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Abstract

Virtual machine technology is rapidly gaining acceptance as a fundamental building block in
enterprise data centers. It is most known for improving efficiency and ease of management.
However, the central issue of this technology is security. We propose in this thesis to enforce the
security of virtualized systems and introduce new approaches that deal with different security
aspects related not only to the technology itself but also to its deployment and maintenance.

We first propose a new architecture that offers real-time supervision of a complete virtualized
architecture. The idea is to implement decentralized supervision on one single physical host.
We study the advantages and the limits of this architecture and show that it is unable to react
according to some new stealthy attacks.

As a remedy, we introduce a new procedure that permits to secure the sensitive resources of
a virtualized system and make sure that families of attacks can not be run at all. We introduce
a variant of the LTL language with new past operators and show how policies written in this
language can be easily translated to attack signatures that we use to detect attacks on the system.

We also analyse the impact that an insecure network communication between virtual machines
can have on the global security of the virtualized system. We propose a multilevel security policy
model that covers almost all the network operations that can be performed by a virtual machine.
We also deal with some management operations and introduce the related constraints that must
be satisfied when an operation is performed.

iii



iv

ABSTRACT



Résumé

La virtualisation est une technologie dont la popularité ne cesse d’augmenter dans le monde de
I’entreprise, et ce pour lefficacité et la facilité de gestion qu’elle apporte. Cependant, le probléme
majeur de cette technologie est la sécurité. Dans cette thése, nous proposons de renforcer la
sécurité des systémes virtualisés et nous introduisons de nouvelles approches pour répondre aux
différents besoins en sécurité de cette technologie et aussi aux aspects liés a a son fonctionnement
et son déploiement.

Nous propososns une nouvelle architecture de supervision qui permet de controéler la totalité
de la plateforme virtualisée en temps réel. L’idée est de simuler une supervision décentralisée
(plusieurs postes) sur un seul poste physique. Nous étudions les avantages et les limites de cette
approche et nous montrons que cette solution est incapable de réagir é & un certain nombre
d’attaques nouvelles.

Comme reméde, nous introduisons une nouvelle procédure qui permet de sécuriser les ressources
critiques d’un systéme virtualisé pour s’assurer que des familles d’attaques ne peuvent étre exé-
cutées en ayant acces a ces ressources. Nous introduisons une variante de LTL avec de nouveaux
opérateurs de passé et nous montrons comment des politiques de sécurité formulées & I'aide de
ce langage peuvent étre facilement traduites en signatures d’attaques qui peuvent nous étre trés
utiles pour la détection des intrusions dans le systéme.

Nous analysons aussi 'impact d’une communication réseau non sécurisée entre machines
virtuelles sur la sécurité globale du systéme virtualisé. Nous proposons un modéle d’une politique
de sécurité multi-niveaux qui couvre la majorité des opérations liées au réseau et qui peuvent étre
exécutées par une machine virtuelle. Notre modéle traite aussi certaines opérations de gestion
de l'infrastructure virtualisée et les contraintes de sécurité qui doivent étre satisfaites.
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Chapter 1

Introduction

1.1 Context of the thesis

Today’s IT intensive enterprise must always be on the lookout for the latest technologies that
allow businesses to run with fewer resources while providing the infrastructure to meet today and
future customer needs. Virtualization is the cutting edge of enterprise information technology. In
recent years the term virtualization has become the industry’s newest buzzword. Virtualization
technology is possibly the single most important issue in IT and has started a top to bottom
overhaul of the computing industry. The growing awareness of the advantages provided by
virtualization technology is brought about by economic factors of scarce resources, government
regulation, and more competition.

Virtualization technology is being used by a growing number of organizations to reduce power
consumption and air conditioning needs and trim the building space and land requirements
that have always been associated with server farm growth. Virtualization also provides high
availability for critical applications with a streamlines application deployment and migrations.
Furthermore it simplifies I'T operations and allow I'T organizations to respond faster to changing
business demands.

In a few words, this technology is a combination of software and hardware engineering that
creates Virtual Machines (VMs) by abstracting the computer hardware and allowing a single
machine to act as if it were many machines.

In surveys of senior-level IT managers, security is consistently one of the top five concerns,
along, specifically, with security related to the hot technology of the moment. Most recently
those worries have included social-networking technologies such as Twitter and Facebook and
other outlets through which employees could turn loose company confidential data. But the
security of virtual servers and virtualized infrastructures also rank near the top of the list and
rightly so, according to analysts.

In such technologies, security is very important. For instance, if an attacker succeeds to
break the access control mechanism and penetrates one sensitive virtual machine such as the
administration one, then, all the rest of machines (sometimes hundreds of machines running
virtual servers) are under his control. This is more dangerous than having an isolated machine
being attacked. Furthermore, once the system is compromised, all the sensitive data stored in
dedicated virtual machines can be compromised.

We address in this thesis the security of virtualized systems i.e. systems running under a
Virtual Machine Monitor (VMM). We discuss their security issues, present defense mechanisms
and introduce new approaches for strongly securing both sensitive resources and communication.
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1.2 Contributions

We study in this thesis the security of virtualized systems. We identify security threats and
propose new approaches to secure such systems. First, we focus on the the design and im-
plementation of a new intrusion detection architecture dedicated to the supervision of virtual
machines running under the control of an hypervisor. This implementation protects both the
system resources such as VMs and the defense engine which is in this case our intrusion detec-
tion system Orchids [22, OT]. Further, we show that this implementation needs to be improved
and complemented by formal methods that help system administrators design security poli-
cies, express the security properties that they want to see satisfied and deploy them in order
to protect sensitive resources such as the administration VM. Finally we study the security of
communication in virtual environments and introduce a new security policy model that fills the
security requirements of both network and virtual system management operations. We detail
our contributions below.

1.2.1 A Decentralized Supervision System for Securing Virtual Ma-
chines

In chapter Bl we focus on the security of virtual machines. We study the existing security threats
and propose a new approach for protecting system VMs from outside. We do this by deploying
an Intrusion Detection System (IDS) out of the supervised VMs, and equipping all VMs by small
sensors reporting at real time all the system actions performed by the users/system. The IDS
can react to attacks, stop them and even kill a whole VM or restart it from an early checkpoint.
This architecture was designed and implemented in collaboration with Bertin Technologies and
was published in 2010 in the SETOP Workshop [B, B]. This approach is cost-effective and can
be adapted easily to different platforms thanks to the modularity in the implementation.

1.2.2 A Temporal Language for Securing Sensitive Resources

In chapter Bl we study the security of sensitive resources in virtual environments. We show that
attacking the administration VM for example can lead to the subversion of the whole system. As
a defense, we propose to let the administrator write security policies expressing safety properties
in a simple language that we qualify as a variant of Linear Temporal Logic with past operators.
LTL with past operators has been proved to be more succinct than pure-future temporal logic
[18]. Expressing policies in this language is quite intuitive. Then, we propose an algorithm that
translates the aforementioned policies into attack signatures that can feed the attack base of
the Orchids IDS. This helps automating the generation of new attack rules and simplifies the
monitoring of growing security threats. This contribution was published in [B, B].

1.2.3 A Multi-level Security Policy for Securing Communication

The contributions cited above do not cover the network security aspect, thus we introduce in
chapterBla Multi-level security policy model in order to secure communication in virtual networks
built using virtual machine monitors. Communication is very important in such systems. For
instance, the information flows between the supervision VM and other VMs is guaranteed thanks
to a virtual network that we build by hand. If an attacker succeeds to capture some flowing data,
he will know more about the deployed security mechanism which represents a real security threat.
Our policy model covers different aspects of networking and also deals with operations related
to the management of the virtual resources |2, [J.
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1.3 Research Publications

1.3.1 Conferences and Workshops

The results obtained in this thesis have been partially published:

1. H. Benzina. Towards Designing Secure Virtualized Systems. In Proceedings of The Second
International Conference on Digital Information and Communication Technology and its
Applications (DICTAP 2012), Bangkok, Thailand. IEEE Computer Society Press, 2012.

2. H. Benzina. A Network Policy Model for Virtualized Systems. In Proceedings of The Sev-
enteenth IEEE Symposium on Computers and Communication (ISCC 2012). Cappadocia,
Turkey. IEEE Computer Society Press, 2012.

3. H. Benzina. Logic in Virtualized Systems. In Proceedings of the First International Con-
ference on Computer Applications and Network Security (ICCANS 2011), Malé, Maldives.
IEEE Computer Society Press, 2011.

4. H. Benzina. Securing Hypervisors through Temporal Logic and Security Policies. Work-
shop on Formal methods for specifying and verifying critical systems 2011. Tunis, Tunisia.

5. H. Benzina and J. Goubault-Larrecq. Some Ideas on Virtualized Systems Security, and
Monitors. In The third International Workshop on Autonomous and Spontaneous Security
(SETOP 2010), Athens, Greece. Springer LNCS 6514.

1.3.2 Research Tools

The implementation of the tool that was built as part of our research is available here :

e H. Benzina. RuleGen, a tool for compiling security policies written in a variant of LTL
with past into automata representing attacks signatures (http://www.lsv.ens-cachan.fr
/" benzina/rulegen.php).

1.4 Thesis Plan

Chapter Pl introduces concepts standard in the literature and discusses the main contributions in
the field of securing virtualized systems. In Chapter Bl we present our contribution in the field
of intrusion detection in virtual environments, it consists of a decentralized supervision system
implemented on top of the Xen hypervisor. This chapter is rather small and we choose to start
by presenting this implementation in order to show its advantages and also its limits against new
attacks. Based on thees limits we introduce in chapter Bl a new approach for securing sensitive
resources in virtual environments that aims to defend the system against stealthy attacks that
cannot be detected by the aforementioned implementation, and we introduce a new temporal
language which is a variant of LTL with past that helps system administrators write their own
security policies. Furthermore, we show how to translate the written security policies into attacks
signatures that can be used by the Orchids IDS. In chapter Bl we discuss the security threats that
virtualized systems can face while network primitives in a local virtual network are invoked and
present, a Multilevel Security Policy dedicated to the enforcement of communication security.
This policy covers also all main VM-management operations. Chapter Bl concludes the thesis
with a summary of the results obtained and presents perspectives and possible future work.
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1.5 The REDPILL project

This thesis has been done in the framework of the Digiteo REDPILL project “Malware Detection
On Virtualized Platforms®, grant 2009-41D, involving the company Bertin Technologies, and the
LSV laboratory (Ecole Normale Supérieure de Cachan).



Chapter 2

State of The Art

2.1 Introduction

In this chapter, we review several standard concepts, definitions and contributions in virtualiza-
tion technology, intrusion detection and security in general.

2.2 Virtualization

Virtualization is not a new idea. In fact, it goes back to the early days of computing. We can
mention the work of Popek and Goldberg in 1974 [6], which analyzed the different possible types
of virtualization solutions, their disadvantages and laid the groundwork for future developments.
Virtualization permits to run an operating system inside a virtual machine, which allows running
multiple operating systems in the same physical host and sharing costly resources. Historically,
virtualization has become fashionable in 2006, when new software running Windows in Mac OS
X appeared. Since then, this technology has been integrated into Windows 7, and was built in
the heart of computers: first at the processor and then, recently, at the device level. Nevertheless,
this remains a rather mysterious technology for the general public.

A Virtual Machine (VM) is the set of hardware (CPU, memory, hard disk, peripherals, etc..)
emulated by the virtualization software and viewed by the guest operating systems. Specifically,
we are talking about HVM (Hardware Virtual Machine). Popek and Goldberg defined a virtual
machine as “an efficient, isolated duplicate of a real machine®.

A Virtual Machine Monitor (VMM), or virtual machine manager is the virtualization software
itself. Two types of VMM exist, the first one can be installed as an application on a host
(Linux, Mac OS X, Windows, etc..). The second, commonly called a hypervisor, is actually a
very simple operating system (Linux or Windows) containing the virtualization program. The
difference is important in the case of critical applications: using the second type of VMM avoids
wasting resources with a host system. Virtual machines can be useful in many areas, often in
the professional field where many Applications do not require the power of a server, but where
the segmentation of services however requires administrators to dedicate one to each task. The
first one is to take advantage of many OSes at the same time, more easily than in a multi-boot.
It is thus possible to have Windows on a Macintosh or Windows, Mac OS X and Linux on one
machine, etc... Beyond the gimmick, it’s an advantage for all software developers who need to
test their code under each platform, as each browser, etc (see Figure ZTI)... Note that, for now,
probably by the will of Apple, it is impossible to install the client version of Mac OS X on a
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Figure 2.1: A Virtualized System

PC. The opposite is quite possible. Another advantage of using virtual machines is the stability
and the increased security of the system : if a VM crashes, the other VMs are not affected. In
addition, each VM is encapsulated in a file. It is therefore very easy to make a backup of the
system at a given time. This file is also easily transferable from one computer to another. A
boon to system administrators and others who regularly change their PC.

2.2.1 Popek and Goldberg Virtualization Requirements

The Popek and Goldberg virtualization requirements [6] are a set of conditions allowing a com-
puter system to implement the wirtualization technology correctly. They defined the Virtual
Machine Monitor (VMM) as a software having some essential characteristics. Programs running
under the VMM should find the same conditions as if they were running under ordinary ma-
chines, the VMM has to provide an environment which is identical with the original machine.
This should not affect the speed of the system. They required also that the VMM has a complete
control of system resources. Another characteristic of a VMM is efficiency. It demands that most
of the virtual processor’s instructions can be executed directly by the real processor, with no
software intervention by the VMM. This statement rules out traditional emulators and complete
software interpreters (simulators) from the virtual machine umbrella.

The third characteristic, [...resource control, labels as resources the usual items such as mem-
ory, peripherals, and the like, although not necessarily processor activity. The VMM is said to
have complete control of these resources if (1) it is not possible for a program running under it in
the created environment to access any resource not explicitly allocated to it, and (2) it is possible
under certain circumstances for the VMM to regain control of resources already allocated...]. [6].

The Virtual Machine Monitor is defined as a particular piece of software called control program
composed of several modules. These modules fall into three groups : the first one is a dispatcher
D, that controls the call of other modules. The second one is an allocator A that decides whether
a resource should be allocated or not. In the case of one single VM, the allocator has only to
provide the separation between this VM and the VMM. But when several VMs are running on
top of the VMM, the allocator has to handle the access to shared resources. The allocator will be
invoked by the dispatcher when a VM tries to execute some privileged instruction that attempts
to change the resources associated to this VM. The third set of modules is called interpreters.
An interpreter is associated to each privileged instruction.

Another interesting part of this work is the specification of the virtual machine properties.
The authors have presented three properties of VMs. The first one is the efficiency property.
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Figure 2.2: The Virtual Machine Map (source : [6])

All unprivileged instructions are executed by the hardware directly, with no intervention of the
VMM. The second one is the resource control property which ensures that every program should
go through the allocator in order to access system resources. The last one is the equivalence
property.

The availability problem arises from this configuration. It occurs when the allocator fails to
satisfy a particular request for a resource. Then the program asking for this resource will be
unable to run. Thus the virtual environment is said to be "smaller" than the real system. The
authors define the VMM as any control program that satisfies the three properties (efficiency,
resource control and equivalence). Then functionally, the environment which any program sees
when running with a virtual machine monitor present is called a virtual machine. It is composed
of the original real machine and the virtual machine monitor.

Theorem. |[...For any conventional third generation computer, a virtual machine monitor
may be constructed if the set of sensitive instructions for that computer is a subset of the set of
privileged instructions...[[6].

The theorem provides a condition sufficient to guarantee virtualizability. However, those
features which have been assumed are standard ones, so the relationship between the sets of
sensitive and privileged instructions is the only new constraint. It is a very modest one, easy to
check. Further, it is also a simple matter for hardware designers to use as a design requirement.

Virtual Machine Map Figure shows the mapping f : C, — C, between instructions in
the virtual environment. That is for any state S; € C, and any instruction sequence e;, there
exists an instruction sequence e} such that f(e;(S;)) = e(f(S:)). Two related properties exist
in the definition of a VM map. The first one is the existence of instruction sequences e} on
the (), domain that correspond to the sequences e; on the C,. domain. The second one is the
mathematical existence of a particular mapping from the states of the real machine to the virtual
machine system.

2.2.2 Some Challenges

A processor is capable of running a small number of basic instructions. This set, called ISA
(Instruction Set Architecture), is encoded in the processor and is not editable. It defines the
capabilities of a processor, the hardware architecture which is then optimized to execute the
instructions in the ISA as efficiently as possible. The best known ISA in the PC world is the
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x86, used from the beginning by Intel and taken over by AMD chips. One can also mention
the PowerPC, ARM, MIPS, etc.. Widespread, even ubiquitous, the x86 is not provided free of
defects, but it was out of question to replace it by another technology. To avoid this, Intel and
AMD developed respectively the VT-x and AMD-V solutions. If the x86 is not well suited to
virtualization, it is because of 17 critical non-privileged instructions. The instructions of the
x86 ISA are not similar. Some of them can change the configuration of CPU resources and are
called critical. To protect the stability of the machine, these instructions can not be executed
by all software. From the perspective of the CPU, software belongs to four categories, or levels
of abstraction: the rings 0, 1, 2, 3. Each ring defines a decreasing level of privilege. The most
critical instructions claim the highest privileges, of order 0. Unfortunately, on an x86 processor,
17 of these critical instructions can be executed by the same software tier 1, 2, or 3. This
constitutes a big problem for VMMs. An operating system is actually designed to run in ring
0 and use critical instructions to allocate CPU resources between different applications. But in
a situation when it is a guest on a virtual machine, the OS should not even be able to modify
the material, otherwise it would crash the entire system. Only the hypervisor must have these
rights. It is therefore critical that all instructions are intercepted. It’s very easy for all privileged
instructions. The OS is then executed in ring 3, as applications, and all requests for privileged
instructions trigger an error that is handled by the VMM. This is much more complicated for the
17 hazardous and non-privileged instructions. These do not trigger automatically an error, they
must be detected piecemeal by the VMM and then reinterpreted. This enrolls a high overhead,
make the hypervisor more complex.

2.2.3 Types of Virtualization

We distinguish two types of virtualization: full virtualization and hardware virtualization. Full
virtualization is the primitive virtualization which emulates the physical hardware and its behav-
ior. This is the most costly approach but the easiest one to implement. Hardware virtualization
is an extension of the principle of full virtualization. This extension is done by the use of specific
processor extensions for virtualization (AMD-V and Intel-VT). These extensions can accelerate
the virtualization by different mechanisms. Solutions using this technology are VMWare [8], Sun
VirtualBox [9], Microsoft Virtual PC [I0], QEMU [I1] and many others.

The virtualization of operating systems is called paravirtualization. This term tends to be used
in many different ways. Paravirtualization is the virtualization of operating systems whose kernels
has been modified to communicate with the virtualization layer instead of communicating with
the physical hardware. To summarize, the operating system will be aware of being virtualized
and will be adapted for this purpose. The simple addition of specific drivers does not necessarily
imply paravirtualization. Existing solutions in this area are the products of Citrix XenServer,
Sun xVM, XenSource or Microsoft Hyper-V. VMWare starts to get into this technology safely.

Hardware Virtualization

To overcome the problem cited in the previous section, Intel designed VT-x and AMD proposed
AMD-V. These two technologies are very similar. It consists of three components, aiming to make
the virtualization of the CPU, the memory and devices easier. To facilitate the virtualization of
the CPU, Intel and AMD eliminated the need for monitoring and translating the instructions.
To do this, new instructions were added. A new control structure is also being introduced, called
VMCS (Virtual Machine Control Structure) at Intel. Among the new instructions, one of them
(VM entry at Intel) toggles the processor in another execution mode, dedicated to the guest
systems. This mode also has four different levels of privilege. With doing so, guest OS can run
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Figure 2.3: Mobile Virtualization

in ring 3 of VM mode. If needed, the processor can switche from guest to normal mode. This
scale is determined by some conditions set by the VMM using the control bits stored in the
VMCS.

