C. Travaux and . Fait, Weymans (univ. de Bordeaux) et d'un projet de recherche au CEMRACS Il font suitè a l'´ etude de modélisation effectuée par L, Boudin et L. Weynans [BW08]. En collaboration avec L. Boudin, A. Devys, B. Grec et D. Yakoubi nous avons implémenté dans Freefem++ un schéma explicite basé sur la méthode des caractéristiques pour l'´ equation de Vlasov et sur une discrétisationdiscrétisationéléments finis pour leséquationsleséquations de Navier-Stokes, 2008.

. Le-but-de-ce-travail-est-d, ´ etudier numériquement le dépôt de particules dans une structure de type arbre de déterminer dans quels cas il est nécessaire de prendre en compte la force de rétroaction des particules sur le fluide. Il s'agit d'uné etude préliminaire et une exploitation des résultats est nécessaire. La configuration typique dans laquelle on se place est la suivante : [AC96] G. Allaire and C. Conca. Bloch-wave homogenization for a spectral problem in fluid-solid structures, Arch. Rational Mech. Anal, vol.135, issue.3, pp.197-257, 1996.

F. [. Astorino, M. Chouly, and . Fernandez, An added-mass free semi-implicit coupling scheme for fluid???structure interaction, Comptes Rendus Mathematique, vol.347, issue.1-2, 2008.
DOI : 10.1016/j.crma.2008.11.003

URL : https://hal.archives-ouvertes.fr/inria-00542751

]. G. All87 and . Allain, Small-time existence for the navier-stokes equations with a free surface, Appl. Math. Optim, vol.16, issue.1, pp.37-50, 1987.

]. G. All92 and . Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal, vol.23, issue.6, pp.1482-1518, 1992.

D. [. Agnew, S. W. Pavia, and . Clarke, Aerosol particle impaction in the conducting airways, Physics in Medicine and Biology, vol.29, issue.7, pp.767-777, 1984.
DOI : 10.1088/0031-9155/29/7/001

]. Y. Ast06a, C. Achdou, N. Sabot, and . Tchou, Diffusion and propagation problems in some ramified domains with a fractal boundary, M2AN Math. Model. Numer. Anal, vol.40, issue.4, pp.623-652, 2006.

]. Y. Ast06b, C. Achdou, N. Sabot, and . Tchou, A multiscale numerical method for Poisson problems in some ramified domains with a fractal boundary, Multiscale Model. Simul, vol.5, issue.3, pp.828-860, 2006.

C. [. Achdou, N. Sabot, and . Tchou, Transparent boundary conditions for the Helmholtz equation in some ramified domains with a fractal boundary, Journal of Computational Physics, vol.220, issue.2, pp.712-739, 2007.
DOI : 10.1016/j.jcp.2006.05.033

URL : https://hal.archives-ouvertes.fr/hal-00194102

N. [. Achdou and . Tchou, Trace results on domains with self-similar fractal boundaries, Journal de Math??matiques Pures et Appliqu??es, vol.89, issue.6
DOI : 10.1016/j.matpur.2008.02.008

URL : https://hal.archives-ouvertes.fr/hal-00202658

]. F. Baa01 and . Baaijens, A fictitious domain/mortar element method for fluid-structure interaction

[. Belgacem, The Mortar finite element method with Lagrange multipliers, Numerische Mathematik, vol.84, issue.2, pp.173-197, 1999.
DOI : 10.1007/s002110050468

[. Belgacem and Y. Maday, The mortar element method for three dimensional finite elements, ESAIM: Mathematical Modelling and Numerical Analysis, vol.31, issue.2, pp.289-302, 1997.
DOI : 10.1051/m2an/1997310202891

R. [. Badia and . Codina, Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition, Numerische Mathematik, vol.3, issue.4, pp.533-557, 2007.
DOI : 10.1007/s00211-007-0099-5

L. [. Baranger and . Desvillettes, COUPLING EULER AND VLASOV EQUATIONS IN THE CONTEXT OF SPRAYS: THE LOCAL-IN-TIME, CLASSICAL SOLUTIONS, Journal of Hyperbolic Differential Equations, vol.03, issue.01, pp.1-26, 2006.
DOI : 10.1142/S0219891606000707

]. J. Bea81 and . Beale, The initial value problem for the Navier-Stokes equations with a free surface

]. J. Bel96 and . Bello, L r regularity for the Stokes and Navier-Stokes problems, Ann. Mat. Pura Appl, vol.170, issue.4, pp.187-206, 1996.

