S. Hembacher, F. J. Giessibl, J. Mannhart, M. Ternes, C. P. Lutz et al., Force microscopy with light-atom probes The Force Needed to Move an Atom on a Surface, Subatomic features in atomic force microscopy images: Technical Comment, pp.380-383, 1066.

]. P. Parot, Y. F. Dufrêne, P. Hinterdorfer, C. Le-grimellec, D. Navajas et al., Past, present and future of atomic force microscopy in life sciences and medicine, Journal of Molecular Recognition, vol.74, issue.44, pp.418-431, 2007.
DOI : 10.1002/jmr.857

]. D. Müller and Y. F. Dufrêne, Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology, Nature Nanotechnology, vol.3, issue.5, pp.261-269, 2008.
DOI : 10.1038/nnano.2008.100

W. R. Sanhai, J. H. Sakamoto, R. Canady, and M. Ferrari, Seven challenges for nanomedicine, Nature Nanotechnology, vol.4, issue.5, pp.242-246, 2008.
DOI : 10.1038/nnano.2008.114

L. Hood, J. R. Heath, M. E. Phelps, and B. Lin, Systems Biology and New Technologies Enable Predictive and Preventative Medicine, Science, vol.306, issue.5696, pp.306-640, 2004.
DOI : 10.1126/science.1104635

D. A. Lavan, D. M. Lynn, and R. Langer, Moving smaller in drug discovery and delivery, Nature Reviews, vol.1, pp.77-84, 2002.

A. Raab, W. Han, D. Badt, S. J. Smith-gill, S. M. Lindsay et al., Antibody recognition imaging by force microscopy, Nature Biotechnology, vol.17, pp.902-905, 1999.

C. Stroh, H. Wang, R. Bash, B. Ashcroft, J. Nelson et al., Single-molecule recognition imaging microscopy, Proceedings of the National Academy of Sciences, vol.21, issue.24, pp.12503-12507, 2004.
DOI : 10.1128/MCB.21.24.8504-8511.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514657

F. Kienberger, C. M. Stroh, A. Ebner, M. Geretschla, A. S. Kamruzzahan et al., Simultaneous Topography and Recognition Imaging Using Force Microscopy, Biophysical Journal, vol.87, pp.1981-1990, 2004.

P. Hinterdorfer and Y. F. Dufrêne, Detection and localization of single molecular recognition events using atomic force microscopy, Nature Methods, vol.34, issue.5, pp.347-355, 2006.
DOI : 10.1038/nmeth871

P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, Detection and localization of individual antibody-antigen recognition events by atomic force microscopy., Proceedings of the National Academy of Sciences of the United States of America, pp.93-3477, 1996.
DOI : 10.1073/pnas.93.8.3477

R. H. Pires, M. J. Saraiva, A. M. Damas, and M. S. Kellermayer, Structure and assembly-disassembly properties of wild-type transthyretin amyloid protofibrils observed with atomic force microscopy, Journal of Molecular Recognition, vol.1753, issue.6-15, pp.467-476, 2011.
DOI : 10.1002/jmr.1112

Y. F. Dufrêne, Using nanotechniques to explore microbial surfaces, Nature Reviews Microbiology, vol.81, issue.6, pp.451-60, 2004.
DOI : 10.1038/27873

I. Liashkovich, W. Hafezi, J. M. Kühn, H. Oberleithner, and V. Shahin, Nuclear delivery mechanism of herpes simplex virus type 1 genome, Journal of Molecular Recognition, vol.81, issue.12, pp.414-421, 2011.
DOI : 10.1002/jmr.1120

C. A. Bippes and D. J. Muller, High-resolution atomic force microscopy and spectroscopy of native membrane proteins, Reports on Progress in Physics, pp.74-086601, 2011.

A. Makky, T. Berthelot, C. Feraudet-tarisse, H. Volland, P. Viel et al., Substructures high resolution imaging of individual IgG and IgM antibodies with piezoelectric tuning fork atomic force microscopy, Sensors and Actuators B: Chemical, vol.162, issue.1, pp.269-277, 2012.
DOI : 10.1016/j.snb.2011.12.077

A. San-paulo and R. Garcia, High-Resolution Imaging of Antibodies by Tapping-Mode Atomic Force Microscopy: Attractive and Repulsive Tip-Sample Interaction Regimes, Biophysical Journal, vol.78, issue.3, pp.1599-1605, 2000.
DOI : 10.1016/S0006-3495(00)76712-9

M. Stolz, R. Gottardi, R. Raiteri, S. Miot, I. Martin et al., Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy, Nature Nanotechnology, pp.1-7, 2009.

T. Ludwig, R. Kirmse, K. Poole, and U. S. Schwarz, Probing cellular microenvironments and tissue remodeling by atomic force microscopy, Pfl??gers Archiv - European Journal of Physiology, vol.24, issue.1, pp.29-49, 2008.
DOI : 10.1007/s00424-007-0398-9

P. Puech, A. Taubenberger, F. Ulrich, M. Krieg, D. J. Muller et al., Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy, Journal of Cell Science, vol.118, issue.18, pp.4199-4206, 2005.
DOI : 10.1242/jcs.02547

F. Ulrich, M. Krieg, E. Schötz, V. Link, I. Castanon et al., Wnt11 Functions in Gastrulation by Controlling Cell Cohesion through Rab5c and E-Cadherin, Wnt11 Functions in Gastrulation by Controlling Cell Cohesion through Rab5c and E-Cadherin, pp.555-564, 2005.
DOI : 10.1016/j.devcel.2005.08.011

URL : http://doi.org/10.1016/j.devcel.2005.08.011

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao et al., Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria, Acta Biomaterialia, vol.1, issue.1, pp.15-30, 2005.
DOI : 10.1016/j.actbio.2004.09.001

S. E. Cross, Y. Jin, J. Rao, and J. K. Gimzewski, Nanomechanical analysis of cells from cancer patients, Nature Nanotechnology, vol.86, issue.12, pp.780-783, 2007.
DOI : 10.1038/nnano.2007.388

C. Brunner, A. Niendorf, and J. A. Käs, Passive and active single-cell biomechanics: a new perspective in cancer diagnosis, Soft Matter, vol.98, issue.11, pp.2171-2178, 2009.
DOI : 10.1039/b807545j

P. Hansma, H. Yu, D. Schultz, A. Rodriguez, E. A. Yurtsev et al., The tissue diagnostic instrument, Review of Scientific Instruments, vol.80, issue.5, p.54303, 2009.
DOI : 10.1002/jbm.a.30812

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832056

M. O. Li, H. X. Tang, and M. L. Roukes, Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications, Nature Nanotechnology, vol.78, issue.2, 2007.
DOI : 10.1038/nnano.2006.208

T. Ando, High-speed atomic force microscopy coming of age, Nanotechnology, vol.23, issue.6, p.62001, 2012.
DOI : 10.1088/0957-4484/23/6/062001

T. Ando, T. Uchihashi, and T. Fukuma, High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes, Progress in Surface Science, vol.83, issue.7-9, pp.337-437, 2008.
DOI : 10.1016/j.progsurf.2008.09.001

J. P. Howard-knight and J. K. Hobbs, Video rate atomic force microscopy using low stiffness, low resonant frequency cantilevers, Applied Physics Letters, vol.93, issue.10, p.93, 2008.
DOI : 10.1016/j.polymer.2005.08.042

I. Choi, Y. Kim, J. H. Kim, Y. I. Yang, J. Lee et al., Fast image scanning method in liquid-AFM without image distortion, Nanotechnology, vol.19, issue.44, p.19, 2008.
DOI : 10.1088/0957-4484/19/44/445701

M. J. Rost, G. J. Baarle, A. J. Katan, W. M. Spengen, P. Schakel et al., Video-rate scanning probe control challenges: setting the stage for a microscopy revolution, Asian Journal of Control, vol.11, issue.5, pp.110-129, 2009.
DOI : 10.1002/asjc.88

A. D. Humphris, B. Zhao, D. Catto, J. P. Howard-knight, P. Kohli et al., High speed nano-metrology, Review of Scientific Instruments, vol.82, issue.4, p.43710, 2011.
DOI : 10.1063/1.3227238

G. E. Fantner, G. Schitter, J. H. Kindt, T. Ivanov, K. Ivanova et al., Components for high speed atomic force microscopy, Ultramicroscopy, vol.106, issue.8-9, pp.106-881, 2006.
DOI : 10.1016/j.ultramic.2006.01.015

Y. K. Yong, S. O. Moheimani, and I. R. Petersen, High-speed cycloid-scan atomic force microscopy, Nanotechnology, vol.21, issue.36, 2010.
DOI : 10.1088/0957-4484/21/36/365503

H. Kawakatsu, S. Kawai, D. Saya, M. Nagashio, D. Kobayashi et al., Towards atomic force microscopy up to 100 MHz, Review of Scientific Instruments, vol.21, issue.6, pp.73-2317, 2002.
DOI : 10.1063/1.1139958

G. Meyer and N. M. Amer, Novel optical approach to atomic force microscopy, Applied Physics Letters, vol.33, issue.12, pp.1045-1047, 1988.
DOI : 10.1063/1.1138973

Q. Huang, Y. Fei, S. Gonda, I. Misumi, O. Sato et al., The interference effect in an optical beam deflection detection system of a dynamic mode AFM, Measurement Science and Technology, vol.17, issue.6, pp.1417-1423, 2006.
DOI : 10.1088/0957-0233/17/6/020

O. Custance, R. Perez, and S. Morita, Atomic force microscopy as a tool for atom manipulation, Nature Nanotechnology, vol.79, issue.6, pp.803-810, 2009.
DOI : 10.1038/nnano.2009.347

