indeed broughtforward as an argument in this dire
tion. However, one should realize that there is no
on
eptualdistin
tion, from the point of view of prote
tion, between having a high privilege VMM and lower-privileged VMs, and using a standard Unix operating system with a high privilege kernel andlower-privileged pro
esses. Lo
al-to-root exploits on Unix are bound to be imitated in the formof atta
ks that would allow one pro
ess running in one VM to gain
ontrol of the full VMM, inparti
ular of the full hardware abstra
tion layer presented to the VMs. Indeed, this is exa
tlywhat has started to appear, with Wojt
zuk's atta
k notably [117℄.Some of the re
ent se
urity solutions using virtualization are sHype [98℄ and NetTop [90℄.They provide infrastru
ture for
ontrolling information �ows and resour
e sharing between VMs.While the granularity level in these systems is a VM, our system
ontrols exe
ution at thegranularity of a pro
ess.Livewire [85℄ is an intrusion dete
tion system that
ontrols the behavior of a VM from theoutside of the VM. Livewire uses knowledge of the guest OS to understand the behavior in amonitored VM. Livewire's VMM inter
epts only write a

esses to a non-writable memory areaand a

esses to network devi
es. On the other hand, our ar
hite
ture
an inter
ept and
ontrolall system
alls invoked in target VMs.G. W. Dunlap des
ribes an experien
e of use of virtual ma
hines for the se
urity of systems[68℄. The proposal de�nes an intermediate layer between the monitor and the host system,
alledRevirt. This layer
aptures the data sent through the syslog pro
ess (the standard UNIX loggingdaemon) of the virtual ma
hine and sends it to the host system for re
ording and later analysis.However, if the virtual system is
ompromised, the log messages
an be manipulated by theinvader and
onsequently are no more reliable.Stefan Berger des
ribes the trusted
omputing in virtual ma
hine [69℄. By virtualization theTPM
hipset, a single TMP
hipset
an provide the trusted
omputing servi
e for ea
h VM onthe same hardware platform.In [92℄, Onoue et al. propose a se
urity system that
ontrols the exe
ution of pro
esses fromthe outside of VMs. It
onsists of a modi�ed VMM and a program running in a trusted VM. Thesystem inter
epts system
alls invoked in a monitored VM and
ontrols the exe
ution a

ordingto a se
urity poli
y. Thus, this is a an inter
eption system. To �ll the semanti
 gap betweenlow-level events and high-level behavior, the system uses knowledge of the stru
ture of a givenoperating system kernel. The user
reates this knowledge with a tool when re
ompiling the OS.In
ontrast, we do not need to rebuild the OS, and only need to rely on standard event-reportingdaemons su
h as auditd, whi
h
omes with SELinux [113℄, but is an otherwise independent
omponent.

3.3. SYSTEM SUPERVISION IN VIRTUAL ENVIRONMENTS 253.3 System Supervision In Virtual EnvironmentsWe present in this se
tion some interesting approa
hes for supervising system exe
ution anddete
ting mali
ious behaviors in virtual environments. Some approa
hes a
hieve lo
al supervison,i.e every VM is equiped with ne
essary me
hanisms for dete
ting/stopping atta
ks. Other onesimplement de
entralized supervision where only one remote VM
ontains se
urity me
hanismsthat are able to monitor the whole virtualized system and prevent atta
ks.In most VMM implementations many se
urity approa
hes require the ability to monitorfrequently exe
uting events, su
h as host-based intrusion dete
tion systems that inter
ept everysystem
all throughout the system, LSM (Linux Se
urity Module) [82℄ and SELinux that hookinto a large number of kernel events to enfor
e spe
i�
 se
urity poli
ies, or even instru
tion-levelmonitoring used by several o�ine analysis approa
hes. Due to the overhead involved in out-of-VM monitoring, many su
h approa
hes either are not designed for produ
tion systems. Whilekeeping a monitor inside the VM
an be e�
ient, the key
hallenge is to ensure at least the samelevel of se
urity a
hieved by an out-of-VM approa
h.3.3.1 Lo
al Supervision Approa
hesAmong the various approa
hes proposed for lo
al VM supervison in the late 10 years, SIM (Se
ureIn-VM Monitoring) [83℄ is one of the most e�
ient and low-
ost te
hniques that aims to prote
tthe VMM and VMs. In SIM the authors utilize
ontemporary hardware memory prote
tion andhardware virtualization features available in re
ent pro
essors to
reate a hypervisor prote
tedaddress spa
e where a monitor
an exe
ute and a

ess data in native speeds and to whi
hexe
ution is transferred in a
ontrolled manner that does not require hypervisor involvement.Two important properties are ensured by this te
hnique : (1) Fast invo
ation : where invokinga monitor handler should not involve any privilege level
hange. (2) Data read/write at nativespeed : the monitor
ode should be able to read and write any system data at native speed withoutany hypervisor intervention. The main feature of this approa
h is that the
ode of the monitoris isolated and prote
ted by the idea of having two adress spa
es : a trusted and an untrustedadress spa
e. The swit
hing from a spa
e to another
an be done without the intervention of thehypervisor. Something that arises the performan
e of the whole system. While this approa
hguarantees the e�
ien
y of the monitoring and the dete
tion pf poli
y violations, no global viewof the system is given by the
urrent implementation whi
h may redu
e the intervention ability ofthe administrator in
ase of network atta
ks or
omplex atta
ks where many VMs are involved.Another interesting approa
h XSM/FLASK (detailed in
hapter 2). This approa
h is providedby the Xen hypervisor whi
h implements a se
urity framework
alled XSM, and FLASK is animplementation of a se
urity model using this framework (at the time of writing, it is the onlyone). FLASK de�nes a mandatory a

ess
ontrol poli
y providing �ne-grained
ontrols overXen domains, allowing the poli
y writer to de�ne what intera
tions between domains, devi
es,and the hypervisor are permitted. This approa
h o�ers for instan
e the ability to prevent twodomains from
ommuni
ating via event
hannels or grants,
ontrols whi
h domains
an usedevi
e passthrough (and whi
h devi
es),
an restri
t or audit operations performed by privilegeddomains and �nally prevents a privileged domain from arbitrarily mapping pages from otherdomains. Some of these examples require Dom0 Disaggregation to be useful, sin
e the domainbuild pro
ess requires the ability to write to the new domain's memory. On the other hand, thisapproa
h has many limits that we present in the next paragraph.

26 CHAPTER 3. SECURING VIRTUAL MACHINES3.3.2 Disadvantages of Lo
al SupervisionDespite the high quality of prote
tion that lo
al supervison approa
hes give to VMMs, they stillhave many disadvantages and weaknesses. First, implementing a lo
al approa
h means that everyVM is equiped with ne
essary me
hanisms for monitoring and dete
tion. This redu
es
onse-quently the ability of the defense system to intervene in remote VMs in
ase of
ross-VM atta
ks,and redu
es the general view of the administrator of the whole virtualized platform. The latestpoint is of interest be
ause of the in
reasing
omplexity of virtual environments and the need tohave the largest view of the system with the most pre
ise details about ea
h VM/
omponent.Besides, these same se
urity me
hanisms need to have a

ess rights to remote VMs in order to
ommuni
ate and send defense
ommands in
ase any atta
k is dete
ted. This advantage is notgiven by lo
al approa
hes. Moreover, some atta
ks
alled network atta
ks
an es
ape this kind ofapproa
hes. Owing to the
omplexities of the virtual environment, network atta
ks be
ome evenharder-to-dete
t when virtual ma
hines are introdu
ed to the network. Besides, implementinglo
al supervision does not help the system administrator have easy and e�
ient administrationtasks. In fa
t, lo
al poli
ies need some
on�guration from time to time, and assuming the
om-plexity of su
h systems, the administrator does not have enough tools and me
hanisms to shareupgrade with all VMs in su
h lo
al approa
hes. For example, a VM's
on�guration is stored as asingle �le, whi
h makes it easier for an atta
ker to
opy or delete these �les and potentially steala whole VM (and its stored information). This is due to the limited system view given to theadministrator. Another disadvantage of this approa
h is its ine�
ien
y against Cross-VM vul-nerabilities that
ome from the
o-residen
e of VMs whi
h makes information easy to ex�ltratea
ross VM boundary. For instan
e, in Cross-VM atta
ks, the atta
ker sends HTTP requests tothe target VM and observe
orrelation with
a
he utilization or even obtain and
ompare XenDom0 address. A Cross-VM atta
k
an then o

ur
orrupting the integrity,
on�dentiality andavailability of the atta
ked VM. To dete
t this kind of atta
ks, the system administrator needsseveral te
hnologies and methods that are not available in simple lo
al supervision (network�ltering, network monitoring, global poli
ies...).To summarize, we
an say that lo
al supervision approa
hes are not the most
onvenientapproa
h for se
uring virtualized systems. Sin
e they are unable to prevent many vulnerabilitiesand dete
t di�erent mali
ious behaviors that need larger vision of the system. We presentin the next se
tion another approa
h that implements de
entralized supervision, we will then
ompare the two approa
hes and propose our own ar
hite
ture/imlementation for se
uring virtualma
hines.3.3.3 De
entralized Supervision Approa
hesWhile lo
al inter
eption ar
hite
tures have the advantage of allowing the IDS to
ounter anyatta
k just before they are
ompleted. This way, and assuming the se
urity poli
y that the IDSenfor
es is su�
iently
omplete, no atta
k ever su

eeds on S that would make reveal or altersensitive data, make it unstable, or leave a ba
kdoor open (by whi
h we also in
lude trojans andbots).De
entralized approa
hes the IDS is meant to work in a de
entralized setting. In this
ase,the IDS does not run on the same host as the supervised host, S. While in a lo
al inter
eptionar
hite
ture, the IDS would run as a pro
ess on S itself, in a de
entralized setting only a smallso-
alled sensor running on S
olle
ts relevant events on S and sends them through some networklink to the IDS, whi
h runs on another, dedi
ated host M.De
entralized ar
hite
tures (see Figure 3.1) make the IDS more resistant to atta
ks on S(whi
h may be any of S1, . . . , S4 in the �gure): to kill the IDS, one would have to atta
k thesupervision ma
hine M, but M is meant to only exe
ute the IDS and no other appli
ation, and

3.4. PROPOSED ARCHITECTURE 27
Sensor

Sensor Sensor

Sensor

S1

S2 S3

S4

OrchidsNetwork links

Network

M

Figure 3.1: De
entralized Supervisionhas only limited network
onne
tivity. In addition to the link from S to M used to report eventsto the IDS, we also usually have a (se
ure) link from M to S, allowing the IDS to issue
ommandsto retaliate to atta
ks on S. While this may take time (e.g., some tens or hundreds of millise
ondson a LAN), this sometimes has the advantage to let the IDS learn about intruder behavior on
ethey have
ompleted an atta
k. This is important for forensi
s.De
entralized ar
hite
tures are also not limited to supervising just one host S. It is parti
ularlyinteresting to let the supervision ma
hine M
olle
t events from several di�erent hosts at on
e,from network equipment (routers, hubs, et
., typi
ally through logs or MIB SNMP
alls), and
orrelate between them, turning the IDS into a mix between host-based and network-based IDS.We shall argue in the next se
tion that one
an simulate su
h a de
entralized ar
hite
ture,at minimal
ost, on a single ma
hine, using modern virtualization te
hnology. We shall also seethat this has some additional advantages.3.4 Proposed Ar
hite
tureAs explained earlier, lo
al inter
eption approa
hes are vulnerable to lo
al atta
ks, be
ause theintruder
an disable or tamper them. Thus, monitoring data
oming from a
ompromised system
annot be
onsidered reliable. The isolation o�ered by virtual ma
hines provides a solution tothis problem. The proposal presented here allows building more reliable virtualized platformsfor intrusion dete
tion.Our proposal's main idea is to en
apsulate both the systems to monitor and the surveillan
esystem inside virtual ma
hines. The intrusion dete
tion and response me
hanisms are imple-mented outside the virtual ma
hine, i.e. out of rea
h of intruders. Figure 3.2 illustrates the main
omponents of the proposed ar
hite
ture.We run a fast, modern IPS su
h as Or
hids [91, 87℄ in another VM to monitor, and rea
tagainst, se
urity brea
hes that may happen on the users' environment in ea
h of the guest OSespresent in a virtualized system.One
an see this ar
hite
ture as an implementation of a de
entralized supervision ar
hite
tureon a single physi
al host.

28 CHAPTER 3. SECURING VIRTUAL MACHINES
Sensor SensorSensor

Orchids

Surveillance
OS

Hypervisor

Dom 0
...

Guest
OS

Hardware

Guest
OS

Drivers

Network

Figure 3.2: Proposed Ar
hite
tureWe argue that this solution has several advantages. First, there is a
lear advantage in termsof
ost,
ompared to the de
entralized ar
hite
ture: we save the
ost of the additional supervisionhost M.Se
ond,
ompared to a standard, unsupervised OS, the user does not need to
hange herusual environment, or to install any new se
urity pa
kage. Only a small sensor has to run on hervirtual ma
hine to report events to Or
hids. Or
hids a

epts events from a variety of sensors.In our
urrent implementation, ea
h guest OS reports sequen
es of system
alls through thestandard auditd daemon, a
omponent of SELinux [113℄, whi
h one
an even run without theneed for installing or running SELinux itself. (Earlier, we used Snare, however this now seemsobsoles
ent.) Linux auditd sensor is a built-in me
hanism in the kernel, whi
h allows one tointer
ept
hanges to monitored �les and write them to a log on the disk or send them to a lo
also
ket. Auditd inter
epts almost all system
alls and gives a detailed summary in real time of theperformed system
alls. we
an let auditd supervise some spe
i�
 users or system
alls dependingon what we want to audit.The bulk of the supervision e�ort is e�e
ted in a di�erent VM, thus redu
ing the installatione�ort to editing a few
on�guration �les, to des
ribe the
onne
tions between the guest OSesand the supervision OS mainly. In parti
ular, we do not need to re
ompile any OS kernel withour ar
hite
ture, ex
ept possibly to make sure that auditd is installed and a
tivated.A third advantage,
ompared with inter
eption ar
hite
tures, and whi
h we naturally sharewith de
entralized ar
hite
tures, is that isolating the IPS in its own VM makes it resistant toatta
ks from the outside. Indeed, Or
hids runs in a VM that has no other network
onne
tionto the outside world than those it requires to monitor the guest OSes, and whi
h runs no otherappli
ation that
ould possibly introdu
e lo
al vulnerabilities.Or
hids should have high privileges to be able to retaliate to atta
ks on ea
h guest OS. Forexample, we use ssh
onne
tions between Or
hids and ea
h VM kernel to be able to kill o�endingpro
esses or disable o�ending user a

ounts. (The ne
essary lo
al network links, running in theopposite dire
tion as the sensor-to-Or
hids event reporting links shown in Figure 4.7, are notdrawn.)The Or
hids dete
tion system re
ognizes s
enarios by simulating known �nite automata, froma given event �ow. This method allows the writing of powerful stateful rules suitable for intrusiondete
tion.Or
hids is
omposed of �ve main parts: a set of rule de�nitions (in a dedi
ated spe
i�
ationlanguage), a rule
ompiler whi
h translates rule de�nitions into an internal automata representa-

3.4. PROPOSED ARCHITECTURE 29tion, a set
ompiled rules whi
h is the knowledge base of the whole system, a massively parallelvirtual ma
hine whi
h simulates non-deterministi
 �nite automata, and a set of input moduleswhi
h de
odes data in
oming from external sour
es.Next, we
annot expe
t an ordinary user to manage her own ma
hine, or, for that matter, tokeep an atta
k signature base up to date. Although Or
hids requires rather few signatures, sin
eone signature
an mat
h several atta
ks (in
luding some zero-day atta
ks [87℄), Or
hids is stillfundamentally a misuse intrusion prevention system, and requires some maintenan
e, if only towrite new rules for new families of atta
ks. A standard solution to this problem is to install alink between the appli
ation, here Or
hids, and a trusted server, with a regularly triggered taskthat inquires about se
urity updates from the server. We do not wish to let the Or
hids virtualma
hine
ommuni
ate along any link with the outside world, if possible. Trusted servers
an beha
ked, and in any
ase emitting se
urity updates requires an infrastru
ture, and resour
es.However, running on a virtualized ar
hite
ture o�ers additional bene�ts. One of them is thatOr
hids
an now ask domain zero to kill an entire VM. This is ne
essary when a guest OS hasbeen subje
t to an atta
k with
onsequen
es that we
annot assess pre
isely. For example, thedo_brk() atta
k [114℄ and its siblings, or the vmspli
e() atta
k [94℄ allow the atta
ker not justto gain root a

ess, but dire
t a

ess to the kernel . Note that this means, for example, that theatta
ker has immediate a

ess to the whole pro
ess table, as well as to the memory zones of allthe pro
esses. While
urrent exploits seem not to have used this opportunity, su
h atta
k ve
torsin prin
iple allow an atta
ker to be
ome
ompletely stealthy, e.g., by making its own pro
essesinvisible to the OS. In this
ase, the OS is essentially in an unpredi
table state.The important point is that we
an always revert any guest OS to a previous, safe state,using virtualization. Indeed, ea
h VM
an be
he
kpointed , i.e., one
an save the
ompleteinstantaneous state of a given VM on disk, in
luding pro
esses, network
onne
tions, signals.Assuming that we
he
kpoint ea
h VM at regular intervals, it is then feasible to have Or
hidsretaliate by killing a VM in extreme
ases and repla
ing it by an earlier, safe
he
kpoint.Or
hids
an also dete
t VMs that have died be
ause of fast denial-of-servi
e atta
ks (e.g.,the double listen() atta
k [81℄, whi
h
auses instant kernel lo
k-up), by pinging ea
h VM atregular intervals: in this
ase, too, Or
hids
an kill the VM and reinstall a previous
he
kpoint.We rea
t similarly to atta
ks on guest OSes that are suspe
ted of having su

eeded in gettingkernel privileges and of, say, disabling the lo
al auditd daemon.Killing VMs and restoring
he
kpoints is
learly something that we
annot a�ord with physi
alhosts instead of VMs.It would be tempting to allow Or
hids to run inside domain zero to do so. Instead, we runOr
hids in a separate guest OS, with another ssh
onne
tion to issue VM administration
om-mands to be exe
uted by a shell in domain zero. I.e., we make domain zero delegate surveillan
eto a separate VM running Or
hids, while the latter trusts domain zero to administer the otherguest VMs. We do so in order to sandbox ea
h from the other one. Although we have takenpre
autions against this prospe
t, there is still a possibility that a wily atta
ker would manageto
ause denial-of-servi
e atta
ks on Or
hids by
rafting events
ausing blow-up in the internalOr
hids surveillan
e algorithm (see [87℄), and we don't want this to
ause the
ollapse of thewhole host. Conversely, if domain zero itself is under atta
k, we would like Or
hids to be ableto dete
t this and rea
t against it.To our knowledge, this simple ar
hite
ture has not been put forward in previous publi
ations,although some proposals already
onsider managing the se
urity of virtualized ar
hite
tures, aswe have dis
ussed earlier.