L. [. Boffi and . Gastaldi, Stability and geometric conservation laws for ALE formulations, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.42-44, pp.42-444717, 2004.
DOI : 10.1016/j.cma.2004.02.020

Y. [. Bernardi, A. T. Maday, and . Patera, Domain decomposition by the mortar element method In Asymptotic and numerical methods for partial differential equations with critical parameters, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci, vol.384, pp.269-286, 1992.

Y. [. Bernardi, A. T. Maday, and . Patera, A new nonconforming approach to domain decomposition : the mortar element method, Nonlinear partial differential equations and their applications.Colì ege de France Seminar, pp.13-51, 1989.

F. [. Badia, C. Nobile, and . Vergara, Fluid???structure partitioned procedures based on Robin transmission conditions, Journal of Computational Physics, vol.227, issue.14, pp.7027-7051, 2008.
DOI : 10.1016/j.jcp.2008.04.006

]. M. Bou03 and . Boulakia, Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid, C. R. Math. Acad. Sci. Paris, issue.12, pp.336985-990, 2003.

A. [. Badia, A. Quaini, and . Quarteroni, Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction, SIAM Journal on Scientific Computing, vol.30, issue.4, pp.1778-1805, 2008.
DOI : 10.1137/070680497

. [. Ben, Simplified models for gas exchange in the human lungs, J. Theor. Biol, vol.238, pp.474-495, 2006.

K. [. Chapelle and . Bathe, The Finite Element Analysis of Shells -Fundamentals
URL : https://hal.archives-ouvertes.fr/hal-00839738

A. Blondeau, D. Coste, B. Isabey, and . Louis, In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry, Annals of biomedical engineering, vol.34, pp.997-1007, 2006.

J. [. Causin, F. Gerbeau, and . Nobile, Added-mass effect in the design of partitioned algorithms for fluid???structure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.42-44, pp.42-444506, 2005.
DOI : 10.1016/j.cma.2004.12.005

URL : https://hal.archives-ouvertes.fr/hal-00695954

]. A. Cho68 and . Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp, vol.22, pp.745-762, 1968.

]. A. Cho69 and . Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comp, vol.23, pp.341-353, 1969.

]. P. Cia88 and . Ciarlet, Mathematical elasticity. Volume I, 1988.

]. C. Con85 and . Conca, On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures Appl, vol.64, issue.91, pp.31-75, 1985.

S. [. Coutand and . Shkoller, Motion of an Elastic Solid inside an Incompressible Viscous Fluid, Archive for Rational Mechanics and Analysis, vol.52, issue.1, pp.25-102, 2005.
DOI : 10.1007/s00205-004-0340-7

S. [. Coutand and . Shkoller, The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations, Archive for Rational Mechanics and Analysis, vol.179, issue.3, pp.303-352, 2006.
DOI : 10.1007/s00205-005-0385-2

C. Conca, J. San-martín, and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations, vol.25, pp.5-61019, 2000.

. W. Dbvd-+-08-]-j, W. G. De-backer, A. Vos, S. L. Devolder, F. L. Verhulst et al., Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation, Journal of Biomechanics, vol.41, pp.106-113, 2008.

M. [. Deparis, G. Discacciati, A. Fourestey, and . Quarteroni, Heterogeneous Domain Decomposition Methods for Fluid-Structure Interaction Problems, 2005.
DOI : 10.1007/978-3-540-34469-8_4

M. [. Deparis, A. Discacciati, and . Quarteroni, A Domain Decomposition Framework for Fluid-Structure Interaction Problems, Proceedings of the Third International Conference on Computational Fluid Dynamics (ICCFD3), 2004.
DOI : 10.1007/3-540-31801-1_4

M. [. Desjardins and . Esteban, Existence of Weak Solutions for the Motion of Rigid Bodies in a Viscous Fluid, Archive for Rational Mechanics and Analysis, vol.146, issue.1, pp.59-71, 1999.
DOI : 10.1007/s002050050136