T. Trevethan, M. Watkins, L. N. Kantorovich, A. L. Shluger, J. Polesel-maris et al., Modelling atomic scale manipulation with the non-contact atomic force microscope, Nanotechnology, vol.17, issue.23, pp.17-5866, 2006.
DOI : 10.1088/0957-4484/17/23/026

P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Dürig et al., Ultrahigh density , high-data-rate NEMS-based AFM data storage system, Microelectronic Engineering, pp.46-57, 1999.
DOI : 10.1016/s0167-9317(99)00006-4

P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig et al., The "millipede" - nanotechnology entering data storage, IEEE Transactions On Nanotechnology, vol.1, issue.1, pp.39-55, 2002.
DOI : 10.1109/TNANO.2002.1005425

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.159.7003

P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle et al., The ???Millipede??????More than thousand tips for future AFM storage, IBM Journal of Research and Development, vol.44, issue.3, pp.323-340, 2000.
DOI : 10.1147/rd.443.0323

T. Sulchek, R. J. Grow, G. G. Yaralioglu, S. C. Minne, C. F. Quate et al., Parallel atomic force microscopy with optical interferometric detection, Applied Physics Letters, vol.78, issue.12, pp.78-1787, 2001.
DOI : 10.1063/1.119147

H. Kawakatsu, D. Saya, A. Kato, K. Fukushima, and H. Toshiyoshi, Millions of cantilevers for atomic force microscopy, Review of Scientific Instruments, vol.73, issue.3, pp.1188-1192, 2002.
DOI : 10.1109/84.825786

S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar et al., Centimeter scale atomic force microscope imaging and lithography, Applied Physics Letters, vol.73, issue.12, pp.73-1742, 1998.
DOI : 10.1063/1.121353

URL : http://repository.bilkent.edu.tr/bitstream/11693/10929/1/10.1063-1.122263.pdf

G. Weder, N. Blondiaux, M. Giazzon, N. Matthey, M. Klein et al., Use of Force Spectroscopy to Investigate the Adhesion of Living Adherent Cells, Langmuir, vol.26, issue.11, pp.26-8180, 2010.
DOI : 10.1021/la904526u

G. Weder, M. Giazzon, J. Polesel-maris, A. Meister, M. Liley et al., MEASURING CELL ADHESION FORCES AS A FUNCTION OF THE CELL CYCLE BY FORCE SPECTROSCOPY, Journal of Biomechanics, vol.41, p.99, 2007.
DOI : 10.1016/S0021-9290(08)70022-8

R. S. Tuan, G. Boland, and R. Tuli, Adult mesenchymal stem cells and cell-based tissue engineering, Arthritis Research & Therapy, vol.5, issue.1, pp.32-45, 2003.
DOI : 10.1186/ar614

M. Tortonese, R. C. Barrett, and C. F. Quate, Atomic resolution with an atomic force microscope using piezoresistive detection, Applied Physics Letters, vol.30, issue.8, pp.834-836, 1993.
DOI : 10.1063/1.1702605

J. A. Harley and T. W. Kenny, High-sensitivity piezoresistive cantilevers under 1000 ?? thick, Applied Physics Letters, vol.75, issue.2, pp.289-291, 2000.
DOI : 10.1007/BF00883091

J. L. Arlett, J. R. Maloney, B. Gudlewski, M. Muluneh, and M. L. Roukes, Self-Sensing Micro- and Nanocantilevers with Attonewton-Scale Force Resolution, Nano Letters, vol.6, issue.5, pp.1000-1006, 2006.
DOI : 10.1021/nl060275y

J. A. Harley and T. W. Kenny, 1/f Noise Considerations for the Design and Process Optimization of Piezoresistive Cantilevers, Journal of Microelectromechanical Systems, vol.9, pp.226-235, 2000.

C. S. Smith, Piezoresistance Effect in Germanium and Silicon, Physical Review, pp.42-49, 1954.

S. Dohn, J. Kjelstrup-hansen, D. N. Madsen, K. Mølhave, and P. Bøggild, Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain, Ultramicroscopy, vol.105, issue.1-4, pp.105-209, 2005.
DOI : 10.1016/j.ultramic.2005.06.038

T. Helbling, C. Roman, and C. Hierold, Signal-to-noise ratio in carbon nanotube electromechanical piezoresistive sensors., Nano Letters, pp.3350-3354, 2010.
DOI : 10.1021/nl101031e

M. Cullinan and M. Culpepper, Carbon nanotubes as piezoresistive microelectromechanical sensors: Theory and experiment, Physical Review B, vol.82, issue.11, p.115428, 2010.
DOI : 10.1021/nn800462s

X. Chen, X. Zheng, J. Kim, X. Li, and D. Lee, Investigation of graphene piezoresistors for use as strain gauge sensors, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol.29, issue.6, pp.1-5, 2011.
DOI : 10.1116/1.3660784

L. Aeschimann, F. Goericke, J. Polesel-maris, A. Meister, T. Akiyama et al., Piezoresistive scanning probe arrays for operation in liquids, Journal of Physics: Conference Series, vol.61, pp.61-67, 2007.
DOI : 10.1088/1742-6596/61/1/002

J. Polesel-maris, L. Aeschimann, A. Meister, R. Ischer, E. Bernard et al., Piezoresistive cantilever array for life sciences applications, Journal of Physics: Conference Series, vol.61, pp.61-955, 2007.
DOI : 10.1088/1742-6596/61/1/189

L. Aeschimann, A. Meister, T. Akiyama, B. W. Chui, P. Niedermann et al., Scanning probe arrays for life sciences and nanobiology applications, Microelectronic Engineering, vol.83, issue.4-9, pp.1698-1701, 2006.
DOI : 10.1016/j.mee.2006.01.201

URL : http://doc.rero.ch/record/16868/files/Aeschlimann_Laure._-_Scanning_probe_arrays_for_life_sciences_20100108.pdf

R. Dieme, G. Bosman, T. Nishida, and M. Sheplak, Sources of excess noise in silicon piezoresistive microphones, The Journal of the Acoustical Society of America, vol.119, issue.5, pp.2710-2720, 2006.
DOI : 10.1121/1.2188367

F. N. Hooge, T. G. Kleinpenning, and L. K. Vandamme, Experimental studies on 1/f noise, Reports on Progress in Physics, pp.44-479, 1981.

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim et al., Performance of monolayer graphene nanomechanical resonators with electrical readout, Nature Nanotechnology, vol.98, issue.12, pp.861-868, 2009.
DOI : 10.1038/nnano.2009.267

F. Schedin, K. Geim, S. V. Morozov, E. W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene, Nature Materials, vol.88, issue.9, pp.652-655, 2007.
DOI : 10.1038/nmat1967

P. P. Lehenkari, G. T. Charras, S. A. Nesbitt, and M. A. Horton, New technologies in scanning probe microscopy for studying molecular interactions in cells, Expert Reviews in Molecular Medicine, vol.2, pp.1-19, 2000.

C. Rotsch, K. Jacobson, and M. Radmacher, Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy, Proceedings of the National Academy of Sciences of the United States of America, pp.96-921, 1999.
DOI : 10.1083/jcb.102.4.1400

G. Weder, M. Giazzon, J. Polesel-maris, J. Vörös, M. Liley et al., MEASURING CELL ADHESION FORCES AS A FUNCTION OF THE CELL CYCLE BY FORCE SPECTROSCOPY, Journal of Biomechanics, vol.41, pp.41-63, 2008.
DOI : 10.1016/S0021-9290(08)70022-8

F. Rico and V. T. Moy, Energy landscape roughness of the streptavidin???biotin interaction, Journal of Molecular Recognition, vol.85, issue.6, pp.495-501, 2007.
DOI : 10.1002/jmr.841

J. Teulon, Y. Delcuze, M. Odorico, S. W. Chen, P. Parot et al., Single and multiple bonds in (strept)avidin-biotin interactions, Journal of Molecular Recognition, vol.125, issue.102, pp.490-502, 2011.
DOI : 10.1002/jmr.1109

R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans, Energy landscapes of receptor???ligand bonds explored with dynamic force spectroscopy, Nature, vol.394, issue.6714, pp.397-50, 1999.
DOI : 10.1038/16219

C. Santschi, J. Polesel-maris, H. Heinzelmann, and J. Brugger, SCANNING PROBE ARRAYS FOR NANOSCALE IMAGING, SENSING, AND MODIFICATION, Nanofabrication: Fundamentals and Applications, p.65, 2008.
DOI : 10.1142/9789812790897_0003

H. P. Lang, M. Hegner, and C. Gerber, Cantilever array sensors, Materials Today, vol.8, issue.4, pp.30-36, 2005.
DOI : 10.1016/S1369-7021(05)00792-3

URL : http://doi.org/10.1016/s1369-7021(05)00792-3

T. Akiyama, L. Aeschimann, L. C. Chantada, N. F. De-rooij, H. Heinzelmann et al., Concept and Demonstration of Individual Probe Actuation in Two-Dimensional Parallel Atomic Force Microscope System, Japanese Journal of Applied Physics, vol.46, issue.9B, pp.6458-6462, 2007.
DOI : 10.1143/JJAP.46.6458

G. E. Fantner, W. Schumann, R. J. Barbero, V. Deutschinger, D. S. Todorov et al., Use of self-actuating and self-sensing cantilevers for imaging biological samples in fluid, Nanotechnology, vol.20, issue.43, pp.20-434003, 2009.
DOI : 10.1088/0957-4484/20/43/434003

M. Alvarez and J. Tamayo, Optical sequential readout of microcantilever arrays for biological detection, Sensors And Actuators B, vol.106, pp.687-690, 2005.

