Reconstruction tridimensionnelle et suivi de lignées cellulaires à partir d’images de microscopie laser: application à des tissus végétaux

Romain Fernandez

To cite this version:

HAL Id: tel-00845205
https://tel.archives-ouvertes.fr/tel-00845205
Submitted on 16 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Université Montpellier 2
Science et Techniques du Languedoc

Thèse

présentée en vue d’obtenir le grade de
Docteur de l’Université Montpellier 2

Discipline: Informatique
Ecole Doctorale: Informations, Structures, Systèmes (I2S)

par

Romain Fernandez

Reconstruction tridimensionnelle et suivi de lignées cellulaires à partir d’images de microscopie laser : application à des tissus végétaux

sous la direction de:
Christophe Godin
Jean-Luc Verdeil

Thèse soutenue le 3 novembre 2010 devant le jury composé de:

Mme Laure Blanc-Féraud DR CNRS rapporteur
Mme Nadine Peyriéras CR CNRS rapporteur
M. Christophe Godin DR INRIA co-directeur de thèse
M. Christophe Fiorio DR INRIA examinateur
M. Grégoire Malandain DR INRIA examinateur
M. Jan Traas M. Jean-Luc Verdeil co-directeur de thèse
Table des matières

1. Introduction 7

2. Imagerie du méristème 9

2.1. Le méristème 9

2.1.1. Types de méristèmes 9

2.1.2. Fonctionnement du méristème 11

2.2. Les deux plantes modèles utilisées 11

2.2.1. Le riz 11

2.2.2. Arabidopsis Thaliana 13

2.3. Techniques d’observation 13

2.3.1. Histologie 14

2.3.2. Les microscopes actuels 14

2.3.3. Comparatif du microscope confocal et du microscope multi-photon 19

2.4. Marquage des tissus 20

2.5. État de l’art des observations des méristèmes 21

2.5.1. Le méristème apical caulinaire et le méristème d’inflorescence 22

2.5.2. Le méristème racinaire 23

2.6. Protocole développé 24

2.6.1. Protocole d’acquisition multi-angles pour la racine de riz 25

2.6.2. Protocole d’acquisition multi-angles pour la fleur d’Arabidopsis 25

3. Reconstruction des images 27

3.1. Introduction 27

3.1.1. Quelques méthodes d’amélioration 28

3.1.2. PSF et amélioration d’images par déconvolution 29

3.1.3. Fusion et super-résolution 29

3.2. Recalage d’images 32

3.2.1. Types de transformation géométrique 32

3.2.2. Types de méthode de recalage 33

3.2.3. Méthodes géométriques 34

3.2.4. Méthodes iconicques 35

3.2.5. Méthodes hybrides 36

3.3. Mise en œuvre 36

3.3.1. Hiérarchie de recalages 36

3.3.2. Fusion 37

3.3.3. Fusion sans biais 40
Table des matières

5.2.2. Notations et formulation ... 95
5.2.3. Recherches alternées de la transformation et des lignages 96
5.3. Initialisation de la méthode .. 98
5.3.1. Données initiales ... 98
5.3.2. Calcul de la pose initiale .. 98
5.4. Calcul de la transformation T_n^* 99
5.4.1. Initialisation de la transformation T_n^* 99
5.4.2. Raffinement de la transformation non-linéaire T_n^* 100
5.5. Calcul du mapping M_n^* .. 100
5.5.1. Modélisation et contraintes du calcul du mapping 100
5.5.2. Flux et coût d’un flux ... 105
5.5.3. Calcul de l’ensemble des lignages L_n^* 110
5.6. Résultats ... 112
5.6.1. Suivi de séquences de développement de méristème floral 112
5.6.2. Reconstruction 4D du tissu en croissance.......................... 114
5.7. Conclusion et perspectives ... 123

6. Construction de maillages volumiques 124
6.1. Introduction .. 124
6.2. Problématique .. 125
6.3. Prévenir les singularités ... 127
6.4. Réparation topologique d’une image n-aire 128
6.4.1. Extraction des zones à problèmes 129
6.4.2. Point doublement simple ... 129
6.4.3. Critères de choix d’un voxel 130
6.4.4. Algorithme de réparation topologique 131
6.5. Résultats de l’algorithme de réparation 132
6.5.1. Correction de singularités sur des données synthétiques 132
6.5.2. Résultats sur des données expérimentales 132
6.6. Construction d’un maillage des cellules 134
6.6.1. Construction des Faces ... 134
6.6.2. Construction des Arêtes .. 135
6.6.3. Construction des sommets 135
6.7. Résultats de la construction des maillages 135
6.8. Conclusion ... 136

7. Conclusion et perspectives .. 137

A. La morphologie mathématique, une approche ensembliste de traitement des images .. 139
A.1. Filtre alterné séquentiel ... 140
A.2. Eléments structurants classiques 140

B. Plate-formes de développement utilisées, et logiciels développés 142
Table des matières

C. Calcul du flot optimal par la méthode des arcs non-conformes 148
 C.1. Cycle et cocycle . 148
 C.2. Condition d’optimalité d’un flot . 148
 C.3. Conformité d’un arc . 149
 C.4. Algorithme de résolution des arcs non conformes 150
C.5. Déroulement de l’algorithme . 151

Bibliographie 154
1. Introduction

Aux origines de la vie sur terre, notre atmosphère était très pauvre en oxygène et l’apparition des premières micro-algues, puis des premiers végétaux, a permis d’en changer la composition et de transformer la surface terrestre en une biosphère accueillante pour une immense variété d’êtres vivants [Geopedia, 2010].

De nos jours, les végétaux constituent toujours l’essentiel de notre environnement, la biomasse végétale étant la plus représentée à la surface de notre planète [Dupin et al., 1992]. Ils protègent et stabilisent notre biotope en assurant un rôle de régulation de l’atmosphère, notamment grâce au mécanisme de capture du carbone par la photosynthèse. On peut aussi noter que la présence de végétaux se révèle indispensable au niveau nutritif, puisque les végétaux constituent un maillon essentiel dans la chaîne alimentaire de la quasi-totalité des espèces vivantes, dont l’humain.

Avec la naissance de l’agriculture au IXe millénaire avant JC, l’homme a commencé à s’intéresser au fonctionnement des végétaux qui constituaient l’essentiel de son régime alimentaire, afin d’assurer sa survie. À présent, l’humanité est composée de 6,8 milliards d’êtres humains qui consomment chaque année près de 3 milliards [Worldometer, 2009] de tonnes de produits végétaux pour assurer leur survie, ces produits représentant la majeure partie du régime alimentaire d’une humanité en pleine expansion sur une planète de taille constante. Il est donc critique de réexaminer constamment les connaissances acquises sur le fonctionnement des plantes et de savoir les utiliser pour anticiper la demande alimentaire des 9 milliards d’êtres humains qui peupleront la terre en 2050 [United Nations and Affairs, 2009]. À cette fin, l’humanité doit approfondir sa compréhension des mécanismes qui contrôlent le fonctionnement des organismes végétaux, et en particulier leur croissance et le développement des nouveaux organes (organogénèse).

Les connaissances acquises ces trois derniers siècles montrent que les plantes, des plus petites structures végétales aux plus grandes arborescences, sont générées par des structures microscopiques composées d’à peine quelques milliers de cellules : les méristèmes. Le méristème est le lieu d’un grand nombre de mécanismes d’organisation des cellules, qui font l’objet d’études très poussées. Il est à la fois un système très simple (quelques milliers de cellules) et très complexe (les mécanismes de contrôle de la croissance et de maintien des cellules souches sont relativement élaborés), ce qui en fait une structure de choix pour la modélisation et la simulation de la croissance des plantes.

Mais les méristèmes sont cachés, ou plutôt protégés, car la survie de la plante est liée à leur activité. Ils sont généralement situés aux extrémités des plantes, protégés par des petites feuilles au sein des bourgeons, pour le méristème caulinaire, et par la coiffe pour le méristème racinaire, ainsi rendus quelque peu inaccessibles. Ils sont d’autant plus inaccessibles qu’une fois débarrassés de leur protection, seule la surface des méristèmes est observable simplement, et qu’il faut utiliser des techniques très élaborées d’observation.
1. Introduction

Pour pouvoir en visualiser le centre, comme la microscopie laser.

L’objectif de cette thèse est de rendre observable les structures internes des principaux types de méristèmes (racinaires et caulinaires) à l’échelle cellulaire, et au cours du temps, et de construire des modèles géométriques et topologiques des méristèmes à l’échelle cellulaire. Étant donné l’échelle des problèmes observés, nous devrons nous doter de microscopes performants, permettant d’observer les cellules des méristèmes tout en gardant les tissus vivants pour observer leur fonctionnement dynamique.

La méthode proposée consistera en un protocole d’acquisition sous plusieurs angles, puis une méthode de reconstruction par fusion de ces acquisitions, afin de construire des images de bonne qualité dans lesquelles les cellules peuvent être identifiées automatiquement. Nous développerons ensuite une méthode de lignage capable d’extraire automatiquement les informations relatives à la généalogie des cellules, et ce par comparaison de plusieurs observations successives du même tissu.

Le chapitre 2 dressera un état de l’art de l’observation des méristèmes. Nous identifierons les limites des techniques actuelles d’observation, puis nous développerons une amélioration du protocole standard nous permettant d’obtenir des observations des tissus sous la forme d’images 3D acquises sous différents angles, qui servira au chapitre suivant pour reconstruire des images de qualité plus homogène.

A cette fin, nous commencerons le chapitre 3 en identifiant les défauts des images obtenues grâce au protocole standard et nous proposerons une méthode d’acquisition et de recalage permettant de produire des images de qualité supérieure. Une qualité minimale d’image est en effet requise pour construire un algorithme automatique de détection et de contourage (segmentation) des cellules, ce qui fera l’objet du chapitre 4.

Au chapitre 5, nous nous servirons des techniques précédemment développées, des observations successives d’un même tissu, de l’algorithme de détection des cellules, et de techniques élaborées de recalage d’images pour suivre les cellules dans le temps, et calculer les lignages, ou destinées des cellules. Nous appliquerons cette méthodologie pour analyser la croissance d’un objet simple et très répandu dans la nature : un embryon de fleur, encore appelé bouton floral.

Nous finirons, au chapitre 6, par construire un algorithme de traitement des segmentations permettant la construction d’un maillage géométrique et topologique représentatif des cellules des méristèmes, pour permettre la simulation de leur fonctionnement. Nous finirons en évoquant les derniers développements scientifiques apportés par ces travaux de thèse et en particulier les contributions apportées à nos collaborateurs leur ayant permis de faire avancer les connaissances scientifiques sur le développement des plantes.
2. Imagerie du méristème

Nous allons décrire dans ce chapitre le méristème, puis les espèces végétales ayant fait l’objet de nos études, en abordant rapidement les problématiques spécifiques à chaque espèce étudiée, puis les protocoles de montage utilisés pour observer leurs méristèmes. Nous terminerons ce chapitre en proposant un protocole d’acquisition d’images multi-angles qui permettra la reconstruction d’images au chapitre suivant.

2.1. Le méristème

Le méristème est composé de quelques milliers de cellules, quand la plante entière en comporte plusieurs milliards. Les cellules méristématiques ont une importance critique, car elles sont les seules capables de produire de nouveaux organes (branches, fleurs, feuilles, racines). Le méristème est donc au cœur de l’organogénèse, et son activité est nécessaire à la survie de la plante.

Le méristème est souvent décrit comme un ensemble de cellules souches qui organise la construction de l’arborescence [Nultsch, 1998]. Le fait que la plante conserve un ou plusieurs ensembles de cellules souches toute sa vie explique en partie sa plasticité. Elle a une grande capacité à s’adapter à son environnement et à résister aux mauvais traitements. La survie d’une plante à la découpe de la moitié de son arborescence ou de la tige principale, ou encore la survie durant les périodes de sécheresse [Lelievre et al., 2002] en sont de bons exemples.

2.1.1. Types de méristèmes

On distingue trois types principaux de méristèmes.

- Le méristème caulinaire, encore appelé méristème apical caulinaire, ou MAC, l’adjectif “apical” précisant sa localisation : au bout des tiges. Il est responsable de la genèse de l’arborescence supérieure de la plante, des feuilles, des tiges et des inflorescences [Godin et al., 2005]. Bien que très simple et de petite taille, les cellules qui
2. Imagerie du méristème

Figure 2.1. À gauche, les trois types principaux de méristèmes. À droite, organisation à l’échelle cellulaire des principaux objets étudiés dans ce travail : le méristème racinaire du riz et le méristème d’inflorescence (ou bouton floral) d’Arabidopsis. Le méristème racinaire (à droite, en bas) présente une grande régularité de forme. Les cellules y sont alignées en files régulièrement espacées et formant les initiales des différents tissus des futures racines (faisceaux conducteurs de sève, et d’oxygène).

- Le méristème racinaire, responsable de la genèse du système racinaire. Sa structure cellulaire est beaucoup plus régulière, rendant aisé l’identification des lignées cellulaires par simple observation de l’alignement des cellules. Il présente en plus une symétrie de révolution qui permet d’extrapoler sa structure tridimensionnelle à partir d’observations de la coupe centrale et donc de se concentrer sur l’observation d’images 2D [Marcuzzo et al., 2008b], qui sont plus faciles à obtenir et à interpréter que les images volumiques.
- Le méristème secondaire, ou *cambium*, qui est responsable de l’épaississement du tronc et des branches, et qui est situé entre la zone centrale lignifiée (bois sec) et l’écorce. Les variations annuelles de son activité génèrent les cernes que l’on peut voir lorsque l’on coupe un tronc, et qui permettent d’évaluer l’âge de la plante [Cap Sciences, 2005].
2. Imagerie du méristème

2.1.2. Fonctionnement du méristème

Les différents types de méristème (voir figure 2.1) ont certaines similitudes. Ils sont généralement composés de plusieurs zones.

- Un centre quiescent, peuplé de cellules qui se divisent très rarement, et qui semblent jouer un rôle important dans la signalisation cellulaire et la régulation de la croissance et de la division des autres cellules du méristème.
- Une zone de différenciation, caractérisée par de nombreuses divisions, et pouvant comporter des zones d’initiation de nouveaux organes et méristèmes (primordia).
- Une zone d’élargissement, comme dans le bouton floral ou la racine, dans laquelle les cellules différenciées croissent jusqu’à atteindre leur taille cible, permettant ainsi l’élaboration des tiges de l’arborescence.

L’interaction entre les cellules est essentiellement d’origine mécanique et physiologique. Elle se fait par l’intermédiaire de contraintes et de signaux chimiques qui transitent par les parois cellulaires et permettent aux cellules de s’organiser entre elles et de modifier leur structure pour répondre aux contraintes [Hamant et al., 2008].

Pour finir, les méristèmes sont généralement de très petite taille (de l’ordre du 1/10 de millimètre pour le méristème floral d’Arabidopsis), et leur observation requiert donc des moyens appropriés, comme nous allons le voir dans la section 2.3.

2.2. Les deux plantes modèles utilisées

Les méthodes mises en place dans cette thèse sont à vocation générique, au sens où elles peuvent être appliquées à des objets assez variés. Afin de démontrer cette généralité, nous avons étudié des tissus assez différents provenant d’échantillons de différentes espèces de plantes, chacun correspondant à une problématique biologique donnée. En particulier, nous nous sommes intéressés à la plante modèle des monocotylédones, le riz, et au fonctionnement de ses racines et méristèmes racinaires, et à la plante modèle des dicotylédones : Arabidopsis Thaliana, et au fonctionnement de son bouton floral et de son méristème apical caulinaire.

Les organismes modèles sont « des espèces qui sont étudiées de manière approfondie pour comprendre un phénomène biologique particulier, en supposant que les résultats de ces expériences seront partiellement valables pour la connaissance d’autres organismes » [Wikipedia, 2010b]. Elles sont souvent choisies pour leur simplicité. Concernant les dicotylédones, par exemple, « le choix de la communauté scientifique internationale s’est porté sur Arabidopsis Thaliana qui possède le plus petit génome végétal connu et présente de nombreux avantages liés à sa facilité de culture en laboratoire, sa rapidité de développement et sa prolificité » [INRA, 2001].

2.2.1. Le riz

Le riz (Oryza Sativa L.) présente le double avantage d’être la plante modèle des monocotylédones (qui regroupent aussi maïs, blé, orge, cocotier, dattier, agave, bananier, ...), tout en étant au centre d’enjeux agronomiques importants. A l’heure actuelle, la
2. Imagerie du méristème

Figure 2.2.: Plant de riz, racine de riz et méristème racinaire du riz. Bien que le plant de riz (à gauche) soit un objet à échelle humaine, le plantule formé lors de la germination d’un grain de riz (au centre) est beaucoup plus petit. Quant à l’observation des cellules de la racine, elle nécessite des moyens techniques adaptés (microscope). A droite, observation d’un méristème de racine de riz de grande taille (220 µm) avec échelle de profondeur. On peut voir que la partie centrale du méristème est située à 110 µm de profondeur, zone inaccessible avec un microscope mono-photon.

La problématique principale de notre étude sur le riz est d’étudier le méristème racinaire, la difficulté principale étant que le méristème racinaire du riz est de grande épaisseur (mis à part le méristème des racines latérales). Avant la microscopie multi-photon, seul le méristème de la racine latérale pouvait être étudié en 3D in vivo, en utilisant un microscope confocal. Les autres types de racines (séminale et coronaire), ayant un méristème de taille très importante (le diamètre est de l’ordre de 250 µm, voir figure 2.2), étaient en général sectionnées en tranches plus fines avant d’être observées, ce qui rendait impossible l’étude du fonctionnement dynamique du méristème. Le PHIV (Plateau d’Histocytologie et d’Imagerie Végétale, dirigé par Jean-Luc Verdeil) s’est donc équipé d’un microscope multi-photon permettant de révéler les parties les plus intimes du méristème de la racine de riz, tout en maintenant le tissu vivant durant l’observation. Le microscope multi-photon du PHIV est par ailleurs le seul microscope multi-photon en France basé sur un campus d’imagerie végétale.
2. Imagerie du méristème

Figure 2.3.: Plant d’Arabidopsis, fleurs et boutons floraux observés en microscopie électronique. Source : http://interstices.info/upload/plantes/MFig1-grd.jpg et http://www-ijpb.versailles.inra.fr/fr/sgap/equipes/cyto/arabido.htm

2.2.2. Arabidopsis Thaliana

La plante choisie pour l’étude des dicotylédones (qui regroupent pomme de terre, arbres fruitiers, choux, concombre, colza, aubergine, courgette, ...) est Arabidopsis Thaliana. Cette plante, communément qualifiée de « mauvaise herbe » par les promeneurs, existe sous de nombreuses variétés, et est très répandue au niveau géographique, dans le monde entier. Son génome est entièrement séquencé, ce qui en fait une plante de choix pour étudier les interactions phénotype-génotype. Ces éléments en ont fait la plante modèle des dicotylédones [Meyerowitz, 2001], ainsi les résultats obtenus sur Arabidopsis peuvent avoir d’importantes conséquences sur l’étude de nombreuses plantes d’intérêt agronomiques. Cependant, Arabidopsis elle-même n’est au centre d’aucun enjeu agronomique, puisqu’elle ne présente aucun intérêt majeur. On peut donc la considérer comme une plante « libre » au sens où elle est libre de toute tentative d’appropriation industrielle. Son utilisation est donc assez répandue lors de l’étude de questions assez fondamentales touchant aux plantes, et aux dicotylédones en particulier.

Les plants d’Arabidopsis étudiés dans ce travail font l’objet de recherches pour nos collaborateurs de l’équipe RDP de l’ENS Lyon. Nous avons particulièrement collaboré avec Pradeep Das et Vincent Mirabet, qui étudient le fonctionnement du bouton floral (voir figure 2.3) durant les premiers stades qui suivent son apparition sur le méristème d’inflorescence, afin d’élucider les mécanismes de la formation des organes de la fleur (pétales, sépales et organes sexuels).

2.3. Techniques d’observation

Nous avons fait durant cette thèse des observations de cellules de plantes. Étant donné l’échelle du problème, nous avons dû utiliser des microscopes pour acquérir les données de
2. Imagerie du méristème

ce travail. Les observations peuvent être de deux types, morphologiques ou fonctionnelles, les observations de type morphologique ayant pour objectif d’observer la forme des tissus cellulaires en réalisant un marquage de leurs structures, souvent les noyaux [Roeder, 2009] ou les parois cellulaires [The Computable Plant research group, 2008], et les observations de type fonctionnelle ayant pour objectif de visualiser la physiologie du tissu, par exemple les flux d’hormones, ou la concentration d’une substance chimique dans les cellules. Nous nous focalisons ici sur les techniques permettant d’observer la morphologie des tissus.

2.3.1. Histologie

L’histologie est une des techniques permettant l’observation des structures cellulaires internes des méristèmes [Verdeil et al., 2007]. Elle consiste à couper le tissu observé en coupes fines pouvant être observées par un microscope optique simple. Le fait de pouvoir faire des coupes fines du tissu permet de faciliter le marquage du tissu, cependant cette technique ne peut être utilisée pour observer des tissus vivants. De plus, elle ne permet pas facilement d’étudier la structure tridimensionnelle des tissus.

2.3.2. Les microscopes actuels

La première observation de cellules au microscope a été réalisée par Robert Hooke en 1665 avec un matériel rudimentaire [Moreno et al., 2006] (voir figure 2.4B). C’est en observant les motifs microscopiques qui composaient les tissus qu’il a attribué le nom de “cellules” aux objets élémentaires composant ces motifs.

Depuis la découverte des cellules, les techniques d’instrumentation ont beaucoup mûri, et il est à présent possible de faire des observations à l’aide de microscopes à émission laser d’une grande précision commandés par des ordinateurs, qui permettent l’acquisition, le traitement et la sauvegarde sur support informatique d’images volumiques des tissus observés. On peut ainsi obtenir aisément une pile d’images 2D montrant les cellules composant un méristème entier avec une résolution très fine, de l’ordre du dixième de micromètre (voir figure 2.4A) et dans un laps de temps relativement court, généralement inférieur à un quart d’heure pour une pile typique de taille 100 x 512 x 512 soit à peu près 25 millions de voxels.

2.3.2.1. Microscope électronique à balayage

Le microscope électronique est un type de microscope qui utilise un faisceau de particules d’électrons pour illuminer un échantillon et en créer une image très agrandie (voir figure 2.3, à droite). Il a généralement un plus grand pouvoir de résolution que les microscopes optiques [Wikipedia, 2010a]. En particulier, le microscope électronique à balayage (ou MEB) produit des images par sondage par un faisceau d’électrons focalisé qui parcourt l’échantillon. En heurtant l’objet observé, le faisceau d’électrons incident perd de l’énergie, qui est convertie en chaleur, en émission d’électrons secondaires de basse énergie, en émission de lumière visible ou en émission de rayons X. On peut ensuite visualiser l’intensité de l’un de ces signaux dans l’image, le plus souvent le signal correspondant aux électrons secondaires détectés.
2. Imagerie du méristème

Figure 2.4.: En B la première observation de cellules de plantes, observées à l’aide d’un microscope rudimentaire, puis dessinées à la main. En A, une observation récente de cellules de plantes au microscope confocal. Source : [Moreno et al., 2006].
2. Imagerie du méristème

Appliqué au méristème, le MEB permet de produire des observations d’une grande précision des tissus, mais nécessite de recouvrir le tissu d’une couche de résine ou de construire des moules du tissu étudié pour pouvoir faire l’image. Par ailleurs, les observations sont limitées à la surface du tissu. Par stéréoscopie, cette surface peut être reconstruite en 3D [Routier-Kierzkowska and Kwiatkowska, 2008]. Comme les délimitations des cellules y sont visibles, il est donc possible d’avoir une segmentation des cellules superficielles sur la surface externe, mais il n’est pas possible d’avoir accès aux structures internes du méristème.

2.3.2.2. Microscope optique simple

Dans un microscope traditionnel, le tissu est rétro-éclairé par une source de lumière non ponctuelle. La lentille de l’objectif collecte tous les rayons lumineux émanant du tissu, qui sont dirigés vers la jumelle d’observation. L’acquisition sur support informatique d’une image peut ensuite être réalisée en prenant une photo de cette image rendue [Delépine, 2000].

Cette technique comporte des inconvénients. La faible profondeur du champ empêche d’observer des tissus épais, et l’image obtenue est brouillée par des parasites dus à la présence d’objets venant des zones situées immédiatement au dessus et en dessous du plan focal. Heureusement il est possible de contourner ces problèmes grâce à d’autres techniques comme la microscopie à balayage laser, dont nous allons expliquer le fonctionnement plus bas.

2.3.2.3. Microscope confocal

Le microscope confocal est un microscope optique qui nécessite des moyens techniques et informatiques importants (voir figure 2.5). Le tissu est éclairé par un rayon laser qui forme un pinceau en forme de double-cône, avec une puissance maximale atteinte en son centre. Lorsque les molécules fluorescentes du produit de marquage reçoivent des photons provenant du pinceau laser, elles réémettent en retour une lumière qui est collectée par l’objectif puis par une ou plusieurs barrettes de capteurs CCD.

Le pinceau est formé par une lentille d’émission dont le rôle est de focaliser le laser dans un volume le plus faible possible, afin de rassembler toute la puissance lumineuse dans une très faible portion du tissu. L’image complète du tissu sur tout le domaine d’observation est obtenue grâce au balayage du pinceau laser dans tout le volume étudié. Mais dans la pratique, l’énergie du laser est partiellement absorbée par des molécules réceptrices hors du point focal, notamment sur le chemin optique du laser. En conséquence, les fluorochromes s’usent progressivement, ce qui provoque l’effet de saturation lumineuse appelé bleaching, ou blanchiment, c’est-à-dire que progressivement, et au fil des illuminations successives, le produit de marquage s’use et devient moins réactif. Le temps d’acquisition est donc lié à un compromis entre la volonté d’obtenir une image de qualité, et donc à utiliser un balayage plus lent, et la nécessité de conserver intacts les fluorochromes et le tissu, ce qui incite à utiliser un balayage plus rapide. La résolution de l’image (taille du plus petit objet pouvant être distingué dans l’image)
2. Imagerie du méristème

Figure 2.5.: A gauche : microscope de Robert Hookes. Le mécanisme est resté sensiblement le même dans les microscopes classiques : le tissu est rétro-éclairé, puis les rayons lumineux qui traversent le tissu sont collectés par un système de lentilles pour former l’image. A droite, le microscope laser à émission multi-photonique du PHIV est un microscope très sophistiqué et ses différents éléments (laser, système de refroidissement, tubes de confinement du rayon laser, jumelles d’observation et interface informatique) occupent une pièce entière.

est liée à la forme du pinceau laser et à la manière dont la puissance décroît lorsque l’on s’éloigne du point focal. Dans le plan focal, la puissance lumineuse maximale est atteinte au centre du pinceau et décroît avec le carré de la distance au point focal. Mais le long de l’axe focal (axe orthogonal au plan focal), la résolution est généralement plus grossière car le pinceau est de forme très allongée. Dès lors, et afin de ne pas mélanguer les sources de lumière situées à différentes profondeurs, le microscope confocal est équipé d’un système optique incluant un iris, appelé pinhole qui permet de ne sélectionner que la lumière réémise par les fluorochromes dans un certain intervalle de profondeur, intervalle dont la taille est proportionnelle au diamètre de l’iris.

2.3.2.4. Microscope multi-photon

L’excitation coopérative deux-photons est basée sur le fait qu’on peut reproduire un
2. Imagerie du méristème

Figure 2.6. Comparaison des diagrammes d’énergie correspondant à l’excitation et à la relaxation d’un fluorochrome lors de l’illumination par un laser mono-photon (à gauche) et un laser multi-photon (à droite). Le microscope multi-photon permet d’exciter les fluorochromes avec des photons d’énergie deux fois moindre, ce qui correspond à des longueurs d’onde plus élevée, qui traversent plus facilement le tissu.

Figure 2.7. Différence entre l’objectif du microscope confocal et du microscope multi-photon. Dans le microscope multi-photon, l’intervalle de profondeur dans lequel les fluorochromes réagissent est naturellement limité à la zone dans laquelle les photons sont le plus concentrés (point focal du pinceau). Dès lors, le pinhole (un iris) utilisé en confocal n’est plus nécessaire.
2. Imagerie du méristème

Figure 2.8: Excitation de fluorochromes en mode mono-photon (à gauche) et en mode multi-photon (source [Zipfel et al.,]). On voit que le laser mono-photon utilisé en microscopie confocale a le désavantage d’exciter les fluorochromes situés dans une grande gamme de profondeur, et donc de les user inutilement.

Effet similaire en faisant assimiler, dans un intervalle de temps très court, deux photons d’énergie $E_{\text{biphoton}} \approx \frac{E_{\text{monophoton}}}{2}$. On arrive ainsi à atteindre le même état instable qu’avec un seul photon, qui se solde par la réémission du même photon qu’en mode mono-photon (voir figure 2.6).

Cette technique permet de s’affranchir de nombreux inconvénients du microscope confocal, car la probabilité d’assimilation successive de deux photons par un même fluorochrome dans le temps d’un pulse est inversement proportionnelle à la puissance 4 de la distance au point focal du pinceau (contre la puissance 2 pour le confocal). Dans la pratique, elle devient rapidement négligeable lorsque l’on s’éloigne du point focal. Les conséquences positives sont nombreuses : le tissu « blanchit » beaucoup moins rapidement, et s’échauffe moins rapidement aussi, puisque la proportion d’absorptions parasites de photons sur le chemin optique est réduite. De plus, les photons émis par le laser multi-photon sont de plus faible énergie, et leur longueur d’onde plus grande (dans le domaine des infra-rouges) leur permet de traverser mieux le tissu donc d’y pénétrer plus profondément [Feijo and Moreno, 2004]. Par ailleurs, la réduction de lumière par utilisation du pinhole n’est plus nécessaire, puisque le volume de tissu éclairé est initialement très limité (voir figure 2.7). On peut ainsi obtenir un volume élémentaire très faible, en fonction des réglages (voir figure 2.8).

Enfin, il est possible d’utiliser le microscope multi-photon en mode bi-photon, tri-photon, et plus généralement N-photon. Mais pour $N \geq 4$, la probabilité d’excitation coopérative d’un fluorochrome par N photons devient trop faible pour obtenir un signal suffisant pour construire une image de qualité de l’objet étudié.

2.3.3. Comparatif du microscope confocal et du microscope multi-photon

Pour résumer, le microscope multi-photon présente des avantages par rapport au microscope confocal.
2. Imagerie du méristème

- Il est moins invasif que le microscope confocal, car le tissu reçoit moins d’illumination cumulée en mode multi-photon. En effet, les longueurs d’ondes utilisées en mode multi-photon ont une longueur d’onde située dans le domaine du proche infra-rouge, et traversent plus facilement le tissu que la lumière visible. Cette faible invasivité permet de suivre des objets dans le temps tout en modérant la perturbation du tissu et l’usure des fluorochromes due à l’observation.
- L’effet multi-photon permet au laser de pénétrer plus profondément dans le tissu, et donc d’accéder à des structures plus profondes, même si la lumière réémise par les fluorochromes est atténuée sur le chemin retour vers le capteur de la même manière que sur un confocal.

Le microscope multi-photon a cependant quelques inconvénients.
- C’est un microscope très sensible, qui nécessite des réglages très fréquents, réglages que seul un technicien spécialisé peut effectuer.
- La technique est assez mal maîtrisée sur les tissus végétaux (il y a peu de publications sur l’utilisation du multi-photon en imagerie végétale).
- le microscope multi-photon est beaucoup plus coûteux (500 000 euros) qu’un microscope confocal.

2.4. Marquage des tissus

Les structures observées dans les méristèmes sont généralement les noyaux ou bien les parois. Ces deux types de structures cellulaires sont quasiment duales, puisqu’elles représentent les centres et les frontières des cellules, et la littérature est aussi riche en descriptions du méristème par les noyaux des cellules qui le composent que par leurs
 Pour observer un tissu en microscopie laser, on utilise le phénomène de fluorescence, durant lequel on a souvent recours à des produits chimiques appelés marqueurs, ou bien produits de marquage. Le produit de marquage est le plus souvent une solution contenant des molécules appelées fluorochromes, qui permettent d’améliorer la vision du biologiste, en rendant observable ou en mettant en évidence certaines structures cellulaires ou certaines caractéristiques du fonctionnement des cellules. Ces fluorochromes ont des propriétés physiques intéressantes pour la microscopie laser : ils sont capables d’absorber des photons dans une bande de longueurs d’onde donnée, et de réémettre, après un laps de temps très court, l’énergie absorbée sous la forme d’un photon de moindre énergie que celui reçu.

On peut noter qu’il est possible d’utiliser plusieurs types de fluorochromes différents [Shaner et al., 2005, Day and Davidson, 2009], qu’on excite à différentes longueurs d’ondes. On peut ainsi former une image avec plusieurs canaux (visualisés en couleur), ces canaux correspondant à différentes structures (voir figure 2.9), ou phénomènes physiques observés (exemple : parois en rouge et concentration d’une protéine en vert).

Enfin, l’utilisation d’un fluorochrome par adjonction externe n’est pas toujours nécessaire. Certaines plantes contiennent nativement dans leurs tissus des molécules qui possèdent les mêmes propriétés que les fluorochromes, comme l’acide ferrulique pour la racine de riz. Ces molécules peuvent tout aussi bien être utilisées pour l’observation en microscopie confocale ou multi-photon comme marqueurs des parois cellulaires.

2.5. État de l’art des observations des méristèmes

Comme vu précédemment, les méristèmes peuvent être observés à l’échelle cellulaire in vivo. Il est cependant généralement difficile d’observer les méristèmes en conditions normales de croissance. Il y a différentes méthodes, plus ou moins invasives qui permettent de s’approcher des conditions réelles de culture.

Dans le cas de l’observation des cellules de tissus vivants, il est rare que l’on laisse l’organe observé sur la plante entière, comme dans la figure 2.10. On découpe alors une partie de l’organe permettant de le manipuler, et de positionner le méristème dans le champ du microscope (quelques centimètres de tige pour la racine ou le bouton floral). Ensuite, lorsqu’il n’est pas possible de conserver le tissu vivant, il est généralement fait usage d’histologie classique. On peut aussi fixer le tissu, ce qui consiste à vider le contenu cellulaire avant l’observation, pour que le faisceau laser pénètre mieux dans le tissu, et que l’image contienne moins de structures parasites.

La plupart des observations actuelles des méristèmes végétaux sont réalisées en microscopie optique classique, en microscopie confocale ou multi-photon, techniques d’observation qui permettent d’observer des échantillons épais de tissu in vivo et en trois dimensions, en visualisant souvent les parois, ou les noyaux cellulaires, même si de nouvelles techniques font leur apparition [Schmidt et al., 2010].

On peut noter que l’observation des noyaux a l’avantage de fournir, en plus de l’identification des cellules par leur noyau, des informations sur la quantité de matériel génétique

parois de cellulose.
2. Imagerie du méristème

Figure 2.10.: Il est généralement assez difficile d’obtenir une image des méristèmes en les laissant rattachés à la totalité de la plante la plante [Roeder, 2009]. Heureusement ce n’est nécessaire que dans le cadre du suivi d’un tissu pour une durée supérieure à une semaine. Dans la plupart des autres cas, on ne conserve qu’une petite partie du tissu lui permettant de survivre durant le temps de l’expérience : un petit morceau de tige dans le cas du suivi d’un bouton floral sur quelques jours, ou juste une toute petite partie de la tige dans le cas d’une seule observation d’un méristème racinaire.

contenu dans chaque cellule, comme le décrit Roeder, qui grâce à un marquage des noyaux cellulaires, visualise les noyaux des cellules de boutons floraux [Roeder, 2009] afin de mesurer automatiquement le volume des noyaux. Dans nos travaux, il nous sera nécessaire d’obtenir une description précise de la géométrie et de la topologie des cellules, et nous privilégierons généralement l’observation des parois cellulaires à celle des noyaux.

Nous faisons ici un bref état de l’art des techniques les plus actuelles pour l’observation des méristèmes apicaux et des méristèmes racinaires.

2.5.1. Le méristème apical caulinaire et le méristème d’inflorescence

Les observations de méristèmes apicaux caulinaires sont généralement réalisés sur des tissus vivants afin de permettre de suivre les cellules dans le temps. Lors de l’observation de méristèmes apicaux caulinaires ou de méristèmes d’inflorescence, si on se limite à des observations de la surface, on peut faire usage de microscope électronique, et produire une reconstruction 3D de la surface du tissu par stéréoscopie, comme dans [Routier-Kierzkowska and Kwiatkowska, 2008]. Cependant, la difficulté du protocole (moulage, puis deux observations) implique un taux d’échec élevé (destruction de la plante, ou mauvaise construction du moule). Ce taux d’échec est d’autant plus élevé si il faut faire plusieurs acquisitions successives, pour faire un suivi temporel des cellules, par exemple.

Une solution plus répandue pour les observations de la structure du méristème apical caulinaire et de sa physiologie est de se limiter à la surface du méristème [Jonsson et al., 2005].
2. Imagerie du méristème

FIGURE 2.11.: Construction de modèles surfaciques du méristème apical caulinaire pour le suivi et la simulation grâce à des observations de microscopie confocale [Barbier de Reuille et al., 2005].

en réalisant des observations en microscopie confocale, étant donné que la surface du méristème apical caulinaire est localisée dans une épaisseur de 20 µm. C’est la solution qu’utilise Liu dans [Liu et al., 2010], ce qui lui permet de faire plusieurs acquisitions successives, ainsi que le suivi des cellules de la surface et de quelques-unes des cellules situées dans les couches inférieures. Malheureusement, le protocole de marquage utilisé exhibe essentiellement les noyaux cellulaires, et pas les parois. Il doit donc dans ce travail estimer les frontières entre les cellules, et estimer leurs relations de voisinage pour guider le suivi des cellules, ce qui conduit à un appariement plus approximatif entre cellule-mères et cellules-filles. Dans la même catégorie des travaux d’observation de la surface du méristème apical caulinaire en microscopie confocale, on peut citer [Barbier de Reuille et al., 2005] (voir figure 2.11), où Barbier de Reuille réalise un marquage des parois du méristème apical caulinaire au FM 4-64 pour faire apparaître nettement les frontières entre cellules, ce qui lui permet de les segmenter manuellement et de se servir de cette information pour guider le suivi des cellules.

Finalement, aucun de ces travaux ne permet de visualiser in vivo les cellules des couches les plus profondes des méristèmes de la partie supérieure de la plante (méristème apical caulinaire et méristème d’inflorescence).

2.5.2. Le méristème racinaire

Le matériel d’acquisition choisi pour l’observation du méristème racinaire dépend de l’épaisseur et de l’opacité du matériau observé. On peut utiliser la microscopie confocale lorsque l’on observe un méristème racinaire de petite taille et peu opaque, comme le méristème racinaire d’arabidopsis (à peu près 100 µm de diamètre). Cependant, même
2. Imagerie du méristème

dans ce cas de figure il peut être nécessaire de fixer (et donc tuer) le tissu pour produire une image volumique (une image 3D) de l’ensemble du méristème, comme dans [Moreno et al., 2006].

