. La-température-de-préchauffage-de, T c-air Des mesures de concentrations dans la cheminée à l’aide de la baie d’analyse Siemens et des mesures de températures de fumées et de parois sont effectuées

M. Ayoub, C. Rottier, S. Carpentier, C. Villermaux, A. M. Boukhalfa et al., ‘Mild flameless combustion of methane/hydrogen mixtures in a laboratory-scale pilot furnace’, p.2011

M. Ayoub, C. Rottier, S. Carpentier, C. Villermaux, A. M. Boukhalfa et al., ‘Effect of hydrogen addition on preheated and non-preheated air-methane mild flameless combustion’, ECM, p.2011

M. Ayoub, C. Rottier, S. Carpentier, C. Villermaux, A. M. Boukhalfa et al., An experimental study of mild flameless combustion of methane/hydrogen mixtures, International Journal of Hydrogen Energy, vol.37, issue.8, p.2012
DOI : 10.1016/j.ijhydene.2012.01.018

M. Becker, ‘Heat Transfer – a modern approach’, 1986.

J. M. Beér and N. A. Chigier, ‘Combustion aerodynamics’, éd, Applied Science Ltd, pp.264-279, 1972.

J. M. Beér, Minimizing NOx emissions from stationary combustion; reaction engineering methodology, Chemical Engineering Science, vol.49, issue.24, pp.4067-4083, 1994.
DOI : 10.1016/S0009-2509(05)80006-5

C. T. Bowman, Kinetics of pollutant formation and destruction in combustion, Progress in Energy and Combustion Science, vol.1, issue.1, pp.33-45, 1975.
DOI : 10.1016/0360-1285(75)90005-2

J. W. Bozzelli and A. M. Dean, O + NNH: A possible new route for NOX formation in flames, International Journal of Chemical Kinetics, vol.98, issue.11, pp.1097-109, 1995.
DOI : 10.1002/kin.550271107

B. Cain, T. Robertson, and J. Newby, ‘The development and application of direct fuel injection techniques for emissions reduction in high temperature furnaces’, 2nd International Seminar on High Temperature Combustion, 2000.

A. Cavaliere, M. De-joannon, and . ‘mild-combustion’, Mild Combustion, Progress in Energy and Combustion Science, vol.30, issue.4, pp.329-366, 2004.
DOI : 10.1016/j.pecs.2004.02.003

A. Cavigiolo, M. Galbiati, A. Effuggi, D. Gelosa, and R. Rota, Mild combustion in a laboratory-scale apparatus, Combustion Science and Technology, vol.175, issue.8, pp.1347-1367, 2003.
DOI : 10.1080/00102200302356

Y. A. Cengel, ‘Heat Transfer – a practical approach’, 2003.

G. Choi and M. Katsuki, ‘Advanced low NOx combustion using highly preheated air’, Energy Conversion and Management, p.639652, 2001.

G. Ciemat and . Cleaning’, Clean Coal Technologies Handbook, PROGRAMA I+D OCICARBON, 2000.

M. Derudi, A. Villani, and R. Rota, Sustainability of mild combustion of hydrogen-containing hybrid fuels, Proceedings of the Combustion Institute, pp.3393-3400, 2007.
DOI : 10.1016/j.proci.2006.08.107

M. Derudi, A. Villani, and R. Rota, Mild Combustion of Industrial Hydrogen-Containing Byproducts, Industrial & Engineering Chemistry Research, vol.46, issue.21, pp.6806-6811, 2007.
DOI : 10.1021/ie061701t

M. Derudi, A. Villani, and R. Rota, ‘The Influence of Hydrogen-Containing Fuels on Mild Combustion Sustainability’, Proc. European Combustion Meeting, p.2007

M. Ditaranto, J. Hals, and T. Bjørge, Investigation on the in-flame NO reburning in turbine exhaust gas, Proceedings of the Combustion Institute, pp.2659-2666, 2009.
DOI : 10.1016/j.proci.2008.07.002

F. Donatini, M. Schiavetti, G. Gigliucci, P. Gheri, M. Monticelli et al., ‘CFD simulation and experimental tests on a natural gas/hydrogen mixture-fired flameless combustor’, 2005.