M. Yue, H. Lin, D. E. Dedrick, S. Satyanarayana, A. Majumdar et al., A 2-D Microcantilever Array for Multiplexed Biomolecular Analysis, Journal of Microelectromechanical Systems, vol.13, issue.2, pp.290-299, 2004.
DOI : 10.1109/JMEMS.2003.823216

M. Helm, J. J. Servant, F. Saurenbach, and R. Berger, Read-out of micromechanical cantilever sensors by phase shifting interferometry, Applied Physics Letters, vol.174, issue.6, p.64101, 2005.
DOI : 10.1063/1.1781389

M. Favre, J. Polesel-maris, T. Overstolz, P. Niedermann, S. Dasen et al., Parallel AFM imaging and force spectroscopy using two-dimensional probe arrays for applications in cell biology, Journal of Molecular Recognition, vol.13, issue.3, pp.446-52, 2011.
DOI : 10.1002/jmr.1119

A. Meister, G. Gruener, and J. , Polesel-Maris, Parallel cantilever deflection measurement, 2011.

M. B. Sinclair, M. P. De-boer, and A. D. Corwin, Long-working-distance incoherent-light interference microscope, Applied Optics, vol.44, issue.36, pp.7714-7721, 2005.
DOI : 10.1364/AO.44.007714

H. Verschueren, Interference reflection microscopy in cell biology: methodology and applications, Journal of Cell Science, vol.75, pp.279-301, 1985.

O. P. Hamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, Pfltigers Archiv Improved Patch- Clamp Techniques for High-Resolution Current Recording from Cells and Cell-Free Membrane Patches, Pflügers Archiv -European Journal of Physiology, pp.391-85, 1981.
DOI : 10.1007/bf00656997

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.456.107

T. K. Chowdhury, Fabrication of extremely fine glass micropipette electrodes, Journal of Physics E: Scientific Instruments, vol.2, issue.12, p.1087, 1969.
DOI : 10.1088/0022-3735/2/12/319

A. Meister, J. Polesel-maris, M. Gabi, T. Zambelli, and J. Vörös, Probe arrangement for electrophysiological analysis in an AFM, 2008.

A. Meister, J. Polesel-maris, M. Gabi, T. Zambelli, and J. Vörös, Probe arrangement for electrophysiological analysis in an AFM, 2008.

A. Meister, J. Polesel-maris, P. Niedermann, J. Przybylska, P. Studer et al., Nanoscale dispensing in liquid environment of streptavidin on a biotin-functionalized surface using hollow atomic force microscopy probes, Microelectronic Engineering, pp.86-1481, 2009.

H. Heinzelmann, A. Meister, P. Niedermann, J. Bitterli, J. Polesel-maris et al., NADIS : A Novel AFM-based Tool for Dispensing Fluids into Single Cells, Microscopy and Analysis, pp.11-13, 2009.

A. Meister, M. Gabi, P. Behr, P. Studer, J. Vörös et al., FluidFM: Combining Atomic Force Microscopy and Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications and Beyond, Nano Letters, vol.9, issue.6, pp.2501-2508, 2009.
DOI : 10.1021/nl901384x

P. Dörig, P. Stiefel, P. Behr, E. Sarajlic, D. Bijl et al., Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of FluidFM technology, Applied Physics Letters, pp.97-023701, 2010.

J. Polesel-maris, C. Lubin, F. Thoyer, and J. Cousty, Combined dynamic scanning tunneling microscopy and frequency modulation atomic force microscopy investigations on polythiophene chains on graphite with a tuning fork sensor, Journal of Applied Physics, vol.28, issue.7, p.74320, 2011.
DOI : 10.1103/PhysRevB.44.13703

J. Polesel-maris, H. Guo, T. Zambelli, and S. Gauthier, Mapping van der Waals forces with frequency modulation dynamic force microscopy, Nanotechnology, vol.17, issue.16, pp.17-4204, 2006.
DOI : 10.1088/0957-4484/17/16/034

R. Nishi, I. Houda, K. Kitano, Y. Sugawara, and S. Morita, A noncontact atomic force microscope in air using a quartz resonator and the FM detection method, Applied Physics A, vol.72, issue.S1, pp.72-93, 2001.
DOI : 10.1007/s003390100638

J. Hayton, J. Polesel-maris, R. Demadrille, M. Brun, F. Thoyer et al., Atomic force microscopy imaging using a tip-on-chip: opening the door to integrated near field nanotools, The Review of Scientific Instruments, pp.81-093707, 2010.

T. Trevethan, M. Watkins, A. L. Shluger, J. Polesel-maris, S. Gauthier et al., A comparison of dynamic atomic force microscope set-ups for performing atomic scale manipulation experiments, Nanotechnology, vol.18, issue.34, p.18, 2007.
DOI : 10.1088/0957-4484/18/34/345503

J. Welker, F. De-faria-elsner, and F. J. , Application of the equipartition theorem to the thermal excitation of quartz tuning forks, Applied Physics Letters, vol.99, issue.8, pp.99-084102, 2011.
DOI : 10.1088/0957-4484/18/25/255503

E. Wutscher and F. J. , Atomic force microscopy at ambient and liquid conditions with stiff sensors and small amplitudes, Review of Scientific Instruments, vol.82, issue.9, p.93703, 2011.
DOI : 10.1116/1.590117

URL : https://epub.uni-regensburg.de/22922/1/RevSciInst.pdf

F. J. Giessibl, F. Pielmeier, T. Eguchi, T. An, and Y. Hasegawa, Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators, Physical Review B, vol.8, issue.12, pp.125409-125410, 2011.
DOI : 10.1088/0957-4484/21/30/305704

F. J. Giessibl, H. Bielefeldt, S. Hembacher, and J. Mannhart, Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy, Applied Surface Science, vol.140, issue.3-4, pp.352-357, 1999.
DOI : 10.1016/S0169-4332(98)00553-4

T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, cantilevers for enhanced force microscope sensitivity, Journal of Applied Physics, vol.6, issue.2, pp.668-673, 1991.
DOI : 10.1063/1.104030

K. Kobayashi, H. Yamada, and K. Matsushige, Frequency noise in frequency modulation atomic force microscopy, Review of Scientific Instruments, vol.80, issue.4, p.43708, 2009.
DOI : 10.1063/1.363308

Y. Sugawara, N. Kobayashi, M. Kawakami, Y. J. Li, Y. Naitoh et al., Elimination of instabilities in phase shift curves in phase-modulation atomic force microscopy in constantamplitude mode, Applied Physics Express, p.90, 2007.

A. Garcia, T. Berthelot, P. Viel, J. Polesel-maris, and S. Palacin, Microscopic Study of a Ligand Induced Electroless Plating Process onto Polymers, ACS Applied Materials & Interfaces, vol.2, issue.11, pp.3043-3051, 2010.
DOI : 10.1021/am100907j

URL : https://hal.archives-ouvertes.fr/cea-01022829

J. C. Acosta, G. Hwang, J. Polesel-maris, and S. Régnier, A tuning fork based wide range mechanical characterization tool with nanorobotic manipulators inside a scanning electron microscope., The Review of Scientific Instruments, pp.82-035116, 2011.
DOI : 10.1063/1.3541776

J. C. Acosta, G. Hwang, F. Thoyer, J. Polesel-maris, and S. Régnier, Tuning fork based in situ SEM nanorobotic manipulation system for wide range mechanical characterization of ultra flexible nanostructures, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010.
DOI : 10.1109/IROS.2010.5650995

J. C. Acosta and . Mejia, Atomic Force Microscopy Based Micro/Nanomanipulation, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00776562

H. Guo, D. Martrou, T. Zambelli, J. Polesel-maris, A. Piednoir et al., Nanostenciling for fabrication and interconnection of nanopatterns and microelectrodes, Applied Physics Letters, vol.90, issue.9, pp.90-093113, 2007.
DOI : 10.1021/nl025784o

I. Casuso, F. Rico, and S. Scheuring, Biological AFM: where we come from - where we are - where we may go, Journal of Molecular Recognition, vol.78, issue.1, pp.406-413, 2011.
DOI : 10.1002/jmr.1081

J. Polesel-maris, T. Berthelot, and P. Viel, Sonde de Microscope à force atomique, son procédé de préparation et ses utilisations, 2010.

J. Polesel-maris, J. Legrand, T. Berthelot, A. Garcia, P. Viel et al., Force spectroscopy by dynamic atomic force microscopy on bovine serum albumin proteins changing the tip hydrophobicity, with piezoelectric tuning fork self-sensing scanning probe, Sensors and Actuators B: Chemical, vol.161, issue.1, pp.161-775, 2012.
DOI : 10.1016/j.snb.2011.11.032

URL : https://hal.archives-ouvertes.fr/cea-00960500

A. J. Katan, M. H. Van-es, and T. H. Oosterkamp, Quantitative force versus distance measurements in amplitude modulation AFM: a novel force inversion technique, Nanotechnology, vol.20, issue.16, pp.20-165703, 2009.
DOI : 10.1088/0957-4484/20/16/165703

J. E. Sader and S. P. Jarvis, Accurate formulas for interaction force and energy in frequency modulation force spectroscopy, Applied Physics Letters, vol.84, issue.10, 1801.
DOI : 10.1063/1.1335546

E. J. Wiersma, C. Collins, S. Fazel, and M. J. Shulman, Structural and Functional Analysis of J Chain- Deficient IgM, Journal of Immunlogy, vol.160, pp.5979-5989, 1998.

M. Odorico, J. Teulon, O. Berthoumieu, S. W. Chen, P. Parot et al., An integrated methodology for data processing in dynamic force spectroscopy of ligand???receptor binding, Ultramicroscopy, vol.107, issue.10-11, pp.107-887, 2007.
DOI : 10.1016/j.ultramic.2007.04.019

G. E. Fantner, P. Hegarty, J. H. Kindt, G. Schitter, G. A. Cidade et al., Data acquisition system for high speed atomic force microscopy, Review of Scientific Instruments, p.76, 2005.

