I. Newton, . Optiks, . Smith, and . Watford, Book II, Part I. 2, Principles of Optics Israelachvili, J. N., Intermolecular and Surface Forces, 1980.

G. G. Andreatta and M. N. Jones, Insertion et organisation de nanoparticules à l'intérieur de bicouches de tensioactifs déposées sur substrats solides Effects of ion valency on formation of second black soap films. Transactions of the Faraday Society, pp.1146-1152, 1969.

M. N. Jones, K. J. Mysels, and P. C. Scholten, Stability and some properties of the second black film. Transactions of the Faraday Society, pp.1336-1348, 1966.

O. Bélorgey and J. Benattar, Structural properties of soap black films investigated by x-ray reflectivity, Physical Review Letters, vol.66, issue.3, pp.313-316, 1991.
DOI : 10.1103/PhysRevLett.66.313

J. J. Benattar, A. Schalchli, O. Bélorgey, V. P. Dravid, and D. L. Johnson, X-ray reflectivity investigation of Newton and common black films Journal de Physique I France Colloidal dispersions: Structure, stability and geometric confinement, Self-assembled (SA) bilayer molecular coating on magnetic nanoparticles, pp.955-968, 1992.

J. Benattar, M. Nedyalkov, J. Prost, A. Tiss, R. Verger et al., Insertion Process of a Protein Single Layer within a Newton Black Film Freestanding black films of phospholipids and phospholipid with proteins How to Control the Molecular Architecture of a Monolayer of Proteins Supported by a Lipid Bilayer, Physical Review Letters Colloids and Surfaces A: Physicochemical and Engineering Aspects Biophysical Journal Petkova, R.; Benattar, J.-J, vol.82, issue.15, pp.5297-5300, 1999.

B. F. Pucci, J. J. Benattar, J. Benattar, and P. Perrin, Vertical free-standing films of amphiphilic associating polyelectrolytes Millet, F. Films libres verticaux de polyélectrolytes amphiphiles Structures of Free-Standing Vertical Thin Films of Hydrophobically Modified Poly(sodium acrylate)s. Macromolecules Advances in adsorption of surfactants and their mixtures at solid/solution interfaces Adhesion of a Free-Standing Newton Black Film onto a Solid Substrate, Free-Standing Films of Florinated Surfactants as 2D Matrices for Organizing Detergent- Solubilized Membrane Proteins, pp.4303-4309, 1999.

G. Andreatta, J. Benattar, R. Petkova, J. Y. Wang, P. Tong et al., Deposition of organized surfactant films on solid substrates Tang, G. Organization of nanoparticles within surfactant bilayer deposited onto solid substrates Line tension action on 2D networks of gold nanoparticles obtained by the Bubble Deposition Method Mechanism of formation of two-dimensional crystals from latex particles on substrates Two-dimensional crystallization, Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces, pp.211-217, 1992.

T. P. Bigioni, X. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten et al., Kinetically driven self assembly of highly ordered nanoparticle monolayers, Nature Materials, vol.62, issue.4, pp.265-270, 2006.
DOI : 10.1038/nmat1611

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Duyne, Nanosphere Lithography:?? Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV???Visible Extinction Spectroscopy, Rapid Fabrication of Binary Colloidal Crystals by Stepwise Spin- Coating. Advanced Materials, pp.6927-6931, 2004.
DOI : 10.1021/la0494674

P. Jiang, J. F. Bertone, K. S. Hwang, V. L. Colvin, C. Hess et al., Langmuir?Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy Driving forces of the solute self-organization in an evaporating liquid microdroplet. Colloids and Surfaces A: Physicochemical and Engineering Aspects Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing Role of substrate wettability in the "bubble deposition method" applied to the cerium vanadium nanowire films Understanding Carbon Nanotubes: From Basics to Applications Advanced Topics in the Synthesis, Structure, Properties and Applications Single-shell carbon nanotubes of 1-nm diameter Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistors, Single-Crystal Colloidal Multilayers of Controlled Thickness. Chemistry of Materials Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature, pp.2132-2140, 1924.