M. [. Desjardins and . Esteban, On Weak Solutions for Fluid???Rigid Structure Interaction: Compressible and Incompressible Models, Communications in Partial Differential Equations, vol.40, issue.1, pp.1399-1413, 2000.
DOI : 10.1007/BF01094193

M. [. Deparis, L. Fernández, and . Formaggia, Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.601-616, 2003.
DOI : 10.1051/m2an:2003050

URL : https://hal.archives-ouvertes.fr/hal-00705114

S. [. Donea, J. P. Giuliani, and . Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.33, issue.1-3, pp.689-723, 1982.
DOI : 10.1016/0045-7825(82)90128-1

Q. Du, M. D. Gunzburger, L. S. Hou, and J. Lee, Semidiscrete Finite Element Approximations of a Linear Fluid-Structure Interaction Problem, SIAM Journal on Numerical Analysis, vol.42, issue.1, pp.1-29, 2004.
DOI : 10.1137/S0036142903408654

J. Hart, G. W. Peters, P. J. Schreurs, and F. P. Baaijens, A three-dimensional computational analysis of fluid???structure interaction in the aortic valve, Journal of Biomechanics, vol.36, issue.1, pp.103-112, 2003.
DOI : 10.1016/S0021-9290(02)00244-0

B. Domelevo and J. Roquejoffre, Existence and stability of travelling wave solutions in a kinetic model of two-phase flows, Communications in Partial Differential Equations, vol.152, issue.1-2, pp.61-108, 1999.
DOI : 10.1016/0001-8708(76)90098-0

L. De-rochefort, X. Maître, R. Fodil, L. Vial, B. Louis et al., Phase-contrast velocimetry with hyperpolarized3He for in vitro and in vivo characterization of airflow, Magnetic Resonance in Medicine, vol.131, issue.6, pp.1318-1325, 2006.
DOI : 10.1002/mrm.20899

L. De-rochefort, L. Vial, R. Fodil, X. Matre, B. Louis et al., In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry, Journal of Applied Physiology, vol.102, issue.5, pp.2012-2023, 2007.
DOI : 10.1152/japplphysiol.01610.2005

]. H. Da-veiga, On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem, Journal of Mathematical Fluid Mechanics, vol.6, issue.1, pp.21-52, 2004.
DOI : 10.1007/s00021-003-0082-5

]. R. Edw95 and . Edwards, Functional analysis, Theory and applications, 1995.

J. [. Ern and . Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol.159, 2004.
DOI : 10.1007/978-1-4757-4355-5

[. Veubeke, The dynamics of flexible bodies, International Journal of Engineering Science, vol.14, issue.10, pp.895-913, 1976.
DOI : 10.1016/0020-7225(76)90102-6

]. E. Fei03 and . Feireisl, On the motion of rigid bodies in a viscous compressible fluid, Arch. Rational Mech. Anal, vol.167, issue.4, pp.281-308, 2003.

L. Formaggia, J. Gerbeau, F. Nobile, and A. Quarteroni, On the coupling of 3D and 1D Navier???Stokes equations for flow problems in compliant vessels, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.6-7, pp.6-7561, 2001.
DOI : 10.1016/S0045-7825(01)00302-4

URL : https://hal.archives-ouvertes.fr/hal-00691928

L. Formaggia, J. Gerbeau, F. Nobile, and A. Quarteroni, Numerical Treatment of Defective Boundary Conditions for the Navier--Stokes Equations, SIAM Journal on Numerical Analysis, vol.40, issue.1, pp.376-401, 2002.
DOI : 10.1137/S003614290038296X

URL : https://hal.archives-ouvertes.fr/inria-00072539

M. [. Farhat, P. L. Lesoinne, and . Tallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2, pp.95-114, 1998.
DOI : 10.1016/S0045-7825(97)00216-8

]. M. Fm03a, M. Fernández, and . Moubachir, An exact block-Newton algorithm for solving fluidstructure interaction problems, C. R. Math. Acad. Sci. Paris, issue.8, pp.336681-686, 2003.

]. M. Fm03b, M. Fernández, and . Moubachir, An exact Block-Newton algorithm for the solution of implicit time discretized coupled systems involved in fluid-structure interaction problems, Second M.I.T. Conference on Computational Fluid and Solid Mechanics, pp.1337-1341, 2003.