A. D. Humphris, M. J. Miles, and J. K. Hobbs, A mechanical microscope: High-speed atomic force microscopy, Applied Physics Letters, vol.86, issue.3, pp.86-034106, 2005.
DOI : 10.1063/1.1590737

T. Ando, T. Uchihashi, N. Kodera, A. Miyagi, R. Nakakita et al., High-Speed Atomic Force Microscopy for Studying the Dynamic Behavior of Protein Molecules at Work, Japanese Journal of Applied Physics, vol.45, issue.3B, pp.45-1897, 2006.
DOI : 10.1143/JJAP.45.1897

T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito et al., A high-speed atomic force microscope for studying biological macromolecules, Proceedings of the National Academy of Sciences of the United States of America, pp.98-12468, 2001.

T. Ando, T. Uchihashi, N. Kodera, D. Yamamoto, A. Miyagi et al., High-speed AFM and nano-visualization of biomolecular processes, Pfl??gers Archiv - European Journal of Physiology, vol.98, issue.Pt. 1, pp.456-211, 2008.
DOI : 10.1007/s00424-007-0406-0

A. Rollier, Technologies microsystèmes avancées pour le fonctionnement de dispositifs en milieu liquide et les applications nanométriques, 2006.

T. Berthelot, A. Garcia, X. T. Le, J. Morsli, P. Jégou et al., ???Versatile toolset??? for DNA or protein immobilization: Toward a single-step chemistry, Applied Surface Science, vol.257, issue.8, pp.3538-3546, 2011.
DOI : 10.1016/j.apsusc.2010.11.071

J. L. Arlett, E. B. Myers, and M. L. Roukes, Comparative advantages of mechanical biosensors, Nature Nanotechnology, vol.711, issue.4, pp.203-218, 2011.
DOI : 10.1038/nnano.2011.44

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839312

A. Garcia, J. Polesel-maris, P. Viel, S. Palacin, and T. Berthelot, Localized Ligand Induced Electroless Plating (LIEP) Process for the Fabrication of Copper Patterns Onto Flexible Polymer Substrates, Advanced Functional Materials, vol.107, issue.11, pp.2096-2102, 2011.
DOI : 10.1002/adfm.201100041

URL : https://hal.archives-ouvertes.fr/cea-00960669

A. Garcia, Métallisation anélectrolytique des polymères induite par des ligands, ED447 -Ecole Doctorale de l'Ecole Polytechnique, 2011.

]. A. Davis, K. H. Roux, and M. J. Shulman, On the structure of polymeric IgM, On the structure of polymeric IgM, pp.1001-1008, 1988.
DOI : 10.1002/eji.1830180705

D. Zekzer, F. S. Wong, O. Ayalon, I. Millet, M. Altieri et al., GAD-reactive CD4+ Th1 cells induce diabetes in NOD/SCID mice., Journal of Clinical Investigation, vol.101, issue.1, pp.68-73, 1998.
DOI : 10.1172/JCI119878

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC508541

E. L. Rosenthal, B. D. Kulbersh, T. King, T. R. Chaudhuri, and K. R. Zinn, Use of fluorescent labeled anti-epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts, Molecular Cancer Therapeutics, vol.6, issue.4, pp.1230-1238, 2007.
DOI : 10.1158/1535-7163.MCT-06-0741

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Phys. Rev. Lett, pp.56-930, 1986.
DOI : 10.1007/978-94-011-1812-5_4

C. Möller, M. Allen, V. Elings, A. Engel, and D. J. Müller, Tapping-Mode Atomic Force Microscopy Produces Faithful High-Resolution Images of Protein Surfaces, Biophysical Journal, vol.77, issue.2, pp.77-1150, 1999.
DOI : 10.1016/S0006-3495(99)76966-3

A. San-paulo and R. Garcia, High-resolution imaging of antibodies by tappingmode atomic force microscopy: attractive and repulsive tip?sample interaction regimes, Biophys. J, pp.78-1599, 2000.

N. H. Thomson, The substructure of immunoglobulin G resolved to 25kDa using amplitude modulation AFM in air, Ultramicroscopy, vol.105, issue.1-4, pp.103-110, 2005.
DOI : 10.1016/j.ultramic.2005.06.024

G. Meyer and N. M. Amer, Novel optical approach to atomic force microscopy, Applied Physics Letters, vol.33, issue.12, p.53, 1988.
DOI : 10.1063/1.1138973

K. Zhang, A method for reducing laser heating on atomic force microscope tips, Eur. Phys, J. ? Appl. Phys, p.53, 2011.

L. P. Van, V. Kyrylyuk, J. Polesel-maris, F. Thoyer, C. Lubin et al., Experimental Three-Dimensional Description of the Liquid Hexadecane/Graphite Interface, Langmuir, vol.25, issue.2, pp.639-642, 2009.
DOI : 10.1021/la803665k

W. H. Rensen, N. F. Van-hulst, and S. B. Kämmer, Imaging soft samples in liquid with tuning fork based shear force microscopy, Applied Physics Letters, vol.77, issue.10, p.77, 2000.
DOI : 10.1016/S0304-3991(97)00111-3

M. Hofer, S. Adamsmaier, T. S. Van-zanten, L. A. Chtcheglova, C. Manzo et al., Molecular recognition imaging using tuning fork-based transverse dynamic force microscopy, Ultramicroscopy, vol.110, issue.6, pp.605-611, 2010.
DOI : 10.1016/j.ultramic.2010.02.019

N. Kobayashi, Y. J. Li, Y. Naitoh, M. Kageshima, and Y. Sugawara, High-Sensitivity Force Detection by Phase-Modulation Atomic Force Microscopy, Japanese Journal of Applied Physics, vol.45, issue.No. 30, p.45, 2006.
DOI : 10.1143/JJAP.45.L793

T. Gmbh, The complete stand-alone Scanning Probe Microscope controller from NANONIS-SPECS has been used composed of the RC4, SC4 and OC4 PLL modules, specszurich .com/en/SPM-Control-System.html

I. Horcas, R. Fernandez, J. M. Gomez-rodriguez, J. Colchero, J. Gomez-herrero et al., : A software for scanning probe microscopy and a tool for nanotechnology, Review of Scientific Instruments, vol.78, issue.1, pp.78-013705, 2007.
DOI : 10.1038/nmat1297

A. Castellanos-gomez, N. Agraït, and G. Rubio-bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy, Nanotechnology, vol.20, issue.21, p.215502, 2009.
DOI : 10.1088/0957-4484/20/21/215502

A. J. Nam, A. Teren, T. A. Lusby, and A. J. Melmed, Benign making of sharp tips for STM and FIM: Pt, Ir, Au, Pd, and Rh, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.13, issue.4, pp.1556-1559, 1995.
DOI : 10.1116/1.588186

M. Fotino, Nanotips by reverse electrochemical etching, Applied Physics Letters, vol.49, issue.23, pp.2935-2937, 1992.
DOI : 10.1116/1.585467

K. Karraï and R. D. Grober, Piezo-electric tuning fork tip???sample distance control for near field optical microscopes, Ultramicroscopy, vol.61, issue.1-4, pp.197-205, 1995.
DOI : 10.1016/0304-3991(95)00104-2

F. J. Giessibl, H. Bielefeldt, S. Hembacher, and J. Mannhart, Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy, Applied Surface Science, vol.140, issue.3-4, pp.352-357, 1999.
DOI : 10.1016/S0169-4332(98)00553-4

J. Polesel-maris, C. Lubin, F. Thoyer, and J. Cousty, Combined dynamic scanning tunneling microscopy and frequency modulation atomic force microscopy investigations on polythiophene chains on graphite with a tuning fork sensor, Journal of Applied Physics, vol.28, issue.7, pp.74320-074310, 2011.
DOI : 10.1103/PhysRevB.44.13703

F. J. Giessibl, F. Pielmeier, T. Eguchi, T. An, and Y. Hasegawa, Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators, Physical Review B, vol.8, issue.12, p.125409, 2011.
DOI : 10.1088/0957-4484/21/30/305704

M. Marc, F. Outurquin, P. Renard, C. Créminon, and X. Franck, Synthesis of a (+)-anatoxin-a analogue for monoclonal antibodies production, Tetrahedron Letters, vol.50, issue.31, pp.50-4554, 2009.
DOI : 10.1016/j.tetlet.2009.05.094

F. Kienberger, H. Mueller, V. Pastushenko, and P. Hinterdorfer, Following single antibody binding to purple membranes in real time, EMBO reports, vol.74, issue.6, pp.579-583, 2004.
DOI : 10.1021/ja029469f

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299069

S. Patil, N. F. Martinez, J. R. Lozano, and R. Garcia, Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity, Journal of Molecular Recognition, vol.25, issue.6, pp.516-523, 2007.
DOI : 10.1002/jmr.848

C. L. Cheung, J. H. Hafner, and C. M. Lieber, Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proceedings of the National Academy of Sciences, vol.14, issue.5181, pp.97-3809, 2000.
DOI : 10.1126/science.265.5181.2071

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC18098

N. H. Thomson, Imaging the substructure of antibodies with tapping-mode AFM in air: the importance of a water layer on mica, Journal of Microscopy, vol.76, issue.3, pp.193-199, 2005.
DOI : 10.1103/PhysRevB.66.155436

N. F. Martinez, J. R. Lozano, E. T. Herruzo, F. Garcia, C. Richter et al., Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids, Nanotechnology, vol.19, issue.38, 2008.
DOI : 10.1088/0957-4484/19/38/384011