30 CHAPTER 3. SECURING VIRTUAL MACHINES

Figure 3.3: The Implemented Remote Logging3.5 Remote LoggingAs explained earlier, we equip every virtual ma
hine with the SElinux auditd sensor. Thisdaemon
aptures system
alls a

ording to a
on�guration �le
ontaining details about what wewant to audit. To a

omplish its mission, the auditd daemon relies on an engine
alled audispd.This is the dispat
her of the daemon, it is responsible of sending the reported events to thespe
i�ed targets. These targets are either a lo
al �le or a lo
al so
ket, and audispd is unable toreport to a remote target.Sin
e our idea is to preserve the de
entralisation
riterion of our ar
hite
ture, we needed tomake audispd able to report to remote targets via the network. To deal with this, we designedand implemented a new fun
tionality in the auditd dispat
her. This fun
tionality makes audispdable to report events via the virtual network (TCP
hannel) to a remote target (see �gure 3.3).Besides,and from the IDS side, the need was to make Or
hids behave like a server that re
eivesinformation from di�erent hosts and rea
ts a

ording to the
orrelation of the events if an atta
kmat
hes. The rea
tion is perfomed through the network by sending
ommands that are able tokill the o�ending remote pro
esses and sometimes by asking Dom0 to
ompletely stop the VMand restart from an early
he
kpoint. This
an be done in
ase of fast Dos atta
ks that
an freezethe whole VM.3.6 Dis
ussionThe proposed ar
hite
ture has pros. and
ons.: �rst,
ompared to other ar
hite
tures, this oneis very easy to deploy. The sensor
omes with almost all 2.6 Linux kernels and no further
on�g-uration is needed ex
ept adding the system
alls that one wants to audit. From the supervisionVm side, one have just to install Or
hdis whi
h is pre
on�gured to work with auditd. This makesthe system administrator's life easier.Se
ond, we argue that this approa
h has the advantage of working with a powerful hypervi-

3.7. CONCLUSION 31sor whi
h is Xen. Indeed, Xen represents a thin hypervisor model
onsisting of only 2 MB ofexe
utable, relying on servi
e domains for fun
tionality, needs no devi
e drivers and keeps do-mains/guests isolated. These
hara
teristi
s
an not be found in other virtualization tools su
has VMware ESX whi
h needs devi
e drivers and a base of management where hardware supportdepends on VMware
reated drivers.Another advantage of this approa
h is the fa
t that defense me
hanisms are already imple-mented in Or
hids and we bene�t from this fun
tionality and make it work for all the VMs. Thisgives another dimension to our IDS. This point is of importan
e be
ause designing a
ompleteand e�
ient solution with defense me
hanisms, most of the time, is not an easy task.On the other hand, one
an noti
e that our approa
h relies on the network for
ommuni
atinginformation between the IDS and the di�erent VMs. This
an be a real sour
e of problems. Anatta
ker lo
ated in a simple VM
an try to break the a

ess rules to the
on�guration �les ofauditd and stop the remote logging me
hanism. To deal with this, Or
hids
an easily dete
tthat one VM is a
tive but is not reporting. For now the remedy to this problem is not yetimplemented but we feel that the best solution is to report this issue to the administrator whowill try to diagnose this VM and restart the sensor. If the problem persists, Or
hdis
an kill theVM and restart later from a safe
he
kpoint (free from vulnerabilities).Another weakness of relying on the network is the laten
y related to the network (the termlaten
y refers to any of several kinds of delays typi
ally in
urred in pro
essing of network data.A so-
alled low laten
y network
onne
tion is one that generally experien
es small delay times,while a high laten
y
onne
tion generally su�ers from long delays). A
tually we are unable torea
t e�
iently a

ording to fast DoS atta
ks that
an rapidly freeze the VM even before there
eption of the reported events by Or
hids.The main weakness of our approa
h is the fa
t that we rely on the reported system
alls todete
t intrusions. The problem is that some new atta
ks are stealthy and undete
table usingthis approa
h. For instan
e the Wojt
zuk's atta
k [117℄ on the Xen hypervisor is
ompletelyundete
table by our approa
h. The obje
tive of our thesis was not to dete
t this spe
i�
 atta
kbut at least we try to o�er an easy way to avoid the dammage
aused by this atta
k. In fa
t wewill make sure that the atta
k
an not be run at all (see
hapter 4).Another problem related to our approa
h and that we adress in the next
hapter is the absen
eof a spe
i�
 se
urity poli
y that
an be dedi
ated to this environment. We feel that a rigourousa

ess
ontrol poli
y
an be
omplementary to our supervision/dete
tion approa
h. More detailsabout how we adress this problem will be given later.3.7 Con
lusionIn this
hapter, we have presented a new ar
hite
ture for intrusion dete
tion that simulatesde
entralized supervision on one single host. Our primary aim was to se
ure running virtualma
hines against atta
ks by deploying Or
hids and sensors reporting at real time to it. Thisar
hite
ture was implemented on top of the Xen hypervisor and its main advantage is
ostsaving. Regarding the e�e
tiveness of the dete
tion me
hanisms, many improvements
an bebrought to our implementation. Mu
h work
an be done on DoS atta
ks dete
tion, on se
uring
ommmuni
ation
hannels and espe
ially on optimizing the
ontent of the reported events. This
an be done by improving the way that auditd logs the
aptured events. As further work, itwould be interesting to extend this implementation to other interesting vrtualization solutionssu
h as KVM [41℄ or VMWare. It would be also
hallenging to explore ways to avoid killing VMsin
ase of DoS atta
ks in order to preserve a good level of the servi
e
ontinuity.

32 CHAPTER 3. SECURING VIRTUAL MACHINES

Chapter 4Prote
ting Sensitive Resour
es4.1 Introdu
tionIn
hapter 3, we have presented a new approa
h for se
uring virtual ma
hines. This idea is basedon a de
entralized intrusion dete
tion me
hanism ensured by the Or
hids IDS and the auditdsensor. Despite the advantages that su
h an approa
h
an o�er, it remains unable to prote
tsensitive resour
es e�
iently due to the la
k of a se
urity poli
y strategy.In this
hapter we introdu
e a new way to model se
urity poli
ies and deploy them. Ourprimary goal will be to prote
t sensitive resour
es su
h as the domain0, and at the same timeprevent some stealthy atta
ks that we
an not dete
t. We introdu
e a new language for modellingse
urity poli
ies a

ompanied with a pro
edure for the automati
 translation of poli
ies intoautomata representing atta
ks signatures that enri
h the IDS signature base.4.2 Related WorkIn this se
tion, we present two approa
hes that are similar to our proposal. The �rst one is ProofCarrying Code (PCC). PCC
omes with the idea that end-users be
ome able to verify se
urityproperties about an appli
ation via a formal proof that a

ompanies the exe
utable
ode. Theuser
an then de
ide if the appli
ation is safe by
omapring the result of the veri�
ation to thelo
al se
urity poli
y.The se
ond approa
h is Model Carrying Code (MCC) where end-users
an pro�t from afully automated veri�
ation pro
edure to determine if a downloaded
ode satis�es their se
uritypoli
ies. Alternatively, an automated pro
edure
an sift through a
atalog of a

eptable poli
iesto identify one that is
ompatible with the model. In the next two se
tions, we give a briefpresentation of these approa
hes in order to
larify the idea of verifying models against se
uritypoli
ies, this helps understand our approa
h whi
h does not have exa
tly the same goal butshares many details with these methods espe
ially in the modelling and veri�
ation part.4.2.1 Proof Carrying CodeOverview Proof-Carrying Code (PCC) [89℄ reveals many advantages for safe exe
ution of un-trusted
ode. The te
hnique needs that the produ
er and the
onsumer of the
ode performsome ne
essary a
tions : �rst, the
onsumer needs to establish a set of rules (safety) that guar-antees the safe behaviour of a program. Then, the produ
er has to
reate a formal proof for theuntrusted
ode. This proof is used by the re
eiver of the
ode as an entry to his proof validator33

34 CHAPTER 4. PROTECTING SENSITIVE RESOURCES

Figure 4.1: Proof Carrying Code [89℄(given by the produ
er) in order to
he
k that the
ode is safe. PCC has many uses in systemswhose trusted
omputing base is dynami
 : extensible operating systems, Internet browsers, a
-tive network nodes and safety-
riti
al embedded
ontrollers. These examples need most of thetime mobile
ode or regular updates.Despite the large amount of e�ort in establishing and formally proving the safety of theuntrusted
ode, almost the entire burden of doing this is on the
ode produ
er. The
ode
onsumer, on the other hand, has only to perform a fast, simple, and easy-to-trust proof-
he
kingpro
ess. The trustworthiness of the proof-
he
ker is an important advantage over approa
hes thatinvolve the use of
omplex
ompilers or interpreters in the
ode
onsumer.The
onsumer does not
are about the nature of the proof. The proofs
ould be generatedby hand, but sometimes it is ne
essary to rely on a theorem prover. Besides, the
onsumer doesnot have to trust the proof-generation pro
ess. Moreover, any modi�
ation (either a

idental ormali
ious) will result in one of these out
omes : (1) the proof is not valid, the program is nota

epted, (2) the proof is valid but is not a safety one, so it will be reje
ted, (3) the proof is validdespite the modi�
ations, in this
ase the guarantee of safety will hold.Another interesting feature of PCC is the
ontinious
he
king of intrinsi
 properties of the
ode without
aring about its origin thus
ryptography me
hanisms are not needed. In this sensethe proagrams are self-
ertifying. On the other hand, the stati
 veri�
ation of the untrusted
ode before its exe
ution saves time and dete
ts hazardous operations early thus avoiding thesituations when the
ode
onsumer must kill the untrusted pro
ess after it has a
quired resour
esor modi�ed state.Dis
ussion Despite the elegant design of PCC and its easy
omprehension, this method is verydi�
ult to implement e�
iently. First, proofs are not easy to en
ode be
ause trivial en
oding ofproperties of programs is very large. Se
ond, the veri�
ation part of the proof is not an easy taskbe
ause it needs a small, fast and independant
he
ker, also, the proofs must be terse. Finally,the produ
er have to provide a proof that is fully related to the real exe
ution of the program,

4.2. RELATED WORK 35

Figure 4.2: Model Carrying Code [103℄something that is not totally ensured. In our approa
h, we do not provide proofs, but only safetyproperties at the
onsumer side, we do not
are about their translation into models, be
ausewe rely on an automati
 tool. Then the veri�
ation is done by a model-
he
ker (Or
hids) thatveri�es these properties at real time.4.2.2 Model Carrying CodeOverview MCC [103℄ introdu
es program behavioral models (see Figure 4.2) whi
h help bridgethe semanti
 gap between low-level binary
ode and high-level se
urity poli
ies. These models
apture se
urity-related properties of the
ode, but do not
apture aspe
ts of the
ode thatpertain only to its fun
tional
orre
tness. The model is stated in terms of the se
urity-relevantoperations made by the
ode, the arguments of these operations, and the sequen
ing relationshipsamong them. These operations
orrespond to system
alls, but alternatives su
h as fun
tion
allsare also possible. While models
an be
reated manually, doing so would be a time-
onsumingpro
ess that would a�e
t the usability of the approa
h. Therefore, the authors developed amodel extra
tion approa
h that
an automati
ally generate the required models. Sin
e themodel extra
tion takes pla
e at the produ
er end, it
an operate on sour
e
ode rather thanbinary
ode. It
an also bene�t from the test suites developed by the
ode produ
er to testhis/her sour
e
ode. The
onsumer wants to be assured that the
ode will satisfy a se
uritypoli
y sele
ted by him/her. The use of a se
urity behavior model enables to de
ompose thisassuran
e argument into two parts: poli
y satisfa
tion whi
h
he
ks whether the model satis�esthe poli
y, and model safety whi
h
he
ks if the model
aptures a safe approximation of programbehavior.In more details, a produ
er generates both the program D to be downloaded (e.g., the devi
edriver), and a model of it, M . The
onsumer
he
ks the model against a lo
al poli
y P . Insteadof merely reje
ting the program D if its model M does not satisfy, the
onsumer
omputes anenfor
ement model M ′ that satis�es bothM and P , and generates a monitor that
he
ks whether
P satis�es M ′ at run-time. Any violation is �agged and reported.In MCC, models, as well as poli
ies and enfor
ement models, are taken to be extended �nite-state automata (EFSA), i.e., �nite state automata augmented with �nitely many state variablesmeant to hold values over some �xed domain. A typi
al example, taken from op.
it., is theEFSA of Figure 4.3. This is meant to des
ribe the normal exe
utions of D as doing a series of

36 CHAPTER 4. PROTECTING SENSITIVE RESOURCESlo
al_read (Con�gFiles)
lo
al_read (LogFile)ǫ

exists (I
onFile) !exists (I
onFile)lo
al_read (I
onFile) remote_read (I
onFile)ǫ
Figure 4.3: An EFSA Model, after Sekar et al. [103℄system
alls as follows. Ea
h system
all is abstra
ted, e.g., the �rst expe
ted system
all from

D is a
all to lo
al_read with argument bound to the Con�gFiles state variable. Then D isexpe
ted to either take the left or the right transition going down, depending on whether sometested �le (in variable I
onFile) exists or not. In the �rst
ase, D should
all lo
al_read, inthe se
ond
ase, D should
all remote_read. The transitions labeled ǫ are meant to be �rablespontaneously.Typi
al poli
ies
onsidered by Sekar et al. are invariants of the form �any program shouldeither a

ess lo
al �les or a

ess the network but not both� (this is violated above, assumingobvious meanings for system
alls), or that only �les from the /var/log/httpd/ dire
tory shouldbe read by D. Poli
ies are again expressed as EFSA, and enfor
ement models
an be
omputedas a form of syn
hronized produ
t denoting the interse
tion of the languages of M and P .Dis
ussion The EFSA models used in MCC are su�
iently
lose to the automaton-basedmodel used in Or
hids (whi
h appeared about at the same time, see the se
ond part of [97℄; orsee [87℄ for a more in-depth treatment) that the EFSA built in the MCC approa
h
an be fedalmost dire
tly to Or
hids. In our approa
h, we use Or
hids for EFSA
he
king. More detailsabout the proposed approa
h will be given in the following se
tions.4.3 Threat Model4.3.1 Sensitive Resour
esThe hypervisor is not alone in its task of administering the guest domains on the system. Aspe
ial privileged domain
alled Domain0 serves as an administrative interfa
e to Xen. Domain0is the �rst domain laun
hed when the system is booted, and it
an be used to
reate and
on�gure all other regular guest domains. Domain0 has dire
t physi
al a

ess to all hardware,and it exports the simpli�ed generi

lass devi
es to ea
h DomU. The
riti
al spots in ourimplementation presented in the previous
hapter are the VMM (hypervisor) itself, domain zero,and the surveillan
e VM running Or
hids. Atta
king the latter is a nuisan
e, but is not so mu
hof a problem as atta
king the VMM or domain zero, whi
h would lead to
omplete subversion ofthe system. Moreover, the fa
t that Or
hids runs in an isolated VM averts most of the e�e
ts ofany vulnerability that Or
hids may have.Atta
ks against the VMM are mu
h more devastating. Wojt
zuk's 2008 atta
ks on Xen 2[117℄ allow one to take
ontrol of the VMM, hen
e of the whole ma
hine, by rewriting arbitrary
ode and data using DMA
hannels, and almost without the pro
essor's intervention. . . quite a

4.3. THREAT MODEL 37fantasti
 te
hnique, and
ertainly one that breaks the
ommon idea that every
hange in stored
ode or data must be e�e
ted by some program running on one of the pro
essors. Indeed, herea separate, standard
hip is a
tually used to rewrite the
ode and data. On
e an atta
ker hastaken
ontrol over the VMM, one
annot hope to rea
t in any e�e
tive way. In parti
ular, theVMM
ontrols entirely the hardware abstra
tion layer that is presented to ea
h of the guestOSes: no network link, no disk storage fa
ility, no keyboard input
an be trusted by any guestOS any longer. Worse, the VMM also
ontrols some of the features of the pro
essor itself, or ofthe MMU, making memory or register
ontents themselves unreliable.We
urrently have no idea how to prevent atta
ks su
h as Wojt
zuk's, apart from unsatisfa
-tory, temporary remedies su
h as
he
kpointing some sele
ted memory areas in the VMM
odeand data areas. However, we
laim that averting su
h atta
ks is best done by making sure thatthey
annot be run at all. Indeed, Wojt
zuk's atta
ks only work provided the atta
ker alreadyhas root a

ess to domain zero, and this is already quite a predi
ament. We therefore
on
entrateon ensuring that no unauthorized user
an gain root a

ess to domain zero.Normally, only the system administrator should have a

ess to domain zero. (In enterprise
ir
les, the administrator may be a person with the spe
i�
 role of an administrator. In family
ir
les, we may either de
ide that there should be no administrator, and that the system shouldself-administer; or that one parti
ular user has administrator responsibilities.) We shall assumethat this administrator is benevolent , i.e., will not
ons
iously run exploits against the system.However, he may do so without knowing it while updating his system...4.3.2 Automati
 Updates and Se
urity IssuesEither in host-based ar
hite
tures or in virtualized ones, automati
 updates represent a seriousthreat to the se
urity of systems. As shown earlier, atta
king a simple VM or a managing VMsu
h as Dom0
an be mu
h more devastating than atta
king a simple ar
hite
ture with one singlehost. The atta
ker
an take the
ontrol of the whole virtualized system (sometimes hundredsof VMs with virtual servers and
riti
al data!). This
an be done by downloading mali
iousupdates for programs or drivers, these updates may
ontain trojans that are triggered on
e theupdate is exe
uted. We will present this kind of atta
k s
enarios in the folllowing se
tions withmore details. Now let us explain how automati
 updates
an be a sour
e of threat for
omputersystems in general.Every day, millions of
omputer users and system administrators update software some manu-ally, some automati
ally, and some unknowingly. In 2002,
orporations spent more than 2 billionon pat
h management for operating systems alone [77℄. Indeed, many CERT Te
hni
al CyberSe
urity Alerts suggest applying pat
hes, upgrades, or updates to resolve se
urity vulnerabili-ties. And system administrator tend to use
ontent distribution networks to download softwareupdates. These updates help to pat
h everyday bugs, plug se
urity vulnerabilities, and se
ure
riti
al infrastru
ture. Yet
hallenges remain for se
ure
ontent distribution: many deployedsoftware update me
hanisms are inse
ure. Users and system administrators are between two
hoi
es : either let the update me
hanism download the pat
hes or keep the
omputer isolatedfrom the network. The latter
hoi
e redu
es the �life expe
tan
y� of the
omputer system. Thelatter idea is not of interest, thus almost all operating systems, software and even sharewareare equiped with me
hanisms that
he
k for new updates, and most of these systems
an be
on�gured to automati
ally download and install the updates, and sometimes without notifyingthe user.On the other hand, many update systems are themselves riddled with se
urity vulnerabilities.Kevin Fu et al. from the University of Massa
husetts studied the so-
alled se
ure me
hanismsfor automati
 updates. The results are disappointing [78℄. Many software update me
hanisms

38 CHAPTER 4. PROTECTING SENSITIVE RESOURCES

Figure 4.4: Atta
king System Updatesimplemented in famous software su
h as Mi
rosoft Windows Update, Mozilla Firefox, AdobeA
robat Reader and M
Afee VirusS
an la
k basi
 se
urity measures su
h as veri�
ation of digitalsignatures. Left open and unprote
ted, the update
hannels serve as an ideal ba
kdoor forspreading mali
ious
ode. The main problem of these update me
hanisms is the authenti
ationof the updates in order to ensure their legitima
y. But it is also very important that softwarehave an authenti
ated
onne
tion to the update server. As the name implies, having an updateauthenti
ated means that there is some way for the software doing the update to assure itselfthat the update is an authenti
 version from the intended sour
e. Without authenti
ation, a
lever ha
ker
an arrange a man-in-the-middle atta
k to insert an exploit in the update stream.Most of these unse
ured update systems simply go to a Web or FTP server,
he
k the timestamp on the most re
ent �le and download the �le if it's new enough. The address of the serveris usually hard-
oded into the program doing the update, although o

asionally it is stored in a
on�guration �le. The atta
ker
an simply to redire
t the program making the update to a server
ontrolled by the atta
ker himself. This is quite easy : with DNS-based atta
k the program
anbe redire
ted to the wrong website. To do this, the atta
ker run his software in an a
afé withwireless
onne
tion to Internet, waits until the vi
tim does a DNS query, he
at
hes the IP adressof the update server, and then
an answer the DNS query before the o�
ial DNS server, andredire
t the vi
tim to the wrong destination. Even if updates are signed, an atta
ker
apableof inter
epting DNS requests or diverting Internet tra�

an still use an update servi
e to takeover an unsuspe
ting vi
tim's
omputer. A signature on an update just means that the updateis authenti
, it doesn't mean that the update is any good.4.3.3 A possible Atta
k S
enarioOne of the most tangible risks that
an o

ur is the failure to keep up with the
onstant,labor-intensive pro
ess of pat
hing, maintaining and se
uring ea
h virtual server in a
ompany.Unlike the physi
al servers on whi
h they sit, whi
h are laun
hed and
on�gured by hands-on ITmanagers who also install the latest pat
hes, virtual ma
hines tend to be laun
hed from serverimages that may have been
reated,
on�gured and pat
hed weeks or months before.