M. [. Fernández and . Moubachir, Numerical simulation of fluid-structure systems via Newton's method with exact Jacobians, th European Congress on Computational Methods in Applied Sciences and Engineering, 2004.

M. [. Fernández and . Moubachir, A Newton method using exact jacobians for solving fluid???structure coupling, Computers & Structures, vol.83, issue.2-3, pp.127-142, 2005.
DOI : 10.1016/j.compstruc.2004.04.021

A. [. Formaggia, F. Moura, and . Nobile, On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.41, issue.4, pp.743-769, 2007.
DOI : 10.1051/m2an:2007039

S. Fetita, D. Mancini, F. Perchet, M. Prêteux, . Thiriet et al., An image-based computational model of oscillatory flow in the proximal part of tracheobronchial trees, Computer Methods in Biomechanics and Biomedical Engineering, vol.3, issue.4, 2005.
DOI : 10.1098/rspa.1929.0111

URL : https://hal.archives-ouvertes.fr/hal-00273054

F. [. Formaggia and . Nobile, A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math, vol.7, issue.2, pp.105-131, 1999.

F. [. Formaggia and . Nobile, Stability analysis of second-order time accurate schemes for ALE???FEM, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.39-41, pp.39-414097, 2004.
DOI : 10.1016/j.cma.2003.09.028

K. [. Farhat, M. Pierson, and . Lesoinne, The second generation FETI methods and their application to the parallel solution of large-scale linear and geometrically non-linear structural analysis problems, Computer Methods in Applied Mechanics and Engineering, vol.184, issue.2-4, pp.333-374, 2000.
DOI : 10.1016/S0045-7825(99)00234-0

I. [. Figueroa, K. E. Vignon-clementel, T. J. Jansen, C. A. Hughes, and . Taylor, A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.41-43
DOI : 10.1016/j.cma.2005.11.011

C. Farhat, K. Van-der-zee, and P. Geuzaine, Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.17-181973, 2006.
DOI : 10.1016/j.cma.2004.11.031

W. [. Frster, E. Wall, and . Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.7, pp.1278-1293, 2007.
DOI : 10.1016/j.cma.2006.09.002

T. [. Gemci, N. Corcoran, and . Chigier, A Numerical and Experimental Study of Spray Dynamics in a Simple Throat Model, Aerosol Science and Technology, vol.9, issue.1, pp.18-38, 2002.
DOI : 10.1080/02786829708965417

C. [. Guillard and . Farhat, On the significance of the geometric conservation law for flow computations on moving meshes, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.11-12, pp.11-121467, 2000.
DOI : 10.1016/S0045-7825(00)00173-0

URL : https://hal.archives-ouvertes.fr/hal-00871722

]. T. Gjv04a, P. Goudon, A. Jabin, and . Vasseur, Hydrodynamic limit for the Vlasov-Navier- Stokes equations. I. Light particles regime, Indiana Univ. Math. J, vol.53, issue.6, pp.1495-1515, 2004.

]. T. Gjv04b, P. Goudon, A. Jabin, and . Vasseur, Hydrodynamic limit for the Vlasov-Navier- Stokes equations. II. Fine particles regime, Indiana Univ. Math. J, vol.53, issue.6, pp.1517-1536, 2004.

. P. Gk-]-g, M. Galdi, and . Kyed, Steady flow of a navier?stokes liquid past an elastic body

H. [. Gunzburger, G. A. Lee, and . Seregin, Global Existence of Weak Solutions for Viscous Incompressible Flows around a Moving Rigid Body in Three Dimensions, Journal of Mathematical Fluid Mechanics, vol.2, issue.3, pp.219-266, 2000.
DOI : 10.1007/PL00000954

B. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.44-476011, 2006.
DOI : 10.1016/j.cma.2005.10.010

Q. [. Grimal and S. Nali, A one-dimensional model for the propagation of transient pressure waves through the lung, Journal of Biomechanics, vol.35, issue.8, pp.1081-1089, 2002.
DOI : 10.1016/S0021-9290(02)00064-7

]. T. Gou01 and . Goudon, Asymptotic problems for a kinetic model of two-phase flow, Proc. R. Soc. Edinb., Sect. A, Math, vol.131, issue.6, pp.1371-1384, 2001.