A. Effuggi, D. Gelosa, M. Derudi, and R. Rota, Mild Combustion of Methane-Derived Fuel Mixtures: Natural Gas and Biogas, Combustion Science and Technology, vol.27, issue.3, pp.481-493, 2008.
DOI : 10.1016/S0360-1285(97)00006-3

M. Fairweather, M. P. Ormsby, C. G. Sheppard, and R. Wooley, Turbulent burning rates of methane and methane???hydrogen mixtures, Combustion and Flame, vol.156, issue.4, pp.780-790, 2009.
DOI : 10.1016/j.combustflame.2009.02.001

M. Flamme, M. Bo, M. Brune, A. Lynen, J. Heym et al., ‘Improvement of energy saving with new ceramic self-recuperative burners’, International gas research conference, 1998.

N. Fricker, A. Williams, and E. Hampartsoumian, ‘normal total emissivity of refractory materials based on aluminium and silicon oxides’, IFRF Combustion handbook database, 2003.

M. A. Galbiati, A. Cavigiolo, A. Effuggi, D. Gelosa, and R. Rota, ‘Mild combustion for fuel NOx reduction’, Combustion Science and Technology, vol.176, 2004.

C. Galletti, A. Parente, and L. Tognotti, ‘CFD Simulation of Mild combustion’, Proc. European Combustion Meeting, p.2007

C. Galletti, A. Parente, and L. Tognotti, Numerical and experimental investigation of a mild combustion burner, Combustion and Flame, vol.151, issue.4, pp.649-664, 2007.
DOI : 10.1016/j.combustflame.2007.07.016

C. Galletti, A. Parente, M. Derudi, R. Rota, and L. Tognotti, Numerical and experimental analysis of NO emissions from a lab-scale burner fed with hydrogen-enriched fuels and operating in MILD combustion, International Journal of Hydrogen Energy, vol.34, issue.19, pp.8339-51, 2009.
DOI : 10.1016/j.ijhydene.2009.07.095

E. W. Grandmaison, I. Yimer, H. A. Becker, and A. Sobiesiak, The Strong-Jet/Weak-Jet Problem and Aerodynamic Modeling of the CGRI Burner, Combustion and Flame, vol.114, issue.3-4, pp.381-396, 1998.
DOI : 10.1016/S0010-2180(97)00314-3

D. Han and M. G. Mungal, Direct measurement of entrainment in reacting/nonreacting turbulent jets, Combustion and Flame, vol.124, issue.3, pp.370-386, 2001.
DOI : 10.1016/S0010-2180(00)00211-X

D. R. Hardesty and F. J. Weinberg, Burners Producing Large Excess Enthalpies, Combustion Science and Technology, vol.321, issue.5-6, pp.201-214, 1974.
DOI : 10.1080/00102207108952472

J. E. Harrington, G. P. Smith, P. A. Berg, A. R. Noble, J. B. Jeffries et al., Evidence for a new no production mechanism in flames, Symposium (International) on Combustion, vol.26, issue.2, pp.2133-2141, 1996.
DOI : 10.1016/S0082-0784(96)80038-5

T. Hasegawa and M. Katsuki, ‘Latest experimental knowledge of High-Temperature Air Combustion’, National project reports high performance industrial furnace

T. Hasegawa, ‘High Temperature Air Combustion as a core technology in developing advanced industrial furnaces’, Forum on high performance industrial furnace and boiler, pp.8-9, 1999.

N. L. Haworth, J. C. Mackie, and G. B. Bacskay, An Ab Initio Quantum Chemical and Kinetic Study of the NNH + O Reaction Potential Energy Surface:?? How Important Is This Route to NO in Combustion?, The Journal of Physical Chemistry A, vol.107, issue.35, pp.6792-803, 2003.
DOI : 10.1021/jp034421p

M. V. Heitor and A. L. Moreira, Thermocouples and sample probes for combustion studies, Progress in Energy and Combustion Science, vol.19, issue.3, p.3, 1993.
DOI : 10.1016/0360-1285(93)90017-9

K. Hersent, ‘Etude expérimentale de l’influence de la température des parois du four sur le régime de combustion sans flamme’, 2008.