Desktop Virtualization

Desktop Virtualization is part of the great family of virtualization technologies with. The first
principle of desktop virtualization is to display on one host, tens, hundreds or even thousands of
physical hosts, a virtual image of the user station which is actually really executed on a remote
server. Behind this great principle, however there are several forms of desktop virtualization. The
oldest is Server-Based-Computing, consisting of virtualizing some applications but not the entire
operating system. While the user sees (and uses) on his host the applications running on a remote
server, the Os is still running on the client side. A variant exists which is application virtualization
by isolation. Also called isolation by applicative bubbles, this type of virtualization installs an
application with remote streaming on the workstation. It is the least common type but can solve
the problems of incompatibility between applications and OSes. Desktop Virtualization may also
be related to the operating system streaming. In this configuration, the target system boots from
a remote disk on the network and load only the applications that the user wants, this can be done
using logical volumes installed on a remote server. Another form of Desktop Virtualization is the
VDI architecture (Virtual Desktop Initiative), also known as Hosted Virtual Desktop (HVD).
It consists of a total virtualization of the host (applications that operating system), allowing to
overcome the problem of incompatibility with the client host.

Mobile Virtualization

The mobile phone is now as important to businesses as desktop computers, and acts as a mobile
computer in many cases. Mobile Virtualization is a new technology used mainly for Android
phones to separate personal applications from professional ones in order to reduce the risk of
compromising data.
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This technology was first presented by VMWare [R] in 2009 by their VM Ware Mobile Vir-
tualization platform which creates a virtual machine for mobile devices, allowing users to move
their phone to different handsets (see Figure All the data will be stored in a portable file :
this solves the problem of loosing the data when the mobile phone is compromised.

Paravirtualization

Paravirtualization is another type of virtualization. Here, the guest operating system is aware of
running in a virtualized environment, which of course requires some modifications of the software.
In return, it becomes capable of interacting with the hypervisor and to ask it to transmit calls
directly to the hardware of the host server. In theory, the virtual performance is then very close
to the performance achieved with real hardware. The hypervisor is in direct contact with the
physical hardware. It is the exclusive intermediary between the hardware and the operating
systems. All operating systems are virtualized in the sense that they have a core adapted to the
virtualization layer. Some OSes can have specific rights to access some ressources : this depends
on what the administrator wants from his software.

A hypervisor, also called virtual machine manager (VMM), is a virtualization technique that
allows to run many OSes on the same physical host. The physical resources are shared between
the different OSes using hypercalls. The most known hypervisor is Xen [I2]. A hypercall is a
software trap from a guest domain (or host) to the hypervisor, just as a syscall is a software trap
from an application to the kernel. The hypercall is synchronous, but the return path from the
hypervisor to the guest domain uses event channels. An event channel is a queue of asynchronous
notifications, and notify of the same sorts of events that interrupts notify on native hardware.
When a domain with pending events in its queue is scheduled, the OS’s event-callback handler
is called to take appropriate action.

2.3 Intrusion Detection

Intrusion Detection aims to detect actions that attempt to compromise the integrity, the avail-
ability or confidentiality of a resource. Early work in intrusion detection began with Anderson
[13] in 1980 and Denning [T4] in 1987. Today there are more than 140 intrusion detection sys-
tems [I5]. Intrusion Detections Systems (IDS) are designed to reveal, usually through alerts, any
activity that may be considered intrusive by analyzing information from various areas within a
computer or a network to identify possible security breaches.

Intrusion Detection Systems are generally classified into two broad categories depending on
the type of data to analyze [16]: Host-based IDS (HIDS) and Network-based IDS (NIDS). HIDS
are characterized by the analysis of events or log messages generated by the system. NIDS
analyze the data that travels over the network. An IDS performs a passive scan. The passive
analysis is to be contrasted with the active analysis, this is the case for example a firewall that
blocks certain packets. Intrusion detection functions include:

e Analyzing both user and system activities

e Checking system and file integrity

e Recognising patterns of attacks (Pattern Matching)

e Alerting users when security policies are violated (sending emails, logging...)

The different modules making up an IDS according to standards proposed by the Intrusion
Detection Working Group [I7]. This architecture consists of three modules common to most
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IDS. The Activity of the information system provides a source of data to some Sensors. These
sensors then have the role to extract and process certain information in order to transmit shape
events to an Analyzer. The analysis module then uses these events to detect a possible intrusion
and generates alerts accordingly. These alerts are finally sent to an alert Manager. The latter
is responsible for processing alerts from the various analyzers and report any suspicious activity
on the system to the administrator. Finally, note that an intrusion detection system may consist
of several sensors dealing with different data sources, multiple analyzers using different methods
of analysing and multiple Managers.

The performance of an intrusion detection system, including its method of analysis, depends
of two important concepts that allow to evaluate the performance [19] :

False Negatives. Ideally, any intrusion must result in a warning. An intrusion that is not
detected, that is to say, did not generate alert, then constitutes a false negative. In other terms,
false negative is the failure of an IDS to detect an actual attack. The reliability of an analyser
depends on the rate of false negatives. This rate must be the lowest possible.

False Posistives. Any alert must correspond to an effective intrusion. When the IDS gener-
ates an alert that does not make sense, this alert is qualified false positive. The relevance (or
credibility) of an analyzer is related to its rate of false positive which represents the percentage
of false alarms.

2.3.1 Misuse Detection

Misuse detection detects a known attack via the definition of a scenario. This approach uses a
knowledge base, called attack signature base and a method of pattern matching to recognize the
defined signatures. A misuse IDS is then composed of: a set of sensors producing a stream of
events, a base for attack signatures and an algorithm for pattern matching.

Attack Signatures

Each signature can be seen as a characteristic sequence of events of an attack differenting it from
normal behavior. The construction of this base requires an accurate knowledge of the attacks
and their parameters.

Attack Scenario

An attack scenario can be represented by an automaton and also by finite state machines. An
automaton represents the sequence of actions needed to achieve the attack [20]. This approach
allows one to express complex scenarios of attacks containing different ways to reach the same
state. The automaton can also be expressed using specific language as in [22] or [21]. Several
approaches [23| 241 [25] use a finite state automaton. The automaton can also be represented as
a variant of a colored Petri net as in IDIOT [26] or in the form of state transition diagrams as
in the NETSTAT tool [Z7]. The states of this automaton represent the recent history symbols
(system calls) that were observed, a transition from one state to another characterizes the set of
traces to be produced after this state.

Pattern Matching

The Pattern Matching uses algorithms to recognize a signature in a record corresponding to a
sequence of events. This conventional approach is problematic when multiple scenarios give rise
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to the same signature. To overcome this problem, some approaches use algorithms recognition
based on genetic algorithms [2]], bayesian networks [29] or some approaches doing the analysis
of system configurations [30]. Other approaches use a multi-events correlation system, including
pre-conditions, post-contentions and conditons [31, B3] to clarify the definition of scenarios. This
approach gives a high performance in terms of analysis, but is generally the source of a high rate
of false positives. Indeed, one limitation of this approach is that it is difficult to write a signature
covering several variants of the same attack without generating false positives.

2.4 Security Policies

The definition and implementation of a security policy is the heart of systems security. A security
policy defines a set of security properties, each property representing a set of conditions that the
system must respect to remain in a state considered as safe. An incorrect definition or the partial
application of a policy can lead the system to a non-safe state, allowing the theft of information
or resources, the modification of information or the destruction of the system. In this section
we give a general definition of some security properties and mechanisms used to implement a
security policy. The security of computer systems is generally limited to ensuring the rights of
access to data and system resources by implementing authentication mechanisms and controls to
ensure that the users of these resources have only the rights that they were granted. The security
mechanisms in place may still cause discomfort to at the user level while the instructions and
rules are becoming increasingly complicated. Thus, information security must be studied in such
a way that it does not prevent users from the necessary uses of the system. This is why it is
necessary to define initially a security policy, that can be implemented according to the following
four steps:

e Identify needs in terms of security, IT risks weighing on the company and their possible
consequences

e Develop rules and procedures in order to protect the system

e Monitor and detect vulnerabilities of information systems and keep abreast of vulnerabili-
ties on used applications and hardware

e Define the actions to take and who to contact in case of detection of a threat (the admin-
istrator of the system in most cases)

If we consider the system as a finite state machine with a set of transitions (operations) that
change the system state, then a security policy can be seen as a way that partitions these states
into authorized and unauthorized states. Given this simple definition, we can define a secure
system as a system that begins in an authorized state and will never enter an unauthorized state.

2.4.1 Security Properties

Systems security is based on three fundamental properties: confidentiality, integrity and avail-
ability. The interpretation of these three areas varies depending on the context in which they are
used. This representation is related to user needs, services and laws in force. The definition and
application of these properties are part of the evaluation criterias of security. Confidentiality is
based on the prevention of unauthorized access to information. The need of this property has
emerged after the integration of critical information systems, such as government organizations
or industries, in sensitive areas.
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Figure 2.4: Protection Rings in x86-32 Systems

The integrity property refers to the state of data which, when processed, saved or transmitted,
remains unaltered. In the case of a resource, the integrity means that the resource works correctly.
The property of data integrity is to prevent unauthorized modification of information. Ensuring
the fidelity of information with respect to their container is known as data integrity. The warranty
information related to the creation or owners shall be known as the integrity of the original, more
commonly called authenticity.

Availability refers to the ability to use a desired information or resource. This property should
be accompanied with the reliability of the system, because having a system that is no longer
available is a system. As part of the security, availability of property refers if an individual may
deliberately deny access to certain information or resources of a system.

2.5 Virtualization and Security

2.5.1 Overview

In x86-32 systems, there are four rings of protection from 0 to 3 (see Figure Z4)). In almost all
operating systems without virtualization, only the rings 0 and 3 are used (except in the GNU
Hurd system [7]. The most privileged one is ring 0 which contains the OS kernel. The least
privileged one is ring 3 which contains the applications and the dynamic data. The other two
rings are not used. The diagram below shows the distribution of application components in a
modern operating system. In paravirtualization, the OS does not have a direct access to the
hardware. Only the hypervisor can access it directly. For security reasons, it will be necessary
to totally separate the operating system and the hypervisor. In this case, ring 1 will be used.
Thus the hypervisor will be placed in ring 0 and the OS will take ring 1. Applications remain in
ring 3. Now that we have explained the utility of the protection rings. We have to understand
how these rings are implemented in real? And where do they appear in nature? The protection
rings are implemented in the memory. A RAM area is assigned to a particular ring by the OS.
A program running in a memory area assigned to the ring 3 can not change a memory area
assigned to the ring 0. When AMD and Intel redesigned the x86 architecture to move to the
64-bit architecture, they decided to remove the rings 1 and 2 because they were not used (see
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Figure ). This does not create a particular problem because these rings were not used in
operating systems. Virtualization has come relatively soon after and had the habit of using an
additional ring in order to partition the hypervisor, the operating system and the applications.
Virtualization solutions has therefore been left with only two rings rather then three. To solve
this problem, the Xen project comes with the idea that ring 3 will be shared by the OS and the
applications. The hypervisor will run in a separate ring (ring 0).

Then, AMD and Intel quickly realized the importance that virtualization is taking. So, they
decided to include the virtualization instructions in their processors to make the opearations
related to this technique easier. These extensions have enabled hardware virtualization. At the
same time, a ring ”-1” was added to make the paravirtualization avoid sharing the ring 3 between
the OS and applications, Figure EZfl explains this new arcitecture. The partitioning of virtual
machines is of course a basic characteristic of a virtualization platform. In fact, the hypervisor
does not have the total control of virtual machines (VMs). It can simply turn them off, start or
pause them. The partitioning is managed by restricting the access to the memory. Hypervisors
have been specifically designed to prevent memory overflows. The only way to exploit these
overflows is hypercalls in Xen for example. Sor far, this kind of vulnerability was not detected.
Also in the case of full virtualization and hardware virtualization, virtual machines do not even
have a specific interface with the hypervisor making this type of vulnerability impracticable.
The real security risks in virtualization platforms are, mainly, at the management interface. The
management interfaces are not specific to virtualization but their use in this particular case is
generalized. Access to management interfaces must be secured by traditional network security
mechanisms such as authentication methods. Once an interface is compromised, the data and the
access to virtual machines remain safe. The interfaces do not generally have access to particular
data, they only have a global view of the system in order to be able to configure the storage
media. The access to a VM is protected by conventional protection mechanisms such as login
and password.
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2.5.2 Security Benefits

If the primary reason for the popularity of virtualization is server consolidation and the optimiza-
tion of resources, security officers, also, may find some benefits of adopting this technology. The
key benefit of virtualization is certainly isolation. Every VM is running in a separate sandbox
which reduces the risk of information leakage and unauthorized access. Each VM has its own
memory resources, I/O and processors. The sandboxing isolates VMs from each other and from
other virtualized servers. This helps keeping the data safe and ensures their integrity, and allows
also hosting different types of servers, dedicate them for a specefic application and optimize the
system layer for this latter.

Isolation can be considered as the most important security-relevant property of hypervisors.
If properly used, it guarantees that a malicious code in one VM does not affect the remaining
VMs. Besides, resource usage of a VM can not affect the performance of other VMs. Isolation
can also be used to separate applications : one can place vulnerable applications in a dedicated
VM without caring about the security of the rest of VMs. If this VM is affected, the rest of the
platform remains safe. Another security-related feature of hypervisors is their small codebase,
compared to a modern OS, it is much more easier to ensure that hypervisor’s code does not
contain any bugs or flaws. This can be very useful for building TCBs (Trusted Computing Base)
[34]. Moreover, in traditional OSes, the security mechanisms (IDS, anti-virus, firewall...) can
be circumvented as soon as the OS is compromised. But in virtual environments, these security
mechanisms can be moved out of the VM (in a dedicated VM) which makes them more resistant
to attacks [35].

Companies usually demand to have several types of partitions: one for the production service,
another one for testing, one for validation, and another for development. As sandboxing is total,
a problem with one of the VMs will not have an effect on an other one. If a VM is compromised,
one can kill it and restart it later from the last checkpoint. The security officer can also dedicate
a virtual server for testing new updates before their installation. In terms of patch management,
the company Blue Lane [36] has even developed a virtual patch system. The patches are not
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2000 1 i 0 1 0
2001 2 0 0 2 0
2002 1 1 1 1 0
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Figure 2.7: Temporal Course of VMware Vulnerabilities Since 1999

directly applied on the physical server, but tested on the VM before its installation. This company
has also recently developed a new software solution running on a VMWare virtual machine to
secure servers located in other VMs. Virtual machines can also be used as virtual honeypots
allowing the collection of information coming from hackers. This is called crash-and-burn. This
technique offers the ability to keep an eye on malicious behaviors, test some codes and restore
to a previous state of the system in case the VM crashes. Virtualization can also provide a
greater security when surfing Internet. A Windows user with the VMware Player can start an
instance of Linux equiped with the Firefox navigator and surf without being exposed to ewploits
and vulnerabilities related to Windows or Internet Explorer navigator. Another advantage of
virtualization is also the ability to have a remote access to a specific network without deploying
a VPN (Virtual Private Network).

In the next section we will see that virtualization does not represent a perfect mean for
securing systems and applications : many risks can be arised by using this technology.

2.5.3 Security Risks

With the growth of virtualization technologies, the security alerts related to this technology are
increasing. Figure 27 shows the increasing number of vulnerabilities appearing in the VM Ware
VMM since 1999. Virtualization introduces new software layers that represent new areas that are
exposed to attacks and which are quite complicated to manage. The direct access to hardware
by these layers can also cause a lot of damage.

Three parts of the virtual architecture must be supervised as they provide a new playground
for hackers. The hypervisor is certainly the most exposed one, because it makes the link between
the hardware and VMs. The second sensitive part is the administrative platform, as it gives
privileged access to all the virtual instances of the infrastructure, this platform is called Dom
0 in the case of the Xen hypervisor or Management Virtual Machine in the case of VM Ware.
Finally, the dedicated chips to the virtual infrastructure (as Intel VT or AMD SVM) is also a
great danger. They use a set of specific instructions that facilitate the implementation of multiple
operating systems on one machine. These platforms can be exploited to get unauthorized access
to system resources, through a rootkit for example. These attacks are particularly difficult to
detect because they use lower software layers. Blue Pill [37], is one of these attacks, it was made
public in 2006. In this attack the whole machine is virtualized by running a small hypervisor
under it. The system can loose the references of the devices, the hardware interrupts and even the
system time : every thing is intercepted and processed by the hypervisor. This gives the attacker
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the opportunity to do his work without being detected since any detection system can be turned
off by the hypervisor! Another type of attacks appeared in 2007 against the Xen hypervisor. A
user in domU can execute commands on dom( while using the pygrub tool. Pygrub dedicates
a bootloader to domU as in physical hosts. This vulnerability is very dangerous since dom0 is
a very priviliged domain and have a direct access to hardware. Some other vulnerabilities was
also found in Xen, one of them allows a domU to break its isolation and can cause a local DoS
(denial of Service). VM Ware is much more exposed to attacks then Xen. Many vulnerabilities
was discovered in this hypervisor. This is the result of the big number of associated products
(virtual center, vSphere, workstation...). Almost all these vulnerabilities are about privilege
escalation. The most critical ones can be exploited by an unauthenticated attacker from the
Internet and can cause a complete compromise of data integrity and service availability.
Another threat in virtual environments is covert channels. It is a way to exploit a channel that
was not dedicated for communication in order to communicate information [B8]. In most cases,
covert channels exist when two entities have access to a shared variable, the first one by reading
from this variable and the second one by writing to this same variable. There is two kinds of
covert channels : storage channels and timing channels. The first one modifies a stored object
while the second type uses timed events in order to send information. One can reduce the number
of covert channels in the system. Mandatory Access Control (MAC) [39] is very efficient against
covert channels. It is the case when security classes will be assigned to users in order to limit
the access of certain resources to some specific security classes. In virtual environments, the
risk arising from covert channels is that users can use these channels to exchange information
with each other wihtout using network connections [A0]. Furthermore, Denial of Service attacks
(DoS) can be more devastating when executed in a virtual environment then in any another one
since subverting the hypervisor would lead to a complete subversion of the whole architecture
and would give the attacker an unlimited control of all the VMs and their data. This is the
reason why the hypervisor must be as secure as possible A2, @3]. To summarize, virtualization
products are clearly not free from vulnerabilities [#4), @5]. The impact of a vulnerability on a
virtualized platform will be more devastating compared to a conventional architecture. Many
countermeasures can be taken to prevent these vulnerabilities from being exploited and to reduce
the attacks surface. On the other hand, the frequnecy of these vulnerablities is relatively low
which gives time to security officers to design strong defence methods. In the next section, we
will present some existing security solutions for these risks and discuss their efficiency against
some security threats.

2.6 Some Existing Approaches

Much work have been done around securing virtualized systems. In this section, we will present
some of the most important contributions in this field and conclude with a discussion of the
pros. and cons. of every cited work. This section will not only include the presentation of
some interesting papers but also a summary of some big projects around securing virtualized
platforms.

2.6.1 XSM/FLASK for Xen

The Xen Security Modules (XSM) framework is a direct application of the Flask architecture
[26, B7, 48] to the Xen hypervisor. This project was started by NSA (National Security Agency)
(Flask is an OS security architecture that provides flexible support for security policies, the Flask
architecture is now implemented in SELinux).
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XSM is a generalized security framework for Xen, it creates general security interfaces and
allows custom security functionality in modules. This makes the hypervisor able to support
many security policy models at the same time. XSM comes also with the idea of decomposing
the domain 0 i.e minimizing the importance of this domain by reducing its privileges and sepa-
rating the hardware priviliges from domain ones. In addition, XSM gives the ability to partition
resource allocation and control between domains. Some other modules in XSM implement media
encryption, IP-filtering/routing and measurement and attestation functionalities. Besides, all
the modules can be registered and linked in at boot, they may also register a security hypercall
and a policy magic number to identify and load a policy from boot.

2.6.2 sHype

sHype is an implementation of the XSM modules. This project [98] is one of the most famous
contributions in the field of secure hypervisors. It was developed by IBM research for the Xen
hypervisor. This project consists of a security architecture that controls the sharing of resources
among VMs according to formal security policies. The primary goal of sHype is to control of
information flows between VMs. The architecture was designed to achieve medium assurance
(Common Criteria EAL4 [50]) for hypervisor implementations. sHype supports a set of security
functions: secure services, resource monitoring, access control between VMs, isolation of virtual
resources, and TPM-based attestation. The mandatory access control enforces a formal security
policy on information flow between VMs. sHype leverages existing isolation between virtual
resources and extends it with MAC features. TPM-based attestation [5I] provides the ability to
generate and report runtime integrity measurements on the hypervisor and VMs. This enables
remote systems to infer the integrity properties of the running system.