T. [. Glowinski, J. Pan, and . Périaux, A fictitious domain method for Dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering, vol.111, issue.3-4, pp.3-4283, 1994.
DOI : 10.1016/0045-7825(94)90135-X

]. Gq98a, L. Guermond, and . Quartapelle, On stability and convergence of projection methods based on pressure Poisson equation, Internat. J. Numer. Methods Fluids, vol.26, issue.9, pp.1039-1053, 1998.

]. Gq98b, L. Guermond, and . Quartapelle, On the approximation of the unsteady Navier- Stokes equation by finite element projection methods, Numer. Math, vol.80, issue.2, pp.207-238, 1998.

P. [. Girault and . Raviart, Finite element methods for Navier-Stokes equations, 1986.
DOI : 10.1007/978-3-642-61623-5

]. Q. Gri03 and . Grimal, Etude dans le domaine temporel de la propagation d'ondesélastiquesondesélastiques en milieux stratifiés ; Modélisation de la réponse du thoraxàthorax`thoraxà un impact, 2003.

[. Gerbeau and M. Vidrascu, A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.631-648, 2003.
DOI : 10.1051/m2an:2003049

URL : https://hal.archives-ouvertes.fr/hal-00694625

]. D. Gvhar, M. Gérard-varet, and . Hillairet, Regularity issues in the problem of fluid structure

]. K. Ham98 and . Hamdache, Global existence and large time behaviour of solutions for the Vlasov- Stokes equations, Japan J. Indust. Appl. Math, vol.15, issue.1, pp.51-74, 1998.

]. M. Hil07 and . Hillairet, Lack of collision between solid bodies in a 2D incompressible viscous flow

M. [. Haraux and . Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calculus of Variations and Partial Differential Equations, vol.9, issue.2, pp.95-124, 1999.
DOI : 10.1007/s005260050133

. F. Hplho, O. Hecht, A. L. Pironneau, K. Hyaric, and . Ohtsuka, FreeFem++ v. 2.11. User's Manual

R. [. Heywood, S. Rannacher, and . Turek, ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS, International Journal for Numerical Methods in Fluids, vol.8, issue.5, pp.325-352, 1996.
DOI : 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y

[. Hoffmann and V. N. Starovoitov, On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl, vol.9, issue.2, pp.633-648, 1999.

. Ht-]-m, T. Hillairet, and . Takahashi, Collisions in 3d fluid structure interactions problems

. J. Kfh-+-09-]-h, C. A. Kim, T. J. Figueroa, K. E. Hughes, C. A. Jansen et al., Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow, 2009.

C. [. Lesoinne and . Farhat, Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations, Computer Methods in Applied Mechanics and Engineering, vol.134, issue.1-2, pp.71-90, 1996.
DOI : 10.1016/0045-7825(96)01028-6

[. Tallec and S. Mani, Numerical analysis of a linearised fluid-structure interaction problem, Numerische Mathematik, vol.87, issue.2, pp.317-354, 2000.
DOI : 10.1007/s002110000183

[. Tallec and J. Mouro, Fluid structure interaction with large structural displacements, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.24-25, pp.3039-3067, 2001.
DOI : 10.1016/S0045-7825(00)00381-9

C. Lin, M. H. Tawhai, G. Mclennanc, and E. A. Hoffman, Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways, Respiratory Physiology & Neurobiology, vol.157, issue.2-3, pp.295-309, 2007.
DOI : 10.1016/j.resp.2007.02.006

B. Mauroy, M. Filoche, E. R. Weibel, and B. Sapoval, An optimal bronchial treemay be dangerous, Nature, vol.427, issue.6975, pp.633-636, 2004.
DOI : 10.1038/nature02287

J. [. Maz-'ya and . Rossmann, Lp estimates of solutions tomixed boundary value problems for the Stokes system in polyhedral domains, Mathematische Nachrichten, vol.27, issue.7, pp.751-793, 2007.
DOI : 10.1002/mana.200610513

J. [. Matthies and . Steindorf, Partitioned but strongly coupled iteration schemes for nonlinear fluid???structure interaction, Computers & Structures, vol.80, issue.27-30, pp.27-301991, 2002.
DOI : 10.1016/S0045-7949(02)00259-6

J. [. Matthies and . Steindorf, Partitioned strong coupling algorithms for fluid???structure interaction, Computers & Structures, vol.81, issue.8-11, pp.805-812, 2003.
DOI : 10.1016/S0045-7949(02)00409-1

. B. Msv, D. Maury, C. Salort, and . Vannier, Trace theorems for trees, application to the human lung

]. A. Mv07a, A. Mellet, and . Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier- Stokes system of equations, Math. Models Methods Appl. Sci, vol.17, issue.7, pp.1039-1063, 2007.