J. A. Rogers, Molecular Scale Buckling Mechanics in Individual Aligned Single-Wall Carbon Nanotubes on Elastomeric Substrates, Nano Letters, vol.8, issue.1, pp.124-130, 2008.

M. M. Rafique and J. Iqbal, Production of Carbon Nanotubes by Different Routes-A Review, Journal of Encapsulation and Adsorption Sciences, vol.01, issue.02, pp.29-34
DOI : 10.4236/jeas.2011.12004

M. Paul, . Solomon, and P. Avouris, An Integrated Logic Circuit Assembled on a Single Carbon Nanotube Science, pp.311-1735, 2006.

S. Choi, C. Wang, C. C. Lo, P. Bennett, A. Javey et al., Comparative study of solution-processed carbon nanotube network transistors Applied Physics Letters, 2012.

A. Rogers and J. A. , Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates, Nature, vol.454, pp.495-500, 2008.

J. A. Rogers, High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nature Nanotechnology, vol.2, pp.230-236, 2007.

D. Markus, P. M. Campbell, and E. Snow, Radial deformation of carbon nanotubes by van der Waals forces, Macroelectronics: Perspectives on Technology and Applications IEEE 2005, pp.1239-1256, 1993.

Q. Cheng, S. Debnath, L. Neill, T. G. Hedderman, E. Gregan et al., Systematic Study of the Dispersion of SWNTs in Organic Solvents, The Journal of Physical Chemistry C, vol.114, issue.11, pp.114-4857, 2010.
DOI : 10.1021/jp911202d

E. Adams, W. W. Hauge, R. H. Smalley, R. E. Hamilton, J. Coleman et al., Dissolution of Pristine Single Walled Carbon Nanotubes in Superacids by Direct Protonation New Solvents for Nanotubes: Approaching the Dispersibility of Surfactants, The Journal of Physical Chemistry B Z.; Streich, P The Journal of Physical Chemistry C, vol.108, issue.1141, pp.8794-8798, 2004.

W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao et al., Sonication-Assisted Functionalization and Solubilization of Carbon Nanotubes, Nano Letters, vol.2, issue.3, pp.231-234, 2002.
DOI : 10.1021/nl010083x

W. Siochi, E. J. Harrison, J. S. Clair, T. L. Jagota, A. Semke et al., Dispersion of single wall carbon nanotubes by in situ polymerization under sonication DNA-assisted dispersion and separation of carbon nanotubes Dispersing carbon nanotubes using surfactants Quantitative Evaluation of Surfactant-stabilized Single-walled Carbon Nanotubes: Dispersion Quality and Its Correlation with Zeta Potential Optimized Vertical Carbon Nanotube Forests for Multiplex Surface-Enhanced Raman Scattering Detection, Ionescu, A. M., In-situ grown horizontal carbon nanotube membrane. Microelectronic Engineering 2012, pp.303-308, 2002.

R. Tanner, D. B. Hebard, A. F. Rinzler, and A. G. , Transparent, Conductive Carbon Nanotube Films Science, pp.1273-1276, 2004.

M. J. Heben, J. L. Blackburn, . Ultrasmooth, . Large-area, and . High-uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films, Advanced Materials Nano Letters, vol.21, issue.49, pp.3210-3216, 2004.

D. E. Tsentalovich and M. Pasquali, High-Performance Carbon Nanotube Transparent Conductive Films by Scalable Dip Coating Small, W. R.; Panhuis, M. i. h., Inkjet Printing of Transparent, Electrically Conducting Single-Walled Carbon-Nanotube Composites Preparation and characterization of low-and highadherent transparent multi-walled carbon nanotube thin films, ACS Nano Small Materials Chemistry and Physics, vol.2012, issue.111, pp.9737-9744, 2007.

R. Krupke, S. Linden, M. Rapp, F. Hennrich, D. P. Long et al., Thin Films of Metallic Carbon Nanotubes Prepared by Dielectrophoresis Magnetically Directed Self-Assembly of Carbon Nanotube Devices Liquid-Crystalline Processing of Highly Oriented Carbon Nanotube Arrays for Thin-Film Transistors, Advanced Materials Advanced Materials Nano Letters Nano Letters, vol.18, issue.711, pp.1468-14709, 2004.