On peut aussi conserver le tissu vivant, et imager de petites racines comme celles d’une graine qui germe [Dyachok et al., 2009], ou limiter les acquisitions à l’acquisition d’une coupe centrale (une image 2D) contenant l’axe de la racine, qui est plus facile à observer que la totalité du tissu [Campilho et al., 2006, Marcuzzo et al., 2008b, van der Weele et al., 2003]. En effet, la symétrie de révolution de l’organisation cellulaire de la racine par rapport à son axe central permet d’en inférer la structure tridimensionnelle à partir de l’observation de cette seule coupe centrale.

Le méristème racinaire de riz est plus difficile à imager que le méristème racinaire d’arabidopsis : d’une part il est proportionnellement de plus grand diamètre (80-100 µm pour la racine latérale, et 200-300 µm pour les racines coronaire et séminal), et d’autre part il est plus opaque. Pour ces raisons, et étant donné la faible profondeur de pénétration du microscope confocal, il devient obligatoire d’utiliser un microscope multi-photon (permettant donc de pénétrer plus profondément dans le tissu) et multi-barrettes (cf section 3.1.3.1) comme l’a fait Périn dans [Rebouillat et al., 2009]. De cette manière, il a pu atteindre le cœur des méristèmes racinaires les plus épais du riz, et obtenir des observations de bonne qualité de la coupe centrale (image 2D) pour produire des analyses de la structure hiérarchisée des queues cellulaires générées par les divisions successives à partir du centre quiescent.

2.6. Protocole développé

Le but applicatif de cette thèse est l’observation de la croissance naturelle des méristèmes à l’échelle cellulaire. Il y a donc plusieurs difficultés :
– il faut observer des structures dans des conditions aussi proches que possible de la croissance naturelle : cela implique l’observation de structures vivantes pendant le temps de l’observation dont la croissance est la moins perturbée possible ;
– il faut imager l’ensemble de la structure méristématique, des couches cellulaires périphériques aux cellules les plus internes, malgré les difficultés inhérentes aux techniques existantes en microscope optique.

La première condition contraint fortement le protocole d’acquisition d’une image puisque l’énergie délivrée par le microscope ne doit compromettre ni la viabilité de l’organe ni sa croissance, ce qui est partiellement en contradiction avec la deuxième condition puisque une énergie élevée est nécessaire pour imager les structures profondes.

Pour répondre à ces contraintes (et aux contraintes supplémentaires qui seront détaillées dans le chapitre 3), nous avons développé un protocole d’acquisition multi-angles, permettant la reconstruction d’images par fusion. Nous décrivons ici le protocole développé pour produire des images sous plusieurs angles de la racine de riz et du bouton floral d’arabidopsis.
2. Imagerie du méristème

Figure 2.12.: Acquisition de données de boutons floraux à l’ENS Lyon. A gauche : plateforme d’utilisation du microscope confocal, à droite, boîte de Petri remplie d’eau et d’un fond d’agarose gélatineuse dans laquelle est plantée la tige rattachée au méristème.

2.6.1. Protocole d’acquisition multi-angles pour la racine de riz

Les racines de riz utilisées sont des racines coronaires, qui ont été collectées sur des jeunes pousses et ont été immergées dans une solution de PBS (ph=7). Les racines de riz sont positionnées entre lamelle et lamelle (la lamelle étant un verre très fin, de l’épaisseur d’une racine), en insérant deux morceaux de lamelles entre les deux lamelles afin de construire une chambre pour y placer la pointe racinaire. Les observations ont été réalisées par Jean-Luc Verdeil avec un microscope multi-photon Zeiss LSM 510 META NLO (voir figure 2.5 à gauche) en montage inversé et en mode non déscanné en utilisant un laser pulsé chameleon Ti-Sapphire ultra 140 fs. Les réglages optimaux du microscope pour visualiser les parois cellulaires par l’auto-fluorescence de l’acide ferrulique ont été établis durant le stage master de Nicolas Goudin au PHIV. Pour obtenir le signal d’auto-fluorescence des parois cellulaires, la gamme de longueur d’onde utilisée est de 6690 à 770 nm, ce qui est approximativement équivalent à une excitation à 355 nm par un laser mono-photon. Les images ont été collectées par un objectif à immersion de grossissement 40x et d’ouverture numérique 1.2.

Pour l’acquisition multi-angles, la technique développée consiste à faire quatre acquisitions de la racine suivant quatre points orthogonaux. Pour modifier l’angle d’observation du méristème, on tourne la racine d’un angle de 90 degrés entre chaque acquisition. Pour cela, on ouvre la chambre, on saisit la tige de la racine avec une pince à épiler, puis on la tourne de 90 degrés autour de son axe avant de la repositionner dans la chambre et de refaire une acquisition.

2.6.2. Protocole d’acquisition multi-angles pour la fleur d’Arabidopsis

Les fleurs d’Arabidopsis, d’écotype Columbia et Wassukewskija sont cultivées suivant le protocole décrit dans [Das et al., 2009]. Après quelques jours de croissance, on les plante dans un pain d’agarose (voir figure 2.12), la partie supérieure de la tige étant
2. Imagerie du méristème

Immergée dans de l’eau. Tous les boutons floraux de stage supérieurs au stade 3 sont retirés de la tige pour faciliter l’observation des boutons floraux plus jeunes. Pour les suivis temporels, les plantes sont maintenues dans une chambre de croissance entre les acquisitions. En général, seulement une fleur de chaque méristème d’inflorescence est suivie dans le temps, de manière à limiter les dommages dus aux manipulations.

Juste avant d’être observées, les inflorescences sont traitées avec 2 µl de marqueur FM 4-64 concentré à 330 µg/ml. Elles sont ensuite immergées dans de l’eau et observées par Pradeep Das du laboratoire RDP de l’ENS Lyon à l’aide d’un microscope confocal Zeiss LSM 510 en montage droit avec un objectif à immersion doté d’une lentille de grossissement 63X (voir figure 2.12). Les images sont acquises avec une résolution de 0.2 µm dans le plan focal (les axes X et Y) et de 1 µm le long de l’axe focal (l’axe Z). Afin de faire des acquisitions suivant plusieurs orientations, le manipulateur tourne les méristèmes entre chaque acquisition d’un angle de l’ordre de 45 degrés, opération qui prend entre 2 et 5 minutes pour un manipulateur entraîné. Chaque acquisition ayant une durée de l’ordre de 15 minutes, l’ensemble des acquisitions dure entre 45 et 60 minutes si la fleur est observée sous trois angles différents.
3. Reconstruction des images

3.1. Introduction

La microscopie confocale à balayage laser utilisée en biologie végétale et animale permet de produire des images volumiques de tissus vivants à l'échelle cellulaire. Cette technique est une source d'information très précieuse pour les spécialistes car elle leur permet d’accéder à une description détaillée de la géométrie et de la topologie des cellules, ainsi que de leur fonctionnement, en surface comme en profondeur, avec une résolution inférieure au micromètre. Elle permet aussi, de par son aspect faiblement invasif, d’acquérir au cours du temps des images successives d’un même tissu, et d’assister à son développement jour après jour afin étudier le comportement dynamique des cellules qui le composent, avec une résolution inférieure au micromètre. Cependant, cette technique produit des quantités colossales d’information, qui doivent être analysées avec des méthodes appropriées pour pouvoir être exploitées.

Historiquement, les spécialistes ont toujours eu recours à l’observation directe pour identifier les cellules et observer leur fonctionnement, en visualisant directement les images acquises par le microscope. Mais l’observation qualitative des données brutes par un opérateur humain peut être très coûteuse en temps, notamment dans notre cas, où nous étudions des piles d’images de dimensions importantes (typiquement 512 x 512 x 100). Par ailleurs, il peut être difficile d’appréhender l’anatomie des tissus en 3D.

Dans le cadre de l’observation microscopique d’un tissu cellulaire, une des nécessités primordiales est de construire un contourage des cellules. Lorsque l’observation porte sur un tissu constitué de milliers de cellules, le contourage manuel de toutes ces cellules sur toutes les coupes où elles apparaissent est très fastidieux, et peut durer plusieurs semaines. Afin d’accélérer cette procédure, nous nous proposons de construire une solution automatisée de contourage des cellules, à partir des données brutes.

Malheureusement, ces données brutes présentent certains défauts qui rendent difficile la réalisation d’un algorithme de contourage automatique des cellules. En particulier, l’acquisition d’images numériques implique une discrétisation de l’espace d’acquisition : celui-ci est découpé en voxels (contraction de volume element) et le signal associé à chaque voxel peut être considéré comme le signal moyen sur la portion d’espace considéré (avec des effets supplémentaires, comme la convolution par une point spread function, voir plus bas). Lorsque le voxel contient plusieurs structures de signaux différents, on observe donc un signal de mélange et la pondération associée à chaque structure est liée au volume de la structure dans le voxel : on parle d’effet de volume partiel. Par conséquent le signal d’une structure peu présente dans un voxel sera dilué par le signal des autres structures. C’est typiquement ce que l’on observe pour les parois cellulaires, en particulier lorsqu’elles sont orthogonales à la plus grande dimension des voxels (direction de l’axe optique en
3. Reconstruction des images

Figure 3.1. En haut : l’effet des volumes partiels provoque un moyennage qui délocalise les contours des objets. Il est dû au fait que certains des éléments de discrétisation (ici des pixels) tombent à cheval entre deux zones représentées par des colorations différentes. En bas : simulation de l’acquisition d’un tissu avec discrétisation sur un domaine constitué de pixels très anisotropes, 10 fois plus hauts que larges. De gauche a droite : objet étudié, après discrétisation, après ajout d’un bruit gaussien, après seuillage pour soustraire le bruit de fond, et enfin après binarisation. On remarque que les parois les plus visibles dans l’image finale sont les parois orthogonales au plan focal (les parois verticales dans cette image) et que les parois parallèles au plan focal sont fortement dégradées.

microscopie confocale) : cela est illustré par la figure [3.1] Ces parois apparaissent moins résolues et plus sombres que les parois qui sont alignées avec l’axe optique. Pour corriger ce défaut, nous proposons de composer plusieurs images pour en construire une seule avec une résolution isotrope, en utilisant des techniques de fusion et de super-résolution.

3.1. Quelques méthodes d’amélioration

Les structures que nous observons sont des parois et membranes cellulaires, qui sont des structures planaires très fines, d’épaisseur inférieure à 0.1 µm pour les membranes cellulaires, et donc d’épaisseur inférieure à la résolution des microscopes laser (de l’ordre de 1 µm dans la direction de l’axe focal, et de l’ordre de 0.2 µm dans le plan focal). Elles sont donc généralement mélangées avec les autres structures, comme le cytoplasme, lors de l’acquisition.

Ce mélange est d’autant plus visible que les structures fines sont parallèles au plan focal, car la résolution suivant l’axe focal du microscope est généralement moins bonne que la résolution dans le plan focal. Dès lors, la grille d’acquisition peut être fortement anisotrope, et les structures fines peuvent apparaître plus sombres que prévu dans les images. Pour ces raisons, nous allons devoir nous intéresser à l’amélioration des images de microscopie.
3. Reconstruction des images

3.1.2. PSF et amélioration d’images par déconvolution

L’image d’un point ponctuel par un dispositif d’acquisition n’est généralement pas un point. Cet étalement spatial, est appelé point spread function, ou PSF. La PSF d’un microscope peut être observée en faisant une image de nano-billes fluorescentes, de taille largement inférieure à la résolution du microscope. Cette PSF mesurée peut être utilisée afin de procéder à une déconvolution de l’image, action qui consiste à débruit et relocaliser le signal en supprimant les images fantômes des objets, naturellement délocalisés par le microscope lors de l’acquisition. Mais la PSF est dépendante entre autres de l’indice du milieu traversé, et donc de l’objet observé dans le cas d’échantillons épais. Dès lors, la PSF obtenue par observation d’une nano-bille n’est qu’une approximation grossière de toutes les PSF qu’on pourrait obtenir à différentes profondeurs. De manière plus générale, il devient rapidement très compliqué de tenir compte de tous les paramètres dus à l’objet étudié qui entrent en jeu. L’indice du milieu n’est pas constant dans tout l’objet et un certain nombre de réflexions parasites s’ajoutent aux dégradations de l’image.

Une autre solution que l’utilisation de nano-billes pour la déconvolution est d’estimer un modèle de PSF à partir des paramètres d’acquisition du microscope : facteur de grossissement de l’objectif et ouverture du diaphragme, dimension des pixels et épaisseur des coupes, indice de réfraction du milieu dans lequel l’objet est immergé et épaisseur de la lamelle, longueur d’onde et puissance du laser, ainsi que gain et offset des capteurs CCD qui permettent d’estimer la distribution du bruit des capteurs.

Une dernière solution est de procéder à une déconvolution dite aveugle, durant laquelle la PSF et les statistiques du bruit sont estimés à partir de l’image durant le processus [Pankajakshan et al., 2009]. Cette méthode montre de bons résultats sur les images de microscopie confocale mais est encore assez mal maîtrisée sur les images de microscopie multi-photonique. Par ailleurs, elle ne résout pas le problème de l’anisotropie de la grille de discrétisation.

Pour finir, la déconvolution peut être d’une grande utilité lorsque les objets observés ne sont pas bien résolus par le dispositif d’acquisition (par exemple si on observe des nano-billes qui sont suffisamment proches pour que leurs images soient mélangées). Dans notre cas, les séparations entre les différentes structures observées (parois cellulaires et noyaux) sont en général suffisamment grandes pour que celles-ci ne soient pas mélangées entre elles.

3.1.3. Fusion et super-résolution

Fusionner plusieurs images peut permettre d’obtenir une seule image mais de meilleure qualité, la qualité pouvant être améliorée en terme de résolution (on parle alors de super-résolution [Park et al., 2003]), de rapport signal à bruit, ou de champ de vue. Un préalable est évidemment de connaître les positions relatives des différentes acquisitions entre elles, afin de connaître leurs géométries relatives.

La combinaison de plusieurs images d'imagerie en résonance magnétique afin d’obtenir une image mieux résolue (avec des dimensions de voxel plus petites) a été abordée dans [Peeters et al., 2004], [Kennedy et al., 2006], [Rousseau et al., 2006]. L’améliora-
3. Reconstruction des images

tion du rapport signal à bruit se fait en moyennant les différentes acquisitions, comme dans [Rohling et al., 1997] [Krucker et al., 2000] où plusieurs images ultrasonores 3D sont composées afin d’obtenir une image avec un bruit moindre. En construisant un patchwork de plusieurs images se recouvrant partiellement, on peut augmenter substantiellement le champ de vue, en échographie 3D [Poon and Rohling, 2006], en microscopie confocale [Cassot et al., 2006], ou en microscopie fibrée [Vercauteren et al., 2006] où l’acquisition en mode vidéo sert à reconstruire un champ de vue plus grand.

Nous allons utiliser ce type de méthodologie pour reconstruire une image 3D de meilleure résolution que les acquisitions originales : deux types de méthodes existent, la première où le dispositif d’imagerie est conçu pour acquérir plusieurs images, le second où les transformations relatives entre les images doivent être estimées.

3.1.3.1. Solutions matérielles

Dans ce type de méthode, les positions relatives des différentes acquisitions sont déterminées par l’appareil d’acquisition : cela peut être en multipliant les dispositifs d’acquisition (et en connaissant par construction leurs positions relatives) ou en déplaçant le dispositif d’acquisition (ou de manière équivalente l’objet imagé) avec un déplacement contrôlé et connu. L’image super-résolution est facilement reconstruite en combinant les différentes images, sous l’hypothèse que l’objet imaginé n’a pas bougé entre les différentes acquisitions, et que les positions relatives de celles-ci soient connues très précisément. Ainsi, dans [Peeters et al., 2004, Kennedy et al., 2006], les images à fusionner sont acquises avec des décalages spatiaux entre les origines des acquisitions.

En microscopie, les solutions matérielles consistent à utiliser plusieurs objectifs au lieu d’un seul pour réaliser plusieurs acquisitions sous différents angles simultanément. Cette technique a été utilisée pour l’acquisition d’une racine de riz dans [Rebouillat et al., 2009] avec un microscope dit « bi-barrette » où une barrette de capteurs et un objectif supplémentaires sont situés sous l’objet afin de collecter le signal de fluorescence émanant des coupes les plus profondes du méristème (les parois cellulaires qui sont opposées à l’objectif par rapport à l’axe central). Cette technique permet d’obtenir une bonne qualité d’image dans les coupes les moins profondes et les coupes les plus profondes, mais ne résout pas le problème des coupes centrales.

Il existe des microscopes plus complexes permettant de construire des images dans une grille d’échantillonnage isotrope, en utilisant simultanément plusieurs objectifs captant la lumière réémise dans différentes directions. Cela permet plusieurs observations simultanées sous différents angles d’acquisition [Swoger et al., 2003] (voir figure 3.2). Cette technique n’est cependant pas très répandue à l’heure actuelle.

3.1.3.2. Solutions logicielles

Les positions relatives des acquisitions peuvent être connues grâce à un protocole d’acquisition adapté, ou à un matériel d’acquisition dédié, comme ceux mentionnés plus haut. Outre le fait de pouvoir disposer d’un tel matériel, les images obtenues nécessitent que
3. Reconstruction des images

Figure 3.2.: Microscopie à champ large et à observation multi-axe en utilisant un matériel dédié. À gauche, schéma du système d’acquisition montrant les positions relatives des objectifs par rapport au tissu observé. Au milieu : les différentes images obtenues par les différents objectifs, et à droite, l’image finale reconstruite.

certaines hypothèses soient vérifiées : l’objet imagé doit rester immobile, et les positions relatives des acquisitions doivent être connues.

Dans le cas où un tel matériel dédié n’est pas à disposition, ou dans celui où les hypothèses ne sont pas vérifiées, il est toujours possible de reconstruire une image de super-résolution, à condition de savoir calculer les positions relatives des différentes acquisitions. La difficulté est alors reportée sur le recalage des images qui permet de calculer les transformations reliant les différentes images. Les solutions logicielles mettent donc en oeuvre des méthodes de recalage afin de calculer les transformations relatives entre ces acquisitions.

Dans [Preibisch et al., 2010], des grains sont insérés dans le gel d’agarose contenant le matériel imagé, et le calcul de la transformation est réalisé grâce à ceux-ci. Un inconvénient de ce type de méthode, qui utilise des amers indépendants de l’objet observé, est qu’elle ne peut pas compenser des mouvements ou des déformations du matériel survenant durant les acquisitions. C’est également le cas pour les dispositifs matériels présentés ci-dessus. En cas de mouvements ou de déformations, comme dans le cas d’un tissu en croissance, ceux-ci seront moyennés et causeront un flou dans l’image résultat.

Au contraire, les méthodes de recalage qui utilisent directement des mesures de similarité entre images, comme dans [Vercauteren et al., 2006], ne souffrent pas de cet inconvénient : les déformations du tissu se produisant lors de l’acquisition sont compensées par des transformations non-linéaires. Cependant, les méthodes de recalage basées image peuvent servir à corriger des imprécisions sur les transformations données par un dispositif matériel [Fouard et al., 2006].

C’est cette technique que nous avons donc choisi d’utiliser. Elle est parfaitement bien adaptée à notre tâche puisque, si on suppose que la croissance des tissus durant une acquisition engendre de très faibles déformations, on pourra facilement compenser les déformations intervenant entre des acquisitions successives à condition de mettre au point une chaîne de recalage adaptée.

Les notions de recalage que nous allons utiliser sont exposées dans le paragraphe sui-
3. Reconstruction des images

3.2. Recalage d’images

Recaler deux images consiste à calculer la transformation qui superpose au mieux ces deux images. Plus précisément, étant donné 2 images, une image dite de référence I_{ref} et une image dite flottante I_{flo}, on cherche à calculer la transformation \hat{T} qui superpose au mieux, au sens d’une mesure de similarité S, les images $I_{flo} \circ T$ (c’est-à-dire I_{flo} rééchantillonnée par la transformation T) et I_{ref}. Si la mesure S doit être maximisée, ce calcul peut être formalisé par [Brown, 1992] :

$$\hat{T} = \arg \max_T S(I_{flo} \circ T, I_{ref})$$

3.2.1. Types de transformation géométrique

On définira tout d’abord une transformation de l’espace tridimensionnel comme l’application qui associe à tout point de \mathbb{R}^3 son transformé :

$$T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$$

$$v = (x, y, z) \rightarrow v' = (x', y', z')$$

On pourra alors associer à une image tridimensionnelle I l’image transformée $I' = I \circ T$, qui associera à chaque point v l’intensité $I \circ T(v) = I(T(v))$.

Cette définition simplifiée occulte un problème pratique, lié au domaine de définition des images. Les images ne sont généralement définies que sur un sous-ensemble de \mathbb{R}^3, et cette limite devra être prise en compte lors de l’utilisation des transformations pour le rééchantillonnage des images, ce qui pourra engendrer des difficultés supplémentaires, par exemple au moment de la fusion d’images, comme nous le verrons plus bas.

3.2.1.1. Transformations linéaires

L’espace des transformations linéaires inclut les transformations rigides, les similitudes, les transformations affines et les transformations projectives. Comme leur nom l’indique, les transformations linéaires sont associées à une représentation matricielle qui permet de déterminer les nouvelles coordonnées de chaque point (représenté en coordonnées homogènes) transformé par un simple produit matriciel.
3. Reconstruction des images

Nous utiliserons particulièrement dans ce manuscrit les transformations rigides, qui sont exactement les transformations que l’on peut obtenir en composant une rotation et une translation. Elles peuvent avoir une grande utilité pour superposer deux objets identiques à une rotation et une translation près, comme c’est le cas par exemple pour le recalage de deux observations supposées simultanées d’un même tissu sous deux orientations différentes, c’est-à-dire lorsque l’on prend pour hypothèse que l’objet n’a pas subi de déformations ou de modifications de sa structure. Même si, dans la pratique, la manipulation et le temps écoulé entre les deux observations peut induire de légères déformations (croissance des cellules) et modifications de la structure du tissu (divisions cellulaires), une transformation rigide constitue généralement une première bonne approximation de la transformation réelle.

3.2.1.2. Transformations non-linéaires

Dans de nombreux cas, les transformations linéaires ne suffisent pas à représenter la transformation réelle. Pour le méristème, c’est le cas lors du recalage de plusieurs acquisitions, lorsque l’on veut prendre en compte les petites déformations dues à la manipulation, ou lors du recalage de différentes acquisitions successives et espacées de plusieurs heures, pour rendre compte de la croissance.

Lorsque les transformations linéaires ne suffisent plus, nous utilisons alors des transformations non-linéaires. Ces transformations possèdent un grand nombre de degrés de liberté, ce nombre étant dépendant de la paramétrisation choisie pour définir la transformation. Il est possible par exemple de décomposer une transformation sur une base de fonctions, comme des fonctions splines [Rueckert et al., 1999], ce qui permet la représentation d’une transformation non-linéaire par un nombre de paramètres qui peut être relativement faible. A l’opposé, on peut choisir la classe de transformations la plus large possible, en définissant une transformation par un ensemble de vecteurs indépendants, un pour chaque point de la grille de l’image.

Mais cette liberté a un coût. La représentation des transformations linéaires par un champ dense de vecteurs permet « de représenter des transformations très variées, mais risque de faire surger des optima locaux lors de l’optimisation » [Malandain, 2006] lors du recalage de deux images. On contraint alors le processus de mise en correspondance des images de deux manières : d’une part en initialisant la procédure d’optimisation à partir d’une bonne configuration initiale, proche de la solution recherchée, avec une transformation ayant moins de degrés de liberté, par exemple rigide ou affine (cf paragraphe 3.3.1), ou d’autre part en ajoutant des contraintes de régularité à la transformation recherchée, par exemple en recherchant un difféomorphisme [Vercauteren et al., 2009], c’est-à-dire une transformation dont l’inversibilité est assurée.

3.2.2. Types de méthode de recalage

On distingue généralement deux familles de techniques de recalage d’images.

1. Le nombre de degrés de liberté d’un champ dense de vecteurs est de 3 fois le nombre de voxels soit une centaine de millions de degrés de liberté pour les images que nous manipulons.
3. Reconstruction des images

- Les techniques de recalage dites géométriques, qui s’appuient sur l’appariement de primitives géométriques extraites des images à recaler.
- Les techniques de recalage dites iconiques, qui ne requièrent aucune segmentation et s’appuient directement sur les intensités des images à recaler.

Il y a évidemment des techniques de recalage qui peuvent être considérées comme hybrides entre ces deux familles.

3.2.3. Méthodes géométriques

Comme son nom l’indique, le recalage géométrique s’appuie sur des primitives géométriques extraites des images à recaler. Il y a en fait deux étapes importantes :
- l’étape d’extraction des primitives à recaler (ou segmentation) et
- l’étape d’appariement des primitives extraites dans les deux images à recaler.

L’extraction automatique des primitives géométriques, par exemple des points d’intérêt, est une étape cruciale. Si elle échoue, le recalage ne sera possible. Un moyen de garantir une bonne segmentation des primitives géométriques est d’ajouter des marqueurs dans l’image, marqueurs faciles à détecter et qui guideront le recalage. C’est par exemple le cas en imagerie cérébrale, où l’on peut utiliser un cadre stéréotaxique, qui est vissé dans le crâne du patient, afin de faciliter le recalage des images préopératoires avec les outils opératoires en neurochirurgie. Les grains ajoutés dans le gel d’agarose dans [Preibisch et al., 2010] obéissent à cette même logique. Dans le même esprit, nous avons essayé de positionner des grains de charbon sur la surface des racines de riz imagées, pour marquer quelques positions et faciliter le recalage, mais cela s’est révélé difficile sans endommager le tissu.

La seconde étape consiste à appairer les primitives extraites dans les 2 images. Typiquement et si l’on considère des points, on forme des couples \((M_{flo}^i, M_{ref}^i) \) avec un point de l’image flottante \(I_{flo} \) et son correspondant dans l’image de référence \(I_{ref} \). La mesure de similarité utilisée sera alors simplement une mesure de distance entre les points de l’image flottante transformés et leurs correspondants dans l’image de référence. Ainsi, si l’on veut la transformation \(\hat{T} \) permettant de rééchantillonner l’image flottante \(I_{flo} \) dans la géométrie de l’image de référence (c’est-à-dire une image \(I_{flo} \circ \hat{T} \)), on calcule

\[
\hat{T} = \arg \min_T \left(\sum_i \| M_{flo}^i - T(M_{ref}^i) \|^2 \right)
\]

Si les appariements ne sont ou ne peuvent être connus, ceux-ci peuvent aussi être estimés. L’algorithme ICP ou Iterative Closest Point [Besl and McKay, 1992] alterne
3. Reconstruction des images

ainsi entre

– l’estimation des appariements : on apparie chaque point de l’image flottante transformée à son voisin le plus proche (d’où le nom de l’algorithme) de l’image de référence ;
– l’estimation de la transformation.

L’optimisation de la transformation est alors itérative, et il est évident que le succès de l’optimisation (c’est-à-dire sa convergence vers un optimum global) dépendra fortement de son initialisation pour peu que le paysage d’énergie à optimiser ne soit pas convexe.

3.2.4. Méthodes iconiques

Un inconvénient majeur des méthodes de recalage géométriques est l’extraction des primitives géométriques, étape dont le succès conditionne celui du recalage. Outre cet inconvénient, une hypothèse sous-jacente est que les mêmes primitives peuvent être extraites dans les 2 images à recaler. Si cela semble raisonnable pour des images acquises avec la même modalité, cela peut être plus problématique pour des images de modalités différentes, par exemple imagerie par résonance magnétique (IRM) et tomographie par émission de positons (TEP) en imagerie médicale. Pour répondre à ce besoin de recalage multi-modal, les méthodes dites iconiques ont été introduites.

Ces méthodes cherchent à optimiser un critère de ressemblance entre les valeurs (les intensités) des images à recalier. Le critère le plus simple est basé sur la différence des intensités, et pourrait être la somme des différences des intensités au carré, soit :

\[\hat{T} = \arg\min_T \left(\sum_M \| I_{\text{flo}} \circ T(M) - I_{\text{ref}}(M) \|^2 \right) \]

On voit qu’un tel critère suppose que, lorsque les images sont bien superposées, les intensités des points appariés sont les mêmes. De fait, il existe plusieurs types de mesures de similarité iconiques qui doivent être choisies selon l’hypothèse que l’on fait sur la nature de la relation entre les intensités des images à recaler [Roche et al., 2000].

– Comme nous venons de le voir, pour une relation d’égalité entre les intensités, les mesures basées sur les différences d’intensité peuvent être utilisées.

– Si la relation entre les intensités est linéaire, alors on peut utiliser le coefficient de corrélation.

– Si la relation est plus généralement fonctionnelle, alors le rapport de corrélation peut servir de mesure de similarité.

– Enfin, si on suppose simplement une relation de nature statistique, alors les mesures issues de la théorie de l’information, telles l’entropie ou l’information mutuelle [Viola and Wells, 1997], peuvent être utilisées.

Toutefois, il s’agit d’une mesure globale, et des différences entre les images à recaler peuvent introduire des biais dans le recalage : en effet, il n’est pas possible d’introduire facilement la notion d’outliers, afin de définir des mesures robustes [Kim and Fessler, 2004].
3.2.5. Méthodes hybrides

La plupart des méthodes de recalage iconique supposent l’existence d’une relation globale entre les images, or cette relation peut ne pas être vérifiée en tout point de l’image, et il est difficile de prendre en compte ces outliers. Quant aux méthodes de recalage géométrique, elles s’appuient sur une étape de segmentation de primitives géométriques, dont la qualité conditionne la qualité du recalage : toutefois, les appariements aberrants peuvent être pris en compte et écartés par des techniques robustes de calcul de transformation (cf paragraphe 3.2.3).

Une approche que l’on peut considérer comme hybride a été développée qui cherche à avoir les avantages des 2 types de méthodes. Des primitives iconiques, et non plus géométriques, vont être utilisées pour construire des appariements. Ces primitives iconiques sont en fait des sous-images, ou blocs, dont la dénomination recalage par blocs (ou block matching). Cela est intégré dans un schéma de type ICP [Besl and McKay, 1992], et on alterne donc entre l’estimation d’appariements entre blocs, et le calcul d’une transformation au sens des moindres carrés [Ourselin et al., 2000].

Les appariements iconiques sont réalisés en maximisant une mesure de similarité iconique, ici le coefficient de corrélation. Cela peut se justifier par l’utilisation de blocs suffisamment petits pour contenir généralement au plus 2 tissus : une relation linéaire entre les intensités des blocs appariés est alors raisonnable.

En ce qui concerne le calcul et le traitement des appariements, on pourra sélectionner les primitives en éliminant les blocs trop peu informatifs (les blocs d’intensité uniforme), et éliminer les appariements qui semblent erronés au moment du calcul de la transformation, en utilisant un estimateur robuste, de type moindres carrés tamisés [Rousseeuw and Leroy, 1987]. Par ailleurs, une mise en œuvre multi-échelle permettra d’obtenir un algorithme rapide, en effectuant quelques itérations du recalage à chaque échelle, de la plus grossière à la plus fine [Ourselin, 2002]. Cette méthode, initialement utilisée pour estimer des transformations linéaires par S. Ourselin, a été généralisée pour l’estimation de transformations non-linéaires par O. Commowick [Commowick, 2007].

3.3. Mise en œuvre

3.3.1. Hiérarchie de recalages

Une des difficultés du recalage d’images est de garantir au mieux que la transformation trouvée sera celle recherchée. En particulier, pour les méthodes d’optimisation itératives, cela suppose que leur initialisation se trouve dans le bassin de convergence de l’optimum (global) recherché. En ce concerne notre problème, le recalage d’images de parois cellulaires, cela est un point délicat. En effet, du fait de la structure régulière observée, de nombreux minima locaux peuvent survenir (il suffit qu’un nombre suffisant de parois se superposent). Aussi, une première étape de recalage manuel est réalisée. Ensuite, deux recalages automatiques sont faits, en augmentant le nombre de degrés de liberté de la transformation recherchée entre les 2. Les étapes successives que nous avons utilisées sont donc les suivantes.
3. Reconstruction des images

1. Recalage manuel linéaire rigide. Cette étape consiste à positionner et à apparier manuellement des points de correspondance pour calculer un premier recalage approximatif des deux images en estimant la transformation globale par une transformation linéaire rigide T_1.

2. Recalage automatique linéaire rigide. Cette étape consiste à raffiner la transformation linéaire précédente par un algorithme automatique, qui consistera ici à identifier automatiquement de nouveaux appariements, et à raffiner la transformation linéaire de l’étape 1 en calculant une nouvelle transformation linéaire rigide T_2 qui met en correspondance les appariements automatiquement détectés [Ourselin, 2002].

3.3.2. Fusion

La fusion d’images permet de réunir des informations provenant de plusieurs images dans une seule, plus exploitable. La fusion des images peut s’effectuer en rééchantillonnant chacune des images dans la grille de l’une d’entre elles, et nous parlerons en ce cas de fusion simple. Dans certains cas, on pourra construire l’image fusionnée sur une grille plus fine, et profiter ainsi de l’étape de fusion pour calculer une image en super-résolution. Nous détaillons ici ces deux méthodes de construction.

3.3.2.1. Fusion simple

La fusion simple s’opère en rééchantillonnant toutes les images flottantes dans la géométrie d’une des images, puis en calculant la moyenne de toutes ces images. Pour chaque image flottante I_i, on a construit lors des étapes du recalage la transformation composée $\hat{T_i}$ qui permet de la superposer avec l’image référence :

$$\hat{T_i} = T_1 \circ T_2 \circ T_3$$

Une fois obtenues les transformations qui permettent de passer de chaque image flottante à l’image référence, on fusionne les images recalées dans la géométrie de l’image référence par moyennage :

$$I_{fus} = \frac{1}{N} \sum_i I_i \circ T_i$$

tout en prenant garde à la réduction du support. En effet, après le recalage, il est possible que l’espace occupé par l’image référence ne corresponde pas exactement à l’espace occupé par les images flottantes recalées (cf figure 3.3). Il faut donc mesurer en tout point.
3. Reconstruction des images

Figure 3.3.: Illustration du problème du support commun lors du recalage. Après recalage, on peut fusionner les trois images recalées en calculant une moyenne de celles-ci sur le domaine de l’image référence (image de gauche) et le recalage de deux images nous permet de mutualiser l’information de ces deux images dans un domaine qui se trouve alors limité à l’intersection de leurs domaines recalés. On voit (image de gauche) que la fusion calculée par une simple moyenne des images fait apparaître les contours des images, puisque le nombre de contributions n’est pas le même en tout point. Nous sommes alors obligés de mesurer le nombre de contributions et de tenir compte de ce nombre (image de droite) lors du calcul de la moyenne (voir section 3.3.2.1).

De l’espace référence le nombre de contributions $N(x)$, c’est-à-dire le nombre d’images recalées qui sont définies en ce point. L’équation de la fusion devient alors :

$$I_{fus}(x) = \frac{1}{N(x)} \sum_i I_i \circ T_i(x)$$

3.3.2.2. Fusion en super-résolution

Il est possible d’utiliser les transformations calculées lors de l’étape de fusion pour construire une image sur-échantillonnée, avec des voxels isotropes, afin de régler le problème de l’anisotropie. La fusion en super-résolution consiste à augmenter la densité d’information en rééchantillonnant chaque image dans une grille plus fine au moment de la fusion. Cela permet en particulier de passer d’une image formée de voxels parallélépipédiques à une image formée de voxels cubiques et plus petits. Pour ce faire, on rééchantillonne d’abord l’image référence dans une grille isotrope, puis on rééchantillonne les autres images dans cette nouvelle géométrie (voir figure 3.4).
Figure 3.4.: Fusion simple (à gauche) et fusion en super-résolution (à droite). Première ligne : grilles de l’image référence et de deux images flottantes recalées. Deuxième ligne : lors de la fusion simple on rééchantillonne les images recalées dans la géométrie de l’image référence. On peut profiter de l’étape de fusion pour calculer, à partir de la grille de l’image de référence, une nouvelle grille plus fine et isotrope, dans laquelle on rééchantillonnera les images flottantes, ainsi que l’image référence, avant de calculer la moyenne des images rééchantillonnées (troisième ligne).
3. Reconstruction des images

3.3.3. Fusion sans biais

On commence par choisir une des images à recaler comme image référence \(I_{\text{ref}} \). En recalant toutes les images \(I_i \) sur \(I_{\text{ref}} \), on calcule une transformation linéaire \(T_i \) et une transformation non-linéaire \(D_i \), qui nous permettent de calculer l’image recalée \(J_i \):

\[
J_i = I_i \circ T_i \circ D_i
\]

Ces images recalées nous permettent de calculer une image moyenne \(A \):

\[
A = \frac{1}{N} \sum J_i
\]

Et on peut estimer la déformation moyenne :

\[
D_{\text{moy}} = \frac{1}{N} \sum D_i
\]

que l’on peut inverser pour calculer l’image moyenne \(A^0 \) positionnée dans une géométrie intermédiaire entre toutes les images initiales \(I_i \):

\[
A^0 = A \circ (D_{\text{moy}})^{-1}
\]

L’idée consiste alors à recommencer le recalage itérativement en utilisant \(A^{k-1} \) comme image référence. A l’itération \(k \) de l’algorithme, on calcule le recalage de chaque image \(I_i \) sur l’image \(A^{k-1} \), qui nous permet de construire les images \(J_i^k \), en calculant les transformations linéaires et non linéaires \(T_i^k \) et \(D_i^k \):

\[
J_i^k = I_i \circ T_i^k \circ D_i^k
\]

puis l’image moyenne \(A^k \):

\[
A^k = \frac{1}{N} \sum J_i \circ (D_{\text{moy}}^k)^{-1}
\]

et ainsi de suite, jusqu’à convergence. En particulier, au fur et à mesure des itérations, vu que la géométrie moyenne est de mieux en mieux estimée, la déformation moyenne diminue en amplitude et se rapproche de zéro en valeur.

3.4. Résultats

Les résultats sont présentés sur un groupe de 8 fleurs d’Arabidopsis ayant fait l’objet de trois acquisitions sous des angles différents (en fait deux fleurs, flo1 et flo2, deux jours
3. Reconstruction des images

consécutifs, et une fleur, p60, quatre jours consécutifs), et sur une racine de riz acquise
sous quatre angles différents.

Nous présentons dans cette section l’évaluation du positionnement des objets lors du
protocole d’acquisition, les résultats visuels du recalage et l’évaluation de la robustesse
des étapes de calcul, puis les résultats visuels de la fusion, et l’évaluation chiffrée de
l’amélioration des images.