Besides, sHype uses a reference monitor that enforces, mandatory access control policies on
inter-VM operations. A reference monitor is designed to ensure mediation of all security-sensitive
operations, which enables a policy to authorize all such operations [53]. However, the reference
monitor usually does not decide whether a subject can access an object. It only enforces the
decision, which is often made elsewhere in the system.

The architecture of sHype consists of: (1) the policy manager maintaining the security policy;
(2) the access control module (ACM) delivering authorization decisions according to the policy;
and (3) and mediation hooks controlling access of VMs to shared virtual resources based on
decisions returned by the ACM. The policy manager interacts with the ACM in order to establish
a security policy or to help the ACM re-evaluate access control decisions. The Access Control
Module (ACM) stores all security policy information locally in the hypervisor, and supports policy
management through a privileged hypervisor call interface. This interface is access-controlled by a
specialized hook and will only be accessible by policy-management-privileged domains. Mediation
hooks are specialized access enforcement functions that guards access to a virtual resource by
VMs. They enforce information flow constraints between VMs according to the security policy.
These hooks determine access decisions with the ACM, enforce access control decisions and can
determine VMs labels, access operation type etc, these information are useful for the access
control. With these hooks, sHype minimizes the interaction with the core hypervisor.

Discussion

The main goal of sHype was to control all explicit information flows between VMs. So far, sHype
has fulfilled this objective and has shown its efficiency in this area. In addition, it has shown
promising results in ensuring the integrity of the system and preventing information leakage. On
the other hand all these results was obtained with the Xen hypervisor, as sHype was originally



2.6. SOME EXISTING APPROACHES 19

Security
Policy

Manager

1. H_Call
Hook 2. Authorization query
Access
J "3. Authorization decision Control
' Module
Object
Core Hypervisor

Figure 2.8: sHype Architecture

developed under Xen. This makes it unable to secure other hypervisors and becomes software
and OS-dependant. For instance, VMWare and KVM [54] are gaining success, and it will be a
pity that such a software does not support these virtual machine monitors. Besides, sHype can
not be run under Windows or MAC OS X which makes it loose a huge umber of users. Another
disadvantage of sHype is its deployment and its administration : this software is not adapted to
simple users and needs some training before starting using it. In order to bypass these problems,
we present in this thesis some portable solutions that are OS and VMM-undependant, and also
very simple approaches that can be deployed easily by simple users. The last thing to say about
sHype is its weakness against DoS attacks since there is no alerting mechanism that can detect
that a VM is not responding : this can be done also by our approach.

2.6.3 VAX VMM security kernel

This project [55] was one of the first attempts to design a secure hypervisor. VAX aims to develop
a security kernel which was carried out on the virtual address extension (VAX) architecture
designed by Digital Equipment Corporation during the 1970s. This is why the VMM security
kernel of Karger et al. is often also called the VAX security kernel. VAX supports DAC and
MAC for all VMs. It enforces the Bell-La Padula and Biba models for integrity. Furthermore,
the security kernel was carefully designed in order to prevent covert-channels. Self-Virtualization
is also supported by VAX : it is the ability of a virtual machine monitor to run in one of its own
VMs and create second-level VMs which is very useful for developing and debugging the VMM
itself.

In VAX, the user has to authenticate herself to the VAX VMM before accessing any VM. For
this purpose the VAX hypervisor offers a trusted process running in the kernel called the Server.
This process only executes verified machine code and does not accept any user-written code. If
a user wants to interact with the VAX hypervisor, a trusted path between a server process and
the user is established. The server provides commands that allow the user to connect to a VM
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depending on his access rights. In case the user has the necessary rights to connect to a VM
another trusted path is established between the user and the VM, allowing him to interact with
the OS running in the VM. VAX has shown a good performance which is extremely important,
because getting good performance is very hard. It requires detailed analysis of what portions of
the kernel are performance-critical and a willingness to redesign those portions for performance
and possibly re-code them in assembly language or to provide microcode performance assistance.

Discussion

It is true that the VAX hypervisor is an old project, but this does not make it unimportant :
in fact this project was a perfect example for the projects started later. It has clarified many
important things about the security of hypervisors and has stressed some relevant points that
have to be treated carefully to design a secure hypervisor. Besides, VAX represents a good
implementation for security policy models such as Bell-La Padula and Biba.

2.6.4 Terra

Terra [56] is a virtualization-based architecture for trusted computing. This project introduces
the Trusted Virtual Machine Monitor (TVMM), that partitions a tamper-resistant hardware
platform into multiple, isolated virtual machines (VM), providing the appearance of multiple
boxes on a single, general-purpose platform. VMs are classified into open-box VMs and closed-box
VMs. Open-box VMs are not different from ordinary VMs running ont top of Xen for example : no
special security mechanisms are implemented for this kind of VMs. Closed-box VMs implement
the semantics of a closed-box platform. Their content cannot be manipulated or inspected by the
administrator of the system. Only the creator of this VM can access it. This is achieved through
the use of three main security mechanisms : (1) Attestation which allows an application running
in a closed-box VM to identify itself to a remote party, this can be done through cryptographic
mechanisms. Then, a chain of trust is established starting from this application and ending at
this remote party. (2) Root secure: even the platform administrator cannot break the isolation
of a closed-box VM. (3) Trusted Path: this is essential for building secure applications. In the
TVMM, users can easily identify VMs that they are communicating with, and each VM is able
to ensure that it is interacting with a human user. This ensures the privacy of communications
between VMs and users and prevents snooping by malicious applications.

Discussion

The main goal of Terra was to make the communication between users and VMs as secure
as possible. The notion of open/closed box VMs prevents some families of attacks against
hypervisors. The remote attestation ensures a secure channel of communication between the
different parties. On the other hand, the deployment of Terra is still difficult for simple users
and needs to be more intuitive. In addition, terra does not provide access control mechanisms
such as MAC which seems to be a serious weakness of this architecture. Therefore the designers
of Terra decided to make it as flexible as possible by minimizing the control of information flows
which weakens the overall security of this software. We overcome some of these problems in our
work by providing very easy-to-deploy software and strong formal security policies that prevents
families of attacks from being executed.
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2.6.5 Other Contributions

In [57), Bleikert et al. studied the automated information flow analysis of heterogeneous virtual-
ized infrastructures. They proposed an analysis system that performs a static information flow
analysis based on graph traversal. The system unifies diverse virtualization environments in a
graph representation and computes the transitive closure of information flow and isolation rules
over the graph and diagnoses isolation breaches from that automatically. The analysis is based
on explicitly specified trust rules. The implemented tool is independant from the vendor and
can unify different systems suc as : Xen, KVM, VMWare and PowerVM. The static analysis
covers all the resources : hardware, hypervisor, storage and network resources. This technique
is applicable to the isolation analysis of complex configurations of large virtualized datacenters
that include heterogeneous server hardware, different VMMs, and many virtual (and physical)
networking and storage resources. This approach is interesting for static analysis. However it
does not enforce any kind of security policy and is only useful in the case of large-scale infras-
tructures with a diversity of underlying platforms. The core hypervisor does not take advantage
from this technique since it focuses only on flow analysis. Another point is that the analysis is
restricted to a binary decision, whether information flows or not, and does not support traffic
types.

NetTop [90] provides infrastructure for controlling information flows and resource sharing
between VMs. While the granularity level in these systems is a VM, we focus in our work at the
granularity of a process.

In [52], Kurniadi et al. use virtual machine monitors for implementing honeypots. This is
a different use of virtualized systems, but shows that hypervisors can also be useful for experi-
mentation, testing and diagnosis. The authors implement a VMM-based intrusion detection and
monitoring system for collecting information about attacks on honeypots. Their first step was to
implement a sensor mechanism that monitors honeypots for intrusions by dynamically rewriting
the binary of a running kernel image. Then, they compared the performance impact on three
implementations built on UML (User Mode Linux) and Xen. The third step was to apply this
mechanism to honeypots that are connected to Internet. Finally, they analysed and classified the
detected attacks. Whereas this approach is very useful for diagnosis, the implemented sensors
work only on specific platforms and do not report the detected attacks to an IDS for example to
do the forensic which is very important for this kind of approaches. In this thesis we propose a
sensor-based approach for intrusion detection but our goal is to secure the virtualized platform
and not to implement honeypots, the advantage of our implementation is that all the events and
alerts can be saved on the disc, then the security officer can access the reported events and study
their impact on the system.

ReHype [32] is a system implemented on top of the Xen hypervisor that allows the recovery
from hypervisor failures. This system is able to preserve the state of running VMs while booting
a new instance of the hypervisor. Besides, it can protect the recovered hypervisor, resolve
inconsistencies between different parts of hypervisor state as well as between the hypervisor and
VMs and between the hypervisor and the hardware. The authors identified the specific sources
of state corruptions and inconsistencies, determined which of those are most likely to prevent
successful recovery, and devised mechanisms to overcome these problems. Recovery is very
important in virtualized systems and ReHype represents a very efficient tool that implements
this feature.

Another interesting contribution is the BitVisor [67] hypervisor. BitVisor implements a new
architecture called parapass-through (see Figure ). This latter allows most of the I/O access
from guest VMs to pass-through the hypervisor and enforces storage encryption of ATA devices.
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Figure 2.9: The para pass-through architecture (source : [67])

If all the access is pass-through, the hypervisor is almost useless. Different from fully pass-
through access, para pass-through hypervisors intercept a part of access to (1) protect hypervisors
from the guest OS, and (2) enforce security functionalities. The access to be intercepted includes
memory access and I/O access. Intercepting memory access is necessary to protect memory
regions of the hypervisor and handle memory-mapped I/Os (MMIOs). Intercepting I/O access is
necessary to protect the hypervisor and enforce security functionalities upon the I/Os for specific
devices.



Chapter 3

Securing Virtual Machines

3.1 Introduction

Virtual Machine technology is going mainstream. Motivated by cost savings, server consolidation
and disaster recovery. IT organizations are changing the way they deploy applications and
desktops. But industry pundits agree that full-on deployment of virtual machines has been
impeded by a critical weakness: security. Traditional security architectures and products are
inadequate for this new topology due to its specific architecture and security requirements. Many
aspects of virtual platforms have to be taken into consideration when designing dedicated security
solutions. It is more challenging to protect a virtualized system with 10 virtual machines than
trying to secure only one isolated physical machine.

We introduce in this chapter a new idea for securing virtualized platforms. It is based on
the notion of decentralized supervision in physical networks and adapts it to virtualized systems.
Our objectif is to secure all running VMs and protect them against internal and external attacks,
reduce the cost of this supervison mechanism and centralize event logging. Our approach is cost-
effective, efficient against families of attacks and have the advanatge of isolating the defense
system (which is an IDS in this case) and protecting it against malicious users. We design and
implement our approach on top of the the Xen hypervisor [I2] using the Orchids IDS [O1] and
the SELinux auditd daemon. This approach has many advantages and is quite efficient against
many security threats but has also some limits that we discuss at the end of this chapter and
present more in-depth discussion in the next chapter.

3.2 Related Work

Much work has been done on enhancing the security of computer systems. Most implemented,
host-based IDS run a program for security on the same operating system (OS) as protected
programs and potential malware. This may be simply necessary, as with Janus [86], Systrace
[93], Sekar et al.’s finite-state automaton learning system [99)], or Piga-IDS [[[9], where the IDS
must intercept and check each system call before execution. Call this an interception architecture:
each system call is first checked for conformance against a security policy by the IDS; if the call
is validated, then it is executed, otherwise the IDS forces the call to return immediately with an
error code, without executing the call.

A wirtualized system such as Xen [I19], VirtualBox [I15], VMWare [IT6], or QEmu [95] allows
one to emulate one or several so-called guest operating systems (OS) in one or several virtual

23
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machines (VM). The different VMs execute as though they were physically distinct machines, and
can communicate through ordinary network connections (possibly emulated in software). The
various VMs run under the control of a so-called virtual machine monitor (VMM) or hypervisor,
which one can think of as being a thin, highly-privileged layer between the hardware and the
VMs. See Figure Xl which is perhaps more typical of Xen than of the other cited hypervisors.
The solid arrows are meant to represent the flow of control during system calls. When a guest
OS makes a system call, its hardware layer is emulated through calls to the hypervisor. The
hypervisor then calls the actual hardware drivers (or emulations thereof) implemented in a
specific, high privilege VM called domain zero. Domain zero is the only VM to have access to
the actual hardware, but is also responsible for administering the other VMs, in particular killing
VM5, creating new VMs, or changing the emulated hardware interface presented to the VMs.

In recent years, virtualization has been seen by several as an opportunity for enforcing better
security. The fact that two distinct VMs indeed run in separate sandboxes was indeed brought
forward as an argument in this direction. However, one should realize that there is no conceptual
distinction, from the point of view of protection, between having a high privilege VMM and lower-
privileged VMs, and using a standard Unix operating system with a high privilege kernel and
lower-privileged processes. Local-to-root exploits on Unix are bound to be imitated in the form
of attacks that would allow one process running in one VM to gain control of the full VMM, in
particular of the full hardware abstraction layer presented to the VMs. Indeed, this is exactly
what has started to appear, with Wojtczuk’s attack notably [T17].

Some of the recent security solutions using virtualization are sHype [98] and NetTop [90].
They provide infrastructure for controlling information flows and resource sharing between VMs.
While the granularity level in these systems is a VM, our system controls execution at the
granularity of a process.

Livewire [85] is an intrusion detection system that controls the behavior of a VM from the
outside of the VM. Livewire uses knowledge of the guest OS to understand the behavior in a
monitored VM. Livewire’s VMM intercepts only write accesses to a non-writable memory area
and accesses to network devices. On the other hand, our architecture can intercept and control
all system calls invoked in target VMs.

G. W. Dunlap describes an experience of use of virtual machines for the security of systems
[68]. The proposal defines an intermediate layer between the monitor and the host system, called
Revirt. This layer captures the data sent through the syslog process (the standard UNIX logging
daemon) of the virtual machine and sends it to the host system for recording and later analysis.
However, if the virtual system is compromised, the log messages can be manipulated by the
invader and consequently are no more reliable.

Stefan Berger describes the trusted computing in virtual machine [69]. By virtualization the
TPM chipset, a single TMP chipset can provide the trusted computing service for each VM on
the same hardware platform.

In [92], Onoue et al. propose a security system that controls the execution of processes from
the outside of VMs. It consists of a modified VMM and a program running in a trusted VM. The
system intercepts system calls invoked in a monitored VM and controls the execution according
to a security policy. Thus, this is a an interception system. To fill the semantic gap between
low-level events and high-level behavior, the system uses knowledge of the structure of a given
operating system kernel. The user creates this knowledge with a tool when recompiling the OS.
In contrast, we do not need to rebuild the OS, and only need to rely on standard event-reporting
daemons such as auditd, which comes with SELinux [IT3], but is an otherwise independent
component.
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3.3 System Supervision In Virtual Environments

We present in this section some interesting approaches for supervising system execution and
detecting malicious behaviors in virtual environments. Some approaches achieve local supervison,
i.e every VM is equiped with necessary mechanisms for detecting/stopping attacks. Other ones
implement decentralized supervision where only one remote VM contains security mechanisms
that are able to monitor the whole virtualized system and prevent attacks.

In most VMM implementations many security approaches require the ability to monitor
frequently executing events, such as host-based intrusion detection systems that intercept every
system call throughout the system, LSM (Linux Security Module) [82] and SELinux that hook
into a large number of kernel events to enforce specific security policies, or even instruction-level
monitoring used by several offline analysis approaches. Due to the overhead involved in out-of-
VM monitoring, many such approaches either are not designed for production systems. While
keeping a monitor inside the VM can be efficient, the key challenge is to ensure at least the same
level of security achieved by an out-of-VM approach.

3.3.1 Local Supervision Approaches

Among the various approaches proposed for local VM supervison in the late 10 years, SIM (Secure
In-VM Monitoring) [83] is one of the most efficient and low-cost techniques that aims to protect
the VMM and VMs. In SIM the authors utilize contemporary hardware memory protection and
hardware virtualization features available in recent processors to create a hypervisor protected
address space where a monitor can execute and access data in native speeds and to which
execution is transferred in a controlled manner that does not require hypervisor involvement.
Two important properties are ensured by this technique : (1) Fast invocation : where invoking
a monitor handler should not involve any privilege level change. (2) Data read/write at native
speed : the monitor code should be able to read and write any system data at native speed without
any hypervisor intervention. The main feature of this approach is that the code of the monitor
is isolated and protected by the idea of having two adress spaces : a trusted and an untrusted
adress space. The switching from a space to another can be done without the intervention of the
hypervisor. Something that arises the performance of the whole system. While this approach
guarantees the efficiency of the monitoring and the detection pf policy violations, no global view
of the system is given by the current implementation which may reduce the intervention ability of
the administrator in case of network attacks or complex attacks where many VMs are involved.

Another interesting approach XSM/FLASK (detailed in chapterP). This approach is provided
by the Xen hypervisor which implements a security framework called XSM, and FLASK is an
implementation of a security model using this framework (at the time of writing, it is the only
one). FLASK defines a mandatory access control policy providing fine-grained controls over
Xen domains, allowing the policy writer to define what interactions between domains, devices,
and the hypervisor are permitted. This approach offers for instance the ability to prevent two
domains from communicating via event channels or grants, controls which domains can use
device passthrough (and which devices), can restrict or audit operations performed by privileged
domains and finally prevents a privileged domain from arbitrarily mapping pages from other
domains. Some of these examples require Dom0 Disaggregation to be useful, since the domain
build process requires the ability to write to the new domain’s memory. On the other hand, this
approach has many limits that we present in the next paragraph.
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3.3.2 Disadvantages of Local Supervision

Despite the high quality of protection that local supervison approaches give to VMMs, they still
have many disadvantages and weaknesses. First, implementing a local approach means that every
VM is equiped with necessary mechanisms for monitoring and detection. This reduces conse-
quently the ability of the defense system to intervene in remote VMs in case of cross-VM attacks,
and reduces the general view of the administrator of the whole virtualized platform. The latest
point is of interest because of the increasing complexity of virtual environments and the need to
have the largest view of the system with the most precise details about each VM /component.
Besides, these same security mechanisms need to have access rights to remote VMs in order to
communicate and send defense commands in case any attack is detected. This advantage is not
given by local approaches. Moreover, some attacks called network attacks can escape this kind of
approaches. Owing to the complexities of the virtual environment, network attacks become even
harder-to-detect when virtual machines are introduced to the network. Besides, implementing
local supervision does not help the system administrator have easy and efficient administration
tasks. In fact, local policies need some configuration from time to time, and assuming the com-
plexity of such systems, the administrator does not have enough tools and mechanisms to share
upgrade with all VMs in such local approaches. For example, a VM’s configuration is stored as a
single file, which makes it easier for an attacker to copy or delete these files and potentially steal
a whole VM (and its stored information). This is due to the limited system view given to the
administrator. Another disadvantage of this approach is its inefficiency against Cross-VM vul-
nerabilities that come from the co-residence of VMs which makes information easy to exfiltrate
across VM boundary. For instance, in Cross-VM attacks, the attacker sends HTTP requests to
the target VM and observe correlation with cache utilization or even obtain and compare Xen
Dom0 address. A Cross-VM attack can then occur corrupting the integrity, confidentiality and
availability of the attacked VM. To detect this kind of attacks, the system administrator needs
several technologies and methods that are not available in simple local supervision (network
filtering, network monitoring, global policies...).

To summarize, we can say that local supervision approaches are not the most convenient
approach for securing virtualized systems. Since they are unable to prevent many vulnerabilities
and detect different malicious behaviors that need larger vision of the system. We present
in the next section another approach that implements decentralized supervision, we will then
compare the two approaches and propose our own architecture/imlementation for securing virtual
machines.

3.3.3 Decentralized Supervision Approaches

While local interception architectures have the advantage of allowing the IDS to counter any
attack just before they are completed. This way, and assuming the security policy that the IDS
enforces is sufficiently complete, no attack ever succeeds on S that would make reveal or alter
sensitive data, make it unstable, or leave a backdoor open (by which we also include trojans and
bots).

Decentralized approaches the IDS is meant to work in a decentralized setting. In this case,
the IDS does not run on the same host as the supervised host, S. While in a local interception
architecture, the IDS would run as a process on S itself, in a decentralized setting only a small
so-called sensor running on S collects relevant events on S and sends them through some network
link to the IDS, which runs on another, dedicated host M.