P. R. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, pp.622-634, 1947.
DOI : 10.1103/PhysRev.71.622

A. J. Bommel, J. E. Crombeen, A. V. Tooren, and . Leed, LEED and Auger electron observations of the SiC(0001) surface, Surface Science, vol.48, issue.2, pp.463-472, 1975.
DOI : 10.1016/0039-6028(75)90419-7

H. P. Boehm, R. Setton, and E. Stumpp, Nomenclature and terminology of graphite intercalation compounds, Carbon, vol.24, issue.2, pp.241-245, 1986.
DOI : 10.1016/0008-6223(86)90126-0

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Z. Jiang, Y. Dubonos et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.666-669, 2004.
DOI : 10.1126/science.1102896

A. K. Geim, Graphene: Status and Prospects, Science, vol.324, issue.5934, pp.1530-1534, 2009.
DOI : 10.1126/science.1158877

K. P. Loh, Q. Bao, P. K. Ang, J. S. Yang, Y. Hernandez et al., The chemistry of graphene, Journal of Materials Chemistry, vol.48, issue.12, pp.2277-2289, 2010.
DOI : 10.1021/cr900070d

A. V. Fedorov, P. N. First, W. A. Heer, and A. Lanzara, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate, Journal of Physics and Chemistry of Solids, vol.67, pp.9-10, 2006.

E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils Science, pp.1312-1314, 2009.

R. Song, Y. I. Kim, Y. Kim, K. S. Özyilmaz, B. Ahn et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z, vol.5, issue.12, pp.574-578, 2010.

R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman et al., High-yield production of graphene by liquid-phase exfoliation of graphite High-Concentration Solvent Exfoliation of Graphene Solvent-Exfoliated Graphene at Extremely High Concentration, Nature Nanotechnology Langmuir, vol.3, issue.2715, pp.563-568, 2008.

S. Dai, Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids, Chemical Communications, vol.46, pp.4487-4489, 2010.

A. Mariani, High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid, Journal of Materials Chemistry, vol.21, pp.3428-3431, 2011.

A. J. Quinn, W. Zhou, and R. Blackley, Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding, Chemical Communications, vol.48, pp.1877-1879, 2012.

M. De, S. Wang, Z. Mcgovern, I. T. Duesberg, G. S. Coleman et al., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions, Journal of the American Chemical Society, issue.10, pp.131-3611, 2009.

J. N. Coleman, Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions, Guardia, L.; Fernández-Merino, M. J.; Paredes, J. I, vol.6, issue.20, pp.458-464, 2010.

A. Martínez-alonso, J. M. Tascón, R. J. Smith, M. Lotya, and J. N. Coleman, High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon The importance of repulsive potential barriers for the dispersion of graphene using surfactants Density Gradient Ultracentrifugation on Carbon Nanotubes According to Structural Integrity as a Foundation for an Absolute Purity Evaluation, New Journal of Physics Chemical Physics and Physical Chemistry, vol.49, issue.1214, pp.1653-1662, 2010.

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, M. C. Hersam et al., Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnology, vol.82, issue.1, pp.60-65, 2006.
DOI : 10.1038/nnano.2006.52

M. Monthioux and A. Nicaud, Solutions of Negatively Charged Graphene Sheets and Ribbons, Journal of the Amercian Chemical Society, vol.130, issue.47, pp.15802-15804, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00682016

F. Paolucci, A. Pénicaud, C. Shih, A. Vijayaraghavan, R. Krishnan et al., Graphene solutions, Chemical Communications Z, vol.47, pp.5470-5472, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00600319

S. Lin, G. L. Paulus, N. F. Reuel, Q. H. Wang, D. Blankschtein et al., Bi-and trilayer graphene solutions, Nature Nanotechnology, vol.6, pp.439-445, 2011.