3.4.1. Protocole

3.4.1.1. Observation d’une fleur sous plusieurs angles

Le protocole d’acquisitions sous plusieurs orientations différentes a été mis en place
pour que toutes les structures soient visibles dans au moins une des acquisitions. Une
première idée était de faire des acquisitions avec des positions orthogonales de l’objet.
Mais des acquisitions orthogonales de l’objet rendent plus difficile la procédure de recalage
automatique. En effet, lors de deux acquisitions orthogonales, les structures les plus
brillantes de la première image n’apparaissent pas bien dans l’autre image, et inversement.
Afin de conserver un minimum de structures communes aux images et d’assurer un
recalage robuste, nous avons choisi de limiter les rotations à une valeur maximum de 50
degrés.

Nous avons fait des acquisitions de boutons floraux en limitant l’angle entre les axes
focaux à des valeurs comprises entre 30 et 50 degrés (voir figure 3.5). Le recalage manuel
des images nous a permis d’estimer la rotation de l’axe focal dans les acquisitions supplémen-
taires relativement à l’axe focal de la première acquisition (qui correspond à une
vue du dessus de l’objet).

A partir de l’expression matricielle de la transformation rigide T_1 estimée lors du re-
calage manuel, on peut facilement obtenir l’angle entre les axes focaux. Si on se souvient
que la profondeur d’un point dans l’image (axe Z) est sa troisième coordonnée en repré-
sentation vectorielle, on voit que la composante de la matrice à la troisième ligne et à la
troisième colonne est égale au produit scalaire entre les axes normés u_z et u_z' des deux
repères des images qui est aussi égal au cosinus de l’angle entre ces deux axes.

La majeure partie des 16 valeurs obtenues est distribuée entre 30 et 45 degrés ce qui
correspond à peu près à l’intervalle initialement programmé (entre 30 et 50 degrés), mise
à part trois valeurs, une à 14 et deux autour de 52 degrés, qu’on peut considérer comme
marginales (cf figure 3.6).

3.4.1.2. Observation d’une racine sous plusieurs angles

La racine est déjà difficile à manipuler, dans le cadre du protocole standard d’obser-
vation. C’est d’autant plus le cas dans le protocole amélioré puisqu’il faut lui appliquer
des rotations successives (cf figure 3.7). Tout d’abord, la racine se présente sous la forme
de structure cylindrique de faible diamètre (moins d’un millimètre), comportant des
poils absorbants à son extrémité, qui empêchent de la manoeuvrer facilement lorsqu’ils
restent accrochés au milieu de culture. De plus, elle a une rigidité assez faible, il est donc
très difficile de la faire tourner autour de son axe sans introduire de torsion.
3. Reconstruction des images

Figure 3.5. Observation d’un bouton floral sous trois angles, images par Pradeep Das. En vert et en violet, deux points de référence, pour faciliter la visualisation du changement d’orientation entre les observations.

Figure 3.6. Histogramme des angles entre l’axe focal de l’image référence et l’axe focal de l’image flottante lors de la manipulation des boutons floraux d’Arabidopsis
3. Reconstruction des images

Figure 3.7.: Observation d’une racine sous plusieurs angles. Première ligne : la racine présente une symétrie cylindrique, il est donc difficile de trouver des points de repère pour s’assurer que l’on a bien effectué la rotation attendue autour de son axe (90 degrés entre chaque acquisition). Cette rotation ne pourra être évaluée qu’après une première étape de recalage manuel (deuxième ligne), durant laquelle on superpose les objets en mettant en correspondance les axes centraux. Troisième ligne : vue de dessus après mise en correspondance, et quatrième ligne, vue de côté après mise en correspondance. Cette vue de côté (coupe axiale de la racine) est la plus adaptée pour évaluer la rotation de la racine, grâce aux points de correspondance positionnés manuellement (croix colorées).
3. Reconstruction des images

Figure 3.8.: La racine de riz acquise sous quatre angles orthogonaux (X, X', Y, Y').
Les points de couleurs choisis pour produire le recalage ont permis de produire une évaluation visuelle a posteriori des axes d’acquisition choisis. Les angles des observations 1, 3 et 4 respectent le schéma, alors que l’angle d’observation numéro 2 est décalé de 45 degrés par rapport à ce qui était attendu.

Nous avons essayé diverses techniques pour introduire une rotation sans déformation, par exemple en introduisant la racine dans un capillaire en verre de même diamètre que la racine, et en ne laissant dépasser que son extrémité (la zone méristématique). Afin que la racine suit le mouvement du capillaire, et en particulier la rotation, nous avons essayé de la coller avec de l’agarose (gel sucré qui peut servir de substrat nutritif), en déposant une goutte d’agarose entre la racine et le capillaire à l’aide d’un pinceau à un poil, puis en faisant remonter l’agarose dans le tube par capillarité, avant qu’elle ne se resolidifie (une vingtaine de secondes), et avant que la racine ne seche (quelques minutes sans eau pour les grosses racines et quelques secondes pour les plus petites).

Les premiers essais n’étant pas concluants, nous avons opté pour une solution plus simple qui consiste à tourner la racine sous l’objectif du microscope avec une pince à épiler de petite taille. Le désavantage de cette technique est qu’elle ne permet pas de connaître au moment de la manipulation la valeur de la rotation appliquée. Nous avons essayé de marquer les tissus en déposant des marqueurs comme des grains de charbon par exemple, à l’aide d’un pinceau à un poil, mais en plus de ne pas bien adhérer à la racine, ceux-ci ont tendance à pomper l’eau des cellules.

Les recalages manuels ont permis de réaligner les axes des racines, et de les mettre en correspondance visuelle des angles de rotation entre les différentes observations. On voit dans la figure 3.8 que trois des acquisitions sont orthogonales et respectent le schéma, et que la quatrième ne le respecte pas tout à fait. Cette erreur est due essentiellement aux difficultés de la manipulation, et à l’impossibilité d’évaluer visuellement la rotation accomplie avant de faire le recalage, étant donné la symétrie de l’objet (symétrie circulaire).

3.4.1.3. Recalage manuel

Afin d’obtenir une première approximation grossière de la transformation recherchée, et d’assurer la convergence vers la bonne solution, on calcule une première transformation \(T_1 \) rigide à l’aide de \(N \) couples de points \(\left(M_{flo}^i, M_{ref}^i \right)_{i=1,...,N} \), \(M_{flo}^i \) étant un point de...
3. Reconstruction des images

Figure 3.9 : Qualité du recalage manuel en fonction du nombre et de la position des points. A gauche : erreur en translation (en μm) entre le recalage manuel et le recalage rigide optimal en fonction du nombre de points de correspondances. Le trait horizontal pointillé indique le diamètre moyen d’une cellule ($10 \mu m$). A droite : (a) et (a'), positionnement correct des points de correspondance entre deux observations, et (a''), superposition des images après recalage manuel. Lorsqu’on refait de même en introduisant une erreur dans le positionnement d’un point, comme dans (b) et (b') (le point rouge), on observe que la bonne superposition des images est significativement perturbée (b'').

L’image flottante I_{flo} et M_{ref} étant son correspondant dans l’image de référence I_{ref}. Ces couples de points correspondants sont spécifiés par l’utilisateur à l’aide d’une interface dédiée. Dans la pratique, on prend N de l’ordre de 10 pour assurer la robustesse du calcul, même si seulement 3 appariements sont nécessaires pour définir une transformation rigide si les points sont non colinéaires, et 4 pour une transformation affine, si les points sont non coplanaires.

La première étape du recalage est la seule qui demande une interaction humaine, lors de la spécification des points de contrôle. Elle a donc fait l’objet d’une étude de robustesse en fonction du nombre de points de contrôle utilisés. Nous avons quantifié l’erreur en translation après recalage manuel, au niveau du centre de l’image (voir figure 3.9). Le graphique montre qu’au-delà de 8 points de contrôle, il est assez improbable que l’erreur en translation atteigne des valeurs supérieures à $10 \mu m$, ce qui correspond à un décalage d’une rangée de cellules.

3.4.1.4. Recalage rigide automatique

A la deuxième étape on utilise un algorithme automatique de recalage par blocs, [Ourselin et al., 2000], pour raffiner automatiquement la transformation rigide calculée à l’étape précédente (voir figure 3.10). Cet algorithme calcule une transformation supplémentaire T_2 en divisant les images $I_{flo} \circ T_1$ et I_{ref} en blocs et en calculant de nouveaux appariements sur un critère de ressemblance (coefficient de corrélation) entre les blocs.
3. Reconstruction des images

Figure 3.10.: Les étapes de recalage, de gauche à droite : configuration initiale (image superposées sans connaître la transformation), après recalage rigide manuel, après recalage rigide automatique, après recalage dense.

de l’image recalée \(I_{flo} \circ T_1 \) et les blocs de \(I_{ref} \). Ces nouveaux appariements permettent de calculer \(T_2 \) par la même méthode qu’à la première étape, en minimisant la somme des distances au sens des moindres carrés entre les centres des blocs appariés. On obtient après un faible nombre d’itérations (typiquement 5 itérations à chacun des 6 niveaux de résolution) la transformation \(T_2 \), optimale pour l’étape 2, et une deuxième approximation du recalage recherché, en superposant \(I_{flo} \circ T_1 \circ T_2 \) sur \(I_{ref} \).

3.4.1.5. Recalage non-linéaire automatique

A la troisième et dernière étape, on calcule une transformation additionnelle, un champ de vecteurs défini sur l’ensemble des voxels de l’image [Commowick, 2007]. La stratégie pour le calcul de ce champ de vecteurs est similaire à la stratégie utilisée à l’étape précédente, la principale différence résidant dans la manière d’interpréter les appariements. Les appariements identifiés forment un ensemble de vecteurs qu’on interpole en tout point du domaine pour obtenir un champ dense de vecteurs (défini sur l’ensemble de l’image). Ce champ de vecteurs constituera la transformation additionnelle \(T_3 \).

Cependant, le recalage peut être biaisé par le choix de l’image référence. Pour éviter cela, l’image moyenne calculée grâce au recalage est ensuite considérée comme image référence, et la procédure est réitérée jusqu’à convergence, comme décrit dans [Guimond et al., 2000].

Nous avons employé cette méthode pour obtenir à partir de plusieurs acquisitions une image améliorée du méristème. Les objectifs visés sont une augmentation du contraste, une diminution du bruit de fond ainsi qu’une information mieux résolue et isotrope. Nous allons à présent évaluer les résultats de nos expériences.
3. Reconstruction des images

3.4.2. Volume partiel

3.4.2.1. Effet des volumes partiels et structures fines

L’observation d’un objet comportant différents types de matériaux fait intervenir l’effet des volumes partiels, ou EVP, qui participe notamment à flouter les contours des objets (voir figure 3.1). Cet effet est d’autant plus important sur la dégradation du signal que les objets observés sont petits par rapport à la taille des éléments de discrétisation. De plus, la grille d’acquisition des images de microscopie confocale étant généralement anisotope, les parois peuvent apparaître avec une luminosité variable dans l’image volumique. L’EVP est une conséquence de la discrétisation de l’espace au moment de l’observation. En fonction du positionnement et de la finesse de la grille d’acquisition, l’espace occupé par certains voxels contiendra des parties de matériaux de types différents, et l’intensité associée au voxel au moment de l’acquisition sera le résultat d’un mélange des intensités représentatives de chaque matériau.

Dans le cadre de l’observation confocale des cellules de plantes, les structures marquées peuvent être relativement fines. C’est le cas des parois cellulaires, d’épaisseur inférieure au micromètre (de l’ordre de la taille des voxels), et des membranes cellulaires, d’épaisseur négligeable relativement aux dimensions des voxels. Il en résulte que tous les voxels de l’image contenant les parois et membranes cellulaires seront en fait représentatifs d’un mélange entre une portion de volume de paroi et une portion de volume de cytoplasme, non marqué.

Afin de quantifier la variation d’intensité résultant de ce mélange, nous nous servirons d’un modèle, que nous appellerons structure fine. On appellera structure fine une structure d’épaisseur inférieure à au moins une des dimensions des voxels.

3.4.2.2. Anisotropie des voxels et acquisition d’images de structures fines

Les images de microscopie confocale sont constituées de voxels très anisotropes. Loin d’être cubiques, ils sont plus généralement parallélépipédiques, et le rapport entre leurs dimensions est typiquement de l’ordre de 1 pour 10. Dès lors, si une structure fine traverse un voxel, le volume de voxel intercepté par la structure fine (et donc la luminosité de cette structure fine dans l’image) devient fonction de son orientation.

Afin de faire une évaluation théorique de l’évolution de la luminosité d’une paroi ou d’une membrane en fonction de son orientation, on peut modéliser l’opération d’observation des parois et membranes cellulaires comme l’acquisition d’une image d’une structure fine d’épaisseur \(\varepsilon \) négligeable devant les dimensions des voxels. A des fins de simplification, on considère une paroi passant par le centre du voxel et en rotation autour de l’axe \(X \).

On note \(d_x \) et \(d_y \) les dimensions du voxel dans le plan focal (avec en général \(d_x = d_y \)), et \(d_z \) la dimension du voxel le long de l’axe focal. On obtient facilement qu’une structure fine parfaitement parallèle au plan focal intersecte le voxel dans un volume maximal de valeur \(V_{\parallel} = \varepsilon.d_x.d_y \). En revanche, si celle-ci est orthogonale au plan focal, elle intersecte le voxel dans un volume maximal de valeur \(V_{\perp} = \varepsilon.d_x.d_z \), avec \(V_{\perp} \leq V_{\parallel} \) le rapport d’anisotropie qui varie généralement entre 1 et 10.
3. Reconstruction des images

Soit $f : \theta \mapsto f(\theta)$ la fonction décrivant le volume intersecté en fonction de l’angle entre la normale à la structure fine et l’axe focal. Nous venons de montrer que cette fonction prend les valeurs $V_\parallel = \varepsilon.d_x.d_y$ lorsque θ vaut 0 et $V_\perp = \varepsilon.d_x.d_z$ lorsque θ vaut $\frac{\pi}{2}$. On peut calculer les valeurs prises par cette fonction lorsque θ varie dans l’intervalle $[0, \frac{\pi}{2}]$ en séparant cet intervalle en deux autour d’un angle limite $\theta_{\text{lim}} = \arctan\left(\frac{dx}{dz}\right)$, qui permet d’identifier la position dans laquelle la paroi parcourt le voxel d’un coin à l’autre (voir figure 3.11). On a alors, facilement:

$$
\begin{align*}
 f(\theta) &= dx \sqrt{1 + \cot^2(\theta)} & \text{si } \theta < \theta_{\text{lim}} \\
 f(\theta) &= dz \sqrt{1 + \tan^2(\theta)} & \text{si } \theta \geq \theta_{\text{lim}}
\end{align*}
$$

On voit sur le tracé correspondant (figure 3.11) l’évolution de la fonction, d’une valeur maximale correspondant au cas des structures orthogonales au plan focal, à des valeurs beaucoup moins élevées pour les autres orientations possibles.

Les conséquences sur l’image et les résultats des traitements peuvent être importantes car les parois qui apparaissent avec une intensité très faible peuvent conduire à de fréquentes erreurs lors de l’application d’un algorithme automatique de contourage des cellules (voir figure 3.12). En particulier, un contourage automatique des cellules sera généralement assez précis et discriminerà les différentes cellules dans le plan focal, mais les séparations le long de l’axe focal seront relativement mal identifiées, et les cellules seront fréquemment fusionnées en colonnes (i.e. plusieurs cellules alignées suivant l’axe Z seront segmentées en une seule région).

3.4.2.3. Évaluation de l’intensité des parois cellulaires

Afin d’évaluer l’amélioration de l’image grâce à la fusion de plusieurs acquisitions, nous mesurons la luminosité moyenne et le contraste moyen des parois cellulaires dans l’image fusionnée, que nous comparons avec la luminosité moyenne et le contraste moyen des mêmes parois dans une des vues initiales (la vue de dessus), en fonction de l’orientation de la paroi. Pour cela, nous allons d’abord avoir besoin de localiser le lieu des parois cellulaires dans l’image, afin de connaître l’ensemble des voxels dont on doit mesurer la luminosité. Nous devons ensuite déterminer une méthode adéquate pour mesurer l’orientation des parois.

3.4.2.4. Localisation d’une paroi et calcul de son contraste moyen

Afin de calculer la luminosité d’une paroi, nous devons l’identifier en tant qu’ensemble de voxels. A cette fin, nous construisons un modèle épais des parois, en appliquant la procédure de segmentation décrite au chapitre suivant. Cette procédure permet d’attribuer chaque voxel de l’image à une cellule identifiée par son étiquette. On peut alors extraire facilement un modèle épais des parois en une seule passe en identifiant l’ensemble des voxels dont au moins un voisin possède une étiquette différente.

Une fois identifié l’ensemble des voxels représentant la paroi, on calcule tout d’abord sa luminosité moyenne, en moyennant le signal sur l’ensemble des voxels de cette paroi. Le contraste est calculé en soustrayant la luminosité moyenne de la paroi à la luminosité
3. Reconstruction des images

Figure 3.11.: Luminosité théorique (unité arbitraire) d'une structure fine (comme une paroi cellulaire, en vert) en fonction de son orientation par rapport aux voxels (en gris), dans une grille construite avec un rapport d’anisotropie \(\frac{d_x}{d_z} = 5 \). Points rouges : indication des orientations extrémales de la structure fine (en vert) par rapport au voxel (en gris) et à l’axe optique (en noir). Les schémas explicatifs montrent que le volume de voxel intersecté est beaucoup plus important que dans la position de droite. Si on approxime la luminosité d’une structure fine dans l’image comme étant proportionnelle au volume de voxel intersecté, on peut tracer la courbe théorique de luminosité de cette structure en fonction de l’angle qu’elle forme avec l’axe focal. On observe que la luminosité décroît très vite avec l’angle, et dans des proportions importantes.
Figure 3.12.: À gauche, une partie d’une image de bouton floral d’Arabidopsis et à droite, le résultat d’un algorithme automatique de segmentation appliqué à cette image. Les parois orthogonales au plan focal apparaissent très nettement dans l’image, quand les parois qui lui sont parallèles n’apparaissent que très faiblement. En conséquence, de nombreuses cellules sont mal contournées, et souvent fusionnées avec une cellule du dessus ou une cellule du dessous (voir flèche rouge). Ce type d’erreur est de manière générale plus fréquent, même si il arrive aussi que certaines parois bien visibles soient manquées lors du contourage (flèche noire).
3. Reconstruction des images

Figure 3.13.: Calcul de la luminosité, du contraste moyen et de l’orientation des parois.

A gauche : on extrait de l’image initiale les voxels représentant les parois (en haut) et les voxels représentant le fond (en bas). A droite, après avoir individualisé les parois, on calcule la valeur de leur indice d’orientation, le STAR (voir section 3.4.2.5). A droite, visualisation des parois avec une couleur associée à leur STAR (en rouge pour les STAR proches de 1 et en bleu pour les STAR proches de 0).

3.4.2.5. Calcul de l’orientation d’une paroi relativement au plan focal

Afin d’obtenir une évaluation approchée des orientations relatives des parois et du plan focal, nous avons utilisé le rapport STAR, Silhouette To Area Ratio. Comme dit précédemment, la luminosité d’une paroi dans l’image est liée à son orientation relative au plan focal. Une paroi parallèle au plan focal et vue depuis l’objectif, a une silhouette de même taille que sa surface réelle donc son STAR est de l’ordre de 1, et elle apparaîtra très assombrie dans l’image, alors qu’une paroi orthogonale au plan focal a une silhouette quasi-nulle (son STAR est de l’ordre de 0) et apparaîtra par contre très brillante dans l’image volumique. On se rend compte intuitivement (voir figure 3.13) que les parois ayant le STAR le plus proche de 1 sont les parois sombres du protocole classique, et qu’on peut s’attendre à une forte amélioration de leur contraste, alors que les parois ayant le STAR le plus proche de 0 sont les parois brillantes du protocole classique, et qu’on peut s’attendre à ce que leur luminosité soit modérée par le protocole à angles multiples.

Dans notre cas, le calcul du STAR est très simple : nous nous servons de la segmentation des cellules pour déterminer l’ensemble des facettes qui séparent deux voxels d’étiquette.
3. Reconstruction des images

![Figure 3.14: Distribution des orientations des parois avec la profondeur. Lorsqu’on se rapproche de la surface supérieure du méristème (0 µm), on observe une grande quantité de parois ayant un STAR élevé (parois parallèles au plan focal), dans la zone correspondant au sommet du dôme formé par le méristème. Il est critique pour les biologistes que ces parois soient bien détectées par l’algorithme de segmentation, car les études actuelles sont pour la plupart basées sur une analyse de modèles de la surface du méristème.](image)

Figure 3.14.: Distribution des orientations des parois avec la profondeur. Lorsqu’on se rapproche de la surface supérieure du méristème (0 µm), on observe une grande quantité de parois ayant un STAR élevé (parois parallèles au plan focal), dans la zone correspondant au sommet du dôme formé par le méristème. Il est critique pour les biologistes que ces parois soient bien détectées par l’algorithme de segmentation, car les études actuelles sont pour la plupart basées sur une analyse de modèles de la surface du méristème.

différente. Ces facettes constituent un modèle fin des parois et vont nous permettre de mesurer leurs orientations. Chaque facette peut avoir trois orientations différentes : XY (d’axe normal Z), XZ (d’axe normal Y), ou YZ (d’axe normal X). Étant donné que l’axe focal est confondu avec l’axe Z, les facettes XZ et YZ sont vues de côté par le microscope lors de l’acquisition (STAR=0), alors que les facettes suivant le plan XY sont celles qu’on voit de face lors de l’acquisition (STAR=1). Dès lors le calcul du STAR de la paroi consiste à calculer le ratio du nombre de facettes suivant le plan XY divisé par le nombre total de facettes :

$$STAR(\text{paroi}) = \frac{\#(\text{facettes}_{XY})}{\#(\text{facettes})}$$

On voit dans la figure 3.14 la distribution des valeurs STAR des parois en fonction de leur profondeur dans le tissu. On remarque qu’une proportion importante des parois de la surface, dont la détection est critique, a un STAR proche de 1 (parois sombres).

3.4.2.6. Intensité des parois masquées : comparaison des valeurs mesurées et des valeurs théoriques

Il est possible de rapporter grossièrement le STAR à l’angle θ utilisé pour modéliser l’assombrissement en début de chapitre. En supposant les parois planes et en prenant comme modèle une paroi sans facettes suivant YZ, étant donnée la symétrie du problème, on obtient :
3. Reconstruction des images

\[
\frac{1}{STAR(\text{paroi})} = \frac{\#(\text{facettes}_{XY}) + \#(\text{facettes}_{XZ})}{\#(\text{facettes}_{XY})} = 1 + \cot(\theta)
\]

En comparant la courbe mesurée avec la courbe théorique de décroissance de la luminosité avec l’orientation, on voit que les expériences s’accordent approximativement avec le comportement attendu, à un facteur de normalisation près (voir figure 3.15).

Les sources de différences entre ces deux courbes peuvent être multiples : d’une part, le modèle de remplissage des voxels par les parois est basé sur une approximation, l’épaisseur réelle des structures fines n’étant dans la réalité pas négligeable devant les dimensions des voxels. Ensuite, dans la pratique, la luminosité moyenne a été mesurée dans une version épaisse des parois, les parois étant représentées dans la segmentation par des facettes, qui par essence n’ont pas de luminosité définie.

3.4.2.7. Augmentation du contraste des parois en fonction de leur orientation

Une évaluation visuelle donne une première idée de l’amélioration obtenue par reconstruction (voir figure 3.16). L’évaluation quantitative est réalisée en comparant le contraste des parois dans les trois cas suivants : sans reconstruction, avec reconstruction en utilisant deux piles, et enfin avec reconstruction en utilisant trois piles. Pour mesurer le contraste, on mesure la luminosité relative au fond, c’est-à-dire la zone correspondant à l’intérieur des cellules, légèrement amincie par une érosion morphologique afin de limiter l’influence du signal brillant des parois (voir figure 3.13). Les résultats obtenus (voir figure 3.17) montrent que la reconstruction multi-angles rehausse le contraste des parois les plus sombres de l’image, avec notamment une très forte augmentation du contraste des parois ayant la plus haute valeur de STAR, conformément à nos prévisions (augmentation supérieure à 40 % pour les parois ayant un STAR de 0.8).

3.5. Conclusion

Nous avons construit une méthode qui unit un protocole d’acquisition amélioré et des techniques sophistiquées de recalage d’images pour construire une méthode de reconstruction qui améliore les images dans une large mesure. Cette méthode, à vocation générique, a été validée sur des tissus variés (racines et boutons floraux, Arabidopsis et riz), et semble adaptée pour permettre la reconstruction d’images d’autres types d’objets observés en microscopie laser.

Le logiciel produit pour la reconstruction permet d’homogénéiser les images de manière importante, produisant un gain de plus de 30 % pour toutes les parois les plus sombres de l’image (STAR > 0.5). À titre de comparaison, une amélioration matérielle du microscope telle que l’achat d’un filtre optique de très haute qualité permet de réduire l’atténuation du signal de 10 % et ne peut rien contre l’effet d’assombrissement des parois en fonction de leur orientation. Ce genre de filtre est par ailleurs très onéreux, le prix étant de l’ordre de la dizaine de milliers d’euros.

Les images produites par la méthode que nous venons de décrire présentent des défauts beaucoup moins importants que les images obtenues par le protocole classique, ce qui
3. Reconstruction des images

Figure 3.15. Comparaison des valeurs théoriques et des valeurs mesurées pour l’atténuation du signal des parois en fonction du STAR. Les différences entre le modèle et les valeurs mesurées sont partiellement expliquées par le fait que nous avons pris un modèle simplifié, dans lequel les parois ont une épaisseur négligeable devant les dimensions des voxels, ce qui n’est pas forcément le cas dans la réalité. En effet, lorsqu’on augmente l’épaisseur de la structure, la variation de volume de voxel occupé lorsque son orientation varie entre les deux positions extrêmes est moins importante, ce qui peut expliquer la décroissance plus limitée de la luminosité mesurée lorsque le STAR augmente.
3. Reconstruction des images

Figure 3.16. Évaluation visuelle de la reconstruction des parois. Les trois colonnes correspondent aux trois vues orthogonales (respectivement : XY ou plan focal, YZ, puis XZ), et les trois lignes correspondent au traitement effectué (respectivement : pas de traitement (image initiale), image après reconstruction par fusion simple, puis image après reconstruction en super-résolution). L’image vue depuis le plan focal ne subit pas d’amélioration majeure, mais suivant les deux vues orthogonales, on s’aperçoit qu’un certain nombre de parois réapparaissent grâce à la fusion, et sont que leur forme initiale est restaurée lorsque la fusion est réalisée en super-résolution. Bien que la réapparition des parois masquées soit l’effet principal recherché, l’effet de relocalisation des structures constitue une amélioration additionnelle d’importance. Cet effet contribue à donner une meilleure impression visuelle des images, et à guider plus facilement l’exploration des tissus par les biologistes.
3. Reconstruction des images

Figure 3.17. Évolution du contraste moyen des parois en fonction de leur STAR, après fusion. L’augmentation de contraste est d’autant plus remarquable lors de la fusion de 3 acquisitions, puisque l’on mesure une augmentation d’au moins 30% pour toutes les parois les moins brillantes de l’image (STAR > 0.5), c’est-à-dire les parois qui pouvaient poser problème pour l’analyse automatique d’image.

rend possible leur traitement par des algorithmes automatisés, comme le contourage automatique et l’identification des cellules, lors de l’opération dénommée *segmentation*, qui fera l’objet du chapitre suivant.
4. Segmentation des cellules

4.1. Introduction

La segmentation d’image est une opération qui consiste à identifier un ou des objets d’intérêt dans une image [Wikipedia, 2010c]. Elle résulte soit en une classification des points (pixels en 2D, voxels en 3D) en objet ou non-objet, soit, de manière duale, au tracé de la frontière de l’objet recherché. Cette opération peut mettre en jeu aussi bien des informations bas-niveau, comme la valeur de l’intensité des points, que des informations haut-niveau, comme une description sémantique de l’objet recherché qui renvoie à une expertise acquise, et toute la difficulté des méthodes de segmentation de la littérature consiste à combiner ces différents niveaux d’information pour produire un algorithme dont les performances, dans la grande majorité des cas, restent en deçà de celles d’un opérateur humain.

En matière de segmentation, la littérature reflète cette dualité. D’un côté, on trouve des approches à vocation générique, qui viseront à développer des méthodes bas-niveau servant pour l’extraction de primitives simples. On peut citer dans cette catégorie les détecteurs de contours, de textures, ou encore les détecteurs de structures, basés tous trois sur la luminosité des voxels. D’un autre côté, on trouve d’autres méthodes, à vocation très spécifique, qui utilisent ces opérations de bas-niveau pour mettre en place des algorithmes de plus haut-niveau, dédiés à une seule tâche spécialisée. Il n’existe donc pas de méthode universelle de segmentation, et le développement de méthodes génériques ou spécifiques de segmentation est encore un des thèmes de recherche les plus courants en traitement d’images [Pal and Pal, 1993, Pham et al., 2000].

Si on considère l’incorporation de l’expertise humaine dans les méthodes de segmentation, on peut classer ces dernières en 3 grandes catégories. La première catégorie des méthodes de segmentation est une segmentation manuelle, où un opérateur contoure les objets d’intérêt, l’informatique pouvant offrir une interface ergonomique pour cette tâche (édition de contours, zoom sur l’image, etc.). Même s’il est évident que c’est la façon la plus sûre d’exploiter l’expertise d’un opérateur humain, ce type de méthode souffre d’un grand nombre de défauts : elle n’est pas reproductible, et il existe une variabilité inter- et intra-opérateur ; elle a un coût non négligeable en temps opérateur, ce coût pouvant être prohibitif selon la taille des images à traiter et le nombre de structures à segmenter ; il est difficile, avec une interface de segmentation 2D (un écran d’ordinateur) d’obtenir des segmentations 3D (de volume) cohérentes ; etc. Ces défauts sont nettement atténués dans le cas de méthodes interactives (ou semi-manuelles) [Olabarriaga and Smeulders, 2001], qui permettent, à partir d’un coût réduit pour l’opérateur, d’obtenir la segmentation des structures recherchées. Un des avantages de ce type de méthode est de réduire les variabilités inter- et intra-opérateur. Évidemment, l’idéal est de disposer de méthodes de
4. Segmentation des cellules

segmentation entièrement automatisée [Sharma and Aggarwal, 2010], ainsi les résultats obtenus sont entièrement reproductibles, et indépendants de tout opérateur humain. De plus, cette opération de segmentation peut être réalisée sans supervision humaine. Toutefois, la difficulté est alors de traduire l’expertise humaine en termes algorithmiques.

Avant de présenter la méthode de segmentation que nous avons retenue, nous allons présenter les spécificités de notre problème, à savoir la segmentation des cellules dans les images de microscopie confocale ou bi-photon, ainsi que quelques approches utilisées dans la littérature.

4.1.1. Spécificités de notre problème

Les images (reconstruites) que nous manipulons sont grossièrement constituées de 3 classes :
– le fond de l’image qui est autour du méristème,
– les parois et les membranes des cellules, qui sont brillantes, et
– l’intérieur des cellules.

Notre but est d’obtenir une segmentation des cellules assortie de leur individualisation, c’est-à-dire que nous voulons pouvoir reconnaître chaque cellule individuellement : cela peut par exemple être fait si nous obtenons une numérotation des cellules.

Une première approche possible est de segmenter les parois des cellules, il s’agit donc d’une approche basée contours. Celles-ci étant plus brillantes, c’est-à-dire d’une valeur d’intensité plus élevée que celle de l’intérieur des cellules, une méthode de type seuillage (cf paragraphe 4.1.2) peut éventuellement être utilisée. Les parois étant segmentées, les cellules peuvent être individualisées si les parois sont effectivement des séparations entre les cellules, c’est-à-dire qu’un point d’une cellule ne peut pas être voisin d’un point d’une cellule voisine : le dénombrement des composantes connexes du complémentaire des parois pourra alors donner la segmentation des cellules recherchées.

Ce point demande à être approfondi. En effet, il existe plusieurs types de voisinage (ou connexité) dans des grilles discrètes. Ainsi, en 3D, il existe 3 types de connexité, les 6-, 18- et 26-connexité [Kong and Rosenfeld, 1989]. Afin que les parois puissent effectivement séparer les cellules, il faut choisir des connexités différentes pour les parois et les cellules : on peut soit choisir la 26-connexité pour les cellules et la 6-connexité pour les parois, ou l’inverse. Les parois étant des structures minces, il semble plutôt raisonnable de choisir la 26-connexité pour les parois (et donc la 6-connexité pour les cellules). Notons qu’une telle approche, segmentation des parois et dénombrement des composantes connexes dans le complémentaire des parois, ne donne pas d’étiquette aux points qui constituent les parois. Toutefois, en propagant les étiquettes des cellules dans les parois, celles-ci peuvent être fusionnées avec les cellules, et donc donner une partition du méristème en cellules.

Une seconde approche consiste à segmenter (en les individualisant) les cellules (par exemple la ligne de partage des eaux, cf paragraphe 4.1.5), et il s’agit alors d’une approche basée régions. Auquel cas, la segmentation des cellules résulte en une partition du méristème, c’est-à-dire en une famille de classes numérotées dont l’union forme le méristème et qui sont deux à deux disjonctes, avec une condition supplémentaire qui est que chaque classe numérotée forme une seule composante connexe (cette condition traduit
4. Segmentation des cellules

le fait qu’une cellule n’est pas coupée en plusieurs parties). Dans une telle approche, les parois sont fusionnées avec les cellules. Toutefois, celles-ci peuvent être reconnues comme étant composées des points d’une cellule voisins (au sens de la 6-connexité) d’une cellule voisine.

4.1.2. Seuillage

Une approche très simple pour segmenter une image est de classer les points d’après la valeur de leur intensité. Une valeur qui sépare deux classes différentes s’appelle un seuil. Si on considère une segmentation bininaire, où l’image résultat prendra 0 ou 1 comme valeurs (généralement associées respectivement au fond et à l’objet). On construira alors une image de segmentation S avec un seuil s comme suit :

$$S(M) = \begin{cases} 1 & \text{si } I(M) \geq s \\ 0 & \text{sinon} \end{cases}$$

Bien qu’excessivement simple, ce type d’approche a été très étudié [Sahoo et al., 1988, Glasbey, 1993, Pal and Bhandari, 1993, Sezgin and Sankur, 2004], en particulier pour le calcul d’un seuil optimal, c’est-à-dire séparant au mieux le fond de l’objet. Une méthode classique est par exemple la méthode dite d’Otsu [Otsu, 1979], qui minimise la variance intra-classe, ce qui est équivalent à maximiser la variance inter-classes. En imagerie microscopique, l’utilisation d’un seuil global, c’est-à-dire appliqué à toute l’image, est toujours étudié [Li et al., 2006, Russell et al., 2009].

Toutefois, l’utilisation d’un seuil global suppose qu’un tel seuil existe, et donc que les propriétés photogrammétriques de l’image sont stationnaires. Étant donné que le rapport signal sur bruit décroît avec la profondeur dans les images de microscopie confocale, cette hypothèse semble très optimiste. En particulier, les images du méristem du riz montrent une diminution du signal dans la zone centrale (cf figure 4.1). A la non-stationnarité des propriétés de l’image, on peut répondre par une non-stationnarité du seuil : c’est le propre des méthodes dite de seuillage adaptatif. On construira alors une image de segmentation S avec un seuil variable $s(M)$ comme suit :

$$S(M) = \begin{cases} 1 & \text{si } I(M) \geq s(M) \\ 0 & \text{sinon} \end{cases}$$

Les variations du seuil $s(M)$ doivent être lentes afin qu’il n’y ait pas de discontinuités dans la segmentation obtenue. Les méthodes de seuillage adaptatif sont également utilisées en imagerie microscopique [Ponomarev and Davis, 2003, Oberlaender et al., 2009].

Un exemple d’une telle méthode est celle décrite dans [Le Negrate et al., 1999] et qui consiste à s’adapter aux variations de la luminosité moyenne dans l’image en calculant un seuil comme une moyenne locale pondérée par une fonction indicatrice de la présence de contours (par exemple la norme du gradient) : l’idée est que la valeur des points où l’intensité varie rapidement (les points de contours) constitue un bon candidat pour une valeur de seuil. Les essais menés avec cette méthode sur l’image de méristème racinaire montrent que cette stratégie ne semble pas être suffisante pour bien segmenter les parois cellulaires, en particulier parce qu’elle rehausse les défauts de l’image (voir figure 4.1).
4. Segmentation des cellules

Figure 4.1.: A gauche, sous-partie d’une coupe centrale de méristème racinaire de riz et histogramme de cette même image. A cause des inhomogénéités globales de l’image, il est difficile d’utiliser la distribution des intensités pour identifier deux modes (parois en clair et noyaux et cytoplasmes en sombre) afin de diviser les voxels en deux groupes, lors d’une opération de seuillage (à gauche en bas, images seuillées à partir de valeurs sélectionnées (en gris) dans l’histogramme). Images du milieu : on peut remarquer que lorsque l’on ne traite qu’une sous-partie de l’image, on peut observer les deux modes distincts dans l’histogramme, et calculer un seuil qui sépare approximativement les parois cellulaires des autres structures. Une idée est alors de calculer en chaque point de l’image un seuil différent en fonction de caractéristiques locales. A droite, image obtenue après seuillage dynamique par estimation locale de la luminosité moyenne des frontières entre zones claires et zones sombre [Le Negrante et al., 1999]. Cette méthode a le désavantage de rehausser aussi les défauts, comme les structures parasites (noyaux marqués par erreur) et les structures manquantes (parois mal marquées).
4. Segmentation des cellules

4.1.3. Détection des parois

Plutôt que de détecter les parois sur leurs seules propriétés photogrammétriques, on peut aussi essayer de les caractériser grâce à leurs propriétés structurelles. Ainsi elles sont rehaussées grâce à un détecteur dit de symétrie de phase dans [Marcuzzo et al., 2009b].

Cet opérateur consiste à faire la différence entre une réponse de convolution avec un filtre symétrique et une réponse de convolution avec un filtre anti-symétrique. Ce calcul est mené avec des filtres ondelettes, et les différences sont intégrées à différentes échelles et à différentes orientations pour obtenir la mesure finale. Il s’agit d’une méthode 2D et les parois apparaissent clairement rehaussées dans les illustrations présentées. Cependant, le passage au 3D, bien qu’évident méthodologiquement, pose quelques problèmes. D’une part un coût calculatoire très supérieur, qui est dû à l’augmentation du nombre des orientations, et d’autre part une dégradation probable des résultats : en proportion, moins d’orientations seront informatives quant à une symétrie locale.