4.4. PRELIMINARIES 39One possible s
enario is this: the administrator needs to upgrade some library or driver, anddownloads a new version; this version
ontains a trojan horse, whi
h runs Wojt
zuk's atta
k.Modern automati
 update me
hanisms use
ryptographi
 me
hanisms, in
luding
erti�
ates and
ryptographi
 hashing me
hanisms [118℄, to prevent atta
kers from running man-in-the-middleatta
ks, say, and substitute a driver with a trojan horse for a valid driver. However, there isno guarantee that the authenti
 driver served by the automati
 update server is itself free oftrojans. There is at least one a
tual known
ase of a manufa
turer shipping a trojan (hopefullyby mistake): some Video iPods were shipped with the Windows RavMonE.exe virus [96℄,
ausingimmediate infe
tion of any Windows host to whi
h the iPods were
onne
ted.4.4 PreliminariesRelated Work. We brie�y present in this se
tion some
ontributions that are related to ourapproa
h. Most of them implement run-time supervision and enfor
ement of se
urity poli
ies.Systems su
h as SELinux (op.
it.) are based on a se
urity poli
y, but fail to re
ognize illegalsequen
es of legal a
tions. To give a simple example, it may be perfe
tly legal for user A to
opy some private data D to some publi
 dire
tory su
h as /tmp, and for user B to read anydata from /tmp, although our se
urity poli
y forbids any (dire
t) �ow of sensitive data fromA to B. Su
h sequen
es of a
tions are
alled transitive �ows of data in the literature. To ourknowledge, Zimmerman et al. [120, 121, 122℄ were the �rst to propose an IDS that is ableto
he
k for illegal transitive �ows. Bri�aut [79℄ shows that even more general poli
ies
anbe e�
iently enfor
ed, in
luding non-rea
hability properties and Chinese Wall poli
ies, amongothers; in general, Bri�aut uses a simple and general poli
y language. We propose another,perhaps more prin
ipled, language in Se
tion 4.5, based on linear temporal logi
 (LTL). Usingthe latter is naturally related to a more an
ient proposal by Roger etal. in [97℄. However, LTLas de�ned in (the �rst part of) the latter paper only uses future operators, and is arguably ill-suited to intrusion dete
tion (as dis
ussed in op.
it. already). Here, instead we use a fragmentof LTL with past , whi
h, although equivalent to ordinary LTL with only future operators asfar as satis�ability is
on
erned (for some �xed initial state only, and up to an exponential-sizeblowup), will turn out to be mu
h more
onvenient to spe
ify poli
ies, and easy to
ompile torules that
an be fed to the Or
hids IPS [91, 87℄.Linear Temporal Logi
. As the language we propose in the next se
tion is a variant of LTL(Linear Temporal Logi
) with past operators. We give a brief presentation of this language. Westart by presenting temporal logi
s.The term Temporal Logi
 has been used to
over all approa
hes to the representation oftemporal information within a logi
al framework. This logi

an be used as a formalism for
larifying philosophi
al issues about time, as a framework within whi
h to de�ne the semanti
sof temporal expressions in natural language, as a language for en
oding temporal knowledge inarti�
ial intelligen
e, and as a tool for handling the temporal aspe
ts of the exe
ution of
omputerprograms.LTL is a modal temporal logi
 with modalities referring to time. It was �rst proposed forthe formal veri�
ation of
omputer programs by Amir Pnueli in 1977 [100℄. It has be
ome thestandard language for linear-time model
he
king. Model
he
king is the automati
 veri�
ationthat a model (typi
ally a transition system) of a system possesses
ertain (un)desired properties.LTL is supported by many model
he
kers su
h as SPIN [101℄.The alphabet of LTL is
omposed of:� atomi
 proposition symbols p,q,r,...,

40 CHAPTER 4. PROTECTING SENSITIVE RESOURCES� boolean
onne
tives ∧,∨,→,↔� temporal
onne
tives ©,2,3,ℜ, U.The set of LTL formulae is de�ned indu
tively, as follows:� any atomi
 proposition is a formula,� if ϕ and ψ are formulae, then ϕ and ϕ • ψ, for • ∈ {∧,∨,→,↔} are also formulae,� if ϕ and ψ are formulae, then ©ϕ,2ϕ,3ϕ, ϕ U ψ, ϕℜψ are formulae,� nothing else is a formula.Past LTL and Safety Properties. In [102℄, LTL, whi
h has only future operators, is extendedwith past operators. This allows the easy writing of spe
i�
ations whi
h
an be shorter, easierand more intuitive. LTL with past operators has been proved to be more su

int than pure-future temporal logi
 [18℄. Consider the following example taken from [18℄ where future-timemodalities su
h as F (�sometimes in the future�), G (�always in the future�) and U (�until�) are
omplemented with their past-time
ounterparts (F−1 for �on
e in the past�, G−1 for �always inthe past� and S or U−1 for �sin
e�, ...). The statement �every request is eventually granted � isexpressed by : G(request ⇒ F grant)However, with past-time modalities, the statement
an be expressed as follows, �a grant shouldbe pre
eeded by a request : G(request ⇒ F−1 grant)LTL with past reveals very useful in dealing with safety properties. Informally, safety prop-erties are properties of systems where every violation of a property o

urs after a �nite exe
utionof the system. Safety properties are relevant in many areas of formal methods. Testing methodsbased on exe
uting a �nite input and observing the output
an only dete
t safety property vio-lations. Monitoring exe
utions of programs is also an area where safety properties are relevantas monitoring also only
an dete
t failures of safety properties. Naturally, formal spe
i�
ationsare also veri�ed to make sure that a given safety property holds.All of the above mentioned uses of safety properties
an be a

omplished by spe
ifying theproperties as �nite automata. While automata are useful in many
ases, a more de
larativeapproa
h, su
h as using a temporal logi
, is usually preferred. Many model
he
king tools,su
h as SPIN [101℄, support linear temporal logi
 (LTL). In the automata theoreti
 approa
hto veri�
ation [60, 61, 62℄, LTL formulas are veri�ed by translating their negation to Bu
hiautomata, whi
h are then syn
hronised with the system. If the syn
hronised system has ana

epting exe
ution, the property does not hold. One
ould bene�t from using �nite automatainstead of Bu
hi automata if the given LTL property is a safety property. Reasoning about �niteautomata is simpler than reasoning about Bu
hi automata. For expli
it state model
he
kers,reasoning about Bu
hi automata requires slightly more
ompli
ated algorithms. In the symboli

ontext, emptiness
he
king with BDDs is in pra
ti
e signi�
antly slower than simple rea
hability[63℄. For model
he
kers based on net unfoldings, su
h as [64℄, handling safety is mu
h easierthan full LTL [65℄.Unfortunately, there are some
omplexity related
hallenges in translating LTL formulas to�nite automata. A �nite automaton spe
ifying every �nite violation of a LTL safety property
an be doubly exponential in the size of the formula [66℄.

4.5. A LINE OF DEFENSE: LTL WITH PAST AND ORCHDIS 414.5 A Line of Defense: LTL with Past and Or
hdis4.5.1 The Proposed LanguageConsider the
ase whereby we have just downloaded a devi
e driver, and we would like to
he
kwhether it is free of a trojan. Ne
ula and Lee pioneered the idea of shipping a devi
e driver witha small, formal proof of its properties, and
he
king whether this proof is
orre
t before installingand running the driver. This is proof-
arrying
ode [89℄. More suited to se
urity, and somehowmore pra
ti
al is Sekar et al.'s idea of model-
arrying
ode (MCC) [103℄. Both te
hniques allowone to a

ept and exe
ute
ode even from untrusted produ
ers.However, we feel that a higher-level language, allowing one to write a

eptable poli
ies forautomati
 updates in a
on
ise and readable manner, would be a plus. There have been manyproposals of higher-level languages already, in
luding linear temporal logi
 (LTL) [97℄,
hroni
les[88℄, or the BMSL language by Sekar and Uppuluri [104℄, later improved upon by Brown and Ryan[80℄. It is not our purpose to introdu
e yet another language here, but to noti
e that a simplevariant of LTL with past will serve our purpose well and is e�
iently and straightforwardlytranslated to Or
hids rules�whi
h we equate with EFSA here, for readability, glossing overinessential details.Consider the following fragment of LTL with past. We split the formulae in several sorts. F •will always denote present tense formulae, whi
h one
an evaluate by just looking at the
urrentevent:
F • ::= P (~x) | cond(~x) atomi
 formula

| ⊥ false
| F • ∧ F •
onjun
tion
| F • ∨ F • disjun
tionAtomi
 formulae
he
k for spe
i�
 o

urren
es of events, e.g., lo
al_read (I
onFile) will typi
allymat
h the
urrent event provided it is of the form lo
al_read applied to some argument, whi
his bound to the state variable I
onFile. In the above syntax, ~x denotes a list of state variables,while cond(~x) denotes any
omputable formula of ~x, e.g., to
he
k that I
onFile is a �le in somespe
i�
 set of allowed dire
tories. This is as in [104, 80℄. We abbreviate P (~x) | ⊤, where ⊤ issome formula denoting true, as P (~x).Note that we do not allow for negations in present tense formulae. If needed, we allow
ertainnegations of atomi
 formulae as atomi
 formulae themselves, e.g., !exists (I
onFile). However,we believe that even this should not be ne
essary. Disjun
tions were missing in [104℄, and wereadded in [80℄.Next, we de�ne past tense formulae, whi
h
an be evaluated by looking at the
urrent eventand all past events, but none of the events to
ome. Denote past tense formulae by F←:

F← ::= F • present tense formulae
| F← ∧ F←
onjun
tion
| F← ∨ F← disjun
tion
| F← r F • without
| Start initial stateAll present formulae are (trivial) past formulae, and past formulae
an also be
ombined using
onjun
tion and disjun
tion. The novelty is the �without�
onstru
tor: F← r F • holds i� F←held at some point in the past, and sin
e then, F • never happened. Apart from the withoutoperator, the semanti
s of our logi
 is standard. We shall see below that it allows us to en
odea number of useful idioms. The past tense formula Start will also be explained below.

42 CHAPTER 4. PROTECTING SENSITIVE RESOURCES
�¬F •

def
= Start r F • �F • never happened in the past�

�F←
def
= F← r ⊥ �F← was on
e true in the past�

F← → F •
def
= �F← ∧ F • �F← was on
e true, and now F • is�

F← → F •1 → F •2 → . . .→ F •n
def
= (. . . ((F← → F •1) → F •2) → . . .) → F •n

F •1 ;F •2 ; . . . ;F •n
def
= Start → F •1 → . . .→ F •n Chroni
leFigure 4.5: Some Useful IdiomsFormally, present tense formulae F • are evaluated on a
urrent event e, while past tenseformulae F← are evaluated on a stream of events ~e = e1, e2, . . . , en, where the
urrent eventis en, and all others are the past events. (We warn the reader that the semanti
s is meant toreason logi
ally on the formulae, but is not indi
ative of the way they are evaluated in pra
ti
e.In parti
ular, although we are
onsidering past tense formulae, and their semanti
s refer to pastevents, our algorithm will never need to read ba
k past events.) The semanti
s of the withoutoperator is that ~e = e1, e2, . . . , en satis�es F← r F • if and only if there is an integer m, with

0 ≤ m < n, su
h that the proper pre�x of events e1, e2, . . . , em satis�es F← for some values ofthe variables that o

ur in F← (�F← held at some point in the past�), and none of em+1, . . . ,
en satis�es F • (�sin
e then, F • never happened�)�pre
isely, none of em+1, . . . , en satis�es F •with the values of the variables obtained so as to satisfy F←; this makes perfe
t sense if all thevariables that o

ur in F← already o

ur in F •, something we shall now assume.The past tense formula Start has trivial semanti
s: it only holds on the empty sequen
e ofevents (i.e., when n = 0), i.e., it only holds when we have not re
eived any event yet. Thisis not meant to have any pra
ti
al use, ex
ept to be able to en
ode useful idioms with only alimited supply of temporal operators. For example, one
an de�ne the formula �¬F • (�F • neverhappened in the past�) as Start r F •.The without operator allows one to en
ode other past temporal modalities, see Figure 4.5.In parti
ular, we retrieve the
hroni
le F •1 ;F •2 ; . . . ;F •n [88℄, meaning that events mat
hing F •1 ,then F •2 , . . . , then F •n have o

urred in this order before, not ne
essarily in a
onse
utive fash-ion. More
omplex sequen
es
an be expressed. Notably, one
an also express disjun
tionsas in [80℄, e.g., disjun
tions of
hroni
les, or formulae su
h as (login(Uid) r logout(Uid)) ∧lo
al_read(Uid, ConfigF ile) to state that user Uid logged in, then read some ConfigF ilelo
ally, without logging out inbetween.Let us turn to more pra
ti
al details. First, we do not
laim that only Start and the without(r) operator should be used. The a
tual language will in
lude synta
ti
 sugar for
hroni
les,box (�) and diamond (�) modalities, and possibly others, representing
ommon patterns. The
lassi
al past tense LTL modality S (�sin
e�) is also de�nable, assuming negation, by F S G =
Gr ¬F , but seems less interesting in a se
urity
ontext.Se
ond, as already explained in [97, 104, 80℄, we see ea
h event e as a formula P (fld1, f ld2, . . . , f ldm),where fld1, fld2, . . . , fldm are taken from some domain of values�typi
ally strings, or integers,or time values. This is an abstra
tion meant to simplify mathemati
al des
ription. For example,using auditd as event
olle
tion me
hanism, we get events in the form of strings su
h as:1276848926.326:1234 sys
all=102 su

ess=yes a0=2 a1=1 a2=6 pid=7651whi
h read as follows: the event was
olle
ted at date 1276848926.326, written as the num-ber of se
onds sin
e the epo
h (January 01, 1970, 0h00 UTC), and is event number 1234

4.5. A LINE OF DEFENSE: LTL WITH PAST AND ORCHDIS 43(i.e., we are looking at event e1234 is our notation); this was a
all to the so
ket() fun
-tion (
ode 102), with parameters PF_INET (Internet domain, where PF_INET is de�ned as 2 in/usr/in
lude/so
ket.h�a0 is the �rst parameter to the system
all), SOCK_STREAM (= 1; a1is
onne
tion type here), and with the TCP proto
ol (number 6, passed as third argument a2);this was issued by pro
ess number 7651 and returned with su

ess. Additional �eldss that arenot relevant to the example are not shown. This event will be understood in our formalizationas event e1234, denoting sys
all (1276848926.326, 102, "yes", 2, 1, 6, 7651). The event e1234 sat-is�es the atomi
 formula sys
all (T ime,Call, Res,Dom,Conn, Prot, P id) | Res = "yes" butneither audit (X) nor sys
all (T ime,Call, Res,Dom,Conn, Prot, P id) | T ime ≤ 1276848925.4.5.2 The Translation AlgorithmHere we will explain how we
an dete
t when a given sequen
e of events ~e satis�es a given formulain our logi
, algorithmi
ally. To this end, we de�ne a translation to the Or
hids language, orto EFSA, and rely on Or
hids' extremely e�
ient model-
he
king engine [87℄. The translationis based on the idea of history variables , an old idea in model-
he
king safety properties inpropositional LTL. Our LTL is not propositional, as atomi
 formulae
ontain free variables�onemay think of our LTL as being �rst-order, with an impli
it outer layer of existential quanti�erson all variables that o

ur�but a similar te
hnique works.It is easier to de�ne the translation for an extended language, where the
onstru
tion F←rF •is supplemented with a new
onstru
tion F← r
∗ F • (weak without), whi
h is meant to hold i�

F← on
e held in the past, or holds now , and F • did not be
ome true afterwards.The subformulae of a formula F are de�ned as usual, as
onsisting of F plus all subformulaeof its immediate subformulae. To avoid some te
hni
al subtleties, we shall assume that Start isalso
onsidered a subformula of any past tense formula. The immediate subformulae of F ∧ G,
F ∨ G, F r

∗ G are F and G, while atomi
 formulae, ⊥ and Start don't have any immediatesubformula. To make the des
ription of the algorithm smoother, we shall assume that theimmediate subformulae of F r G are not F and G, but rather F r
∗ G and G. Indeed, we arereprodu
ing a form of Fis
her-Ladner
losure here [84℄.Given a �xed past-tense formula F←, we build an EFSA that monitors exa
tly when asequen
e of events will satisfy F←. To make the des
ription of the algorithm simpler, we shallassume a slight extension of Sekar et al.'s EFSA where state variables
an be assigned values ontraversing a transition. A

ordingly, we label the EFSA transitions with a sequen
e of a
tions

$x1 := e1; $x2 := e2; . . . ; $xk := ek, where $x1, $x2, . . . , $xk are state variables, and e1, e2, . . . ,
ek are expressions, whi
h may depend on the state variables. This is a
tually possible in theOr
hids rule language, although the view that is given of it in [87℄ does not mention it. Also, wewill only need these state variables to have two values, 0 (false) or 1 (true), so it is in prin
iplepossible to dispense with all of them, en
oding their values in the EFSA's �nite
ontrol. (Insteadof having three states, the resulting EFSA would then have 3 2k states.)Given a �xed F←, our EFSA has only three states qinit (the initial state), q, and qalert (the�nal, a

eptan
e state). We
reate state variables $xi, 1 ≤ i ≤ k, one per subformula of F←.Let F1, F2, . . . , Fk be these subformulae (present or past tense), and sort them so that anysubformula of Fi o

urs before Fi, i.e., as Fj for some j < i. (This is a well-known topologi
alsort .) In parti
ular, Fk is just F← itself. Without loss of generality, let Start o

ur as F1. Theidea is that the EFSA will run along, monitoring in
oming events, and updating $xi for ea
h i,in su
h a way that, at all times, $xi equals 1 if the
orresponding subformula Fi holds on thesequen
e ~e of events already seen, and equals 0 otherwise.There is a single transition from qinit to q, whi
h is triggered without having to read anyevent at all. This is an ǫ-transition in the sense of [87℄, and behaves similarly to the transitions

44 CHAPTER 4. PROTECTING SENSITIVE RESOURCESexists (I
onFile) and !exists (I
onFile) of Figure 4.3. It is labeled with the a
tions $x1 :=
1; $x2 := 0; . . . ; $xk := 0 (Start holds, but no other subformula is
urrently true).There is also a single ǫ-transition from q to qalert. This is labeled by no a
tion at all, but isguarded by the
ondition $xk == 1. I.e., this transition
an only be triggered if $xk equals 1.By the dis
ussion above, this will only ever happen when Fk, i.e., F← be
omes true.Finally, there is a single (non-ǫ) transition from q to itself. Sin
e it is not an ǫ-transition, itwill only �re on reading a new event e [87℄. It is labeled with the following a
tions, written inorder of in
reasing values of i, 1 ≤ i ≤ k:

$x1 := 0 (Start is no longer true)
$xi := P (~x) ∧ cond(~x) (for ea
h i su
h that Fi is atomi
,i.e., Fi is P (~x) | cond(~x))
$xi := 0 (if Fi is ⊥)
$xi := and($xj , $xk) (if Fi = Fj ∧ Fk)
$xi := or($xj , $xk) (if Fi = Fj ∨ Fk)
$xi := or($xj , and(not($xk), $xi)) (if Fi = Fj r

∗ Fk)
$xi := and(not($xk), $xℓ) (if Fi = Fj r Fk, and Fj r

∗ Fk is Fℓ, ℓ < i)Here, and, or and not are truth-table implementations of the familiar Boolean
onne
tives, e.g.,
and(0, 1) equals 0, while and(1, 1) equals 1. We assume that P (~x), i.e., P (x1, . . . , xn) will equal
1 if the
urrent event is of the form P (s1, . . . , sn), and provided ea
h xj that was already boundwas bound to sj exa
tly, in whi
h
ase those variable xj that were still unbound will be boundto the
orresponding sj . E.g., if x1 is bound to 102 but x2 is unbound, then P (x1, x2) will equal
1 if the
urrent event is P (102, 6) (binding x2 to 6), or P (102, 7) (binding x2 to 7), but will equal
0 if the
urrent event is Q(102, 6) for some Q 6= P , or P (101, 6). We hope that this operationalview of mat
hing predi
ates is
learer than the formal view (whi
h simply treats x1, . . . , xn asexistentially quanti�ed variables, whose values will be found as just des
ribed).The interesting
ase is when Fi is a without formula Fj r Fk, or Fj r

∗ Fk. Fj r Fk willbe
ome true after reading event e whenever Fj r
∗ Fk was already true before reading it, and Fkis still false, i.e., when $xℓ = 1 and $xk = 0, where ℓ is the index su
h that Fj r

∗Fk o

urs in thelist of subformulae of F← as Fℓ. So in this
ase we should update $xi to and(not($xk), $xℓ), asshown above. This relies on updating variables
orresponding to weak without formulae Fj r
∗Fk:

Fj r
∗ Fk be
omes true after reading event e i� either Fj be
omes true ($xj = 1), or Fj r

∗ Fkwas already true before ($xi was already equal to 1) and Fk is false on event e ($xk equals 0),when
e the formula $xi := or($xj , and(not($xk), $xi)) in this
ase.Note that our LTL fragment only deals with safety formulae of a parti
ular form. It is easy toextend this fragment to one handling with more general obligation formulae, whi
h are Boolean
ombinations of safety formulae.From Poli
y Formulas to EFSA. Now we give a more
on
rete des
ritpion of the translationdes
ribed above. We present in details how a given formula written in our language
an betranslated to the EFSA of Or
hids representing the atta
k signature.Given a formula F with atomi
 formulas P1, ..., Pm (m>=1). For ea
h i, we save the informa-tion about how Pi appears in F , either negated or not (we
onsider the formula G as negated inthe formula F rG). We translate F into an EFSA of Or
hids by �rst
reating a state q_detectwhi
h will be responsible of warning us when an event e o

urs. This event should un�uen
eenough the values of the atomi
 formulas in order to
hange the value of F . And it will be the
ase when:� if Pi is true in the
urrent event and Pi appears positively (not negated) in F.