G. Hesselmann and M. Rivas, ‘What are the main NOx formation processes in combustion plant?’, IFRF online combustion handbook file, 2001.

B. J. Hill, Measurement of local entrainment rate in the initial region of axisymmetric turbulent air jets, Journal of Fluid Mechanics, vol.74, issue.04, pp.773-779, 1972.
DOI : 10.1017/S0022112072001351

D. Honoré, ‘Advanced measurements in industrial combustion systems’, VKI Lecture Series ‘Turbulent Combustion’, 2007.

Z. Huang, Y. Zhang, K. Zeng, B. Liu, Q. Wang et al., Measurements of laminar burning velocities for natural gas???hydrogen???air mixtures, Combustion and Flame, vol.146, issue.1-2, pp.302-311, 2006.
DOI : 10.1016/j.combustflame.2006.03.003

M. Ilbas, A. P. Crayford, I. Yilmaz, P. J. Bowen, and N. Syred, Laminar-burning velocities of hydrogen???air and hydrogen???methane???air mixtures: An experimental study, International Journal of Hydrogen Energy, vol.31, issue.12, pp.1768-79, 2006.
DOI : 10.1016/j.ijhydene.2005.12.007

M. Katsuki and T. Hasegawa, ‘The science and technology of combustion in highly preheated air’, twenty-seventh symposium on combustion, pp.3135-3146, 1998.

J. P. Kim, U. Schnell, and G. Scheffknecht, Comparison of Different Global Reaction Mechanisms for MILD Combustion of Natural Gas, Combustion Science and Technology, vol.72, issue.4, pp.565-592, 2008.
DOI : 10.1016/S0360-1285(97)00006-3

A. A. Konnov, On the relative importance of different routes forming NO in hydrogen flames, Combustion and Flame, vol.134, issue.4, pp.421-425, 2003.
DOI : 10.1016/S0010-2180(03)00135-4

A. A. Konnov, Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism, Combustion and Flame, vol.156, issue.11, pp.2093-105, 2009.
DOI : 10.1016/j.combustflame.2009.03.016

N. Lamoureux, P. Desgroux, A. Bakali, and J. F. Pauwels, Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH4???O2???N2 and C2H2???O2???N2 flames, Combustion and Flame, vol.157, issue.10, pp.1929-1970, 2010.
DOI : 10.1016/j.combustflame.2010.03.013

T. Laplace, . Gdf, and . Suez, ‘Test de compatibilité de la CSF en parois froide, 2010.

N. Larass, ‘Caractérisation expérimentale des champs thermiques et dynamiques de la combustion dans une Chaudière domestique modèle’, Thèse de l’Université de Rouen, 2000.

D. Lupant, B. Pessenti, P. Evrard, and P. Lybaert, ‘Numerical and Experimental Characterization of a Self-Regenerative Flameless Oxidation Burner Operation in a pilot-scale Furnace’, European Combustion Meeting, pp.3-6, 2005.

D. Lupant, ‘Caractérisation expérimentale détaillée et modélisation numérique de la combustion diluée du gaz naturel sur une installation de laboratoire de 30kW’, Doctorat en sciences appliquées, 2011.