X. Li, G. Zhang, X. Bai, X. Sun, X. Wang et al., Highly conducting graphene sheets and Langmuir???Blodgett films, Nature Nanotechnology, vol.8, issue.9, pp.538-542, 2008.
DOI : 10.1038/nnano.2008.210

S. R. Dhakate, N. Chauhan, S. Sharma, J. Tawale, S. Singh et al., An approach to produce single and double layer graphene from re-exfoliation of expanded graphite Marel, D. v. d., Universal Optical Conductance of Graphite Fine Structure Constant Defines Visual Transparency of Graphene Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation Liquid Exfoliation of Defect-Free Graphene, Highly Concentrated Graphene Solutions via Polymer Enhanced Solvent Exfoliation and Iterative Solvent Exchange, pp.1946-1954, 2008.

B. C. Brodie, L. Staudenmaier, W. S. Hummers, R. E. Offeman, O. C. Compton et al., Preparation of Graphitic Oxide Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials Nitric acid oxidation of vapor grown carbon nanofibers Oxidation by Mn207: An impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide Multifunctional elastomer nanocomposites with functionalized graphene single sheets Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplateletshexylthiophene): Graphene Oxide Bulk Heterojunction Photovoltaic Devices Graphene Oxide Dispersions in Organic Solvents Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, On the Atomic Weight of Graphite. Philosophical Transactions Royal Society London 1859 1339. 38, pp.249-259, 1958.

X. Zhou, Z. Liu, and D. H. Adamson, A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets, Chemical Communications, vol.20, issue.15, pp.2611-2613, 2010.
DOI : 10.1039/b914412a

R. K. Prud-'homme, R. Car, D. A. Saville, I. A. Aksay, Z. Wu et al., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide Synthesis of high-quality graphene with a pre-determined number of layers, Über die Säurenatur und die Methylierung von Graphitoxyd, pp.8535-8539, 2006.

G. Berichte-der-deutschen-chemischen-gesellschaft-ruess, . Über-das-graphitoxyhydroxyd-52, T. Szabó, O. Berkesi, P. Forgó et al., Monatshefte für Chemie Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides The chemistry of graphene oxide Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids Zeitschrift für anorganische und allgemeine Chemie A new structure model of graphite oxide Some new aspects of graphite oxidation at 0°c in a liquid medium. A mechanism proposal for oxidation to graphite oxide A new structural model for graphite oxide New insights into the structure and reduction of graphite oxide Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide, Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model, pp.754-771, 1939.

E. Riedo, J. Kim, L. J. Cote, F. Kim, W. Yuan et al., Room-temperature metastability of multilayer graphene oxide films Graphene Oxide Sheets at Interfaces Graphene Oxide: Surface Activity and Two-Dimensional Assembly, Self-assembly of nanoparticles at interfaces. Soft Matter, pp.544-549, 1954.

L. J. Cote, F. Kim, and J. Huang, Langmuir???Blodgett Assembly of Graphite Oxide Single Layers, Journal of the American Chemical Society, vol.131, issue.3, pp.1043-1049, 2009.
DOI : 10.1021/ja806262m

H. Bai, C. Li, X. Wang, G. K. Shi, T. J. Booth et al., On the Gelation of Graphene Oxide. The Journal of Physical Chemistry C The structure of suspended graphene sheets, Nature, vol.115, issue.446, pp.5545-5551, 2007.

R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi et al., Dual Path Mechanism in the Thermal Reduction of Graphene Oxide Journal of the Amercian Chemical Society Fabrication of Highly-Aligned, Conductive, and Strong Graphene Papers Using Ultralarge Graphene Oxide Sheets, ACS Nano, vol.133, issue.612, pp.17315-17321, 2011.

J. Zhao, S. Pei, W. Ren, L. Gao, H. Cheng et al., Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material An investigation of the electrical transport properties of graphene-oxide thin films, ACS Nano Nature Nanotechnology Materials Chemistry and Physics, vol.4, issue.1321, pp.5245-5252, 2008.

S. Gilje, S. Han, M. Wang, K. L. Wang, R. B. Kaner et al., A Chemical Route to Graphene for Device Applications Transparent, Conductive Graphene Electrodes for Dye- Sensitized Solar Cells Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors Rod-Coating: Towards Large- Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens, Nano Letters Nano Letters ACS Nano Advanced Materials, vol.7, issue.78, pp.3394-3398, 2007.