Une autre solution aurait pu consister à construire un détecteur de surfaces en 3D. L’orientation d’une surface, ainsi que sa probabilité de présence, peut être déduite de l’analyse de la matrice hessienne, c’est-à-dire de la matrice des dérivées secondes des intensités de l’image. Sur une surface mince, de la diagonalisation de cette matrice résultent deux valeurs propres proches de 0 (les vecteurs propres associés définissant un plan tangent à la surface), et une valeur propre de grande valeur absolue avec un vecteur propre associé définissant un vecteur normal à la surface [Lorenz et al., 1997]. Ce type d’approche a déjà été utilisé pour la détection de structures filaires [Krissian et al., 2000], toutefois son coût calculatoire n’est pas négligeable.

4.1.4. Modèles déformables

Les approches précédentes proposent de segmenter les parois, et les cellules seront effectivement bien séparées s’il n’y a pas de « trous » dans les parois obtenues. Une approche alternative consiste alors à segmenter les cellules directement. Pour cela, on peut utiliser un modèle de cellule déformable qui va essayer de coller aux parois. Aux endroits où ces dernières sont mal définies, la régularité géométrique du modèle permettra d’obtenir un résultat raisonnable.

De manière générale, les modèles déformables cherchent à optimiser une énergie composée de deux termes :

– un terme d’énergie dite interne qui peut pénaliser les déformations exagérées du modèle, et donc le régulariser, ou le contraindre à être proche d’une géométrie fixée ; et
4. Segmentation des cellules

- un terme d’énergie dite *externe* qui va guider le modèle déformable avec des informations issues de l’image à segmenter, par exemple en favorisant le passage du modèle par les points de fort gradient (points de contours) ou en favorisant l’homogénéité des intensités à l’intérieur du modèle.

Des modèles déformables avec une paramétrisation explicite sont utilisés dans [Moreno et al., 2006] pour la segmentation des cellules dans des images de matériel fixé. Notons qu’il faut quand même initialiser un modèle déformable par cellule pour obtenir la segmentation de l’image entière, et qu’a priori les interactions entre modèles déformables voisins devraient être gérés afin d’éviter des interpénétrations. Ceux avec une paramétrisation implicite sont également utilisés [Liu et al., 2009] [Zanella et al., 2010], mais nécessitent un coût calculatoire plus important.

4.1.5. Ligne de partage des eaux

Une autre approche plus communément utilisée pour la segmentation en biologie est la méthode de la transformation de la ligne de partage des eaux (LPE), ou watershed [Malpica et al., 1997] [Ortiz de Solorzano et al., 1999] [Lin et al., 2003] [Barbier de Reuille et al., 2005] [Niemisto et al., 2006] [Gniadek and Warren, 2007] [Marcuzzo et al., 2009b]. Cette méthode a été proposée il y a plusieurs dizaines d’années [Digabel and Lantuéjoul, 1977], mais elle est toujours l’objet d’études [Cousty et al., 2009] [Cousty et al., 2010]. Elle est née de l’analogie entre les images et les reliefs topographiques. L’idée générale de la transformation en ligne de partage des eaux est de considérer l’image en niveaux de gris comme un ensemble de reliefs topographiques constitués de bassins (les zones sombres de l’image) et de crêtes (les zones claires de l’image) dans lequel les lignes de partage des eaux délimitent les frontières des bassins versants. Pour continuer l’analogie avec les reliefs topographiques, les frontières des objets représentent des montagnes et donc des zones hyperintenses. Généralement, la LPE est donc calculée sur l’image de la norme du gradient de l’image à segmenter, toutefois, cela ne sera par nécessaire dans notre cas puisque les images acquises ou reconstruites présentent déjà des parois cellulaires hyperintenses.

Une approche populaire pour le calcul de la LPE est la méthode proposée dans [Vincent and Soille, 1991]. Cette implémentation est basée sur une simulation d’immersion (voir figure 4.2), niveau après niveau, en rangeant les voxels par niveau de gris dans des files d’attentes. Pour chaque niveau le voxels voisins d’un bassin existant sont rattachés à ce bassin, alors que ceux qui ne sont voisins d’aucun bassin existant définissent un minimum local, et donc un nouveau bassin. Si le principe est simple, il masque certaines difficultés.

1. Il y a autant de régions identifiées que de minima locaux dans l’image, ce qui conduit généralement à une sur-segmentation de l’image.

2. La propagation des étiquettes sur un plateau séparant deux minima n’est pas déterminée : on peut, au prix d’un coût calculatoire additionnel, guider la propagation par une distance géodésique calculée à partir des minima sur le plateau [Soille, 1999], cependant il y a toujours une indécision pour les voxels qui sont à égale distance des minima, pour lesquels il faut définir une règle d’attribution.
4. Segmentation des cellules

Figure 4.2.: Le calcul des LPE par simulation d’immersion. De a) à d), immersion du relief topographique, avec construction de barrages à chaque fois que les eaux provenant de deux sources différentes se rencontrent. Lorsque tout le relief est immergé, les barrages construits forment les lignes de partage des eaux. Source : \url{www.tsi.enst.fr/tsi/enseignement/ressources/mti/lpe2/index.html}.

En ce qui concerne le premier problème, on peut soit le traiter a priori, par exemple en ne considérant pas tous les minima locaux de l’image, mais en fixant les marqueurs qui donneront les régions segmentées [Pinidiyaarachchi and Wählby, 2005, Yang et al., 2006, Oberlaender et al., 2009], soit a posteriori, en essayant de corriger la sur-segmentation, par exemple en essayant de reconnaître les régions qui ne correspondent pas aux objets recherchés [Marcuzzo et al., 2009b].

4.1.6. Méthode proposée de segmentation des cellules de méristèmes

Nous allons dans ce chapitre décrire la chaîne de traitements d’images que nous avons développée pour calculer la segmentation des cellules dans des images de méristèmes. La chaîne sera basée sur l’utilisation de la ligne de partage des eaux en utilisant une implémentation similaire à celle de Vincent et Soille [Vincent and Soille, 1991].

- Une première étape consiste à débruitier l’image et à en extraire des marqueurs pour la LPE à partir des minima de l’image. Le débruitage aura pour but de supprimer les minima peu marqués ou peu étendus.
- L’étape suivante sera le calcul de la LPE elle-même en utilisant comme relief topographique l’image initiale et comme marqueurs les minima sélectionnés à la première étape. Nous avons toutefois travaillé sur les règles d’attribution des voxels situés à mi-distance de deux minima, afin d’obtenir des frontières régulières.
- Une dernière étape sera une série de post-traitements pour corriger les erreurs pouvant être détectées automatiquement.

Nous présenterons aussi une plate-forme de correction des segmentations qui permet aux experts d’établir une vérité terrain à partir des segmentations automatiques. Enfin, nous présenterons une évaluation quantitative du pourcentage de cellules bien segmentées, ce qui nous permettra en particulier d’évaluer l’influence de la méthode de reconstruction du chapitre précédent sur la qualité de la segmentation automatique.
4. Segmentation des cellules

Figure 4.3.: Diminution du rapport signal sur bruit avec la profondeur. Étant donné la faible taille des boutons floraux (ici un bouton floral au stade 2 de croissance observé en microscopie confocale), cette diminution ne commence à se faire sentir que dans les coupes les plus profondes des images.

4.2. Pré-traitements

4.2.1. Les causes principales du bruit dans les images

Les principaux défauts rencontrés dans nos images sont :
- la diminution de la luminosité des parois en fonction de leur profondeur (voir figure 4.3), et aussi en fonction de leur orientation (cf paragraphe 3.4.2.2), ce dernier point ayant déjà été abordé dans le chapitre précédent,
- le bruit des capteurs CCD,
- les erreurs de marquage (cf figure 4.4).

4.2.1.1. Le bruit des capteurs CCD

De manière évidente, il est plus aisé d’élaborer une solution de détection des cellules lorsque le contraste de leurs frontières est constant sur toute l’image, et en particulier lorsque le contraste est indépendant de la profondeur. C’est généralement le cas grâce à la manière dont sont réglés le gain et l’offset des capteurs dans la plupart des protocoles classiques d’acquisition.

Rappelons-nous tout d’abord que nos images de microscopie sont produites afin de permettre l’observation des cellules des plantes. Lors de l’observation des couches superficielles du tissu, la lumière émise par le laser traverse une faible épaisseur de tissu avant de se focaliser sur un point peu profond du tissu, lequel va réémettre une lumière qui sera captée par l’objectif du microscope. Lorsque la profondeur augmente, le chemin optique se rallonge, et en particulier, le faisceau traverse une plus grande épaisseur de tissu. Or les microscopes que nous utilisons fonctionnent dans des longueurs d’ondes correspondant au spectre visible, et correspondant aussi au spectre d’absorption des plantes. Dès lors, une plus grande proportion de lumière est interceptée lorsque l’épaisseur de tissu traversée augmente

1. C’est valable pour un microscope mono-photon, pour lequel la lumière est interceptée tout le long
4. Segmentation des cellules

Figure 4.4.: Défauts de marquage des images. On voit sur les agrandissements de cette image de bouton floral d’Arabidopsis des structures inattendues (i.e. autres que des parois ou membranes de cellules formées. A gauche, on réalise une extraction de marqueurs en calculant les minima régionaux de l’image grâce à l’opérateur $h\text{-}min$. Même en choisissant un seuil h de profondeur très élevé (ici $h = 20$), l’extraction conduit à un grand nombre de marqueurs pour une seule cellule, ce qui aura pour conséquence une erreur de sur-segmentation de cette cellule après calcul de la transformation en LPE.

... sombrissent lorsque la profondeur augmente, et finissent par disparaître de l’image dans les dernières coupes.

Pour pouvoir continuer à observer le tissu dans les couches les plus profondes, les logiciels de contrôle du microscope et du laser permettent à l’utilisateur de régler la puissance du laser et le gain des capteurs, et de programmer une variation linéaire de ces paramètres en fonction de la profondeur entre deux points de contrôle spécifiés par l’utilisateur au moment des réglages préliminaires. A titre d’exemple, les images de racines coronaires de riz sont acquises avec une puissance laser de 0.04 watts dans les premières coupes, la puissance atteignant 0.15 watts dans les dernières coupes. Il en va de même avec le gain et l’offset des capteurs CCD, que l’on fait varier linéairement entre la première et la dernière coupe. Cette méthode permet de produire des images dont le contraste est relativement indépendant de la profondeur.

Mais l’augmentation du gain des capteurs CCD implique une augmentation du niveau de bruit, à tel point que celui-ci finit par devenir prépondérant dans l’image et que le signal des parois, qu’on observe très nettement en surface, est noyé dans les dernières coupes des tissus les plus épais (voir figure 4.3). Nous serons donc confrontés à des images comportant des zones avec un fort niveau de bruit, d’autant plus dans le cadre de l’observation de la racine de riz, le tissu le plus épais étudié.

Le bruit des capteurs CCD peut être modélisé comme la réalisation d’un processus aléatoire qui est généralement considéré comme stationnaire. La luminosité des voxels est calculée grâce au défilement du pinceau laser, et en supposant que la valeur du bruit du chemin optique, à la différence du microscope multi-photon pour lequel la lumière sera principalement interceptée sur le chemin retour, étant donné les longueurs d’ondes mises en jeu, comme il est expliqué au chapitre 2. Mais cette différence entre les deux techniques, qui donne l’avantage au microscope multi-photon, n’est pas perceptible dans nos images puisque nous en profitons pour augmenter la difficulté en étudiant des tissus beaucoup plus épais en microscopie multi-photon qu’en microscopie confocale.
4. Segmentation des cellules

dans un voxel de l’image n’est pas liée à la valeur du bruit mesurée sur l’ensemble des voxels voisins, on peut dire que ce bruit est indépendant d’un voxel à l’autre. Par ailleurs, on peut aussi supposer que ce bruit est blanc, c’est-à-dire que la moyenne de ce processus sur le voisinage d’un voxel tendra vers 0 à condition de choisir le voisinage suffisamment grand.

4.2.1.2. Les erreurs de marquage

Ce sont des erreurs de type structurel, au sens où celles-ci se manifestent par l’apparition de structures inattendues dans l’image. Il peut arriver par exemple que le fluorochrome se fixe sur une zone non ciblée, comme par exemple un noyau cellulaire, ce qui a pour conséquence de le rendre visible dans l’image, et de le faire passer pour une paroi. Dans d’autres cas, une zone d’une paroi peut apparaître moins lumineuse. On remarque aussi que sur les images de boutons floraux, les parois en formation provoquent l’apparition de petites structures lumineuses disparates à la place du contenu cellulaire qui doit normalement apparaître comme sombre (voir figure 4.4). Ces erreurs conduisent à un nombre trop important de minima lors de l’étape de détection des marqueurs, et à une sur-segmentation des cellules concernées après le calcul des lignes de partage des eaux.

Contrairement au cas du bruit CCD, les erreurs de marquage forment des parasites structurés et on ne peut donc pas les corriger par des filtres moyennes par exemple. Pour cette raison, nous avons employé un autre type de filtre pour corriger ces erreurs, le filtre alterné séquentiel, qui s’adresse aux structures de l’image en ne conservant que celles de taille supérieure à l’élément structurant spécifié pour le filtrage.

4.2.2. Pré-traitements utilisés

Dans la littérature, plusieurs types de filtrage sont utilisés. Bao et al. mentionnent un filtre passe-bas (sans plus de précision [Bao et al., 2006], on peut supposer qu’il est linéaire, comme le filtre gaussien utilisé dans [Barbier de Reuille et al., 2005]). Des filtres non-linéaires peuvent être également utilisés, ainsi le filtre BM3D proposé dans [Dabov et al., 2007] est utilisé dans [Marcuzzo et al., 2008a]. Ces filtres non-linéaires peuvent aussi être mis en œuvre par des équations aux dérivées partielles comme dans [Campilho et al., 2006] [Melani et al., 2007] [Bourgine et al., 2010] [Zanella et al., 2010]. Une étude comparative de cette dernière classe de filtres a d’ailleurs été faite dans [Kriva et al., 2010]. La préservation des discontinuités peut aussi être faite avec des moyennes non-locales, comme dans [Boulanger et al., 2005] [Boulanger et al., 2010].

Nous avons de notre côté utilisé deux types de filtres : un filtre linéaire, le filtre gaussien, et un filtre morphologique, le filtre alterné séquentiel.

4.2.2.1. Lissage gaussien

Le lissage gaussien revient à faire une moyenne pondérée autour du point considéré, la pondération dépendant de la distance. Il consiste à convoluer l’image avec un noyau gaussien d’écart-type σ. Dans le cas d’un espace continu, la valeur en un point $v = (x, y, z)$ d’un noyau gaussien 3D G_σ, isotrope et centré à l’origine du repère s’écrit :
4. Segmentation des cellules

\[G_\sigma(x, y, z) = A \exp \frac{-x^2 + y^2 + z^2}{2\sigma^2} \]

\(A \) étant ici le facteur de normalisation de la gaussienne. En lui donnant la valeur
\[\frac{1}{\sigma^3(2\pi)^{3/2}} \] on s’assure que l’intégrale de la fonction \(G_\sigma \) sur \(\mathbb{R}^3 \) vaut 1, et donc que la convolution d’une fonction quelconque avec ce noyau préservera la moyenne de la fonction.

Pour une implémentation pratique, on peut d’ores et déjà remarquer que la fonction gaussienne est séparable, c’est-à-dire que la fonction gaussienne 3D est égale au produit de 3 fonctions gaussiennes 1D, une pour chaque coordonnée de l’espace. Plutôt que de calculer une convolution 3D, on préférera donc calculer 3 convolutions 1D en cascade.

D’autres remarques doivent être prises en compte lors du passage de la convolution du domaine continu au domaine discret, où la convolution se met en œuvre avec une sommation discrète.

- Le support de la fonction gaussienne est infini alors que le support de l’image est forcément fini. D’un point de vue pratique, on peut donc réduire le support de la gaussienne pour qu’il coïncide avec le support de l’image, toutefois le coût calculatoire reste prohibitif, ainsi limite-t-on habituellement le support de la gaussienne à un support plus petit, en annulant ses coefficients dès qu’ils deviennent suffisamment petits (typiquement, on garde un support de taille multiple de l’écart-type).

- Le coefficient de normalisation doit être recalculé pour que la somme des coefficients mis en jeu reste égale à 1.

Même si le caractère séparable du filtre et la réduction de la taille du support réduisent notablement le coût calculatoire, celui-ci peut rester important pour des grandes valeurs de l’écart-type (qui imposent une grande taille du support). Toutefois, il est possible d’approximer la convolution par un filtre gaussien par un filtre récursif [Deriche, 1992], et cela permet d’avoir la même complexité algorithmique quelle que soit la valeur de l’écart-type utilisée.

Le choix de l’écart-type \(\sigma \) est d’une importance cruciale dans le résultat du lissage gaussien d’une image, puisqu’il détermine les structures de l’image qui vont être préservées ou non par le lissage. Dans notre cas, les objets étudiés sont des structures fines qui sont elles-mêmes de faible dimension donc une valeur de \(\sigma \) trop élevée conduirait à les éliminer de l’image. Dans la pratique, on détermine \(\sigma \) en mesurant au préalable l’étalonnage spatial des parois dans l’image, puis en prenant une valeur de l’ordre de la moitié de la valeur mesurée. Comme nous le verrons dans la partie expérimentale, cette méthode de débruitage donne des bons résultats avec les images de microscopie multi-photon, qui sont les images les plus affectées par le bruit des capteurs CCD.

4.2.2. Lissage par filtrage alterné séquentiel

Le filtrage alterné séquentiel est une technique de filtrage issue de la morphologie mathématique qui consiste en une série de fermetures et d’ouvertures morphologiques utilisant des éléments structurants de taille croissante [Serra, 1988] (voir l’annexe pour une description plus précise). Il permet d’éliminer certains défauts structurés de l’image, en particulier les taches lumineuses localisées dans le fond et les taches sombres localisées.
4. Segmentation des cellules

Figure 4.5.: Construction d’une boule discrète de taille quelconque et éléments structurants simples couramment rencontrés en morphologie mathématique : voisinage 6, 18 et 26 connexes d’un voxel.

dans la zone des parois, le plus souvent dus aux défauts de marquage, sur les structures fixes des cellules ou sur les lambris de parois en formation.

Il produit un lissage structurel de l’image, et la taille de l’élément structurant utilisé lors de la dernière itération détermine la taille des plus grosses structures qui seront supprimées. Comme nous le verrons dans la section résultat, ce type de filtre s’est révélé particulièrement efficace pour supprimer les défauts de marquage, rencontrés principalement dans les images de boutons floraux.

Nous avons utilisé comme élément structurant une approximation de boule euclidienne 3D (voir figure 4.5) construite à partir des éléments structurants simples classiquement rencontrés en morphologie mathématique, à savoir les voisinages 6-connexes, 18-connexes et 26-connexes (voir annexe A). Plus précisément, cette méthode consiste à spécifier un rayon pour la boule discrète afin de calculer l’ensemble de voxels correspondant, puis à calculer parmi toutes les compositions d’éléments structurants simples la combinaison qui permet de s’approcher au mieux de l’élément structurant recherché. Cette méthode permet de séparer les opérations de dilatation (respectivement d’érosion) avec un élément structurant complexe par une série de dilatations (respectivement d’érosions) par des éléments structurants simples, ce qui accélère le calcul.

On voit dans la figure 4.6 que les itérations successives du filtre suppriment les structures les plus fines de l’image, et en particulier les structures aberrantes, ce qui conduit à un nombre de minima détectés moins importants et nous permettra d’identifier chaque cellule par une seule source.

4.3. Segmentation

4.3.1. Détection des cellules

Afin d’éviter tant que faire se peut les problèmes de sur-segmentation, nous allons sélectionner les minima calculés sur l’image précédemment filtrée. En effet, L’étape de détection des marqueurs est critique au sens ou elle détermine à l’avance le nombre et la position des régions de la future segmentation, et donc des cellules segmentées. L’utilisation de tous les minima de l’image
Figure 4.6.: Action du filtre alterné séquentiel sur une image de bouton floral d’Arabidopsis. A gauche : image initiale, à droite : de a à f, résultat du filtrage alterné séquentiel commençant par une fermeture avec un élément structurant final de taille croissante (boule discrète de rayon allant de 1 à 6). Le filtrage alterné séquentiel permet de supprimer les structures gênantes, comme les structures claires au milieu des cellules (flèches grises, disparition des structures inutiles entre a et d). Il convient cependant de bien calibrer la taille finale de l’élément structurant pour ne pas supprimer les structures utiles, comme les parois qui commencent ici à disparaître à partir d’un rayon de 4 voxels (flèches violettes, disparition des parois entre d et f).
4. Segmentation des cellules

Figure 4.7. Action de l’opérateur h-min sur un signal f. À gauche : situation initiale, avec 5 minima dont 3 de profondeur inférieure ou égale à 3. Au milieu : augmentation de f d’une hauteur de 3, puis érosion ultime au-dessus de f. A droite : l’érodé ultime de $f + 3$ au-dessus de f constitue une image des maxima régionaux de valeur strictement supérieure à 3.

Comme une simple extraction de minima régionaux de l’image génère une quantité trop importante de marqueurs, plusieurs approches ont été développées, comme la classification des minima par profondeur [Zhao and Popescu, 2007], pour la construction d’une segmentation hiérarchique. Cette segmentation hiérarchique contient plusieurs niveaux de segmentation. Chacun de ces niveaux peut être obtenu en sélectionnant comme sources les minima régionaux d’une certaine profondeur, et la segmentation finale choisie parmi différentes segmentations correspondant à différents niveaux de profondeur. Il faut noter qu’on ne peut choisir un même niveau de profondeur constant dans l’image que si les structures présentent un niveau de contraste à peu près constant. On peut considérer en approximation que c’est le cas grâce à la méthode de réglage des paramètres que nous avons évoqué précédemment, qui consiste à produire un gradient du gain et de la puissance du laser pour compenser l’atténuation du signal lorsque la profondeur traversée augmente.

Pour détecter les minima d’une profondeur h, nous avons utilisé un filtre morphologique appelé opérateur h-min, qui permet de ne sélectionner que les minima dont la profondeur est strictement supérieure au seuil h donné en paramètre [Soille, 1999]. Le paramètre h permet de contrôler la pertinence des minima à extraire : deux bassins voisins seront réunis si ceux-ci sont séparés par une « montagne » d’altitude minimale inférieure à h (voir figure 4.7).

Le paramètre est réglé par l’utilisateur pour chaque série d’images, en inspectant le résultat de la segmentation en fonction de h sur une sous-image, grâce à un interface d’assistance à la segmentation. Pour les données que nous avons traitées dans nos travaux, la valeur optimale de h se situe généralement entre 3 et 5 pour les images de boutons floraux, et entre 4 et 6 pour les images de racines.
4. Segmentation des cellules

4.3.2. Contourage des cellules par transformation en ligne de partage des eaux

Pour obtenir le contourage des cellules, on calcule la LPE de l’image reconstruite à partir des marqueurs détectés à l’étape précédente. La LPE est une méthode de choix pour segmenter des images de cellules, et plus particulièrement de tissus complexes comme les méristèmes, car elle permet de contourer simultanément un grand nombre d’objets.

Nous avons utilisé la méthode classique mais sans calcul préalable de l’image de gradient, et avec une implémentation similaire à celle de Vincent et Soille, après quelques modifications puisque nous utilisons des minima pré-détectés. Enfin, nous avons développé une modification de l’étape finale de calcul des zones d’influence géodésique afin de rendre les régions plus régulières.

4.3.2.1. Image utilisée comme relief topographique

Le schéma classique d’application de la LPE s’applique à la segmentation de structures d’intensité homogènes séparées par des zones de transition. Dès lors, le calcul de la LPE est classiquement précédée par un calcul de la norme du gradient, qu’on utilise comme image de relief, afin que les zones claires (norme du gradient élevée) dessinent bel et bien les zones de transition entre régions. Dans notre cas, il n’est pas nécessaire d’avoir recours au calcul du gradient, puisque le marquage utilisé cible déjà les frontières entre les cellules, parois ou membranes selon les cas, les faisant apparaître claires dans nos images. Nous utilisons donc l’image initiale comme image de relief.

4.3.2.2. Modifications de l’algorithme liées à la détection des minima

L’implémentation du watershed que nous avons utilisée étant basée sur l’initialisation par des graines précalculées, nous n’avons pas explicitement calculé de segmentation hiérarchique en fonction du niveau h des minima. Nous avons donc mis en place un interface ergonomique permettant de choisir h parmi plusieurs valeurs suggérées, en visualisant le résultat obtenu sur des sous-images.

4.3.2.3. Attribution des voxels situés aux frontières entre plusieurs zones

Les problèmes proviennent du fait que lors de la propagation des étiquettes de proche en proche, certains voxels se retrouvent simultanément adjacents à deux zones, et peuvent donc prendre l’une ou l’autre des étiquettes. Dans l’algorithme de Vincent et Soille [Vincent and Soille, 1991], ceux-ci se voient attribuer une étiquette spéciale, $WSHED$, qui est remplacée par une des étiquettes d’une des régions adjacentes à la fin de la propagation des étiquettes dans un niveau de gris. Nous avions choisi comme première heuristique d’attribuer l’étiquette du premier bassin rencontré dans l’ordre d’évaluation. Lors des premiers essais de calcul de la LPE, cette règle donnait lieu à des frontières parfois assez irrégulières, et à un nombre important de configurations singulières des étiquettes dans l’image, qui provoquaient des ambiguïtés lors de la construction des modèles des cellules (voir chapitre 6).
4. Segmentation des cellules

<table>
<thead>
<tr>
<th>Règle d’attribution \ fréquence des singularités</th>
<th>18-singularités</th>
<th>26-singularités</th>
</tr>
</thead>
<tbody>
<tr>
<td>étiquette la moins représentée</td>
<td>4.1×10^{-4}</td>
<td>6.9×10^{-6}</td>
</tr>
<tr>
<td>première étiquette rencontrée</td>
<td>1.3×10^{-4}</td>
<td>7.0×10^{-7}</td>
</tr>
<tr>
<td>étiquette la plus représentée</td>
<td>1.2×10^{-6}</td>
<td>1.5×10^{-8}</td>
</tr>
</tbody>
</table>

Table 4.1.: Influence de la règle d’attribution des points frontières sur la fréquence des singularités dans l’image.

En effet, puisque nous utilisons une propagation par 6-connexité, nous sommes assurés que les régions obtenues seront 6-connexes. Toutefois, les singularités peuvent néanmoins survenir, par exemple si 2 « extensions » issues de la propagation se rejoignent, un peu comme les branches d’une pince qui se referme. Nous définissions donc 2 types de singularités :

- la 18-singularité : dans un sous-ensemble de 2x2x1 (ou 2x1x2, ou 1x2x2) voxels, 2 voxels diagonalement opposés (qui sont donc 18-connexes) ont la même étiquette, différente de celle(s) des deux autres voxels ;
- la 26-singularité : dans un sous-ensemble de 2x2x2 voxels, 2 voxels (grand-)diagonalement opposés (qui sont donc 26-connexes) ont la même étiquette, différente de celle(s) des 6 autres voxels.

Le nombre ou la fréquence de ces singularités nous donne une mesure de la régularité des frontières obtenues. Nous avons testé 3 règles d’attribution des voxels situés entre 2 régions, à partir des étiquettes présentes dans le 6-voisinage du voxel considéré :

- l’étiquette la moins représentée,
- l’étiquette la plus représentée,
- la première étiquette rencontrée, cette dernière règle dépendant du parcours des points et étant celle préconisée dans [Vincent and Soille, 1991].

De manière non surprenante, la première règle donne les frontières les plus irrégulières (cf tableau 4.1). Les résultats montrent que du choix de la règle résulte un nombre de 18-singularités variant dans une proportion de 1 à près de 40, et un nombre de 26-singularités variant dans une proportion de 1 à 450, la règle consistant à prendre l’étiquette la plus représentée étant celle qui produit les meilleurs résultats, c’est-à-dire le nombre le plus faible de singularités.

4.4. Post-traitements

4.4.1. Filtrage basé sur la taille des cellules

Cette étape nous permet de réinjecter de l’expertise afin de corriger des erreurs de segmentation manifestes. En effet, un premier examen des résultats obtenus après la LPE montre que certaines cellules ont un très petit volume alors que d’autres en ont un très grand (voir figure 4.8). On peut donc les examiner à l’aune des connaissances biologiques, par exemple en supprimant les régions de volume inférieur à un seuil V_{min}.

Les spécialistes ont suggéré un premier intervalle pour V_{min} de l’ordre de 20 à 40.
4. Segmentation des cellules

Figure 4.8. Variabilité des volumes des cellules dans le bouton floral d’Arabidopsis. Les volumes des cellules segmentées dans cette image varient dans un intervalle de 30 μm^3 (en bleu) à plus de 1000 μm^3 (en rouge).
4. Segmentation des cellules

µm³, en fonction du tissu étudié et du stade de développement. Afin de fixer une valeur pour chaque série d’images, nous avons exploré les segmentations obtenues, en classant les cellules les plus petites par volume et en les faisant apparaître avec une carte de couleur adaptée. Une rapide exploration nous a permis de repérer les cellules les plus petites correspondant à une cellule réelle, et de choisir comme valeur de seuil le plus petit volume rencontré, diminué d’une marge de confiance de 50% nous permettant de ne pas éliminer d’éventuelles cellules plus petites qui auraient échappé à l’analyse. Après avoir éliminé les marqueurs qui engendrent les cellules de volume inférieur à \(V_{\text{min}} \), on binarise l’image de marqueurs, puis on réalise une nouvelle extraction de composantes connexes pour obtenir une nouvelle image de marqueurs qui nous sert pour initialiser une nouvelle transformation en ligne de partage des eaux.

Cette stratégie suppose que les micro-cellules constituent des artefacts isolés. Si cette hypothèse n’est pas vérifiée, on risque d’éliminer entièrement une cellule de la segmentation et d’attribuer son domaine aux régions voisines si celle-ci est divisée en une grappe de micro-cellules. Toutefois, ce cas est rare, et les conséquences sont de moindre importance, car l’outil d’expertise des segmentations (voir section 4.5) permet de détecter et corriger aisément l’omission d’une cellule.

On pourrait tout aussi bien détecter les cellules invraisemblablement grandes. Mais il est difficile de fixer un seuil de taille maximale pour les cellules, en particulier sur le bouton floral où la présence de cellules géantes est monnaie courante (voir figure 4.8). Il en est de même pour la forme des cellules. Celles-ci ont généralement une forme de type sphérique, et cette information pourrait participer à une mesure de vraisemblance des cellules, grâce à un calcul de compacité des régions par exemple. Hélas, en fonction de leur position dans le méristème, les cellules peuvent prendre une forme parfois très allongée, voire une forme de disque comme c’est le cas chez la racine de riz dans la partie du métaxylème la plus proche du centre quiescent, ce qui fait de la mesure de compacité et des mesures d’anisotropie des mauvaises mesures de vraisemblance des cellules segmentées.

4.4.2. Régularisation de la géométrie des cellules

La transformation en ligne de partage des eaux produit des régions dont le contour peut être assez irrégulier en présence de bruit, alors que dans la réalité les cellules ont un contour assez régulier. Pour corriger ce défaut, on applique après la LPE un filtrage structural qui consiste à attribuer à chaque voxel de l’image l’étiquette la plus représentée dans son voisinage. On choisit pour cette opération un voisinage composé de tous les voxels contenus dans une boule euclidienne discrète dont le rayon est fixé en fonction du degré de lissage désiré (voir figure 4.9).

On peut noter tout d’abord que ce lissage structural peut dans certains cas casser une cellule en deux, par exemple si la cellule a une forme d’halteère. Le fait qu’une cellule soit

\[\text{compacité} = \frac{V}{S^2} \]

La compacité d’une région se définit par le rapport de son volume au carré, divisé par sa surface au cube, multiplié par un coefficient de proportionnalité qui permet de normaliser les valeurs, et d’attribuer la valeur 1 aux sphères (compacité maximale) et la valeur 0 à une structure plane ou linéiforme (compacité minimale).

74
4. Segmentation des cellules

divisées en plusieurs composantes connexes pendant le lissage est en ce cas symptomatique d’un problème dans la segmentation ou dans l’image fusionnée. Afin de détecter ce genre de cas, il faudrait détecter parmi les modifications des étiquettes des voxels celles qui modifient la topologie des cellules, et éventuellement n’appliquer les modifications d’une étiquette i vers une étiquette j que si elles s’appliquent à un point doublement simple de l’image (voir section 6.4.2).

Un deuxième point notable est que le lissage du contour des cellules peut produire des modifications des relations d’adjacences entre les cellules, et en particulier élimine les adjacences « petites », c’est-à-dire les adjacences qui ne se définissent que sur un nombre réduit de points (voir dans la figure 4.9 la déconnexion de la cellules violette et de la cellule verte). Cependant, ces adjacences « petites » sont généralement considérées comme des artefacts de la segmentation et/ou des images initiales, ainsi, on peut considérer qu’il est une bonne chose de les retirer afin de pouvoir accorder plus de validité à l’ensemble des adjacences détectées, et de se servir de ces informations pour guider le suivi temporel, comme ce sera fait au chapitre suivant.

4.5. Expertise des segmentations

Nous devons permettre aux biologistes d’établir une vérité terrain de l’anatomie des tissus étudiés, au niveau cellulaire. Nous avons développé à cette fin une procédure d’expertise et de correction des segmentations qui permet aux spécialistes de corriger les erreurs résiduelles de la segmentation automatique (voir figure 4.10). Pour cela, nous avons identifié les types d’erreurs de segmentation que vont rencontrer les spécialistes lors de l’expertise et développé un ensemble de corrections élémentaires qui permettent de les corriger, ce qui fait l’objet de cette section.

4.5.1. Erreur de sous-segmentation

Nous appellerons dans la suite une erreur de sous-segmentation le fait que N cellules soient représentées par M régions, avec $M < N$. On séparera les erreurs de sous-segmentation en fonction de leur complexité en deux catégories :

- les erreurs de sous-segmentation d’ordre 1, où $M = 1$, ce qui signifie que N cellules distinctes sont segmentées en une seule région,
- les erreurs de sous-segmentation d’ordre 2, qui regroupent les variétés de cas plus complexes, où $N > M \geq 2$.

On remarquera que le bilan de l’intervention qui corrige ces erreurs sera l’ajout de $(M-N)$ régions dans la segmentation.

4.5.1.1. Traitement des erreurs de sous-segmentation d’ordre 1

Ces erreurs correspondent aux cas où N cellules sont rassemblées en une seule région. Pour réparer cette erreur il suffit de diviser cette région en N sous-parties, donc de la resegmenter. Nous avons implémenté dans la plate-forme d’expertise des segmentations la possibilité de calculer la re-segmentation d’une cellule par transformation en ligne.
4. Segmentation des cellules

Figure 4.9.: Régularisation du contour des cellules segmentées. Dans les régions de l’image où les parois sont mal définies, ou très bruitées, le contournage réalisé lors de la transformation en LPE peut être assez irrégulier. On applique en post-traitement un filtre morphologique qui les régularise en attribuant à chaque voxel la valeur la plus représentée dans son voisinage constitué par une boule euclidienne discrète de rayon r. De gauche à droite, image initiale, segmentation avant régularisation, segmentation régularisée avec $r=1$, 2, puis 3 voxels. On observe dans les deux lignes du bas le résultat de la régularisation sur la cellule segmentée en violet, puis sur une représentation 3D de cette cellule (maillage surfacique).
4. Segmentation des cellules

Figure 4.10. Expertise de la segmentation et construction de groupes d’intérêt. L’interface que nous avons développé permet de visualiser les régions de la segmentation sous la forme de contours projetés sur les trois vues orthogonales, et de visualiser simultanément leur surface dans un contexte tridimensionnel, ainsi que d’agir sur la segmentation grâce aux fonctions de correction implémentées et accessibles dans l’interface (découpage, fusion, et dilatation de cellules).
4. Segmentation des cellules

de partage des eaux de la sous-image qui la contient, ce qui est équivalent à descendre
localement d’un niveau dans une segmentation par LPE hiérarchique. Cependant, dans
la plupart des cas, ces erreurs interviennent dans des cellules qui apparaissent très mal
dans l’image, et pour lesquelles la ligne de partage des eaux est inefficace, même lorsque
l’utilisateur précise le nombre et la position des marqueurs désirées. Nous avons donc
développé une fonctionnalité de calcul d’une partition de Voronoï à partir de l’indication
des points qui jouent alors le rôle de centres aux au lieu de servir de marqueurs pour la
LPE.

4.5.1.2. Traitement des cas complexes (M>1)

Lorsque $M > 1$ (et $N > 2$), le protocole de correction devient plus compliqué. Le
protocole que nous avons élaboré est le suivant :

– On redéfinit chaque région qui est à cheval entre n cellules en n sous-régions, chacune
 correspondant à la zone de recouvrement avec une des cellules.

– On obtient alors une situation avec (au plus) N erreurs de sur-segmentation d’ordre
 1, et pour chacune de ces erreurs, on se reporte à la manière de corriger décrite plus
 bas.

4.5.2. Erreur de sur-segmentation

Nous appelons dans la suite une erreur de sur-segmentation le fait que N cellules
soient segmentées en M régions, avec $M > N$. De même que pour la sous-segmentation,
on séparera les erreurs de sur-segmentation en fonction de leur complexité en deux caté-
gories.

– Les erreurs de sur-segmentation d’ordre 1, lorsque $N = 1$, ce qui signifie qu’une
 cellule est segmentée en M régions, $M > 1$.

– Les erreurs de sur-segmentation d’ordre 2, qui regroupent les variétés de cas beau-
coup plus complexes, où $M > N \geq 2$.

On remarquera que le bilan de l’intervention qui corrige ces erreurs sera le retrait de
$(M - N)$ régions de la segmentation.

4.5.2.1. Correction des erreurs de sur-segmentation d’ordre 1

Ces erreurs correspondent aux cas où une cellule est divisée en M régions. Pour réparer
Cette erreur il suffit de fusionner ces régions. Nous avons implémenté dans la plate-forme
d’expertise des segmentations la possibilité de fusionner plusieurs régions en une seule,
en spécifiant les régions à fusionner grâce à une interface adaptée et simple d’utilisation
(les cellules concernées sont indiquées par l’utilisateur par un clic de la souris sur une
vue 2D de la segmentation). Cette opération réduit le nombre d’étiquettes utilisées dans
l’image. Certaines étiquettes dans l’intervalle $[1; N_r]$ étant inutilisées, la fusion peut être
suivie d’une procédure de renumérotation qui attribue toutes les étiquettes inutilisées aux
cellules de plus grandes étiquettes, tout en réduisant la valeur de N_r.

78
4. Segmentation des cellules

4.5.2.2. Correction des erreurs de sur-segmentation d’ordre 2

Lorsque $M > N \geq 2$, le protocole de correction devient plus compliqué. Nous utiliserons la même procédure que pour les erreurs de sous-segmentation d’ordre 2 :

– On redivise chaque région qui est à cheval entre n cellules en n sous-régions, chacune correspondant à la zone de recouvrement avec une des cellules.

– On obtient alors une situation avec (au plus) N erreurs de sur-segmentation d’ordre 1, et pour chacune de ces erreurs, on se reporte à la manière de corriger décrite plus haut.