W. [. Mok and . Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, Trends in computational structural mechanics, 2001.

W. [. Mok, E. Wall, and . Ramm, Accelerated iterative substructuring schemes for instationary fluid-structure interaction, Computational Fluid and Solid Mechanics, pp.1325-1328, 2001.
DOI : 10.1016/B978-008043944-0/50907-0

B. Nkonga and H. Guillard, Godunov type method on non-structured meshes for three-dimensional moving boundary problems, Computer Methods in Applied Mechanics and Engineering, vol.113, issue.1-2, pp.183-204, 1994.
DOI : 10.1016/0045-7825(94)90218-6

URL : https://hal.archives-ouvertes.fr/inria-00074789

]. G. Ngu89 and . Nguetseng, A general convergence result for a functional related to the theory of homogenization [num96] The first AFOSR conference on dynamic motion CFD, On the mathematical theory of fluid dynamic limits to conservation laws, pp.608-623, 1989.

M. [. Owen and . Lewis, The mechanics of lung tissue under high-frequency ventilation, SIAM J. Appl. Math, vol.61, issue.5, pp.1731-1761, 2001.

]. M. Olu99 and . Olufsen, Structured tree outflow condition for blood flow in larger systemic arteries

A. [. Orlt and . Sändig, Regularity of viscous Navier-Stokes flows in nonsmooth domains, Boundary value problems and integral equations in nonsmooth domains (Luminy, pp.185-201, 1993.

C. [. Piperno and . Farhat, Design of Efficient Partitioned Procedures for the Transient Solution of Aeroelastic Problems, Fluid-structure interaction, pp.23-49, 2003.
DOI : 10.1080/10618569608940779

URL : https://hal.archives-ouvertes.fr/hal-00607750

C. [. Piperno, B. Farhat, and . Larrouturou, Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application, Computer Methods in Applied Mechanics and Engineering, vol.124, issue.1-2, pp.79-112, 1995.
DOI : 10.1016/0045-7825(95)92707-9

]. S. Pip97 and . Piperno, Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations, Internat. J. Numer. Methods Fluids, issue.10, pp.251207-1226, 1997.

D. [. Peskin and . Mcqueen, A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid, Journal of Computational Physics, vol.81, issue.2, pp.372-405, 1989.
DOI : 10.1016/0021-9991(89)90213-1

A. [. Quaini and . Quarteroni, A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD, Mathematical Models and Methods in Applied Sciences, vol.17, issue.06, pp.957-983, 2007.
DOI : 10.1142/S0218202507002170

S. [. Quarteroni, A. Ragni, and . Veneziani, Coupling between lumped and distributed models for blood flow problems, Second AMIF International Conference, pp.111-124, 2000.
DOI : 10.1007/s007910100063

M. [. Quarteroni, A. Tuveri, and . Veneziani, Computational vascular fluid dynamics: problems, models and methods, Computing and Visualization in Science, vol.2, issue.4, pp.163-197, 2000.
DOI : 10.1007/s007910050039

A. [. Quarteroni and . Veneziani, Analysis of a Geometrical Multiscale Model Based on the Coupling of ODE and PDE for Blood Flow Simulations, Multiscale Modeling & Simulation, vol.1, issue.2, pp.173-195, 2003.
DOI : 10.1137/S1540345902408482

]. R. Ran91 and . Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations, Lecture Notes in Mathematics, vol.1530, pp.167-183, 1991.

K. [. Rugonyi and . Bathe, On finite element analysis of fluid flows coupled with structural interaction, CMES -Comp. Modeling Eng. Sci, vol.2, issue.2, pp.195-212, 2001.

J. [. Raback, M. Ruokolainen, E. Lyly, and . Järvinen, Fluid-structure interaction boundary conditions by artificial compressibility, ECCOMAS Computational Fluid Dynamics Conference, 2001.