B. J. Wees and P. Rudolf, Large-Yield Preparation of High-Electronic-Quality Graphene by a Langmuir?Schaefer Approach, Small, vol.6, issue.1, pp.35-39, 2010.

R. S. Ruoff, Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced by Langmuir?Blodgett Assembly, The Journal of Physical Chemistry Letters ACS Nano, vol.1, issue.57, pp.1259-1263, 2010.

J. Azevedo, C. Costa-coquelard, P. Jegou, T. Yu, and J. Benattar, Highly Ordered Monolayer, Multilayer, and Hybrid Films of Graphene Oxide Obtained by the Bubble Deposition Method, The Journal of Physical Chemistry C, vol.115, issue.30, pp.115-14678, 2011.
DOI : 10.1021/jp205020r

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Israelachvili, J. N., Intermolecular and Surface Forces, pp.101-105, 2008.
DOI : 10.1038/nnano.2007.451

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen et al., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) Fabrication of highly conducting and transparent graphene films Transparent Carbon Films as Electrodes in Organic Solar Cells Durable Large-Area Thin Films of Graphene/Carbon Nanotube Double Layer as a Transparent Electrode Role of substrate wettability in the "bubble deposition method" applied to the cerium vanadium nanowire films, New Confinement Method for the Formation of Highly Aligned and Densely Packed Single-Walled Carbon Nanotube Monolayers, pp.155-158, 2002.

G. Andreatta, J. Cousty, and J. Benattar, Line tension action on 2D networks of gold nanoparticles obtained by the Bubble Deposition Method, Chemical Communications, vol.17, issue.124, pp.3571-3573, 2011.
DOI : 10.1021/la-2010-04635v.R1

L. J. Cote, J. Kim, Z. Zhang, C. Sun, and J. Huang, Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties, Soft Matter, vol.13, issue.24, pp.6096-6101, 2010.
DOI : 10.1039/c0sm00667j

A. Piner, R. D. Nguyen, S. T. Ruoff, and R. S. , Graphene-based composite materials, Nature, vol.442, pp.282-286, 2006.

S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen et al., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), J. Mater. Chem., vol.5, issue.2, pp.155-158, 2006.
DOI : 10.1039/B512799H

S. T. Nguyen and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, vol.45, pp.1558-1565, 2007.

H. Wang, J. T. Robinson, X. Li, and H. Dai, Solvothermal Reduction of Chemically Exfoliated Graphene Sheets, Journal of the American Chemical Society, vol.131, issue.29, pp.131-9910, 2009.
DOI : 10.1021/ja904251p

H. Shin, K. K. Kim, A. Benayad, S. Yoon, H. K. Park et al., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance, Advanced Functional Materials, vol.59, issue.12, 1987.
DOI : 10.1002/adfm.200900167

Z. Wu, W. Ren, L. Gao, B. Liu, C. Jiang et al., Synthesis of high-quality graphene with a pre-determined number of layers, Carbon, vol.47, issue.2, pp.493-499, 2009.
DOI : 10.1016/j.carbon.2008.10.031

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao et al., Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors, ACS Nano, vol.2, issue.3, pp.463-470, 2008.
DOI : 10.1021/nn700375n

L. J. Cote, R. Cruz-silva, and J. Huang, Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite, Journal of the American Chemical Society, vol.131, issue.31, pp.11027-11032, 2009.
DOI : 10.1021/ja902348k

G. Williams, B. Seger, and P. V. Kamat, -Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS Nano, vol.2, issue.7, pp.1487-1491, 2008.
DOI : 10.1021/nn800251f

URL : https://hal.archives-ouvertes.fr/hal-00409061

S. Pei, H. Cheng, S. Park, J. An, I. Jung et al., The reduction of graphene oxide Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents Hydrothermal Dehydration for the " Green " Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties, Reduction of graphene oxide with L-lysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte Journal of Materials Chemistry A 2013, pp.3210-3228, 2009.