E. W. Silverton, M. A. Navia, and D. R. Davies, Three-dimensional structure of an intact human immunoglobulin., Proceedings of the National Academy of Sciences, vol.74, issue.11, pp.74-5140, 1977.
DOI : 10.1073/pnas.74.11.5140

]. S. Santos, V. Barcons, H. K. Christenson, J. Font, and N. H. Thomson, The Intrinsic Resolution Limit in the Atomic Force Microscope: Implications for Heights of Nano-Scale Features, PLoS ONE, vol.12, issue.300, p.23821, 2011.
DOI : 10.1371/journal.pone.0023821.s012

J. E. Mckendry, C. S. Allen, K. Critchley, M. ?. Górzny, A. S. Walton et al., Magnetic field enhanced nano-tip fabrication for four-probe STM studies, Nanotechnology, vol.19, issue.8, p.85201, 2008.
DOI : 10.1088/0957-4484/19/8/085201

H. W. Schroeder, J. D. Wald, and N. S. Greenspan, Structure and function of immunoglobulins, Fundamental Immunology, pp.125-151, 2008.
DOI : 10.1016/j.jaci.2009.09.046

H. P. Vollmers and S. Brandlein, Natural IgM antibodies: The orphaned molecules in immune surveillance, Advanced Drug Delivery Reviews, vol.58, issue.5-6, pp.755-765, 2006.
DOI : 10.1016/j.addr.2005.08.007

J. H. Hafner, C. L. Cheung, and C. M. Lieber, Growth of nanotubes for probe microscopy tips, Nature, vol.398, issue.6730, pp.761-762, 1999.
DOI : 10.1038/19658

Y. Zhang, S. Sheng, and Z. Shao, Imaging biological structures with the cryo atomic force microscope, Biophysical Journal, vol.71, issue.4, pp.71-2168, 1996.
DOI : 10.1016/S0006-3495(96)79418-3

URL : http://doi.org/10.1016/s0006-3495(96)79418-3

S. Santos, V. Barcons, J. Font, and N. H. Thomson, Bi-stability of amplitude modulation AFM in air: deterministic and stochastic outcomes for imaging biomolecular systems, Nanotechnology, vol.21, issue.22, p.225710, 2010.
DOI : 10.1088/0957-4484/21/22/225710

Y. Sugawara, N. Kobayashi, M. Kawakami, Y. J. Li, Y. Naitoh et al., Elimination of instabilities in phase shift curves in phase-modulation atomic force microscopy in constant-amplitude mode, Applied Physics Letters, vol.90, issue.19, p.90, 2007.
DOI : 10.1063/1.2336113

H. Hölscher, Theory of phase-modulation atomic force microscopy with constant-oscillation amplitude, Journal of Applied Physics, vol.103, issue.6, p.64317, 2008.
DOI : 10.1063/1.2238467

D. M. Czajkowsky and Z. F. Shao, The human IgM pentamer is a mushroom-shaped molecule with a flexural bias, Proceedings of the National Academy of Sciences, vol.25, issue.13, pp.14960-14965, 2009.
DOI : 10.1002/jcc.20084

S. J. Perkins, A. S. Nealis, B. J. Sutton, and A. Feinstein, Solution structure of human and mouse immunoglobulin M by synchrotron X-ray scattering and molecular graphics modelling, Journal of Molecular Biology, vol.221, issue.4, pp.221-1345, 1991.
DOI : 10.1016/0022-2836(91)90937-2

J. Yang, J. X. Mou, and Z. F. Shao, Molecular resolution atomic force microscopy of soluble-proteins in solution, BBA-Gen, pp.105-114, 1994.

E. J. Wiersma, C. Collins, S. Fazel, and M. J. Shulman, Structural and functional analysis of J chain-deficient IgM, J. Immunol, vol.160, pp.5979-5989, 1998.

C. A. Janeway, P. Travers, M. Walport, and M. J. Shlomchik, The generation of lymphocyte antigen receptors Immunobiology, The Immune System in Health and Disease, pp.123-154, 2001.

A. J. Katan, M. H. Es, and T. H. Oosterkamp, Quantitative force versus distance measurements in amplitude modulation AFM: a novel force inversion technique, Nanotechnology, vol.20, issue.16, p.165703, 2009.
DOI : 10.1088/0957-4484/20/16/165703

S. Higuchi, H. Kuramochi, O. Kubo, S. Masuda, Y. Shingaya et al., Angled long tip to tuning fork probes for atomic force microscopy in various environments, Review of Scientific Instruments, vol.82, issue.4, pp.82-043701, 2011.
DOI : 10.1063/1.3456990

J. Polesel-maris, J. Legrand, T. Berthelot, A. Garcia, P. Viel et al., Force spectroscopy by dynamic atomic force microscopy on bovine serum albumin proteins changing the tip hydrophobicity, with piezoelectric tuning fork self-sensing scanning probe, Sensors and Actuators B: Chemical, vol.161, issue.1, 2011.
DOI : 10.1016/j.snb.2011.11.032

URL : https://hal.archives-ouvertes.fr/cea-00960500

A. Engel, Y. Lyubchenko, and D. Muller, Atomic force microscopy: a powerful tool to observe biomolecules at work, Trends in Cell Biology, vol.9, issue.2, pp.77-80, 1999.
DOI : 10.1016/S0962-8924(98)01415-9

L. Hood, J. R. Heath, M. E. Phelps, and B. Y. Lin, Systems Biology and New Technologies Enable Predictive and Preventative Medicine, Science, vol.306, issue.5696, pp.640-643, 2004.
DOI : 10.1126/science.1104635

D. J. Muller and Y. F. Dufrene, Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology, Nature Nanotechnology, vol.3, issue.5, pp.261-269, 2008.
DOI : 10.1038/nnano.2008.100

C. Möller, M. Allen, V. Elings, A. Engel, and D. J. Müller, Tapping-Mode Atomic Force Microscopy Produces Faithful High-Resolution Images of Protein Surfaces, Biophysical Journal, vol.77, issue.2, pp.77-1150, 1999.
DOI : 10.1016/S0006-3495(99)76966-3

A. San-paulo and R. García, High-Resolution Imaging of Antibodies by Tapping-Mode Atomic Force Microscopy: Attractive and Repulsive Tip-Sample Interaction Regimes, Biophysical Journal, vol.78, issue.3, pp.1599-1605, 2000.
DOI : 10.1016/S0006-3495(00)76712-9

N. H. Thomson, The substructure of immunoglobulin G resolved to 25kDa using amplitude modulation AFM in air, Ultramicroscopy, vol.105, issue.1-4, pp.103-110, 2005.
DOI : 10.1016/j.ultramic.2005.06.024

G. Meyer and N. M. Amer, Novel optical approach to atomic force microscopy, Applied Physics Letters, vol.33, issue.12, pp.1045-1047, 1988.
DOI : 10.1063/1.1138973

J. L. Arlett, J. R. Maloney, B. Gudlewski, M. Muluneh, and M. L. Roukes, Self-Sensing Micro- and Nanocantilevers with Attonewton-Scale Force Resolution, Nano Letters, vol.6, issue.5, pp.1000-1006, 2006.
DOI : 10.1021/nl060275y

S. Higuchi, H. Kuramochi, O. Kubo, S. Masuda, Y. Shingaya et al., Angled long tip to tuning fork probes for atomic force microscopy in various environments, Review of Scientific Instruments, vol.82, issue.4, 2011.
DOI : 10.1063/1.3456990

M. Hofer, S. Adamsmaier, T. S. Van-zanten, L. A. Chtcheglova, C. Manzo et al., Molecular recognition imaging using tuning fork-based transverse dynamic force microscopy, Ultramicroscopy, vol.110, issue.6, pp.605-611, 2010.
DOI : 10.1016/j.ultramic.2010.02.019

M. Koopman, B. I. De-bakker, M. F. Garcia-parajo, and N. F. Van-hulst, Shear force imaging of soft samples in liquid using a diving bell concept, Applied Physics Letters, vol.83, issue.24, pp.5083-5085, 2003.
DOI : 10.1038/32588

J. V. Macpherson and P. R. Unwin, Combined Scanning Electrochemical???Atomic Force Microscopy, Analytical Chemistry, vol.72, issue.2, 2000.
DOI : 10.1021/ac990921w

J. Polesel-maris, L. Aeschimann, A. Meister, R. Ischer, E. Bernard et al., Piezoresistive cantilever array for life sciences applications, Journal of Physics: Conference Series, vol.61, pp.61-955, 2007.
DOI : 10.1088/1742-6596/61/1/189

J. Polesel-maris, C. Lubin, F. Thoyer, and J. Cousty, Combined dynamic scanning tunneling microscopy and frequency modulation atomic force microscopy investigations on polythiophene chains on graphite with a tuning fork sensor, Journal of Applied Physics, vol.28, issue.7, p.74320, 2011.
DOI : 10.1103/PhysRevB.44.13703

B. Rogers, T. Sulchek, K. Murray, D. York, M. Jones et al., High speed tapping mode atomic force microscopy in liquid using an insulated piezoelectric cantilever, Review of Scientific Instruments, vol.74, issue.11, pp.4683-4686, 2003.
DOI : 10.1063/1.124779

T. Trevethan, M. Watkins, A. L. Shluger, J. Polesel-maris, S. Gauthier et al., A comparison of dynamic atomic force microscope set-ups for performing atomic scale manipulation experiments, Nanotechnology, vol.18, issue.34, 2007.
DOI : 10.1088/0957-4484/18/34/345503

J. Zhang and S. O. Shea, Tuning forks as micromechanical mass sensitive sensors for bio- or liquid detection, Sensors and Actuators B: Chemical, vol.94, issue.1, pp.65-72, 2003.
DOI : 10.1016/S0925-4005(03)00320-4