4.5.3. Erreur de contourage

C’est l’erreur la plus compliquée à résoudre, lorsque le contour de la cellule est mal délimité. Pour traiter ces erreurs, le contour est redéfini par raffinements successifs en redivisant et en fusionnant des régions. Dans certains cas, qui sont le plus fréquemment rencontrés dans la surface du méristème, une cellule est sous-estimée par rapport à sa taille réelle. Pour traiter ces cas, nous avons aussi implémenté la possibilité de gonfler une cellule dans une autre cellule par dilatation conditionnelle.

4.5.4. Définition de groupes

L’outil de fusion permet de réunir plusieurs régions en une seule. Nous nous en sommes servis pour développer une fonction de construction de groupes d’intérêt. Cette fonction permet aux biologistes d’isoler certaines cellules de la segmentation pour les étudier seules. L’ensemble des fonctions est présenté dans l’annexe B.

4.6. Résultats

Les 8 images de fleurs et l’image de racine reconstruites au chapitre précédent ont été segmentées grâce à la chaîne que nous venons de décrire. Nous avons ensuite utilisé l’outil de correction manuelle des erreurs pour établir une segmentation expérimentale de chaque image, afin de pouvoir évaluer les segmentations automatiques, ce qui nous a permis de comptabiliser le nombre de cellules bien identifiées par l’algorithme, identifier le type d’erreurs rencontrées et leur localisation. Ces différents points font l’objet de cette section résultats.

4.6.1. Segmentation automatique

4.6.1.1. Réglage et influence des paramètres

Nous avons fait une première estimation des paramètres optimaux en réalisant des tests unitaires pour chaque étape du calcul. Pour chaque nouvelle série de données, nous avons utilisé l’image qui nous semblait la plus représentative de la série pour les calculer. Afin de visualiser l’influence de chacun des paramètres sur les résultats intermédiaires et
4. Segmentation des cellules

<table>
<thead>
<tr>
<th>Image (nb cellules, nb voxels)</th>
<th>(N_c, N_v)</th>
<th>$(\frac{N_c}{4}, \frac{N_v}{4})$</th>
<th>$T = \mathcal{O}(N_v^{\alpha_v})$, $\alpha_v = \alpha_c =$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification des cellules</td>
<td>27.2</td>
<td>6.8</td>
<td>6.7</td>
</tr>
<tr>
<td>Contourage</td>
<td>39.8</td>
<td>8.8</td>
<td>8.6</td>
</tr>
<tr>
<td>Post-traitements</td>
<td>84.2</td>
<td>20.1</td>
<td>20.1</td>
</tr>
<tr>
<td>Durée totale</td>
<td>151.2</td>
<td>35.7</td>
<td>35.4</td>
</tr>
<tr>
<td>Temps d’acquisition</td>
<td>1200</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 4.2.: Durée (en secondes) de l’acquisition et de la segmentation des images (nombre de voxels et de cellules exprimés par rapport à un nombre référence de voxels $N_v = 64$ millions de voxels et un nombre référence de cellules $N_c = 1401$ cellules) et complexité mesurée des différentes phases en comparant les situations deux par deux. Le nombre de cellules semble n’avoir que très peu d’influence sur le temps de calcul (complexité mesurée de l’ordre de $\mathcal{O}(n_c^0)$, soit $\mathcal{O}(1)$, alors que la complexité mesurée de l’algorithme en fonction de la taille de l’image est quasi-linéaire, avec un maximum de complexité atteignant $\mathcal{O}(n_v^{1.1})$ pour l’étape de contourage par ligne de partage des eaux.

Par ailleurs le temps total de traitement est 5 fois moindre que le temps d’acquisition, ce qui nous permet de dire que la chaîne de segmentation est rapide.

sur le résultat final, nous avons développé une plate-forme de segmentation interactive permettant de régler chacune des étapes de manière progressive (voir annexe B).

4.6.1.2. Temps de traitement

Le calcul automatique de la segmentation permet un gain de temps faramineux, par rapport à un traitement manuel des données. Dès lors, le temps de traitement automatique des données est une composante incontournable de l’évaluation de la chaîne de calcul. Il est généralement admis qu’un traitement automatique des données est « rapide » lorsqu’il n’excède pas le temps d’acquisition.

Le tableau 4.2 présente différentes configurations de traitement des données.

– La première colonne (cas 1) du tableau 4.2 exhibe le temps total d’exécution de la chaîne de segmentation dans un cas typique d’utilisation.

Pour aller plus loin, et nous faire une idée de l’influence de la taille des données sur le temps de calcul, nous répétons cette expérience dans deux cas supplémentaires.

– La seconde colonne (cas 2) du tableau 4.2 exhibe le temps de traitement avec une image 4 fois plus petite (2 fois selon X et Y), mais avec le même nombre de cellules (obtenue par sous-échantillonnage de l’image initiale). Cela imite une augmentation du champ de vue avec une baisse concomitante de la résolution.

– La troisième colonne (cas 3) du tableau 4.2 décrit une configuration de traitement avec une image de taille 4 fois plus petite et avec 4 fois moins de cellules (obtenues en sélectionnant une sous-image correspondant à un quart de l’image initiale. Cela imite une diminution du champ de vue avec une résolution constante.
4. Segmentation des cellules

<table>
<thead>
<tr>
<th>Expérimentateur</th>
<th>J.-L. Verdeil</th>
<th>P.Das et V. Mirabet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temps moyen de l’expertise</td>
<td>8 h</td>
<td>3 h</td>
</tr>
<tr>
<td>Facilité d’utilisation</td>
<td>7/10</td>
<td>8/10</td>
</tr>
<tr>
<td>Réactivité des développeurs (fonctions, bugs)</td>
<td>9/10</td>
<td>9/10</td>
</tr>
<tr>
<td>Comparaison avec des outils similaires</td>
<td>+++</td>
<td>(pas d’outil similaire connu)</td>
</tr>
<tr>
<td>Note globale de l’outil en l’état (de 0 à 10)</td>
<td>7.5/10</td>
<td>8/10</td>
</tr>
</tbody>
</table>

Table 4.3.: Évaluation de l’outil de segmentation experte par les testeurs. La quatrième colonne, qui compare notre logiciel avec les outils similaires inclut dans les outils similaires les solutions logicielles payantes existantes sur le marché.

La dernière ligne désigne la note obtenue par l’outil en l’état (prototypal).

Enfin, en nous basant sur les mesures de temps de traitement, nous donnons une approximation grossière de la complexité observée en fonction du nombre de cellules, puis en fonction de la taille de l’image, en voxels. Si on suppose, en approximation, que les étapes de la segmentation ont une complexité polynomiale en fonction de la taille des données, on peut écrire que l’algorithme s’exécutera sur une donnée de taille en un temps \(t = \beta n^\alpha \), et on écrira alors que la complexité de l’algorithme est de type \(O(n^\alpha) \).

On peut alors connaître la valeur de \(\alpha \) à partir d’une série de couples (taille des données, durée du calcul) par une simple régression linéaire. Dans notre cas, les trois mesures prises deux à deux nous permettent de calculer les complexités de la manière suivante. Soit deux données de taille respectives \(n_1 \) et \(n_2 \) sur lesquelles l’algorithme s’exécute respectivement en \(t_1 \) et \(t_2 \) secondes. On peut dire que \(t_1 = \beta n_1^\alpha \) et que \(t_2 = \beta n_2^\alpha \). Dès lors, \(\frac{t_1}{t_2} = \left(\frac{n_1}{n_2} \right)^\alpha \), ce qui donne \(\alpha = \ln \left(\frac{t_1}{t_2} \right) / \ln \left(\frac{n_1}{n_2} \right) \). Les valeurs numériques nous permettent de conclure que la durée du calcul de la segmentation est relativement indépendant du nombre de cellules, et qu’il est quasi-linéaire en fonction de la taille de l’image.

4.6.2. Segmentation experte

La construction d’une segmentation experte est un processus qui peut être très coûteux en temps. La délimitation manuelle d’un organe humain par un médecin sur des coupes d’IRM ou de scanner prend en général quelques heures. Dans notre cas, où des milliers de cellules doivent être contournées, le processus aurait pu prendre des mois.

L’outil de segmentation experte que nous avons développé a permis à nos collaborateurs de construire ces segmentations expertes en se basant sur une première segmentation (automatique et contenant des erreurs), et en la corrigeant à l’aide d’opérations élémentaires que nous avons décrites plus haut. Le retour des biologistes nous a permis de définir des critères d’évaluation de l’outil. Nous résumons les résultats obtenus dans le tableau suivant:
4. Segmentation des cellules

4.6.3. Construction de groupes d’étude

L’outil de segmentation experte a été ensuite détourné de son utilisation initiale pour construire des groupes d’intérêt de cellules afin d’aider les biologistes à focaliser leur analyse sur des sous-ensembles des méristèmes étudiés. Cette plate-forme expérimentale a été testée sur des données de riz et a permis d’isoler des populations de cellules afin notamment de calculer les résultats de la segmentation sur ces populations séparées. Nous avons évalué cette plate-forme sur ces mêmes critères.

4.6.4. Qualité de la segmentation

Afin d’évaluer la qualité de la segmentation automatique, il est nécessaire de pouvoir la comparer à la segmentation expérimentale. Nous avons détourné l’outil de suivi temporel de son utilisation initiale à cette fin, comme expliqué ci-après.

4.6.4.1. Comparaison des segmentations et calcul de la qualité d’une segmentation

L’outil de suivi temporel contient un algorithme qui permet de comparer deux segmentations différentes d’un même espace avec l’hypothèse qu’une des deux segmentations comporte des objets supplémentaires, engendrés par les divisions cellulaires. Nous avons modifié les paramètres de l’algorithme pour pouvoir comparer deux segmentations d’une même image en rendant plausible à la fois la division et la réunion de régions d’une segmentation à l’autre. L’analyse quantitative des la qualité est basée sur un indicateur : le pourcentage de cellules identifiées comme une seule région. Lors des phases d’ajustement des paramètres de la segmentation, nous avions utilisé deux autres indicateurs qui ne seront pas présentés ici : le nombre de cellules identifiées comme plusieurs régions (erreurs de sur-segmentation), et le nombre de cellules non-identifiées (toutes les autres cellules).

4.6.4.2. Erreurs de segmentation et nombres d’angles

Le nombre d’angles utilisés pour la reconstruction de l’image à segmenter semble avoir une forte influence sur la qualité de la segmentation. Les expérimentations sur les fleurs (cf figure 4.11) montrent que l’algorithme automatique de segmentation identifie en moyenne 90 % des cellules sur l’image sans reconstruction, avec un écart-type de 5%. Lorsque l’algorithme de segmentation est appliqué à l’image fusionnée avec 3 angles, 96 % des cellules en moyenne (écart-type= 1%) sont identifiées. En observant la répartition spatiale des erreurs, nous avons pu constater que la majeure partie provient des cellules logées dans les assises les plus profondes du méristème, la où le signal est le plus dégradé.

Il en est de même pour la racine (cf figure 4.12), pour laquelle la qualité de la segmentation n’est pas homogène sur tout le tissu. En particulier, les assises cellulaires du centre de la racine sont très mal segmentées sur l’image initiale (40 % d’erreurs), et le sont beaucoup mieux sur l’image reconstruite avec 4 angles (12 % d’erreurs).
4. Segmentation des cellules

Figure 4.11.: Résultats de segmentation des 8 boutons floraux. L’amélioration due à la reconstruction multi-angulaire prend tout son sens, puisqu’elle permet de passer d’un taux d’erreur de 10% (une cellule sur 10) à un taux de 4% (une cellule sur 25). Par ailleurs, l’évolution du taux d’identification des cellules en fonction de la profondeur nous permet de confirmer que les erreurs sont plus fréquentes dans les zones plus profondes et plus inaccessibles du tissu.

Figure 4.12.: Résultats de segmentation de la racine, en fonction des images choisies pour la reconstruction, parmi les 4 points de vue disponibles X, X’, Y et Y’ (voir figure 3.8). On voit ici aussi que la reconstruction permet d’identifier un plus grand ratio des cellules de l’image. On observe un biais sur les deux graphiques, provenant du fait que l’image X’ est de moins bonne qualité que les autres.
4. Segmentation des cellules

Figure 4.13.: Visualisation des résultats de segmentation. A gauche : segmentation et sélection de groupes d’études sur une racine coronaire de riz, à droite : segmentation et visualisation des assises cellulaires sur un bouton floral d’Arabidopsis au stade 3 de développement.

4.6.4.3. Localisation des erreurs

On peut vérifier sur la figure [4.11] que les erreurs de segmentation sont pour la plupart localisées dans les assises cellulaires les plus profondes, là où le signal est le plus faible. On voit d’ailleurs qu’après reconstruction en utilisant trois angles, le nombre d’erreurs en surface du méristème est quasiment nul.

4.6.5. Exploitation visuelle des résultats

La segmentation des cellules permet d’améliorer la vision des biologistes en superposant aux images de microscopie un contourage artificiel des cellules calculé par ordinateur. Ce contour peut tout aussi bien être visualisé dans un contexte tridimensionnel, grâce à des techniques de rendu 3D. En particulier, on peut extraire une version simplifiée de la surface des cellules en utilisant l’algorithme des decimated marching cubes, qui permet de construire un maillage surfacique des volumes segmentés (voir figure [4.13]).

4.7. Conclusion et perspectives

La chaîne de segmentation que nous venons de décrire nous a permis d’assurer le partitionnement en cellules des images produites par nos collaborateurs biologistes. Nous avons vu qu’elle peut être utilisée dans des conditions classiques d’expérimentation, même si les performances sont meilleures lorsque les images traitées ont une qualité supérieure, comme cela a été montré en comparant les résultats de segmentation des images du protocole classique, et les résultats de segmentation des images de meilleure qualité reconstruites au chapitre précédent.
4. Segmentation des cellules

Figure 4.14. Utilisation de l’outil de segmentation sur différents cas d’étude des méristèmes. A gauche, en haut, visualisation de la surface et des couches internes d’un bouton floral au stade 3 de croissance (en couleurs : assises successives de cellules, depuis la surface (première assise en bleu foncé) vers le centre du bouton floral (cellules du centre en orange). A gauche, en bas, visualisation du cylindre central d’un méristème de racine coronaire de riz (en vert) et des cellules du centre quiescent (en rouge), situées à la zone de jonction entre le méristème et la coiffe. On peut observer sur cette image les divisions successives qui engendrent les files cellulaires, en partant de la zone quiescente vers la zone de plus grand diamètre (de bas en haut). Au milieu, segmentation (en bas) d’une image de méristème apical caulinaire (en haut) et coloration de chacune des cellules segmentées en fonction de l’expression d’une protéine sur leur domaine (cette protéine étant liée à l’inhibition de la croissance cellulaire, elle se situe sur les contours des organes en formation). A droite, segmentation et visualisation des cellules d’une racine latérale émergente sur une racine d’Arabidopsis.
4. Segmentation des cellules

Nous avons ensuite montré la généricité de la chaîne relativement au matériel d’acquisition, en segmentant des images de cellules provenant de deux protocoles d’imagerie différents, qui sont parmi les plus répandus en biologie végétale, c’est-à-dire la microscopie confocale et la microscopie multi-photon. Nous avons aussi montré la généricité par rapport au type de tissu étudié, en observant des racines de riz, et des boutons floraux d’Arabidopsis.

Pour finir, notre chaîne de segmentation est une brique élémentaire qui se rajoute par dessus la brique de reconstruction d’images. Ces deux briques vont nous permettre de construire des fondations solides pour développer un algorithme de suivi temporel des cellules, qui va être décrit dans le chapitre suivant.
5. Suivi temporel

Le chapitre précédent permet d’individualiser les cellules méristématiques, grâce aux méthodes de segmentation mises en place, et offre la possibilité de construire des modèles géométriques tridimensionnels des méristèmes (cf chapitre 6) à un instant donné. Il s’agit donc d’un modèle statique.

Cependant, le méristème est un objet vivant. L’établissement d’un lien entre deux modèles statiques successifs permettra de construire un modèle dynamique. Ce modèle rendra compte de son évolution, aussi bien d’un point de vue géométrique (changement de forme) que topologique (apparition de nouvelles cellules). L’objectif de ce chapitre est l’obtention d’un modèle descriptif 4D (ou 3D+t) du méristème en croissance à partir d’une série temporelle d’images 3D comme obtenues précédemment.

Ce modèle descriptif sera l’outil de choix pour l’évaluation de modèles prédictifs, construits à partir d’hypothèses biologiques, qui essayeront de rendre compte du fonctionnement des cellules méristématiques, de la croissance du méristème et de l’apparition d’organes [Rudge and Haseloff, 2005, Iwamoto et al., 2006, Smith et al., 2006].

A cette fin, nous allons extraire, à partir de la série temporelle d’images 3D, des lignées cellulaires, c’est-à-dire la filiation complète pour chaque cellule de la première image de la série. De cette information, plusieurs mesures peuvent être inférées :

– le déplacement d’ensemble des cellules dans le tissu, pouvant donner lieu à l’apparition d’organes (organogénèse),

– la croissance de chaque cellule et la modification de sa forme, ce qui pourrait permettre d’essayer d’identifier son état de différenciation,

– la fréquence et la localisation des divisions cellulaires (mitoses) dans le tissu.

5.1. État de l’art

L’évaluation qualitative et quantitative de l’évolution des cellules est nécessaire pour comprendre le fonctionnement des tissus vivants, ce qui fait du suivi temporel des cellules un thème très actif en traitement d’images de microscopie. Il s’agit en effet de suivre la diffusion d’une certaine molécule, l’action d’un produit chimique, d’une protéine, d’un gène, au cours du développement du tissu.

On trouve notamment ce thème dans des domaines variés comme l’étude des cellules cancérées [Chen et al., 2006, Li et al., 2010], l’étude de l’embryogénèse et des cellules souches animales [Hadjantonakis and Papaioannou, 2004], l’étude du comportement des cellules souches des structures nerveuses [Pinidiyaarachchi and Wahlby, 2005], le développement des colonies de bactéries [Gor et al., 2005], le développement de l’embryon de poisson-zèbre [Melani et al., 2007], et bien sûr l’étude de la croissance et de la morpho-
5. Suivi temporel

La genèse des végétaux [Reddy et al., 2004, Barbier de Reuille et al., 2005, Gor et al., 2005, Marcuzzo et al., 2008b, Marcuzzo et al., 2009a, Liu et al., 2010]. Le suivi temporel des cellules consiste à identifier le mouvement et/ou la descendance ou lignée de chacune des cellules qui constituent l’objet observé afin d’obtenir des informations sur son fonctionnement dynamique. C’est une tâche délicate qui peut mettre en œuvre des techniques élaborées d’observation et d’analyse des objets vivants. Une difficulté majeure est que le tissu subit des changements à la fois géométriques et topologiques.

5.1.1. Différents niveaux de complexité

En analysant les articles de l’état de l’art, on peut extraire certains paramètres qui nous permettent de classer les méthodes existantes en différents niveaux de complexité.

5.1.1.1. Fréquence des observations

La fréquence des observations par rapport aux changements observés, qu’ils soient géométriques (changements de forme) ou topologiques (apparitions de nouvelles cellules) peut conditionner la nature des méthodes à mettre en œuvre. Si des changements importants peuvent survenir entre 2 images, la méthode de suivi des lignées cellulaires devra faire preuve de plus de robustesse.

Il y aura donc d’un côté des méthodes dédiées au suivi des cellules par vidéo-microscopie [Zimmer et al., 2002, Pinidiyaarachchi and Wahlby, 2005], ou bien les méthodes de suivi en microscopie confocale, mais sur une seule coupe du tissu [Marcuzzo et al., 2009a], où la fréquence d’observation peut être élevée, et d’un autre côté des méthodes pour des séries d’images volumiques acquises en microscopie confocale [Hadjantonakis and Papaioannou, 2004, Gor et al., 2005, Chen et al., 2006, Melani et al., 2007], où la fréquence est forcément faible, d’une part à cause du temps nécessaire à une acquisition et d’autre part à cause de la contrainte de conserver un tissu vivant aussi proche que possible des conditions naturelles de croissance.

5.1.1.2. Suivi des noyaux ou des parois cellulaires

Il est généralement plus facile de suivre des objets simples, comme des noyaux cellulaires, puisqu’on peut s’affranchir de certains considérations, liées à la préservation des voisinages entre cellules, comme dans [Chen et al., 2006, Marcuzzo et al., 2009a, Li et al., 2010]. Par ailleurs, le noyau pouvant être résumé à son centre, le problème peut se ramener à un problème plus simple, à savoir l’appariement de nuages de points, et il n’est dans certains cas même pas nécessaire de réaliser une première étape de segmentation des cellules (voir [Marcuzzo et al., 2009a] où l’auteur met en avant le fait que les erreurs de segmentation sont une des sources les plus importantes d’erreurs de suivi). Toutefois, on peut dans certains cas, comme dans [Liu et al., 2010], essayer de restaurer les informations de voisinage entre cellules sur un critère de proximité entre les noyaux segmentés.

Dans le cas de la construction de modèles dynamiques incluant les déformations des parois cellulaires, comme c’est souvent le cas pour le suivi des végétaux, le problème peut
être plus complexe, comme dans [Barbier de Reuille et al., 2005], où l’auteur élabore une stratégie de suivi par propagation en testant toutes les possibilités d’association des parois cellulaires segmentées entre les mères et les filles, sur un critère de similarité de longueur des parois ou des angles entre parois.

5.1.1.3. Phénomènes à prendre en compte

Les phénomènes à prendre en compte pour pouvoir suivre les cellules sont dépendants du problème biologique observé. Ils sont de deux natures différentes, géométriques et topologiques.

1. Modifications de la géométrie. Ces modifications sont essentiellement locales, mais peuvent induire des déformations globales.

Il s’agit des déformations des cellules, majoritairement dues à la croissance dans le cas des végétaux. Lorsque l’on est capable de faire des acquisitions suffisamment fréquentes relativement à la vitesse de déformation du tissu et des cellules, on sera assuré que les cellules n’auront que très peu changé de forme ou de position, comme dans [Pinidiyaarachchi and Wahlby, 2005], où le faible déplacement des cellules entre deux images successives permet de segmenter les cellules au temps \(t + 1 \) en initialisant une transformation en ligne de partage des eaux à partir de graines constituées des centres des cellules segmentées au temps \(t \). Sur des hypothèses similaires de stabilité des positions des cellules, Pierre Barbier de Reuille et al. ont publié dans [Barbier de Reuille et al., 2005] une méthode de suivi temporel des cellules de la surface du méristème apical caulinaire d’Arabidopsis, à partir d’acquisitions de microscopie confocale suffisamment rapprochées dans le temps pour s’assurer une certaine stabilité de la forme et des voisinages des cellules (figure 5.2 gauche).

Les modifications importantes de la géométrie globale, provoquées par l’ensemble des modifications locales, motivent généralement un calcul préalable du mouvement des cellules par des techniques de recalage d’images (cf section 3.2), avant de s’attaquer au problème des appariements entre cellules, comme dans [Melani et al., 2007]. Parfois même, et surtout dans le cas du suivi de la racine, il faudra estimer un déplacement global très important, comme dans le cas du suivi de la pointe racinaire, à cause du déplacement engendré par les cellules dans la zone d’élongation qui est voisine de la zone du méristème. Certains auteurs ont alors mis en place une méthode couplée d’analyse de la croissance globale et d’estimation des positions futures de la pointe racinaire pour automatiser le recadrage du microscope [Campilho et al., 2006] afin d’automatiser les acquisitions successives. Dans le cas du suivi des noyaux, le changement de forme des objets peut être très important, surtout au moment de la division. Pour ces raisons, certains travaux de suivi des noyaux incluent une méthode de détection des divisions grâce à des attributs liés à la forme des objets, comme dans [Marcuzzo et al., 2009a].

Les modifications de la géométrie impliquent un dernier problème, peut-être plus d’ordre pratique, qui est que les objets imagerés peuvent entrer ou sortir du champ de vue entre deux acquisitions successives.
2. Modifications de la topologie. Cette catégorie peut elle-même être divisée en deux sous-catégories :

a) Modification des relations de voisinage. Par exemple, dans les tissus animaux, les cellules ont la possibilité de glisser les unes sur les autres, ou baignent dans un milieu de culture, sans être en contact, comme dans [Melani et al., 2007] ou [Pimdivaarachchi and Wahlby, 2005]. Dans d’autres cas, comme en biologie végétale, on peut se fier aux relations de voisinage des cellules, qui se modifient très peu au cours du temps, comme dans [Barbier de Reuille et al., 2005], car les cellules végétales ne peuvent en général pas glisser les unes sur les autres.\footnote{Les cellules végétales ont la particularité de partager avec leurs voisines une paroi de cellulose, qui rigidifie leur structure et les empêche de glisser, sauf dans des cas très particuliers où la croissance est accompagnée d’une lyse cellulaire, cas que nous n’étudions pas dans nos travaux.}

b) Divisions cellulaires. C’est le point sur lequel la plupart des articles de la littérature rencontrent les plus importantes difficultés [Gor et al., 2005]. En fonction des fréquences d’acquisition relativement à la fréquence de division des cellules, on pourra parfois supposer que les cellules ne peuvent se diviser plus d’une fois entre deux acquisitions, comme dans [Barbier de Reuille et al., 2005] où la complexité de l’algorithme explode si on suppose que les cellules peuvent se diviser plus d’une fois entre deux acquisitions. En se basant sur cette hypothèse un peu contraignante, on peut alors simplifier la représentation des lignages en les représentant sous la forme d’arbres binaires, comme dans [Melani et al., 2007]. Il est beaucoup plus rare dans la littérature que soit prise en compte la possibilité d’assigner plus de deux cellules-filles à une cellule-mère, comme cela est envisagé dans [Gor et al., 2005].

5.1.2. Dispositifs d’acquisition

On peut faire du suivi cellulaire en utilisant la plupart des dispositifs classiques d’acquisition, à la condition qu’ils ne détruisent pas le tissu. Parmi les dispositifs les plus populaires utilisés pour le suivi, on peut citer la vidéo-microscopie, qui est un dispositif d’acquisition qui peut être réglé pour produire des images suffisamment rapprochées dans le temps pour que le mouvement et la croissance des cellules puisse être retrouvée en utilisant des techniques simples, comme dans [Pimdivaarachchi and Wahlby, 2005], où les auteurs segmentent les cellules dans la première image, puis se servent des centroïdes des cellules détectées pour initialiser la segmentation de l’image suivante, et ainsi de suite.

Dans la plupart des autres cas, on trouve des situations dans lesquelles une des zones d’investigation est localisée au cœur du tissu, ou encore les situations où la zone d’investigation est composée de plusieurs zones localisées à différentes profondeurs, comme c’est le cas pour la surface du méristème [Barbier de Reuille et al., 2005]. Sauf dans certains cas particuliers où la zone d’intérêt est limitée à un plan, comme dans [Marcuzzo et al., 2008b], on doit faire l’acquisition d’images volumiques, composées d’observations 2D à différentes profondeurs.
5. Suivi temporel

Il y a peu de dispositifs d’acquisition qui permettent de faire de telles images en profon- dor, et avec une résolution micrométrique. Parmi ces techniques, on peut citer le micro-
scope électronique (cf paragraphe 2.3.2.1), qui permet de produire des observations d’une
grande précision du tissu, mais qui nécessite de construire des moules du tissu étudié. On
limite alors les observations à la surface du tissu [Routier-Kierzkowska and Kwiatkowska, 2008].
Enfin, la technique d’acquisition la plus utilisée est la microscopie confocale [Barbier de Reuille et al., 2005].
Le microscope confocal a le désavantage d’être très invasif car l’illumination laser per-
turbe le fonctionnement du tissu. Dès lors, et si le volume de tissu étudié et la résolution
des images implique un temps d’acquisition important (plusieurs minutes), il faut espacer
les acquisitions pour conserver le tissu vivant dans de bonnes conditions de développe-
ment. Dans ces conditions, qui sont celles les plus couramment employées pour le suivi
temporel des méristèmes, le problème du suivi temporel devient plus difficile, notamment
da cause des modifications, d’une part géométrique (déformations) et d’autre part topo-
logique (divisions cellulaires), importantes du tissu entre deux acquisitions successives
lorsque le délai entre deux acquisitions successives est important.

5.1.3. Estimation des changements géométriques

Des changements géométriques peuvent apparaître entre deux acquisitions :
– il peut y avoir un re-positionnement global de l’objet imagé entre 2 acquisitions,
soit parce qu’il a été manipulé [Barbier de Reuille et al., 2005], soit à cause de sa
croissance [Campilho et al., 2006], et/ou
– il peut y avoir des mouvements ou des déformations locales, dus aux déplacements
des cellules [Rabut and Ellenberg, 2004, Li et al., 2006] ou à leur croissance.
Le calcul du mouvement ou des déformations entre deux acquisitions successives peut
donc permettre soit de comparer ces deux images (par exemple pour en extraire plus
facilement les lignages), soit de caractériser les mouvements cellulaires, soit enfin de
repositionner le dispositif d’acquisition afin de garder l’objet imagé au centre du champ
de vue.

Lors de la croissance, la pointe de la racine d’arabidopsis peut se déplacer considéra-
blement. Si l’on veut donc acquérir une séquence temporelle de la pointe de la racine,
il faut donc repositionner le dispositif d’acquisition (ou de manière équivalente la table
sur laquelle le matériel est placé). Il serait fastidieux de le faire manuellement, aussi
[Campilho et al., 2006] proposent de suivre la position de la pointe afin de prédir la pro-
chaire position de la pointe de la racine pour l’acquisition suivante. La pointe racinaire
d’arabidopsis est segmentée par une méthode de détection de contour (voir figure 5.1).
puis la zone de plus forte courbure est détectée ensuite pour obtenir l’orientation de la
pointe racinaire et prédir la direction de croissance.

Dans [Barbier de Reuille et al., 2005], le méristème apical est enlevé de sous l’objectif
du microscope entre 2 acquisitions, il faut donc repositionner, c’est-à-dire recaler (cf
paragraphe 3.2), les deux acquisitions l’une par rapport à l’autre : les auteurs vont donc
estimer une transformation rigide pour superposer au mieux les deux acquisitions.

Les approches précédentes permettent un repositionnement global des images succes-
sives. Cependant, il peut rester des déplacements ou des déformations résiduelles. Ceux-ci
5. Suivi temporel

Figure 5.1.: Suivi de la pointe racinaire d’Arabidopsis thaliana en microscopie laser (source [Campilho et al., 2006]). A droite : schéma global de la méthode de suivi. Au milieu : illustration de la méthode d’estimation de l’orientation de la pointe racinaire par détection du point de contour de plus forte courbure au temps t (image du milieu).

sont estimés avec des méthodes locales, comme des techniques dérivées du flot optique [Melani et al., 2007, Roberts et al., 2007].

5.1.4. Estimation des changements topologiques

La recherche des changements topologiques revient à apparier les objets de la première image d’un couple d’images successives avec les objets de la seconde image :

– à un objet peut être apparié un seul autre objet, auquel cas il s’agit plus de « suivre » cet objet (cela revient aussi à une tâche de recalage, et est donc facilité si les changements géométriques ont été compensés puisque les objets à appairer se superposent alors), ou

– à un objet peuvent être appariés plusieurs objets, ce qui correspond alors à une (ou plusieurs) division cellulaires.

Deux stratégies peuvent être mise en œuvre pour la construction des appariements [Gor et al., 2005] : une construction itérative, qui consiste à assigner successivement chaque cellule-mère à une cellule-fille, en commençant par les assignements les plus évidents, et on parlera de méthode séquentielle, ou une construction globale, qui consiste à voir le problème de manière globale et à chercher une solution optimale au problème global des assignements. et on parlera de méthode simultanée.

Les méthodes de type séquentiel ont l’avantage de permettre une formulation simple et intuitive, qui consiste généralement à sélectionner itérativement l’assignement le plus vraisemblable entre deux cellules [Barbier de Reuille et al., 2005, Melani et al., 2007, Liu et al., 2010]. Cela permet notamment de réduire progressivement la complexité très élevée du problème d’assignement. Les auteurs mettent cependant en avant le fait que ces méthodes ne sont généralement pas adaptées aux données « dures », c’est-à-dire les cas où la vraisemblance des appariements ne peut pas être estimée de manière fiable, comme c’est le cas lorsque le tissu subit des déformations importantes. Par ailleurs, le fait de procéder par propagation implique que si une erreur est commise au début de l’algorithme, elle ne peut être corrigée et sa propagation risque d’entrainer un grand nombre d’autres erreurs.
5. Suivi temporel

Le fait que les relations de voisinage entre cellules soient conservées par la division cellulaire fait que ces relations peuvent être utilisées comme information pour identifier les lignées cellulaires lors du suivi des cellules végétales, à la différence du suivi des cellules animales. Ces informations peuvent aussi bien être exploitées pour valider des lignages candidats, comme dans [Barbier de Reuille et al., 2005]. On peut aussi utiliser une information de proximité entre les cellules pour approximer les relations de voisinage, et s’en servir pour guider le suivi comme dans [Liu et al., 2010]. Cette information de proximité, ou de distance, est aussi celle qui est exploitée lorsque seuls les noyaux des cellules sont disponibles [Melani et al., 2007].

Inversement, les méthodes dites « simultanées » sont généralement plus difficiles à formuler mais permettent d’aborder les cas « difficiles », c’est-à-dire les cas où d’importantes déformations et un grand nombre de divisions ont eu lieu, et peuvent plus facilement faire preuve de généralité (voir [Gor et al., 2005]). Ces méthodes, généralement formulées comme un problème d’optimisation globale, consistent à trouver la « meilleure solution », au sens d’un critère du type minimisation d’une fonction de coût associée aux appariements entre cellules-mères et cellules-filles. On peut noter que cette minimisation peut parfois être vue comme une optimisation couplée (déformation / appariements) comme dans [Gor et al., 2005]. Ces méthodes simultanées s’exécutent généralement au prix d’une complexité algorithmique élevée, ce qui peut rendre leur utilisation coûteuse en temps de calcul lorsque le nombre de cellules augmente, mis à part pour certains travaux comme [Pimidiyaarachchi and Wåhlby, 2005] dans lequel l’auteur développe une méthode (assez peu générique) de segmentation et suivi couplé par ligne de partage des eaux, en utilisant le centre des cellules détectées dans une image comme graines pour segmenter l’image suivante.

5.2. Méthode proposée de suivi du méristème

Le but de notre étude est le suivi du méristème. Cela implique évidemment que la croissance naturelle soit la moins perturbée possible par l’acquisition. Toutefois, pour une observation limitée dans la durée (de l’ordre de la semaine), nous pouvons isoler le matériel à observer à la différence de [Roeder, 2009] (cf figure 2.10) où la plante entière doit être conservée, ce qui induit des conditions expérimentales plus complexes.

Étant donné que nous réalisons des acquisitions en microscope confocale (ou biphoton) sur une grande épaisseur de tissu, et afin de limiter la photo-nocivité, nous avons choisi d’espacer les acquisitions de 24 heures à peu près. De ce fait, de grandes déformations géométriques et de grands changements topologiques peut survenir entre deux acquisitions. Estimer les déformations géométriques sera un problème difficile, plus complexe sans doute que dans [Liu et al., 2010] où les acquisitions sont faites toutes les 3 heures ou que dans [Melani et al., 2007] où elles sont réalisées toutes les 5 minutes.

De plus, l’objet choisi pour le suivi, à savoir le bouton floral au moment de l’apparition de nouveaux organes, subit des changements géométriques importants, bien plus importants (cf figure 5.2) par exemple que le méristème apical caulinaire étudié dans [Grandjean et al., 2004, Barbier de Reuille et al., 2005, Liu et al., 2010].
5. Suivi temporel

Figure 5.2. Comparaison entre la croissance du MAC et la croissance du bouton floral entre deux acquisitions. A gauche : on voit que le protocole utilisé dans [Barbier de Reuille et al., 2005] ($\Delta t = 12$ heures) mène à la comparaison de deux ensembles de polygones quasiment identiques, à quelques divisions près, la plupart de ces divisions ne s’ensuivant pas d’une variation importante de forme. A droite : dans notre étude, nous allons devoir automatiser l’identification des lignées de cellules-mères subissant d’importantes déformations, et un grand nombre de divisions (2.1 divisions par cellule en moyenne durant cette transition et un volume total multiplié par 2.5). On peut aussi noter qu’il va nous falloir tenir compte de la croissance différentielle entre les cellules, conséquence de la construction des organes (flèche noire : émergence des sépales). On voit globalement, en comparant ces deux études, l’une basée sur les surfaces segmentées manuellement d’un tissu relativement stable et l’autre basée sur les volumes segmentés automatiquement d’un tissu subissant une forte croissance, que la complexité des deux problèmes est sans commune mesure.
5. Suivi temporel

Enfin, et cela constitue une difficulté importante, nous avons choisi d’étudier notre objet en 3D, et non seulement selon une coupe 2D [Marcuzzo et al., 2008b], une variété 2D (une surface courbe, ici la surface du méristème) [Barbier de Reuille et al., 2005], ou quelques coupes seulement [Liu et al., 2010].

Toutes les difficultés mentionnées plus haut rendent notre problématique très spécifique, et il a été nécessaire de développer une approche dédiée.

5.2.1. Principe général

Le suivi du méristème entre deux acquisitions implique l’identification d’une déformation géométrique d’une part, et de changements topologiques (décrits par la construction de lignages) d’autre part, tous deux pouvant être relativement importants (cf figure [Barbier de Reuille et al., 2005]), la littérature rapportant plutôt des cas où seul l’un des deux problèmes était difficile. Le principe de notre méthode est une résolution alternée, à savoir :

- le calcul de la transformation géométrique pour des lignages (et donc des appariements de cellules) connues,
- le calcul des lignages pour une transformation géométrique, ce calcul de lignages étant réalisé par une méthode dite simultanée (cf section 5.1.4), l’utilisation a postériori de contraintes supplémentaires permet de sélectionner des lignages biologiquement compatibles avec les lignages déjà existants, l’alternance des deux calculs étant réalisés jusqu’à convergence. Il apparaît donc que, bien que nous utilisons un algorithme simultané pour le calcul des lignages pour une transformation fixée, ceux-ci sont quand même construits de manière incrémentale.