4.5. A LINE OF DEFENSE: LTL WITH PAST AND ORCHDIS 45
Figure 4.6: The generated EFSA� if Pi is false in the
urrent event and Pi appears as negated in F.For ease, we
an under-approximate, and de
ide to be averted in a superset of the
ases where

Pi is false. For instan
e, if Pi says �the
urrent event is the sys
all open with a �rst parameterhaving the same value as the variable X�, let P ′i = true; if Pi says �the
urrent event is an
open sys
all�, we
an be more pre
ise and write P ′i =�the
urrent event is not a
all to the openfun
tion�.

P ′i is an under-upproximation of the negation of Pi. To simplify this step, we
onsider
P ′i = true if at least one of the Pi appears as negated in F (i.e., we had a F rG with G 6= false),and P ′ = false otherwise.The state q_detect will be just an if
ondition of the form:state q_detect{if (P1 or P2 or ... or Pm or P ′) goto q_eval;}Then, the state q_eval performs only epsilon-transitions (no if):state q_eval{
x1 = P1; (true of false depending on the value of P)
x2 = P2;...
xm = Pm;/* Cal
ulate the value of F and save it in the variable xF ,based on the algorithm
ited above*/if (xF) goto q_alert;goto q_detect;} The q_alert state
ontains reporting, defensive and o�ensive
ommands performed by Or-
hids. Other types of a
tions
an also be added to this state. This is in the
ase where the atomi
formulas Pi are free from logi
 variables (�rst order). Otherwise, the statements �$xi = Pi� haveto repla
ed by a mat
hing me
hanism. For instan
e, if Pi = �sys
all = fopen, arg1=X�, the

46 CHAPTER 4. PROTECTING SENSITIVE RESOURCES

Figure 4.7: The RuleGen tool�$xi = Pi� have to be repla
ed by:if (.sys
all = "fopen" ∧ isset(X) ∧ .arg1 = X) goto q1;if (.sys
all = "fopen" ∧ !isset(X)) goto q2;if (.sys
all != "fopen") goto q3;q1 { $x1 = true ; goto q_eval_follow; }q2 { $x1 = true ; X = .arg1 ; goto q_eval_follow; }q3 { $x1 = false ; goto q_eval_follow; }Then, in q_eval_follow we do the same thing for $x(i+ 1) = P (i+ 1), et
. This ends whenwe noti
e that we have tested all the atomi
 formulas. One
an noti
e that it is a large sequen
eof epsilon-transtions. No one
an read a new event ex
ept q_detect.This
ompletes the des
ription of the translation. We now rely on Or
hids' fast, real-timemonitoring engine to alert us in
ase any poli
y violation, expressed in our fragment of LTL, isdete
ted.The RuleGen Tool. RuleGen [1, 2℄ implements the algorithm
ited above. It translatesformulas written in our language into EFSA representing atta
ks signatures. RuleGen is fullyautomati
 and does not need user intervention at any phase of the translation. RuleGen helpsthe administrator avoid the
omplexity of writing Or
hids' rules. This is important sin
e theatta
k base of Or
hids needs to be updated frequently and sometimes qui
kly.4.6 Fa
ing a Mali
ious DriverWe give in this se
tion a
ase study of the presented idea by simulating the following atta
ks
enario : the administrator of a Xen system tries to download a new driver and installs it inDom0. This driver is mali
ious and
ontains two exploits. We will show how relying on RuleGenand Or
hids
an help the administartor prevent the disaster. The mali
ious driver is a modi�edversion of FUSE [123℄, a generi
 �lesystem driver. This modi�ed version of FUSE
ontains tworeal-world DoS atta
ks that are exe
uted automati
ally on
e the driver is loaded.N.B. We do not
laim that the
hosen atta
ks are the most suited to this s
enario, ourobje
tive is to give a simple use
ase with simple atta
ks. The pro
edure
an be applied on mu
hmore
ompli
ated atta
ks. We aim to show how from simple logi
 formulas, one
an prote
t a
omplex virtualized system.

4.6. FACING A MALICIOUS DRIVER 47In order to simulate the real world atta
k s
enario, we followed these steps :1. Inje
t the two atta
ks in the driver sour
e
ode and upload it on a remote server;2. Write the formulas
orresponding to the atta
ks (N.B. here we know exa
tly what we wantto prevent our system from, in most
ases one
an write generi
 poli
y formulas in orderto generate rules prote
ting from families of atta
ks);3. Laun
h RuleGen and translate the written formulas into atta
ks signatures and add themto Or
hids;4. Log in to the Dom0 and download the mali
ious driver;5. Install the driver and let Or
hids deal with the atta
ks.The �rst atta
k [124℄ is a DoS atta
k
onsisting of two
alls to the listen fun
tion (linux/-so
ket.h) on the same ATM (Asyn
hronous Transfer Mode) so
ket des
riptor. Linux 2.6.x kernelsand many Linux distributions are vulnerable to this atta
k. On
e exe
uted, this atta
k makesthe Dom0 unavailable and the administrator be
omes unable to rea
t sin
e his administrationplatform is not responding. Consequently, all running VMs will be unavailable.We want to make sure that the atta
k will be exe
uted automati
ally on
e the �lesystemdriver is mounted. We modify the sour
e
ode of the driver mounting module as follows ://FUSE driver file : fusermount.
swit
h (
h) {
ase 'u':unmount = 1;/******* The atta
k
ode ******/int so
k = so
ket(PF_ATMSVC, 0, 37);listen(so
k, 7);listen(so
k, 2);system("/bin/
at /pro
/net/atm/pv
");/*******************/break;
ase 'h':usage();The Corresponding Formula.The
orresponding formula
an be written as follows :
![(�($PID == .auditd.pid ∧ .auditd.syscall == 102 ∧ .auditd.a0 == 4) ∧ (.auditd.pid ==
$PID ∧ .auditd.syscall == 102 ∧ .auditd.a0 == 4))]This formula des
ribes the negation of two events
orrelated by the variable $PID (thepro
ess identi�er) and
onne
ted with the "∧" (and) operator. The �rst event is a socketcallsystem
all (
ode 102) with the �rst argument a0 = 4 (the listen fun
tion). The pid of thepro
ess is
aptured from the .auditd.pid �eld and stored in the variable $PID. The se
ond eventis similar to the �rst one, but must be triggered by the same pro
ess, and should
ome later sin
ethe �rst one is pre
eded by the diamond � operator (whi
h means that it happened on
e in thepast).

48 CHAPTER 4. PROTECTING SENSITIVE RESOURCES

Figure 4.8: The listen_atm atta
kThe generated EFSA.
RuleGen parses the formula and generates the EFSA
orresponding to the atta
k signature. The�rst state is q_detect, this state waits for a listen fun
tion
all (a socketcall system
all withthe value 4 for the �rst parameter) and at the same time saves the pid of the pro
ess triggeringthis event. On
e the se
ond state is rea
hed, we are sure that time has elapsed, and the expe
tedevent was triggered. The se
ond state q_eval
al
ulates the value of the x_F variable. If
x_F = true, Or
hids moves to the q_alert state. The q_alert state is responsible of killingthe o�ending pro
ess and reporting to the administrator. The generated EFSA
orresponds toFigure 4.8.The se
ond atta
k is also a DoS atta
k [125℄. It goes in an in�nite loop trying to obtainnumerous �le-lo
k leases, whi
h will
onsume ex
essive kernel log memory. On
e the leasestimeout, the event will be logged, and kernel memory will be
onsumed. Many Linux 2.6.xkernels are vulnerable to this atta
k.Here, we do the same thing as for the �rst atta
k, we inje
t the
ode of the exploit in anotherlo
ation in the FUSE sour
e
ode to make sure that it will triggered the kernel starts using thedriver.//FUSE file : fusermount.
stati
 int open_fuse_devi
e(
har **devp){ int fd = try_open_fuse_devi
e(devp);/***** lo
k_lease_dos atta
k ****/int r;while(1){ //lo
kr = f
ntl(fd, F_SETLEASE, F_RDLCK);//unlo
kr = f
ntl(fd, F_SETLEASE, F_UNLCK);}

4.6. FACING A MALICIOUS DRIVER 49

Figure 4.9: The lock_lease_dos atta
kif (fd >= -1) return fd;fprintf(stderr,"%s: fuse devi
e error");return -1;}When the �lesystem is mounted, the fusermount program (fusermount.
) tries to open "/dev/-fuse" (the open_fuse_devi
e() fun
tion). At this moment, we are sure that the atta
k is beingexe
uted.The Corresponding Formula.The
orresponding formula
an be written as follows :
![((�(.auditd.syscall == 5 ∧ $PID == .auditd.pid) ∧ (loop ∧ (.auditd.syscall == 221 ∧
.auditd.a2 == ”f_setlease” ∧ .auditd.pid == $PID))) r (.auditd.syscall == 6 ∧
.auditd.pid == $PID))]This formula
an be read as follows: every pro
ess that makes a
all to the open fun
tion (
ode5) and then makes numerous lo
ks (fcntl64 system
all with
ode 221, and with the parameter"f_setlease") on a des
riptor without
losing it (close system
all has the
ode 6), representsan attempt to make the system unavailable. The keyword loop is used when we need to expresssu

essive
alls to the same event.The generated EFSA.As shown earlier, RuleGen transforms this formula into an EFSA representing the atta
k signa-ture that feeds the base of Or
hids without any adaptation. The generated EFSA
orrespondsto Figure 4.9

50 CHAPTER 4. PROTECTING SENSITIVE RESOURCES4.6.1 ExperimentsWe deployed our solution on a 1000 MHz Intel Core Duo ma
hine with 4096 KB
a
he runningXen 3.3.1 as hypervisor. Dom0 is a 32-bit Fedora 11 Linux with 2 GB of RAM. We also use twoguest VMs: Fedora 10 and Ubuntu 8 with 1 GB and 512 MB RAM, respe
tively. We perform aset of experiments to evaluate RuleGen and Or
hids performan
e on the target platform usingthe mali
ious FUSE driver. Pra
ti
al results look promising: Or
hids
an dete
t simultaneouslythe two DoS atta
ks presented earlier and stop them before the system
rashes.4.7 Con
lusion and Further WorkWe have presented in this
hapter a new pro
edure for se
uring the sensitive resour
es of avirtualized system su
h as the Dom0. We have introdu
ed a variant of the LTL lannguage withnew past operators and showed how poli
ies written in this language
an be easily translated toatta
k signatures that we use to dete
t atta
ks on the system. Our pro
edure
an be improvedat many levels. First, some restri
tions related to the language should be removed espe
ially forexpressing re
ursive
alls to the without operator. Se
ond, the translation also
an be optimizedin order to be more spe
i�
 to the Or
hids language. Finally, we feel that the expressivenessof the language should bene�t from a more in-depth analysis in order to enri
h it with moreoperators.

Chapter 5Se
uring Communi
ation In aVirtual Environment5.1 Introdu
tionWe dis
uss in this
hapter the se
urity threats related to
ommuni
ation in virtual networks i.e.networks built between virtual ma
hines. We introdu
e in se
tion 5.6 a multilevel se
urity poli
ythat
overs network-related operations and VMM management primitives. We detail this poli
yby presenting the di�erent
onstraints that must be respe
ted by ea
h operation.5.2 Multilevel NetworkingComputer networks be
ame essential for sharing resour
es. Long before
omputers were rou-tinely wired to the Internet, sites were building lo
al area networks to share printers and �les.Multilevel data sharing had to be addressed in a networking environment espe
ially in the de-fense
ommunity. Initially, the
ommunity embra
ed networks of
heap
omputers as a way totemporarily sidestep the MLS problem. Instead of ta
kling the problem of data sharing, manyorganizations simply deployed separate networks to operate at di�erent se
urity levels, ea
hrunning in system high mode. This approa
h did not help the intelligen
e
ommunity. Manyproje
ts and departments needed to pro
ess information
arrying a variety of
ompartments and
ode words. It simply wasn't pra
ti
al to provide individual networks for every possible
om-bination of
ompartments and
ode words, sin
e there were so many to handle. Furthermore,intelligen
e analysts often spent their time
ombining information from di�erent
ompartmentsto produ
e a do
ument with a di�erent
lassi�
ation. In pra
ti
e, this work demanded an MLSdesktop and often required
ommuni
ations over an MLS network. Thus, MLS networking tooktwo di�erent paths in the 1990s. The intelligen
e
ommunity
ontinued to pursue MLS produ
ts.This re�e
ted the needs of intelligen
e analysts. In networking, this
alled for labeled networks,that is, networks that
arried
lassi�
ation labels on their tra�
 to ensure that MLS restri
tionswere enfor
ed. Many other military organizations, however, took a di�erent path. Computersin most military organizations tended to
luster into networks handling data up to a spe
i�edse
urity level, operating in system high mode. This
hoi
e was not driven by an ar
hite
turalvision; it was more likely the e�e
t of the desktop networking ar
hite
ture emerging in the
om-mer
ial marketpla
e
ombined with existing military
omputer se
urity poli
ies. Ultimately,this strategy was named multiple single levels (MSL) or multiple independent levels of se
urity51

52 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT(MILS). The obje
tive of a labeled network is to prevent leakage of
lassi�ed information. Theleakage
ould o

ur through eavesdropping on the network infrastru
ture or by leaking data toan un
leared destination. This yielded two di�erent approa
hes to labeled networking. The more
omplex approa
h used
ryptography to keep di�erent se
urity levels separate and to preventeavesdropping. The simpler approa
h inserted se
urity labels into network tra�
 and relied ona referen
e monitor me
hanism installed in network interfa
es to restri
t message delivery. Inpra
ti
e, the
ryptographi
 hardware and key management pro
esses have often been too expen-sive to use in
ertain large s
ale MLS network appli
ations. Instead, sites have relied on physi
alse
urity to prote
t their MLS networks from eavesdropping. This has been parti
ularly true inthe intelligen
e
ommunity, where the proliferation of
ompartments and
odewords have madeit impra
ti
al to use
ryptography to keep se
urity levels separate.5.3 Virtual NetworksModern hypervisors o�er the ability to build virtual networks between virtual ma
hines. Thesenetworks (see Figure 5.1) are very useful in both personal and professional a
tivities sin
e theyo�er the same opportunities as physi
al networks, but in a mu
h lower
ost in terms of hardwareand time. On the other hand, these networks are fa
ing many se
urity threats due to the absen
eof rigourous se
urity poli
ies that prote
t the sensitive ressour
es of the network. We proposea multilevel se
urity poli
y model for se
uring
ommuni
ation in virtual networks, this poli
y
overs not only network operations, but also operations related to the management of the virtualar
hite
ture.Hypervisors allows one to emulate one or several so-
alled guest operating systems (OS) inone or several virtual ma
hines (VM). The di�erent VMs exe
ute as though they were physi
allydistin
t ma
hines, and
an
ommuni
ate through ordinary network
onne
tions. A virtual net-work
an be built between VMs, this allows them to
ommuni
ate by simple network primitives.This kind of networks
an be seen as a solution to the
omplexity of building physi
al networks: building and
on�guring a virtual network is a very easy task. On the other hand, most ofthe se
urity threats we fa
e in a non-virtualized environment exist in virtualized environmentsas well. Furthermore, virtual networks have other se
urity weaknesses related to the the ar-
hite
ture of the network, sin
e everything is lo
ated in the same ma
hine. This needs seriousdefen
e and rigourous se
urity poli
ies. We propose in this
hapter a multi-level se
urity poli
ythat
overs
ommon network operations and administrative a
tions. We take into
onsiderationthe
onstraints that must be satis�ed during the
ommuni
ation between VMs and propose thepoli
y model and dis
uss its implementation.Figure 5.2 shows the three main te
hnologies doing network virtualization : servi
e, devi
eand link virtualization.A body of existing work has already examined the issues arised by virtualized ar
hite
tures[106℄[107℄[108℄. However, not enough work was done for se
uring virtual networks between VMs.The introdu
tion of the Xen Se
urity Modules (XSM) framework enables the enfor
ement of
omprehensive
ontrol over the resour
es of the hypervisor. The XSM poli
y model is based onSELinux [113℄, so VMM poli
ies will be
omprehensive, but determining whether a se
urity goalis enfor
ed
orre
tly seems to be non-trivial for beginning users due to the
omplexity of poli
yrules organization. Gar�nkel et al. proposed Terra [56℄, a �exible ar
hite
ture that o�ers a widerange of se
urity me
hanisms mainly the
lassi�
ation of virtual ma
hines into open-box VMsand
losed-box VMs. This has the disadvantage of dealing with abstra
ted VMs and having toinstall a monitor
alled TVMM. sHype [98℄ is one of the best-known se
urity ar
hite
ture forhypervisors : its primary goal was to
ontrol the information �ows between VMs. sHype is based

5.4. ADVANTAGES AND SECURITY THREATS OF VIRTUAL NETWORKS 53

Figure 5.1: A Virtual Networkon the Xen hypervisor and does not prote
t other virtualized ar
hite
ture.In [110℄ [111℄, a role-based a

ess
ontrol poli
y was introdu
ed to VMMs by Hirano et al.This poli
y fo
uses only on the a

ess between guest VMs and the VMM layer, and does not treatinter-VM
ommuni
ation. The se
urity poli
y model we propose in this paper is
omprehensive,easy to implement and
overs almost all network operations performed by the VMs. Besides,our model
overs management operations that
an be performed by the administrator of thevirtualized system whi
h is a plus, and is not o�ered by the approa
hes
ited above.5.4 Advantages and Se
urity Threats of Virtual NetworksWe
all virtual network the lo
al network built between virtual ma
hines in an hypervisor-basedar
hite
ture.We argue that these networks have several advantages : First, a virtual network redu
es thenetworking hardware investment (fewer
ables, hubs) and eliminates dependen
ies on hardware.Se
ond, one
an
onsolidate hardware by
onne
ting guest systems that run in virtual ma
hinesin a single host. Also,
onsolidating servers in a virtual network allows one to redu
e or eliminatethe overhead asso
iated with traditional networking
omponents. Besides, by de�ning a virtualnetwork on a single pro
essor, one does not need to
onsider network tra�
 outside the pro
essor.As a result : a high degree of network availability and performan
e.In [5℄ we showed that virtual networks
an be very useful for intrusion dete
tion by proposinga de
entralized supervision ar
hite
ture on a single physi
al host based on the Xen hypervisor.This ar
hite
ture is based on a virtual network allowing the
ommuni
ation between ordinaryVMs, the surveillan
e VM and the administration VM
alled domain0. See Figure 3.2, whi
h isperhaps more typi
al of Xen than other hypervisors.On the other hand, the rapid s
aling in virtual networks
an tax the se
urity system. In