Decentralized architectures (see Figure Bl make the IDS more resistant to attacks on S
(which may be any of Sy, ..., Sy in the figure): to kill the IDS, one would have to attack the
supervision machine M, but M is meant to only execute the IDS and no other application, and
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Figure 3.1: Decentralized Supervision

has only limited network connectivity. In addition to the link from S to M used to report events
to the IDS, we also usually have a (secure) link from M to S, allowing the IDS to issue commands
to retaliate to attacks on S. While this may take time (e.g., some tens or hundreds of milliseconds
on a LAN), this sometimes has the advantage to let the IDS learn about intruder behavior once
they have completed an attack. This is important for forensics.

Decentralized architectures are also not limited to supervising just one host S. It is particularly
interesting to let the supervision machine M collect events from several different hosts at once,
from network equipment (routers, hubs, etc., typically through logs or MIB SNMP calls), and
correlate between them, turning the IDS into a mix between host-based and network-based IDS.

We shall argue in the next section that one can simulate such a decentralized architecture,
at minimal cost, on a single machine, using modern virtualization technology. We shall also see

that this has some additional advantages.

3.4 Proposed Architecture

As explained earlier, local interception approaches are vulnerable to local attacks, because the
intruder can disable or tamper them. Thus, monitoring data coming from a compromised system
cannot be considered reliable. The isolation offered by virtual machines provides a solution to
this problem. The proposal presented here allows building more reliable virtualized platforms

for intrusion detection.
Our proposal’s main idea is to encapsulate both the systems to monitor and the surveillance

system inside virtual machines. The intrusion detection and response mechanisms are imple-
mented outside the virtual machine, i.e. out of reach of intruders. Figure B2 illustrates the main

components of the proposed architecture.
We run a fast, modern IPS such as Orchids [91), 87 in another VM to monitor, and react
against, security breaches that may happen on the users’ environment in each of the guest OSes

present in a virtualized system.
One can see this architecture as an implementation of a decentralized supervision architecture

on a single physical host.
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Figure 3.2: Proposed Architecture

We argue that this solution has several advantages. First, there is a clear advantage in terms
of cost, compared to the decentralized architecture: we save the cost of the additional supervision
host M.

Second, compared to a standard, unsupervised OS, the user does not need to change her
usual environment, or to install any new security package. Only a small sensor has to run on her
virtual machine to report events to Orchids. Orchids accepts events from a variety of sensors.
In our current implementation, each guest OS reports sequences of system calls through the
standard auditd daemon, a component of SELinux [I13], which one can even run without the
need for installing or running SELinux itself. (Earlier, we used Snare, however this now seems
obsolescent.) Linux auditd sensor is a built-in mechanism in the kernel, which allows one to
intercept changes to monitored files and write them to a log on the disk or send them to a local
socket. Auditd intercepts almost all system calls and gives a detailed summary in real time of the
performed system calls. we can let auditd supervise some specific users or system calls depending
on what we want to audit.

The bulk of the supervision effort is effected in a different VM, thus reducing the installation
effort to editing a few configuration files, to describe the connections between the guest OSes
and the supervision OS mainly. In particular, we do not need to recompile any OS kernel with
our architecture, except possibly to make sure that auditd is installed and activated.

A third advantage, compared with interception architectures, and which we naturally share
with decentralized architectures, is that isolating the IPS in its own VM makes it resistant to
attacks from the outside. Indeed, Orchids runs in a VM that has no other network connection
to the outside world than those it requires to monitor the guest OSes, and which runs no other
application that could possibly introduce local vulnerabilities.

Orchids should have high privileges to be able to retaliate to attacks on each guest OS. For
example, we use ssh connections between Orchids and each VM kernel to be able to kill offending
processes or disable offending user accounts. (The necessary local network links, running in the
opposite direction as the sensor-to-Orchids event reporting links shown in Figure B, are not
drawn.)

The Orchids detection system recognizes scenarios by simulating known finite automata, from
a given event flow. This method allows the writing of powerful stateful rules suitable for intrusion
detection.

Orchids is composed of five main parts: a set of rule definitions (in a dedicated specification
language), a rule compiler which translates rule definitions into an internal automata representa-
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tion, a set compiled rules which is the knowledge base of the whole system, a massively parallel
virtual machine which simulates non-deterministic finite automata, and a set of input modules
which decodes data incoming from external sources.

Next, we cannot expect an ordinary user to manage her own machine, or, for that matter, to
keep an attack signature base up to date. Although Orchids requires rather few signatures, since
one signature can match several attacks (including some zero-day attacks [87]), Orchids is still
fundamentally a misuse intrusion prevention system, and requires some maintenance, if only to
write new rules for new families of attacks. A standard solution to this problem is to install a
link between the application, here Orchids, and a trusted server, with a regularly triggered task
that inquires about security updates from the server. We do not wish to let the Orchids virtual
machine communicate along any link with the outside world, if possible. Trusted servers can be
hacked, and in any case emitting security updates requires an infrastructure, and resources.

However, running on a virtualized architecture offers additional benefits. One of them is that
Orchids can now ask domain zero to kill an entire VM. This is necessary when a guest OS has
been subject to an attack with consequences that we cannot assess precisely. For example, the
do_brk () attack [IT4] and its siblings, or the vmsplice() attack [94] allow the attacker not just
to gain root access, but direct access to the kernel. Note that this means, for example, that the
attacker has immediate access to the whole process table, as well as to the memory zones of all
the processes. While current exploits seem not to have used this opportunity, such attack vectors
in principle allow an attacker to become completely stealthy, e.g., by making its own processes
invisible to the OS. In this case, the OS is essentially in an unpredictable state.

The important point is that we can always revert any guest OS to a previous, safe state,
using virtualization. Indeed, each VM can be checkpointed, i.e., one can save the complete
instantaneous state of a given VM on disk, including processes, network connections, signals.
Assuming that we checkpoint each VM at regular intervals, it is then feasible to have Orchids
retaliate by killing a VM in extreme cases and replacing it by an earlier, safe checkpoint.

Orchids can also detect VMs that have died because of fast denial-of-service attacks (e.g.,
the double listen() attack [81], which causes instant kernel lock-up), by pinging each VM at
regular intervals: in this case, too, Orchids can kill the VM and reinstall a previous checkpoint.
We react similarly to attacks on guest OSes that are suspected of having succeeded in getting
kernel privileges and of, say, disabling the local auditd daemon.

Killing VMs and restoring checkpoints is clearly something that we cannot afford with physical
hosts instead of VMs.

It would be tempting to allow Orchids to run inside domain zero to do so. Instead, we run
Orchids in a separate guest OS, with another ssh connection to issue VM administration com-
mands to be executed by a shell in domain zero. L.e., we make domain zero delegate surveillance
to a separate VM running Orchids, while the latter trusts domain zero to administer the other
guest VMs. We do so in order to sandbox each from the other one. Although we have taken
precautions against this prospect, there is still a possibility that a wily attacker would manage
to cause denial-of-service attacks on Orchids by crafting events causing blow-up in the internal
Orchids surveillance algorithm (see [87]), and we don’t want this to cause the collapse of the
whole host. Conversely, if domain zero itself is under attack, we would like Orchids to be able
to detect this and react against it.

To our knowledge, this simple architecture has not been put forward in previous publications,
although some proposals already consider managing the security of virtualized architectures, as
we have discussed earlier.
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3.5 Remote Logging

As explained earlier, we equip every virtual machine with the SElinux auditd sensor. This
daemon captures system calls according to a configuration file containing details about what we
want to audit. To accomplish its mission, the auditd daemon relies on an engine called audispd.
This is the dispatcher of the daemon, it is responsible of sending the reported events to the
specified targets. These targets are either a local file or a local socket, and audispd is unable to
report to a remote target.

Since our idea is to preserve the decentralisation criterion of our architecture, we needed to
make audispd able to report to remote targets via the network. To deal with this, we designed
and implemented a new functionality in the auditd dispatcher. This functionality makes audispd
able to report events via the virtual network (TCP channel) to a remote target (see figure B3).

Besides,and from the IDS side, the need was to make Orchids behave like a server that receives
information from different hosts and reacts according to the correlation of the events if an attack
matches. The reaction is perfomed through the network by sending commands that are able to
kill the offending remote processes and sometimes by asking Dom0 to completely stop the VM
and restart from an early checkpoint. This can be done in case of fast Dos attacks that can freeze
the whole VM.

3.6 Discussion

The proposed architecture has pros. and cons.: first, compared to other architectures, this one
is very easy to deploy. The sensor comes with almost all 2.6 Linux kernels and no further config-
uration is needed except adding the system calls that one wants to audit. From the supervision
Vm side, one have just to install Orchdis which is preconfigured to work with auditd. This makes
the system administrator’s life easier.

Second, we argue that this approach has the advantage of working with a powerful hypervi-
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sor which is Xen. Indeed, Xen represents a thin hypervisor model consisting of only 2 MB of
executable, relying on service domains for functionality, needs no device drivers and keeps do-
mains/guests isolated. These characteristics can not be found in other virtualization tools such
as VMware ESX which needs device drivers and a base of management where hardware support
depends on VMware created drivers.

Another advantage of this approach is the fact that defense mechanisms are already imple-
mented in Orchids and we benefit from this functionality and make it work for all the VMs. This
gives another dimension to our IDS. This point is of importance because designing a complete
and efficient solution with defense mechanisms, most of the time, is not an easy task.

On the other hand, one can notice that our approach relies on the network for communicating
information between the IDS and the different VMs. This can be a real source of problems. An
attacker located in a simple VM can try to break the access rules to the configuration files of
auditd and stop the remote logging mechanism. To deal with this, Orchids can easily detect
that one VM is active but is not reporting. For now the remedy to this problem is not yet
implemented but we feel that the best solution is to report this issue to the administrator who
will try to diagnose this VM and restart the sensor. If the problem persists, Orchdis can kill the
VM and restart later from a safe checkpoint (free from vulnerabilities).

Another weakness of relying on the network is the latency related to the network (the term
latency refers to any of several kinds of delays typically incurred in processing of network data.
A so-called low latency network connection is one that generally experiences small delay times,
while a high latency connection generally suffers from long delays). Actually we are unable to
react efficiently according to fast DoS attacks that can rapidly freeze the VM even before the
reception of the reported events by Orchids.

The main weakness of our approach is the fact that we rely on the reported system calls to
detect intrusions. The problem is that some new attacks are stealthy and undetectable using
this approach. For instance the Wojtczuk’s attack [I17] on the Xen hypervisor is completely
undetectable by our approach. The objective of our thesis was not to detect this specific attack
but at least we try to offer an easy way to avoid the dammage caused by this attack. In fact we
will make sure that the attack can not be run at all (see chapter H).

Another problem related to our approach and that we adress in the next chapter is the absence
of a specific security policy that can be dedicated to this environment. We feel that a rigourous
access control policy can be complementary to our supervision/detection approach. More details
about how we adress this problem will be given later.

3.7 Conclusion

In this chapter, we have presented a new architecture for intrusion detection that simulates
decentralized supervision on one single host. Our primary aim was to secure running virtual
machines against attacks by deploying Orchids and sensors reporting at real time to it. This
architecture was implemented on top of the Xen hypervisor and its main advantage is cost
saving. Regarding the effectiveness of the detection mechanisms, many improvements can be
brought to our implementation. Much work can be done on DoS attacks detection, on securing
commmunication channels and especially on optimizing the content of the reported events. This
can be done by improving the way that auditd logs the captured events. As further work, it
would be interesting to extend this implementation to other interesting vrtualization solutions
such as KVM [T] or VMWare. It would be also challenging to explore ways to avoid killing VMs
in case of DoS attacks in order to preserve a good level of the service continuity.



32

CHAPTER 3. SECURING VIRTUAL MACHINES



Chapter 4

Protecting Sensitive Resources

4.1 Introduction

In chapter Bl we have presented a new approach for securing virtual machines. This idea is based
on a decentralized intrusion detection mechanism ensured by the Orchids IDS and the auditd
sensor. Despite the advantages that such an approach can offer, it remains unable to protect
sensitive resources efficiently due to the lack of a security policy strategy.

In this chapter we introduce a new way to model security policies and deploy them. Our
primary goal will be to protect sensitive resources such as the domain0, and at the same time
prevent some stealthy attacks that we can not detect. We introduce a new language for modelling
security policies accompanied with a procedure for the automatic translation of policies into
automata representing attacks signatures that enrich the IDS signature base.

4.2 Related Work

In this section, we present two approaches that are similar to our proposal. The first one is Proof
Carrying Code (PCC). PCC comes with the idea that end-users become able to verify security
properties about an application via a formal proof that accompanies the executable code. The
user can then decide if the application is safe by comapring the result of the verification to the
local security policy.

The second approach is Model Carrying Code (MCC) where end-users can profit from a
fully automated verification procedure to determine if a downloaded code satisfies their security
policies. Alternatively, an automated procedure can sift through a catalog of acceptable policies
to identify one that is compatible with the model. In the next two sections, we give a brief
presentation of these approaches in order to clarify the idea of verifying models against security
policies, this helps understand our approach which does not have exactly the same goal but
shares many details with these methods especially in the modelling and verification part.

4.2.1 Proof Carrying Code

Overview Proof-Carrying Code (PCC) [89] reveals many advantages for safe execution of un-
trusted code. The technique needs that the producer and the consumer of the code perform
some necessary actions : first, the consumer needs to establish a set of rules (safety) that guar-
antees the safe behaviour of a program. Then, the producer has to create a formal proof for the
untrusted code. This proof is used by the receiver of the code as an entry to his proof validator
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Figure 4.1: Proof Carrying Code [R9]

(given by the producer) in order to check that the code is safe. PCC has many uses in systems
whose trusted computing base is dynamic : extensible operating systems, Internet browsers, ac-
tive network nodes and safety-critical embedded controllers. These examples need most of the
time mobile code or regular updates.

Despite the large amount of effort in establishing and formally proving the safety of the
untrusted code, almost the entire burden of doing this is on the code producer. The code
consumer, on the other hand, has only to perform a fast, simple, and easy-to-trust proof-checking
process. The trustworthiness of the proof-checker is an important advantage over approaches that
involve the use of complex compilers or interpreters in the code consumer.

The consumer does not care about the nature of the proof. The proofs could be generated
by hand, but sometimes it is necessary to rely on a theorem prover. Besides, the consumer does
not have to trust the proof-generation process. Moreover, any modification (either accidental or
malicious) will result in one of these outcomes : (1) the proof is not valid, the program is not
accepted, (2) the proof is valid but is not a safety one, so it will be rejected, (3) the proof is valid
despite the modifications, in this case the guarantee of safety will hold.

Another interesting feature of PCC is the continious checking of intrinsic properties of the
code without caring about its origin thus cryptography mechanisms are not needed. In this sense
the proagrams are self-certifying. On the other hand, the static verification of the untrusted
code before its execution saves time and detects hazardous operations early thus avoiding the
situations when the code consumer must kill the untrusted process after it has acquired resources
or modified state.

Discussion Despite the elegant design of PCC and its easy comprehension, this method is very
difficult to implement efficiently. First, proofs are not easy to encode because trivial encoding of
properties of programs is very large. Second, the verification part of the proof is not an easy task
because it needs a small, fast and independant checker, also, the proofs must be terse. Finally,
the producer have to provide a proof that is fully related to the real execution of the program,
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Figure 4.2: Model Carrying Code [103]

something that is not totally ensured. In our approach, we do not provide proofs, but only safety
properties at the consumer side, we do not care about their translation into models, because
we rely on an automatic tool. Then the verification is done by a model-checker (Orchids) that
verifies these properties at real time.

4.2.2 Model Carrying Code

Overview MCC [I03] introduces program behavioral models (see Figure EE2)) which help bridge
the semantic gap between low-level binary code and high-level security policies. These models
capture security-related properties of the code, but do not capture aspects of the code that
pertain only to its functional correctness. The model is stated in terms of the security-relevant
operations made by the code, the arguments of these operations, and the sequencing relationships
among them. These operations correspond to system calls, but alternatives such as function calls
are also possible. While models can be created manually, doing so would be a time-consuming
process that would affect the usability of the approach. Therefore, the authors developed a
model extraction approach that can automatically generate the required models. Since the
model extraction takes place at the producer end, it can operate on source code rather than
binary code. It can also benefit from the test suites developed by the code producer to test
his/her source code. The consumer wants to be assured that the code will satisfy a security
policy selected by him/her. The use of a security behavior model enables to decompose this
assurance argument into two parts: policy satisfaction which checks whether the model satisfies
the policy, and model safety which checks if the model captures a safe approximation of program
behavior.

In more details, a producer generates both the program D to be downloaded (e.g., the device
driver), and a model of it, M. The consumer checks the model against a local policy P. Instead
of merely rejecting the program D if its model M does not satisfy, the consumer computes an
enforcement model M’ that satisfies both M and P, and generates a monitor that checks whether
P satisfies M’ at run-time. Any violation is flagged and reported.

In MCC, models, as well as policies and enforcement models, are taken to be extended finite-
state automata (EFSA), i.e., finite state automata augmented with finitely many state variables
meant to hold values over some fixed domain. A typical example, taken from op. cit., is the
EFSA of Figure This is meant to describe the normal executions of D as doing a series of
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Figure 4.3: An EFSA Model, after Sekar et al. [I03]

system calls as follows. Each system call is abstracted, e.g., the first expected system call from
D is a call to local_read with argument bound to the ConfigFiles state variable. Then D is
expected to either take the left or the right transition going down, depending on whether some
tested file (in variable IconFile) exists or not. In the first case, D should call local_read, in
the second case, D should call remote_read. The transitions labeled e are meant to be firable
spontaneously.

Typical policies considered by Sekar et al. are invariants of the form “any program should
either access local files or access the network but not both” (this is violated above, assuming
obvious meanings for system calls), or that only files from the /var/log/httpd/ directory should
be read by D. Policies are again expressed as EFSA, and enforcement models can be computed
as a form of synchronized product denoting the intersection of the languages of M and P.

Discussion The EFSA models used in MCC are sufficiently close to the automaton-based
model used in Orchids (which appeared about at the same time, see the second part of [97]; or
see [87] for a more in-depth treatment) that the EFSA built in the MCC approach can be fed
almost directly to Orchids. In our approach, we use Orchids for EFSA checking. More details
about the proposed approach will be given in the following sections.

4.3 Threat Model

4.3.1 Sensitive Resources

The hypervisor is not alone in its task of administering the guest domains on the system. A
special privileged domain called Domain0 serves as an administrative interface to Xen. Domain(
is the first domain launched when the system is booted, and it can be used to create and
configure all other regular guest domains. Domain0 has direct physical access to all hardware,
and it exports the simplified generic class devices to each DomU. The critical spots in our
implementation presented in the previous chapter are the VMM (hypervisor) itself, domain zero,
and the surveillance VM running Orchids. Attacking the latter is a nuisance, but is not so much
of a problem as attacking the VMM or domain zero, which would lead to complete subversion of
the system. Moreover, the fact that Orchids runs in an isolated VM averts most of the effects of
any vulnerability that Orchids may have.

Attacks against the VMM are much more devastating. Wojtczuk’s 2008 attacks on Xen 2
[[T7] allow one to take control of the VMM, hence of the whole machine, by rewriting arbitrary
code and data using DMA channels, and almost without the processor’s intervention. .. quite a
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fantastic technique, and certainly one that breaks the common idea that every change in stored
code or data must be effected by some program running on one of the processors. Indeed, here
a separate, standard chip is actually used to rewrite the code and data. Once an attacker has
taken control over the VMM, one cannot hope to react in any effective way. In particular, the
VMM controls entirely the hardware abstraction layer that is presented to each of the guest
OSes: no network link, no disk storage facility, no keyboard input can be trusted by any guest
OS any longer. Worse, the VMM also controls some of the features of the processor itself, or of
the MMU, making memory or register contents themselves unreliable.

We currently have no idea how to prevent attacks such as Wojtczuk’s, apart from unsatisfac-
tory, temporary remedies such as checkpointing some selected memory areas in the VMM code
and data areas. However, we claim that averting such attacks is best done by making sure that
they cannot be run at all. Indeed, Wojtczuk’s attacks only work provided the attacker already
has root access to domain zero, and this is already quite a predicament. We therefore concentrate
on ensuring that no unauthorized user can gain root access to domain zero.

Normally, only the system administrator should have access to domain zero. (In enterprise
circles, the administrator may be a person with the specific role of an administrator. In family
circles, we may either decide that there should be no administrator, and that the system should
self-administer; or that one particular user has administrator responsibilities.) We shall assume
that this administrator is benevolent, i.e., will not consciously run exploits against the system.
However, he may do so without knowing it while updating his system...