L. P. Van, V. Kyrylyuk, J. Polesel-maris, F. Thoyer, C. Lubin et al., Experimental Three-Dimensional Description of the Liquid Hexadecane/Graphite Interface, Langmuir, vol.25, issue.2, pp.639-642, 2009.
DOI : 10.1021/la803665k

W. H. Rensen, N. F. Van-hulst, and S. B. Kammer, Imaging soft samples in liquid with tuning fork based shear force microscopy, Applied Physics Letters, vol.77, issue.10, pp.1557-1559, 2000.
DOI : 10.1016/S0304-3991(97)00111-3

H. N. Kalpana, B. C. Channu, C. Dass, P. J. Houghton, and K. N. Thimmaiah, Hydrophobic interactions of phenoxazine modulators with bovine serum albumin, Journal of Chemical Sciences, vol.264, issue.1, pp.51-61, 2000.
DOI : 10.1007/BF02704300

K. Karraï and R. D. Grober, Piezo-electric tuning fork tip???sample distance control for near field optical microscopes, Ultramicroscopy, vol.61, issue.1-4, pp.197-205, 1995.
DOI : 10.1016/0304-3991(95)00104-2

A. Castellanos-gomez, N. Agraït, and G. Rubio-bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy, Nanotechnology, vol.20, issue.21, p.215502, 2009.
DOI : 10.1088/0957-4484/20/21/215502

A. J. Nam, A. Teren, T. A. Lusby, and A. J. Melmed, Benign making of sharp tips for STM and FIM: Pt, Journal of Vacuum Science & Technology B, vol.13, issue.56, 1995.

M. Fotino, Nanotips by reverse electrochemical etching, Applied Physics Letters, vol.49, issue.23, p.2935, 1992.
DOI : 10.1116/1.585467

C. K. Riener, C. M. Stroh, A. Ebner, C. Klampfl, A. A. Gall et al., Simple test system for single molecule recognition force microscopy, Analytica Chimica Acta, vol.479, issue.1, pp.59-75, 2003.
DOI : 10.1016/S0003-2670(02)01373-9

A. Berquand, N. Xia, D. G. Castner, B. H. Clare, N. L. Abbott et al., Antigen Binding Forces of Single Antilysozyme Fv Fragments Explored by Atomic Force Microscopy, Langmuir, vol.21, issue.12, pp.5517-5523, 2005.
DOI : 10.1021/la050162e

P. Viel, X. T. Le, V. Huc, J. Bar, A. Benedetto et al., Covalent grafting onto self-adhesive surfaces based on aryldiazonium salt seed layers, Journal of Materials Chemistry, vol.586, issue.62, 2008.
DOI : 10.1039/b811299a

URL : https://hal.archives-ouvertes.fr/hal-00763224

V. Mevellec, S. Roussel, S. Palacin, T. Berthelot, C. Baudin et al., Method for preparing an organic film at the surface of a solid substrate in nonelectrochemical conditions, solid substrate thus formed and preparation kit, p.052556078052, 2008.

V. Mevellec, S. Roussel, L. Tessier, J. Chancolon, M. Mayne-l-hermite et al., Grafting Polymers on Surfaces: A New Powerful and Versatile Diazonium Salt-Based One-Step Process in Aqueous Media, Chemistry of Materials, vol.19, issue.25, pp.6323-6330, 2007.
DOI : 10.1021/cm071371i

URL : https://hal.archives-ouvertes.fr/hal-00221427

T. Berthelot, G. Deniau, V. Huc, T. Le-xuan, F. Nekelson et al., Method for assembling two surfaces, or one surface, with a molecule of interest, p.053977121944, 2009.

T. Berthelot, A. Garcia, X. T. Le, J. Morsli, P. Jégou et al., ???Versatile toolset??? for DNA or protein immobilization: Toward a single-step chemistry, Applied Surface Science, vol.257, issue.8, pp.3538-3546, 2011.
DOI : 10.1016/j.apsusc.2010.11.071

D. J. Muller and A. Engel, Atomic force microscopy and spectroscopy of native membrane proteins, Nature Protocols, vol.80, issue.9, pp.2191-2197, 2007.
DOI : 10.1074/jbc.M609317200

H. Janovjak, D. J. Müller, and A. D. Humphris, Molecular Force Modulation Spectroscopy Revealing the Dynamic Response of Single Bacteriorhodopsins, Biophysical Journal, vol.88, issue.2, pp.1423-1431, 2005.
DOI : 10.1529/biophysj.104.052746

M. S. Wang, L. B. Palmer, J. D. Schwartz, and A. Razatos, Evaluating Protein Attraction and Adhesion to Biomaterials with the Atomic Force Microscope, Langmuir, vol.20, issue.18, pp.7753-7759, 2004.
DOI : 10.1021/la049849+

M. A. Rixman, D. Dean, C. E. Macias, and C. Ortiz, Nanoscale Intermolecular Interactions between Human Serum Albumin and Alkanethiol Self-Assembled Monolayers, Langmuir, vol.19, issue.15, pp.6202-6218, 2003.
DOI : 10.1021/la026551f

H. Janovjak, J. Struckmeier, M. Hubain, A. Kedrov, M. Kessler et al., Probing the Energy Landscape of the Membrane Protein Bacteriorhodopsin, Structure, vol.12, issue.5, pp.871-879, 2004.
DOI : 10.1016/j.str.2004.03.016

M. J. Higgins, J. E. Sader, and S. P. Jarvis, Frequency Modulation Atomic Force Microscopy Reveals Individual Intermediates Associated with each Unfolded I27 Titin Domain, Biophysical Journal, vol.90, issue.2, pp.90-640, 2006.
DOI : 10.1529/biophysj.105.066571

URL : http://doi.org/10.1529/biophysj.105.066571

S. Kidoaki and T. Matsuda, Adhesion Forces of the Blood Plasma Proteins on Self-Assembled Monolayer Surfaces of Alkanethiolates with Different Functional Groups Measured by an Atomic Force Microscope, Langmuir, vol.15, issue.22, pp.7639-7646, 1999.
DOI : 10.1021/la990357k

P. Thevenot, W. Hu, and L. Tang, Surface chemistry influences implant biocompatibility hidden epitopes exposed epitopes, Current Topics in Medicinal Chemistry, vol.8, pp.270-280, 2008.

M. Lindblad, M. Lestelius, A. Johansson, P. Tengvall, and P. Thomsen, Cell and soft tissue interactions with methyl- and hydroxyl-terminated alkane thiols on gold surfaces, Biomaterials, vol.18, issue.15, pp.1059-1068, 1997.
DOI : 10.1016/S0142-9612(97)00029-X

Q. Tang, C. Xu, S. Shi, and L. Zhou, Formation and characterization of protein patterns on the surfaces with different properties, Synthetic Metals, vol.147, issue.1-3, pp.147-247, 2004.
DOI : 10.1016/j.synthmet.2004.06.049

B. G. Keselowsky, D. M. Collard, and A. J. García, Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion, Journal of Biomedical Materials Research Part A, vol.60, issue.Pt 3, pp.247-259, 2003.
DOI : 10.1002/jbm.a.10537

J. E. Sader and S. P. Jarvis, Accurate formulas for interaction force and energy in frequency modulation force spectroscopy, Applied Physics Letters, vol.84, issue.10, 1801.
DOI : 10.1063/1.1335546

M. J. Higgins, J. E. Sader, and S. P. Jarvis, Frequency Modulation Atomic Force Microscopy Reveals Individual Intermediates Associated with each Unfolded I27 Titin Domain, Biophysical Journal, vol.90, issue.2, pp.90-640, 2006.
DOI : 10.1529/biophysj.105.066571

URL : http://doi.org/10.1529/biophysj.105.066571

M. J. Higgins, C. K. Riener, T. Uchihashi, J. E. Sader, R. Mckendry et al., Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems, Nanotechnology, vol.16, issue.3, pp.16-85, 2005.
DOI : 10.1088/0957-4484/16/3/016

D. Ebeling, F. Oesterhelt, and H. Holscher, Dynamic force spectroscopy of single chainlike molecules using the frequency-modulation technique with constant-excitation, Applied Physics Letters, vol.95, issue.1, pp.95-013701, 2009.
DOI : 10.1103/PhysRevE.75.021907

H. Janovjak, D. J. Müller, and A. D. Humphris, Molecular Force Modulation Spectroscopy Revealing the Dynamic Response of Single Bacteriorhodopsins, Biophysical Journal, vol.88, issue.2, pp.1423-1431, 2005.
DOI : 10.1529/biophysj.104.052746

A. J. Katan, M. H. Van-es, and T. H. Oosterkamp, Quantitative force versus distance measurements in amplitude modulation AFM: a novel force inversion technique, Nanotechnology, vol.20, issue.16, pp.20-165703, 2009.
DOI : 10.1088/0957-4484/20/16/165703

F. J. Giessibl, H. Bielefeldt, S. Hembacher, and J. Mannhart, Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy, Applied Surface Science, vol.140, issue.3-4, pp.352-357, 1999.
DOI : 10.1016/S0169-4332(98)00553-4

L. P. Van, V. Kyrylyuk, J. Polesel-maris, F. Thoyer, C. Lubin et al., Experimental Three-Dimensional Description of the Liquid Hexadecane/Graphite Interface, Langmuir, vol.25, issue.2, pp.25-639, 2009.
DOI : 10.1021/la803665k

J. Polesel-maris, C. Lubin, F. Thoyer, and J. Cousty, Combined dynamic scanning tunneling microscopy and frequency modulation atomic force microscopy investigations on polythiophene chains on graphite with a tuning fork sensor, Journal of Applied Physics, vol.28, issue.7, p.74320, 2011.
DOI : 10.1103/PhysRevB.44.13703

G. H. Simon, M. Heyde, and H. Rust, Recipes for cantilever parameter determination in dynamic force spectroscopy: spring constant and amplitude, Nanotechnology, vol.18, issue.25, pp.18-255503, 2007.
DOI : 10.1088/0957-4484/18/25/255503

A. Castellanos-gomez, N. Agraït, and G. Rubio-bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy, Nanotechnology, vol.20, issue.21, pp.20-215502, 2009.
DOI : 10.1088/0957-4484/20/21/215502

F. J. Giessibl, F. Pielmeier, T. Eguchi, T. An, and Y. Hasegawa, A comparative study of force sensors for scanning probe microscopy based on quartz tuning forks and length extensional resonators, pp.1104-1105, 2011.