M. Mancini, R. Weber, and U. Bollettini, Predicting NOx emissions of a burner operated in flameless oxidation mode, Proceedings of the Combustion Institute, pp.1155-1163, 2002.
DOI : 10.1016/S1540-7489(02)80146-8

M. Mancini, P. Schwöppe, R. Weber, and S. Orsino, On mathematical modelling of flameless combustion, Combustion and Flame, vol.150, issue.1-2, pp.54-59, 2007.
DOI : 10.1016/j.combustflame.2007.03.007

A. Mardani and S. Tabejamaat, Effect of hydrogen on hydrogen???methane turbulent non-premixed flame under MILD condition, International Journal of Hydrogen Energy, vol.35, issue.20, pp.11324-11331, 2010.
DOI : 10.1016/j.ijhydene.2010.06.064

E. Masson, ‘Etude expérimentale des champs dynamiques et scalaires de la combustion sans flamme’, 2005.

P. R. Medwell, P. A. Kalt, and B. B. Dally, Reaction Zone Weakening Effects under Hot and Diluted Oxidant Stream Conditions, Combustion Science and Technology, vol.135, issue.7, 2009.
DOI : 10.1080/00102200902904138

A. Milani and A. Saponaro, ‘Diluted combustion technologies’, IFRF (International Flame Research Foundation) Combustion Journal, Article, 2001.

A. Milani and J. Wünning, ‘What is Flameless Combustion ?’, IFRF Online Combustion Handbook, 2002.

L. V. Moskaleva and M. C. Lin, Computational study of the kinetics and mechanisms for the reaction of H atoms with c-C5H6, Proceedings of the Combustion Institute, vol.29, issue.1, pp.1319-1346, 2002.
DOI : 10.1016/S1540-7489(02)80162-6

I. Nakamachi, K. Yasukawa, T. Miyahata, and T. Nagata, ‘Apparatus or Method for Carrying out Combustion in a Furnace’, p.841, 1990.

A. Nicolle and P. Dagaut, Occurrence of NO-reburning in MILD combustion evidenced via chemical kinetic modeling, Fuel, vol.85, issue.17-18, pp.2469-2478, 2006.
DOI : 10.1016/j.fuel.2006.05.021

A. Parente, C. Galletti, and L. Tognotti, Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels, International Journal of Hydrogen Energy, vol.33, issue.24, pp.7553-7564, 2008.
DOI : 10.1016/j.ijhydene.2008.09.058

X. Paubel, ‘Analyse expérimentale des oxy-flammes turbulentes non-prémélangées de gaz à faible pouvoir calorifique’, 2007.

A. Quinqueneau, A. Touzet, and M. Oger, ‘Experimental studies on regenerative industrial burners operating in the flameless oxidation mode’, Proc. 13th IFRF Members Conference, 2001.

A. Quinqueneau, C. Villermaux, M. Ourliac, M. Ayoub, and D. Honoré, ‘Dispositif de stabilisation de la combustion diluée dans une enceinte de combustion à parois froides’, 2013.

O. Rentz, S. Nunge, M. Laforsch, and T. H. , ‘Technical background document for the actualisation and assessment of UN/ECE protocols related to the abatement of the transboundary transport of nitrogen oxides from stationary sources’, 1999.

F. P. Ricou and D. B. Spalding, Measurements of entrainment by axisymmetrical turbulent jets, Journal of Fluid Mechanics, vol.80, issue.01, pp.21-32, 1960.
DOI : 10.1088/0950-7671/27/11/309

D. Ristic, R. Berger, G. Scheffknecht, C. Lacour, D. Honoré et al., ‘Experimental study on flameless combustion of pulverised coal under air staging conditions’, The 15th IFRF Members Conference, pp.13-15, 2007.

D. Ristic, A. Schuster, and G. Scheffknecht, ‘On the Potential of Flameless Oxidation to Reduce NOx Emissions from Pulverized Coal Combustion’, Industrial Combustion, Article Number, 2010.