K. Jo, T. Lee, H. J. Choi, J. H. Park, D. J. Lee et al., Stable Aqueous Dispersion of Reduced Graphene Nanosheets via Non-Covalent Functionalization with Conducting Polymers and Application in Transparent Electrodes, Langmuir, vol.27, issue.5, pp.2014-2018, 2009.
DOI : 10.1021/la104420p

S. Pei, J. Zhao, J. Du, W. Ren, H. Cheng et al., Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Electric Field Effect in Atomically Thin Carbon Films, Carbon ACS Nano Science C, vol.48, issue.306, pp.4466-4474, 2004.

J. Zamora, F. Kern, K. Szabó, T. Berkesi, O. Forgó et al., Chemical Vapor Deposition Repair of Graphene Oxide: A Route to Highly- Conductive Graphene Monolayers Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides, Advanced Materials Josepovits, K.; Sanakis, Y.; Petridis, D Chemistry of Materials J. d. D, vol.21, issue.20, pp.4683-4686, 2006.

L. Martín-aranda and R. M. , Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization, Carbon, vol.33, issue.21, pp.1585-1592, 1995.

W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, New insights into the structure and reduction of graphite oxide, Nature Chemistry, vol.20, issue.15, pp.403-408, 1996.
DOI : 10.1038/nchem.281

D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology, vol.80, issue.2, pp.101-105, 2008.
DOI : 10.1038/nnano.2007.451

S. Gilje, S. Han, M. Wang, K. L. Wang, R. B. Kaner et al., A Chemical Route to Graphene for Device Applications, Nano Letters, vol.7, issue.11, pp.3394-3398, 2007.
DOI : 10.1021/nl0717715

A. Alonso, J. M. Tascn, W. Peng, Y. Li, X. Li et al., Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets Reduced graphene oxide by chemical graphitization Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route to Graphene, The Journal of Physical Chemistry C Advanced Materials Chemistry of Materials Nature Communications The Journal of Physical Chemistry C, vol.114, issue.124, pp.6426-6432, 2008.

G. Wang, J. Yang, J. Park, X. Gou, B. Wang et al., Facile Synthesis and Characterization of Graphene Nanosheets Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide Low- Temperature Aluminum Reduction of Graphene Oxide, Electrical Properties, Surface Wettability, and Energy Storage Applications Controlled Synthesis of Large- Area and Patterned Electrochemically Reduced Graphene Oxide Films, The Journal of Physical Chemistry C ACS Nano ACS Nano Chemistry -A European Journal, vol.112, issue.15, pp.8192-8195, 2008.

R. K. Prud-'homme, R. Car, D. A. Saville, and I. A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide Transparent, Conductive Graphene Electrodes for Dye- Sensitized Solar Cells, The Journal of Physical Chemistry B Nano Letters, vol.110, issue.36, pp.8535-8539, 2006.

I. Jung, D. A. Field, C. A. Jr, and R. S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon, vol.47, issue.1, pp.145-152, 2009.

A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla et al., Structural evolution during the reduction of chemically derived graphene oxide, Nature Chemistry, vol.21, issue.7, pp.581-587, 2010.
DOI : 10.1126/science.1161916

X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov et al., Simultaneous Nitrogen Doping and Reduction of Graphene Oxide, Journal of the American Chemical Society, vol.131, issue.43, pp.15939-15944, 2009.
DOI : 10.1021/ja907098f

B. J. Wees, P. Rudolf, C. Su, Y. Xu, W. Zhang et al., Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction, ACS Nano, vol.6, issue.51, pp.35-39, 2010.

S. R. Marder, C. Berger, W. P. King, W. A. Heer, P. E. Sheehan et al., Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design Composites of Graphene with Large Aromatic Molecules Epoxide reduction with hydrazine on graphene: A first principles study Thermal stability of graphite oxide, Science Nature Nanotechnology The Journal of Physical Chemistry C Advanced Materials The Journal of Chemical Physics Chemical Physics Letters, vol.328, issue.470, pp.1373-1376, 2008.