. [. Soualah-alilah, Modélisation mathématique et numérique du poumon humain, 2007.

]. D. Ser87 and . Serre, Chute libre d'un solide dans un fluide visqueux incompressible, Existence

]. J. Sim87 and . Simon, Compact sets in the space L p (0, T ; B), Ann. Mat. Pura Appl, vol.146, issue.4, pp.65-96, 1987.

J. A. San-martín, V. Starovoitov, and M. Tucsnak, Global weak solutions for the twodimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal, vol.161, issue.2, pp.113-147, 2002.

J. A. , S. Martín, V. Starovoitov, and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal, vol.161, issue.2, pp.113-147, 2002.

J. San-martín, J. Scheid, T. Takahashi, and M. Tucsnak, Convergence of the Lagrange--Galerkin Method for the Equations Modelling the Motion of a Fluid-Rigid System, SIAM Journal on Numerical Analysis, vol.43, issue.4, pp.1536-1571, 2005.
DOI : 10.1137/S0036142903438161

]. V. Sol88a and . Solonnikov, On the transiant motion of an isolated volume of viscous incompressible fluid, Math. USSR Izvestiya (Izv. Ross. Akad. Nauk Ser. Mat.), vol.31, pp.381-405, 1988.

]. V. Sol88b and . Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface

[. Maury, T. Similowski, S. Martin, and C. Straus, Modelling of respiratory system mechanics involving gas exchange in the human lungs, ESAIM : PROCEEDINGS, vol.23, pp.30-47, 2008.

]. V. Sta04 and . Starovoitov, Behavior of a rigid body in an incompressible viscous fluid near a boundary, Free boundary problems, pp.313-327, 2004.

]. C. Sur07 and . Surulescu, On the stationary interaction of a Navier-Stokes fluid with an elastic tube wall, Appl. Anal, vol.86, issue.2, pp.149-165, 2007.

A. [. Salomon, B. I. Weiss, and . Wohlmuth, Energy-Conserving Algorithms for a Corotational Formulation, SIAM Journal on Numerical Analysis, vol.46, issue.4, pp.1842-1866, 2008.
DOI : 10.1137/060669863

URL : https://hal.archives-ouvertes.fr/hal-00363422

]. T. Tak03 and . Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations, vol.8, issue.12, pp.1499-1532, 2003.

]. R. Tem68 and . Temam, Une méthode d'approximation de la solution deséquationsdeséquations de Navier-Stokes

]. R. Tem77 and . Temam, Navier-Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, 1977.

]. T. Tez01 and . Tezduyar, Finite element methods for fluid dynamics with moving boundaries and interfaces, Arch. Comput. Methods Engrg, vol.8, pp.83-130, 2001.

C. [. Thomas and . Lombard, Geometric Conservation Law and Its Application to Flow Computations on Moving Grids, AIAA Journal, vol.17, issue.10, pp.1030-1037, 1979.
DOI : 10.2514/3.61273

M. [. Takahashi and . Tucsnak, Global Strong Solutions for the Two-Dimensional Motion of an Infinite Cylinder in a Viscous Fluid, Journal of Mathematical Fluid Mechanics, vol.6, issue.1, pp.53-77, 2004.
DOI : 10.1007/s00021-003-0083-4

URL : https://hal.archives-ouvertes.fr/hal-00141195

. [. Vignon, A coupled multidomain method for computational modeling of blood flow, 2006.

I. E. Vignon-clementel, C. A. Figueroa, K. E. Jansen, and C. A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.29-32, pp.29-323776, 2006.
DOI : 10.1016/j.cma.2005.04.014

C. [. Vignon and . Taylor, Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries, Wave Motion, vol.39, issue.4, pp.361-374, 2004.
DOI : 10.1016/j.wavemoti.2003.12.009

C. [. Veneziani and . Vergara, Flow rate defective boundary conditions in haemodynamics simulations, International Journal for Numerical Methods in Fluids, vol.191, issue.8-9, pp.8-9803, 2005.
DOI : 10.1002/fld.843

]. E. Wei63, Morphometry of the human lung, 1963.

T. [. Wall and . Rabczuk, Fluidstructure interaction in lower airways of CT-based lung geometries, International Journal for Numerical Methods in Fluids, 2008.