4.3.2 Automatic Updates and Security Issues

Either in host-based architectures or in virtualized ones, automatic updates represent a serious
threat to the security of systems. As shown earlier, attacking a simple VM or a managing VM
such as DomO can be much more devastating than attacking a simple architecture with one single
host. The attacker can take the control of the whole virtualized system (sometimes hundreds
of VMs with virtual servers and critical data!). This can be done by downloading malicious
updates for programs or drivers, these updates may contain trojans that are triggered once the
update is executed. We will present this kind of attack scenarios in the folllowing sections with
more details. Now let us explain how automatic updates can be a source of threat for computer
systems in general.

Every day, millions of computer users and system administrators update software some manu-
ally, some automatically, and some unknowingly. In 2002, corporations spent more than 2 billion
on patch management for operating systems alone [7]. Indeed, many CERT Technical Cyber
Security Alerts suggest applying patches, upgrades, or updates to resolve security vulnerabili-
ties. And system administrator tend to use content distribution networks to download software
updates. These updates help to patch everyday bugs, plug security vulnerabilities, and secure
critical infrastructure. Yet challenges remain for secure content distribution: many deployed
software update mechanisms are insecure. Users and system administrators are between two
choices : either let the update mechanism download the patches or keep the computer isolated
from the network. The latter choice reduces the “life expectancy” of the computer system. The
latter idea is not of interest, thus almost all operating systems, software and even shareware
are equiped with mechanisms that check for new updates, and most of these systems can be
configured to automatically download and install the updates, and sometimes without notifying
the user.

On the other hand, many update systems are themselves riddled with security vulnerabilities.
Kevin Fu et al. from the University of Massachusetts studied the so-called secure mechanisms
for automatic updates. The results are disappointing [[8]. Many software update mechanisms
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implemented in famous software such as Microsoft Windows Update, Mozilla Firefox, Adobe
Acrobat Reader and McAfee VirusScan lack basic security measures such as verification of digital
signatures. Left open and unprotected, the update channels serve as an ideal backdoor for
spreading malicious code. The main problem of these update mechanisms is the authentication
of the updates in order to ensure their legitimacy. But it is also very important that software
have an authenticated connection to the update server. As the name implies, having an update
authenticated means that there is some way for the software doing the update to assure itself
that the update is an authentic version from the intended source. Without authentication, a
clever hacker can arrange a man-in-the-middle attack to insert an exploit in the update stream.

Most of these unsecured update systems simply go to a Web or FTP server, check the time
stamp on the most recent file and download the file if it’s new enough. The address of the server
is usually hard-coded into the program doing the update, although occasionally it is stored in a
configuration file. The attacker can simply to redirect the program making the update to a server
controlled by the attacker himself. This is quite easy : with DNS-based attack the program can
be redirected to the wrong website. To do this, the attacker run his software in an a café with
wireless connection to Internet, waits until the victim does a DNS query, he catches the IP adress
of the update server, and then can answer the DNS query before the official DNS server, and
redirect the victim to the wrong destination. Even if updates are signed, an attacker capable
of intercepting DNS requests or diverting Internet traffic can still use an update service to take
over an unsuspecting victim’s computer. A signature on an update just means that the update
is authentic, it doesn’t mean that the update is any good.

4.3.3 A possible Attack Scenario

One of the most tangible risks that can occur is the failure to keep up with the constant,
labor-intensive process of patching, maintaining and securing each virtual server in a company.
Unlike the physical servers on which they sit, which are launched and configured by hands-on I'T
managers who also install the latest patches, virtual machines tend to be launched from server
images that may have been created, configured and patched weeks or months before.
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One possible scenario is this: the administrator needs to upgrade some library or driver, and
downloads a new version; this version contains a trojan horse, which runs Wojtczuk’s attack.
Modern automatic update mechanisms use cryptographic mechanisms, including certificates and
cryptographic hashing mechanisms [I18], to prevent attackers from running man-in-the-middle
attacks, say, and substitute a driver with a trojan horse for a valid driver. However, there is
no guarantee that the authentic driver served by the automatic update server is itself free of
trojans. There is at least one actual known case of a manufacturer shipping a trojan (hopefully
by mistake): some Video iPods were shipped with the Windows RavMonE. exe virus [06], causing
immediate infection of any Windows host to which the iPods were connected.

4.4 Preliminaries

Related Work. We briefly present in this section some contributions that are related to our
approach. Most of them implement run-time supervision and enforcement of security policies.
Systems such as SELinux (op. cit.) are based on a security policy, but fail to recognize illegal
sequences of legal actions. To give a simple example, it may be perfectly legal for user A to
copy some private data D to some public directory such as /tmp, and for user B to read any
data from /tmp, although our security policy forbids any (direct) flow of sensitive data from
A to B. Such sequences of actions are called transitive flows of data in the literature. To our
knowledge, Zimmerman et al. [120, 021, [22] were the first to propose an IDS that is able
to check for illegal transitive flows. Briffaut [79] shows that even more general policies can
be efficiently enforced, including non-reachability properties and Chinese Wall policies, among
others; in general, Briffaut uses a simple and general policy language. We propose another,
perhaps more principled, language in Section B3, based on linear temporal logic (LTL). Using
the latter is naturally related to a more ancient proposal by Roger etal. in [97]. However, LTL
as defined in (the first part of) the latter paper only uses future operators, and is arguably ill-
suited to intrusion detection (as discussed in op. cit. already). Here, instead we use a fragment
of LTL with past, which, although equivalent to ordinary LTL with only future operators as
far as satisfiability is concerned (for some fixed initial state only, and up to an exponential-size
blowup), will turn out to be much more convenient to specify policies, and easy to compile to
rules that can be fed to the Orchids IPS |91, B7].

Linear Temporal Logic. As the language we propose in the next section is a variant of LTL
(Linear Temporal Logic) with past operators. We give a brief presentation of this language. We
start by presenting temporal logics.

The term Temporal Logic has been used to cover all approaches to the representation of
temporal information within a logical framework. This logic can be used as a formalism for
clarifying philosophical issues about time, as a framework within which to define the semantics
of temporal expressions in natural language, as a language for encoding temporal knowledge in
artificial intelligence, and as a tool for handling the temporal aspects of the execution of computer
programs.

LTL is a modal temporal logic with modalities referring to time. It was first proposed for
the formal verification of computer programs by Amir Pnueli in 1977 [I00]. It has become the
standard language for linear-time model checking. Model checking is the automatic verification
that a model (typically a transition system) of a system possesses certain (un)desired properties.
LTL is supported by many model checkers such as SPIN [I(1].

The alphabet of LTL is composed of:

e atomic proposition symbols p,q,r,...,
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e boolean connectives A, V, —, «

e temporal connectives (), 0, R, U.

The set of LTL formulae is defined inductively, as follows:

e any atomic proposition is a formula,

e if p and ¢ are formulae, then ¢ and ¢ e 1, for @ € {A,V, —, <} are also formulae,
o if v and % are formulae, then Oy, Oy, O, v U ¥, oy are formulae,

e nothing else is a formula.

Past LTL and Safety Properties. In [[02], LTL, which has only future operators, is extended
with past operators. This allows the easy writing of specifications which can be shorter, easier
and more intuitive. LTL with past operators has been proved to be more succint than pure-
future temporal logic [I8]. Consider the following example taken from [I8] where future-time
modalities such as F (“sometimes in the future”), G (“always in the future”) and U (“until”) are
complemented with their past-time counterparts (F~! for “once in the past”, G=! for “always in
the past“ and S or U~? for “since®, ...). The statement “every request is eventually granted “ is
expressed by :

G(request = F grant)

However, with past-time modalities, the statement can be expressed as follows, ”a grant should
be preceeded by a request :

G (request = F~! grant)

LTL with past reveals very useful in dealing with safety properties. Informally, safety prop-
erties are properties of systems where every violation of a property occurs after a finite execution
of the system. Safety properties are relevant in many areas of formal methods. Testing methods
based on executing a finite input and observing the output can only detect safety property vio-
lations. Monitoring executions of programs is also an area where safety properties are relevant
as monitoring also only can detect failures of safety properties. Naturally, formal specifications
are also verified to make sure that a given safety property holds.

All of the above mentioned uses of safety properties can be accomplished by specifying the
properties as finite automata. While automata are useful in many cases, a more declarative
approach, such as using a temporal logic, is usually preferred. Many model checking tools,
such as SPIN [I01], support linear temporal logic (LTL). In the automata theoretic approach
to verification [60, 61, 62|, LTL formulas are verified by translating their negation to Buchi
automata, which are then synchronised with the system. If the synchronised system has an
accepting execution, the property does not hold. One could benefit from using finite automata
instead of Buchi automata if the given LTL property is a safety property. Reasoning about finite
automata is simpler than reasoning about Buchi automata. For explicit state model checkers,
reasoning about Buchi automata requires slightly more complicated algorithms. In the symbolic
context, emptiness checking with BDDs is in practice significantly slower than simple reachability
[63]. For model checkers based on net unfoldings, such as [64], handling safety is much easier
than full LTL [63].

Unfortunately, there are some complexity related challenges in translating LTL formulas to
finite automata. A finite automaton specifying every finite violation of a LTL safety property
can be doubly exponential in the size of the formula [66].
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4.5 A Line of Defense: LTL with Past and Orchdis

4.5.1 The Proposed Language

Consider the case whereby we have just downloaded a device driver, and we would like to check
whether it is free of a trojan. Necula and Lee pioneered the idea of shipping a device driver with
a small, formal proof of its properties, and checking whether this proof is correct before installing
and running the driver. This is proof-carrying code [R9]. More suited to security, and somehow
more practical is Sekar et al.’s idea of model-carrying code (MCC) [I03]. Both techniques allow
one to accept and execute code even from untrusted producers.

However, we feel that a higher-level language, allowing one to write acceptable policies for
automatic updates in a concise and readable manner, would be a plus. There have been many
proposals of higher-level languages already, including linear temporal logic (LTL) 7], chronicles
[88], or the BMSL language by Sekar and Uppuluri [T104], later improved upon by Brown and Ryan
[R0]. It is not our purpose to introduce yet another language here, but to notice that a simple
variant of LTL with past will serve our purpose well and is efficiently and straightforwardly
translated to Orchids rules—which we equate with EFSA here, for readability, glossing over
inessential details.

Consider the following fragment of LTL with past. We split the formulae in several sorts. F®
will always denote present tense formulae, which one can evaluate by just looking at the current
event:

F* == P(Z)|cond(Z) atomic formula
| L false
| F°AF® conjunction
| F°VF* disjunction

Atomic formulae check for specific occurrences of events, e.g., local_read (IconFile) will typically
match the current event provided it is of the form local_read applied to some argument, which
is bound to the state variable IconFile. In the above syntax, & denotes a list of state variables,
while cond(Z) denotes any computable formula of Z, e.g., to check that IconFile is a file in some
specific set of allowed directories. This is as in [104] B0|]. We abbreviate P(Z) | T, where T is
some formula denoting true, as P(Z).

Note that we do not allow for negations in present tense formulae. If needed, we allow certain
negations of atomic formulae as atomic formulae themselves, e.g., 'exists (IconFile). However,
we believe that even this should not be necessary. Disjunctions were missing in [T04], and were
added in [R0].

Next, we define past tense formulae, which can be evaluated by looking at the current event
and all past events, but none of the events to come. Denote past tense formulae by F:

F= o= F* present tense formulae
| F~ AF~ conjunction
| F<VF~ disjunction
|  F~ N F°* without
|  Start initial state

All present formulae are (trivial) past formulae, and past formulae can also be combined using
conjunction and disjunction. The novelty is the “without” constructor: F*~ ~ F'® holds iff F—
held at some point in the past, and since then, F'®* never happened. Apart from the without
operator, the semantics of our logic is standard. We shall see below that it allows us to encode
a number of useful idioms. The past tense formula Start will also be explained below.
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m-r Y Start~ F° “F'® never happened in the past”
Y def F— <L “F was once true in the past”
F— — F°® def ®F— NEF* “F~ was once true, and now F'® is”
Fo - F —Fy —...—>F* def (..((F- - F)—F3)—...)—> F?
FeFe.. . F* ' Start — Fp — ... — F* Chronicle

Figure 4.5: Some Useful Idioms

Formally, present tense formulae F'® are evaluated on a current event e, while past tense
formulae F~ are evaluated on a stream of events € = ey, ea,...,e,, where the current event
is e, and all others are the past events. (We warn the reader that the semantics is meant to
reason logically on the formulae, but is not indicative of the way they are evaluated in practice.
In particular, although we are considering past tense formulae, and their semantics refer to past
events, our algorithm will never need to read back past events.) The semantics of the without
operator is that € = ey, eq,..., e, satisfies '~ ~ F'® if and only if there is an integer m, with
0 < m < n, such that the proper prefix of events ey, es, ..., e, satisfies F~ for some values of
the variables that occur in F~ (“F* held at some point in the past”), and none of e, 41, ...,
e, satisfies F'® (“since then, F'® never happened”)—precisely, none of e, 41, ..., e, satisfies F'*®
with the values of the variables obtained so as to satisfy F~; this makes perfect sense if all the
variables that occur in F'~ already occur in F'®, something we shall now assume.

The past tense formula Start has trivial semantics: it only holds on the empty sequence of
events (i.e., when n = 0), i.e., it only holds when we have not received any event yet. This
is not meant to have any practical use, except to be able to encode useful idioms with only a
limited supply of temporal operators. For example, one can define the formula B—-F* (“F® never
happened in the past”) as Start ~ F'°.

The without operator allows one to encode other past temporal modalities, see Figure
In particular, we retrieve the chronicle Fy; Fy;...; Fr [88], meaning that events matching F,
then F3, ..., then F have occurred in this order before, not necessarily in a consecutive fash-
ion. More complex sequences can be expressed. Notably, one can also express disjunctions
as in [80], e.g., disjunctions of chronicles, or formulae such as (login(Uid) \ logout(Uid)) A
local_read(Uid, ConfigFile) to state that user Uid logged in, then read some ConfigFile
locally, without logging out inbetween.

Let us turn to more practical details. First, we do not claim that only Start and the without
(\) operator should be used. The actual language will include syntactic sugar for chronicles,
box (M) and diamond () modalities, and possibly others, representing common patterns. The
classical past tense LTL modality S (“since”) is also definable, assuming negation, by FF S G =
G ~ —F, but seems less interesting in a security context.

Second, as already explained in [97, 1041 B0], we see each event e as a formula P(fldy, flds, ..., fld,),
where fldy, flds, ..., fld,, are taken from some domain of values—typically strings, or integers,
or time values. This is an abstraction meant to simplify mathematical description. For example,
using auditd as event collection mechanism, we get events in the form of strings such as:

1276848926.326:1234 syscall=102 success=yes a0=2 al=1 a2=6 pid=7651

which read as follows: the event was collected at date 1276848926.326, written as the num-
ber of seconds since the epoch (January 01, 1970, 0h00 UTC), and is event number 1234
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(i.e., we are looking at event eja3s is our notation); this was a call to the socket() func-
tion (code 102), with parameters PF_INET (Internet domain, where PF_INET is defined as 2 in
/usr/include/socket.h—a0 is the first parameter to the system call), SOCK_STREAM (= 1; al
is connection type here), and with the TCP protocol (number 6, passed as third argument a2);
this was issued by process number 7651 and returned with success. Additional fieldss that are
not relevant to the example are not shown. This event will be understood in our formalization
as event ejo34, denoting syscall (1276848926.326, 102, "yes",2,1,6,7651). The event eja34 sat-
isfies the atomic formula syscall (Time, Call, Res, Dom,Conn, Prot, Pid) | Res = "yes" but
neither audit (X) nor syscall (Time, Call, Res, Dom,Conn, Prot, Pid) | Time < 1276848925.

4.5.2 The Translation Algorithm

Here we will explain how we can detect when a given sequence of events € satisfies a given formula
in our logic, algorithmically. To this end, we define a translation to the Orchids language, or
to EFSA, and rely on Orchids’ extremely efficient model-checking engine [87]. The translation
is based on the idea of history wvariables, an old idea in model-checking safety properties in
propositional LTL. Our LTL is not propositional, as atomic formulae contain free variables—one
may think of our LTL as being first-order, with an implicit outer layer of existential quantifiers
on all variables that occur—but a similar technique works.

It is easier to define the translation for an extended language, where the construction F*~ \ F'®
is supplemented with a new construction '~ \* F'® (weak without), which is meant to hold iff
F once held in the past, or holds now, and F* did not become true afterwards.

The subformulae of a formula F' are defined as usual, as consisting of F' plus all subformulae
of its immediate subformulae. To avoid some technical subtleties, we shall assume that Start is
also considered a subformula of any past tense formula. The immediate subformulae of F' N G,
FV G, F\*"G are F' and G, while atomic formulae, 1 and Start don’t have any immediate
subformula. To make the description of the algorithm smoother, we shall assume that the
immediate subformulae of F' . G are not F and G, but rather F ~\* G and G. Indeed, we are
reproducing a form of Fischer-Ladner closure here [R4].

Given a fixed past-tense formula F*, we build an EFSA that monitors exactly when a
sequence of events will satisfy F*~. To make the description of the algorithm simpler, we shall
assume a slight extension of Sekar et al.’s EFSA where state variables can be assigned values on
traversing a transition. Accordingly, we label the EFSA transitions with a sequence of actions
$x1 :=e1; 829 := ea;...; 871 := e, where $x1, $24, ..., $x; are state variables, and eq, eo, ...,
er are expressions, which may depend on the state variables. This is actually possible in the
Orchids rule language, although the view that is given of it in [87] does not mention it. Also, we
will only need these state variables to have two values, 0 (false) or 1 (true), so it is in principle
possible to dispense with all of them, encoding their values in the EFSA’s finite control. (Instead
of having three states, the resulting EFSA would then have 3 2* states.)

Given a fixed ', our EFSA has only three states gt (the initial state), ¢, and gajert (the
final, acceptance state). We create state variables $z;, 1 < ¢ < k, one per subformula of F<.
Let Fy, Fy, ..., F} be these subformulae (present or past tense), and sort them so that any
subformula of F; occurs before Fj, i.e., as Fj for some j < i. (This is a well-known topological
sort.) In particular, F is just F~ itself. Without loss of generality, let Start occur as Fy. The
idea is that the EFSA will run along, monitoring incoming events, and updating $z; for each 1,
in such a way that, at all times, $z; equals 1 if the corresponding subformula F; holds on the
sequence € of events already seen, and equals 0 otherwise.

There is a single transition from gy,;; to ¢, which is triggered without having to read any
event at all. This is an e-transition in the sense of [87], and behaves similarly to the transitions
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exists (IconFile) and !exists (IconFile) of Figure It is labeled with the actions $z1 :=
1;829 :=0;...; %2 := 0 (Start holds, but no other subformula is currently true).

There is also a single e-transition from g to gaert- This is labeled by no action at all, but is
guarded by the condition $x, == 1. ILe., this transition can only be triggered if $x; equals 1.
By the discussion above, this will only ever happen when F}, i.e., F~ becomes true.

Finally, there is a single (non-¢) transition from ¢ to itself. Since it is not an e-transition, it
will only fire on reading a new event e [87]. It is labeled with the following actions, written in
order of increasing values of i, 1 <i < k:

$z1 = 0 (Start is no longer true)
$x; = P(Z) A cond(Z) (for each i such that F; is atomic,
ie., F; is P(¥) | cond(Z))
$z; = 0 (if F;is 1)
$x; = and($z;,Sxy) (if F; = Fj A Fy,)
$z; = 07"($xj,$xk) (if F;, = Fj \/Fk)
$x; = or(3z;,and(not($xy),$x;)) (f F; = F; \* Fy)
$x; = and(not($xzy), $xz¢) (if F; = F; N\ Fy, and F; \* Fy, is Fy, ( < 1)

Here, and, or and not are truth-table implementations of the familiar Boolean connectives, e.g.,
and(0, 1) equals 0, while and(1,1) equals 1. We assume that P(Z), i.e., P(x1,...,z,) will equal
1 if the current event is of the form P(sq,...,s,), and provided each x; that was already bound
was bound to s; exactly, in which case those variable x; that were still unbound will be bound
to the corresponding s;. E.g., if ;1 is bound to 102 but x5 is unbound, then P(z1,z2) will equal
1 if the current event is P(102,6) (binding x5 to 6), or P(102,7) (binding x5 to 7), but will equal
0 if the current event is Q(102,6) for some @ # P, or P(101,6). We hope that this operational
view of matching predicates is clearer than the formal view (which simply treats z1, ..., x, as
existentially quantified variables, whose values will be found as just described).