G. Granozzi, E. Garfunkel, M. Chhowalla, D. W. Boukhvalov, M. I. Katsnelson et al., Modeling of Graphite Oxide Electrical Property Heterogeneity at Transparent Conductive Oxide/Organic Semiconductor Interfaces: Mapping Contact Ohmicity Using Conducting-Tip Atomic Force Microscopy Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced by Langmuir?Blodgett Assembly Measurements within the diffusion layer using a microelectrode probe Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes Scanning electrochemical microscopy. Introduction and principles Scanning electrochemical microscopy. Theory of the feedback mode Reactivity of Monolayer Chemical Vapor Deposited Graphene Imperfections Studied Using Scanning Electrochemical Microscopy Visualization of DNA microarrays by scanning electrochemical microscopy (SECM) Charge injection and lateral conductivity in monolayers of metallic nanoparticles, Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Advanced Functional Materials Micropatterns of Poly(4,4?-dimethoxy-2,2?- bithiophene) Generated by the Scanning Electrochemical Microscope. Advanced Materials Probing Conductivity of Polyelectrolyte/Nanoparticle Composite Films by Scanning Electrochemical Microscopy Effect of Surface Pressure on the Insulator to Metal Transition of a Langmuir Polyaniline Monolayer. Journal of the Amercian Chemical Society 63. Leroux, Y.; Schaming, D.; Ruhlmann, L.; Hapiot, P., SECM Investigations of Immobilized Porphyrins Films, pp.2577-2583, 1986.

J. Azevedo, C. Bourdillon, V. Derycke, S. Campidelli, C. Lefrou et al., Contactless Surface Conductivity Mapping of Graphene Oxide Thin Films Deposited on Glass with Scanning Electrochemical Microscopy, Analytical Chemistry, vol.85, issue.3, pp.1812-1818, 2013.
DOI : 10.1021/ac303173d

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.6, pp.183-191, 2007.
DOI : 10.1142/9789814287005_0002

K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature materials, vol.6, pp.652-655, 2007.

X. Li, W. Qi, D. Mei, M. L. Sushko, I. Aksay et al., Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and Self-Assembly of Metal Oxide-Graphene Nanocomposites, Advanced Materials, vol.394, issue.37, pp.24-5136
DOI : 10.1002/adma.201202189

P. Johari, V. B. Shenoy, V. H. Pham, S. H. Hur, E. J. Kim et al., Superior dispersion of highly reduced graphene oxide in N,N-dimethylformamide Restoration of graphene from graphene oxide by defect repair Highly Uniform 300 mm Wafer-Scale Deposition of Single and Multilayered Chemically Derived Graphene Thin Films Highly Concentrated Graphene Solutions via Polymer Enhanced Solvent Exfoliation and Iterative Solvent Exchange Liquid Exfoliation of Defect-Free Graphene, Modulating Optical Properties of Graphene Oxide: Role of Prominent Functional Groups Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation, pp.7640-7647, 2009.

. Références-bibliographiques-1 and A. Slaoui, Nanostructures pour cellules photovoltaïques inorganiques, NM, vol.5, pp.200-201

Y. Sayad, Détermination de la longueur de diffusion des porteurs de charge minoritaires dans le silicium cristallin par interaction lumière matière, Institut National des Sciences Appliquées de Lyon, 2009.

V. C. Tung, J. Huang, J. Kim, A. J. Smith, C. Chu et al., Towards solution processed all-carbon solar cells: a perspective, Energy & Environmental Science, vol.133, issue.7, pp.7810-7818
DOI : 10.1039/c2ee21587j

H. Imahori and T. Umeyama, Donor???Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion, The Journal of Physical Chemistry C, vol.113, issue.21, pp.9029-9039, 2009.
DOI : 10.1021/jp9007448

D. Souza, F. Ito, and O. , Photosensitized electron transfer processes of nanocarbons applicable to solar cells, Chemical Society Reviews, vol.2012, issue.411, pp.86-96

D. Wu, Double-Walled Carbon Nanotube Solar Cells, Nano Letters, vol.7, issue.8, pp.2317-2321, 2007.

L. Wang, W. Liu, Z. Wang, J. Luo, and D. Wu, Nanotube?Silicon Heterojunction Solar Cells, Advanced Materials, vol.20, issue.23, pp.4594-4598, 2008.

