Skip to Main content Skip to Navigation
Theses

Apprentissage incrémental en ligne sur flux de données

Christophe Salperwyck 1
1 SHACRA - Simulation in Healthcare using Computer Research Advances
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe, Inria Nancy - Grand Est
Résumé : L'apprentissage statistique propose un vaste ensemble de techniques capables de construire des modèles prédictifs à partir d'observations passées. Ces techniques ont montré leurs capacités à traiter des volumétries importantes de données sur des problèmes réels. Cependant, de nouvelles applications génèrent de plus en plus de données qui sont seulement visibles sous la forme d'un flux et doivent être traitées séquentiellement. Parmi ces applications on citera : la gestion de réseaux de télécommunications, la modélisation des utilisateurs au sein d'un réseau social, le web mining. L'un des défis techniques est de concevoir des algorithmes permettant l'apprentissage avec les nouvelles contraintes imposées par les flux de données. Nous proposons d'abord ce problème en proposant de nouvelles techniques de résumé de flux de données dans le cadre de l'apprentissage supervisé. Notre méthode est constituée de deux niveaux. Le premier niveau utilise des techniques incrémentales de résumé en-ligne pour les flux qui prennent en compte les ressources mémoire et processeur et possèdent des garanties en termes d'erreur. Le second niveau utilise les résumés de faible taille, issus du premier niveau, pour construire le résumé final à l'aide d'une méthode supervisée performante hors-ligne. Ces résumés constituent un prétraitement qui nous permet de proposer de nouvelles versions du classifieur bayésien naïf et des arbres de décision fonctionnant en-ligne sur flux de données. Les flux de données peuvent ne pas être stationnaires mais comporter des changements de concept. Nous proposons aussi une nouvelle technique pour détecter ces changements et mettre à jour nos classifieurs.
Document type :
Theses
Complete list of metadatas

Cited literature [174 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00845655
Contributor : Abes Star :  Contact
Submitted on : Friday, September 20, 2013 - 8:47:13 AM
Last modification on : Thursday, February 21, 2019 - 10:52:54 AM
Document(s) archivé(s) le : Friday, April 7, 2017 - 12:20:16 AM

File

SALPERWYCK_Christophe.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00845655, version 2

Collections

Citation

Christophe Salperwyck. Apprentissage incrémental en ligne sur flux de données. Autre [cs.OH]. Université Charles de Gaulle - Lille III, 2012. Français. ⟨NNT : 2012LIL30037⟩. ⟨tel-00845655v2⟩

Share

Metrics

Record views

972

Files downloads

1411