5.2.2. Notations et formulation

Nous disposons de deux images, \(I \) et \(I' \), correspondant à des acquisitions aux temps \(t \) et \(t' = t + \Delta t \), toutes deux segmentées et de segmentations \(S \) et \(S' \). Une segmentation est une partition en cellules :

- \(S = \{ c_i \}, i = 1 \ldots N(S) \)
- \(c_i \cap c_j = \emptyset \) pour \(i \neq j \)

La notion d’adjacence entre (groupes de) cellules est définie par

- \(\{ c_i \}_{i=1,\ldots,I} \) est \(n \)-adjacent à \(\{ c_j \}_{j=1,\ldots,J} \) si \(\exists (i',j') \in [1, I] \times [1, J] \) tels que la cellule \(c_{i'} \) soit \(n \)-adjacente à la cellule \(c_{j'} \). \(n \) désigne une des relations usuelles de connexité, 6, 18 ou 26 en 3D. Dans la suite, nous n’utiliserons que la 6-connexité, et nous parlerons de cellules adjacentes sans plus de précisions.
- Par généralisation de la notion de voisinage, noté \(N \), et de manière quelque peu abusive, nous noterons aussi la notion d’adjacence par :

\[
\{ c_i \}_{i=1,\ldots,I} \text{ est } n \text{-adjacent à } \{ c_j \}_{j=1,\ldots,J} \iff \{ c_i \}_{i=1,\ldots,I} \in N_n \left(\{ c_j \}_{j=1,\ldots,J} \right) \iff \{ c_j \}_{j=1,\ldots,J} \in N_n \left(\{ c_i \}_{i=1,\ldots,I} \right).
\]

La transformation géométrique entre les deux images sera notée par \(T \), et on comparerá donc \(T(S) \) avec \(S' \), tandis que la relation topologique de filiation sera exprimée par un
5. Suivi temporel

mapping M des cellules de S vers celles de S'. On notera la filiation d’une cellule fille $c'_i \in S'$ vers une cellule mère $c_i \in S$ par $(c_i, c'_i) \in M$ ou $(i, i') \in M$ pour plus de concision.

Un lignage consiste à associer à une cellule-mère $c_i \in S$ toutes ses cellules-filles que nous noterons $i' c'_i$, un lignage L sera donc un ensemble de couples : $L = \{(c_i, \{i' c'_i\})\}$.

Si l’on se donne alors une fonction de coût Γ qui évalue la pertinence du mapping. Parmi tous les couples (transformation, mapping) possibles, nous cherchons le couple optimal (T^*, M^*) qui vérifie :

$$(T^*, M^*) = \arg \min_{T,M} \Gamma(M(S \circ T, S'))$$

Cette formulation, bien qu’élégante et respectant l’esprit de notre méthode, est malheureusement abusive, car nous n’utiliserons pas les mêmes fonctions de coût pour le calcul de la transformation et du mapping, bien que toutes deux reviennent à des considérations de proximité.

5.2.3. Recherches alternées de la transformation et des lignages

Notre méthode repose sur une recherche alternée de la transformation qui superpose au mieux les deux images I et I', et des lignages qui expliquent au mieux les filiations de S vers S'. Ce dernier calcul sera résolu par un algorithme de flot, toutefois il ne garantit pas l’obtention de filiations biologiquement plausibles. Aussi, les filiations calculées seront examinées selon des critères supplémentaires afin de ne sélectionner que les plus pertinentes. Cette approche conservatrice a pour but d’éviter la conservation d’erreurs dans les lignages qui se propageront par la suite. La méthode complète est schématisée dans la figure 5.3 et comporte les étapes suivantes :

- un calcul initial de repositionnement entre les deux images par une transformation T_r (section 5.3),

puis les 3 étapes suivantes sont itérées jusqu’à convergence :

1. une méthode de calcul d’une transformation non-linéaire T^* qui superpose I sur I' (section 5.4),

2. une méthode de calcul d’un mapping valide M^* de coût minimal (section 5.5) au sens d’une fonction de coût d’appariement des cellules-mères avec cellules-filles, définie d’après la transformation T^*,

3. une méthode de sélection des lignages $L^* \subseteq M^*$ qui préservent des critères supplémentaires (section 5.5.3).

Étant donné que la recherche de la transformation T^* peut être guidée par la connaissance d’un ensemble initial de lignages L, on pourra itérer les trois étapes précédentes en utilisant après chaque itération les nouveaux lignages de L^* pour initialiser T^*, et ainsi de suite jusqu’à convergence.
5. Suivi temporel

Figure 5.3. Diagramme fonctionnel de l’algorithme de calcul des lignées. On initialise l’algorithme avec un premier ensemble de lignages connus \(L_0 \). Ces lignages nous permettent de calculer une transformation \(T_0^* \) pour superposer \(T_0^*(S) \) et \(S' \). On calcule ensuite le mapping de \(T_0^*(S) \) vers \(S' \) de moindre coût \(M_0^* \) en fixant en dur tous les lignages déjà connus. On peut ensuite extraire de \(M_0^* \) une sous-partie \(L_1 \subseteq L_0 \) de lignages qui respectent des contraintes supplémentaires. Ce nouvel ensemble est alors utilisé pour calculer une nouvelle transformation \(T_1^* \), puis un nouveau mapping valide \(M_1^* \), qui est utilisé pour calculer \(L_2 \subseteq L_1 \) et ainsi de suite, jusqu’à l’itération où l’ensemble \(L_n \) n’évolue plus. Le dernier mapping \(M_n^* \) calculé est alors considéré comme résultat de l’algorithme.
5. Suivi temporel

5.3. Initialisation de la méthode

L’initialisation de la méthode consiste à repositionner les deux images l’une par rapport à l’autre. Un calcul direct d’une déformation entre les deux images dans leur géométrie initiale (géométrie d’acquisition ou géométrie reconstruite) avec une méthode de recalage non-linéaire risquant d’échouer, on calcule d’abord une transformation avec peu de degrés de liberté qui permet de superposer à peu près les images, et permettra ensuite aux méthodes de recalage non-linéaire de calculer une déformation dans de bonnes conditions. C’est le principe de la hiérarchie de recalages déjà présentée (cf section 3.3.1). L’initialisation consiste simplement à calculer une transformation linéaire superposant les deux images I et $I’$.

5.3.1. Données initiales

En plus des images I et $I’$ et des segmentations associées S et $S’$, nous avons un ensemble initial de lignages $L_0 = \{(c_i, \{c_i’\})\}$, donnés par un utilisateur dans nos expériences.

5.3.2. Calcul de la pose initiale

La pose relative entre les deux images I et $I’$ est représentée par une transformation rigide T_r. Pour la calculer, nous utilisons le même calcul de transformation que pour un ensemble de points appariés (cf section 3.2.3). A cette fin, nous transformons chaque couple $(c_i, \{c_i’\})$ de l’ensemble initial de lignages L_0 en un couple de points appariés $(x_i, x_i’)$, A la cellule c_i, nous associons son barycentre $x_i = \text{barycentre}(c_i)$, et aux cellules $\{c_i’\}$ le barycentre de leur union $x_i’ = \text{barycentre}(\bigcup c_i’)$, La transformation T_r est donc calculée au sens des moindres carrés par

$$T_r = \arg \min_T \left(\sum_i \| x_i - T(x_i’) \|^2 \right)$$

comme vu dans la section 3.2.3.

La méthode d’estimation d’une transformation linéaire au sens des moindres carrés à partir de couples de points appariés est sensible aux erreurs de positionnement des points. Pour que l’estimation soit le moins sensible possible, on peut utiliser plus de points, pour bénéficier de l’effet moyenne. Mais si le nombre de points est faible on a plutôt intérêt à privilégier la recherche d’une transformation ayant le moins de degrés de liberté possible (rigide plutôt qu’affine).

Un autre problème provient de la distribution des points dans l’espace. Si l’ensemble des x_i (ou bien l’ensemble des $x_i’$) est plutôt distribué dans un plan plutôt que dans un volume, l’estimation d’une transformation affine pourra générer une erreur importante, alors que ces mêmes points suffisent à estimer une transformation rigide avec une sensibilité beaucoup plus réduite aux erreurs de positionnement des points. Dans la pratique, si le nombre de lignages est faible (inférieur à 6), ou si les points sont distribués dans
5. Suivi temporel

un volume très aplati, formant plutôt un plan, on privilégiera l’estimation d’une trans-
formation rigide. Dans le cas contraire, on estimera une transformation affine, qui nous
permettra de tenir compte des déformations globales du tissu liées à la croissance.

5.4. Calcul de la transformation T_n^*

Entre les acquisitions des images I et I', la croissance du tissu peut causer des déforma-
tions qui ne peuvent pas être représentées par la transformation linéaire T_r permettant le
repositionnement relatif des deux images. Nous allons donc calculer une transformation
non-linéaire pour compenser ces déformations, et faciliter le calcul des lignages. Ce calcul
se fera en deux étapes : d’abord l’initialisation de la transformation non-linéaire à partir
des lignages connus, puis un calcul automatisé de la transformation avec une méthode
de recalage par blocs (cf section 3.2.5) [Commowick, 2007].

La déformation résiduelle sera représentée sous la forme d’un champ de vecteur $u(x)$,
plus précisément on aura $T(x) = x + u(x)$.

5.4.1. Initialisation de la transformation T_n^*

A l’itération n, on dispose d’un ensemble L_n de lignages $(c_i, \{i'c'_i\})$ que l’on transforme
en couples de points appariés (x_i, x'_i) (cf section 5.3.2). On cherche donc la déformation
qui explique au mieux les appariements $(T_r^{-1}(x_i), x'_i)$, de la manière suivante :

$$T^{\text{init}} = \arg\min_T \left(\sum_i \| T_r^{-1}(x_i) - T(x'_i) \|_2 \right)$$

De manière évidente, on a la valeur de la déformation $T^{\text{init}}(x) = x + u^{\text{init}}(x)$ donnée
en tout point x'_i par

$$u^{\text{init}}(x'_i) = T_r^{-1}(x_i) - x'_i$$

Afin d’obtenir une transformation définie en tout point, on va réaliser une interpolation
de ces vecteurs épars. Pour cela, nous avons choisi une interpolation avec des poids
gaussiens, ce qui permet aussi de régulariser les vecteurs si certains d’entre eux ont des
déplacements incohérents. On aura donc une transformation dense initiale \tilde{T}^{init} définie
par le champ de vecteurs

$$\tilde{u}^{\text{init}}(x) = \frac{\sum \omega_i(x) u_i(x')}{\sum \omega_i(x)}$$

avec $\omega_i(x) = \exp \left(-\frac{\| x - x'_i \|^2}{2\sigma^2} \right)$

Le choix de la fonction de pondération $\omega_i(x)$ est important, puisqu’il influe sur la
régularité de la transformation finale (voir figure 5.4). Plus la fonction de pondération a
un support étendu, plus la transformation construite par cette méthode sera régulière.
Cependant, si le support est trop étendu, cela peut conduire à un lissage des irrégularités
de la transformation réelle. Inversement, et pour des raisons techniques, si le support est
5. Suivi temporel

Figure 5.4.: Interpolation d’un champ de vecteur en tout point du domaine d’une image.

À gauche : vecteurs initiaux, à droite, lissage des vecteurs avec une gaussienne dont l’écart-type est indiqué par la barre noire. Le plus souvent, les champs de croissance des cellules présentent des variations rapides, qui ne sont pas éliminées, si l’écart-type est bien choisi. On choisit généralement une valeur de l’écart-type correspondant à la taille d’une cellule pour ne pas trop lisser le champ.

trop petit par rapport à la distance entre deux échantillons, on obtient des valeurs de pondération très petites, ce qui peut conduire à des instabilités numériques.

5.4.2. Raffinement de la transformation non-linéaire T^*

Nous raffinons ensuite le champ dense de vecteurs précédemment calculé en calculant un recalage automatique des images fusionnées (plus précisément de $I \circ T^*$ sur I'), en utilisant un algorithme de type recalage par blocs (cf section 3.2.5) initialisé par T^{init} [Commowick, 2007].

À l’itération n, la transformation totale T^*_n ainsi calculée nous permet de superposer les images I et I', par exemple en rééchantillonnant I dans la géométrie de I' avec $I \circ T_{r} \circ T^*_n$.

Elles nous permet aussi de superposer les images de segmentation S et S', ce qui va nous aider à déterminer les associations de cellules-mères avec les cellules-filles, sur un critère de proximité.

5.5. Calcul du mapping M^*_n

5.5.1. Modélisation et contraintes du calcul du mapping

Le calcul d’un mapping entre les cellules-mères, c’est-à-dire les régions de la segmentation $S \circ T_{r} \circ T^*_n$ (nous omettrons les transformations dans le reste de la section), afin d’alléger les notations), et les cellules-filles, c’est-à-dire les régions de la segmentation S', a pour but de déterminer les lignages des cellules-mères. Nous allons modéliser les hypothèses de lignages sous forme d’un graphe valué, et ensuite résoudre le calcul des lignages grâce à un algorithme de flot. Certaines hypothèses, plutôt de nature biologique, vont nous aider à contraindre notre problème, soit directement lors de la résolution du
5. Suivi temporel

Figure 5.5.: Distance d’une cellule-fille à une cellule-mère. A gauche : méthode de calcul de la distance, à droite, en rose, lieu des points \(p \) tels que \(d(c_i, p) < d_{\text{max}} \).

calcul du flot, soit a posteriori dans une étape de prétraitement. Étant donné que nous avons déjà calculé une transformation non-linéaire qui est supposée superposer les deux images \(I \) et \(I' \), les cellules-mères doivent être « proches » des cellules-filles. Nous allons donc utiliser un critère de distance pour qualifier les lignages possibles.

5.5.1.1. Définition d’une distance entre cellules

Pour sélectionner les cellules-filles \(c'_j \) pouvant candidater à la lignée de la cellule \(c_i \), nous utilisons une mesure de distance entre cellules-filles et cellules-mères, qui est naturellement dissymétrique. La raison est qu’une fille n’a qu’une seule mère alors qu’une mère peut avoir plusieurs filles, ce qui se traduit géométriquement par le fait que plusieurs filles peuvent être incluses dans une cellule-mère après le recalage non-linéaire, tandis que l’inverse est impossible. La mesure de distance entre une cellule-fille \(c'_j \) et une cellule-mère \(c_i \) est alors :

- 0, si le barycentre de la cellule-fille \(c'_j \) est inclus dans la cellule-mère \(c_i \)
- la distance du barycentre de la cellule-fille \(c'_j \) à la frontière de la cellule-mère \(c_i \) sinon. Pour un calcul rapide de cette distance, nous l’approximons en traçant une ligne 3D entre les centres de masse des cellules \(c_i \) et \(c'_j \), et la distance considérée sera celle qui sépare le barycentre de la cellule-fille \(c'_j \) du premier point de la cellule-mère \(c_i \) rencontré le long de cette ligne (voir figure 5.5). Cette méthode nous permet d’approximer la distance recherchée (entre le barycentre de \(c'_j \) et la surface de \(c_i \)) sans avoir recours au calcul d’une carte de distance exacte, qui peut être coûteux en temps de calcul. Il faut cependant noter que cette manière de procéder peut produire une mauvaise approximation de la distance recherchée si les cellules observées ne sont pas convexes (comme lorsque l’on observe les deux cellules qui forment l’orifice des stomates par exemple). Il vaudrait mieux dans ce cas recourir au calcul d’une carte de distance plus précise.
Figure 5.6.: Construction des hypothèses de lignages entre les cellules-mères (à gauche, en bleu) et les cellules-filles (à droite, en rouge).

5.1.1.2. Topologie des filiations

A priori, tout cellule-mère pourrait être associée à toute cellule-fille. La combinatoire de la recherche du mapping serait alors très grande. Nous présentons ici les différentes considérations et hypothèses qui vont nous guider pour la construction du graphe.

- A priori, toute cellule au temps t a une (s'il n'y a pas eu de division cellulaire) ou plusieurs (il y a eu des divisions cellulaires) cellules correspondantes au temps $t' = t + \Delta t$. De même, chaque cellule du temps $t' = t + \Delta t$ a une (et une seule) cellule correspondante dans au temps t. Malheureusement, soit à cause d’erreurs de segmentation, soit parce les cellules en question peuvent ne pas être dans le champ de vue (cf section 5.1.1.3), ces correspondances peuvent ne pas être avérées entre les segmentations S et S'. Pour répondre à ce problème, nous allons ajouter deux cellules virtuelles θ_I et θ_J, respectivement aux cellules de S et S'. θ_I sera donc une cellule-mère virtuelle pour les cellules de S' dont la cellule-mère réel n’est pas dans S, tandis que θ_J sera une cellule-fille virtuelle pour les cellules de S dont aucune descendance ne se trouve dans S'.

- Nous utilisons dans la suite cette définition de la distance entre une cellule-fille et une cellule-mère et nous dirons qu’une cellule c'_j est une fille possible d’une cellule c_i si la distance $d(c_i, c'_j)$ est inférieure à une valeur seuil d_{max}, d_{max} étant un paramètre de la méthode. En prenant une distance d_{max} de l’ordre du diamètre d’une cellule, le nombre de cellules-mères auxquelles chaque fille peut être associée est de l’ordre de la dizaine, ce qui réduit considérablement la combinatoire du problème.

Les filiations possibles sont représentées dans la figure 5.6.
5. Suivi temporel

Figure 5.7.: Le graphe biparti final utilisé pour représenter les hypothèses de lignages entre cellules-mères (en bleu) et cellules filles (en rose). Ce graphe sera utilisé pour accueillir un flot d’appariements dont le coût va être minimisé progressivement.

5.5.1.3. Construction du graphe pour le calcul du flot

Afin de pouvoir exprimer la recherche des lignages comme un calcul de flot, il faut d’une part poursuivre la construction topologique du graphe, et ensuite valuer les arcs du graphe.

La poursuite de la construction du graphe est assez simple, nous ajoutons un *sommet source* s auquel nous connectons toutes les cellules-mères, y compris la cellule virtuelle θ_I, par des *arcs sources*, et un *sommet collecteur* t auquel nous connectons toutes les cellules-filles, y compris la cellule virtuelles θ_J, par des *arcs collecteurs*. De plus, nous ajoutons un *arc retour* qui connecte t à s. La topologie finale du graphe est présentée dans la figure [5.7].

Le principe de la recherche des lignages comme un calcul de flot est de considérer qu’il y a une filiation entre une cellule-mère c_i et une cellule-fille c'_j s’il y a un flot qui passe par l’arc reliant les deux cellules (cf figure [5.6]). Nous allons donc définir les meilleurs lignages comme ceux réalisant un flot *admissible* de coût minimal pour le graphe de la figure [5.7], les valeurs de flot étant des nombres entiers. Pour cela, il nous faut valuer les arcs de ce graphe, en terme de capacité et de coût.

- La capacité d’un arc définit le volume du flot qui peut passer par cet arc. Pour
5. Suivi temporel

chaque arc, nous allons donc définir une capacité minimale, qui représente donc le
minimum de flot devant passer par cet arc, et une capacité maximale, qui représente
donc le maximum de flot pouvant passer par cet arc.

- Considérons un arc reliant une cellule-mère c_i (cela peut être la cellule virtuelle
 θ_I) à une cellule-fille c'_j (qui peut aussi être la cellule virtuelle θ_J), les capacités
 minimale c_{ij} et maximale C_{ij} associées à cet arc sont respectivement de 0 et de
 1 : si le flot est de 1, cela signifie que c'_j est bien de la descendance de c_i, sinon sa
 valeur est de 0.

- Considérons les arcs sources, en commençant par ceux qui relient la source s à une
 « vraie » cellule-mère c_i. Leur capacité minimale est de 1, afin de forcer l’attribu-
dition d’une filiation à la cellule c_i, tandis que leur capacité maximale dépendra des
 hypothèses que l’on fera sur le nombre de divisions qui ont pu avoir lieu durant
 l’intervalle de temps Δt. Ce sera donc le nombre maximal de filles que peut avoir
 une cellule-mère, nombre que nous noterons N_{div}. L’arc source qui relie la source
 s à la cellule virtuelle θ_I est particulier : sa capacité minimale est de 0, pour
 le cas où cette cellule virtuelle n’est pas utilisée (toutes les cellules-filles seront
 alors associées à de « vraies » cellules-mères), et sa capacité maximale est égale
 au nombre de « vraies » cellules-filles, N_J (pour le cas où toutes les cellules-filles
 sont associées à la cellule-mère virtuelle θ_J).

- Considérons les arcs collecteurs, en commençant par ceux qui relient les « vraies »
 cellules-filles c'_j au collecteur t. Leurs capacités minimale et maximale valent toutes
 deux 1, afin de forcer l’attribution d’une et d’une seule paternité à la cellule c'_j.
 L’arc collecteur qui relie la cellule virtuelle θ_J au collecteur t est particulier : sa
 capacité minimale est de 0, pour le cas où cette cellule virtuelle n’est pas utilisée
 (toutes les cellules-filles seront alors associées à de « vraies » cellules-mères), et sa
 capacité maximale est égale au nombre de « vraies » cellules-mères, N_I (pour le
 cas où toutes les cellules-mères sont associées à la cellule-fille virtuelle θ_J).

- Considérons enfin l’arc retour, qui relie le collecteur t à la source s, sa capacité
 minimale est de max (N_I, N_J), tandis que sa capacité maximale est de $N_I + N_J$.

 Le coût d’un arc définit le prix à payer par une unité de flot pour passer par cet
 arc. Nous n’allons ne définir de coût que pour les arcs reliant les cellules-mères aux
 cellules-filles, c’est-à-dire ceux présentés dans la figure 5.6.

 Le coût γ_{ij} d’un arc reliant une « vraie » cellule-mère c_i à une « vraie » cellule-fille
 c'_j sera fonction de la distance de la cellule c_i à la cellule c'_j afin de favoriser les
 filiations où les cellules-filles se superposent à leur cellule-mère (après application
 de la transformation non-linéaire T^*), on le définit par

 \[\gamma_{ij} = \frac{d(c_i, c'_j)}{d_{\text{max}}} \]

 Afin de pénaliser les arcs reliant la cellule virtuelle θ_J à une « vraie » cellule-fille c'_j,
 ce qui correspond à l’apparition de cette cellule, nous allons leur attribuer un coût
 γ_J plus grand que les coûts γ_{ij}. Ceux-ci étant, par construction, dans l’intervalle
 $[0, 1]$, nous avons choisi $\gamma_J = 2$.

 De même, afin de pénaliser les arcs reliant les « vraies » cellules-mères c_i à la
Suivi temporel

cellule virtuelle \(\theta_J \), ce qui correspond à la disparition de ces cellules, nous allons aussi leur attribuer un coût \(\gamma_J \) plus grand que les coûts \(\gamma_{ij} \), a savoir \(\gamma_J = 2 \).

Enfin, et comme les méthodes classiques de résolution nécessitent d’avoir des graphes symétriques, le coût des arcs opposés est égal à l’opposé du coût : ainsi l’arc allant de la cellule-fille \(c'_j \) à la cellule-mère \(c_i \) aura pour coût \(-\gamma_{ij}\).

Nous pouvons donc maintenant pouvoir définir le coût d’un flot, et rechercher le flot de coût minimal.

5.5.2. Flot et coût d’un flot

Nous allons faire circuler un flot \(f \) dont les valeurs sont entières dans les arcs du graphe (voir figure 5.7). Chaque arc \(a \) étant parcouru par un flot \(f_a \), le flot devra vérifier la contrainte de conservation du flot. Si on note \(A_e(v) \) l’ensemble des arcs entrants dans un sommet \(v \) et \(A_s(v) \) l’ensemble des arcs sortants, on a donc :

\[
\forall v, \quad \sum_{a \in A_e(v)} f_a = \sum_{a \in A_s(v)} f_a
\]

Nous allons modéliser le problème de la recherche du mapping optimal \(M^* \) comme un problème de recherche de flot de coût minimal \cite{Gondran and Minoux, 1990}. Un mapping \(M \) entre les cellules-mères \(c_i \) et les cellules-filles \(c'_j \) sera défini par les valeurs de flot le long des arcs \((c_i, c'_j) \) : il y a filiation si cette valeur vaut 1 et pas de filiation si elle vaut 0 (étant données les valeurs des capacités minimale et maximale, ce sont les seules valeurs que peut prendre ce flot). On notera \(I_M \) l’ensemble des cellules-filles qui apparaissent entre les deux images successives, et qui correspondent donc à des flots allant de la cellule virtuelle \(\theta_I \) vers ces « vraies » cellules-filles \(c'_j \), et \(J_M \) l’ensemble des cellules qui disparaissent entre les deux images successives, et qui correspondent donc à des flots allant de ces « vraies » cellules-mères \(c_i \) vers la cellule virtuelle \(\theta_J \).

Le coût global d’un mapping \(M \) est alors défini comme la somme des coûts des flots qui le compose. Puisque seuls les arcs reliant les cellules-mères aux cellules-filles ont un coût, le coût global d’un mapping \(\Gamma(M) \) est donc défini par :

\[
\Gamma(M) = \sum_{(c_i, c'_j) \in M} \gamma_{ij} + \sum_{I_M} \gamma_I + \sum_{J_M} \gamma_J
\]

Le problème de l’appariement des cellules-mères avec leurs lignées peut alors être formulé comme un problème d’optimisation. Parmi tout les mapping possibles, nous cherchons le mapping optimal \(M^* \) qui vérifie :

\[
M^* = \arg \min_{M} \Gamma(M)
\]

Nous allons utiliser un algorithme itératif pour calculer ce mapping optimal, qui nécessite donc la connaissance d’un premier flot valide, c’est-à-dire respectant les capacités. Avant de présenter cette méthode d’optimisation, nous allons d’abord détailler une méthode classique de recherche d’un flot admissible, puis une adaptation ad-hoc de cette méthode, qui permettra d’avoir une recherche de l’optimum qui convergera plus vite.
5. Suivi temporel

5.5.2.1. Construction d’un flot initial valide : méthode des Successive Shortest Path

Afin de pouvoir appliquer un algorithme itératif pour calculer le flot optimal de coût minimal, il nous faut un premier flot, valide (c’est-à-dire respectant les capacités). Une solution triviale pour construire ce flot initial valide consisterait à appairer la cellule virtuelle θ_I à toutes les « vraies » cellules-filles c'_j, ce qui correspond à un flot de valeur N_J le long de l’arc (s, θ_I) et à des flots de valeur 1 le long des arcs (θ_I, c'_j), et à appairer toutes les « vraies » cellules-mères c_i à la cellule virtuelle θ_J, ce qui correspond à des flots de valeur 1 le long des arcs (c_i, θ_J) et à un flot de valeur N_I le long de l’arc (θ_J, t). Toutefois, cette solution serait assez éloignée de l’optimum (aucune « vraie » filiation n’est établie) et la convergence sera sans doute longue. Une solution moins triviale est donc préférable.

Une autre solution plus répandue [Goldberg and Tarjan, 1989] pour cette première étape consiste à utiliser l’algorithme flot-max de Ford et Fulkerson, qui consiste à rechercher le flot maximal admissible dans le graphe. Cette méthode est basée sur une idée très simple : on essaie de saturer tous les chemins allant de la source s au collecteur t. Pour cela, on remarque qu’un arc n’est pas saturé si le flot f qui le traverse est plus petit que sa capacité maximale C : on dit alors que cet arc a une quantité $\delta C = C - f > 0$ de capacité disponible. La capacité disponible d’un chemin étant égale au minimum des capacités des arcs qui le composent, on peut augmenter le flot de la source s au collecteur t s’il existe un chemin de s à t avec une capacité disponible non nulle : un tel chemin est appelé chemin augmentant, et on augmente le flot de s à t de δC unités de flot en les faisant circuler dans cet arc augmentant. Le flot sera maximal s’il n’existe plus de chemin augmentant.

Cependant, une telle procédure de construction n’est guère intéressante dans notre cas, car un flot éloigné de l’optimum peut aussi être obtenu. En effet, les arcs source ont une grande capacité maximale (N_{dev}), et donc on pourra facilement augmenter le flot en leur ajoutant une unité de flot que l’on redirigera vers la cellule virtuelle θ_J ensuite. Le problème vient de l’existence des ces cellules virtuelles, nécessaires pour répondre à des contraintes pratiques (erreurs de segmentation, cellules qui sortent du champ de vue), qui ont des arcs de grande capacité afin de pouvoir gérer les cas les pires, mais qui n’ont toutefois pas vocation à être utilisées. Il faut donc pénaliser les chemins passant par ces cellules virtuelles, afin d’obtenir un flot initial sans doute plus proche de l’optimum recherché.

Nous nous sommes basés sur une extension de l’algorithme de Ford et Fulkerson adaptée aux graphes pondérés, appelée Successive Shortest Path (SSP), qui consiste à ajouter successivement une unité de flot le long du chemin augmentant le moins coûteux. Un tel chemin sera alors appelé plus court chemin augmentant. Étant donné que chaque plus court chemin augmentant débute par un arc source, lorsque il existe plusieurs plus courts chemins augmentants, nous sélectionnons celui dont l’arc source est le plus libre (celui dont le flot est le plus faible). Cela nous permet d’appliquer une unité de flot en entrée d’un sommet c_i parcouru par un flot nul, au lieu d’appliquer une unité de flot à
5. Suivi temporel

un sommet déjà traversé par un flot non nul. Comme les capacités minimales des arcs source et collecteur pour les « vraies » cellules sont égales à 1, on voit aisément qu’un flot initial valide pourra être construit en poursuivant les recherches successives du plus court chemin augmentant tant qu’il restera au moins un sommet c_i ou c'_j traversé par un flot nul.

Il est possible que, dans certains cas, le chemin augmentant de coût minimal parcoure certains arcs en contre-sens, les coûts étant alors comptabilisés en négatif, le test pour le possible ajout d’une unité de flot étant alors remplacé par le test pour le possible retrait d’une unité de flot. Cette complication produit une difficulté lors de l’étape de recherche du chemin augmentant de coût minimal. Pour les graphes pondérés à coûts positifs, il existe des algorithmes de recherche de plus court chemin ayant une complexité acceptable. L’algorithme de Dijkstra en est un, de complexité $O(N_a + N_a \log N_s)$, où N_a et N_s désignent respectivement les nombres d’arcs et de sommets du graphe, mais ne peut être utilisé sur des graphes possédant des arêtes à pondérations négatives. Cela nous contraint à utiliser l’algorithme des relaxations successives de Bellman-Ford, qui a malheureusement le désavantage d’avoir une complexité théorique supérieure, de type quadratique, en $O(N_a N_s)$.

5.5.2.2. Construction d’un flot initial valide : adaptation de la méthode des relaxations successives

Notre méthode de calcul d’un premier flot valide repose donc sur l’algorithme des relaxations successives de Bellman-Ford, qui a une complexité algorithmique en $O(N_a N_s)$. Avec cet algorithme, on identifie un plus court chemin augmentant, et on augmente de 1 le flot le long de ce chemin pour construire le flot initial. Comme le flot maximal pouvant passer dans notre graphe est limité par la capacité maximale de l’arc retour, à savoir $N_I + N_J$, un flot initial maximal sera atteint au pire lorsque l’on aura utilisé $N_I + N_J$ fois cet algorithme. $N_I + N_J$ étant quasiment le nombre de sommets du graphe (il manque les sommets source, collecteur, et ceux correspondant aux cellules virtuelles), la complexité total de construction du flot initial sera donc de l’ordre de $O(N_a N_s^2)$. Nous allons donc essayer de réduire la complexité calculatoire de l’algorithme des relaxations successives avec quelques considérations pratiques.

La recherche de plus court chemin augmentant, entre la source s et le collecteur t, par la méthode des relaxations successives de Bellman et de Ford consiste à calculer une distance entre la source et le collecteur. Cette distance se calcule par propagation de la distance de sommet en sommet, en ajoutant le coût de l’arc reliant les sommets successifs (voir figure [5.8]), tout en vérifiant qu’un flot puisse effectivement circuler. À l’initialisation, la source s a une distance de 0, tandis que les autres sommets ont une distance infinie. La propagation des distances se fait en examinant successivement chaque arc du graphe. Soient deux sommets s_i et s_j avec des distances associées d_i et d_j, reliés par l’arc (s_i, s_j) de coût γ, de flot f et de capacités minimale et maximale c et C.

- si $f < C$ (on peut augmenter le flot d’une unité au moins), on peut essayer de mettre à jour la distance d_j associée au sommet s_j à partir de la distance d_i, en testant si
5. Suivi temporel

Figure 5.8.: Simulation dans deux cas différents (premier cas à gauche, et deuxième cas à droite) de la propagation de la fonction de distance par relaxations successives (algorithme de Bellman-Ford). Ces deux cas de graphes correspondent aux situations extrêmes pour la complexité pratique de l'algorithme : à gauche le cas le pire, et à droite le meilleur cas. En rouge : noeud source, en vert : noeud collecteur, flèches noires : sens de circulation du flot, flèches violettes : sens de parcours des arêtes (qui dépend de l’ordre de stockage des objets en mémoire). La situation de gauche justifie de parcourir $N_s = 6$ fois d’affilée la succession des $N_a = 5$ arêtes, afin de propager la distance minimale et d’obtenir le chemin de coût minimal (en orange) en remontant depuis le collecteur vers la source. Dans la situation de droite, qui schématisé la situation du graphe biparti, on voit que la distance peut dans certains cas être propageée après une seule itération.
5. Suivi temporel

un chemin venant de \(s_i \) permet d’avoir une plus petite distance :

\[
d_j \begin{cases}
= d_i + \gamma & \text{si } d_j > d_i + \gamma \\
\text{reste inchangé} & \text{sinon}
\end{cases}
\]

– si \(f > c \) (on peut diminuer le flot d’une unité au moins), on peut essayer de mettre à jour la distance \(d_i \) associée au sommet \(s_i \) à partir de la distance \(d_j \), en testant si un chemin venant de \(s_j \) permet d’avoir une plus petite distance :

\[
d_i \begin{cases}
= d_j - \gamma & \text{si } d_i > d_j - \gamma \\
\text{reste inchangé} & \text{sinon}
\end{cases}
\]

Bellman et Ford ont montré que cette propagation est nécessairement terminée après avoir répété \(N_s \) fois un traitement de chacune des \(N_a \) arêtes, d’où la complexité annoncée. Toutefois, ce nombre maximal de traitements représente les cas dans lesquels l’ordre de parcours choisi pour les arêtes serait le pire possible (voir figure 5.8 à gauche). On peut donc améliorer la complexité pratique de cet algorithme avec ces 2 considérations pratiques.

– Si un des \(N_s \) traitements de chacun des \(N_a \) arcs du graphe ne produit aucune modification de la fonction de distance sur l’ensemble des sommets, il est rigoureusement impossible que ces distances soient modifiées à l’itération suivante, étant donné que la situation initiale sera exactement la même. La propagation a donc convergé, et le plus court chemin augmentant est identifié.

– L’ordre du parcours du graphe est important. Dans une situation comme la nôtre, tous les chemins augmentants calculés lors des premières itérations relierez le collecteur à la source par un chemin long de seulement trois arcs, en n’empruntant aucun arc en sens inverse. Si on choisit un ordre de parcours des arêtes qui privilégie une propagation rapide de l’information de la source vers le collecteur, par exemple en évaluant d’abord les arcs sources, puis les arcs entre cellules, puis les arcs collecteurs (soit une propagation en largeur plutôt qu’en profondeur), l’algorithme converge plus rapidement.

Les résultats numériques montrent que la méthode modifiée de recherche du plus court chemin augmentant s’effectue en un nombre de traitements d’arcs qui pourra être compris entre \(2N_a \) et \(5N_a \) en fonction de la complexité de la situation, et du flot déjà existant, ainsi que de l’ordre d’évaluation des arêtes. Cela confère à la recherche d’un premier flot valide une complexité pratique de l’ordre de \(O(N_aN_s) \). Cela a une influence non négligeable puisque l’on peut mesurer un temps d’exécution de 2 secondes au lieu de 1500 pour une situation classique, avec un graphe de \(N_s = 2000 \) sommets et \(N_a = 15000 \) arêtes.

5.5.2.3. Calcul du flot optimal de coût minimal

Le flot valide initial va ensuite être transformé en flot de coût minimal. La technique la plus couramment employée consiste à détecter des cycles résiduels (ce sont des ensembles d’arcs formant un cycle qui peut accueillir une unité de flot supplémentaire, tout
en continuant à respecter les contraintes imposées par les capacités), et à augmenter localement le flot le long des cycles résiduels ayant un coût négatif, afin de diminuer le coût du flot total. L’opération de recherche de tels cycles peut aboutir à des algorithmes de complexité élevée, aussi de nombreuses solutions ont été développées afin d’accélérer cette recherche.

Nous avons utilisé dans ce travail la méthode la plus générale, dite des arcs non conformes (voir annexe C). Cette méthode consiste à attribuer un potentiel à chaque sommet du graphe, potentiel qui sera mis à jour au fur et à mesure du déroulement de la méthode. Les potentiels au bornes d’un arc, associés à ses mesures de coût et de flot, permettent de définir une mesure d’indice de conformité de l’arc. Ces mesures d’indices permettent à leur tour d’identifier les arcs candidats pour une modification de flot qui entraînera une diminution du coût global.

5.5.2.4. Lien entre le flot final et le mapping optimal

Le principe de la recherche des lignages comme un calcul de flot est de considérer qu’il y a une filiation entre une cellule-mère c_i et une cellule-fille c'_j s’il y a un flot qui passe par l’arc reliant les deux cellules (cf figure 5.6). A l’itération n, étant donné un flot de coût minimal, on peut donc déduire pour toute cellule-mère c_i l’ensemble de ses cellules-filles $\{c'_j\}$ si il existe, on obtient ainsi le mapping optimal M^*_n.

5.5.3. Calcul de l’ensemble des lignages L_n

Le mapping M^*_n a permis de déterminer un ensemble de lignages $\{(c_i, \{c'_j\})\}$. Cependant, certains d’entre eux peuvent être erronés, ne serait-ce que parce que notre calcul utilise l’information de distance entre cellules, qui, elle, repose sur une superposition, et donc un calcul de transformation non-linéaire, corrects. Nous allons avoir une approche conservatrice afin de ne conserver que les lignages qui sont biologiquement plausibles.

5.5.3.1. Quelques propriétés « biologiques »

Les propriétés qui suivent vont nous permettre d’identifier des lignages potentiellement erronés.

– Propriété de croissance. Le volume total des descendantes d’une cellule-mère est nécessairement supérieur ou égal au volume de la cellule-mère. Soit, pour une seule génération :

\[
\forall i \quad \text{vol} (c_i) \leq \sum_{i'} \text{vol} (i'c'_i)
\]

– Propriété de connexité. Les filles d’une même lignée doivent être adjacentes, c’est-à-dire former une seule composante connexe.

– Propriété d’adjacence. Les relations d’adjacences (cf section 5.2.2) entre cellules sont préservées par la division cellulaire, dans le sens de déroulement du temps.

\[
c_i \in \mathcal{N} (c_j) \implies \{i'c'_i\} \in \mathcal{N} \{(j'c'_j)\}
\]
5. Suivi temporel

Nous allons utiliser ces propriétés pour évaluer les lignages obtenus à partir du mapping optimal M^*_n. Nous avons traduit les deux premières propriétés précédentes en deux conditions, qui sont décrites ci-après.

- Le volume de l’ensemble des cellules de la descendance doit être plus grand que le volume de la cellule-mère, à ϵ près (pour tenir compte des possibles erreurs de segmentation).
- Les cellules de la descendance doivent former une seule composante connexe.