M. Guggisberg, R. Bammerlin, . Lüthi, . Ch, F. Loppacher et al., Comparison of dynamic lever STM and noncontact AFM, Applied Physics A: Materials Science & Processing, vol.66, issue.7, p.245, 1998.
DOI : 10.1007/s003390051139

T. Bieletzki, T. M. Hynninen, M. Soini, C. R. Pivetta, A. S. Henry et al., Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM, Physical Chemistry Chemical Physics, vol.106, issue.11, p.3203, 2010.
DOI : 10.1039/b923296f

H. Enevoldsen, H. P. Pinto, A. S. Foster, M. C. Jensen, A. Kühnle et al., surface, Physical Review B, vol.412, issue.413, p.45416, 2008.
DOI : 10.1126/science.1150288

P. Le-sueur, H. Joyez, C. Pothier, D. Urbina, and . Esteve, Phase Controlled Superconducting Proximity Effect Probed by Tunneling Spectroscopy, Physical Review Letters, vol.100, issue.19, p.197002, 2008.
DOI : 10.1126/science.1069923

URL : https://hal.archives-ouvertes.fr/hal-00273401

F. J. Hembacher, J. Giessibl, C. F. Mannhart, and . Quate, Local Spectroscopy and Atomic Imaging of Tunneling Current, Forces, and Dissipation on Graphite, Physical Review Letters, vol.7, issue.5, p.56101, 2005.
DOI : 10.1016/0039-6028(84)90540-5

G. H. König, H. P. Simon, M. Rust, and . Heydea, Atomic resolution on a metal single crystal with dynamic force microscopy, Applied Physics Letters, vol.95, issue.8, p.83116, 2009.
DOI : 10.1088/0957-4484/15/2/002

H. M. Smit, R. Grande, B. Lasanta, J. J. Riquelme, G. Rubio-bollinger et al., A low temperature scanning tunneling microscope for electronic and force spectroscopy, Review of Scientific Instruments, vol.78, issue.11, p.113705, 2007.
DOI : 10.1103/PhysRevB.68.155420

J. Bettac, K. Koeble, B. Winkler, M. Uder, A. Maier et al., QPlus: atomic force microscopy on single-crystal insulators with small oscillation amplitudes at 5 K, Nanotechnology, vol.20, issue.26, p.264009, 2009.
DOI : 10.1088/0957-4484/20/26/264009

F. Gross, N. Mohn, P. Moll, G. Liljeroth, and . Meyer, The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy, Science, vol.27, issue.15, p.1110, 2009.
DOI : 10.1002/jcc.20495

A. J. Berdunov, P. H. Pollard, and . Beton, Dynamic scanning probe microscopy of adsorbed molecules on graphite, Applied Physics Letters, vol.94, issue.4, p.43110, 2009.
DOI : 10.1016/S0009-2614(02)01588-9

F. Gross, P. Mohn, J. Liljeroth, F. J. Repp, G. Giessibl et al., Measuring the Charge State of an Adatom with Noncontact Atomic Force Microscopy, Science, vol.84, issue.1, p.1428, 2009.
DOI : 10.1103/RevModPhys.75.949

C. P. Ternes, C. F. Lutz, F. J. Hirjibehedin, A. J. Giessibl, and . Heinrich, The Force Needed to Move an Atom on a Surface, Science, vol.123, issue.20, p.1066, 2008.
DOI : 10.1063/1.2124687

L. Omicron-nanotechnology-gmbh and . Strasse, http://www.omicron.de/. The lower part of FIG. 11. (Color online) Scan line obtain on a gold surface showing the step response in z due to the change of the oscillation amplitude setpoint. The system keeps the same value of h I t i equals to 7 pA, pp.74320-74329

T. A. Lusby and A. J. Melmed, Redistribution subject to AIP license or copyrightorg/about/rights_and_permissions the head of the Omicron VT-AFM UHV microscope was mechanically adapted to receive our double preamplifier. The wiring layout was also modified on the connectors of the head to operate both in dynamic STM and AFM. The tip is connected to the electrical ground, and the tunneling bias voltage is applied on the sample holder. 25 A, J. Vac. Sci. Technol. B, vol.13, p.1556, 1995.

M. Fotino, Nanotips by reverse electrochemical etching, Applied Physics Letters, vol.49, issue.23, p.2935, 1992.
DOI : 10.1116/1.585467

N. Gmbh, Technoparkstrasse 1, 8005 Zürich, Switzerland. http://www.specs-zurich.com/en/SPM-Control-System.html. The complete stand-alone Scanning Probe Microscope controller from NANONIS-SPECS has been used composed of the RC4

I. Horcas, R. Fernandez, J. M. Gomez-rodriguez, J. Colchero, J. Gomez-herrero et al., : A software for scanning probe microscopy and a tool for nanotechnology, Review of Scientific Instruments, vol.78, issue.1, p.13705, 2007.
DOI : 10.1038/nmat1297

L. Scifo, M. Dubois, M. Brun, P. Rannou, S. Latil et al., Probing the Electronic Properties of Self-Organized Poly(3-dodecylthiophene) Monolayers by Two-Dimensional Scanning Tunneling Spectroscopy Imaging at the Single Chain Scale, Nano Letters, vol.6, issue.8, p.1711, 2006.
DOI : 10.1021/nl061018w

B. Gotsmann, C. Seidel, B. Anczykowski, and H. Fuchs, Conservative and dissipative tip-sample interaction forces probed with dynamic AFM, Physical Review B, vol.8, issue.15, p.11051, 1999.
DOI : 10.1103/PhysRevB.60.11051

A. A. Farrell, T. Fukuma, T. Uchihashi, E. R. Kay, G. Bottari et al., Conservative and dissipative force imaging of switchable rotaxanes with frequency-modulation atomic force microscopy, Physical Review B, vol.5, issue.12, p.125430, 2005.
DOI : 10.1063/1.1803932

Y. Sugimoto, Y. Nakajima, D. Sawada, K. Morita, M. Abe et al., surface, Physical Review B, vol.81, issue.24, p.245322, 2010.
DOI : 10.1103/PhysRevB.38.4269

URL : https://hal.archives-ouvertes.fr/hal-00622082

A. S. Barth, M. Foster, A. L. Reichling, and . Shluger, (111): experiment and theory, Journal of Physics: Condensed Matter, vol.13, issue.10, p.2061, 2001.
DOI : 10.1088/0953-8984/13/10/303

H. Pakarinen, C. Barth, A. S. Foster, and C. R. Henry, Imaging the real shape of nanoclusters in scanning force microscopy, Journal of Applied Physics, vol.103, issue.5, p.54313, 2008.
DOI : 10.1016/S0040-6090(02)01259-2

URL : https://hal.archives-ouvertes.fr/hal-00303799

H. Polesel-maris, T. Guo, S. Zambelli, and . Gauthier, Mapping van der Waals forces with frequency modulation dynamic force microscopy, Nanotechnology, vol.17, issue.16, p.4204, 2006.
DOI : 10.1088/0957-4484/17/16/034

O. H. Barth, A. Pakarinen, C. R. Foster, and . Henry, of the dynamic SFM, Nanotechnology, vol.17, issue.7, p.128, 2006.
DOI : 10.1088/0957-4484/17/7/S05

URL : https://hal.archives-ouvertes.fr/hal-00110184

F. J. Hembacher, J. Giessibl, and . Mannhart, Local Spectroscopy and Atomic Imaging of Tunneling Current, Forces, and Dissipation on Graphite, Physical Review Letters, vol.7, issue.5, p.56101, 2005.
DOI : 10.1016/0039-6028(84)90540-5

URL : http://arxiv.org/abs/cond-mat/0501045

I. A. Abramowitz and . Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, pp.9-374, 1972.

S. Kondo, M. Heike, Y. Lutwyche, and . Wada, Surface modification mechanism of materials with scanning tunneling microscope, Journal of Applied Physics, vol.33, issue.1, p.155, 1995.
DOI : 10.1103/PhysRevB.46.2640

T. T. Tsong, Effects of an electric field in atomic manipulations, Physical Review B, vol.64, issue.24, p.13703, 1991.
DOI : 10.1103/PhysRevB.44.13703

D. Smith, D. Sparks, N. Riley, and . Najafi, A MEMS-Based Coriolis Mass Flow Sensor for Industrial Applications, IEEE Transactions on Industrial Electronics, vol.56, issue.4, p.1066, 2009.
DOI : 10.1109/TIE.2008.926703

J. H. Dai, A. G. Hafner, D. T. Rinzler, R. E. Colbert, and . Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature, vol.384, issue.6605, p.147, 1996.
DOI : 10.1038/384147a0

A. M. Li, H. Cassell, and . Dai, Carbon nanotubes as AFM tips: measuring DNA molecules at the liquid/solid interface, Surface and Interface Analysis, vol.76, issue.1, p.8, 1999.
DOI : 10.1002/(SICI)1096-9918(199908)28:1<8::AID-SIA610>3.0.CO;2-4