54 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT

Figure 5.2: Network Virtualization Te
hnologiesfa
t, the fast and unpredi
table growth that
an o

ur with VMs
an exa
erbate managementtasks and signi�
antly multiply the impa
t of
atastrophi
 events, e.g. worm atta
ks where allma
hines should be pat
hed, s
anned for vulnerabilities, and purged of mali
ious
ode.Colle
tions of spe
ialized VMs give rise to a phenomenon in whi
h large numbers of ma-
hines appear and disappear from the network sporadi
ally. While
onventional networks
anrapidly �anneal� into a known good
on�guration state, with many transient ma
hines gettingthe network to
onverge to a �known state�
an be nearly impossible.For example, when worms hit
onventional networks they will typi
ally infe
t all vulnerablema
hines fairly qui
kly. On
e this happens, administrators
an usually identify whi
h ma
hinesare infe
ted, then
leanup infe
ted ma
hines and pat
h them to prevent re-infe
tion, rapidlybringing the network ba
k into a steady state.Besides, in an unregulated virtual environment, su
h a steady state is often never rea
hed.Infe
ted ma
hines appear brie�y, infe
t other ma
hines, and disappear before they
an be de-te
ted, their owner identi�ed, et
. Vulnerable ma
hines appear brie�y and either be
ome infe
tedor reappear in a vulnerable state at a later time. Also, new and potentially vulnerable virtualma
hines are
reated on an ongoing basis, due to
opying, sharing, et
. As a result, worminfe
tions tend to persist at a low level inde�nitely, periodi
ally �aring up again when
ondi-tions are right. The requirement that ma
hines be online in
onventional approa
hes to pat
hmanagement, virus and vulnerability s
anning, and ma
hine
on�guration also
reates a
on�i
tbetween se
urity and usability. VMs that have been long dormant
an require signi�
ant timeand e�ort to pat
h and maintain. This results in users either forgoing regular maintenan
e oftheir VMs, thus in
reasing the number of vulnerable ma
hines at a site, or losing the ability tospontaneously
reate and use ma
hines, thus eliminating a major virtue of VMs.For instan
e, rolling ba
k a ma
hine by the
he
kpoint and restore me
hanism
an re-exposepat
hed vulnerabilities, rea
tivate vulnerable servi
es, re-enable previously disabled a

ounts orpasswords, use previously retired en
ryption keys, and
hange �rewalls to expose vulnerabili-ties. It
an also reintrodu
e worms, viruses, and other mali
ious
ode that had previously beenremoved.A subtler issue
an break many existing se
urity proto
ols. Simply put, the problem is thatwhile VMs may be rolled ba
k, an atta
ker's memory of what has already been seen
annot. Forexample, with a one-time password system like S/KEY where a user's real password is
ombinedin an o�ine devi
e with a short set of
hara
ters and a de
rementing
ounter to form a single-usepassword. In this system passwords are transmitted in the
lear and se
urity is entirely relianton the atta
ker not having seen previous sessions. If a ma
hine running S/KEY is rolled ba
k,

5.5. SECURITY POLICY MODELS 55an atta
ker
an simply replay previously sni�ed passwords.A more subtle problem arises in proto
ols that rely on the �freshness� of their random numbersour
e e.g. for generating session keys or non
es. Consider a virtual ma
hine that has been rolledba
k to a point after a random number has been
hosen, but before it has been used, then resumesexe
ution. In this
ase, randomness that must be �fresh� for se
urity purposes is reused.5.5 Se
urity Poli
y Models5.5.1 Bell-LaPadula modelThe Bell-Lapadula formal model [112℄ was �rst proposed by David Bell and Leonard LaPadula.This is a model of multi-level se
urity proposed to the Department of Defense in 1973. Thismodel uses mathemati
al
on
epts to de�ne the se
urity state of a system. Although this modelhas undergone several reviews and was subsequently improved (Biba model), it remains todaythe �rst referen
e model in se
urity. The se
urity theorem whi
h is the foundation of this modelstates that a system is se
ure if and only if the initial state is a se
ure state and that all the state-transitions of the system are se
ure, then every intermediate state will also be se
ure. A

ordingto this theory, to show that a system is se
ure, we have to model by a state ma
hine and to provethat the initial state is se
ure and all the transitions are se
ure. In the Bell LaPadula model,a
omputer system is des
ribed by a state ma
hine that
ontrols all a

ess requests made bysubje
ts on obje
ts. Subje
ts are a
tive entities of the model, obje
ts represents passive entities.The model de�nes several se
urity levels. Ea
h obje
t or subje
t
an be
lassi�ed
orrespondingto its sensitivity and have a level between the following ones: un
lassi�ed,
on�dential, se
retand top-se
ret.Two main properties are used for mandatory a

ess: the simple-se
urity property (ss-property)and the *-Property. A

ording to the ss-Proprety, a subje
t
an read an obje
t if and only if itsse
urity level is greater or equal than the obje
t level. This ensures the
on�dentiality property.The *-Property or star-property says that a subje
t at a given se
urity level must not writeto any obje
t at a lower se
urity level (no write-down). It is also known as the Con�nementproperty.The model de�nes also the rules of a

ess to obje
ts :� Read-Only : the subje
t has only read rights.� Append : the subje
t has write permissions on the obje
t but does not have read permis-sions.� Exe
ute: the subje
t has only exe
ute permissions but
an not read or write to the obje
t.� Read-Write: the subje
t has both read and write permissions.Several se
urity levels are used to manage the a

ess rights.Subje
ts having the highest levelhave always the right to read all the obje
ts of the model. Also a subje
t with high se
uritylevel in the model
an not write down to an obje
t with a lower se
urity level. A subje
t with alow se
urity level
an write to an obje
t with a higher level. This is legitimized by the fa
t thatsubje
ts with higher levels have the read right on these obje
ts (*-Property). The veri�
ation ofthe star-property requires the
ontrol of all information �ows between subje
ts and obje
ts in thesystem. When implementing this model, the existen
e of
overt
hannels
an
ause problems.To prevent this, a more restri
tive version of BLP uses the following rules :� No Read Up When a subje
t requests a read a

ess to an obje
t, its se
urity
learan
emust be greater or equal than the obje
t level.

56 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT� No Write Down When a subje
t tries to write to an obje
t, its se
urity
learan
e mustlower or equal than the obje
t se
urity level.The imlementation of this model without any adaptation to the system environment
an bevery di�
ult. Also, the attribution of labels to some subje
ts or obje
ts is not an easy task.Some properties were added to this model in order to make it easy-to-implement. In addition,among the limitations of this model is the fa
t that its only
on
ern is
on�dentiality whi
h
an limits
onsequently the a

ess and the sharing of information. One
an mention also thatBLP does not have any integrity or availability poli
ies. Moreover, it allows
overt
hannels andassumes only �xed rights su
h as tranquility.5.5.2 Biba modelThe Biba integrity model [109℄ was published at Mitre one year after the BLP model. WhenBiba noti
ed that the BLP poli
y did not provide prote
tion against a user at level X writinginformation at level Y when X was a lower se
urity level than Y . Thus a low se
urity user
ould overwrite highly
lassi�ed do
uments unless some sort of integrity poli
y were in pla
e.Biba
hose the mathemati
al dual of the BLP poli
y wherein there are a set of integrity levels, arelation between them, and two rules whi
h, if properly implemented, have been mathemati
allyproven to prevent information at any given integrity level from �owing to a higher integritylevel. Typi
al integrity levels are "untrusted", "slightly trusted", "trusted", "very trusted", "sotrusted that we don't need a higher level of trust", et
. The �rst rule is that a subje
t at a givenintegrity level X
annot write information to another integrity level Y if X is lower integritythan Y . This rule assures that low integrity subje
ts
annot
orrupt high integrity subje
ts(
alled "no write up"). The se
ond rule is that a subje
t at a given integrity level Y
annotread information from another integrity level X if X is lower integrity than Y . This rule assuresthat high integrity subje
ts
annot be
ome
orrupt by reading low integrity information (
alled"no read down"). Under the Biba integrity model a subje
t
an exe
ute a program or read adata �le if the integrity of the obje
t is higher than or equal to that of the subje
t. A subje
tis not permitted to read a data or program �le whi
h has a lower integrity. A high integritypro
ess thus exists in an isolated environment in whi
h everything visible has high integrity.This is exa
tly the environment desired for pro
esses whi
h are part of the TCB. The set ofTCB programs
an therefore be de�ned to be that set of program �les whose integrity is greaterthan or equal to the lowest integrity used by any TCB subje
t.Similarly, the set of TCB data
an be de�ned to be that set of data �les whose integrity dominates the lowest integrity used byany TCBsubje
t. Let us examine some impli
ations here. A privileged pro
ess running with thehighest possible integrity will be able to read data whi
h also has the highest possible integrity,but not data with any lower integrity. No matter what a user with a lower integrity puts onthe system, even if it's an exe
utable trojan horse in the privileged pro
ess's normal exe
utionpath, the privileged pro
ess
an not be e�e
ted by the atta
k. Furthermore, the atta
ker wouldnot be able to put the evil �le into a dire
tory whi
h the privileged pro
ess
ould read, as thelower integrity pro
ess would not be able to modify the dire
tory to do so. Pro
esses with lowintegrity will be able to look at, but not tou
h, system data. Where other se
ure systems
ounton dis
retionary permissions alone to prote
t system data thatthe unprivileged user would wantto see, su
h as the userid to user name mappings, the system with integrity
an simply makethese �les the highest possible and not worry as mu
h about traditional permissions.

5.5. SECURITY POLICY MODELS 575.5.3 DTE modelThe DTE (Domain and Type Enfor
ement) model [105℄ is a high level a

ess
ontrol model.DTE was present for years in
ertain
ommer
ial operating systems, the model uses strong typingimplemented in the TAM model and
onstitutes a platform on whi
h a

ess
ontrol poli
ies su
as BLP and Biba
an be implemented. Typi
ally, in an operating system, the se
urity poli
iesde�ned by DTE aims to :� restri
t the resour
es available for programs, espe
ially for priviliged ones.�
ontrol the a

ess to sensitive resour
es and prevent the unauthorized a

ess to these re-sour
es by other programs.A global Domain De�nition Table (DDT)
ontains the allowed intera
tions, where domains andtypes form rows and
olumns, and ea
h
ell holds a set of a

ess modes. Subje
t-to-subje
t a

ess
ontrol is based on a global Domain Intera
tion Table (DIT) with subje
ts as both des
riptorsand, again, a set of a

ess modes, e.g. signal,
reate or destroy, in the
ells. In
ontrast to theoriginal TE model, DTE supports impli
it attribute maintenan
e. This means that values maybe only kept on a higher level of the dire
tory and �le hierar
hy, but are used for all levels belowas well. Also, the spe
i�
ation language allows to spe
ify types by lookup path pre�xes.The �rst pro
ess on a system, the init pro
ess, gets a prede�ned initial domain assigned.Ea
h pro
ess
an enter another domain by exe
uting a program bound to it, a so-
alled entrypoint. An entry point may be exe
uted to expli
itely enter one of its asso
iated domains, if thesubje
t's
urrent domain has exec right on the target domain. The auto a

ess right to a domainautomati
ally sele
ts this domain, if one of its entry points gets exe
uted. The user-domainrelationship is entirely built on entry points like
ommand shells et
. However, a DTE aware loginprogram
an sele
t from all domains asso
iated with an entry point to avoid individual
opiesfor ea
h domain. The DTE model avoids the
on
ept of users and only fo
uses on programs.User representation and role assignment are pla
ed under the dis
retion of unspe
i�
 DTE awareappli
ations outside the s
ope of the model. Another DTE drawba
k is that roles
an only be
hanged through entry point programs. Dynami
 role
hanges are spe
ially useful for user basedserver programs.5.5.4 Multilevel Se
urityMulti-level se
urity was formalized by Bell and La-Padula [112℄ in order to
ontrol how informa-tion is allowed to �ow between subje
ts in a system. These subje
ts are given a sensitivity level,or se
urity
learan
e, and obje
ts are also given a similar se
urity
lassi�
ation. MLS poli
iesattempt to restri
t how information may �ow between designated sensitivities. As an example,
onsider a military appli
ation with 4 sensitivities, ordered from least to most sensitive: Un
las-si�ed (UC), Con�dential (CO), Se
ret (S), and Top Se
ret (TS). In this
ase, TS dominates S.Note that in this example the sensitivites form a total ordering; ea
h sensitivity is either higher,lower, or equal to another. This is not always the
ase.Multilevel se
urity (MLS) has posed a
hallenge to the
omputer se
urity
ommunity sin
ethe 1960s. MLS sounds like a mundane problem in a

ess
ontrol: allow information to �owfreely between re
ipients in a
omputing system who have appropriate se
urity
learan
es whilepreventing leaks to unauthorized re
ipients. However, MLS systems in
orporate two essentialfeatures: �rst, the system must enfor
e these restri
tions regardless of the a
tions of system usersor administrators, and se
ond, MLS systems strive to enfor
e these restri
tions with in
rediblyhigh reliability. This has led developers to implement spe
ialized se
urity me
hanisms and to

58 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENTapply sophisti
ated te
hniques to review, analyze, and test those me
hanisms for
orre
t and re-liable behavior. Despite this, MLS systems have rarely provided the degree of se
urity desired bytheir most demanding
ustomers in the military servi
es, intelligen
e organizations, and relatedagen
ies. The high
osts asso
iated with developing MLS produ
ts,
ombined with the limitedsize of the user
ommunity, have also prevented MLS
apabilities from appearing in
ommer
ialprodu
ts.However,
onstraining how information may �ow within a system is at the heart of manyprote
tion me
hanisms and many se
urity poli
ies have dire
t interpretations in terms of multi-level se
urity style
ontrols. These in
lude: Chinese Walls [72℄[73℄; separation of duties and wellformed transa
tions [74℄[75℄ and Role-Based A

ess Control [76℄.Let us assume that we have a
olle
tion of trusted and untrusted VMs and we would like to
onne
t them to form a se
ure virtual network. A network is said to be multilevel se
ure if it isable to prote
t multilevel information and users. That is the information handled by the network
an have di�erent
lassi�
ations and the network users may have varying
learan
e levels.5.6 The Proposed Se
urity Poli
y ModelIn developing the se
urity poli
y, we
ombine
ertain features of some well
omputer se
uritymodels su
h as the Bell-LaPadula model together with issues relevant to network se
urity. In-formally, the network dis
retionary and mandatory a

ess
ontrol poli
y
an be des
ribed asfollows : we assume that the information required to provide dis
retionary a

ess
ontrol resideswithin ea
h network
omponent, rather than in a
entralized a

ess
ontrol
entre. The networkdis
retionary a

ess
ontrol poli
y is based on the identity of the network
omponents, imple-mented in the form of an authorized
onne
tion list. This list determines whether a
onne
tionis allowed to be established between two network entities. The individual
omponents may inaddition impose their own
ontrols over their users - e.g. the
ontrols imposed when there is nonetwork
onne
tion.The network mandatory se
urity poli
y requires appropriate labelling me
hanisms to bepresent. One
an either expli
itly label the information transferred over the network or as-so
iate an impli
it label with a virtual
ir
uit
onne
tion. In our model we have the followings
heme :(a) Ea
h network
omponent is appropriately labelled. A mandatory poli
y based on the labelsof the network
omponents is imposed and it determines whether a requested
onne
tion betweentwo entities is granted or not.(b) Information transferred over the network is appropriately labelled. A mandatory se
uritypoli
y is used to
ontrol the �ow of information between di�erent subje
ts and obje
ts, whenperforming di�erent operations involving information transfer over the virtual network.5.6.1 Modelling approa
hThe network se
urity poli
y model we des
ribe here is a state-ma
hine based model. Essentiallya state ma
hine model des
ribes a system as a
olle
tion of entities and values. At any time,these entities and values stand in a parti
ular set of relationships. This set of relationships
onstitutes the state of the system. Whenever any of these relationships
hange the state ofthe system
hanges. The
ommon type of analysis that
an be
arried out using su
h a modelis the rea
habitity graph analysis. The rea
hability graph analysis is used to determine whetherthe system will rea
h a given state or not. For instan
e, we may identify a subset of states Wwhi
h represent "inse
ure" states and if the system rea
hes a state within this subset W, then

5.6. THE PROPOSED SECURITY POLICY MODEL 59

Figure 5.3: A dedi
ated VM for I/Othe system is said to be inse
ure. In des
ribing su
h a state ma
hine based se
urity model, weneed to perform the following steps :� De�ne se
urity related state variables in the network system.� De�ne the requirements of a se
ure network state.� De�ne the network operations whi
h des
ribe the system state transitions.We make the following assumptions :1. Reliable user authenti
ation exists within ea
h VM.2. Only a user with the role of Admin
an assign se
urity
lasses to network subje
ts andnetwork
omponents, and assign roles to users.3. Reliable transfer of information a
ross the network.5.6.2 Model RepresentationIn order to be generi
, our model needs to take into
onsideration the re
ent development invirtualized systems area, thus we will deal with Input/Output devi
es as separated VMs : infa
t VMware, Xen and many other hypervisors tend to dedi
ate a whole VM for I/O [8℄, andsometimes for the pro
essor (see Figure 5.3), whi
h redu
es
onsequently the overhead for
om-muni
ating the I/O and pro
essor
ommands.We de�ne a network se
urity model, MODEL, as follows :MODEL =< S,O, s0 >where S is the set of States, O is the set of system Operations and s0 is the initial system state.Let us �rst de�ne the basi
 sets used to des
ribe the model:� Sub : Set of all network subje
ts. This in
ludes the set of all Users (Users) and all Pro
esses(Pro
s) in the network. That is : Sub = Procs ∪ Users

60 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT� Obj : Set of all network obje
ts. This in
ludes both the set of Network Components (NC)and Information Units (IU). That is : Obj = NC ∪ IU .Typi
ally, the set of Network Components in
ludes virtual ma
hines (VMs), Input-OutputDevi
es (IOD) and Output Devi
es (OD) whereas Information Units in
lude �les andmessages. That is : NC = VMs ∪ IOD ∪OD� SCls : Set of Se
urity Classes. We assume that a partial ordering relation ≥ is de�ned onthe set of se
urity
lasses.� Rset : Set of user roles. This in
ludes for instan
e the role Admin dedi
ated to theadministrator of the network who is typi
ally the administrator of the whole virtualizedar
hite
ture.We use the notation xs, to denote the element x at state s.System StateWe only
onsider the se
urity relevant state variables. Ea
h state s ∈ S
an be regarded as a11-tuple as follows :
s =< Subs, Objs, authlist, connlist, accset, subcls, objcls,
curcls, subrefobj, role, currole, curvm >Let us now brie�y des
ribe the terms involved in the state de�nition :- Subs and Objs de�nes respe
tively the sets of subje
ts and obje
ts at the state s.- authlist is a set of elements of the form (sub, nc) where sub ∈ Subs and nc ∈ Objs. Theexisten
e of an element (sub1, nc1) in the set indi
ates that the subje
t sub1 has an a

ess rightto
onne
t to the network
omponent nc1.- connlist is again a set of elements of the form (sub, nc). This set gives the
urrent set ofauthorized
onne
tions at that state.- accset is a set of elements of the form (sub, iuobj), where sub ∈ Subs, and iuobj ∈ Objs. Theexisten
e of an element (sub1, iuobj1) in the set indi
ates that the subje
t sub1 has an a

essright to bind to the obje
t iuobj1.- subcls : Sub→ SCls, is a fun
tion whi
h maps ea
h subje
t to a se
urity
lass.- objcls : Obj → SCls, is a fun
tion whi
h maps ea
h obje
t to a se
urity
lass.- curcls : Sub→ SCls, is a fun
tion whi
h determines the
urrent se
urity
lass of a subje
t.- subrefobj : Sub → PS(Obj), is a mapping whi
h indi
ates the set of obje
ts referen
ed by asubje
t at that state.- role : Users→ PS(Rset), gives the authorized set of roles for a user.- currole : Users→ Rset, gives the
urrent role of a user.- curvm : Users→ NC, is a fun
tion whi
h gives the VM in whi
h a user is logged on.- view : Sub→ Obj, is a fun
tion that determines the obje
ts that
an be viewed by a subje
t.Se
ure StateTo de�ne the ne
essary
onditions for a se
ure state, we need to
onsider the di�erent phasesgone through by the system during its operation, we fo
us on typi
al network operations :Login Phase : We require that if the user is logging through a VM, he must have appropriate
learan
e with respe
t to the VM. That is, the se
urity
lass of the user must be above the se
urity
lass of the VM in whi
h the user is attempting to log on. In addition, the
urrent se
urity
lassof the user must be below the maximum se
urity
lass of that user and the role of the user mustbelong to the authorized role set allo
ated to that user. So we have the following
onstraint:

5.7. OPERATIONS AND THEIR SECURITY REQUIREMENTS 61- Proposition 1 : Login Constraint :A state s satis�es the Login Constraint if ∀x ∈ Users :� subcls(x) ≥ objcls(curvm(x))� subcls(x) ≥ curcls(x)Conne
t Phase : Having logged-on to the virtual network, a user may wish to establish a
onne
tion with another network
omponent (VM or I/O VM). In determining whether su
h a
onne
tion request is to be granted, both network dis
retionary and mandatory se
urity poli
ieson
onne
tions need to be satis�ed. The dis
retionary a

ess
ontrol requirement is spe
i�edusing the authorization list whi
h should
ontain an entry involving the requesting subje
t andthe network
omponent. If the network
omponent in question is a VM then the
urrent se
urity
lass of the subje
t must at least be equal to the lowest se
urity
lass of that VM. On the otherhand, if the network
omponent is an output devi
e, then the se
urity
lass of the subje
t mustbe below the se
urity
lass of that
omponent. Hen
e we have the following
onstraint:Proposition 2 : Conne
t Constraint :A state s satis�es the Conne
t Constraint if ∀(sub, nc) ∈ connlist :� (sub, nc) ∈ authlist� if nc ∈ VMs, then curcls(sub) ≥ objcls(nc)� if nc ∈ OD then objcls(nc) ≥ curcls(sub)Other Conditions We require two additional
onditions :(1) The
lassi�
ation of the information that
an be "viewed" through an I/O devi
e must notbe greater than the
lassi�
ation of that devi
e.(2) The role of the users at a state belong to the set of authorized roles. Now we
an give thede�nition of a se
ure state as follows :- De�nition : A state s is Secure if :� s satis�es the Login Constraint� s satis�es the Connect Constraint� ∀z ∈ (IODs ∪ODs), ∀x ∈ IUs,
x ∈ view(z) ⇒ objcls(z) ≥ subcls(x).We assume that the initial system state s0 is de�ned in su
h a way that it satis�es all the
onditions of the se
ure state des
ribed above.5.7 Operations and their se
urity requirementsIn this se
tion we will present the se
urity
onstraints that must be satis�ed by the di�erentoperations performed by the user of the virtual network : this in
ludes vitual ma
hines man-agement operations done by the administrator (
reate/remove a VM,
he
kpoint/restore a VM),network operations su
h as connect and bind operations and �nally operations related to thepoli
y management (assign a se
urity
lass to an obje
t, assign a role to a user, et
).