Ces conditions peuvent être évaluées pour chaque cellule-mère et sa descendance, indépendamment des autres cellules-mères. La troisième propriété est particulière, puisqu’elle met en jeu plusieurs cellules-mères. Nous allons à nouveau être conservateurs ici, afin d’éviter les erreurs de lignages. Celles-ci peuvent avoir pour cause des erreurs dans le calcul de la transformation non-linéaire T^*_n. Cette dernière est sans doute bien évaluée près des lignages de L_{n-1} ayant servi à son initialisation, et la survenue d’erreurs est plus probable lorsque l’on se situe loin de ces lignages. Nous allons donc sélectionner les lignages issus de M^*_n selon leur adjacence par rapport aux lignages de L_{n-1}.

- Les lignages dont la cellule-mère c_i n’est pas adjacente à au moins N_{minadj} cellules-mères déjà présentes dans L_{n-1} sont rejettés : l’ensemble L est donc construit par propagation, avec un facteur de prudence N_{minadj} généralement pris strictement supérieur à 1.
- Toute relation d’adjacence entre la cellule-mère c_i et les cellules-mères déjà présentes dans L_{n-1} doit être vérifiée par les cellules-filles, à λ erreurs près (on permet que λ relations d’adjacence ne soit pas respectées, pour tenir compte d’éventuelles erreurs). Dans la pratique, on choisit $\lambda < N_{minadj}$. De cette manière il ne peut pas y avoir de lignées validées qui ne conservent aucune adjacence par le lignage).

5.5.3.2. Construction de L_n à partir de L_{n-1}

Nous allons donc construire un nouvel ensemble de lignages, L_n, à partir de l’ensemble L_{n-1} des lignages ayant servi à calculer la transformation non-linéaire. Pour faire évoluer l’ensemble des lignages, nous avons choisi la manière de procéder la plus robuste possible. Cette manière consiste à faire participer les couples qui sont candidats à l’ajout à L pour l’évaluation du respect des adjacences, mais de restreindre la sélection des couples à ajouter à ceux qui étaient « suffisamment » adjacents à L avant son évolution.

A l’itération n, on peut donc écrire la méthode d’évolution de l’ensemble L_{n-1} des lignages vers l’ensemble L_n comme suit :

1. $L_n = L_{n-1}$
2. Construire l’ensemble des lignées candidates à l’ajout à partir du mapping nouvellement calculé M^*_n.
3. Éliminer les lignées ne respectant pas la contrainte de croissance du volume (premier critère).
4. Éliminer les lignées dont les cellules-filles ne forment pas une seule composante connexe (deuxième critère).
5. Suivi temporel

Figure 5.9.: Suivi de la croissance du bouton floral dans les premiers stades de son développement. A gauche, acquisition (b-b”) et segmentation (c-c”) d’images d’un bouton floral du stade 2 au stade 3, sur 4 temps successifs régulièrement espacés, à peu près toutes les 24 heures. A droite, dessin schématique de la croissance du bouton floral, vu en coupe verticale. En vert : lieu des cellules dont le lignage a été expertisé. Étoile : méristème d’inflorescence.

5. Éliminer les lignées qui n’ont pas un minimum de \(N_{\text{minadj}} \) adjacences avec \(L_{n-1} \) (troisième critère).

7. Trier les lignées de la pile par nombre décroissant d’adjacences avec les cellules-mères de \(L_{n-1} \).

a) Dépiler la première lignée, calculer le nombre d’adjacences de la cellule-mère avec les cellules-mères de \(L_{n} \) (il y en a donc potentiellement plus que le nombre d’adjacences avec les cellules-mères de \(L_{n-1} \), et évaluer l’adjacence des cellules-filles suivant le quatrième critère. Si le lignage passe ce critère, on l’ajoute à \(L_{n} \), sinon on l’élimine.

b) On itère tant qu’il reste des lignées dans la pile.

5.6. Résultats

5.6.1. Suivi de séquences de développement de méristème floral

5.6.1.1. Données

Acquisition des données L’algorithme ALT a été utilisé pour effectuer le suivi temporel de quatre boutons floraux : deux suivis à deux temps (flo2 et flo3, un suivi à 3 temps (p62), et un suivi à 4 temps (p60) (voir figure 5.9), soit un total de 7 transitions \(T_{i} \rightarrow T_{i+1} \).

Expertise des segmentations Chaque point de temps a fait l’objet d’une reconstruction multi-angles et d’une segmentation automatique, qui a ensuite été expertisée. De même,
les lignées ont fait l'objet d'une expertise, afin de pouvoir évaluer les lignées calculées automatiquement.

5.6.1.2. Définition des mesures de qualité

En nous basant sur les images segmentées et sur une interface dédiée construite pour l'occasion (voir annexe B), nous avons identifié manuellement un grand nombre de lignages entre les cellules-mères et les cellules-filles de chaque transition, pour des cellules de la surface du méristème (de la première assise de cellules, c'est-à-dire les plus faciles à expertiser), aussi bien que les cellules internes (deuxième assise de cellules et centre quiescent). Nous avons ensuite comparé les lignages obtenus automatiquement par application de la méthode automatique avec ces lignages expertisés.

Nous devons donc comparer un ensemble de lignages calculés automatiquement par la méthode proposée \(\{ (c_i, \{ c'_{i, j} \}) \} \) avec un ensemble de lignages expert \(\{ (c_i, \{ c''_{i, j} \}) \} \). Dans la suite, on appelle \(N'_mère \) le nombre de cellules-mères de l'ensemble de lignages expert, et \(N_1 \) le nombre de cellules-mères qui sont associées exactement aux mêmes cellules-filles dans les lignages automatique et expert. De même, on appelle \(N'_fille \) le nombre de cellules-filles de l'ensemble de lignages expert, et \(N_2 \) le nombre de cellules-filles qui sont associées à la même cellule-mère dans les lignages automatique et expert. Nous définissons alors deux pourcentages de bonne identification pour évaluer le succès de notre méthode.

- le pourcentage de lignées bien identifiées, \(s_l = \frac{N_1}{N'_mère} \)
- le pourcentage de cellules-mères bien identifiées, \(s_m = \frac{N_2}{N'_fille} \)

Si on appelle \(l_i = (c_i, c_{i1}, c_{i2}, c_{i3}, ..., c_{in_i}) \) le lignage automatiquement détecté qui associe la cellule-mère \(c_i \) à ses filles et \(l'_i = (c_i, c'_{i1}, c'_{i2}, c'_{i3}, ..., c'_{in_i}) \) le lignage expertisé, on peut définir des pourcentages de bonne identification des lignages en comparant les lignages de \(L = \{ l_i \}_{i=1,...,N_I} \) et l'ensemble \(L' = \{ l'_i \} \) des lignages expertisés.

Pour mieux comprendre la variabilité de ces mesures par rapport à des contextes de difficultés différentes, nous avons identifié plusieurs paramètres permettant de quantifier la difficulté des situations rencontrées lors du calcul de lignage.

- Le taux global de division, c'est-à-dire le nombre de cellules-filles expertisées divisé par le nombre de leurs cellules-mères :
 \[t_{div} = \frac{N'_fille}{N'_mère} \]
- Le taux global de dilatation, c'est-à-dire le volume total des cellules-filles expertisées divisé par le volume total de leurs cellules-mères :
 \[t_{dil} = \frac{\sum_i \sum_{j'} \text{vol}(c''_{i, j'})}{\sum_i \text{vol}(c_i)} \]
- Le ratio moyen de division, c'est-à-dire le taux moyen de cellules-filles sur la population des \(N'_mère \) cellules-mères expertisées :
 \[r_{div} = \frac{1}{N'_mère} \sum_i \text{card}(\{ c'_{i, j'} \}) = t_{div} \]
- Le ratio moyen de dilatation, c'est-à-dire le taux moyen de dilatation des cellules-filles sur la population des \(N'_mère \) mères expertisées :
5. Suivi temporel

\[r_{\text{dil}} = \frac{1}{N'_{\text{mere}}} \sum_i \sum_{i''} \frac{\text{vol}(i'')}{\text{vol}(c_i)} \]

- L’écart-type des divisions sur l’ensemble des lignées expertisées :

\[\sigma_{r_{\text{div}}} = \sqrt{\frac{1}{N'_{\text{mere}}} \sum_i (\text{card} (\{i''\}) - r_{\text{div}})^2} \]

- L’écart-type de la dilatation sur l’ensemble des lignées expertisées :

\[\sigma_{r_{\text{dil}}} = \sqrt{\frac{1}{N'_{\text{mere}}} \sum_i \left(\frac{\sum_{i''} \text{vol}(i'')}{\text{vol}(c_i)} - r_{\text{dil}} \right)^2} \]

5.6.1.3. Résultats quantifiés du calcul des lignées

Les résultats obtenus montrent une forte dépendance à la complexité du problème, exprimée en terme de quantité de déformation, ou en terme de quantité de déformation différentielle.

5.6.1.4. Analyse de variabilité et temps de calcul

L’algorithme ALT s’exécute en un temps de calcul assez élevé, typiquement entre 60 et 150 minutes par transition \(T_i \rightarrow T_{i+1} \) sur un ordinateur de type standard (Dell Latitude D820 2.4 GHz, 2Go de RAM). Nous avons cependant pris soin de produire un algorithme de lignage de complexité polynomialment bornée, afin de s’assurer que l’augmentation du temps de calcul avec le nombre de cellules reste limitée.

5.6.2. Reconstruction 4D du tissu en croissance

Nous avons développé, en collaboration avec Vincent Mirabet de l’ENS-Lyon et Eric Moscardi de l’équipe INRIA-VirtualPlants un certain nombre d’outils de visualisation (voir figures 5.13, 5.14 et 5.18) qui ont permis la validation des lignages calculés, et qui ont l’avantage de fournir la possibilité d’explorer les parties internes du tissu et leur évolution dans le temps.

Pour finir, j’ai développé une technique de construction de vidéo permettant de suivre la croissance du tissu dans le temps. Cela nécessite de construire des images intermédiaires virtuelles entre les deux acquisitions, afin d’avoir une croissance continue. La technique est décrite dans ce qui suit.
5. Suivi temporel

Figure 5.10. Mesure du pourcentage de lignées bien identifiées en fonction du taux moyen de dilatation et du taux moyen de division.
Figure 5.11.: Mesure du pourcentage de cellules-mères bien identifiées en fonction du taux moyen de dilatation et du taux moyen de division.
5. Suivi temporel

Figure 5.12.: Pourcentage de lignées bien identifiées en fonction de la croissance différentielle (mesurée par l’écart-type de la dilatation des cellules sur la population des lignages expertisés). Le graphique suggère qu’il semble exister un lien fort entre ces deux variables.

Figure 5.13.: Visualisation des lignages calculés automatiquement durant la dernière transition de p60. A gauche : visualisation des lignages expertisés, à savoir les deux premières assises cellulaires, et le centre quiescent. A droite : visualisation des lignées attribuées automatiquement. Flèche blanche : une erreur de lignage, flèche noire : cellule se divisant en 4 cellules-filles.
5. Suivi temporel

Figure 5.14. Différentes types de visualisation construites pour l’observation des suivis des lignées cellulaires. En haut à droite : visualisation des cellules des sépales (en bleu) avant la formation des organes, grâce au suivi. En haut à gauche : visualisation en trois dimensions du modèle des cellules avec un effet 3D obtenu en mettant des lunettes avec un œil vert et un œil rouge.

5.6.2.1. Positionnement des images dans un référentiel commun

Une fois fini le calcul des lignées cellulaires dans tout le bouton floral, nous avons calculé pour chaque couple d’images successives (I_i, I_{i+1}) une transformation rigide $T_{r, i \rightarrow i+1}$ puis une transformation non-linéaire $T_{nl, i \rightarrow i+1}$ afin de les superposer. En combinant ces transformations, les volumes et les segmentations peuvent être rééchantillonnés dans un référentiel commun, sans déformations (voir figure 5.15). Nous choisissons de repositionner toutes les images dans le référentiel de la dernière image (l’image au temps 3, I_3, dans la figure 5.15). Il suffit pour cela de combiner les transformations rigides calculées lors du recalage des paires d’images successives. Par exemple, on pourra écrire l’équation de rééchantillonnage de I_0 l’image au temps 0 dans le référentiel commun (celui de I_3) :

$$ I_{0, com} = T_{rig, com, 0} \circ I_0 = T_{r, 0 \rightarrow 1} \circ T_{r, 1 \rightarrow 2} \circ T_{r, 2 \rightarrow 3} \circ I_0 $$

5.6.2.2. Composition des transformations pour déterminer la déformation résiduelle

Nous allons faire un morphing 3D entre les acquisitions repositionnées rigide-ment, en adoptant l’hypothèse simplificatrice que la croissance de la plante est linéaire par morceaux, chaque morceau correspondant à une transition $[t_i; t_{i+1}]$.

À l’étape précédente, nous avons calculé les transformations permettant de positionner les images dans un référentiel commun, sans déformations. Nous devons alors déterminer les déformations résiduelles exprimées dans ce référentiel commun. On notera une telle transformation non-linéaire exprimée dans le référentiel commun $T_{nl, com, i \rightarrow i+1}$, et elle nous permettra de rééchantillonner $I_{i, com}$ pour la superposer avec $I_{i+1, com}$.

Il faut tout d’abord remarquer qu’on peut calculer les transformations totales $T_{tot, i \rightarrow 3}$ (incluant les déformations) de chaque image I_i vers I_3 dans leur référentiel initial comme suit :
5. Suivi temporel

\[T_{tot, 2 \rightarrow 3} = T_r, 2 \rightarrow 3 \circ T_{nl, 2 \rightarrow 3} \]

\[T_{tot, 1 \rightarrow 3} = T_{tot, 1 \rightarrow 2} \circ T_{tot, 2 \rightarrow 3} = T_r, 1 \rightarrow 2 \circ T_{nl, 1 \rightarrow 2} \circ T_r, 2 \rightarrow 3 \circ T_{nl, 2 \rightarrow 3} \]

\[T_{tot, 0 \rightarrow 3} = T_{tot, 0 \rightarrow 1} \circ T_{tot, 1 \rightarrow 2} \circ T_{tot, 2 \rightarrow 3} = T_r, 0 \rightarrow 1 \circ T_{nl, 0 \rightarrow 1} \circ T_r, 1 \rightarrow 2 \circ T_{nl, 1 \rightarrow 2} \circ T_r, 2 \rightarrow 3 \circ T_{nl, 2 \rightarrow 3} \]

Si on note \(T_{res, com, i \rightarrow i+1} \) la déformation résiduelle permettant de superposer \(I_{i, com} \) avec \(I_{i+1, com} \), on peut alors l’exprimer comme suit :

\[T_{res, com, i \rightarrow i+1} = T_{rig, com, i \rightarrow i+1} \circ T_{nl, i \rightarrow i+1} \circ T_{rig, com, i+1} \]

5.6.2.3. Sélection des cellules qui doivent apparaître dans la vidéo

Seule une sous-partie des cellules peut être observée dans toutes les acquisitions de la série. Afin de sélectionner les cellules qui vont vraisemblablement apparaître dans chacune des images, on construit un masque des cellules \(M_i \) pour chaque instant \(t_i \), puis on déforme ce masque vers la géométrie référence, en se servant des transformations totales calculées à l’étape précédente :
5. Suivi temporel

Figure 5.16.: En haut, de gauche à droite, les quatre segmentations des images \(I_0, I_1, I_2 \) et \(I_3 \) avant positionnement dans la géométrie référence. En bas : Cellules sélectionnées dans les différents mêmes segmentations, après positionnement dans la géométrie référence.

\[
M_{i, \text{com}} = T_{\text{rig, com}, i} \circ M_i
\]

L’intersection de ces masques superposés dans la géométrie référence nous indique la sous-partie du domaine référence qui a été observée à chaque instant. On parcourt alors le chemin en sens inverse en appliquant à l’intersection de ces masques les transformations \(T_{\text{tot}, i}^{-1} \) pour aller retrouver quelles cellules doivent être sélectionnées dans les autres instants (voir figure 5.16).

5.6.2.4. Identification des cellules qui doivent se diviser

Afin de mettre en valeur la division des cellules, nous allons appliquer une coloration à certaines cellules de la segmentation. Nous devons alors séparer la population de cellules en deux groupes : les cellules qui se divisent, ou proviennent d’une division, et les autres. Plus précisément, pour les instants 0, 1 et 2, nous allons devoir identifier les cellules-mères qui se divisent, et pour les instants 1, 2 et 3 nous allons devoir identifier les cellules-filles qui proviennent d’une division. Cette identification est instantanée en utilisant le lignage calculé automatiquement par ALT.

5.6.2.5. Rendu 3D des cellules

Pour visualiser les cellules dans un contexte 3D, on calcule une triangulation de leur surface par extraction d’isosurface (algorithme des decimated marching cubes), après les avoir légèrement érodées, comme dans la figure 5.17. Et on appliquera en particulier une coloration spéciale pour distinguer les cellules en division des autres cellules.
5. Suivi temporel

![Figure 5.17](image)

FIGURE 5.17. Construction d’un maillage de la surface des cellules et visualisation des divisions. De gauche à droite : segmentation initiale, après une érosion pour individualiser les cellules, maillage calculé et affiché, et enfin rendu de Gouraud. A droite : individualisation des cellules en division en leur donnant une couleur différente (ici, orange) par rapport aux cellules ne se divisant pas.

5.6.2.6. Calcul du morphing 3D entre deux images successives repositionnées à l’aide de la transformation résiduelle

On considère ici que l’on a deux volumes successifs I_i et I_j et la transformation résiduelle qui va de I_i vers I_j et qui permet de superposer I_j sur I_i. Pour produire un film, nous devons générer les images intermédiaires entre I_i et I_j. Si on suppose que le temps va de 0 (I_i) à 1 (I_j), on peut générer des images recalées de I_i et I_j à un temps intermédiaire t, et les mélanger dans un rendu.

La transformation T_{ij} peut être réécrite :

$$T_{ij} = Id + U_{ij}$$

où U_{ij} est un champ de vecteurs qui décrit la déformation. Si nous supposons que la déformation est linéaire avec le temps, la transformation qui va du temps 0 au temps t est $Id + t.U_{ij}$, que nous noterons (abusivement) $t.T_{ij}$. Pour rééchantillonner I_i au temps t, nous calculons l’inverse de cette transformation, i.e. $(t.T_{ij})^{-1}$. De la même manière, la transformation $-(t^{-1} - 1).t.T_{ij}$ permet de rééchantillonner I_j au temps t [Rey, 2002].

En utilisant les transformations ainsi décrites, les cellules segmentées de I_i et I_j peuvent être rééchantillonnées à tout temps intermédiaire t. On en calcule alors un rendu surfacique dans une scène 3D, qui nous permet de construire deux vues $S_{i,t}$ et $S_{j,t}$. L’image intermédiaire virtuelle S_t du film est calculée en mélangeant les deux vues 2D :

$$S_t = (1 - t).S_{i,t} + tS_{j,t}$$

Il faut noter qu’avec une telle procédure, toutes les divisions semblent survenir simultanément, au temps $t = 0.5$ (voir figure 5.18).
5. Suivi temporel

Figure 5.18.: Calcul du morphing entre deux acquisitions successives (à 46 et 70 h). Le diagramme du haut montre comment les deux images sont mélangées pour tout temps intermédiaire \(t \) (courbe bleue). Dans l’image du bas, les cellules qui se divisent sont mise en couleurs avec une gamme passant successivement du vert au rouge puis du rouge au vert, pour les mettre en évidence.
5. Suivi temporel

5.7. Conclusion et perspectives

Notre algorithme de suivi a permis à nos collaborateurs biologistes de révéler et de mettre en valeur de nouveaux éléments du fonctionnement du méristème apical d’Arabidopsis. Par ailleurs, l’algorithme de mapping par calcul de flot de coût minimal a pu nous resservir pour calculer le mapping entre les segmentations automatiques et les segmentations expertisées afin de valider la partie segmentation de ces travaux (voir 4.6.4.2), l’adaptation ayant consisté à supprimer les contraintes biologiques dédiées au suivi temporel des cellules.

Le facteur de non-respect des adjacences, que nous avons introduit pour faire face aux erreurs de segmentation et au biais de positionnement introduit par la quantification de l’image pourrait être utilisé sous la forme d’un ratio d’adjacences non-préservées. Cette nouvelle manière de considérer le respect des adjacences ouvre la voie au calcul des lignages dans le cas de cellules ne respectant pas autant les adjacences que les cellules végétales, comme c’est le cas par exemple dans les tissus animaux.

Afin d’accélérer le schéma de calcul, il sera mis en place une méthode dans laquelle nous déverrouillerons la contrainte sur le nombre minimal d’adjacences nécessaire pour autoriser l’évaluation d’un lignage, afin de pouvoir contrôler la vitesse de propagation des lignages, et nous ajouterons une nouvelle fonctionnalité permettant à l’utilisateur de contrôler les lignages déterminés automatiquement au fur et à mesure de la propagation. Ces améliorations conduiront à une utilisabilité et à une adaptabilité renforcée de la méthode proposée qui pourra assister de nombreuses communautés de biologistes dans l’avenir.
6. Construction de maillages volumiques

6.1. Introduction

Les méthodes précédemment exposées permettent d’observer un méristème en croissance, et de quantifier un certain nombre de mesure (taux de divisioncellulaire, etc). Cela a évidemment un intérêt en soi, mais les segmentations obtenues et leur suivi en 4D offrent des possibilités bien plus importantes.

En effet, les mécanismes physiologiques qui gouvernent la croissance de la plante et l’apparition d’organe font toujours l’objet de nombreux travaux. La modélisation de ces mécanismes, comme la morphogénèse, fait intervenir les couplages entre divers phénomènes, comme la régulation par les gènes ou des contraintes mécaniques.

Ainsi, la modélisation de la phyllotaxie fait intervenir les flux d’une hormone, l’auxine, entre les cellules.

De tels modèles (en cas que mécanismes d’interprétation) peuvent être confrontés à la réalité par l’intermédiaire de modèles (en tant que représentation) in silico du méristème. Ces derniers peuvent être très schématisé, comme dans Iwamoto et al., 2006, où un modèle géométrique idéalisé de la racine est utilisé. Toutefois, si un tel modèle peut être un très bon support pour la réflexion et l’étude d’hypothèses, il reste peu réaliste.

L’idéal est alors de confronter les modélisations à des données réelles. Il y a à cela plusieurs avantages :

- le réalisme des expérimentations, puisqu’on utilise des modèles géométriques construits à partir de données réelles, comme dans Barbier de Reuille et al., 2005 où le flux d’auxine est étudié à la surface du méristème, et,
- si l’on dispose d’une série temporelle,
 - le caractère prédictif de la modélisation peut être évalué en comparant l’évolution du modèle par rapport à l’évolution des données
 - l’utilisation de la série entière peut servir à calibrer la modélisation, par exemple en identifiant des paramètres cachés.

L’objet de ce chapitre est donc la construction d’un modèle géométrique tridimensionnel du méristème qui pourrait ensuite servir à l’étude des mécanismes physiologiques à l’œuvre lors de la croissance. Afin d’avoir un modèle facilement manipulable, nous ne chercherons pas une modélisation géométrique très précise, mais seulement suffisante pour rendre compte de l’arrangement des cellules : celles-ci pourraient donc être décrites par un nombre très réduit de points (voir figure 6.1).
6. Construction de maillages volumiques

Figure 6.1.: Modèle géométrique associé à une cellule. À gauche une cellule segmentée c_i, et à droite la partie associée du modèle. Le volume délimité par le maillage correspond à la cellule c_i, les faces correspondent aux adjacences entre c_i et ses voisines, les arêtes correspondent aux extrémités des faces ou intersections entre faces et les sommets correspondent aux extrémités des arêtes, ou intersections entre arêtes.

6.2. Problématique

Pour une image I nous disposons d’une segmentation S qui est une partition en cellules : $S = \{c_i\}, \ i = 1 \ldots N(S)$. Notre but est donc d’extraire un modèle polyédrique simple, voire simplifié, de la frontière de chacune des cellules de la segmentation.

Extraire la surface d’un objet volumique (composé de voxels) est un problème relativement ancien, lié à des besoins de visualisation. Historiquement, l’intérêt s’est porté sur la construction d’une surface séparant un objet d’intérêt (donc déjà segmenté) du fond, ou plus exactement de son complémentaire [Artzy et al., 1981, Gordon and Udupa, 1989]. Notons qu’en plus des algorithmes de calcul ou de suivi des surfaces, l’intérêt s’est aussi porté sur la preuve que la surface extraite séparait bien l’objet de son complémentaire [Herman and Webster, 1983, Kong and Udupa, 1992]. Cet intérêt n’est pas purement académique : l’algorithme dit des marching cubes [Lorensen and Cline, 1987], qui propose une heuristique astucieuse pour l’extraction d’une isosurface dans une image tridimensionnelle, pouvait générer une surface trouée ; ce comportement a évidemment été étudié et corrigé [Van Gelder and Wilhelms, 1994].

Le problème révélé par l’algorithme des marching cubes provient de la difficulté de définir une relation de connexité dans une grille discrète : il existe ainsi trois relations de connexité possibles dans une grille parallélépipédique, les 6-, 18- et 26-connexités, nommées ainsi d’après le nombre de points que compte un voisinage selon la connexité choisie [Kong and Rosenfeld, 1989]. Il est par ailleurs connu qu’il faut utiliser des relations de connexité différentes pour l’étude d’une image binaria, par exemple la 26-connexité pour l’objet et la 6-connexité pour son complémentaire : cela permet d’éviter le paradoxe de connexité [Kong and Rosenfeld, 1989], et en particulier d’assurer des propriétés de séparation entre l’objet et son complémentaire. Herman a formalisé ce point en introduisant la notion de $\kappa\lambda$-Jordan surfaces qui est une surface qui sépare un intérieur qui est κ-connexe d’un extérieur qui est λ-connexe.

Étant donné que chacune des cellules est une composante 6-connexe, il nous faudrait...
6. Construction de maillages volumiques

une surface (plus précisément une variété de dimension 2) séparant deux composantes 6-connexes. Malheureusement, la surface séparant 2 composantes 6-connexes peut ne pas être une telle variété.

Intuitivement, la difficulté peut s’expliquer avec une décomposition de la grille parallélepiddélique en éléments de dimensions 0, 1 ou 2 (cf figure 6.2). La frontière d’un ensemble de voxels sera faite de ces éléments, c’est-à-dire de sommets (pointels), arêtes (lignels) et surfaces (surfels). Si les surfaces séparent 2 voxels, les arêtes et les sommets sont à la frontière respectivement de 4 voxels et de 8 voxels. Si l’on considère un groupe de 2x2x1 voxels, où 2 voxels diagonalement opposés appartiennent à une même cellule \(c \), et où les 2 autres voxels appartiennent à d’autres cellules, l’arête au centre de ce groupe de voxels constitue une auto-intersection de la surface de la cellule \(c \) (ce cas, ramené dans le plan, est décrit dans la figure 6.3). Le même problème survient dans un groupe de 2x2x2 voxels où les 2 voxels diagonalement opposés appartiennent à la même cellule, et les 6 autres voxels appartiennent à d’autres cellules.

Cette difficulté est contournée lorsque des connectités différentes sont utilisées pour l’objet et son complémentaire (cf figure 6.3). On pourrait imaginer utiliser 2 connectités différentes pour 2 cellules adjacentes, toutefois le problème surviendrait alors aux lieux d’adjacence de 3 cellules.

La caractérisation de la frontière d’un ensemble de voxels a été étudié par Latecki dans [Latecki, 1997] où il définit une image binaire bien constituée comme une image où la surface séparant l’objet de son complémentaire ne s’auto-intersecte pas, et est donc une variété de dimension 2 : Latecki montre qu’une image est bien constituée si elle ne contient aucune des 2 configurations de la figure 6.4 décrites ci-dessous.

- Configuration de type 1 (C1) : deux voxels appartenant à l’objet \(c_1 \) occupent deux coins opposés d’un carré de taille 2 x 2 voxels, les deux autres voxels du carré appartenant à son complémentaire \(c_0 \).
- Configuration de type 2 (C2) : deux voxels appartenant à \(c_1 \) occupent deux coins opposés d’un cube de taille 2 x 2 x 2 voxels, les six autres voxels du cube appartenant à \(c_0 \), ou bien deux voxels appartenant à \(c_0 \) occupent deux coins opposés d’un cube de taille 2 x 2 x 2 voxels, les six autres voxels du cube appartenant à \(c_1 \).
6. Construction de maillages volumiques

Figure 6.3.: Exemple d’auto-intersection d’une courbe définissant la frontière d’un ensemble de pixels. Dans un groupe de 2×2 pixels, il y a deux pixels gris diagonalement opposés et deux pixels blancs (à gauche). La frontière des pixels gris est composée des arêtes et des sommets en noir (au centre), et le sommet du milieu est une auto-intersection de la surface : cela est dû au traitement symétrique des pixels blancs et gris. Si des connexités différentes sont utilisées pour l’objet et son complémentaire, l’auto-intersection disparaît. A droite la 8-connexité est utilisée pour les pixels gris et la 4-connexité pour les pixels blancs, ce qui permet de définir une courbe qui ne s’auto-intersecte pas : c’est ce qui est réalisé implicitement dans une approche de type marching cubes.

Une méthode de réparation topologique des images binaires a été proposée dans [Siqueira et al., 2008]. Elle consiste à détecter séquentiellement les configurations décrites ci-dessus, et à ajouter des points à l’objet afin de les faire disparaître. Elle fait donc jouer un rôle asymétrique à l’objet et à son complémentaire : notre problème est plus complexe, puisque nos images contiennent plusieurs objets. Par ailleurs, elle ne garantit pas de conserver la topologie de l’image initiale (des composantes connexes peuvent être fusionnées).

Après avoir présenté quelques considérations sur la prévention de l’apparition des singularités, nous allons donc proposer une méthode de réparation adaptée aux images avec plusieurs objets, en essayant de préserver au mieux la topologie de l’image.

6.3. Prévenir les singularités

Dans notre étude, la segmentation S d’une image initiale I est obtenue par la transformation en ligne de partage des eaux de I à partir d’une image de graines G.

La transformation en ligne de partage des eaux construit une segmentation par simulation d’immersion à partir d’un ensemble de graines $\{g_i\}_{i=1}^{N_g}$ constitué des N_g composantes 6-connexes de l’image de graines G. La simulation d’immersion consiste à propager les étiquettes en 6-connexité, en fonction des intensités de l’image, considérée comme un relief topographique.

Les singularités engendrées par la segmentation en ligne de partage des eaux se forment au moment où les régions se rejoignent. Dans [Vincent and Soille, 1991], les auteurs men-
6. Construction de maillages volumiques

Figure 6.4.: Les deux configurations singulières rencontrées dans une image mal-constituée [Latecki, 1997]. (1) : singularité au niveau d’une arête et (2) : singularité au niveau d’un sommet.

tionnent que la règle utilisée pour donner une étiquette à un voxel voisin de 2 bassins versants influe sur la régularité des régions obtenues. Nous avons donc étudié plusieurs règles différentes, et nos expérimentations ont montré (cf section 4.3.2.3) que l’utilisation d’une règle qui attribue l’étiquette la plus représentée dans le voisinage permet de réduire considérablement le nombre d’occurences des configurations singulières (C1) ou (C2) des segmentation, et quantitativement, de diviser N_{C1} par 10 et N_{C2} par 50 (cf tableau 4.1).

Toutefois, nous n’avons pas identifié de règle qui nous aurait permis de prévenir toutes les singularités, aussi nous sommes-nous intéressés à la correction de ces singularités.

6.4. Réparation topologique d’une image n-aire

Par extension de la notion d’image binaire, une image n-aire est une image qui contient plusieurs objets c_i, chacun d’entre eux étant repéré par une étiquette différente, baignant dans le fond d’image, qui est le complémentaire de l’union des objets, et que nous pourrions noter $c_0 = \bigcup_i c_i$. Nous allons donc essayer d’élimer au mieux les configurations singulières afin d’obtenir une image n-aire bien constituée au sens de Latecki, c’est-à-dire ne contenant aucune des configurations suivantes.

- Configuration de type 1 (C1) : deux voxels de label i occupent deux coins opposés d’un carré de taille 2×2 voxels (cf figure 6.4 gauche), les deux autres voxels du carré présentant un label différent de i. Il y a 3 orientations possibles pour ces carrés qui peuvent être parallèles à l’un des 3 plans XY, YZ ou ZX, et pour chacun d’entre deux, 2 diagonales à tester.
- Configuration de type 2 (C2) : deux voxels de label i occupent deux coins opposés (selon une grande diagonale) d’un cube de taille $2 \times 2 \times 2$ voxels, les six autres voxels présentant un label différent de i (cf figure 6.4 droite), il y a 4 diagonales à tester.
- Configuration de type 2’ (C2’) : six voxels de label i occupent tous les voxels d’un cube de taille $2 \times 2 \times 2$ voxels sauf deux coins opposés (selon une grande diagonale).
6. Construction de maillages volumiques

Il s’agit ici d’une configuration supplémentaire par rapport à celles présentées dans [Latecki, 1997], nécessaire pour l’adaptation au cas des images n-aires et qui est le complémentaire de la configuration précédente. Ici aussi, il y a 4 diagonales à tester. Dans un but d’efficacité, nous allons d’abord identifier les zones à problèmes dans l’image à traiter, zones qui peuvent contenir plusieurs configurations singulières, en dénombrant lesdites configurations. Ensuite, nous présenterons la notion de point doublement simple, qui permet de changer l’étiquette d’un point tout en assurant une propriété d’homotopie, ainsi que des scores qui nous permettrons de choisir le voxel dont il faut modifier l’appartenance. Enfin nous présenterons l’algorithme complet de réparation topologique.

6.4.1. Extraction des zones à problèmes

Pour extraire les zones à problèmes, nous allons dénombrer les configurations singulières. Nous allons donc parcourir l’image segmentée S et étudier chacun des carrés de 2×2 voxels et chacun des cubes de $2 \times 2 \times 2$ voxels. S’ils correspondent à une des configurations singulières C_1, C_2 ou C_2', nous ajoutons 1 à chacun des 4 ou 8 voxels composant le carré ou le cube.

Après le parcours de l’image, nous avons une valeur pour chaque voxel, que nous appelons score d’erreur, et qui correspond au nombre de configurations singulières auxquelles appartient le voxel. Les voxels à 0 sont donc ceux qui n’appartiennent à aucune configuration singulière. Comme nous n’allons appliquer que des corrections locales, nous pouvons extraire les composantes 6-connexes faites de voxels de valeur strictement positive (qui appartiennent donc à au moins une configuration singulière), et traiter indépendamment ces composantes.

6.4.2. Point doublement simple

La réparation topologique se fait en changeant l’étiquette d’un point, c’est-à-dire en changeant la cellule à laquelle il appartient. Il n’est évidemment intéressant de ne considérer cette opération que pour les points appartenant à une configuration singulière, donc à l’une des composante connexe extraite précédemment.

Nous sommes intéressés par conserver la topologie de l’image S, c’est-à-dire toujours avoir le même nombre de cellules, chacune d’entre elles devant rester sans poignée (ou tunnel) et sans cavité. Il nous faut donc définir comment préserver la topologie d’une image n-aire.

En ce qui concerne les images binaires, les points qui peuvent changer de couleur, c’est-à-dire passer de l’objet à son complémentaire ou vice-versa, sont appelés points simples. Rappelons qu’il faut utiliser des connexités différentes pour l’objet X et son complémentaire \overline{X}. Prenons par exemple comme il est d’usage la 26-connexité pour l’objet et la 6-connexité pour son complémentaire. Un point v sera simple s’il vérifie [Bertrand and Malandain, 1994]

$$T_{06}^X(v) = T_{26}^X(v) = 1$$

où :

129
6. Construction de maillages volumiques

- \(T_{06}^X (v) \) est le nombre de composantes 6-connexes de \(X \), 6-adjacentes à \(v \), dans un 18-voisinage de \(v \) (le voxel \(v \) n’étant pas considéré pour ce calcul, ou étant considéré comme appartenant à \(X \)) ,
- \(T_{26}^X (v) \) est le nombre de composantes 26-connexes de \(X \), dans un 26-voisinage de \(v \), (le voxel \(v \) n’étant pas considéré pour ce calcul, ou étant considéré comme appartenant à \(X \)).

Dans le cas d’une image \(n \)-aire, il faut vérifier que la topologie est préservée lorsque le voxel \(v \) passe de l’étiquette \(i \) à l’étiquette \(j \), c’est-à-dire passe de la cellule \(c_i \) à la cellule \(c_j \). Il faut donc vérifier que

1. l’on peut bien le retirer de la cellule \(c_i \) sans modifier la topologie de celle-ci et de son complémentaire, et que
2. l’on peut aussi l’ajouter à la cellule \(c_j \) sans modifier la topologie de celle-ci et de son complémentaire.

Le voxel \(v \) doit donc être \emph{doublement} simple par rapport aux cellules \(c_i \) et \(c_j \). Comme nous considérons la 6-connexité pour les cellules, il faut donc qu’il vérifie

\[
T_{06}^i (v) = T_{26}^{\neq i} (v) = T_{06}^j (v) = T_{26}^{\neq j} (v) = 1
\]

où :
- \(T_{06}^i (v) \) est le nombre de composantes 6-connexes de \(c_i \), 6-adjacentes à \(v \), dans un 18-voisinage de \(v \),
- \(T_{26}^{\neq j} (v) \) est le nombre de composantes 26-connexes de \(\bigcup_{j \neq i} c_j \), dans un 26-voisinage de \(v \).

6.4.3. Critères de choix d’un voxel

La notion de point doublement simple permet de s’assurer que le changement d’appartenance ne changera pas la topologie de l’image \(n \)-aire. Toutefois, plusieurs points d’une zone à problèmes peuvent être simultanément doublement simples. Nous allons nous intéresser ici aux critères pouvant nous guider pour le choix du voxel dont il faut modifier l’appartenance.

Deux considérations peuvent nous guider pour le choix d’un voxel particulier :
- le nombre de configurations singulières qu’il peut permettre de corriger, et
- la régularité géométrique des cellules avant et après la modification.

On définit donc en chaque voxel \(v \) :
- le score d’erreurs, qui est le nombre de singularités \(C_1, C_2 \) et \(C_2’ \) qui contiennent \(v \),
- le score de régularité, qui est le nombre de voxels dans le 6-voisinage de \(v \) qui ont le même label que \(v \). Ce score mesure la « solidité » de l’appartenance de \(v \) à sa région \(r_i \).

Et pour chaque changement possible \(M_v(i \rightarrow j) \), on définit les scores suivants :
- le score de correction, qui est la différence entre le score d’erreur avant et après modification de l’étiquette de \(i \) vers \(j \).
- le score d’amélioration de la régularité, qui est la différence entre le score de régularité avant et après modification. Ce score est d’autant plus élevé que dans le 6-voisinage de \(v \), le nombre de voxels de \(c_j \) est supérieur au nombre de voxels de \(c_i \).
6. Construction de maillages volumiques

Figure 6.5.: Correction d’une 18-singularité. En haut, vue 2D de la singularité, en bas vue 3D de la singularité. En (a) la situation initiale présente une singularité (C1) qui mène à une ambiguïté pour l’attribution de l’arête centrale (point bleu). Parmi les modifications possibles présentées en (b) et (c), c’est la modification (c) qui sera choisie car elle obtient un meilleur score.