Y. Jia, P. Li, J. Wei, A. Cao, K. Wang et al., Carbon nanotube films by filtration for nanotube-silicon heterojunction solar cells, Materials Research Bulletin, vol.45, issue.10, pp.1401-1405, 2010.
DOI : 10.1016/j.materresbull.2010.06.045

A. Continenza and M. D. Crescenzi, Light harvesting with multiwall carbon nanotube/silicon heterojunctions Nanotechnology, pp.115701-115714, 2011.

Y. Jia, A. Cao, X. Bai, Z. Li, L. Zhang et al., Achieving High Efficiency Silicon-Carbon Nanotube Heterojunction Solar Cells by Acid Doping, 1901-1905. 14. Jia, pp.98-133115, 2011.
DOI : 10.1021/nl2002632

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui et al., Strong and reversible modulation of carbon nanotube?silicon heterojunction solar cells by an interfacial oxide layer Physical Chemistry Chemical Physics, pp.14-8391, 2012.

Y. Jung, X. Li, N. K. Rajan, A. D. Taylor, and M. A. Reed, n Junction Solar Cells, Nano Letters, vol.13, issue.1, pp.95-99, 2013.
DOI : 10.1021/nl3035652

A. Cao, TiO 2 -Coated Carbon Nanotube-Silicon Solar Cells with Efficiency of 15%, Scientific Reports, vol.2, pp.884-902, 2012.

X. Li, D. Xie, H. Park, M. Zhu, T. H. Zeng et al., Ion doping of graphene for high-efficiency heterojunction solar cells Tunable Graphene?Silicon Heterojunctions for Ultrasensitive Photodetection, Nanoscale An, X Nano Letters, vol.2013, issue.133, pp.1945-1948, 2013.

F. Kang, E. Grabowska, and A. Zaleska, Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping Journal of Materials Chemistry A 2013, C, vol.22

H. Remita, E. Kowalska, H. Remita, C. Colbeau-justin, J. Hupka et al., Application in Photocatalysis Modification of Titanium Dioxide with Platinum Ions and Clusters: Application in Photocatalysis Surface and volume decay processes in semiconductors studied by contactless transient photoconductivity measurements Characterization of multicrystalline silicon wafers by non-invasive measurements The determination of charge-carrier lifetime in silicon, Modification of Titanium(IV) Dioxide with Small Silver Nanoparticles, pp.1955-1962, 1988.

C. Swiatkowski, A. Sanders, K. D. Buhre, M. P. Kunst, K. Bradley et al., Charge?carrier kinetics in semiconductors by microwave conductivity measurements Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Journal of Applied Physics Science, vol.78, issue.35459, pp.287-1801, 1995.

V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Controlling doping and carrier injection in carbon nanotube transistors Applied Physics Letters, pp.2773-2803, 2002.

R. Martel, The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field-Effect Transistors, Advanced Materials, vol.21, issue.30, pp.3087-3091, 2009.

J. Bourgoin, Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phtha ocyanines via " C ick Chemistry, Journal of the Amercian Chemical Society, vol.130, issue.34, pp.11503-11509, 2008.

S. P. Campidelli, K. H. Ho, L. Rivier, B. Jousselme, P. Jégou et al., Efficient Functionalization of Carbon Nanotubes with Porphyrin Dendrons via Click Chemistry Znporphyrin/Zn-phthalocyanine dendron for SWNT functionalisation, Journal of the Amercian Chemical Society Chemical Communications, vol.131, issue.46, pp.15394-15402, 2009.

I. Hijazi, B. Jousselme, P. Jégou, A. Filoramo, and S. Campidelli, Formation of linear and hyperbranched porphyrin polymers on carbon nanotubes via a CuAAC ???grafting from??? approach, Journal of Materials Chemistry, vol.64, issue.39, pp.20936-20942, 2012.
DOI : 10.1039/c2jm33714b