62 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT5.7.1 Virtual ma
hines managment operationsCreate a new VM : Only the administrator of the virtual network is allowed to
reate newvirtual ma
hines. On
e
reated, a new VM must be labelled by a se
urity
lass whi
h shouldbe dominated by the se
urity
lass of the Dom0. This leads to the following
onstraints : if asubje
t sub wants to
reate a new virtual ma
hine newVM then:� Admin ∈ role(sub) and currole(sub) = Admin� objcls(Dom0) ≥ objcls(newVM)� NC′s = NCs ∪ {newVM}Remove a VM : Only a user with the role Admin is allowed to remove virtual ma
hines.The only VM that
annot be removed is the administration VM, even by the administrator of thesystem (this is the normal
ase, but when we have other sensitive VMs su
h as the surveillan
eVM in our ar
hite
ture, we
an add restri
tion
on
erning the removal of this VM). This leadsus to de�ne the set sensitiveVMs whi
h in
ludes the Dom0 in the
ase of Xen, the surveillan
eVM and may in
lude other important VMs that
annot be removed. We have the following
onstraints : if a user sub wants to remove a virtual ma
hine VM then:� currole(sub) = Admin� VM /∈ sensitiveVMs� authlist′s = authlists r (x, V M), where x ∈ Sub.� connlist′s = connlists r (x, V M), where x ∈ Sub.After removing the VM the lists authlist and connlist are updated by removing the pairs wherethe deleted VM o

urs.Che
kpoint and restore a VM : These fun
tionalities are o�red by most modern hyper-visors. By
reating
he
kpoints for a virtual ma
hine, one
an restore the virtual ma
hine toa previous state. A typi
al use of
he
kpoints is to
reate a temporary ba
kup before applyingupdates to the VM. The restore operation enables to revert the virtual ma
hine to its previousstate if the update fails or adversely a�e
ts the virtual ma
hine. Any user
an
he
kpoint andrestore his own VM, the user with the role Admin
an do this with any VM. To make sure thatthese two operations do not represent se
urity threats, we need the following
onstraints.If a user sub wants to
he
kpoint a virtual ma
hine vm1 then:� curvm(sub) = vm1 or currole(sub) = Admin� VM 6= Dom0In addition to these
onstraints, when restored, a VM must keep the same se
urity
lass asbefore the
he
kpoint. Let s and z be respe
tively the states of the system bebore and after the
he
kpoint, we should have :� objclsz(vm1) = objclss(vm1)

5.7. OPERATIONS AND THEIR SECURITY REQUIREMENTS 635.7.2 Network operationsConne
t operation : The operation connect(sub, nc) allows a subje
t sub to
onne
t to aremote network entity nc. From the Conne
t Constraint given earlier, for this operation to bese
ure, we require that :� (sub, nc) ∈ authlist� if nc ∈ VMs, then curcls(sub) ≥ objcls(nc)orif nc ∈ OD then objcls(nc) ≥ subcls(sub)After the operation is performed we should have : (sub, nc) ∈ connlist′ and nc ∈ subrefobj(sub).Having
onne
ted to a remote VM, a subje
t
an perform operations whi
h allow the ma-nipulation of information obje
ts. We envisage the information manipulation phase to
onsistof two stages : a binding stage and a manipulation stage. The binding stage involves a subje
tlinking itself to the VM on whi
h the operation is to be performed. At the manipulation stage,typi
ally the operations in
lude those operations de�ned by the Bell-LaPadula model su
h as
read, append, write and execute. In our model, we will only
onsider one basi
 manipulationoperation whi
h allows the transfer of an obje
t from one VM to another, as this is perhaps themost important operation from the network point of view. This operation
auses information to�ow from one entity to another over the network. (In fa
t, this operation will form part of otheroperations as well. For instan
e,
onsider a read operation, whereby a user reads a �le storedin a remote entity. This operation must in
lude the transfer of the �le from the remote network
omponent to the lo
al network
omponent in whi
h the user resides.) There are also other op-erations whi
h modify
ertain se
urity attributes of obje
ts and subje
ts. In the usual
omputerse
urity model, these in
lude operations for assigning and
hanging se
urity
lasses to users andinformation obje
ts and assigning and modifying a

ess sets for information unit obje
ts. Notethat in general for any operation to be performed, the subje
t must have authorized a

ess tothe
onne
tion with the remote entity. That is, the Connect Constraint must be satis�ed tobegin with.Bind operation : The operation bind(iuobj, nc) allows a subje
t sub to link an informationobje
t iuobj in a network
omponent nc. The
onstraints that must be satis�ed by this operationare:� (sub, iuobj) ∈ accset(iuobj)� curcls(sub) ≥ objcls(iuobj)� for any sb ∈ Subs, iuobj /∈ subrefobj(sb)After the operation is performed, we should have iuobj ∈ subrefobj′(sub). Where subrefobj′refers to the new state s′.Note that we have in
luded a simple a

ess
ontrol based on accset at the remote network
omponent. In pra
ti
e, a
omprehensive a

ess
ontrol me
hanism is likely to be provided by ame
hanism lo
ated in the remote entity. Note that we
ould have de�ned the bind operation aspart of the
onne
t operation, thereby making the
onne
tion to a parti
ular information obje
tat the
onne
t stage rather than to a network
omponent.Transfer operation :The operation transfer(iuobj1,n
1,iuobj2,n
2) allows a subje
t sub to append the
ontents of aninformation unit obje
t iuobj1 in a network
omponent obje
t nc1 to the
ontents of anotherinformation unit obje
t iuobj2 in a network
omponent obje
t nc2. For this operation to bese
ure, we require that :

64 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT� objcls(iuobj2) ≥ objcls(iuobj1)� curcls(sub) ≥ objcls(iuobj1)Further both iuobj1 and iuobj2 referen
ed by the subje
t sub must not be referen
ed by anyother obje
t. That is, for any sb ∈ Subs, sb 6= sub, iuobj1 and iuobj2 /∈ subrefobj(sb). Also
iuobj1 and iuobj2 ∈ subrefobj(sub).After the operation is performed the se
urity
lasses of the obje
ts iuobj1 and iuobj2 remainun
hanged. That is,� objcls′(iuobj1) = objcls(iuobj1)� objcls′(iuobj2) = objcls(iuobj2)where objcls′ refers to the new state s′.Unbind : The operation unbind(sub, iuobj) allows a subje
t sub to release its link to aninformation obje
t iuobj. That is, before this operation iuobj ∈ subrefobj(sub). After theoperation, we have iuobj /∈ subrefobj(sub).5.7.3 Se
urity-related operationsLet us now
onsider some typi
al operations whi
h modify
ertain se
urity attributes of obje
tsand subje
ts. In the usual
omputer se
urity model, these in
lude operations for assigning and
hanging se
urity
lasses to users and information obje
ts and assigning and modifying a

esssets for information unit obje
ts. In the
ase of our network se
urity model, we need additionaloperations su
h as to assign se
urity
lasses of network
omponent obje
ts, to set authorizationlist and operations, to assign and
hange roles of the users. Let us
onsider some of theseoperations. We will use the notation x and x′ to refer to x at states s and s′.Assign-
ls-n
 : The operation assign-
ls-n
(n
,s
ls) allows a subje
t sub to set the se
urity
lass of a network
omponent obje
t nc, to scls. That is, objcls′(nc) = {scls}. This operation
anbe performed only when the
omponent is not being used. Further, only the virtualized systemadministrator (Admin) has the authority to set the se
urity
lass of a network
omponent obje
t.That is, if this operation is to be performed at state s then the following must be true :If there exists any nc ∈ NC su
h that objcls(nc) 6= objcls′(nc) then :� for any subje
t sb ∈ Subs(sb 6= sub), nc /∈ subrefobj(sb) and (sb, nc) /∈ connlist� Admin ∈ role(sub) and currole(sub) = Admin.Assign-
ls-user : The operation assign-
ls-user(usr, s
ls) allows a subje
t sub to set these
urity
lass of a user, usr, to scls. That is, subcls′(usr) = scls. Typi
ally the
onditions werequire for this operation to be se
ure are :If there exists any usr ∈ Users su
h that subcls(usr) 6= subcls′(usr) then :� Admin ∈ role(sub) and currole(sub) = Admin� if the user is logged in at state s (i.e usr ∈ Userss), then subcls′(usr) ≥ curcls(usr).(note that curcls′(usr) = curcls(usr)).Assign-
ur
ls-user : The operation assign-
ur
ls-user(usr, s
ls) allows a subje
t sub to setthe
urrent se
urity
lass of a user usr to scls. That is, curcls′(usr) = scls. The
onditionsrequired for this operation to be se
ure
an be des
ribed as follows : If there exists any usr ∈
Users su
h that curcls(usr) 6= curcls′(usr) then :

5.8. CONCLUSION AND FURTHER WORK 65� Admin ∈ role(sub) and currole(sub) = Admin or usr = sub.� subcls(usr) ≥ curcls′(usr)� if the user is logged onto a terminal at state s, then curcls′(usr) ≥ objcls(curvm(usr)).� if the user is
onne
ted to a network
omponent at state s whi
h is not an output devi
e,that is, (usr, nc) ∈ connlist and nc /∈ OD, then curcls′(usr) ≥ objcls(nc)� if the user is logged in and is
onne
ted to an output devi
e, that is, (usr, nc) ∈ connlistand nc ∈ OD, then objcls(nc) ≥ curcls′(usr).Assign-role-user : The operation assign-role-user(usr,rlset) allows a subje
t sub to assigna role set rlset to a user usr, That is role′(usr) = {rlset}. For this operation to be se
ure, weneed the following
ondition to be hold :If there exists any usr ∈ Users su
h that role(usr) 6= role′(usr) then :� Admin ∈ role(sub) and currole(sub) = Admin� if the user is logged in at state s, then currole(usr) ∈ role′(usr).Assign-
urrole-user : The operation assign-
urrole-user(usr,rl) allows a subje
t sub to
hange the
urrent role of a user usr to rl. That is, currole′(usr) = rl. The se
urity requirementsof this operation are :If there exists any usr ∈ Users su
h that currole(usr) 6= currole′(usr) then :� Only the user himself or a subje
t whose
urrent role is Admin has the authority to
hangethe
urrent role of the user. That is, Admin ∈ role(sub) and currole(sub) = Admin or
usr = sub.� the new role rl must be in the set of authorized roles of the user. That is, currole′(usr) ∈
role(usr).Setauthlist : The operation setauthlist(al) allows a subje
t to set the authorization list.The authlist is of the form (sb, nc), where sb ∈ Sub and nc ∈ NC. Again, this operation
an onlybe performed by a subje
t who
an a
t as a Admin. That is, if al /∈ authlist and al ∈ authlist′then Admin ∈ role(sub) and currole(sub) = Admin where sub is the subje
t performing thisoperation.5.8 Con
lusion and Further WorkThe �exibility that makes virtual networks su
h a useful te
hnology
an also undermine se
uritywithin organizations and individual hosts. Current resear
h on virtual ma
hines has fo
usedlargely on the implementation of virtualization and its appli
ations. But less e�ort was done forse
uring
ommuni
ation under virtualized systems. We proposed in this
hapter a se
urity poli
ymodel for
ommuni
ation under virtual networks, this model
an be implemented easily undermost virtualized ar
hite
tures. Currently, we are extending our se
urity poli
y to
over not onlylo
al networks, but also wide networks
omposed of many virtualized systems involving poli
yagreements and the prote
tion of information �ows that leave the
ontrol of the lo
al hypervisor.We need to establish trust into the semanti
s and enfor
ement of the se
urity poli
y governingthe remote hypervisor system before allowing information �ow to and from su
h a system.

66 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT

Chapter 6Con
lusion and Perspe
tivesIt is hard not to love virtualization. The ability to
reate dozens of virtual servers (or applian
es)as �les within a single physi
al server
an
ut power
onsumption, save spa
e, make IT adminsjobs easier, and allow them
reate separate environments for testing new appli
ations at will.No wonder this is one of the fastest growing te
hnologies in businesses large and small. Buteverything has its drawba
ks, and virtualization is no ex
eption. Nowadays, virtualization meanspaying more attention to se
urity.In this dissertation, we interested ourselves in the se
urity of virtualized systems. We proposedideas, approa
hes and methods that in
rease the se
urity of su
h platforms and most of the timeprevent some potential threats.In this
on
luding
hapter, we dis
uss other resear
h dire
tions. We believe that the presentedresults
an be improved at many levels and sometimes adapted to more se
urity threats.In
hapter 3, we presented an implementation of a de
entralized supervision system thato�ers the ability to
ontrol all the running virtual ma
hines from outside by deploying an IDSand its sensors. This ar
hite
ture
an be used either to prote
t the VMs or even to o�er ase
ure de
entralized system for simple users. We feel that a more hypervisor-independant imple-mentation would be more interesting, be
ause for now our implementation works only with theXen hypervisor, and it would be a plus to adapt it to other virtualization solutions. Anotherimportant improvement would be to en
rypt the messages sent from the sensors to Or
hids :a
tually the data sent via in the VLAN is unen
rypted and a possible threat
an be a sni�ngme
hanism that dis
overs a lot of sensitive information about the target IDS, the surveillan
eVM, et
...whi
h represents a potential risk that we have to avoid.Moroever, we have seen in this
hapter that our implementation reveals a
onsiderable la
k ofe�
ien
y against fast atta
ks on remote VMs. This is due to the laten
y of the virtual network(whi
h is a
tually lower then in real physi
al networks). One
an suggest to install Or
hidsdire
tly on the target VM. This makes our ar
hite
ture loose its most important features su
has remote
ontrol, de
entralization and exposes the IDS to atta
ks. For now, we have no ideahow to resolve this issue.It would be also
hallenging to explore ways to avoid killing VMs in
ase of DoS atta
ks inorder to preserve a good level of servi
e
ontinuity.In
hapter 4, we aimed to prote
t sensitive resour
es su
h as the Domain0, the VM that theadministrator uses to do all
riti
al administration a
tions su
h as
reating/killing VMs, making
he
kpoints et
...The most
onvenient idea was to study the existen
e of se
urity pol
ies that
ontrol the a

ess to these resour
es and propose an easy approa
h that permits the writingof poli
ies and deploying them qui
kly and automati
ally. To this end, we introdu
ed a high-67

68 CHAPTER 6. CONCLUSION AND PERSPECTIVESlevel language allowing to write suitable se
urity poli
ies, it is a fragment of LTL with new pastoperators. We showed how this language is more
onvenient to our aim then temporal languageswith future operators. Then we introdu
ed an algorithm based on history variables allowingthe automati
 translation of poli
ies into EFSA des
ribing atta
ks. This permits to feed theatta
ks base of the IDS to make it able to detet
t and stop more atta
ks. Our obje
tive wasnot to write poli
ies, this depends on the administrator needs whi
h
an
hange over time, butwe aimed to design a high-level pro
edure that
an be valuable and useful for di�erent users,platforms and needs. This
ontribution
an be improved at many levels. First, some restri
tionsrelated to the language we proposed
an be studied and removed espe
ially while writing
omplexformulas requiring re
ursive
alls to the same operator. Se
ond, for the moment, some keywordswas de�ned in order to fa
ilitate the translation pro
edure, but this is still not enough : thekeywords list should be enri
hed and �xed with an aim to give more �exibility for formulaswriting. Another idea is to improve the syntax from the IDS side (i.e. the des
tription of theEFSA in the form of Or
hids rules). This was done for instan
e for the "if" statements that havesometimes di�erent semanti
s depending on what we need to
he
k (either the o

uren
e of anevent or a simple expression evaluation). Another important resear
h dire
tion related to this
ontribution is, given a formula written in our language, to be able to
he
k that this formulawill not
ause a denial of servi
e due to its translation
omplexity. This requires a stati
 analysispro
edure that takes as input the formula and returns ba
k an indi
ation about the risk relatedto the translation and deployement of this formula. Another related subje
t will be the following: given a linear model (events e1,...,en), a �xed time k between 1 and n, and a formula F in ourlogi
, to be able to de
ide if F is true at the moment k in this model.In
hapter 5, we proposed a multi-level se
urity poli
y model for virtual LANs. We aimed todesign a generi
 model that represents the most important network features of a virtual networkof VMs. This model
an be implemented and used to guarantee the se
urity of
ommuni
ation.This is important, sin
e the ar
hite
ture presented in
hapter 3 relies on a virtual LAN for
om-muni
ating information between the IDS and its sensors. We take into
onsideration the di�erent
omponents of a virtual LAN with not only the di�erent network
ommuni
ation operations, butalso we added to our model some other management and se
urty operations. We study alsose
urity management in this
hapter. For the moment, the se
urity requirements are spe
i�ed,and the se
urity poli
y that
an be developped around this model is de�ned. The importantimprovement that
an perfe
tly
omplement our model will be to work on the veri�
ation of thesystem se
urity at an instant t while taking into a

ount the a
tions performed on the system. Apossible idea will be to use well-known veri�
ation and model
he
king pro
edures to verify these
urity of this model at ea
h stage rea
hed by system a
tions. Another interesting improvementwould be to extend our model to large s
ale networks
omposed by many VLANs. This
anintrodu
e more
omplexity to the modelling approa
h, but represents an interesting resear
hdire
tion.Finally we
an say that a lot of work
an be done for enfan
ing the se
urity of virtualizedsystems sin
e many issues are already existing. The question will be : how long this te
hnologywill keep
onvin
ing users to adopt it in order to maintain their system se
urity needs?