M. Motojima, K. Kawaguchi, H. Nozaki, and . Iwanaga, Growth of regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics, Applied Physics Letters, vol.11, issue.4, p.321, 1990.
DOI : 10.1016/0021-9517(72)90032-2

X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao et al., Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices, Science, vol.309, issue.5741, p.1700, 2005.
DOI : 10.1126/science.1116495

J. Bell, Y. Sun, L. Zhang, L. X. Dong, B. J. Nelson et al., Three-dimensional nanosprings for electromechanical sensors, Sens. Actuators A: Physical, pp.130-131, 2006.
DOI : 10.1109/sensor.2005.1496347

J. Bell, L. Dong, B. J. Nelson, M. Golling, L. Zhang et al., Fabrication and Characterization of Three-Dimensional InGaAs/GaAs Nanosprings, Nano Letters, vol.6, issue.4, p.725, 2006.
DOI : 10.1021/nl0525148

M. Vogel and . Sheetz, Local force and geometry sensing regulate cell functions, Nature Reviews Molecular Cell Biology, vol.31, issue.4, p.265, 2006.
DOI : 10.1016/S0022-2836(02)01001-X

L. Kratochvil, L. Dong, B. Zhang, and . Nelson, Image-based 3D reconstruction using helical nanobelts for localized rotations, Journal of Microscopy, vol.6, issue.2, p.122, 2010.
DOI : 10.1111/j.1365-2818.2009.03313.x

J. Müller, W. Baumeister, and A. Engel, Controlled unzipping of a bacterial surface layer with atomic force microscopy, Proceedings of the National Academy of Sciences, vol.76, issue.2, p.13170, 1999.
DOI : 10.1038/16219

M. B. Park, B. L. Goodman, and . Pruitt, Analysis of nematode mechanics by piezoresistive displacement clamp, Proceedings of the National Academy of Sciences, vol.86, issue.1, p.17376, 2007.
DOI : 10.1051/medsci/20031967725

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2077264

S. Beyeler, B. J. Muntwyler, and . Nelson, A Six-Axis MEMS Force&#x2013;Torque Sensor With Micro-Newton and Nano-Newtonmeter Resolution, Journal of Microelectromechanical Systems, vol.18, issue.2, p.433, 2009.
DOI : 10.1109/JMEMS.2009.2013387

R. Karrai and . Grober, Piezoelectric tip???sample distance control for near field optical microscopes, Applied Physics Letters, vol.60, issue.14, p.1842, 1995.
DOI : 10.1063/1.113340

N. Castellanos-gomez, G. Agraït, and . Rubio-bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy, Nanotechnology, vol.20, issue.21, p.215502, 2009.
DOI : 10.1088/0957-4484/20/21/215502

S. Todorovic and . Schultz, Magnetic force microscopy using nonoptical piezoelectric quartz tuning fork detection design with applications to magnetic recording studies, Journal of Applied Physics, vol.82, issue.11, p.6229, 1998.
DOI : 10.1109/20.179478

J. Katan, M. H. Van-es, and T. H. Oosterkamp, Quantitative force versus distance measurements in amplitude modulation AFM: a novel force inversion technique, Nanotechnology, vol.20, issue.16, p.165703, 2009.
DOI : 10.1088/0957-4484/20/16/165703

E. Sader and S. P. Jarvis, Accurate formulas for interaction force and energy in frequency modulation force spectroscopy, Applied Physics Letters, vol.84, issue.10, p.1801, 2004.
DOI : 10.1063/1.1335546

R. Albrecht, P. Grutter, D. Horne, and D. Rugar, cantilevers for enhanced force microscope sensitivity, Journal of Applied Physics, vol.6, issue.2, p.668, 1991.
DOI : 10.1063/1.104030

E. Sader, T. Uchihashi, M. J. Higgins, A. Farrell, Y. Nakayama et al., Quantitative force measurements using frequency modulation atomic force microscopy?theoretical foundations, Nanotechnology, vol.16, issue.3, p.94, 2005.
DOI : 10.1088/0957-4484/16/3/018

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.39, issue.9, pp.930-933, 1986.
DOI : 10.1103/PhysRevLett.56.930

Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance et al., Atom inlays performed at room temperature using atomic force microscopy, Nature Materials, vol.265, issue.2, pp.156-159, 2005.
DOI : 10.1103/PhysRevB.68.115427

S. Thalhammer, R. W. Stark, S. Muller, J. Wienberg, and W. M. Heckl, The Atomic Force Microscope as a New Microdissecting Tool for the Generation of Genetic Probes, Journal of Structural Biology, vol.119, issue.2, pp.232-237, 1997.
DOI : 10.1006/jsbi.1997.3869

R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, "Dip-Pen" Nanolithography, Science, vol.16, issue.5402, pp.661-663, 1999.
DOI : 10.1039/a827001z

A. E. Pelling, S. Sehati, E. B. Gralla, J. S. Valentine, and J. K. Gimzewski, Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae, Science, vol.305, issue.5687, pp.1147-1150, 2004.
DOI : 10.1126/science.1097640

P. C. Zhang, A. M. Keleshian, and F. Sachs, Voltage-induced membrane movement, Nature, vol.7, issue.6854, pp.428-432, 2001.
DOI : 10.1038/35096578

J. Helenius, C. P. Heisenberg, H. E. Gaub, and D. Muller, Single-cell force spectroscopy, Journal of Cell Science, vol.121, issue.11, pp.1785-1791, 2008.
DOI : 10.1242/jcs.030999

S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, Nanomechanical analysis of cells from cancer patients, Nature Nanotechnology, vol.86, issue.12, pp.780-783, 2007.
DOI : 10.1038/nnano.2007.388

X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, A cell nanoinjector based on carbon nanotubes, Proceedings of the National Academy of Sciences, vol.192, issue.4, pp.8218-8222, 2007.
DOI : 10.1016/S0074-7696(08)60527-6

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895932

C. M. Cuerrier, R. Lebel, and M. Grandbois, Single cell transfection using plasmid decorated AFM probes, Biochemical and Biophysical Research Communications, vol.355, issue.3, pp.632-636, 2007.
DOI : 10.1016/j.bbrc.2007.01.190

D. J. Stephens and R. Pepperkok, The many ways to cross the plasma membrane, Proceedings of the National Academy of Sciences, vol.4, issue.5, pp.4295-4298, 2001.
DOI : 10.1016/0958-1669(93)90081-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC33325

F. O. Laforge, J. Carpino, S. A. Rotenberg, and M. V. Mirkin, Electrochemical attosyringe, Proceedings of the National Academy of Sciences, vol.76, issue.2, pp.11895-11900, 2007.
DOI : 10.1021/ja035755v

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1924598

Z. Lu, P. C. Chen, J. Nam, R. W. Ge, and W. Lin, A micromanipulation system with dynamic force-feedback for automatic batch microinjection, Journal of Micromechanics and Microengineering, vol.17, issue.2, pp.314-321, 2007.
DOI : 10.1088/0960-1317/17/2/018

S. Deladi, N. R. Tas, J. W. Berenschot, G. J. Krijnen, M. J. De-boer et al., Micromachined fountain pen for atomic force microscope-based nanopatterning, Applied Physics Letters, vol.85, issue.22, pp.5361-5363, 2004.
DOI : 10.1063/1.1145292

S. Deladi, J. W. Berenschot, N. R. Tas, G. J. Krijnen, J. H. De-boer et al., characterization possibility of nanoscale surface modification, Journal of Micromechanics and Microengineering, vol.15, issue.3, pp.528-534, 2005.
DOI : 10.1088/0960-1317/15/3/013

A. Lewis, Y. Kheifetz, E. Shambrodt, A. Radko, E. Khatchatryan et al., Fountain pen nanochemistry: Atomic force control of chrome etching, Applied Physics Letters, vol.75, issue.17, pp.2689-2691, 1999.
DOI : 10.1063/1.120280

M. H. Hong, K. H. Kim, J. Bae, and W. Jhe, Scanning nanolithography using a material-filled nanopipette, Applied Physics Letters, vol.77, issue.16, pp.2604-2606, 2000.
DOI : 10.1063/1.125120

A. Hategan, R. Law, S. Kahn, and D. E. Discher, Adhesively-Tensed Cell Membranes: Lysis Kinetics and Atomic Force Microscopy Probing, Biophysical Journal, vol.85, issue.4, pp.2746-2759, 2003.
DOI : 10.1016/S0006-3495(03)74697-9

URL : http://doi.org/10.1016/s0006-3495(03)74697-9

R. Deladi, N. R. Tas, J. W. Berenschot, G. J. Krijnen, M. J. De-boer et al., Micromachined fountain pen for atomic force microscope-based nanopatterning, Applied Physics Letters, vol.85, issue.22, p.5361, 2004.
DOI : 10.1063/1.1145292

[. Deladi, J. Berenschot, N. Tas, G. J. Krijnen, J. H. De-boer et al., characterization possibility of nanoscale surface modification, Journal of Micromechanics and Microengineering, vol.15, issue.3
DOI : 10.1088/0960-1317/15/3/013

T. S. Hug, T. Biss, N. F. De-rooij, and Q. Staufer, Generic fabriction technology for transparent and suspended microfluidic and nanofluidic channels. Transducers '05, Digest of Technical Papers, pp.1191-1194, 2005.
DOI : 10.1109/sensor.2005.1497291

A. Meister, J. Przybylska, P. Niedermann, C. Santschi, and H. Heinzelmann, Hollow Atomic Force Microscopy Probes for Nanoscale Dispensing of Liquids, NSTI- Nanotech, p.273, 2008.