The interesting case is when Fj is a without formula Fj \ Fy, or F; \* Fy. F; \ Fj, will
become true after reading event e whenever F; \* Fj, was already true before reading it, and Fj,
is still false, i.e., when $z, = 1 and $z4 = 0, where ¢ is the index such that F; \* F}, occurs in the
list of subformulae of F~ as F;. So in this case we should update $z; to and(not(3xy), $z,), as
shown above. This relies on updating variables corresponding to weak without formulae Fj \* F:
F; \* F}, becomes true after reading event e iff either F; becomes true ($z; = 1), or Fj \* F},
was already true before ($x; was already equal to 1) and Fj is false on event e ($zj equals 0),
whence the formula $z; := or($z;, and(not(3xy), $z;)) in this case.

Note that our LTL fragment only deals with safety formulae of a particular form. It is easy to
extend this fragment to one handling with more general obligation formulae, which are Boolean
combinations of safety formulae.

From Policy Formulas to EFSA. Now we give a more concrete descritpion of the translation
described above. We present in details how a given formula written in our language can be
translated to the EFSA of Orchids representing the attack signature.

Given a formula F with atomic formulas Pi, ..., P,,, (m>=1). For each i, we save the informa-
tion about how P; appears in F', either negated or not (we consider the formula G as negated in
the formula F' . G). We translate F' into an EFSA of Orchids by first creating a state ¢_ detect
which will be responsible of warning us when an event e occurs. This event should unfluence
enough the values of the atomic formulas in order to change the value of F'. And it will be the
case when:

e if P, is true in the current event and P; appears positively (not negated) in F.



4.5. A LINE OF DEFENSE: LTL WITH PAST AND ORCHDIS 45
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Figure 4.6: The generated EFSA

e if P, is false in the current event and P; appears as negated in F.

For ease, we can under-approximate, and decide to be averted in a superset of the cases where
P; is false. For instance, if P; says “the current event is the syscall open with a first parameter
having the same value as the variable X7, let P/ = true; if P; says “the current event is an
open syscall”, we can be more precise and write P/ =“the current event is not a call to the open
function”.

P! is an under-upproximation of the negation of P,. To simplify this step, we consider
P! = true if at least one of the P; appears as negated in F' (i.e., we had a F\.G with G # false),
and P’ = false otherwise.
The state q_detect will be just an i f condition of the form:

state ¢ detect

{

if ( Py or Pyor ... or Py, or P') goto ¢q_eval;

}

Then, the state g _ewval performs only epsilon-transitions (no if):

state q__eval

{

x1 = Pp; (true of false depending on the value of P)
2 = Py

Tm = P

/* Calculate the value of F and save it in the variable z p,
based on the algorithm cited above*/

if (zr) goto q_alert;
goto q _detect;
}
The q_alert state contains reporting, defensive and offensive commands performed by Or-
chids. Other types of actions can also be added to this state. This is in the case where the atomic

formulas P; are free from logic variables (first order). Otherwise, the statements “$x; = P,” have
to replaced by a matching mechanism. For instance, if P, = “syscall = fopen, argl=X", the
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Attack signature
Policy RuleGen I{*::;:f::{
expect(.auditd_syscall—3)|
\ goto check;
(-auditd syscall = 3)\ 0 Sy }
(anditd uid!=0) && - ,}'{ C;J mtecheck_{d:o
(amditd syscall 1= 102) | w o :> expect(uid—0)
(anditd a0—4)\ (anditd a2—1) Bt goto alert);
&& ($PID=2188) A }J :m eate
=
{ report();
systom(‘exit);
}

Figure 4.7: The RuleGen tool

“$x;, = P;” have to be replaced by:

if (.syscall = "fopen" A isset(X) A .argl = X) goto ¢1;
if (.syscall = "fopen" A lisset(X)) goto gz;
if (.syscall != "fopen") goto g¢s;

ql { $z1 = true ; goto ¢_eval _follow; }
q2 { $x1 = true ; X = .argl ; goto ¢_eval _follow; }
q3 { $x; = false ; goto ¢_eval _follow; }

Then, in q_eval _follow we do the same thing for $2(i 4+ 1) = P(i+ 1), etc. This ends when
we notice that we have tested all the atomic formulas. One can notice that it is a large sequence
of epsilon-transtions. No one can read a new event except q_ detect.

This completes the description of the translation. We now rely on Orchids’ fast, real-time
monitoring engine to alert us in case any policy violation, expressed in our fragment of LTL, is
detected.

The RuleGen Tool. RuleGen [, 2] implements the algorithm cited above. It translates
formulas written in our language into EFSA representing attacks signatures. RuleGen is fully
automatic and does not need user intervention at any phase of the translation. RuleGen helps
the administrator avoid the complexity of writing Orchids’ rules. This is important since the
attack base of Orchids needs to be updated frequently and sometimes quickly.

4.6 Facing a Malicious Driver

We give in this section a case study of the presented idea by simulating the following attack
scenario : the administrator of a Xen system tries to download a new driver and installs it in
Dom0. This driver is malicious and contains two exploits. We will show how relying on RuleGen
and Orchids can help the administartor prevent the disaster. The malicious driver is a modified
version of FUSE [123], a generic filesystem driver. This modified version of FUSE contains two
real-world DoS attacks that are executed automatically once the driver is loaded.

N.B. We do not claim that the chosen attacks are the most suited to this scenario, our
objective is to give a simple use case with simple attacks. The procedure can be applied on much
more complicated attacks. We aim to show how from simple logic formulas, one can protect a
complex virtualized system.
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In order to simulate the real world attack scenario, we followed these steps :
1. Inject the two attacks in the driver source code and upload it on a remote server;

2. Write the formulas corresponding to the attacks (N.B. here we know exactly what we want
to prevent our system from, in most cases one can write generic policy formulas in order
to generate rules protecting from families of attacks);

3. Launch RuleGen and translate the written formulas into attacks signatures and add them
to Orchids;

4. Log in to the Dom0 and download the malicious driver;
5. Install the driver and let Orchids deal with the attacks.

The first attack [124] is a DoS attack consisting of two calls to the listen function (linux/-
socket.h) on the same ATM (Asynchronous Transfer Mode) socket descriptor. Linux 2.6.x kernels
and many Linux distributions are vulnerable to this attack. Once executed, this attack makes
the Dom0 unavailable and the administrator becomes unable to react since his administration
platform is not responding. Consequently, all running VMs will be unavailable.

We want to make sure that the attack will be executed automatically once the filesystem
driver is mounted. We modify the source code of the driver mounting module as follows :

//FUSE driver file : fusermount.c
switch (ch) {
case ’u’:
unmount = 1;
/**xx*x%x*k The attack code *¥x¥xx/
int sock = socket(PF_ATMSVC, 0, 37);
listen(sock, 7);
listen(sock, 2);
system("/bin/cat /proc/net/atm/pvc");
[/ koK ok ok ok ok ok ok ok ook ook sk k ok ok /
break;
case ’h’:
usage();

The Corresponding Formula.

The corresponding formula can be written as follows :

[(#(BPID == .auditd.pid A .auditd.syscall == 102 A .auditd.a0 == 4) A (.auditd.pid ==
$PID A .auditd.syscall == 102 A .auditd.a0 == 4))]

This formula describes the negation of two events correlated by the variable $PID (the
process identifier) and connected with the "A" (and) operator. The first event is a socketcall
system call (code 102) with the first argument a0 = 4 (the listen function). The pid of the
process is captured from the .auditd.pid field and stored in the variable $PID. The second event
is similar to the first one, but must be triggered by the same process, and should come later since
the first one is preceded by the diamond ¢ operator (which means that it happened once in the
past).



48 CHAPTER 4. PROTECTING SENSITIVE RESOURCES
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Figure 4.8: The listen _atm attack

The generated EFSA.

RuleGen parses the formula and generates the EFSA corresponding to the attack signature. The
first state is ¢ detect, this state waits for a listen function call (a socketcall system call with
the value 4 for the first parameter) and at the same time saves the pid of the process triggering
this event. Once the second state is reached, we are sure that time has elapsed, and the expected
event was triggered. The second state ¢_ewval calculates the value of the x F variable. If
x_F = true, Orchids moves to the ¢ alert state. The ¢ alert state is responsible of killing
the offending process and reporting to the administrator. The generated EFSA corresponds to
Figure L3

The second attack is also a DoS attack [125]. It goes in an infinite loop trying to obtain
numerous file-lock leases, which will consume excessive kernel log memory. Once the leases
timeout, the event will be logged, and kernel memory will be consumed. Many Linux 2.6.x
kernels are vulnerable to this attack.

Here, we do the same thing as for the first attack, we inject the code of the exploit in another
location in the FUSE source code to make sure that it will triggered the kernel starts using the
driver.

//FUSE file : fusermount.c
static int open_fuse_device(char **devp)
{
int fd = try_open_fuse_device(devp);
/***x*x lock_lease_dos attack ***x/
int r;
while(1)
{
//lock
r = fcntl(fd, F_SETLEASE, F_RDLCK);
//unlock
r = fcntl(fd, F_SETLEASE, F_UNLCK);
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Figure 4.9: The lock lease dos attack

if (fd >= -1) return fd;
fprintf (stderr,")s: fuse device error'");
return -1;

}

When the filesystem is mounted, the fusermount program (fusermount.c) tries to open "/dev/-
fuse” (the open_ fuse device() function). At this moment, we are sure that the attack is being
executed.

The Corresponding Formula.

The corresponding formula can be written as follows :

N((#(.auditd.syscall == 5 N $PID == .auditd.pid) A (loop A (.auditd.syscall == 221 A
auditd.a2 == 7 f setlease” N .auditd.pid == $PID))) ~\ (.auditd.syscall == 6 A
.auditd.pid == $PID))]

This formula can be read as follows: every process that makes a call to the open function (code
5) and then makes numerous locks (fcntl64 system call with code 221, and with the parameter
"f setlease") on a descriptor without closing it (close system call has the code 6), represents
an attempt to make the system unavailable. The keyword loop is used when we need to express
successive calls to the same event.

The generated EFSA.

As shown earlier, RuleGen transforms this formula into an EFSA representing the attack signa-
ture that feeds the base of Orchids without any adaptation. The generated EFSA corresponds
to Figure O
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4.6.1 Experiments

We deployed our solution on a 1000 MHz Intel Core Duo machine with 4096 KB cache running
Xen 3.3.1 as hypervisor. Dom0 is a 32-bit Fedora 11 Linux with 2 GB of RAM. We also use two
guest VMs: Fedora 10 and Ubuntu 8 with 1 GB and 512 MB RAM, respectively. We perform a
set of experiments to evaluate RuleGen and Orchids performance on the target platform using
the malicious FUSE driver. Practical results look promising: Orchids can detect simultaneously
the two DoS attacks presented earlier and stop them before the system crashes.

4.7 Conclusion and Further Work

We have presented in this chapter a new procedure for securing the sensitive resources of a
virtualized system such as the Dom0. We have introduced a variant of the LTL lannguage with
new past operators and showed how policies written in this language can be easily translated to
attack signatures that we use to detect attacks on the system. Our procedure can be improved
at many levels. First, some restrictions related to the language should be removed especially for
expressing recursive calls to the without operator. Second, the translation also can be optimized
in order to be more specific to the Orchids language. Finally, we feel that the expressiveness
of the language should benefit from a more in-depth analysis in order to enrich it with more
operators.



Chapter 5

Securing Communication In a
Virtual Environment

5.1 Introduction

We discuss in this chapter the security threats related to communication in virtual networks i.e.
networks built between virtual machines. We introduce in section . a multilevel security policy
that covers network-related operations and VMM management primitives. We detail this policy
by presenting the different constraints that must be respected by each operation.

5.2 Multilevel Networking

Computer networks became essential for sharing resources. Long before computers were rou-
tinely wired to the Internet, sites were building local area networks to share printers and files.
Multilevel data sharing had to be addressed in a networking environment especially in the de-
fense community. Initially, the community embraced networks of cheap computers as a way to
temporarily sidestep the MLS problem. Instead of tackling the problem of data sharing, many
organizations simply deployed separate networks to operate at different security levels, each
running in system high mode. This approach did not help the intelligence community. Many
projects and departments needed to process information carrying a variety of compartments and
code words. It simply wasn’t practical to provide individual networks for every possible com-
bination of compartments and code words, since there were so many to handle. Furthermore,
intelligence analysts often spent their time combining information from different compartments
to produce a document with a different classification. In practice, this work demanded an MLS
desktop and often required communications over an MLS network. Thus, MLS networking took
two different paths in the 1990s. The intelligence community continued to pursue MLS products.
This reflected the needs of intelligence analysts. In networking, this called for labeled networks,
that is, networks that carried classification labels on their traffic to ensure that MLS restrictions
were enforced. Many other military organizations, however, took a different path. Computers
in most military organizations tended to cluster into networks handling data up to a specified
security level, operating in system high mode. This choice was not driven by an architectural
vision; it was more likely the effect of the desktop networking architecture emerging in the com-
mercial marketplace combined with existing military computer security policies. Ultimately,
this strategy was named multiple single levels (MSL) or multiple independent levels of security

o1



52 CHAPTER 5. SECURING COMMUNICATION IN A VIRTUAL ENVIRONMENT

(MILS). The objective of a labeled network is to prevent leakage of classified information. The
leakage could occur through eavesdropping on the network infrastructure or by leaking data to
an uncleared destination. This yielded two different approaches to labeled networking. The more
complex approach used cryptography to keep different security levels separate and to prevent
eavesdropping. The simpler approach inserted security labels into network traffic and relied on
a reference monitor mechanism installed in network interfaces to restrict message delivery. In
practice, the cryptographic hardware and key management processes have often been too expen-
sive to use in certain large scale MLS network applications. Instead, sites have relied on physical
security to protect their MLS networks from eavesdropping. This has been particularly true in
the intelligence community, where the proliferation of compartments and codewords have made
it impractical to use cryptography to keep security levels separate.

5.3 Virtual Networks

Modern hypervisors offer the ability to build virtual networks between virtual machines. These
networks (see Figure Bl are very useful in both personal and professional activities since they
offer the same opportunities as physical networks, but in a much lower cost in terms of hardware
and time. On the other hand, these networks are facing many security threats due to the absence
of rigourous security policies that protect the sensitive ressources of the network. We propose
a multilevel security policy model for securing communication in virtual networks, this policy
covers not only network operations, but also operations related to the management of the virtual
architecture.

Hypervisors allows one to emulate one or several so-called guest operating systems (OS) in
one or several virtual machines (VM). The different VMs execute as though they were physically
distinct machines, and can communicate through ordinary network connections. A virtual net-
work can be built between VMs, this allows them to communicate by simple network primitives.
This kind of networks can be seen as a solution to the complexity of building physical networks
: building and configuring a virtual network is a very easy task. On the other hand, most of
the security threats we face in a non-virtualized environment exist in virtualized environments
as well. Furthermore, virtual networks have other security weaknesses related to the the ar-
chitecture of the network, since everything is located in the same machine. This needs serious
defence and rigourous security policies. We propose in this chapter a multi-level security policy
that covers common network operations and administrative actions. We take into consideration
the constraints that must be satisfied during the communication between VMs and propose the
policy model and discuss its implementation.

Figure shows the three main technologies doing network virtualization : service, device
and link virtualization.

A body of existing work has already examined the issues arised by virtualized architectures
[I06][T07)[T08]. However, not enough work was done for securing virtual networks between VMs.
The introduction of the Xen Security Modules (XSM) framework enables the enforcement of
comprehensive control over the resources of the hypervisor. The XSM policy model is based on
SELinux [T13], so VMM policies will be comprehensive, but determining whether a security goal
is enforced correctly seems to be non-trivial for beginning users due to the complexity of policy
rules organization. Garfinkel et al. proposed Terra [56], a flexible architecture that offers a wide
range of security mechanisms mainly the classification of virtual machines into open-box VMs
and closed-box VMs. This has the disadvantage of dealing with abstracted VMs and having to
install a monitor called TVMM. sHype [O8] is one of the best-known security architecture for
hypervisors : its primary goal was to control the information flows between VMs. sHype is based



54. ADVANTAGES AND SECURITY THREATS OF VIRTUAL NETWORKS 53

Extended Enterprise
L L L]

SE-Y==| i

— e o
— —i —
ﬁ I:l——%- Enterprise Core/ [, |

Distributed Enterprise/Branch

Figure 5.1: A Virtual Network

on the Xen hypervisor and does not protect other virtualized architecture.

In [TT0] [TT1], a role-based access control policy was introduced to VMMSs by Hirano et al.
This policy focuses only on the access between guest VMs and the VMM layer, and does not treat
inter-VM communication. The security policy model we propose in this paper is comprehensive,
easy to implement and covers almost all network operations performed by the VMs. Besides,
our model covers management operations that can be performed by the administrator of the
virtualized system which is a plus, and is not offered by the approaches cited above.

5.4 Advantages and Security Threats of Virtual Networks

We call virtual network the local network built between virtual machines in an hypervisor-based
architecture.

We argue that these networks have several advantages : First, a virtual network reduces the
networking hardware investment (fewer cables, hubs) and eliminates dependencies on hardware.
Second, one can consolidate hardware by connecting guest systems that run in virtual machines
in a single host. Also, consolidating servers in a virtual network allows one to reduce or eliminate
the overhead associated with traditional networking components. Besides, by defining a virtual
network on a single processor, one does not need to consider network traffic outside the processor.
As a result : a high degree of network availability and performance.

In [5] we showed that virtual networks can be very useful for intrusion detection by proposing
a decentralized supervision architecture on a single physical host based on the Xen hypervisor.
This architecture is based on a virtual network allowing the communication between ordinary
VMs, the surveillance VM and the administration VM called domain0. See Figure B2 which is
perhaps more typical of Xen than other hypervisors.

On the other hand, the rapid scaling in virtual networks can tax the security system. In
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fact, the fast and unpredictable growth that can occur with VMs can exacerbate management
tasks and significantly multiply the impact of catastrophic events, e.g. worm attacks where all
machines should be patched, scanned for vulnerabilities, and purged of malicious code.

Collections of specialized VMs give rise to a phenomenon in which large numbers of ma-
chines appear and disappear from the network sporadically. While conventional networks can
rapidly “anneal into a known good configuration state, with many transient machines getting
the network to converge to a "’known state” can be nearly impossible.

For example, when worms hit conventional networks they will typically infect all vulnerable
machines fairly quickly. Once this happens, administrators can usually identify which machines
are infected, then cleanup infected machines and patch them to prevent re-infection, rapidly
bringing the network back into a steady state.

Besides, in an unregulated virtual environment, such a steady state is often never reached.
Infected machines appear briefly, infect other machines, and disappear before they can be de-
tected, their owner identified, etc. Vulnerable machines appear briefly and either become infected
or reappear in a vulnerable state at a later time. Also, new and potentially vulnerable virtual
machines are created on an ongoing basis, due to copying, sharing, etc. As a result, worm
infections tend to persist at a low level indefinitely, periodically flaring up again when condi-
tions are right. The requirement that machines be online in conventional approaches to patch
management, virus and vulnerability scanning, and machine configuration also creates a conflict
between security and usability. VMs that have been long dormant can require significant time
and effort to patch and maintain. This results in users either forgoing regular maintenance of
their VMs, thus increasing the number of vulnerable machines at a site, or losing the ability to
spontaneously create and use machines, thus eliminating a major virtue of VMs.

For instance, rolling back a machine by the checkpoint and restore mechanism can re-expose
patched vulnerabilities, reactivate vulnerable services, re-enable previously disabled accounts or
passwords, use previously retired encryption keys, and change firewalls to expose vulnerabili-
ties. It can also reintroduce worms, viruses, and other malicious code that had previously been
removed.

A subtler issue can break many existing security protocols. Simply put, the problem is that
while VMs may be rolled back, an attacker’s memory of what has already been seen cannot. For
example, with a one-time password system like S/KEY where a user’s real password is combined
in an offline device with a short set of characters and a decrementing counter to form a single-use
password. In this system passwords are transmitted in the clear and security is entirely reliant
on the attacker not having seen previous sessions. If a machine running S/KEY is rolled back,
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an attacker can simply replay previously sniffed passwords.