On se servira de ces scores pour guider la recherche de la meilleure modification à effectuer à chaque étape (voir figure 6.5).

6.4.4. Algorithme de réparation topologique

Lorsque N voxels de l’image (ou d’une composante connexe d’erreur) sont impliqués dans une singularité, nous avons le choix parmi au plus $6N$ modifications élémentaires. Nous devons alors classer ces modifications pour choisir celle qui convient le mieux. On procède comme suit.

1. On dresse la liste L de toutes les modifications possibles, qui est l’ensemble des modifications élémentaires $(i \rightarrow j)$ telles que v est un voxel d’étiquette i qui appartient à une singularité, et que l’étiquette j est portée par un des 6-voisins de v.

2. On dresse deux sous-listes, L_{topo} et $L_{\text{non-topo}}$ qui contiennent respectivement les modifications qui préservent la topologie, et les modifications qui ne la préservent pas. Ce tri est réalisé en évaluant pour chaque modification $(i \rightarrow j) \in L$, si le voxel
6. Construction de maillages volumiques

v en question est doublement simple relativement à i et à j, en utilisant le test basé sur les nombres de connexité.

3. On classe chacune de ces deux sous-listes en fonction du score de correction, puis on élimine toutes les modifications qui n’obtiennent pas le score maximal de chaque liste, afin de privilégier tout d’abord les modifications qui corrigent le plus de singularités.

4. On effectue un classement des modifications restantes en fonction du score d’amélioration de la régularité. On sélectionne alors dans chacune des listes la modification ayant le score le plus élevé, si elle existe. En particulier, il peut arriver qu’il n’y ait pas de modifications possibles qui préservent la topologie. On appellera les deux modifications sélectionnées \tilde{M}_{topo}, et $\tilde{M}_{\text{non-topo}}$.

Et on décide alors de l’action à effectuer en fonction de l’existence ou non de ces modifications, et des scores qu’elles obtiennent.

1. Si la modification \tilde{M}_{topo} existe, on l’applique si son score de correction est strictement positif (pour assurer la convergence de l’algorithme).

2. Sinon, si $\tilde{M}_{\text{non-topo}}$ existe, on l’applique si son score de correction est strictement positif (pour assurer la convergence de l’algorithme).

3. Sinon, il n’y a plus de corrections possible qui diminue le nombre de singularités. On passe alors à une deuxième phase. Lors du calcul des listes L_{topo} et $L_{\text{non-topo}}$, on ne sélectionnera cette fois-ci que les modifications $(i \rightarrow j)$ pour lesquelles $i > j$ (pour assurer la convergence), avant de les classer et de sélectionner la meilleure, comme précédemment, en autorisant les modifications qui ont un score de correction nul.

Enfin, on actualise la segmentation et la carte d’erreurs.

6.5. Résultats de l’algorithme de réparation

6.5.1. Correction de singularités sur des données synthétiques

On construit une première base de tests contrôlés pour tester l’algorithme, c’est-à-dire une image contenant des singularités C1 organisées en composantes connexes d’erreurs de complexité croissante (voir figure 6.6). Toutes les singularités sont corrigées très rapidement (en un maximum de deux itérations), sans occasionner de modifications de la topologie.

6.5.2. Résultats sur des données expérimentales

Nous appliquons ensuite l’algorithme à trois segmentations de méristèmes. La plupart des composantes connexes d’erreurs (249 parmi 277) peuvent être résolues par des opérations qui préservent la topologie (voir figure 6.7).
6. Construction de maillages volumiques

Figure 6.6. Correction de singularités sur des données synthétiques. De gauche à droite : cas synthétiques de singularités, carte d’erreur, composantes connexes d’erreur, et image après correction.

Figure 6.7. Correction de deux 18-singularités dans le 26-voisinage de deux voxels différents (entourés en rouge dans les deux situations). À gauche, une correction d’une 18-singularité par une modification qui préserve la topologie des régions, et à droite, une correction qui ne préserve pas la topologie. Pour chacun des deux cas, les tableaux montrent les étiquettes des voxels dans le 26-voisinage de v (voxel central en rouge dans le carré du milieu) et la carte d’erreur correspondante. Les tableaux ont ensuite été repris en couleur pour une meilleure lisibilité (couleurs : en vert, bleu, jaune : étiquettes des voxels, en gris : voxels impliqués dans aucune singularité, en blanc : voxels impliqués dans une singularité).
6.6. Construction d’un maillage des cellules

L’objet de ce chapitre est la construction d’un modèle géométrique tridimensionnel du méristème qui pourrait ensuite servir à l’étude des mécanismes physiologiques. Afin d’avoir un modèle facilement manipulable, nous chercherons une modélisation géométrique seulement suffisante pour rendre compte de l’arrangement des cellules.

Par convention, on appellera une Face un ensemble de facettes, qui sont les petits élément rectangulaires qui séparent deux voxels, (voir figure 6.8). On appellera de même une Arête un ensemble d’arêtes (petite section de ligne droite qui sépare deux facettes), la majuscule au début du mot permettant de faire la différence.

![Figure 6.8: Illustration de la méthode de construction du modèle : exemple intuitif du fonctionnement de l’algorithme dans le cas 2D.](image)

L’algorithme consiste à calculer le modèle en calculant successivement les composants du modèle par dimensionalité décroissante. A partir des cellules segmentées (des objets à 3 dimensions), on calculera leur intersection, qui constitueront les Faces (des objets à 2 dimensions). On calculera ensuite l’intersection des ces Faces, qui constitueront les Arêtes (des objets à 1 dimension). Enfin, l’intersection des Arêtes constituera l’ensemble des sommets (voir figure 6.8).

6.6.1. Construction des Faces

Les facettes appartenant à des Faces peuvent être obtenues relativement rapidement, en une passe de l’image, en détectant les couples de voxels 6-connexes d’étiquettes i et j différentes. Ces facettes peuvent avoir trois orientations différentes, suivant si leur vecteur normal est aligné avec l’axe X, Y ou Z du repère de l’image. Après avoir identifié toutes les facettes de l’image, on les réunit en fonction des cellules qu’elles séparent, ce qui donne lieu à un premier ensemble de faces F_{ij}.

Dans le cas parfait, où les cellules seraient toutes parfaitement convexes, les Faces ainsi construites constituerait toutes une seule composante connexe. Dans le cas réel, l’ensemble des facettes séparant deux cellules c_i et c_j peut ne pas être connexe. Nous effectuons donc un parcours des facettes constituant une Face afin d’individualiser les différentes composantes connexes. Afin d’effectuer un parcours rapide de ces facettes, nous calculons au préalable la liste des facettes voisines de chaque facette, c’est-à-dire...
6. Construction de maillages volumiques

celles avec lesquelles elle partage une arête. Comme nous avons éliminé les configurations singulières C1, nous sommes assurés que chaque arête ne peut appartenir au plus qu’à deux facettes séparant les cellules \(c_i \) et \(c_j \).

Au cours du parcours, on peut identifier différents types de facettes. Certaines facettes seront connectées à 4 voisines par leurs arêtes, et nous les appellerons facettes intérieures.
Toutes les autres facettes ont potentiellement au moins une arête disponible pour la connexion avec une facette d’une autre Face, elles constituent donc la bordure de la Face.

6.6.2. Construction des Arêtes

Afin de construire les arêtes, nous devons identifier les Faces qui sont en contact. Pour cela, nous identifions les couples de Faces qui s’intersectent, en calculant leur bounding-box, en les dilatant, puis en en calculant l’intersection de ces dernières.

Pour tout les couples \((F_i, F_j)\) dont l’intersection des bounding-box dilatées est non-nulle, nous parcourons les couples de facettes \((f_k, f_l)\), \(f_k \in F_i \) \(f_l \in F_j \) à la recherche d’une possible connexion par une arête (une arête faisant à la fois la bordure de \(f_k \) et à \(f_l \)). Afin de rendre plus rapide le calcul, nous nous limitons à parcourir les facettes contenues dans l’intersection des bounding-box dilatées.

D’une manière similaire au traitement des facettes, l’ensemble des arêtes ainsi détectées est d’abord classé en fonction des valeurs des étiquettes des quatre voxels adjacents à chaque facette. On sépare ensuite chaque classe, en composantes connexes, suivant le même schéma de propagation que celui utilisé pour les facettes.

6.6.3. Construction des sommets

Les sommets correspondent aux extrémités des Arêtes. On peut noter que dans certains cas, les Arêtes peuvent présenter un ou plusieurs cycles. Dès lors, on ne peut déterminer facilement les extrémités des Arêtes comme c’était le cas pour les Faces et les facettes.

Pour identifier les sommets, nous identifions quelles Arêtes sont en contact ou non, en calculant leur bounding-box, en les dilatant, puis en calculant l’intersection de ces dernières. Nous y parcourons alors les couples d’arêtes \((a_k, a_l)\), \(a_k \in A_i \) \(a_l \in A_j \) à la recherche d’une possible connexion (un sommet étant à la fois une des deux extrémités de \(a_k \) et de \(a_l \). L’ensemble des sommets ainsi détectés constitue l’ensemble des sommets du maillage topologique et géométrique.

6.7. Résultats de la construction des maillages

Notre algorithme de construction des maillages et les maillages produits ont été utilisés par plusieurs de nos collaborateurs, et associés à des problématiques variées.

Tout d’abord, Vincent Mirabet de l’ENS-Lyon a utilisé l’algorithme pour construire des modèles légers des cellules, afin de pouvoir visualiser et interagir avec les cellules segmentées en 3D. Il a aussi utilisé cette représentation pour visualiser et valider les relations de lignage calculées automatiquement entre les segmentations (voir figure 5.9).
6. Construction de maillages volumiques

Jérôme Chopard, post-doctorant de l’équipe VirtualPlants, s’est servi des maillages pour visualiser des patrons d’expression des boutons floraux dans un cas réel (ces patrons, qui sont le plus souvent génériques, permettent aux biologistes d’identifier des zones particulières des tissus végétaux).

Les maillages ont ensuite été corrigés manuellement (retrait de certaines cellules, et retrait d’adjacences non désirées) et utilisés par Yassine Refahi, doctorant à VirtualPlants, pour faire de la simulation et tester des modèles de réaction / diffusion de signaux chimiques correspondant à l’activation de gènes, ou liés à la production dans les cellules de protéines particulières.

Enfin, Mahmoud Omidvar, stagiaire à VirtualPlants, a utilisé les maillages pendant son stage master pour les traduire en G-map, afin de pouvoir valider facilement leur topologie (en particulier, de tester si tous les objets du système (cellules, parois, arêtes) sont bien des quasi-variétés, comme tous les objets du monde réel.

6.8. Conclusion

Les maillages générés ont servis dans l’équipe RDP de l’ENS-Lyon pour manipuler facilement des boutons floraux, grâce à un logiciel de visualisation 3D basé sur des primitives VTK et développé par Vincent Mirabet de RDP. Ces maillages constituent une description « légère » des méristèmes à l’échelle cellulaire, qui permet de visualiser et manipuler aisément les cellules des méristèmes et ont notamment permis d’expertiser les lignées cellulaires calculées automatiquement au chapitre 5.
7. Conclusion et perspectives

Nos travaux ont consisté à rendre possible l’exploration tridimensionnelle des tissus végétaux vivants, et ce à l’échelle cellulaire. Pour cela, nous avons fait le point au chapitre 2 sur les techniques d’acquisition d’image permettant l’observation des structures profondes des tissus. Nous avons ensuite proposé au chapitre 3 une méthode permettant de réduire les défauts fréquemment rencontrés dans les images volumiques des méristèmes, en fusionnant des images acquises sous plusieurs angles. Cela nous a permis au chapitre 4 de développer une chaîne de segmentation des cellules basée sur des opérations courantes de traitement d’images, permettant de contourner correctement une grande majorité des cellules des tissus étudiés dans nos expériences. Nous avons poursuivi nos travaux en appliquant ces outils sur des images du même objet acquises à plusieurs temps consécutifs, et en développant une méthode de suivi temporel permettant d’identifier les lignées cellulaires avec un taux de confiance élevé. Enfin, nous avons développé un algorithme de correction de la topologie des segmentations et un algorithme de construction de maillages représentatif du tissu à l’échelle cellulaire, qui nous a permis de valider l’algorithme de lignage, en offrant la possibilité à nos collaborateurs biologistes de manipuler facilement les milliers de cellules constituant les tissus étudiés.

Mais la portée de ces travaux dépasse la seule communauté des biologistes. Les développements méthodologiques apportés concernant la reconstruction et la segmentation d’images sont rejointes par les apports sur la construction d’images de bonne constitution, à portée relativement universelle dans le domaine du traitement d’images. De même, le travail de synthèse sur la construction de modèles topologiques et géométriques pourra servir de référence aux nombreuses équipes désireuses de construire de tels modèles adaptés à leurs problématiques.

Les perspectives de ce travail sont nombreuses. D’un point de vue outillage logiciel, une interface a été développée, afin de rendre nos outils plus accessibles aux biologistes,
et notamment à nos partenaires du CIRAD-PHIV et de l’équipe RDP de l’ENS-Lyon.

En rapport aux techniques employées, les améliorations de la chaîne de segmentation prévues dans les perspectives du chapitre 4 sont en cours d’expérimentation, notamment la partie consistant à construire une plate-forme ergonomique de segmentation automatique pouvant être utilisée par un public novice en informatique. Enfin, des bases théoriques ont été proposées pour améliorer la méthode de suivi temporel, avec pour objectif une possible adaptation de notre chaîne de suivi temporel à d’autres tissus que les tissus méristématiques, pour permettre l’utilisation de l’ensemble de nos travaux dans le domaine animal, voire bio-médical.
A. La morphologie mathématique, une approche ensembliste de traitement des images

Soit X un sous-ensemble de \mathbb{R}^3 et b un vecteur de \mathbb{R}^3. On note le translaté de X par b l’ensemble :

$$X_b = \{x + b; x \in X\}$$

et on note le transposé de X l’ensemble :

$$\tilde{X} = \{-x; x \in X\}$$

On définit alors l’addition de Minkowski de deux sous-ensembles X et B de \mathbb{R}^3 par :

$$X \oplus B = \bigcup_{b \in B} X_b$$

et on appellera communément X l’objet et B l’élément structurant. On peut remarquer que l’ensemble $X \oplus B$ est le lieu géométrique des points de X_b lorsque b parcourt B.

On peut alors définir les deux opérations élémentaires de filtrage morphologique. La dilatation de X par B est définie par :

$$\delta_B(X) = X \oplus \tilde{B}$$

Et en écrivant \tilde{X} le complémentaire de X dans \mathbb{R}^3, on définit l’opération duale, appelée érosion de X par B :

$$\varepsilon_B(X) = \delta_B(\tilde{X})$$

Ces opérations élémentaires nous permettent de définir certains filtres morphologiques dont l’usage est très courant en traitement d’images. On peut citer l’opération d’ouverture, $\gamma_B(X) = \delta_B(\varepsilon_B(X))$, qui permet, par une érosion suivie d’une dilatation par le même élément structurant, d’éliminer les petites composantes de l’objet, et d’ouvrir les isthmes (i.e. supprimer la barre transversale d’une haltère, ou déconnecter une presqu’ile par
A. La morphologie mathématique, une approche ensembliste de traitement des images

exemple). Enfin, l’opération duale de l’ouverture est la fermeture, \(\varphi_B(X) = \epsilon_B(\delta_B(X)) \), qui permet, par une dilatation suivie d’une érosion, de boucher les petits trous de l’objet, et de fermer les petits détroits.

Ces opérateurs définis dans un cadre ensembliste peuvent être appliquées au traitement des images binaires. On peut facilement les étendre au traitement des images en niveau de gris en les définissant dans un cadre fonctionnel :

\[
\epsilon_B(I)(x) = \inf_{y \in \mathbb{R}; y-x \in B} \{f(y)\}
\]

\[
\delta_B(I)(x) = \sup_{y \in \mathbb{R}; y-x \in B} \{f(y)\}
\]

Ce qui correspond à déplacer l’élément structurant \(\hat{B} \) sur tout le domaine de l’image, et à remplacer la valeur de chaque voxel \(x \) par la valeur maximale, respectivement minimale de la fonction, dans le domaine de \(\hat{B}_x \), pour la dilatation, respectivement l’érosion.

Enfin, on peut obtenir par composition, addition ou différence de ces opérateurs de nombreux autres opérateurs très utiles en filtrage numérique, dont le filtre alterné séquentiel, et la transformation en ligne de partage des eaux.

A.1. Filtre alterné séquentiel

Le filtre alterné séquentiel est construit par composition d’érosions et de dilatations par des éléments structurants de taille croissante. Si on note respectivement \(\varphi_i \) et \(\gamma_i \) la fermeture et l’ouverture par un élément structurant de taille \(i \), On définit :

\[
\gamma - FAS_i = \varphi_i \gamma_i \varphi_{i-1} \gamma_{i-1} ... \varphi_1 \gamma_1
\]

\[
\varphi - FAS_i = \gamma_i \varphi_i \gamma_{i-1} \varphi_{i-1} ... \varphi_1 \gamma_1
\]

\(\gamma - FAS_i \) désignant le filtre alterné séquentiel commençant par une ouverture par un élément structurant de taille 1, et \(\varphi - FAS_i \) désignant le filtre alterné séquentiel commençant par une fermeture par un élément structurant de taille 1. Cela se traduit dans l’image par le type de structure conservée par le filtrage (voir figure A.1). Le \(\gamma - FAS_i \) sera bien adapté pour éliminer les structures claires de taille inférieure ou égale à la taille du dernier élément structurant, alors que le \(\varphi - FAS_i \) aura tendance à éliminer les structures sombres de taille inférieure ou égale à la taille du dernier élément structurant.

A.2. Éléments structurants classiques

En morphologie mathématique, on utilise souvent comme éléments structurants les voisinages classiques des voxels : les 4 et 8-voisinages en 2D et les 6, 18, ou 26-voisinages en 3D (voir figure A.2).
A. La morphologie mathématique, une approche ensembliste de traitement des images

Figure A.1. Filtrage alterné séquentiel d’une image en niveau de gris par un hexagone de taille \(i \). De gauche à droite, image initiale, image initiale transformée par \(\gamma - FAS_3 \), et image initiale transformée par \(\phi - FAS_3 \). Le filtrage par \(\gamma - FAS_3 \) a la propriété de conserver les bassins de l’image, alors que le filtrage par \(\phi - FAS_3 \) conserve les objets brillants et ici, plus particulièrement les lignes de crêtes.

Figure A.2. Principaux voisinages d’un voxel dans un espace discret (source : [Provot, 2009])
B. Plate-formes de développement utilisées, et logiciels développés

Le listing des l’ensemble des fonctions et binaires développés (environ 50.000 lignes de codes C++ / C / Python / Tcl / Bash) est disponible sur le site d’OpenAlea à l’adresse : (mettre ici le lien). L’essentiel a été développé à l’aide des librairies de traitement et de visualisation d’images médicales MIPS (mettre ici le lien) développée dans l’équipe-projet Asclepios de l’INRIA Sophia-Antipolis, et parfois adaptée et diffusée pour et au sein de la plate-forme libre OpenAlea. Nous nous limitons ici à exhiber la majeure partie des prototypes d’outils développés tout au long de cette thèse qui ont permis aux biologistes d’interagir avec des images et segmentations de méristèmes, en accompagnant chaque outil de la date de sa première parution, et en précisant quand l’image provient de la version actuelle du logiciel, lorsque celui-ci a subi des changements importants depuis sa parution (figures B.1, B.2, B.3, B.4, B.5, B.6, B.7 et B.8).

Figure B.1.: Outil de segmentation et de visualisation 2D et 3D des caractéristiques des segmentations des méristèmes racinaires, en ligne de commande donnant lieu aux premières segmentations et visualisations tridimensionnelles des cellules du méristème racinaire du riz par des biologistes (février 2007).
B. Plate-formes de développement utilisées, et logiciels développés

Figure B.2. Outil de construction semi-automatique des assises cellulaires du méristème racinaire pour visualiser la structure cellulaire du méristème racinaire du riz (mai 2007).

Figure B.3. Assistant de recalage manuel et automatique et de fusion permettant la reconstruction d’images (février 2008, interface construite en 2009).
B. Plate-formes de développement utilisées, et logiciels développés

Figure B.4.: Plate-forme d’expertise et de correction des segmentations, permettant aux biologistes de construire une vérité terrain des segmentations et outil de construction et d’interaction avec des groupes d’intérêt de cellules, afin de procéder à des analyses spécifiques sur des populations réduites de cellules (mars 2008, améliorée en août 2009).

Figure B.5.: Outil de suivi temporel et de visualisation 2D des suivis en ligne de commande, permettant d’identifier les lignées cellulaires à partir de deux images et segmentations successives (juillet 2008).
Figure B.6.: Outil de visualisation 3D des suivis, et de construction de vidéo du « growing meristem », permettant la visualisation du fonctionnement 4D du méristème (janvier 2009).
Figure B.7.: Assistant de segmentation automatique pour guider le choix des paramètres, choix qui a une importance fondamentale sur les résultats (octobre 2009).
B. Plate-formes de développement utilisées, et logiciels développés

Figure B.8. Outil de « suivi statique » de la racine : construction automatisée, correction manuelle et visualisation 3D des queues cellulaires du méristème racinaire (mars 2010).

147
C. Calcul du flot optimal par la méthode des arcs non-conformes

Cette annexe explicite la méthode dite des « arcs non-conformes », développée par Edmonds et Karp.

C.1. Cycle et cocycle

Un cycle est une succession d’arcs tous différents, chaque arc ayant une extrémité en commun avec l’arc précédent, et l’autre extrémité en commun avec l’arc suivant, l’arc initial et l’arc final ayant aussi leur extrémité libre en commun. On pourra l’appeler cycle élémentaire si en le parcourant, on ne rencontre pas plusieurs fois le même sommet.

Soit A un ensemble de sommets du graphe. On notera $\omega(A)$ le cocycle associé à A, qui est l’ensemble des arcs incidents à A. On notera respectivement $\omega^+(A)$ et $\omega^-(A)$ l’ensemble des arcs sortants de A et rentrant dans A.

C.2. Condition d’optimalité d’un flot

On associe à chaque sommet x_i de V son potentiel π_i, et on associe à chaque arc $a(x_{i1}, x_{i2})$ son coût réduit, défini comme suit :

$$\bar{\gamma}_a = \gamma_a + \pi_{i1} - \pi_{i2} = \gamma_a - \theta_a$$

et on appellera $\theta_a = \pi_{i2} - \pi_{i1}$ la tension associée au potentiel π_a.

On peut alors utiliser la conditions suffisante d’optimalité suivante :

Si F est un flot vérifiant les contraintes de flot valide, et qu’il existe une tension sur tout arc $\theta_a(x_{i1}, x_{i2}) = \pi_{i2} - \pi_{i1}$ telle que :

$$(C) : \begin{cases} \gamma_a < \theta_a \Rightarrow f_a = C_a \\ \gamma_a > \theta_a \Rightarrow f_a = c_a \\ \gamma_a = \theta_a \Rightarrow c_a \leq f_a \leq C_a \end{cases}$$

Alors F est un flot de coût minimum (voir [Gondran and Minoux, 1990] page 149 pour une démonstration de ce lemme).
C. Calcul du flot optimal par la méthode des arcs non-conformes

Figure C.1.: Diagrammes de conformités et indices de conformités. En (a) : diagramme de conformité C_a associé à l’arc $a(x_1, x_2)$, avec, indiquées par les flèches, les transformations qui n’augmentent pas l’indice de conformité de l’arête, en (b), en bleu, surface du diagramme définissant l’indice de conformité d’un arc de type 6 et en (c), en saumon, surface du diagramme définissant l’indice de conformité d’un arc non-conforme de type 7.

C.3. Conformité d’un arc

Soit un arc $a \in A$ quelconque. On trace dans le plan (f_a, θ_a) l’ensemble C_a des points vérifiant la condition (C). On appelle C_a diagramme de conformité de l’arc a (voir figure C.1).

On distingue les différents types d’arcs en fonction de la position du point (f_a, θ_a) par rapport au diagramme de conformité. Ces types sont les suivants :

arcs dits "conformes" :
\[
\begin{align*}
\gamma_a > \theta_a \text{ et } f_a &= c_a \\
\gamma_a &= \theta_a \text{ et } c_a < f_a < C_a \\
\gamma_a < \theta_a \text{ et } f_a &= C_a \\
\gamma_a &= \theta_a \text{ et } f_a &= c_a \\
\gamma_a &= \theta_a \text{ et } f_a &= C_a
\end{align*}
\]

(1) Type 1
(2) Type 2
(3) Type 3
(4) Type 4
(5) Type 5

arcs dits "non-conformes" :
\[
\begin{align*}
\gamma_a < \theta_a \text{ et } f_a &< C_a \\
\gamma_a > \theta_a \text{ et } f_a &> c_a
\end{align*}
\]

(6) Type 6
(7) Type 7

En vertu du lemme précédent, si tous les arcs sont conformes, alors le flot F est optimum.

On définit l’indice de conformité $\delta(a)$ d’un arc $a \in E$ comme la quantité :

149
C. Calcul du flot optimal par la méthode des arcs non-conformes

\[
\begin{aligned}
&\begin{cases}
(\gamma_a - \theta_a)(f_a - c_a) & \text{pour les arcs tels que } \theta_a < \gamma_a \\
(\theta_a - \gamma_a)(C_a - f_a) & \text{pour les arcs tels que } \theta_a > \gamma_a \\
0 & \text{pour les arcs tels que } \theta_a = \gamma_a
\end{cases}
\end{aligned}
\]

Lorsque tous les indices de conformité sont nuls, le flot est optimum.

C.4. Algorithme de résolution des arcs non conformes

La méthode consiste à construire un flot \(F \) et une tension \(\theta \) tels que tout arc a un indice de conformité nul. Pour cela, on part d’un flot initial compatible et d’un ensemble de potentiels (qui peut être quelconque), puis on modifie itérativement soit le flot, soit le potentiel de façon à ce que l’indice de conformité d’aucun des arcs n’augmente, mais décroisse strictement pour au moins un arc.

Soit \(F \) le flot courant, et \(a_0 = a(x_{i1}, x_{i2}) \) un arc non conforme (s’il n’en existe pas, le flot courant est optimum).

Nous supposerons, pour fixer les idées, que l’arc \(a_0 \) est de type 6. Associons alors au flot \(F \) la coloration suivante des arcs de \(G \):

- Si \(a \) est de type 2, il est coloré en rouge,
- Si \(a \) est de type 4 ou 6, il est coloré en noir,
- Si \(a \) est de type 5 ou 7, il est coloré en vert,
- Si \(a \) est de type 1 ou 3, il est incolore.

L’arc \(a_0 \) qui a été supposé du type 6, est donc noir.

Les arcs rouges sont des arcs où le flot peut soit augmenter, soit diminuer ; les noirs, seulement augmenter ; les verts, seulement diminuer ; sur les arcs incolores, le flot ne peut être modifié. De même, sur un arc noir, la tension ne peut que diminuer ; sur un arc vert, elle ne peut qu’augmenter ; sur un arc incolore, elle peut soit augmenter soit diminuer. On peut voir d’après le diagramme de conformité que ces transformations sont les seules qui n’augmentent jamais les indices de conformité.

D’après le lemme des arcs colorés [Gondran and Minoux, 1990] de Minty, deux cas peuvent se produire :

a) Il existe un cycle \(\mu \) passant par \(a_0 \), ne contenant pas d’arc incolore avec tous les arcs noirs orientés dans le même sens, tous les arcs verts dans le sens contraire. Soit \(\vec{\mu} \) le vecteur associé à \(\mu \) tel que : \((\vec{\mu})_{a_0} = +1 \).

En ajoutant au flot courant \(F \) un flot : \(\epsilon.\vec{\mu} \) où \(\epsilon \leq \min(\epsilon_1, \epsilon_2) \) avec :

\[
\epsilon_1 = \min(C_a - f_a) \text{ pour les arcs noirs ou rouges du cycle}
\]

\[
\epsilon_2 = \min(f_a - c_a) \text{ pour les arcs verts ou rouges du cycle}
\]

L’indice de conformité est non croissant pour tous les arcs de \(\mu \), et décroît strictement pour l’arc \(a_0 \) (il reste inchangé pour les arcs \(a \notin \mu \)).

En choisissant \(\epsilon = \min(\epsilon_1, \epsilon_2) \), au moins un arc change de type.

150
C. Calcul du flot optimal par la méthode des arcs non-conformes

b) Il existe un ensemble A de sommets, et un cocycle associé $\omega(A)$ contenant a_0, sans arcs rouges, avec tous les arcs noirs dans le même sens, tous les arcs verts dans le sens contraire, et contenant éventuellement des arcs incolores. On a : $x_{i1} \in A$, $x_{i2} \notin A$.

Montrons alors que l’on peut transformer les potentiels π_i des sommets de V en ajoutant à tous les π_i ($i \in \bar{A}$) une même quantité $\epsilon > 0$, de façon à ce qu’un arc au moins change de type, et que les indices de conformité n’augmentent sur aucun arc.

Par cette transformation, la tension θ reste inchangée sur les arcs n’appartenant pas à $\omega(A)$.

Pour les arcs $a \in \omega_+(A)$, θ_a augmente de ϵ; pour les arcs $a \in \omega_-(A)$, θ_a diminue de ϵ.

On doit donc avoir :

- $\epsilon \leq \theta_a - \gamma_a$ pour les arcs de type 3 ou 6 appartenant à $\omega^-(A)$;
- $\epsilon \leq \gamma_a - \theta_a$ pour les arcs de type 1 ou 7 appartenant à $\omega^+(A)$.

Posons $\epsilon_1 = \min(\theta_a - \gamma_a)$ pour les arcs de type 3 ou 6 et $\epsilon_2 = \min(\gamma_a - \theta_a)$ pour les arcs de type 1 ou 7.

En choisissant $\epsilon = \min(\epsilon_1, \epsilon_2)$, la somme des indices de conformité décroît strictement, et au moins un nouvel arc change de type.

La procédure ci-dessus est répétée tant qu’il existe des arcs non conformes, et s’arrête lorsque tous les arcs sont devenus conformes.

Comme les nombres c_a et C_a sont des entiers, la méthode converge de façon finie. En effet, les flots et les potentiels sont des nombres entiers à chaque itération, et la somme des indices de conformité est entière et décroît d’au moins une unité à chaque itération.

C.5. Déroulement de l’algorithme

La description suivante est valable dans le cas idéal comme dans le cas général.

A partir de G, le graphe équivalent au mapping M équivalent à la superposition de S sur S', on construit un flot initial F_0 valide. On rappelle qu’un flot valide respecte les contraintes de capacité des arcs et les contraintes de flot qui sont que le flot entrant en un noeud est égal au flot sortant du noeud. Pour construire un tel flot valide, étant donné les contraintes de G, nous commençons par la fin du circuit et nous le remontons par étapes :

- On initialise $f_a = 0$ pour tout arc $a \in \mathcal{E}$.
- On applique le flot $f_a = N'$ (avec N' le nombre de sommets $s'k$) à l’arc retour.
- On applique $f_a = 1$ à tous les arcs collecteurs (i.e. qui relient un sommet $s'k$ au collecteur c)
- On choisit à partir de chaque $s'k$ le s_j qui a le moins de flot sortant parmi les s_j connectés à s_k par un arc $a(s_j, s'_k)$. Si il y a plusieurs sommets ayant le minimum de flot sortant, on choisira celui qui a le moins de connexions avec les s'_k qui n’ont pas encore été visités à cette étape (dont le flot entrant est encore nul). On applique à l’arc reliant le sommet s_j choisi et le sommet s_k le flot $f_a = 1$ et on met à jour la somme des flots sortants en s_j.
- On calcule en chaque s_j la somme des flots sortants, et on applique cette valeur de flot à l’arc source correspondant (i.e. l’arc (s, s_j)) en vérifiant que le flot en cet arc
C. Calcul du flot optimal par la méthode des arcs non-conformes

est valide.

- Pour tout arc \((s, s_j)\) présentant un flot non valide (le flot dépasse la capacité), on corrige la situation en itérant l’opération suivante jusqu’à validité : on cherche un \(s'_k\) relié à \(s_j\) tel qu’un flot non nul circule entre ces deux sommets. On annule alors ce flot et on cherche un remplaçant \(s_j^2\) connecté à \(s_k\) par un arc dont le flot est nul, et tel que :

\[
f_{a(s,s_j2)} < C_{a(s,s_j2)}
\]

et on ajoutera une unité au flot de cet arc. Si on est bloqué à un moment, c’est qu’on a sans doute sous-estimé le nombre de divisions maximales \(N_{div}\). On note alors le flot \(f\) de l’arc bloqué, et on s’en sert pour mettre à jour \(N_{div}\) et les capacités maximales des arcs sources.

Une fois ce flot construit, on initialise le potentiel \(\pi_i\) à la valeur 0 en tout sommet et on calcule pour tout arc \(a \in \mathcal{E}\) son type de conformité (voir diagramme), et son indice de conformité \(\delta_a\), ainsi que la couleur correspondante.

Après cette étape d’initialisation, l’algorithme se déroule comme suit :

1. Vérifier en parcourant tous les arcs qu’il en existe encore au moins un qui a un indice de conformité non nul. Si il n’en existe pas, le flot \(F\) est optimal, arrêt de l’algorithme. Sinon, il existe encore des arcs non conformes, on poursuit l’algorithme.

2. Sélectionner l’arc \(a_0 = (x_{i1}, x_{i2})\) qui a l’indice le plus élevé.

3. Chercher l’existence d’un cycle \(\mu\) passant par \(a_0\), ne contenant pas d’arc incolore, avec tous les arcs noirs orientés dans le même sens, tous les arcs verts dans le sens contraire. Puisque \(a_0\) est non conforme, il est d’une couleur noire ou verte, qu’on notera \(c\). Pour trouver le cycle, on part du sommet arrivée de \(a_0\) et on se propage sur tous les sommets en passant par les arcs qui vérifient les conditions. Dans le détail, étant donnée la forme de notre graphe, le cycle passera nécessairement par \(s\) et \(c\), et par un unique \(s_j\) et un unique \(s'_{k}\), et tous les arcs seront dans le même sens. Comme \(a_0\) fixe \(s_j\) et \(s_k\), on sait que ce cycle ne peut être que le cycle \(\mu_0 = ((s, s_j), (s_j, s'_{k}), (s'_{k}, c), (c, s))\). On doit donc vérifier si les conditions suivantes sont toutes vérifiées :

\[
\begin{cases}
\mu_0 \text{ ne contient pas d’arc incolore} \\
\mu_0 \text{ ne contient que des arcs noirs et rouges (cas 1) ou que des arcs verts et rouges (cas 2)}
\end{cases}
\]

4. Si ces conditions ne sont pas vérifiées on passe en 5., sinon on calcule parmi les arcs \(a \in \mu_0\) :

\[
\epsilon = \min(\min(C_a - f_a)_{\text{a de couleur noire ou rouge}}, \min(f_a - c_{a})_{\text{a de couleur verte ou rouge}})
\]

Ce qui dans notre cas se résume à calculer parmi les arcs \(a \in \mu_0\), \(\epsilon = \)

\[
\begin{cases}
\min(C_a - f_a)_{\text{a non incolore dans le cas 1}} \\
\min(f_a - c_{a})_{\text{a non incolore dans le cas 2}}
\end{cases}
\]
C. Calcul du flot optimal par la méthode des arcs non-conformes

On ajoute alors ϵ au flot f_a de tous les arcs du cycle μ_0 qui sont dans le sens de a_0, on le retire pour ceux dans l’autre sens, puis on met à jour le type de conformité des arcs du cycle μ_0, leur indice de conformité, et leur couleur, et on retourne en 1.

5. Les conditions définies à la fin de l’étape 3 n’étant pas vérifiées, on sait d’après le lemme des arcs colorés de Minty (voir section C.4), qu’il existe un sous-ensemble de sommets $A \subset V$ contenant le sommet x_{i1} d’où part a_0 mais ne contenant pas le sommet x_{i2} ou arrive a_0, et dont le cocycle $\omega(A)$ (i.e. l’ensemble des arcs incidents à A ou sortant de A) contient a_0, le cocycle ne contenant pas d’arcs rouges, tous les arcs noirs dans le même sens, tous les arcs verts dans le sens contraire, et éventuellement des arcs incolores.

On en déduit donc les conditions suivantes qui définissent l’ensemble recherché :

a) $x_{i1} \in A$ et $x_{i2} \not\in A$ \Leftrightarrow a_0 est un arc sortant du cocycle

b) Tous les arcs rentrants sont vers ou incolores et tous les arcs sortants sont noirs ou incolores (Cas 1) ou l’inverse (Cas 2)

6. Pour trouver cet ensemble A dont le cocycle vérifie cette propriété, on commence à partir de l’ensemble $A = \{x_{iA}\}$. On vérifie la couleur de tous les arcs du cocycle de A. Tant qu’il reste un arc rouge a_r dans le cocycle, on ajoute à A le sommet de a_r qui n’y était pas encore.

7. Lorsqu’il n’y a plus d’arcs rouges dans le cocycle, on cherche à vérifier la coloration uniforme (vert ou incolore ou noir et incolore) de tous les arcs rentrants et sortants dans A.

D’abord, on remarque que comme a_0 n’est pas conforme, il ne peut être ni rouge ni incolore. Comme il est sortant du cocycle, on vérifie alors que tous les arcs non incolores sortants du cocycle sont de la couleur de a_0. Tant qu’il reste un arc a qui ne vérifie pas cette condition, on ajoute à A le sommet de a qui n’y appartenait pas encore.

8. Tous les arcs sortant du cocycle sont à présent de la même couleur que a_0. On vérifie alors que tous les arcs rentrants non incolores du cocycle sont de la couleur opposée à a_0 (noir si a_0 est vert, et réciproquement). Tant qu’il reste un arc a qui ne vérifie pas cette condition, on ajoute à A le sommet de a qui n’y appartenait pas encore.

9. On a trouvé A vérifiant la deuxième condition du lemme de Minty (voir section C.4). On calcule alors :

$$\epsilon_1 = \min(\theta_a - \gamma_a)$$

pour les arcs du cocycle du type 3 ou 6

$$\epsilon_2 = \min(\gamma_a - \theta_a)$$

pour les arcs du cocycle de type 1 ou 7

$$\epsilon = \min(\epsilon_1, \epsilon_2)$$

Et on ajoute alors ϵ au potentiel π_i de tous les sommets n’appartenant pas à A.

On met ensuite à jour le type de conformité de tous les arcs du cocycle, leur indice de conformité, et leur couleur, puis on revient en 1.
Bibliographie

157

Bibliographie

Bibliographie

161
Bibliographie

Bibliographie

Bibliographie