Appendix AThe Xen HypervisorA.1 Introdu
tionXen is an open-sour
e para-virtualizing virtual ma
hine monitor (VMM), or hypervisor, forthe x86 pro
essor ar
hite
ture. Xen
an se
urely exe
ute multiple virtual ma
hines on a singlephysi
al system with
lose-to-native performan
e. Xen fa
ilitates enterprise-grade fun
tionality,in
luding : virtual ma
hines with performan
e
lose to native hardware, live migration of runningvirtual ma
hines between physi
al hosts, Intel and AMD Virtualization Te
hnology for unmod-i�ed guest operating systems (in
luding Mi
rosoft Windows) and ex
ellent hardware support(supports almost all Linux devi
e drivers).A.2 Booting a Xen SystemBooting the system into Xen will bring you up into the privileged management domain, Domain0.At that point you are ready to
reate guest domains and boot them using the xm
reate
ommand.A.2.1 Booting Domain0After installation and
on�guration is
omplete, reboot the system and and
hoose the new Xenoption when the Grub s
reen appears. What follows should look mu
h like a
onventional Linuxboot. The �rst portion of the output
omes from Xen itself, supplying low level informationabout itself and the underlying hardware. The last portion of the output
omes from XenLinux.When the boot
ompletes, you should be able to log into your system as usual. If you are unableto log in, you should still be able to reboot with your normal Linux kernel by sele
ting it at theGRUB prompt. The �rst step in
reating a new domain is to prepare a root �lesystem for it toboot. Typi
ally, this might be stored in a normal partition, an LVM or other volume managerpartition, a disk �le or on an NFS server. A simple way to do this is simply to boot from yourstandard OS install CD and install the distribution into another partition on your hard drive.A.2.2 Booting Guest DomainsBefore you
an start an additional domain, you must
reate a
on�guration �le. We provide twoexample �les whi
h you
an use as a starting point:� /et
/xen/xmexample1 is a simple template
on�guration �le for des
ribing a single VM.69

70 APPENDIX A. THE XEN HYPERVISOR� /et
/xen/xmexample2 �le is a template des
ription that is intended to be reused for multi-ple virtual ma
hines. Setting the value of the vmid variable on the xm
ommand line �llsin parts of this template.There are also a number of other examples whi
h you may �nd useful. Copy one of these �lesand edit it as appropriate. Typi
al values you may wish to edit in
lude:kernel Set this to the path of the kernel you
ompiled for use with Xen (e.g. kernel =�/boot/vmlinuz-2.6-xenU�)memory Set this to the size of the domain's memory in megabytes (e.g. memory = 64)disk Set the �rst entry in this list to
al
ulate the o�set of the domain's root partition, basedon the domain ID. Set the se
ond to the lo
ation of /usr if you are sharing it between domains(e.g. disk = ['phy:your hard drive%d,sda1,w' % (base partition number + vmid), 'phy:your usrpartition,sda6,r' ℄dh
p Un
omment the dhcp variable, so that the domain will re
eive its IP address from aDHCP server (e.g. dh
p=�dh
p�)You may also want to edit the vif variable in order to
hoose the MAC address of thevirtual ethernet interfa
e yourself. For example: vif = ['ma
=00:16:3E:F6:BB:B3'℄ If you donot set this variable, xend will automati
ally generate a random MAC address from the range00:16:3E:xx:xx:xx, assigned by IEEE to XenSour
e as an OUI (organizationally unique identi�er).XenSour
e In
. gives permission for anyone to use addresses randomly allo
ated from this rangefor use by their Xen domains.A.2.3 Starting / Stopping Domains Automati
allyIt is possible to have
ertain domains start automati
ally at boot time and to have dom0 waitfor all running domains to shutdown before it shuts down the system. To spe
ify a domain is tostart at boot-time, pla
e its
on�guration �le (or a link to it) under /et
/xen/auto/.A Sys-V style init s
ript for Red Hat and LSB-
ompliant systems is provided and will beautomati
ally
opied to /et
/init.d/ during install. You
an then enable it in the appropriateway for your distribution. For instan
e, on Red Hat:#
hk
onfig --add xendomainsBy default, this will start the boot-time domains in runlevels 3, 4 and 5. You
an also use theservi
e
ommand to run this s
ript manually, e.g:# servi
e xendomains startStarts all the domains with
on�g �les under /et
/xen/auto/.# servi
e xendomains stopShuts down all running Xen domains.

A.3. NETWORK CONFIGURATION 71A.3 Network Con�gurationFor many users, the default installation should work �out of the box�. More
ompli
ated networksetups, for instan
e with multiple Ethernet interfa
es and/or existing bridging setups will requiresome spe
ial
on�guration. The purpose of this se
tion is to des
ribe the me
hanisms providedby xend to allow a �exible
on�guration for Xen's virtual networking.A.3.1 Xen virtual network topologyEa
h domain network interfa
e is
onne
ted to a virtual network interfa
e in dom0 by a point topoint link (e�e
tively a �virtual
rossover
able�). These devi
es are named vif<domid>.<vi�d>(e.g. vif1.0 for the �rst interfa
e in domain 1, vif3.1 for the se
ond interfa
e in domain 3). Tra�
on these virtual interfa
es is handled in domain 0 using standard Linux me
hanisms for bridging,routing, rate limiting, et
. Xend
alls on two shell s
ripts to perform initial
on�guration of thenetwork and
on�guration of new virtual interfa
es. By default, these s
ripts
on�gure a singlebridge for all the virtual interfa
es. Arbitrary routing / bridging
on�gurations
an be
on�guredby
ustomizing the s
ripts, as des
ribed in the following se
tion.A.3.2 Xen networking s
riptsXen's virtual networking is
on�gured by two shell s
ripts (by default network-bridge and vif-bridge). These are
alled automati
ally by xend when
ertain events o

ur, with argumentsto the s
ripts providing further
ontextual information. These s
ripts are found by default in/et
/xen/s
ripts. The names and lo
ations of the s
ripts
an be
on�gured in /et
/xen/xend-
on�g.sxp.network-bridge This s
ript is
alled whenever xend is started or stopped to respe
tively ini-tialize or tear down the Xen virtual network. In the default
on�guration initialization
reatesthe bridge 'xen-br0' and moves eth0 onto that bridge, modifying the routing a

ordingly. Whenxend exits, it deletes the Xen bridge and removes eth0, restoring the normal IP and routing
on�guration.vif-bridge This s
ript is
alled for every domain virtual interfa
e and
an
on�gure �rewallingrules and add the vif to the appropriate bridge. By default, this adds and removes VIFs on thedefault Xen bridge. Other example s
ripts are available (network-route and vif-route, network-nat and vif-nat). For more
omplex network setups (e.g. where routing is required or integratewith existing bridges) these s
ripts may be repla
ed with
ustomized variants for your site'spreferred
on�guration.

72 APPENDIX A. THE XEN HYPERVISOR

Appendix BThe SELinux Auditd SystemModern Linux kernel (2.6.x)
omes with auditd daemon. It is responsible for writing auditre
ords to the disk. It allows one to
omprehensively log and tra
k a

ess to �les, dire
tories,and resour
es of the system, as well as tra
e system
alls. It enables the monitoring of thesystem for appli
ation misbehavior or
ode malfun
tions. By
reating a sophisti
ated set of rulesin
luding �le wat
hes and system
all auditing, se
urity o�
ers
an make sure that any violationof se
urity poli
ies is noted and properly addressed.The kernel part is in
luded in Linux, and a
tivated in most Linux distributions (in
ludingSqueeze). The following options must be enabled in the kernel :CONFIG_AUDIT=yCONFIG_AUDITSYSCALL=yCONFIG_AUDIT_WATCH=yCONFIG_AUDIT_TREE=yTo be able to use it, we need to install the userspa
e tools :[user�laptop tmp℄ aptitude install auditd audispd-pluginsB.1 Audit rulesThe main
ommand to
ontrol audit rules is audit
tl To show the
urrent status of the auditsystem:[user�laptop tmp℄ audit
tl -sTo list the rules :[user�laptop tmp℄ audit
tl -lLIST_RULES: exit,always ar
h=3221225534 (0x
000003e) wat
h=/et
/hosts sys
all=openRemoving all rules :[user�laptop tmp℄ audit
tl -DNo rules 73

74 APPENDIX B. THE SELINUX AUDITD SYSTEMB.2 Pro
essesNow, suppose we want to log the
reation of all new pro
esses from a spe
i�
 user :[user�laptop tmp℄ audit
tl -a exit,always -S exe
ve -F uid=1000Log all exe
utions of a spe
i�
 program (any user) :[user�laptop tmp℄ audit
tl -A exit,always -F path=/path/to/exe
utable-S exe
veWat
hing for ptra
e system
alls (very verbose, one tra
e
all
an result in many ptra
esys
als) :[user�laptop tmp℄ audit
tl -a entry,always -F ar
h=b64 -S ptra
e -k info_s
anThe -k option is used to spe
ify a
ustom key for this event (31
hars max). This
an be usedto �ltering when sear
hing for events. Now, a funnier use of the �lters: monitor exe
ution of allprograms with the setuid bit and owner root. Finding these is easy, be
ause the uid running theprogram will be non-0 while the e�e
tive uid will be 0 :[user�laptop tmp℄ audit
tl -A exit,always -F ar
h=b64 -F euid=0 -F 'uid!=0' -S exe
veLog all sys
alls done by some program (emulate stra
e, without the ni
e de
oding of allarguments) :[user�laptop tmp℄ audit
tl -a exit,always -S all -F pid=19845B.3 FilesAudit all �les opened by some user :[user�laptop tmp℄ audit
tl -a exit,always -S open -F uid=1000Audit all a

esses to a spe
i�
 �le :[user�laptop tmp℄ audit
tl -a exit,always -F ar
h=b64 -F path=/et
/hosts -S openLog all unsu

essful �le open
alls :[user�laptop tmp℄ audit
tl -a exit,always -S open -F su

ess=0In the same idea, log all unsu

essful writes :[user�laptop tmp℄ audit
tl -a exit,always -S write -F su

ess=0B.4 ReportingTo see the events, either run : �tail -F /var/log/audit/audit.log�type=SYSCALL msg=audit(1308608275.954:25072): ar
h=
000003e sys
all=59su

ess=yes exit=0 a0=7fff3e038690 a1=7faaa6418e80 a2=d99190 a3=0 items=2ppid=6854 pid=14762 auid=4)type=EXECVE msg=audit(1308608275.954:25072): arg
=2 a0="ls" a1="--
olor=auto"type=CWD msg=audit(1308608275.954:25072):
wd="/home/pollux/GIT/admin/SELINUX"

B.4. REPORTING 75It is
lear that the result is very verbose. One
an also re
ognize SELinux information, andthat is indeed the
ase sin
e SELinux is using auditd a lot. We
an also use the very powerfulausear
h and aureport
ommands.Get the list of ptra
e sys
alls (monitored as above) for the last 5 minutes :[user�laptop tmp℄ ausear
h -ts re
ent -s
 ptra
e -i��ts� is the time start option, �s
� is for sys
allSin
e we spe
i�ed a
ustom key when
reating the �lter, we are also able to query eventsbased on the key :[user�laptop tmp℄ ausear
h -ts -k info_s
an -iSear
h by user id :[user�laptop tmp℄ ausear
h -ui 1000 -ts re
entSear
h in a time range :[user�laptop tmp℄ aureport -f --start 06/21/2011 23:00:00 --end 06/21/2011 23:10:00Report on wat
hed �les :[user�laptop tmp℄ aureport -f -ts re
entOutput will be similar to :[user�laptop tmp℄ aureport -f -ts re
ent1. 06/21/2011 20:54:01 /root 4 no /bin/dash -1 28515Here is the des
ription of the
olumns (for the �les report):� �rst
olumn is an index� 2nd is the date of the event� 3rd is the time of the event� 4th is the �le name� 5th is the sys
all id (use -i to make aureport display strings)� 6th is the result of the system
all� 7th is the pro
ess that triggered the event� 8th is the a
tual/audit uid (the initial uid of the session, whi
h remains the same even ifyou
hange user with su after, for ex)� 9th is the event id

76 APPENDIX B. THE SELINUX AUDITD SYSTEM

Bibliography[1℄ H. Benzina. Towards Designing Se
ure Vitualized Systems. In Pro
eedings of The Se
ondInternational Conferen
e on Digital Information and Communi
ation Te
hnology and itsAppli
ations (DICTAP 2012), Bangkok, Thailand. IEEE Computer So
iety Press, 2012.[2℄ H. Benzina. A Network Poli
y Model for Virtualized Systems. In Pro
eedings of The Sev-enteenth IEEE Symposium on Computers and Communi
ation (ISCC 2012). Cappado
ia,Turkey. IEEE Computer So
iety Press, 2012.[3℄ H. Benzina. Logi
 in Virtualized Systems. In Pro
eedings of the First International Conferen
eon Computer Appli
ations and Network Se
urity (ICCANS 2011), Malé, Maldives. IEEEComputer So
iety Press, 2011.[4℄ H. Benzina. Se
uring Hypervisors through Temporal Logi
 and Se
urity Poli
ies. Workshopon Formal methods for spe
ifying and verifying
riti
al systems 2011. Tunis, Tunisia.[5℄ H. Benzina and J. Goubault-Larre
q. Some Ideas on Virtualized Systems Se
urity, and Mon-itors. In The third International Workshop on Autonomous and Spontaneous Se
urity (SE-TOP 2010), Athens, Gree
e. Springer LNCS 6514.[6℄ Gerald J. Popek and Robert P. Goldberg (1974). Formal Requirements for Virtualizable ThirdGeneration Ar
hite
tures. Communi
ations of the ACM 17 (7): 412-421.[7℄ The GNU HUrd System, 2012. http://www.gnu.org/software/hurd.[8℄ Vmware, 2012. http://www.vmware.
om/.[9℄ Virtualbox, 2012. http://www.virtualbox.org/.[10℄ Virtual PC, 2012. http://www.mi
rosoft.
om/windows/virtual-p
/default.aspx[11℄ Qemu, 2012. http://www.qemu.org/.[12℄ Xen, 2005�2012. http://www.xen.org/.[13℄ Anderson, J. (1980). Computer se
urity threat monitoring and surveillan
e. Te
hni
al re-port, James P. Anderson Company, Fort Washington, Pennsylvania.[14℄ Denning, D. E. (1987). An intrusion-dete
tion model. 13(2):222-232.[15℄ Meier, M. (2004). Intrusion dete
tion systems list and bibliography.[16℄ Ba
e, R. et Mell, P. (2001). Intrusion dete
tion systems. Te
hni
al report, National Instituteof Standards and Te
hnology (NIST). 77

http://www.gnu.org/software/hurd
http://www.vmware.com/
http://www.virtualbox.org/
http://www.microsoft.com/windows/virtual-pc/default.aspx
http://www.qemu.org/
http://www.xen.org/

78 BIBLIOGRAPHY[17℄ Wood, M. et Erlinger, M. (2007). Intrusion dete
tion message ex
hange requirements. IETFIntrusion Dete
tion Ex
hange FormatWorking Group. Request for Comments. Referen
e :rf
4766.[18℄ F. Laroussinie, N. Markey, and Ph. S
hnoebelen. Temporal logi
 with forgettable past. InPro
. 17th IEEE Symp. Logi
 in Computer S
ien
e (LICS'2002), Copenhagen, Denmark,July 2002, pages 383-392. IEEE Comp. So
. Press, 2002.[19℄ Bishop, M. (2003). Computer Se
urity Art and S
ien
e. ISBN 0201440997. Addison-WesleyProfessional.[20℄ E
kmann, S., Vigna, G. et Kemmerer, R. (2000). Statl : An atta
k language for state-basedintrusion dete
tion.[21℄ Pouzol, J.-P. et Du
ass, M. (2002). Formal spe
i�
ation of intrusion signatures and dete
tionrules. In CSFw'02 : Pro
eedings of the 15th IEEE Computer Se
urity Foundations Workshop(CSFW'02), page 64, Washington, DC, USA. IEEE Computer So
iety.[22℄ J. Goubault-Larre
q and J. Olivain. A smell of Or
hids. In M. Leu
ker, editor, Pro
eedingsof the 8th Workshop on Runtime Veri�
ation (RV'08), Le
ture Notes in Computer S
ien
e,pages 1�20, Budapest, Hungary, Mar. 2008. Springer.[23℄ Carras
o, R. C. et On
ina, J. (1994). Learning sto
hasti
 regular grammars by means ofa state merging method. In Carras
o, R. C. et On
ina, J. : Grammati
al Inferen
e andAppli
ations, Se
ond International Colloquium, ICGI-94, Ali
ante, Spain, September 21-23,1994, Pro
eedings, pages 139-152. Springer.[24℄ Kosoresow, A. P. et Hofmeyr, S. A. (1997). Intrusion dete
tion via system
all tra
es.14(5):35-42.[25℄ Ron, D., Singer, Y. et Tishby, N. (1996). The power of amnesia : Learning probabilisti
automata with variable memory length. 25(2-3):117-149.[26℄ Kumar, S. et Spa�ord, E. H. (1994). A Pattern Mat
hing Model for Misuse Intrusion De-te
tion. In Pro
eedings of the 17th National Computer Se
urity Conferen
e, pages 11-21.[27℄ Vigna, G. et Kemmerer, R. A. (1998). Netstat : A network-based intrusion dete
tion ap-proa
h. In 14th Annual Computer Se
urity Appli
ations Conferen
e (ACSAC 1998), 7-11De
ember 1998, S
ottsdale, AZ, USA, pages 2536. IEEE Computer So
iety.[28℄ Mé, L. (1998). Gassata, a geneti
 algorithm as an alternative tool for se
urity audit trailanalysis. In the �rst international workshop on Re
ent Advan
es in Intrusion Dete
tion.[29℄ DuMou
hel, W. et S
honlau, M. (1998). A fast
omputer intrusion dete
tion algorithm basedon hypothesis testing of
ommand transition probabilities. In KDD, pages 189-193.[30℄ Mounji, A. et Charlier, B. L. (1997). Continuous assessment of a unix
on�guration : In-tegrating intrusion dete
tion and
on�guration analysis. In Pro
eedings of the Network andDistributed System Se
urity Symposium, NDSS 1997, San Diego, California, USA. IEEEComputer So
iety.[31℄ Mi
hel, C. et Mé, L. (2001). Adele : An atta
k des
ription language for knowledge-basedintrusion dete
tion. In Dupuy, M. et Paradinas, P. : Trusted Information : The NewDe
ade Challenge, IFIP TC11 Sixteenth Annual Working Conferen
e on Information Se-
urity (IFIP/Se
'01), June 11-13, 2001, Paris, Fran
e, pages 353-368. Kluwer.