G. J. Rortveit, K. Zepter, O. Skreiberg, M. Fossum, and J. E. Hustad, A comparison of low-NOx burners for combustion of methane and hydrogen mixtures, Proceedings of the Combustion Institute, vol.29, issue.1, pp.1123-1129, 2002.
DOI : 10.1016/S1540-7489(02)80142-0

C. Rottier, C. Lacour, G. Godard, B. Taupin, L. Porcheron et al., ‘On the effect of air temperature on mild flameless combustion regime of high temperature furnace’, Proceedings of ECM 2009 ~ 231

C. Rottier, G. Godard, F. Corbin, A. M. Boukhalfa, and D. Honoré, ‘An endoscopic Particle Image Velocimetry system for high temperature furnaces’, Meas, Science and Technol, vol.21, issue.a, pp.115404-2010

C. Rottier, ‘Etude expérimentale de l’influence des mélanges gazeux sur la combustion sans flamme’, p.2010

P. Sabia, M. De-joannon, A. Picarelli, and R. Ragucci, Methane auto-ignition delay times and oxidation regimes in MILD combustion at atmospheric pressure, Combustion and Flame, vol.160, issue.1, 2013.
DOI : 10.1016/j.combustflame.2012.09.015

J. F. Sacadura, ‘Initiation aux transferts thermiques’, Editions Tech & Doc, 1980.

R. W. Schefer, Hydrogen enrichment for improved lean flame stability, International Journal of Hydrogen Energy, vol.28, issue.10, pp.1131-1141, 2003.
DOI : 10.1016/S0360-3199(02)00199-4

M. Skottene and K. E. Rian, A study of NOxNOx formation in hydrogen flames, International Journal of Hydrogen Energy, vol.32, issue.15, pp.3572-85, 2007.
DOI : 10.1016/j.ijhydene.2007.02.038

G. Sorrentino, D. Scarpa, and A. Cavaliere, Transient inception of MILD combustion in hot diluted diffusion ignition (HDDI) regime: A numerical study, Proceedings of the Combustion Institute, pp.3239-3247, 2013.
DOI : 10.1016/j.proci.2012.08.002

H. Stadler, D. Ristic, M. Förster, A. Schuster, R. Kneer et al., ‘NOx-emissions from flameless coal combustion in air, Ar/O2 and CO2/O2’, Proceedings of the Combustion Institute, pp.3131-3138, 2009.

G. G. Szegö, B. B. Dally, and G. J. Nathan, ‘Operational characteristics of a parallel jet MILD combustion burner system’, Combustion and Fame, pp.429-438, 2008.

G. G. Szegö, B. B. Dally, and F. C. Christo, ‘Investigation of the mixing patterns inside a MILD combustion furnace based on CFD modelling’, Proceedings of the Australian Combustion Symposium, 2009.

S. Tissot and A. Pichard, ‘Seuils de toxicité aigüe – Monoxyde d’azote (NO)’, rapport final du ministère de l’écologie et du développement durable, et du ministère de la santé, 2004.

S. Tissot and A. Pichard, ‘Seuils de toxicité aigüe – Dioxyde d’azote (NO 2 )’, rapport final du ministère de l’écologie et du développement durable, et du ministère de la santé, 2004.

. Verbund, Kapitel 7 NOx-Reduktion’, Österreichische Elektrizitätswirtschafts-Aktiengesellschaft (Verbundgesellschaft), 1996.

R. Weber, S. Orsino, N. Lallemant, and A. Verlaan, ‘Combustion of natural gas with hightemperature air and large quantities of flue gas’, Proc. Combust. Inst, pp.28-1315, 2000.

R. Weber, J. P. Smart, and W. Vd-kamp, On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air, Proceedings of the Combustion Institute, pp.2623-2629, 2005.
DOI : 10.1016/j.proci.2004.08.101

P. J. Weinberg, Combustion Temperatures: The Future?, Nature, vol.321, issue.5317, pp.239-241, 1971.
DOI : 10.1038/233239a0

J. A. Wünning and J. G. Wünning, Flameless oxidation to reduce thermal no-formation, Progress in Energy and Combustion Science, vol.23, issue.1, pp.81-94, 1997.
DOI : 10.1016/S0360-1285(97)00006-3

I. Yimer, H. A. Becker, and E. W. Grandmaison, The strong-jet/weak-jet problem: new experiments and CFD, Combustion and Flame, vol.124, issue.3, pp.481-502, 2001.
DOI : 10.1016/S0010-2180(00)00216-9