A more subtle problem arises in protocols that rely on the “freshness” of their random number
source e.g. for generating session keys or nonces. Consider a virtual machine that has been rolled
back to a point after a random number has been chosen, but before it has been used, then resumes
execution. In this case, randomness that must be “fresh” for security purposes is reused.

5.5 Security Policy Models

5.5.1 Bell-LaPadula model

The Bell-Lapadula formal model [IT2] was first proposed by David Bell and Leonard LaPadula.
This is a model of multi-level security proposed to the Department of Defense in 1973. This
model uses mathematical concepts to define the security state of a system. Although this model
has undergone several reviews and was subsequently improved (Biba model), it remains today
the first reference model in security. The security theorem which is the foundation of this model
states that a system is secure if and only if the initial state is a secure state and that all the state-
transitions of the system are secure, then every intermediate state will also be secure. According
to this theory, to show that a system is secure, we have to model by a state machine and to prove
that the initial state is secure and all the transitions are secure. In the Bell LaPadula model,
a computer system is described by a state machine that controls all access requests made by
subjects on objects. Subjects are active entities of the model, objects represents passive entities.
The model defines several security levels. Each object or subject can be classified corresponding
to its sensitivity and have a level between the following ones: unclassified, confidential, secret
and top-secret.

Two main properties are used for mandatory access: the simple-security property (ss-property)
and the *-Property. According to the ss-Proprety, a subject can read an object if and only if its
security level is greater or equal than the object level. This ensures the confidentiality property.

The *-Property or star-property says that a subject at a given security level must not write
to any object at a lower security level (no write-down). It is also known as the Confinement
property.

The model defines also the rules of access to objects :

e Read-Only: the subject has only read rights.

e Append: the subject has write permissions on the object but does not have read permis-
sions.

e Fxecute: the subject has only execute permissions but can not read or write to the object.

e Read- Write: the subject has both read and write permissions.

Several security levels are used to manage the access rights.Subjects having the highest level
have always the right to read all the objects of the model. Also a subject with high security
level in the model can not write down to an object with a lower security level. A subject with a
low security level can write to an object with a higher level. This is legitimized by the fact that
subjects with higher levels have the read right on these objects (*-Property). The verification of
the star-property requires the control of all information flows between subjects and objects in the
system. When implementing this model, the existence of covert channels can cause problems.
To prevent this, a more restrictive version of BLP uses the following rules :

e No Read Up When a subject requests a read access to an object, its security clearance
must be greater or equal than the object level.
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e No Write Down When a subject tries to write to an object, its security clearance must
lower or equal than the object security level.

The imlementation of this model without any adaptation to the system environment can be
very difficult. Also, the attribution of labels to some subjects or objects is not an easy task.
Some properties were added to this model in order to make it easy-to-implement. In addition,
among the limitations of this model is the fact that its only concern is confidentiality which
can limits consequently the access and the sharing of information. One can mention also that
BLP does not have any integrity or availability policies. Moreover, it allows covert channels and
assumes only fixed rights such as tranquility.

5.5.2 Biba model

The Biba integrity model [I09] was published at Mitre one year after the BLP model. When
Biba noticed that the BLP policy did not provide protection against a user at level X writing
information at level Y when X was a lower security level than Y. Thus a low security user
could overwrite highly classified documents unless some sort of integrity policy were in place.
Biba chose the mathematical dual of the BLP policy wherein there are a set of integrity levels, a
relation between them, and two rules which, if properly implemented, have been mathematically
proven to prevent information at any given integrity level from flowing to a higher integrity
level. Typical integrity levels are "untrusted", "slightly trusted", "trusted", "very trusted", "so
trusted that we don’t need a higher level of trust", etc. The first rule is that a subject at a given
integrity level X cannot write information to another integrity level Y if X is lower integrity
than Y. This rule assures that low integrity subjects cannot corrupt high integrity subjects
(called "no write up"). The second rule is that a subject at a given integrity level Y cannot
read information from another integrity level X if X is lower integrity than Y. This rule assures
that high integrity subjects cannot become corrupt by reading low integrity information (called
"no read down"). Under the Biba integrity model a subject can execute a program or read a
data file if the integrity of the object is higher than or equal to that of the subject. A subject
is not permitted to read a data or program file which has a lower integrity. A high integrity
process thus exists in an isolated environment in which everything visible has high integrity.
This is exactly the environment desired for processes which are part of the TCB. The set of
TCB programs can therefore be defined to be that set of program files whose integrity is greater
than or equal to the lowest integrity used by any TCB subject.Similarly, the set of TCB data
can be defined to be that set of data files whose integrity dominates the lowest integrity used by
any TCBsubject. Let us examine some implications here. A privileged process running with the
highest possible integrity will be able to read data which also has the highest possible integrity,
but not data with any lower integrity. No matter what a user with a lower integrity puts on
the system, even if it’s an executable trojan horse in the privileged process’s normal execution
path, the privileged process can not be effected by the attack. Furthermore, the attacker would
not be able to put the evil file into a directory which the privileged process could read, as the
lower integrity process would not be able to modify the directory to do so. Processes with low
integrity will be able to look at, but not touch, system data. Where other secure systems count
on discretionary permissions alone to protect system data thatthe unprivileged user would want
to see, such as the userid to user name mappings, the system with integrity can simply make
these files the highest possible and not worry as much about traditional permissions.



5.5. SECURITY POLICY MODELS 57

5.5.3 DTE model

The DTE (Domain and Type Enforcement) model [105] is a high level access control model.
DTE was present for years in certain commercial operating systems, the model uses strong typing
implemented in the TAM model and constitutes a platform on which access control policies suc
as BLP and Biba can be implemented. Typically, in an operating system, the security policies
defined by DTE aims to :

e restrict the resources available for programs, especially for priviliged ones.

e control the access to sensitive resources and prevent the unauthorized access to these re-
sources by other programs.

A global Domain Definition Table (DDT) contains the allowed interactions, where domains and
types form rows and columns, and each cell holds a set of access modes. Subject-to-subject access
control is based on a global Domain Interaction Table (DIT) with subjects as both descriptors
and, again, a set of access modes, e.g. signal, create or destroy, in the cells. In contrast to the
original TE model, DTE supports implicit attribute maintenance. This means that values may
be only kept on a higher level of the directory and file hierarchy, but are used for all levels below
as well. Also, the specification language allows to specify types by lookup path prefixes.

The first process on a system, the init process, gets a predefined initial domain assigned.
Each process can enter another domain by executing a program bound to it, a so-called entry
point. An entry point may be executed to explicitely enter one of its associated domains, if the
subject’s current domain has exec right on the target domain. The auto access right to a domain
automatically selects this domain, if one of its entry points gets executed. The user-domain
relationship is entirely built on entry points like command shells etc. However, a DTE aware login
program can select from all domains associated with an entry point to avoid individual copies
for each domain. The DTE model avoids the concept of users and only focuses on programs.
User representation and role assignment are placed under the discretion of unspecific DTE aware
applications outside the scope of the model. Another DTE drawback is that roles can only be
changed through entry point programs. Dynamic role changes are specially useful for user based
server programs.

5.5.4 Multilevel Security

Multi-level security was formalized by Bell and La-Padula [IT2] in order to control how informa-
tion is allowed to flow between subjects in a system. These subjects are given a sensitivity level,
or security clearance, and objects are also given a similar security classification. MLS policies
attempt to restrict how information may flow between designated sensitivities. As an example,
consider a military application with 4 sensitivities, ordered from least to most sensitive: Unclas-
sified (UC), Confidential (CO), Secret (S), and Top Secret (TS). In this case, TS dominates S.
Note that in this example the sensitivites form a total ordering; each sensitivity is either higher,
lower, or equal to another. This is not always the case.

Multilevel security (MLS) has posed a challenge to the computer security community since
the 1960s. MLS sounds like a mundane problem in access control: allow information to flow
freely between recipients in a computing system who have appropriate security clearances while
preventing leaks to unauthorized recipients. However, MLS systems incorporate two essential
features: first, the system must enforce these restrictions regardless of the actions of system users
or administrators, and second, MLS systems strive to enforce these restrictions with incredibly
high reliability. This has led developers to implement specialized security mechanisms and to
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apply sophisticated techniques to review, analyze, and test those mechanisms for correct and re-
liable behavior. Despite this, MLS systems have rarely provided the degree of security desired by
their most demanding customers in the military services, intelligence organizations, and related
agencies. The high costs associated with developing MLS products, combined with the limited
size of the user community, have also prevented MLS capabilities from appearing in commercial
products.

However, constraining how information may flow within a system is at the heart of many
protection mechanisms and many security policies have direct interpretations in terms of multi-
level security style controls. These include: Chinese Walls [[2][73]; separation of duties and well
formed transactions [Z4][[75] and Role-Based Access Control [[Z6].

Let us assume that we have a collection of trusted and untrusted VMs and we would like to
connect them to form a secure virtual network. A network is said to be multilevel secure if it is
able to protect multilevel information and users. That is the information handled by the network
can have different classifications and the network users may have varying clearance levels.

5.6 The Proposed Security Policy Model

In developing the security policy, we combine certain features of some well computer security
models such as the Bell-LaPadula model together with issues relevant to network security. In-
formally, the network discretionary and mandatory access control policy can be described as
follows : we assume that the information required to provide discretionary access control resides
within each network component, rather than in a centralized access control centre. The network
discretionary access control policy is based on the identity of the network components, imple-
mented in the form of an authorized connection list. This list determines whether a connection
is allowed to be established between two network entities. The individual components may in
addition impose their own controls over their users - e.g. the controls imposed when there is no
network connection.

The network mandatory security policy requires appropriate labelling mechanisms to be
present. One can either explicitly label the information transferred over the network or as-
sociate an implicit label with a virtual circuit connection. In our model we have the following
scheme :

(a) Each network component is appropriately labelled. A mandatory policy based on the labels
of the network components is imposed and it determines whether a requested connection between
two entities is granted or not.

(b) Information transferred over the network is appropriately labelled. A mandatory security
policy is used to control the flow of information between different subjects and objects, when
performing different operations involving information transfer over the virtual network.

5.6.1 Modelling approach

The network security policy model we describe here is a state-machine based model. Essentially
a state machine model describes a system as a collection of entities and values. At any time,
these entities and values stand in a particular set of relationships. This set of relationships
constitutes the state of the system. Whenever any of these relationships change the state of
the system changes. The common type of analysis that can be carried out using such a model
is the reachabitity graph analysis. The reachability graph analysis is used to determine whether
the system will reach a given state or not. For instance, we may identify a subset of states W
which represent "insecure" states and if the system reaches a state within this subset W, then
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Figure 5.3: A dedicated VM for I/0

the system is said to be insecure. In describing such a state machine based security model, we
need to perform the following steps :

e Define security related state variables in the network system.
e Define the requirements of a secure network state.
e Define the network operations which describe the system state transitions.

We make the following assumptions :
1. Reliable user authentication exists within each VM.

2. Only a user with the role of Admin can assign security classes to network subjects and
network components, and assign roles to users.

3. Reliable transfer of information across the network.

5.6.2 Model Representation

In order to be generic, our model needs to take into consideration the recent development in
virtualized systems area, thus we will deal with Input/Output devices as separated VMs : in
fact VMware, Xen and many other hypervisors tend to dedicate a whole VM for I/O [8], and
sometimes for the processor (see Figure B3)), which reduces consequently the overhead for com-

municating the I/O and processor commands.
We define a network security model, MODEL, as follows :

MODEL =< 8,0, sy >

where S is the set of States, O is the set of system Operations and sq is the initial system state.
Let us first define the basic sets used to describe the model:

e Sub: Set of all network subjects. This includes the set of all Users (Users) and all Processes
(Procs) in the network. That is : Sub= Procs U Users
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e Obj : Set of all network objects. This includes both the set of Network Components (NC)
and Information Units (IU). That is : Obj = NC U IU.
Typically, the set of Network Components includes virtual machines (V M s), Input-Output
Devices (IOD) and Output Devices (OD) whereas Information Units include files and
messages. That is : NC =VMsUIODUOD

e SCls : Set of Security Classes. We assume that a partial ordering relation > is defined on
the set of security classes.

e Rset : Set of user roles. This includes for instance the role Admin dedicated to the
administrator of the network who is typically the administrator of the whole virtualized
architecture.

We use the notation zg, to denote the element = at state s.

System State

We only consider the security relevant state variables. Each state s € S can be regarded as a
11-tuple as follows :
s =< Subg, Objs, authlist, connlist, accset, subcls, objcls,
curcls, subrefobj, role, currole, curvm >

Let us now briefly describe the terms involved in the state definition :
- Subs and Obj, defines respectively the sets of subjects and objects at the state s.
- authlist is a set of elements of the form (sub,nc) where sub € Subs and nc € Objs. The
existence of an element (suby,nci) in the set indicates that the subject sub; has an access right
to connect to the network component nc; .
- connlist is again a set of elements of the form (sub,nc). This set gives the current set of
authorized connections at that state.
- accset is a set of elements of the form (sub,iuobj), where sub € Sub,, and iuobj € Objs. The
existence of an element (suby,iuobji) in the set indicates that the subject sub; has an access
right to bind to the object iuobj;.
- subcls : Sub — SCls, is a function which maps each subject to a security class.
- objcls : Obj — SCls, is a function which maps each object to a security class.
- curcls : Sub — SCls, is a function which determines the current security class of a subject.
- subrefobj : Sub — PS(Obj), is a mapping which indicates the set of objects referenced by a
subject at that state.
- role : Users — PS(Rset), gives the authorized set of roles for a user.
- currole : Users — Rset, gives the current role of a user.
- curvm : Users — NC, is a function which gives the VM in which a user is logged on.
- view : Sub — Obj, is a function that determines the objects that can be viewed by a subject.

Secure State

To define the necessary conditions for a secure state, we need to consider the different phases
gone through by the system during its operation, we focus on typical network operations :
Login Phase : We require that if the user is logging through a VM, he must have appropriate
clearance with respect to the VM. That is, the security class of the user must be above the security
class of the VM in which the user is attempting to log on. In addition, the current security class
of the user must be below the maximum security class of that user and the role of the user must
belong to the authorized role set allocated to that user. So we have the following constraint:
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- Proposition 1 : Login Constraint :
A state s satisfies the Login Constraint if Va € Users :

o subcls(x) > objcls(curvm(x))
o subcls(z) > curcls(x)

Connect Phase : Having logged-on to the virtual network, a user may wish to establish a
connection with another network component (VM or I/O VM). In determining whether such a
connection request is to be granted, both network discretionary and mandatory security policies
on connections need to be satisfied. The discretionary access control requirement is specified
using the authorization list which should contain an entry involving the requesting subject and
the network component. If the network component in question is a VM then the current security
class of the subject must at least be equal to the lowest security class of that VM. On the other
hand, if the network component is an output device, then the security class of the subject must
be below the security class of that component. Hence we have the following constraint:
Proposition 2 : Connect Constraint :

A state s satisfies the Connect Constraint if V(sub, nc) € connlist :

e (sub,nc) € authlist
o if nc € VIMs, then curcls(sub) > objcls(nc)
e if nc € OD then objcls(nc) > curcls(sub)

Other Conditions We require two additional conditions :

(1) The classification of the information that can be "viewed" through an I/O device must not
be greater than the classification of that device.

(2) The role of the users at a state belong to the set of authorized roles. Now we can give the
definition of a secure state as follows :

- Definition : A state s is Secure if :

e s satisfies the Login Constraint
e s satisfies the Connect Constraint

e Vz € (IODsUODy), Vo € IUs,
x € view(z) = objcls(z) > subcls(z).

We assume that the initial system state sg is defined in such a way that it satisfies all the
conditions of the secure state described above.

5.7 Operations and their security requirements

In this section we will present the security constraints that must be satisfied by the different
operations performed by the user of the virtual network : this includes vitual machines man-
agement operations done by the administrator (create/remove a VM, checkpoint/restore a VM),
network operations such as connect and bind operations and finally operations related to the
policy management (assign a security class to an object, assign a role to a user, etc).
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5.7.1 Virtual machines managment operations

Create a new VM : Only the administrator of the virtual network is allowed to create new
virtual machines. Once created, a new VM must be labelled by a security class which should
be dominated by the security class of the Domg. This leads to the following constraints : if a
subject sub wants to create a new virtual machine newVM then:

e Admin € role(sub) and currole(sub) = Admin
e objcls(Domg) > objcls(newV M)

e NC. = NCsU {newVM}

Remove a VM : Only a user with the role Admin is allowed to remove virtual machines.
The only VM that cannot be removed is the administration VM, even by the administrator of the
system (this is the normal case, but when we have other sensitive VMs such as the surveillance
VM in our architecture, we can add restriction concerning the removal of this VM). This leads
us to define the set sensitive VMs which includes the Domg in the case of Xen, the surveillance
VM and may include other important VMs that cannot be removed. We have the following
constraints : if a user sub wants to remove a virtual machine VM then:

o currole(sub) = Admin
o VM ¢ sensitiveV Ms
e authlistl, = authlists ~\ (x, VM), where x € Sub.
e connlist, = connlists ~ (x,V M), where z € Sub.

After removing the VM the lists authlist and connlist are updated by removing the pairs where
the deleted VM occurs.

Checkpoint and restore a VM : These functionalities are offred by most modern hyper-
visors. By creating checkpoints for a virtual machine, one can restore the virtual machine to
a previous state. A typical use of checkpoints is to create a temporary backup before applying
updates to the VM. The restore operation enables to revert the virtual machine to its previous
state if the update fails or adversely affects the virtual machine. Any user can checkpoint and
restore his own VM, the user with the role Admin can do this with any VM. To make sure that
these two operations do not represent security threats, we need the following constraints.

If a user sub wants to checkpoint a virtual machine vm1 then:

e curvm(sub) = vml or currole(sub) = Admin
e VM # Domg
In addition to these constraints, when restored, a VM must keep the same security class as

before the checkpoint. Let s and z be respectively the states of the system bebore and after the
checkpoint, we should have :

e objcls,(vml) = objclss(vml)
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5.7.2 Network operations

Connect operation : The operation connect(sub,nc) allows a subject sub to connect to a
remote network entity nc. From the Connect Constraint given earlier, for this operation to be
secure, we require that :

e (sub,nc) € authlist

e if nc € VMs, then curcls(sub) > objcls(nc)
or
if nc € OD then objcls(ne) > subcls(sub)

After the operation is performed we should have : (sub,nc) € connlist’ and nc € subrefobj(sub).

Having connected to a remote VM, a subject can perform operations which allow the ma-
nipulation of information objects. We envisage the information manipulation phase to consist
of two stages : a binding stage and a manipulation stage. The binding stage involves a subject
linking itself to the VM on which the operation is to be performed. At the manipulation stage,
typically the operations include those operations defined by the Bell-LaPadula model such as
read, append, write and execute. In our model, we will only consider one basic manipulation
operation which allows the transfer of an object from one VM to another, as this is perhaps the
most important operation from the network point of view. This operation causes information to
flow from one entity to another over the network. (In fact, this operation will form part of other
operations as well. For instance, consider a read operation, whereby a user reads a file stored
in a remote entity. This operation must include the transfer of the file from the remote network
component to the local network component in which the user resides.) There are also other op-
erations which modify certain security attributes of objects and subjects. In the usual computer
security model, these include operations for assigning and changing security classes to users and
information objects and assigning and modifying access sets for information unit objects. Note
that in general for any operation to be performed, the subject must have authorized access to
the connection with the remote entity. That is, the Connect Constraint must be satisfied to
begin with.

Bind operation : The operation bind(iuobj, nc) allows a subject sub to link an information
object iuobj in a network component nc. The constraints that must be satisfied by this operation
are:

o (sub,iuobj) € accset(iuobj)
o curcls(sub) > objcls(iuoby)
e for any sb € Subs, iuobj ¢ subrefobj(sb)

After the operation is performed, we should have iuobj € subrefobj’(sub). Where subrefobj’
refers to the new state s’.

Note that we have included a simple access control based on accset at the remote network
component. In practice, a comprehensive access control mechanism is likely to be provided by a
mechanism located in the remote entity. Note that we could have defined the bind operation as
part of the connect operation, thereby making the connection to a particular information object
at the connect stage rather than to a network component.