BIBLIOGRAPHY 79[32℄ Mi
hael Le, Yuval Tamir. ReHype: enabling VM survival a
ross hypervisor failures. VEE2011: 63-74[33℄ Cuppens, F. et Ortalo, R. (2000). Lambda : A language to model a database for dete
tion ofatta
ks. In Debar, H., Mé, L. et Wu, S. F., In Re
ent Advan
es in Intrusion Dete
tion, ThirdInternational Workshop, RAID 2000, Toulouse, Fran
e, O
tober 2-4, 2000, Pro
eedings, pages197-216. Springer.[34℄ Mendel Rosenblum. The rein
arnation of virtual ma
hines. Queue, 2(5):34-40, August 2004.[35℄ Mendel Rosenblum and Tal Gar�nkel. Virtual ma
hine monitors:
urrent te
hnology andfuture trends. Computer, 38(5):39-47, May 2005.[36℄ Blue Lane Te
hnologies INC. 2012. http://www.bluelane.
om/.[37℄ Joanna Rutkowska. Subverting Vista kernel for Fun and Pro�t. Bla
k Hat 2006, Las Vegas,USA.[38℄ Trent Jaeger, Reiner Sailer, and Yogesh Sreenivasan. Managing the Risk of Covert Infor-mation Flows in Virtual Ma
hine Systems. In Pro
eedings of the 12th ACM Symposium onA

ess Control Models and Te
hnologies, pages 81-90, January 2007.[39℄ Peter A. Los
o

o, Stephen D. Smalley, Patri
k A. Mu
kelbauer, Ruth C. Taylor, S. Je�Turner, and John F. Farrell. The inevitability of failure: The Flawed Assumption of Se
u-rity in Modern Computing Environments. In Pro
eedings of the 21th National InformationSystems Se
urity Conferen
e, O
tober 1998.[40℄ Virgil D. Gligor. A Guide to Understanding Covert Channel Analysis of Trusted Systems.Te
hni
al report, NATIONAL COMPUTER SECURITY CENTER, November 1993.[41℄ KVM, 2012. http://www.linux-kvm.org/page/Main_Page[42℄ Jenni S. Reuben. A survey on virtual ma
hine se
urity. Te
hni
al report, Helsinki Universityof Te
hnology, O
tober 2007.[43℄ Joel Kir
h. Virtual Ma
hine Se
urity Guidelines. The Center for Internet Se
urity, Septem-ber 2007.[44℄ Travis Ormandy. An Empiri
al Study into the Se
urity Exposure to Hosts of Hostile Virtu-alized Environments. Te
hni
al report, Google, In
.[45℄ Peter Ferrie. Atta
ks on Virtual Ma
hine Emulators. In Pro
eedings of the AVAR 2006Conferen
e, pages 128-143, De
ember 2006.[46℄ P. A. Los
o

o, S. D. Smalley, P. A. Mu
kelbauer, R. C. Taylor, S. J. Turner, and J. F. Far-rell. The Inevitability of Failure: The Flawed Assumption of Se
urity in Modern ComputingEnvironments. In Pro
eedings of the 21st National Information Systems Se
urity Conferen
e,pages 303-314, O
t. 1998.[47℄ S. E. Minear. Providing Poli
y Control Over Obje
t Operations in a Ma
h Based System.In Pro
eedings of the Fifth USENIX UNIX Se
urity Symposium, pages 141-156, June 1995.[48℄ R. Spen
er, S. Smalley, P. Los
o

o, M. Hibler, D. Andersen, and J. Lepreau. The FlaskSe
urity Ar
hite
ture: System Support for Diverse Se
urity Poli
ies. In Pro
eedings of theEighth USENIX Se
urity Symposium, pages 123-139, Aug. 1999.

http://www.bluelane.com/
http://www.linux-kvm.org/page/Main_Page

80 BIBLIOGRAPHY[49℄ Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Ronald Perez, Leendert van Doorn, JohnL. Gri�n, and Stefan Berger. Se
ure hypervisor approa
h to trusted virtualized systems. In9. Deuts
her IT-Si
herheitskongress, Bunde- samt fur Si
herheit in der Informationste
hnik,May 2005.[50℄ Common Criteria. Common Criteria for Information Te
hnology Se
urity Evaluation.http://www.
ommon
riteriaportal.org.[51℄ R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and Implementation of a TCG-based Integrity Measurement Ar
hite
ture. In Thirteenth USENIX Se
urity Symposium,pages 223-238, August 2004.[52℄ Kurniadi Asrigo, Lionel Litty, David Lie. Using VMM-based sensors to monitor honeypots.VEE 2006: 13-23[53℄ J. P. Anderson et. al. Computer se
urity te
hnology planning study. Te
hni
al Report ESD-TR-73-51, Vol? 1+2, Air For
e Systems Command, USAF, 1972.[54℄ Kernel Based Virtual Ma
hine 2012. http://www.linux-kvm.org[55℄ Paul A. Karger, Mary E. Zurko, Douglas W. Bonin, Andrew H. Mason, and Cli�ord E.Kahn. A VMM Se
urity Kernel for the VAX Ar
hite
ture. In Pro
eedings of the 1990 IEEEComputer So
iety Symposium on Se
urity and Priva
y, pages 2-19, May 1990.[56℄ Tal Gar�nkel, Ben Pfa�, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: a Vir-tual Ma
hine-based Platform for Trusted Computing. SIGOPS Operating Systems Review,37(5):193-206, 2003.[57℄ Sören Bleikertz, Thomas G., Matthias S
hunter, Konrad Eriksson: Automated InformationFlow Analysis of Virtualized Infrastru
tures. ESORICS 2011: 392-415[58℄ Nettop, 2004. http://www.nsa.gov/resear
h/te
h_transfer/fa
t_sheets/nettop.shtml.[59℄ T. Gar�nkel and M. Rosenblum. A virtual ma
hine introspe
tion based ar
hite
ture forintrusion dete
tion. In Pro
eedings of the 10th Annual Network and Distributed SystemsSe
urity Symposium, San Diego, CA, Feb. 2003.[60℄ Kurshan, R.: Computer-Aided Veri�
ation of Coordinating Pro
esses: The Automata-Theoreti
 Approa
h. Prin
eon University Press (1994).[61℄ Vardi, M.Y., Wolper, P.: Automata-theoreti
 te
hniques for modal logi
 of programs. Jour-nal of Computer and System S
ien
es 32, 1986, 183-221.[62℄ Vardi, M.: An automata-theoreti
 approa
h to linear temporal logi
. In: Logi
s for Con
ur-ren
y: Stru
ture versus Automata. Volume 1043 of LNCS. Springer 1996, 238266.[63℄ Hardin, R., Kurshan, R., Shukla, S., Vardi, M.: A new heuristi
 for bad
y
le dete
tionusing BDDs. In: Computer Aided Veri�
ation (CAV'97). Volume 1254 of LNCS., Springer(1997) 268-278.[64℄ Esparza, J., Heljanko, K.: Implementing LTL model
he
king with net unfoldings. In: SPIN2001. Volume 2057 of LNCS., Springer (2001) 3756.[65℄ Heljanko, K.: Combining Symboli
 and Partial Order Methods for Model Che
king 1-SafePetri Nets. PhD thesis, Helsinki University of Te
hnology, Department of Computer S
ien
eand Engineering 2002.

http://www.commoncriteriaportal.org.
http://www.linux-kvm.org
http://www.nsa.gov/research/tech_transfer/fact_sheets/nettop.shtml

BIBLIOGRAPHY 81[66℄ Kupferman, O., Vardi, M.: Model
he
king of safety properties. Formal Methods in SystemDesign 19, 2001, 291-314.[67℄ Takahiro Shinagawa, Hideki Eiraku, Koui
hi Tanimoto, Kazumasa Omote, Shoi
hiHasegawa, Takashi Horie, Manabu Hirano, Keni
hi Kourai, Yoshihiro Oyama, Eiji Kawai,Kenji Kono, Shigeru Chiba, Yasushi Shinjo, Kazuhiko Kato. BitVisor: A Thin Hypervisorfor Enfor
ing i/o Devi
e Se
urity. VEE 2009: 121-130[68℄ G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen, Revirt: Enabling intrusionanalysis through virtual ma
hine logging and replay, Pro
eedings of 2002 Symposium onOperating Systems Design and Implementation (OSDI'02), De
ember 2002, pp.211-224[69℄ S. Berger, R. Ca
eres, et al. vTPM: Virtualizing the Trusted Platform Module, Pro
eedingsof the USENIX Annual Te
hni
al Conferen
e (USENIX'06). USENIX., May 30 - June 3,2006, Boston, MA, USA, pp. 21-21[70℄ K. Onoue, Y. Oyama, and A. Yonezawa. Control of system
alls from outside of virtualma
hines. In R. L. Wainwright and H. Haddad, editors, SAC, pages 2116�1221. ACM, 2008.[71℄ S. Smalley, C. Van
e, and W. Salamon. Implementing SELinux as a Linux se
urity module.Te
hni
al report, NSA, 2001.[72℄ Foley, S.: Aggregation and separation as noninterferen
e properties. Journal of ComputerSe
urity 1(2)(1992) 159-188[73℄ Sandhu, R.: Latti
e based a

ess
ontrol models. IEEE Computer 26(11) (1993) 9-19[74℄ Lee, T.: Using mandatory integrity to enfor
e '
ommeri
al' se
urity. In: Pro
eedings of theSymposium on Se
urity and Priva
y. (1988) 140-146[75℄ Foley, S.: The spe
i�
ation and implementation of
ommer
ial se
urity requirements in
lud-ing dynami
 segregation of duties. In: ACM Conferen
e on Computer and Communi
ationsSe
urity. (1997) 125-134[76℄ Sandhu, R.: Role hierar
hies and
onstraints for latti
e-based a

ess
ontrols. In: ESORICS.(1996)[77℄ G. Brandman. Pat
hing the interprise. ACM Queue, Mar. 2005.[78℄ A. Bellissimo, J. Burgess, K. Fu. Se
ure Software Updates: Disappointments and NewChallenges In USENIX Hot Topi
s Se
urity Workshop (Hot-Se
), July 2006, Van
ouver,Canada.[79℄ J. Bri�aut. Formalisation et garantie de propriétés de sé
urité système: Appli
ation à ladéte
tion d'intrusions. PhD thesis, LIFO Université d'Orléans, ENSI Bourges, De
. 2007.[80℄ A. Brown and M. Ryan. Synthesising monitors from high-level poli
ies for the safe exe
utionof untrusted software. In Information Se
urity Pra
ti
e and Experien
e, pages 233�247.Springer Verlag LNCS 4991, 2008.[81℄ H. Dias. Linux kernel 'net/atm/pro
.
' lo
al denial of servi
e vulnerability. BugTraq Id32676, CVE-2008-5079, De
. 2008.[82℄ Linux Se
urity Modules 2012. http://kernel.org/do
/htmldo
s/lsm.html

http://kernel.org/doc/htmldocs/lsm.html

82 BIBLIOGRAPHY[83℄ Monirul I. Sharif, Wenke Lee, Weidong Cui, Andrea Lanzi. Se
ure in-VM Monitoring UsingHardware Virtualization. ACM Conferen
e on Computer and Communi
ations Se
urity 2009:477-487.[84℄ M. J. Fis
her and R. E. Ladner. Propositional dynami
 logi
 of regular programs. Journalof Computer and System S
ien
es, 18:194�211, 1979.[85℄ T. Gar�nkel and M. Rosenblum. A virtual ma
hine introspe
tion based ar
hite
ture forintrusion dete
tion. In Pro
eedings of the 10th Annual Network and Distributed SystemsSe
urity Symposium, San Diego, CA, Feb. 2003.[86℄ I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A se
ure environment for untrustedhelper appli
ations (
on�ning the wily ha
ker). In Pro
eedings of the 6th USENIX Se
uritySymposium, San Jose, CA, July 1996.[87℄ J. Goubault-Larre
q and J. Olivain. A smell of Or
hids. In M. Leu
ker, editor, Pro
eedingsof the 8th Workshop on Runtime Veri�
ation (RV'08), Le
ture Notes in Computer S
ien
e,pages 1�20, Budapest, Hungary, Mar. 2008. Springer.[88℄ B. Morin and H. Debar. Correlation of intrusion symptoms: an appli
ation of
hroni
les. InPro
eedings of the 6th International Conferen
e on Re
ent Advan
es in Intrusion Dete
tion(RAID'03), pages 94�112, 2003.[89℄ G. C. Ne
ula and P. Lee. Safe kernel extensions without run-time
he
king. SIGOPSOperating Systems Review, 30:229�243, O
t. 1996.[90℄ Nettop, 2004. http://www.nsa.gov/resear
h/te
h_transfer/fa
t_sheets/nettop.shtml.[91℄ J. Olivain and J. Goubault-Larre
q. The Or
hids intrusion dete
tion tool. In K. Etessamiand S. Rajamani, editors, 17th Intl. Conf. Computer Aided Veri�
ation (CAV'05), pages286�290. Springer LNCS 3576, 2005.[92℄ K. Onoue, Y. Oyama, and A. Yonezawa. Control of system
alls from outside of virtualma
hines. In R. L. Wainwright and H. Haddad, editors, SAC, pages 2116�1221. ACM, 2008.[93℄ N. Provos. Improving host se
urity with system
all poli
ies. In Pro
eedings of the 12thUSENIX Se
urity Symposium, Washington, DC, Aug. 2003.[94℄ W. Pur
zy«ski and qaaz. Linux kernel prior to 2.6.24.2 `vmspli
e_to_pipe()' lo
al privilegees
alation vulnerability. http://www.se
urityfo
us.
om/bid/27801, Feb. 2008.[95℄ Qemu, 2010. http://www.qemu.org/.[96℄ Small number of video iPods shipped with Windows virus.http://www.apple.
om/support/windowsvirus/, 2010.[97℄ M. Roger and J. Goubault-Larre
q. Log auditing through model
he
king. In 14th IEEEComputer Se
urity Foundations Workshop (CSFW'01), pages 220�236. IEEE Comp. So
.Press, 2001.[98℄ R. Sailer, T. Jaeger, E. Valdez, R. Ca
eres, R. Perez, S. Berger, J. Gri�n, and L. Doorn.Building a MAC-based se
urity ar
hite
ture for the Xen opensour
e hypervisor. In Pro-
eedings of the 21st Annual Computer Se
urity Appli
ations Conferen
e, Tu
son, AZ, De
.2005.

http://www.nsa.gov/research/tech_transfer/fact_sheets/nettop.shtml
http://www.qemu.org/
http://www.apple.com/support/windowsvirus/

BIBLIOGRAPHY 83[99℄ R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A fast automaton-based method fordete
ting anomalous program behaviors. In IEEE Symposium on Se
urity and Priva
y, Oak-land, CA, May 2001.[100℄ Amir Pnueli, The Temporal Logi
 of Programs. Pro
eedings of the 18th Annual Symposiumon Foundations of Computer S
ien
e (FOCS),1977, 46-57.[101℄ Gerard J. Holzmann: The Model Che
ker SPIN. IEEE Trans. Software Eng. 23(5):1997,279-295.[102℄ Paul Gastin, Denis Oddoux: LTL with Past and Two-Way Very-Weak Alternating Au-tomata. MFCS 2003: 439-448[103℄ R. Sekar, C. Ramakrishnan, I. Ramakrishnan, and S. Smolka. Model-
arrying
ode (MCC):A new paradigm for mobile-
ode se
urity. In Pro
eedings of the New Se
urity ParadigmsWorkshop (NSPW 2001), Cloud
roft, NM, Sept. 2001. ACM Press.[104℄ R. Sekar and P. Uppuluri. Synthesizing fast intrusion prevention/dete
tion systems fromhigh-level spe
i�
ations. In SSYM 1999: Pro
eedings of the 8th
onferen
e on USENIXSe
urity Symposium, Berkeley, CA, 1999.[105℄ L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker and S. A. Haghighat, A Domainand Type Enfor
ement UNIX Prototype, In Pro
eedings of the 5th USENIX UNIX Se
uritySymposium, June 1995.[106℄ Adrian Baldwin, Chris Dalton, Simon Shiu, Krzysztof Kostienko, Qasim Rajpoot ProvidingSe
ure Servi
es for a Virtual Infrastru
ture ACM SIGOPS Operating Systems Review ar
hiveVolume 43 Issue 1, January 2009 ACM New York, USA.[107℄ Trent Jaeger, Reiner Sailer, Yogesh Sreenivasan. Managing the Risk of Covert InformationFlows in Virtual Ma
hine Systems. In Pro
eedings of ACM Symposium on A

ess ControlModels and Te
hnologies (SACMAT), 2007.[108℄ Bernhard Jansen, HariGovind V. Ramasamy, Matthias S
hunter. Poli
y Enfor
ementand Complian
e Proofs for Xen Virtual Ma
hines. In pro
eedings of the 2008 ACM SIG-PLAN/SIGOPS International Conferen
e on Virtual Exe
ution Environments.[109℄ Biba, K. J. Integrity Considerations for Se
ure Computer Systems, MTR-3153, The MitreCorporation, April 1977.[110℄ Introdu
ing Role-based A

ess Control to a Se
ure Virtual Ma
hine Monitor: Se
urityPoli
y Enfor
ement Me
hanism for Distributed Computers. In : IEEE Asia-Pa
i�
 Servi
esComputing Conferen
e 2008.[111℄ Till Mossakowski, Mi
hael Drouineaud, Karsten Sohr. A temporal-logi
 extension of role-based a

ess
ontrol
overing dynami
 separation of duties. In TIME-ICTL 2003. IEEEComputer So
iety.[112℄ Bell, D.E., Padula, L.J.L.: Se
ure
omputer system: uni�ed exposition and MULTICSinterpretation. Report ESD-TR-75-306, The MITRE Corporation (1976)[113℄ S. Smalley, C. Van
e, and W. Salamon. Implementing SELinux as a Linux se
urity module.Te
hni
al report, NSA, 2001.

84 BIBLIOGRAPHY[114℄ P. Starzetz. Linux kernel 2.4.22 do_brk() privilege es
alation vulnerability.http://www.k-otik.net/bugtraq/12.02.kernel.2422.php, De
. 2003. K-Otik ID 0446,CVE CAN-2003-0961.[115℄ Virtualbox, 2010. http://www.virtualbox.org/.[116℄ Vmware, 2010. http://www.vmware.
om/.[117℄ R. Wojt
zuk. Subverting the Xen hypervisor. In Bla
k Hat'08, Las Vegas, NV, 2008.[118℄ [ms-wusp℄: Windows update servi
es: Client-server proto
ol spe
i�
ation.http://msdn.mi
rosoft.
om/en-us/library/

251937(PROT.13).aspx, 2007�2010.[119℄ Xen, 2005�2010. http://www.xen.org/.[120℄ J. Zimmerman, L. Mé, and C. Bidan. Introdu
ing referen
e �ow
ontrol for dete
tingintrusion symptoms at the OS level. In Pro
eeedings of the Re
ent Advan
es in IntrusionDete
tion Conferen
e (RAID), pages 292�306, 2002.[121℄ J. Zimmerman, L. Mé, and C. Bidan. Experimenting with a poli
y-based hids based on aninformation �ow
ontrol model. In ACSAC '03: Pro
eedings of the 19th Annual ComputerSe
urity Appli
ations Conferen
e, page 364, Washington, DC, USA, 2003. IEEE ComputerSo
iety.[122℄ J. Zimmerman, L. Mé, and C. Bidan. An improved referen
e �ow
ontrol model for poli
y-based intrusion dete
tion. In Pro
eeedings of the European Symposium On Resear
h in Com-puter Se
urity (ESORICS), pages 291�308, 2003.[123℄ FUSE, 2012. http://fuse.sour
eforge.net/.[124℄ CVE-2008-5079, http://
ve.mitre.org/
gi-bin/
vename.
gi?name=CVE-2008-5079.[125℄ CVE-2005-3857, http://
ve.mitre.org/
gi-bin/
vename.
gi?name=CVE-2005-3857.

http://www.k-otik.net/bugtraq/12.02.kernel.2422.php
http://www.virtualbox.org/
http://www.vmware.com/
http://msdn.microsoft.com/en-us/library/cc251937(PROT.13).aspx
http://www.xen.org/

	Abstract
	Résumé
	Remerciements
	Introduction
	Context of the thesis
	Contributions
	A Decentralized Supervision System for Securing Virtual Machines
	A Temporal Language for Securing Sensitive Resources
	A Multi-level Security Policy for Securing Communication

	Research Publications
	Conferences and Workshops
	Research Tools

	Thesis Plan
	The REDPILL project

	State of The Art
	Introduction
	Virtualization
	Popek and Goldberg Virtualization Requirements
	Some Challenges
	Types of Virtualization

	Intrusion Detection
	Misuse Detection

	Security Policies
	Security Properties

	Virtualization and Security
	Overview
	Security Benefits
	Security Risks

	Some Existing Approaches
	XSM/FLASK for Xen
	sHype
	VAX VMM security kernel
	Terra
	Other Contributions

	Securing Virtual Machines
	Introduction
	Related Work
	System Supervision In Virtual Environments
	Local Supervision Approaches
	Disadvantages of Local Supervision
	Decentralized Supervision Approaches

	Proposed Architecture
	Remote Logging
	Discussion
	Conclusion

	Protecting Sensitive Resources
	Introduction
	Related Work
	Proof Carrying Code
	Model Carrying Code

	Threat Model
	Sensitive Resources
	Automatic Updates and Security Issues
	A possible Attack Scenario

	Preliminaries
	A Line of Defense: LTL with Past and Orchdis
	The Proposed Language
	The Translation Algorithm

	Facing a Malicious Driver
	Experiments

	Conclusion and Further Work

	Securing Communication In a Virtual Environment
	Introduction
	Multilevel Networking
	Virtual Networks
	Advantages and Security Threats of Virtual Networks
	Security Policy Models
	Bell-LaPadula model
	Biba model
	DTE model
	Multilevel Security

	The Proposed Security Policy Model
	Modelling approach
	Model Representation

	Operations and their security requirements
	Virtual machines managment operations
	Network operations
	Security-related operations

	Conclusion and Further Work

	Conclusion and Perspectives
	The Xen Hypervisor
	Introduction
	Booting a Xen System
	Booting Domain0
	Booting Guest Domains
	Starting / Stopping Domains Automatically

	Network Configuration
	Xen virtual network topology
	Xen networking scripts

	The SELinux Auditd System
	Audit rules
	Processes
	Files
	Reporting