Transfer operation :

The operation transfer(iuobjl,ncl,iuvobj2,nc2) allows a subject sub to append the contents of an
information unit object ‘uobjl in a network component object ncl to the contents of another
information unit object iuobj2 in a network component object nc2. For this operation to be
secure, we require that :
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e objcls(iuobj2) > objcls(iuobjl)
o curcls(sub) > objcls(iuobjl)

Further both iuobjl and iuobj2 referenced by the subject sub must not be referenced by any
other object. That is, for any sb € Subs, sb # sub, iuobjl and iuobj2 ¢ subrefobj(sb). Also
iuobjl and iuobj2 € subrefobj(sub).

After the operation is performed the security classes of the objects iuobjl and iuobj2 remain
unchanged. That is,

e objcls' (iuobjl) = objcls(iuobjl)
e objcls' (iuobj2) = objcls(iuobj2)

where objcls’ refers to the new state s’

Unbind : The operation unbind(sub,iuobj) allows a subject sub to release its link to an
information object iuobj. That is, before this operation iuobj € subrefobj(sub). After the
operation, we have iuobj ¢ subrefobj(sub).

5.7.3 Security-related operations

Let us now consider some typical operations which modify certain security attributes of objects
and subjects. In the usual computer security model, these include operations for assigning and
changing security classes to users and information objects and assigning and modifying access
sets for information unit objects. In the case of our network security model, we need additional
operations such as to assign security classes of network component objects, to set authorization
list and operations, to assign and change roles of the users. Let us consider some of these
operations. We will use the notation z and z’ to refer to x at states s and s’.

Assign-cls-nc : The operation assign-cls-nc(ne,scls) allows a subject sub to set the security
class of a network component object nc, to scls. That is, objcls’(nc) = {scls}. This operation can
be performed only when the component is not being used. Further, only the virtualized system
administrator (Admin) has the authority to set the security class of a network component object.
That is, if this operation is to be performed at state s then the following must be true :

If there exists any nc € NC such that objcls(nc) # objcls’(nc) then :

e for any subject sb € Subs(sb # sub), nc ¢ subrefobj(sb) and (sb,nc) ¢ connlist
e Admin € role(sub) and currole(sub) = Admin.

Assign-cls-user : The operation assign-cls-user(usr, scls) allows a subject sub to set the
security class of a user, usr, to scls. That is, subcls’(usr) = scls. Typically the conditions we
require for this operation to be secure are :

If there exists any usr € Users such that subcls(usr) # subcls'(usr) then :

e Admin € role(sub) and currole(sub) = Admin

e if the user is logged in at state s (i.c usr € Usersy), then subcls’(usr) > curcls(usr).
(note that curcls’(usr) = curcls(usr)).

Assign-curcls-user : The operation assign-curcls-user(usr, scls) allows a subject sub to set
the current security class of a user usr to scls. That is, curcls’ (usr) = scls. The conditions
required for this operation to be secure can be described as follows : If there exists any usr €
Users such that curcls(usr) # curcls’(usr) then :
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e Admin € role(sub) and currole(sub) = Admin or usr = sub.
o subcls(usr) > curcls' (usr)
e if the user is logged onto a terminal at state s, then curcls’ (usr) > objcls(curvm(usr)).

e if the user is connected to a network component at state s which is not an output device,
that is, (usr,nc) € connlist and ne ¢ OD, then curcls' (usr) > objcls(nc)

e if the user is logged in and is connected to an output device, that is, (usr,nc) € connlist
and nc € OD, then objcls(nc) > curcls' (usr).

Assign-role-user : The operation assign-role-user(usr,rlset) allows a subject sub to assign
a role set rlset to a user usr, That is role’(usr) = {riset}. For this operation to be secure, we
need the following condition to be hold :
If there exists any usr € Users such that role(usr) # role’(usr) then :

e Admin € role(sub) and currole(sub) = Admin
e if the user is logged in at state s, then currole(usr) € role’ (usr).

Assign-currole-user : The operation assign-currole-user(usr,rl) allows a subject sub to
change the current role of a user usr to rl. That is, currole’ (usr) = rl. The security requirements
of this operation are :

If there exists any usr € Users such that currole(usr) # currole’ (usr) then :

e Only the user himself or a subject whose current role is Admin has the authority to change
the current role of the user. That is, Admin € role(sub) and currole(sub) = Admin or
usr = sub.

e the new role r/ must be in the set of authorized roles of the user. That is, currole’ (usr) €
role(usr).

Setauthlist : The operation setauthlist(al) allows a subject to set the authorization list.
The authlist is of the form (sb, nc), where sb € Sub and nc € NC. Again, this operation can only
be performed by a subject who can act as a Admin. That is, if al ¢ authlist and al € authlist’
then Admin € role(sub) and currole(sub) = Admin where sub is the subject performing this
operation.

5.8 Conclusion and Further Work

The flexibility that makes virtual networks such a useful technology can also undermine security
within organizations and individual hosts. Current research on virtual machines has focused
largely on the implementation of virtualization and its applications. But less effort was done for
securing communication under virtualized systems. We proposed in this chapter a security policy
model for communication under virtual networks, this model can be implemented easily under
most virtualized architectures. Currently, we are extending our security policy to cover not only
local networks, but also wide networks composed of many virtualized systems involving policy
agreements and the protection of information flows that leave the control of the local hypervisor.
We need to establish trust into the semantics and enforcement of the security policy governing
the remote hypervisor system before allowing information flow to and from such a system.
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Chapter 6

Conclusion and Perspectives

It is hard not to love virtualization. The ability to create dozens of virtual servers (or appliances)
as files within a single physical server can cut power consumption, save space, make IT admins
jobs easier, and allow them create separate environments for testing new applications at will.
No wonder this is one of the fastest growing technologies in businesses large and small. But
everything has its drawbacks, and virtualization is no exception. Nowadays, virtualization means
paying more attention to security.

In this dissertation, we interested ourselves in the security of virtualized systems. We proposed
ideas, approaches and methods that increase the security of such platforms and most of the time
prevent some potential threats.

In this concluding chapter, we discuss other research directions. We believe that the presented
results can be improved at many levels and sometimes adapted to more security threats.

In chapter Bl we presented an implementation of a decentralized supervision system that
offers the ability to control all the running virtual machines from outside by deploying an IDS
and its sensors. This architecture can be used either to protect the VMs or even to offer a
secure decentralized system for simple users. We feel that a more hypervisor-independant imple-
mentation would be more interesting, because for now our implementation works only with the
Xen hypervisor, and it would be a plus to adapt it to other virtualization solutions. Another
important improvement would be to encrypt the messages sent from the sensors to Orchids :
actually the data sent via in the VLAN is unencrypted and a possible threat can be a sniffing
mechanism that discovers a lot of sensitive information about the target IDS, the surveillance
VM, etc...which represents a potential risk that we have to avoid.

Moroever, we have seen in this chapter that our implementation reveals a considerable lack of
efficiency against fast attacks on remote VMs. This is due to the latency of the virtual network
(which is actually lower then in real physical networks). One can suggest to install Orchids
directly on the target VM. This makes our architecture loose its most important features such
as remote control, decentralization and exposes the IDS to attacks. For now, we have no idea
how to resolve this issue.

It would be also challenging to explore ways to avoid killing VMs in case of DoS attacks in
order to preserve a good level of service continuity.

In chapter Bl we aimed to protect sensitive resources such as the Domain0, the VM that the
administrator uses to do all critical administration actions such as creating/killing VMs, making
checkpoints etc...The most convenient idea was to study the existence of security polcies that
control the access to these resources and propose an easy approach that permits the writing
of policies and deploying them quickly and automatically. To this end, we introduced a high-
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level language allowing to write suitable security policies, it is a fragment of LTL with new past
operators. We showed how this language is more convenient to our aim then temporal languages
with future operators. Then we introduced an algorithm based on history variables allowing
the automatic translation of policies into EFSA describing attacks. This permits to feed the
attacks base of the IDS to make it able to detetct and stop more attacks. Our objective was
not to write policies, this depends on the administrator needs which can change over time, but
we aimed to design a high-level procedure that can be valuable and useful for different users,
platforms and needs. This contribution can be improved at many levels. First, some restrictions
related to the language we proposed can be studied and removed especially while writing complex
formulas requiring recursive calls to the same operator. Second, for the moment, some keywords
was defined in order to facilitate the translation procedure, but this is still not enough : the
keywords list should be enriched and fixed with an aim to give more flexibility for formulas
writing. Another idea is to improve the syntax from the IDS side (i.e. the desctription of the
EFSA in the form of Orchids rules). This was done for instance for the "if" statements that have
sometimes different semantics depending on what we need to check (either the occurence of an
event or a simple expression evaluation). Another important research direction related to this
contribution is, given a formula written in our language, to be able to check that this formula
will not cause a denial of service due to its translation complexity. This requires a static analysis
procedure that takes as input the formula and returns back an indication about the risk related
to the translation and deployement of this formula. Another related subject will be the following
: given a linear model (events eq,...,e,,), a fixed time k between 1 and n, and a formula F' in our
logic, to be able to decide if F' is true at the moment k in this model.

In chapter Bl we proposed a multi-level security policy model for virtual LANs. We aimed to
design a generic model that represents the most important network features of a virtual network
of VMs. This model can be implemented and used to guarantee the security of communication.
This is important, since the architecture presented in chapter Bl relies on a virtual LAN for com-
municating information between the IDS and its sensors. We take into consideration the different
components of a virtual LAN with not only the different network communication operations, but
also we added to our model some other management and securty operations. We study also
security management in this chapter. For the moment, the security requirements are specified,
and the security policy that can be developped around this model is defined. The important
improvement that can perfectly complement our model will be to work on the verification of the
system security at an instant ¢ while taking into account the actions performed on the system. A
possible idea will be to use well-known verification and model checking procedures to verify the
security of this model at each stage reached by system actions. Another interesting improvement
would be to extend our model to large scale networks composed by many VLANs. This can
introduce more complexity to the modelling approach, but represents an interesting research
direction.

Finally we can say that a lot of work can be done for enfancing the security of virtualized
systems since many issues are already existing. The question will be : how long this technology
will keep convincing users to adopt it in order to maintain their system security needs?



Appendix A

The Xen Hypervisor

A.1 Introduction

Xen is an open-source para-virtualizing virtual machine monitor (VMM), or hypervisor, for
the x86 processor architecture. Xen can securely execute multiple virtual machines on a single
physical system with close-to-native performance. Xen facilitates enterprise-grade functionality,
including : virtual machines with performance close to native hardware, live migration of running
virtual machines between physical hosts, Intel and AMD Virtualization Technology for unmod-
ified guest operating systems (including Microsoft Windows) and excellent hardware support
(supports almost all Linux device drivers).

A.2 Booting a Xen System

Booting the system into Xen will bring you up into the privileged management domain, Domain0.
At that point you are ready to create guest domains and boot them using the m create command.

A.2.1 Booting Domain0

After installation and configuration is complete, reboot the system and and choose the new Xen
option when the Grub screen appears. What follows should look much like a conventional Linux
boot. The first portion of the output comes from Xen itself, supplying low level information
about itself and the underlying hardware. The last portion of the output comes from XenLinux.
When the boot completes, you should be able to log into your system as usual. If you are unable
to log in, you should still be able to reboot with your normal Linux kernel by selecting it at the
GRUB prompt. The first step in creating a new domain is to prepare a root filesystem for it to
boot. Typically, this might be stored in a normal partition, an LVM or other volume manager
partition, a disk file or on an NFS server. A simple way to do this is simply to boot from your
standard OS install CD and install the distribution into another partition on your hard drive.

A.2.2 Booting Guest Domains

Before you can start an additional domain, you must create a configuration file. We provide two
example files which you can use as a starting point:

o Jetc/xen/xmezamplel is a simple template configuration file for describing a single VM.
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o Jetc/xen/xmezample? file is a template description that is intended to be reused for multi-
ple virtual machines. Setting the value of the vmid variable on the xm command line fills
in parts of this template.

There are also a number of other examples which you may find useful. Copy one of these files
and edit it as appropriate. Typical values you may wish to edit include:

kernel Set this to the path of the kernel you compiled for use with Xen (e.g. kernel =
“/boot /vmlinuz-2.6-xenU”)

memory Set this to the size of the domain’s memory in megabytes (e.g. memory = 64)

disk Set the first entry in this list to calculate the offset of the domain’s root partition, based
on the domain ID. Set the second to the location of /usr if you are sharing it between domains
(e.g. disk = ['phy:your hard drive%d,sdal,w’ % (base partition number + vmid), ’phy:your usr
partition,sda6,r’ |

dhcp Uncomment the dhep variable, so that the domain will receive its IP address from a
DHCP server (e.g. dhcp="“dhcp”)

You may also want to edit the vif variable in order to choose the MAC address of the
virtual ethernet interface yourself. For example: vif = ['mac=00:16:3E:F6:BB:B3’] If you do
not set this variable, xend will automatically generate a random MAC address from the range
00:16:3E:xx:xx:xx, assigned by IEEE to XenSource as an OUI (organizationally unique identifier).
XenSource Inc. gives permission for anyone to use addresses randomly allocated from this range
for use by their Xen domains.

A.2.3 Starting / Stopping Domains Automatically

It is possible to have certain domains start automatically at boot time and to have dom0 wait
for all running domains to shutdown before it shuts down the system. To specify a domain is to
start at boot-time, place its configuration file (or a link to it) under /etc/xen/auto/.

A Sys-V style init script for Red Hat and LSB-compliant systems is provided and will be
automatically copied to /etc/init.d/ during install. You can then enable it in the appropriate
way for your distribution. For instance, on Red Hat:

# chkconfig --add xendomains

By default, this will start the boot-time domains in runlevels 3, 4 and 5. You can also use the
service command to run this script manually, e.g:

# service xendomains start
Starts all the domains with config files under /etc/xen/auto/.
# service xendomains stop

Shuts down all running Xen domains.



A.3. NETWORK CONFIGURATION 71

A.3 Network Configuration

For many users, the default installation should work “out of the box”. More complicated network
setups, for instance with multiple Ethernet interfaces and/or existing bridging setups will require
some special configuration. The purpose of this section is to describe the mechanisms provided
by xend to allow a flexible configuration for Xen’s virtual networking.

A.3.1 Xen virtual network topology

Each domain network interface is connected to a virtual network interface in dom0 by a point to
point link (effectively a “virtual crossover cable”). These devices are named vif<domid>.<vifid>
(e.g. vif1.0 for the first interface in domain 1, vif3.1 for the second interface in domain 3). Traffic
on these virtual interfaces is handled in domain 0 using standard Linux mechanisms for bridging,
routing, rate limiting, etc. Xend calls on two shell scripts to perform initial configuration of the
network and configuration of new virtual interfaces. By default, these scripts configure a single
bridge for all the virtual interfaces. Arbitrary routing / bridging configurations can be configured
by customizing the scripts, as described in the following section.

A.3.2 Xen networking scripts

Xen’s virtual networking is configured by two shell scripts (by default network-bridge and vif-
bridge). These are called automatically by xend when certain events occur, with arguments
to the scripts providing further contextual information. These scripts are found by default in
/etc/xen/scripts. The names and locations of the scripts can be configured in /etc/xen/xend-
config.sxp.

network-bridge This script is called whenever xend is started or stopped to respectively ini-
tialize or tear down the Xen virtual network. In the default configuration initialization creates
the bridge 'xen-br0’ and moves ethO onto that bridge, modifying the routing accordingly. When
xend exits, it deletes the Xen bridge and removes ethO, restoring the normal IP and routing
configuration.

vif-bridge This script is called for every domain virtual interface and can configure firewalling
rules and add the vif to the appropriate bridge. By default, this adds and removes VIFs on the
default Xen bridge. Other example scripts are available (network-route and vif-route, network-
nat and vif-nat). For more complex network setups (e.g. where routing is required or integrate
with existing bridges) these scripts may be replaced with customized variants for your site’s
preferred configuration.
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Appendix B

The SELinux Auditd System

Modern Linux kernel (2.6.x) comes with auditd daemon. It is responsible for writing audit
records to the disk. It allows one to comprehensively log and track access to files, directories,
and resources of the system, as well as trace system calls. It enables the monitoring of the
system for application misbehavior or code malfunctions. By creating a sophisticated set of rules
including file watches and system call auditing, security officers can make sure that any violation
of security policies is noted and properly addressed.

The kernel part is included in Linux, and activated in most Linux distributions (including
Squeeze). The following options must be enabled in the kernel :

CONFIG_AUDIT=y
CONFIG_AUDITSYSCALL=y
CONFIG_AUDIT_WATCH=y
CONFIG_AUDIT_TREE=y

To be able to use it, we need to install the userspace tools :

[user@laptop tmp] aptitude install auditd audispd-plugins

B.1 Audit rules

The main command to control audit rules is auditctl To show the current status of the audit
system:

[user@laptop tmp] auditctl -s
To list the rules :

[user@laptop tmp] auditctl -1
LIST_RULES: exit,always arch=3221225534 (0xc000003e) watch=/etc/hosts syscall=open

Removing all rules :

[user@laptop tmp] auditctl -D
No rules
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B.2 Processes

APPENDIX B. THE SELINUX AUDITD SYSTEM

Now, suppose we want to log the creation of all new processes from a specific user :

[user@laptop tmp] auditctl -a exit,always -S execve -F uid=1000

Log all executions of a specific program (any user) :

[user@laptop tmp] auditctl -A exit,always -F path=/path/to/executable

-S execve

Watching for ptrace system calls (very verbose, one trace call can result in many ptrace

syscals) :

[user@laptop tmp] auditctl -a entry,always -F arch=b64 -S ptrace -k info_scan

The -k option is used to specify a custom key for this event (31 chars max). This can be used
to filtering when searching for events. Now, a funnier use of the filters: monitor execution of all
programs with the setuid bit and owner root. Finding these is easy, because the uid running the
program will be non-0 while the effective uid will be O :

[user@laptop tmp] auditctl -A exit,always -F arch=b64 -F euid=0 -F ’uid!=0’ -S execve

Log all syscalls done by some program (emulate strace, without the nice decoding of all

arguments) :

[user@laptop tmp] auditctl -a exit,always -S all -F pid=19845

B.3 Files

Audit all files opened by some user :
[user@laptop tmp] auditctl -a exit,always
Audit all accesses to a specific file :
[user@laptop tmp] auditctl -a exit,always
Log all unsuccessful file open calls :
[user@laptop tmp] auditctl -a exit,always
In the same idea, log all unsuccessful writes :

[user@laptop tmp] auditctl -a exit,always

B.4 Reporting

open -F uid=1000

arch=b64 -F path=/etc/hosts -S open

open -F success=0

write -F success=0

To see the events, either run : “tail -F /var/log/audit/audit.log”

type=SYSCALL msg=audit (1308608275.954:25072) : arch=c000003e syscall=59
success=yes exit=0 a0=7fff3e038690 al=7faaat6418e80 a2=d99190 a3=0 items=2

ppid=6854 pid=14762 auid=4)

type=EXECVE msg=audit (1308608275.954:25072): argc=2 a0="1s" al="--color=auto"
cwd="/home/pollux/GIT/admin/SELINUX"

type=CWD msg=audit (1308608275.954:25072) :



B.4. REPORTING 5

It is clear that the result is very verbose. One can also recognize SELinux information, and
that is indeed the case since SELinux is using auditd a lot. We can also use the very powerful
ausearch and aureport commands.

Get the list of ptrace syscalls (monitored as above) for the last 5 minutes :

[user@laptop tmp] ausearch -ts recent -sc ptrace -i

—*ts” is the time start option, “sc” is for syscall
Since we specified a custom key when creating the filter, we are also able to query events
based on the key :

[user@laptop tmp] ausearch -ts -k info_scan -i
Search by user id :
[user@laptop tmp] ausearch -ui 1000 -ts recent
Search in a time range :
[user@laptop tmp] aureport -f --start 06/21/2011 23:00:00 --end 06/21/2011 23:10:00
Report on watched files :
[user@laptop tmp] aureport -f -ts recent
Output will be similar to :

[user@laptop tmp] aureport -f -ts recent
1. 06/21/2011 20:54:01 /root 4 no /bin/dash -1 28515

Here is the description of the columns (for the files report):

e first column is an index

e 2nd is the date of the event

e 3rd is the time of the event

e 4th is the file name

e 5th is the syscall id (use -i to make aureport display strings)
e 6th is the result of the system call

e Tth is the process that triggered the event

e 8th is the actual/audit uid (the initial uid of the session, which remains the same even if
you change user with su after, for ex)

e 9th is the event id
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